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Abstract

1 Cable-driven continuum robots, which are robots with a continuously flexible

backbone and no identifiable joints that are actuated by cables, have shown great poten-

tial for many applications in unstructured, uncertain environments. However, the stan-

dard design for a cable-driven continuum robot segment, which bends a continuous back-

bone along a circular arc, has many compliant modes of deformation which are uncon-

trolled, and which may result in buckling or other undesirable behaviors if not amelio-

rated. In this study, a detailed approach for using additional cables to selectively stiffen

planar cable-driven robots without substantial coupling to the actuating cables is inves-

tigated. A mechanics-based model based on the planar Cosserat equations is used to find

the design conditions under which additional cables can be routed without coupling of the

cable lengths for small deformations. Simulations show that even for relatively large de-

formations, coupling remains small. A prototype was designed and evaluated, and it was

demonstrated that the compliance of the robot is substantially modified relative to the

same robot without the additional stiffening cables. The additional stiffening cables are

shown to increase the end-effector output stiffness by a factor of approximately 10 over a

typical design with actuating cables.

1Some portions of the abstract was previously published as: ”Molaei, P., Pitts, N. A., Palardy, G., Su,
J., Mahlin, M. K., Neilan, J. H., Gilbert, H. B. (2022). Cable Decoupling and Cable-Based Stiffening of
Continuum Robots. IEEE Access, 10, 104852-104862.”
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Chapter 1. Introduction

1.1. Background

A tendon-driven continuum robot is inspired by slender animals such as snakes and

octopus tentacles [1] and it is composed of a flexible and elastic component that contains

multiple tendon guides and tendons itself, which are utilized to manipulate and deform

the structure of the robot body, also called the backbone, by pulling on the tendons and

applying tension on them [8]. The use of tendon-driven robots and other similar high-

degree-of-freedom structures has been explored extensively for various purposes such as

minimally invasive surgery [2], [3], space application and manipulation [4], nuclear inspec-

tion and testing [5], and general manipulation tasks in unstructured environments [6]. The

ability to actuate the tendons remotely, helps to keep designs compact and to facilitate

lightweight mechanisms that are beneficial in space- and mass-constrained applications.

The soft robot’s flexible and elastic backbone offers certain advantages over conventional

and traditional manipulators with numerous physical joints, particularly in densely packed

environments, where the elasticity of the robot structure enables it to respond well to its

uncertain surroundings [7]. The elastic compliance could be beneficial to ensure safe in-

teractions with the unpredictable surrounding environment and protect both the robot

and its workspace. A well-designed continuum robot should utilize its structural and de-

sign properties to attain flexibility, control, accessibility, reliability, and most importantly,

structural stability.
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1.2. Medical applications

Continuum robotic manipulators and their precursors consisting of high DoF

hyper-redundant mechanisms have always been investigated as a suitable choice for

medical applications such as minimally invasive surgery and endoscopy. Tendon-driven

soft/continuum robots and many other flexible continuum mechanics, because of their

inherited compliance and the capability to function in unpredictable, uncertain, and

complex environments, have been increasingly proposed and investigated previously for a

variety of medical applications such as Otolaryngology and vascular and cardiac surgery,

where the continuum robot would either enter the patient’s body through one of the nat-

ural orifices or a minimally incision performed by the surgeon [9], [10]. Although in most

of the medical cases flexibility and safe interaction with the patient’s body is required,

some surgical procedures such as bone milling or osteolysis do in fact require higher device

rigidity and stiffness to perform the task properly [11].

1.3. Space applications

1 Human space exploration is an essential mission of the National Aeronautics and

Space Administration (NASA). The development of large and sustainable structures in

space and for planetary habitats has been identified as one of the key enabling technolo-

gies as the next strategic thrust in space technology advancement. Various in-space as-

sembly technologies have been developed for making large space assets at NASA Langley

Research Center. A cable-driven compliant space robotic technology has demonstrated

1Some portions of Section 1.3 were previously published as: ”Molaei, P., Pitts, N. A., Palardy, G., Su,
J., Mahlin, M. K., Neilan, J. H., Gilbert, H. B. (2022). Cable Decoupling and Cable-Based Stiffening of
Continuum Robots. IEEE Access, 10, 104852-104862.”
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unique capabilities and advantages in terms of flexibility, durability, and remote adjusta-

bility. The performance of the system can be optimized by the design of configuration and

the selection of cable materials through modeling and experimental validation. Advanc-

ing human space exploration entails developing larger and more sustainable structures

in space and on other worlds requiring in-space manufacturing, assembly, and servicing.

Identified as the next strategic thrust for NASA, In-space Assembly Servicing and Manu-

facturing (ISAM) offers key possibilities by freeing a mission from the restrictions of mass

and volume of current launch vehicles. It is also crucial to consider how to optimize as-

sembly methods and agents being used to diversify what capabilities they must allow for

a broad range of applications, minimizing launch cost. NASA Langley Research Center’s

(LaRC) in-space assembly and autonomy researchers have been developing various tech-

nology capabilities required to make larger space assets. For example, in 2002, LaRC’s

Automated Telescope Assembly Lab (ASAL) autonomously assembled and disassembled

an 8-meter truss structure [12]. Recently research in in-space assembly has been ramping

up with NASA funding technology development for three tipping point In-Space Robotic

Manufacturing and Assembly (IRMA) projects, Dragon- fly [13], Archinaut [14], and the

Commercial Infrastructure for Robotic Assembly and Servicing (CIRAS) [15]. In Addition,

the NASA in-Space Assembled Telescope (iSAT) Study recommended to the 2020 As-

tronomy and Astrophysics Decadal Survey that ISA be considered as a possible enabling

method for future large space telescopes for its risk, cost, and science benefits [16]. In this

effort, cable-driven systems have been developed, highlighted by the “Tendon-Actuated

Lightweight In Space MANipulator” (TALISMAN) developed by LaRC. TALISMAN was

created to address the deficiencies in the current state of the art in long reach manipu-
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lators by utilizing an antagonistic tendon design [4]. TALISMAN simplified joint design

and enhanced mechanical advantage by removing the motors from the joints themselves

and reduced the size and power requirements for the overall control train. The system im-

proved operational robustness, active antagonistic control, and reduced motor torque re-

quirements [4]. The work also proved the case for cable-driven manipulation systems for

in-space assembly and servicing operations. Compliant robotic systems provide unique

capabilities and advantages regarding the space environment. Less rigid structures are

more difficult to damage, resulting in a more robust system. This is crucial for environ-

ments that are far from human contact and influence. A more durable and robust system

allows for decision making with an incomplete information set. This decreases risk and

increases the system’s capability with respect to exploring unknown environments. Thus

far, research in this area has focused on mobility for exploration, muscular assistance,

and human space suit augmentation. For surface exploration, Yale’s TT-3 [17] and JPL’s

tumble- weed [18] ball have used the concept of tensegrity and inflatables respectively as

novel methods of traversing difficult and unknown surface conditions. Omniskins [19] are

adaptable skins that can be wrapped around various objects (e.g. Rocks) giving them the

potential for mobility. For liquid environments such as Jupiter’s Moon Europa, which is

believed to host water oceans under its surface, Cornell has explored a squid like robot re-

ferred to as Roboeel [20]. Additionally, human space suits resist astronaut mobility, signifi-

cantly increasing fatigue and limiting extravehicular activity (EVA) duration. Augmenting

human motion with soft actuators inside a suit is an active area of research. Shape mem-

ory alloy (NiTi – muscle wire) has been investigated as an additional tendon embedded

in a suit to assist in joint mobility [21]. However, cable-driven systems, more specifically,
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continuum systems, have the advantage of an infinite number of degrees of freedom (DOF)

such that they can theoretically bend at any position along the length of the manipulator.

This characteristic affords the manipulator the ability to work in confined spaces and in

environments that can be both unknown and complex. This makes cable-driven continuum

robotic manipulators of great interest for in-space assembly operations both on-orbit and

on planetary surfaces where neither full human presence nor knowledge of the surface can

be guaranteed.

1.4. Relation to the state of the art

2 Research on technologies and techniques to achieve the right balance between

”too rigid” and ”too flexible” has been ongoing for both rigid-link manipulators and con-

tinuum or hyper-redundant manipulators and having adjustable stiffness have always been

considered a beneficial option [22] when navigating through tortuous spaces [23]. For ex-

ample, in laparoscopic surgery the flexibility of the robotic mechanism is desirable in or-

der to reach the target spot in the patients body without damaging the pathway and then

when the surgeon wants to operate and remove some of the damaged tissue, the added

weight would require a stiffer and more capable robot to be able to lift and remove the ex-

tra weight. Figure 1.1 shows a typical cable-driven continuum manipulator with an actu-

ating cable located at a fixed radius to a slender elastic backbone and pulled to change the

length of the cable and therefore the shape of the robot. A transverse gravity loading is

applied at the end-effector, and the deformation shown occurs because of the loading. De-

2Some portions of Section 1.4 were previously published as: ”Molaei, P., Pitts, N. A., Palardy, G., Su,
J., Mahlin, M. K., Neilan, J. H., Gilbert, H. B. (2022). Cable Decoupling and Cable-Based Stiffening of
Continuum Robots. IEEE Access, 10, 104852-104862.”
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spite a fixed cable displacement, the stiffness at the end-effector remains relatively low be-

cause unactuated modes of deformation exist which do not stretch the cable, and the elas-

tic backbone provides nearly all the stiffness along these modes. Generally, a low output

stiffness is beneficial for safety, but it also accompanies a reduction in accuracy and force

output capability. However, in the context of ISAM, precise and forceful manipulation

will sometimes be required. Although the elastic structure could be made stiffer, this is

not always desirable, since doing so loses some of the benefits of a compliant manipulator

and causes a greater tension to be developed in the actuating cables. Therefore, a simple

strategy to increase output stiffness without affecting the basic kinematics and operation

of the robot, either at design time or during operation of the robot, is highly desirable.

Other approaches to stiffening or reducing a continuum robot’s flexibility along unactu-

ated degrees of freedom have been studied. These approaches include granular jamming

and other forms of locking using friction or mechanical interference, and phase changing

materials which vary their elastic properties [24]. These approaches all work via increas-

ing the overall elastic body stiffness rather than by selectively modifying only the stiffness

along the unactuated degrees of freedom. The result is that once these technologies are

activated, the robot is no longer able to undergo large deformations along the desired, ac-

tuated mode of motion. Our cable-stiffening approach does not have this limitation. Prior

works have considered how the choice of the cable route affects the mechanics of contin-

uum structures and have proposed the use of many actuators and cables to gain more con-

trol over the output stiffness and robot shape, but the question of whether multiple ca-

bles can be decoupled to control independent degrees of freedom (e.g., bending, compound

bending, twisting, etc.) has not been answered to date. Unlike lower-mobility cable-driven
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platform robots, which use cables to constrain degrees of freedom without actuating them

[25], cable-driven continuum robots additionally involve the direct coupling of cables with

elastic structures undergoing large deformations, preventing the direct application of exist-

ing approaches. Mechanics-based models for general cable routing in continuum robots are

known [26], [27], and we use these prior modeling approaches in our analysis. It is known

that cable paths which cross over the backbone can be used to create “S” shapes in con-

tinuum robots and that various cable routing strategies can reduce coupling between inde-

pendent joints in multi- joint continuum robots [28]. It is also known that both the cable

path relative to the backbone and the stiffness of the cable against changes in length has

a large effect on the observable stiffness and loading behavior of the robot. In addition,

cable paths which converge or diverge from the elastic backbone produce large changes

in the stiffness distribution, and the behavior under prescribed cable tension (low cable

stiffness), vs. prescribed cable displacement (high cable stiffness), is fundamentally differ-

ent [29]. However, the full space of potential cable paths remains largely unexplored. No

state-of-the-art methods to design non-trivial cable paths for simultaneous and uncoupled

control of multiple elastic degrees of freedom are known. Our contribution in this paper

is to present a novel design concept along with the supporting mechanics-based analysis

that enables more complete control of the shape and stiffness of continuum manipulators

without requiring large numbers of actuators and real-time models to compensate for the

natural coupling of multiple cables. The new approach satisfies the identified need of mod-

ifying output stiffness without substantially affecting the basic kinematics and operation

of the robot. To enable the approach, we identify a new design condition in the form of a

nonlinear differential equation, the solutions to which are specially designed cable paths.

7



We focus solely on planar designs in this initial work for the sake of clarity, but the theory

can be and will be extended to spatially actuated robots in future works. To demonstrate

and validate the feasibility of the proposed idea, we present a prototype with two cables

that independently actuate a circular bending mode and stiffen an unactuated compound

bending mode. An initial constant curvature-based simulation on the backbone of the ma-

nipulator was conducted to illustrate the weak coupling between the change of the actuat-

ing and stiffening cables lengths. We demonstrate experimentally that the robot bends in

circular curves without slacking of the stiffening cables, and the output end-effector stiff-

ness is improved by a factor of 10 via the addition of the secondary set of cables. The dis-

tribution of stiffness along the robot’s length is measured and shown to be fundamentally

modified by the introduction of a second set of cables.

Figure 1.1. Behavior of a cable-driven continuum robot with a traditional straight ten-
don routing under a transverse gravity loading. The underactuated nature of the system
is seen explicitly as load increases with a fixed cable displacement. A. Cable-driven con-
tinuum robot under only self-weight in a cantilevered configuration. B. Robot under an
additional 10 g gravity loading at the end-effector. C. Robot under a 20 g gravity loading.
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Chapter 2. Mathematical and Physical Modelings

2.1. Modeling background and assumptions

1 Our modeling approach follows the Cosserat-rod based approach of Rucker et al.

[26] and also incorporates the modal shape function approach of Chirikjian and Burdick

[30]. The shape of the robot is assumed to be modeled by a single planar curve which is

parameterized by arc length. The position of the neutral axis of the slender backbone,

with respect to a fixed frame of reference, is denoted p⃗ : D → E3 where D = [0, L],

and L is the length of the robot. The independent arc length variable is s ∈ D. The

curve is framed by the addition of an arc-length parameterized frame of reference F(s)

having origin p⃗ (s) and orthogonal director vectors d⃗1 (s) tangent to the curve and d⃗2 and

d⃗3 spanning the cross sections normal to the curve. The following modeling assumptions

are adopted:

A1. The cross sections normal to the backbone curve remain planar and do not deform

(Euler-Bernoulli bending hypothesis).

A2. The path of the ith cable is described by a vector-valued function r⃗i (s), where the

cable position is:

p⃗i(s) = p⃗(s) + r⃗i(s) (1)

and the vector r⃗i is stationary with respect to changes in the configuration when

1Some portions of Section 2.1 were previously published as: ”Molaei, P., Pitts, N. A., Palardy, G., Su,
J., Mahlin, M. K., Neilan, J. H., Gilbert, H. B. (2022). Cable Decoupling and Cable-Based Stiffening of
Continuum Robots. IEEE Access, 10, 104852-104862.”
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measured in the frame of reference F (s). In other words,

r⃗i(s) = ri2(s)d⃗2(s) (2)

A3. The cables are perfectly inextensible.

A4. The function ri2 is differentiable with respect to s.

A5. The internal moment is linearly related to the local curvature κ (s) as

m(s) = kb(s)κ(s) (3)

A6. The robot shape is planar, and the backbone position and director vectors satisfy

the following kinematic hypotheses implying that shear and extension are negligible

dd⃗k
ds

= κ⃗× d⃗k (4)

dp⃗

ds
= d⃗1 (5)

κ⃗(s) = κ(s)× d⃗3(s) (6)

A7. The curvature κ (s) is assumed to be differentiable.

A8. The reference, stress-free configuration of the backbone is straight.

10



2.2. Preliminaries

Definition 1: The energy inner product is the bilinear form < ·, · > : V × V → R is

defined by:

< a, b >kb=
1

2

∫
kb(σ) a(σ) b(σ) dσ (7)

Definition 2: The energy norm is given by:

∥κ∥kb = < κ, κ > (8)

Definition 3: An orthonormal basis B is given:

B = {ϕk | k = 1, ...,∞} (9)

such that,

< ϕi, ϕk >kb = δik (10)

where δik is the Kronecker delta.

Then, we may write the curvature as a sum of weighted curvature modes:

κ(s) =
∞∑
n=1

qi ϕi(s) (11)

Definition 4: Each of the normalized basis functions ϕi is called a curvature mode.

11



A finite approximation to the sum suffices for engineering purposes. Therefore, the

configuration space C = Rm and q = (q1, ..., qm) ∈ C. Because each basis function ϕ is

normalized with respect to the energy norm, it has dimension of F−0.5L−1.5 (F = Force, L

= Length). The generalized coordinates have dimension F 0.5L0.5, which is the square root

of the dimension of energy. The kinematic differential equations imply that a solution p(s)

is given when q is known and when initial conditions p⃗0 and d⃗k0 are known.

Lemma 1: The length of the ith cable is calculated by the cable length functional:

Li(q) = Li[κ(q)] =

∫ L

0

gi(κ(σ)) dσ (12)

gi(κ) =
√
(r′i2)

2 + (1− ri2κ)2 (13)

Proof: The length of the cable is given by:

Li(q) =

∫ L

0

∥∥∥∥dp⃗ids

∥∥∥∥ ds (14)

Calculating based on (1), and (2),

∥∥∥∥dp⃗ids

∥∥∥∥ =

∥∥∥∥∥dp⃗(s)ds
+ ri2(s)

dd⃗2(s)

ds
+

dri2(s)

ds
d⃗2(s)

∥∥∥∥∥ (15)

Using (4), and (5),

∥∥∥∥dp⃗ids

∥∥∥∥ =

∥∥∥∥d⃗1 + κ⃗× r⃗i +
dri2(s)

ds
d⃗2(s)

∥∥∥∥ (16)

Knowing that κ⃗× r⃗i is in the direction of −d⃗1 results in:

∥∥∥∥dp⃗ids

∥∥∥∥ =
√

(r′i2)
2 + (1− ri2κ)2 = gi(κ) (17)

12



2.3. Perfect cable decoupling

We define the notion of perfectly decoupled cables to mean that n cable paths ad-

mit a choice of curvature modes so that the configuration space Q may be partitioned into

a direct sum:

Q = Q1 ⊕Q2 ⊕ ...⊕Qn ⊕Qn+1 (18)

such that each cable length depends only on one of the vector subspace:

L1(q) = L1(q1), q1 ∈ Q1

L2(q) = L2(q2), q2 ∈ Q2

...

Ln(q) = Ln(qn), qn ∈ Qn (19)

The subspace Qn+1 consists of the coordinates along curvature modes which do not af-

fect the length of any cable. Thus, any configuration q may be written as a sum of compo-

nents:

q = q1 + q2 + ...+ qn + qn+1 (20)

Due to the series (8) and the orthonormality of the basis B, the subspaces Qi are in direct

one-to-one correspondence with subspaces Vi such that:

κ = κ1 + κ2 + ...+ κn + κn+1 (21)

These conditions state that the robot deformations can be partitioned into a sum of com-

ponent deformations in which each component is associated with only a single cable or

subset of cables. A natural question is “what cable path designs ri2(s) admit such perfect

13



cable decoupling?” One obvious solution to the mathematical problem emerges, which is

simply to locate the cable at zero radius to the backbone over all regions of the length ex-

cept over a finite number of support regions. For example, divide the domain D = [0, L]

into two subdomains D1 = [0, a] and D2 = [a, L]. If the cable shape function r12(s) has

support only on D1 and r22(s) only on D2, then the cables are perfectly decoupled. The

corresponding spaces Q1 and Q2 are associated with curvature modes having support over

the same subdomains, much like a serial kinematic structure. Practically speaking, any

implementation of this strategy would require some means of routing a cable with zero

radius to the backbone over some finite subset of the robot length or would require the

placement of actuators at multiple places along the robot. Note that it is not enough to

route cables from the base of a robot and have some cables terminate early before reach-

ing the end. Doing so results in coupled cables, which motivated prior work on solving the

coupled inverse kinematics problem [31].

2.4. Approximate cable decoupling

Cables can be approximately decoupled by forcing the cable length functions to

have gradients satisfying a condition of independence at a single point q ∈ Q.

▽qLi . ej = 0, ∀i ̸= j (22)

Define the first partial derivative as:

∂Li

∂qj
≜

∫ L

0

Fij(ri, r
′
i, κ, ϕj) ds (23)
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Theorem 2: The cables lengths are locally decoupled at q = 0 and κ = 0 if the following

design condition applies to the cable routes:

ri√
1 + (r′i)

2
= α kb ϕi (24)

The parameter α ∈ R \ 0 is a free choice.

Proof: Using the chain derivative rule:

∂Li

∂qj

∣∣∣
κ=0

=
∂Li

∂κ

∂κ

∂qj
(25)

∂κ

∂qj
= ϕj (26)

∂Li

∂κ
=

∫ L

0

ri2(κri2 − 1)√
(r′i2)

2 + (1− κri2)2
ds (27)

∂Li

∂qj

∣∣∣
κ=0

=

∫ L

0

ri2(κri2 − 1)ϕj√
(r′i2)

2 + (1− κri2)2
ds (28)

As an approximation, in the vicinity of κ = 0 the κri2 term is << 1, hence:

∂Li

∂qj

∣∣∣
κ=0

=

∫ L

0

−ri2ϕj√
1 + (r′i2)

2
ds (29)

Now if we consider the Taylor expansion of Fij about the point κ = 0,

Fij =
ri2ϕj

gi(0)
+O(κ) (30)

Defining Fij0 to be the zeroth order (constant) term of the expansion, the independence of

cable length i on mode j requires:

∫ L

0

ri2
gi(0)

ϕj ds = 0 (31)
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By choice of ri2, let:

ri2
gi(0)

= α kb ϕi (32)

Then for all i ̸= j:

∂Li

∂qj

∣∣∣
κ=0

= α < ϕi, ϕj >kb= 0 (33)

The parameter α is a scale parameter and has dimension F−0.5L0.5 to ensure di-

mensional homogeneity of (18). As one example of a pair of orthogonal modes, consider

the following choices:

ϕ1 =
1√
Lkb

ϕ2 =

√
2√

Lkb
cos

(πs
L

)
(34)

which satisfy the orthogonality condition for any robot having uniform (constant in arc

length) flexural rigidity kb. The first curvature mode corresponds to circular bending (i.e.,

“constant curvature”), and the cable shape r12 is the usual straight cables at a constant

radius to the backbone. The cable shapes ri2, in a geometric sense independent of scale,

are determined by the dimensionless group:

Π1 =
α
√
kb

L1.5
(35)

For small values of Π1, the cable shapes mimic the right-hand side of (21), i.e., ri2 ≈

αkbϕi. As Π1 increases, the cable shape begins to change substantially (Figure 2.1). The

solutions found to (24) for ϕ2 as in (34) demonstrate a critical value of α at which the

cable path folds back on itself, implying that the robot must be sufficiently slender for

this design approach to be practical. “Folded” cable paths may be difficult to support

mechanically and may also cause high cable friction.
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Figure 2.1. Cable shapes for ϕ2 described by (34). Solid lines depict the cable paths solv-
ing the design condition of Theorem 2. Dashed lines correspond to the right side of (24).
The shape and scale of the cable path, normalized by the length of the backbone, is de-
termined by the dimensionless parameter Π1. At a critical value near Π1 = 0.4, the cable
path crosses the backbone of the robot nearly perpendicularly.

The critical value of Π1 depends on the specific functional basis chosen. For exam-

ple, if instead ϕ2 is a linear function,

ϕ2 =

√
3√

Lkb
(1− 2s

L
) (36)

then the solution r22 can be found by ansatz as r22 = mx + b, where the parameters are

given by:

m = − 2
√
3Π1√

1− 12Π2
1

(37)

b =

√
3Π1L√

1− 12Π2
1

(38)

The critical value for linear cable paths is therefore,

Π∗
1 =

√
1/12 ≈ 0.2887 (39)
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The decoupled cable design also results in a simple relationship between the ten-

sion in the cables and the resulting robot shapes if the deflections remain small. With or-

thonormal curvature modes and cable routes designed according to the conditions of The-

orem 2, the generalized coordinates and the cable tension increments ti (above the preten-

sion) are approximately related by:

ti ≈
2qi
αi

(40)

Proof: consider static equilibrium on a section. The total internal moment in the back-

bone must be equal to m, calculated as follows:

m =
n∑

i=1

tiri cos γi (41)

The angle γi is the angle between the tangent to the cable path cable and the tangent to

the backbone. For small curvatures it may be approximated as:

cos γi ≈
1√

1 + (r′i)
2

(42)

Based on assumption (3), the elastic energy is:

E =
1

2

∫ L

0

mκ ds =
1

2

∞∑
i=1

q2i (43)

By application of the cable design condition, calculation of the moment in terms of the

cable tensions, and direct substitution,

E ≈ 1

2

∫ L

0

(
n∑

i=1

tiri(s)√
1 + (r′i)

2
)(

∞∑
i=1

qiϕi(s)) ds =
1

2

n∑
i=1

citiqi (44)
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Where

ci = αi < ϕi, ϕi >kb= αi (45)

Then the cable tension is calculated as:

ti ≈ 2

ci

∂E

∂qi
(46)

The result (40) follows by direct calculation.

This result demonstrates that the interpretation of the scale parameter αi is ap-

proximately the inverse of half the cable tension required to create a unit of deformation

along the coordinate qi. A unit deformation along qi stores one unit of elastic energy by

virtue of its definition, with the unit of measure determined by the units of ϕi and kb.

The orthogonality of the curvature basis also provides a convenient calculation of

the component of the cable tensions due to the elastic forces for an arbitrary configuration

of the robot, which follows directly from Theorem 3 and the definition of the energy inner

product:

ti ≈ 2

αi

< κ, ϕi >kb (47)

If the cables are pretensioned, then this calculated tension due to the elastic internal

forces is simply superposed on the pretension to arrive at the final cable tension. Note

that this approximate calculation should not be understood as a method of calculating the

tensions that will produce a given shape except when prior knowledge is available to sug-

gest that the shape is indeed the feasible result of the cable tensions, since in general, an

arbitrary specification of the shape would require an infinite number of cables to achieve

and yet (47) could be applied regardless of this fact.
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The preceding analysis also implies that in a traditionally designed cable-driven

continuum robot having only a single pair of cables that antagonistically actuate a

constant curvature mode, the actuating cable has little effect on the apparent stiffness

of higher-order curvature modes. Curvature along these higher-order modes does not

substantially change the length of the actuating cable, at least in the sense of small

deflections, and the tension in the cable is approximately independent of these other

modes.

20



Chapter 3. Experimental Validations

3.1. Cable stiffening design considerations

1 The approximate cable decoupling condition suggests a means of modifying the

natural compliance of cable-driven robots through the addition of cables that are routed

so that the cable lengths couple weakly to the actuated curvature modes of the robot. Us-

ing the approach outlined in the flowchart of Figure 3.1, we designed a robot having an

actuated constant curvature mode and a stiffened sinusoidal curvature mode using an ad-

ditional pair of cables routed in the appropriate shape ri2(s) which was generated by ϕ2 as

in (34). These additional cables are pretensioned and locked off. In other words, the addi-

tional stiffening cables are unactuated, and the length of cable is constant. The constant

curvature actuating cables are a single cable loop driven by a manually controlled, self-

locking worm wheel which drives a short segment of a timing belt to which the cables are

attached.

1Some portions of Chapter 3 were previously published as: ”Molaei, P., Pitts, N. A., Palardy, G., Su,
J., Mahlin, M. K., Neilan, J. H., Gilbert, H. B. (2022). Cable Decoupling and Cable-Based Stiffening of
Continuum Robots. IEEE Access, 10, 104852-104862.”
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Figure 3.1. Flowchart describing the design approach for producing multiple decoupled
cables along independent elastic curvature modes.
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3.2. Prototype design

1 The backbone of the robot is made from a 2-ply carbon fiber (CF)/epoxy lami-

nate, manufactured by resin infusion, with a final thickness of 0.59 mm (Composite Envi-

sions, Wausau, WI, USA). The CF is a 3K plain weave fabric and was stacked in a sym-

metric layup with respect to the laminate’s geometric mid-plane. The cables are made

from commercially available braided ultra-high molecular weight polyethylene fishing line

with a strength of 10 lb test (Stealth Smooth 8, 10lb, SpiderWire, CA, USA). 7 individual

tendon support structures and the mounting base frame were manufactured and printed

using a FDM 3D printer and Nylon filament. The robot’s dimensions are described in Ta-

ble 3.1 and shown in Figure 3.2 and the cable support radii are described in Table 3.2.

Table 3.1. Prototype robot design parameters.
Parameter Symbol Value

Backbone length L 270 mm
Backbone height h 60 mm

Backbone thickness t 0.59 mm
No. of tendon supports N 7
tendon support spacing ∆L 45 mm

Table 3.2. Prototype cable support locations and radii.
Support index, i Support location, si(mm) r12(mm) r22(mm)

1 0 30.0 25.0
2 45 30.0 21.7
3 90 30.0 12.5
4 135 30.0 0
5 180 30.0 -12.5
6 225 30.0 -21.7
7 270 30.0 -25.0
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Figure 3.2. A. Exploded view. 1○ worm gear 2○ worm 3○ timing pulley 4○ timing belt
segment 5○ base frame 6○ cable supports 7○ cable routing pulleys 8○ fasteners 9○ cables
10○ carbon fiber backbone 11○ tensioner clamp 12○ tensioner barrel 13○ tensioner housing B.
Top view (assembled). C. Side view (assembled). D. Sequence (left-to-right) of increasing
curvature caused by turning the worm. All cables are pretensioned.
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To make the robot prototype as light as possible topological optimization and FEM

modeling was conducted on the design parameters of the cable support structures in order

to find the optimum combination for shape and load resistance across the length of the

robot.

Figure 3.3. Topology optimization result of cable supports. Mesh view on the left and
smoothed design on the right.

Figure 3.4. Topology optimized 3D printed cable support assembled on the backbone.
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3.3. Kinematic simulations

To verify that the approximate decoupling at zero curvature is a practical design

condition, we performed the evaluation of the residual coupling, as shown in the flowchart,

using a kinematic simulation of a cable-driven robot using the constant and cosine curva-

ture modes. The robot is assumed to be actuated using the constant radius cables, which

apply a generalized force that tends to actuate the constant curvature mode if no other

constraints are present. The backbone curve is simulated according to the piecewise con-

stant curvature method described by Webster and Jones [32]. The cable lengths for each

of the four cables (two antagonistic pairs) are modeled by the sum of the distances be-

tween the cable support holes. The results from the simulation for the prototype design

parameters are shown in the Figure 3.5., the total path length for the stiffening cables

changes only by 0.88 mm over a change in robot bending angle from 0°to 90°. The sum

of the actuating cable lengths changes by a similar amount. This amount of residual cou-

pling was deemed acceptable without additional design effort that coupling, such as via

the introduction of cable tensioners or compliance in the cables or cable supports.
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Figure 3.5. Simulation of constant curvature bending of the backbone. Cable supports
are treated as rigid bodies, and cable lengths are calculated by the sum of point-to-point
Euclidean distance between the supports. B. Length change of the stiffening cable paths
as the robot bends. C. Length change of the actuating cable paths as the robot bends.
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3.4. Prototype stiffness measurements

To assess the influence of the stiffening cables on the mechanical performance of

the robot, we used an industrial robot manipulator (UR5e, Universal Robots) to produce

controlled displacements of the robot backbone while measuring the reaction force with

a load cell (LCMFL-20N, OMEGA, Norwalk, CT, USA). The experimental setup is de-

picted in Figure 3.8. Analog voltage samples were recorded at 30 S/s. The base of the

cable-driven continuum robot was fixed to a support structure mounted to the same ta-

ble as the UR5e robot base. The UR5e was programmed to displace the continuum robot

by contacting it at each of the cable support structures in sequence. The maximum dis-

placement of each support disc was approximately 5 mm. The same controlled displace-

ment profile was used for all trials. The motion of the UR5e end-effector was tracked by a

three-camera OptiTrack motion capture system set to acquire frames at 30 S/s. After data

acquisition, a manual coordinate system rotation was performed to align the displacement

during contacts to the x-axis of the coordinate system. The peaks in the x-displacement

and the force time series were identified manually and a region around each peak of length

300 samples was segmented to produce a force vs. displacement response for contact forces

at the cable support structure positions. The entire experiment was repeated three times,

and a linear model of the following form was fit to the data by least squares regression

Fkl = βkx+ ηkl (48)

The index k = 1, ..., 7 indicates the contact location and the index l = 1, 2, 3 indicates

the experimental repetition. βk are the stiffnesses observed at each contact location (i.e.,

both the force and displacement are measured at the contact location), x is the rotated
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end-effector coordinate of the UR5, and ηkl is a contact-location and repetition-dependent

bias term. Time series data from one trial of the experiment with all cables pretensioned

is shown in Figure 3.6. The segmentations of each trial were used to construct the linear

regression model described by (48). The stiffness parameters βk are shown for each pre-

tensioning case and at each location of applied force in Figure 3.6. Statistically significant

differences in the stiffness of the robot are evident depending on which cables are preten-

sioned and which are slacked. The stiffness is greatest at each location when all cables are

pretensioned, indicating that, at least for the design and range of pretensions tested, it is

not possible for an increase in pretension to result in a decrease in observable stiffness.

Figure 3.6. Force and displacement data captured during trial 1 of the case with all cables
pretensioned. The manual segmentation of the data is overlaid as blue shading. Contact
between the UR5 and the robot under test exists whenever the force is nonzero.

29



The results shown in Figure 3.7 demonstrate that the end-effector stiffness, which is

measured at the furthest point from the fixed base, is similar between cases N (no cables)

and C (stiffening cables only). This is expected because a force applied at the end-effector

will tend to produce deformation along the lowest order mode more than the higher

modes. In the case of no cables, the deflection is approximately a third order polynomial

with distance (the classic Euler-Bernoulli beam solution for cantilevered loads applied on

uniform beams). The cosine-shaped cables are designed to match a mode which is orthog-

onal to the lowest order constant-curvature mode. On the other hand, when all cables are

pretensioned, the response of the structure is substantially different than in any of the

other conditions. Most notably, the end-effector stiffness is increased by approximately a

factor of 14 when compared to case N and a factor of 10 when compared to case A, which

is the most common case found in prior literature. However, at the midpoint of the robot,

the stiffness increase is only a factor of 3.45 times higher than case N and 5 times higher

than case A.
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Figure 3.7. Stiffness along the length of the cable-driven robot with one fixed boundary
condition. Bars indicate stiffness and are grouped by physical location of the measurement
(at each of the cable support structures). Whiskers indicate the 95 % confidence intervals
of the parameter estimates. Stiffness is measured across the factor of condition of cable
pretensioning with the factors being (N) no cables pretensioned, (A) actuating cables only
pretensioned, (C) stiffening cables only pretensioned, and (F) all cables pretensioned.
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Figure 3.8. Experimental setup for stiffness characterization of the cable-driven continuum
robot for contact forces applied at different locations along the robot.
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Chapter 4. Discussion

1 When the cables are designed according to Theorem 2, the cable lengths are ap-

proximately decoupled, and each cable’s tension couples predominantly to the mode for

which it is designed, as illustrated clearly by (40). The implication of this is that even

though perfect decoupling is not possible, small amounts of stretch allowed in the cables

and cable support structures means that all cables, even those which are tied off and have

an ostensibly fixed length, may remain taut even when the robot undergoes large deflec-

tions.

The stiffness of the cable-driven robot is modified substantially by the introduc-

tion of the additional stiffening cables which are designed according to the conditions of

Theorem 2. In particular, the distribution of stiffness is altered fundamentally from the

typical inverse cube law for the stiffness of a cantilevered structure. An interesting obser-

vation is that when all cables are pretensioned, the stiffness at the fourth cable support is

higher than the stiffness at the third support, which is atypical for a cantilevered struc-

ture. It is noteworthy that this is the location where the stiffening cable crosses over the

backbone. This result is expected, and one way to explain it is that the next higher mode

in the orthogonal trigonometric series is cos
(
2πs
L

)
, over which the stiffening cable has lit-

tle influence. For small deflections, this next mode is associated with deflections that are

the second integral of the curvature, which has a maximum exactly at the point where the

stiffness is measured to be a minimum.

1Some portions of Chapter 4 were previously published as: ”Molaei, P., Pitts, N. A., Palardy, G., Su,
J., Mahlin, M. K., Neilan, J. H., Gilbert, H. B. (2022). Cable Decoupling and Cable-Based Stiffening of
Continuum Robots. IEEE Access, 10, 104852-104862.”
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Since the orthogonality condition in Definition 3 is general, one avenue for future

work is to understand how the choice of basis affects the properties of the resulting robot.

The orthogonal trigonometric sequence is not the only orthogonal function sequence which

can form a curvature basis. For example, the cosine and linear cable shapes are two of in-

finitely many alternatives for cable designs that are orthogonal to a straight cable. Future

work is needed to determine the advantages and disadvantages to specific selections of the

basis.

Although not quantified experimentally, we observed through direct manipulation

of the robot by hand that in the experimental condition with all cables pretensioned, the

stiffness of the end-effector to applied torques in the plane of bending was vastly increased

in comparison to the case in which only the actuating cables are pretensioned.

One limitation of the overall strategy is that the additional cables increase the com-

pressive preload in the backbone member. At some critical load, the backbone itself may

buckle between the cable tie off points. On the other hand, the buckling modes are them-

selves deformations of the backbone which may be controlled by the additional cables.

The balance of these effects should also be investigated in future work.
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Chapter 5. Conclusion

Cable-driven continuum manipulators provide interesting solutions to the problems

that require flexibility and adaptability in unstructured and uncertain environments. The

novel but simple approach that was presented enables large changes in structural stiffness

or actuation of independent mode shapes. The designed prototype demonstrated a 10x in-

crease in stiffness at the endpoint, with substantial improvement in torsional rigidity com-

pared to traditional tendon routing. Continuum robotic manipulators, given their possibly

infinite-dimensional deformation characteristics, provide a continuing challenge in model-

ing and control. This work provides a strategy and next steps in addressing the problem

at hand, towards a methodology to address uncontrolled deformation of these mechanisms.
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Appendix A. Kinematic Simulations MATLAB Code

L = 0.30; N = 7;

x = linspace(0, L, N);

dx = x(2) - x(1);

pos = @(T) T(1:3, 4);

colors = {'r', 'g', 'b', 'm', 'c', 'b'};

vec2hom = @(x) [x; 1];

hom2vec = @(x) x(1: 3);

tendon (1).rT = 0.030*[0; 1; 0]* ones(1, N);

tendon (2).rT = -0.030*[0; 1; 0]* ones(1, N);

tendon (3).rT = [zeros(1, N); ...

[0.0250 0.0216 0.0125 0.0000

-0.0125 -0.0216 -0.0250]; ...

zeros(1, N)];

tendon (4).rT = -[zeros(1, N); ...

[0.0250 0.0216 0.0125 0.0000

-0.0125 -0.0216 -0.0250]; ...

zeros(1, N)];

theta = linspace(0, pi/2, 10);

for jj = 1:numel(theta)

u = theta(jj)/L;

%run the forward kinematics for the tendon supports
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X = [0, -u, 0, 1; ...

u, 0, 0, 0; ...

0, 0, 0, 0; ...

0, 0, 0, 0];

for kk = 1:numel(tendon)

deformed.tendon(kk).rT = zeros(size(tendon(kk).rT));

deformed.tendon(kk).rT(:, 1) = tendon(kk).rT(:, 1);

end

p = zeros(3, numel(x));

for kk = 2:numel(x)

i = kk -1;

T{i} = expm(X*dx*i);

p(:, kk) = pos(T{i});

end

for kk = 1:numel(tendon)

for ll = 2:numel(x)

i = ll -1;

deformed.tendon(kk).rT(:, ll) = hom2vec(T{i}*

vec2hom(tendon(kk).rT(:, ll)));

end

end

plot(p(1, :), p(2, :), 'k-', 'LineWidth ', 2); hold on;
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for kk = 1:numel(tendon)

plot(deformed.tendon(kk).rT(1, :), deformed.tendon(kk).

rT(2, :), [colors{kk}, '-x']);

end

for kk = 1:numel(tendon)

deformed.tendon(kk).L = sum(vecnorm(diff(deformed.

tendon(kk).rT, 1, 2), 2, 1));

end

for kk = 1:numel(tendon)

text (0.02 , 0.15 -0.01*kk , [sprintf('Tendon %d Length: ',

kk) sprintf('%3.2f', 1000* deformed.tendon(kk).L), '

mm']);

end

text (0.02 , 0.15+0.01 ,[ 'Tendon 1 Loop Length: ', sprintf('

%3.2f', 1000*( deformed.tendon (1).L+deformed.tendon (2).L)

), ' mm']);

axis equal

xlim([0, 0.35])

ylim ([-0.05, 0.25])

hold off

pause

end
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