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Abstract

Ramanujan in 1920s discovered remarkable congruence properties of the partition func-

tion p(n). Later, Watson and Atkin proved these congruences using the theory of modular

forms. Atkin, Gordon, and Hughes extended these works to k-colored partition functions. In

2010, Folsom-Kent-Ono and Boylan-Webb proved the congruences of p(n) by studying a ℓ-adic

module associated with a certain sequence of modular functions which are related to p(n).

Primary goal of this thesis is to generalize the work of Atkin, Gordon, Hughes, Folsom-

Kent-Ono, and Boylan-Webb about the partition function to a larger class of partition func-

tions. For this purpose we study a closely related two parameters family of related functions

p[1cℓd](n) for arbitrary integers c, d. We can define it in the following way:

∞∑
n=0

p[1cℓd](n)qn :=
∞∏

n=1

1
(1 − qn)c(1 − qℓn)d

.

In this dissertation we prove an infinite family of congruences for the function p[1cℓd](n)

for ℓ = 5, 7, 11, 13, and 17. Then we use it to find congruences for ℓ-regular partitions, ℓ-core

partitions, ℓ-colored generalized Frobenius partitions.

Next, we study the ℓ-adic module structures related to p[1cℓd](n). Then we prove an

upper bound for the rank of a ℓ-adic module associated with the partition function p[1cℓd](n)

and use that to discuss ℓ-adic properties of p[1cℓd](n).

vii



Chapter 1. Introduction

Famous German mathematician Martin Eichler once said, “There are five elementary

arithmetical operations: addition, subtraction, multiplication, division, and, modular forms”.

This is because many naturally arising sequences of integers appear as coefficients of modular

forms and proving arithmetic identities among integers in those sequences would be signifi-

cantly harder without modular forms. For example, Conway’s famous Moonshine conjecture

shows that the least dimension of the space needed to express the symmetries of the largest

sporadic simple group is associated with the Fourier coefficients of the well-known elliptic j-

function which generates the field of modular functions on SL2(Z). As another example, in

the quantum theory of black holes in string theory, the physical problem of counting the dimen-

sions of certain eigenspaces has led to the study of Fourier coefficients of certain meromorphic

modular forms [11].

Fourier coefficients of modular forms are also being studied to understand combinato-

rial objects such as integer partitions, and their variants. In recent years, many deep results

involving integer partitions are proved using the theory of modular forms.

Let n be a positive integer. An (integer) partition of n is a non-increasing sequence of

positive integers λ1 ≥ λ2 · · · ≥ λr ≥ 1 that sum to n. Let p(n) be the number of partitions of

n. By convention, we take p(0) = 1 and p(n) = 0 for negative n. For example, if n = 4, we

have

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.

Therefore, p(4) = 5.

In 1800s Euler found the following generating function for integer partitions which

1



connects the partitions and modular forms as follows.

∞∑
n=0

p(n)qn = (1 + q1 + q1+1 + · · · )(1 + q2 + q2+2 + · · · ) · · · =
∞∏

n=1

1
(1 − qn) = q1/24

η(z) ,

where q = e2πiz , z is in the complex upper half plane denoted by H, and

η(z) := q1/24
∞∏

n=1
(1 − qn)

is a modular form.

In 1920s, Ramanujan studied the integer partitions and discovered remarkable congru-

ence properties in [36, 37, 38]. They were improved later by Watson [41], and Atkin [2].

Theorem 1.0.1 (Ramanujan, Watson, Atkin). For all positive integers j and n, we have

p(5jn+ δ5,j) ≡ 0 (mod 5j),

p(7jn+ δ7,j) ≡ 0 (mod 7[ j+2
2 ]),

p(11jn+ δ11,j) ≡ 0 (mod 11j),

where 24δℓ,j ≡ 1 (mod ℓj) for ℓ ∈ {5, 7, 11} and 0 ≤ δℓ,j < ℓj.

Definition 1.0.2. Let ℓ be a prime number. If for all positive integers n and a positive integer

m such that 0 ≤ m < ℓ, we have

p(ℓn+m) ≡ 0 (mod ℓ),

then we say that p(n) has a Ramanujan congruence at prime ℓ.

A surprising fact is that, Ramanujan congruences only exist for p(n) at these 3 primes.

This was another Ramanujan’s conjecture and was proved in 2003 by Ahlgren and Boylan in [4]

using the theory of modular forms modulo ℓ.
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These fascinating congruence properties not only hold for the partition function itself,

but also are expected to hold for generalized partitions. In this dissertation we study a two-

parameter family of partition generating functions p[1cℓd](n) defined in the following way:

∞∏
n=1

1
(1 − qn)c(1 − qℓn)d

=:
∞∑

n=0
p[1cℓd](n)qn.

This partition function also has been studied in recent years, for example see Chan and Toh

[14], and Wang [43].

Generalizing results for p(n) to other partition functions has been a main research topic

since 1960s. The first attempt was to study the k-colored partitions (p−k(n)) which are the

coefficients of the kth power of the generating function of the partition function

∞∏
n=1

1
(1 − qn)k

=:
∞∑

n=0
p−k(n)qn.

In 1960s Atkin in [1] proved congruences for p−k(n) for small primes using modular

equations. Notice that we can obtain the generating function for k-colored partitions by setting

c = k, d = 0 in the generating function of the two parameter family of partition generating

functions p[1cℓd](n).

The primary goal of this dissertation is to generalize two methods of proving congru-

ences for the partition function p(n) to the two-variable generalized partition function p[1cℓd](n).

From these results, we expect to give a unified proof for some of the recent results about par-

tition congruences and obtain new results for some partition functions. Finally, we use these

congruences to prove congruences for more complex partitions like k-colored generalized Frobe-

nius partitions.

The first method is the traditional method used by Watson [41] for genus zero modular

curves. In [34], we generalized the proof given by Atkin in [1] where he proved the Ramanu-

3



jan congruences for p−k(n) modulo small prime powers. His proof uses modular equations for

prime numbers which we define in Section 2.2.4. Our generalization enables us to prove Ra-

manujan congruences for a large class of partition functions including the k-colored partitions

for negative values of k. We also generalized the work of Gordon in [18] and Hughes in [23] of

proving congruences for p−k(n) modulo powers of 11 and 17 respectively.

Theorem 1.0.3 (Petta Mestrige, S.,[34]). For ℓ = 5, 7, 11, 13, 17, for any integers c, d, for any

positive integer r, and for any non negative integer m, we have

p[1cℓd](ℓrm+ nr,ℓ) ≡ 0 (mod ℓAr), (1.0.1)

where 24nr,ℓ ≡ (c+ ℓd) (mod ℓr), and Ar is an explicitly calculable non-negative integer defined

in equation (4.3.1), and it depends on the integers c, d, the positive integer r, and the prime ℓ.

There are some values of c, d, r, and ℓ such that Ar = 0. In these cases, the statement

given in Theorem 1.0.3 is vacuously true, and we further discussed this case in Corollary 1.0.6.

Moreover, we obtain the following corollary, this is similar to Gordon’s Theorem 1.1 in [18].

Corollary 1.0.4. For ℓ = 5, 7, and 13 and for any positive integer r, we have

p[1cℓd](n) ≡ 0 (mod ℓ
1
2 αℓr+ϵ),

where |c + ℓd| ̸= 0, 24n ≡ (c + ℓd) (mod ℓr), and ϵ = ϵ(c, d) = O (log |c+ ℓd|). Here,

αℓ = αℓ(c, d) depends on the residue of c+ ℓd (mod 24), and for c+ ℓd > 0, the values of αℓ

are stated in Table 1.1.

For c+ ℓd < 0, the entries in the last column need to be changed to 1 for ℓ = 5, 7. If

c = −ℓd, the statement of Corollary (1.0.4) still holds with ϵ = ϵ(c, d) = O(1).

Remark 1.0.5. This is the same shape as Gordon’s result (Theorem 2, [18]) for k-color parti-

tions with k replaced by c+ ℓd.
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Table 1.1. Values of αℓ(c, d)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

ℓ = 5 2 1 1 1 2 2 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0
ℓ = 7 1 1 1 2 1 1 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0
ℓ = 13 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Even though Ramanujan’s congruences and in general congruences among coefficients

of modular forms were studied for so many years, little attention has given to incongruences

between them. Proving incongruences between modular forms has been an interesting problem

in recent years. Anderson in [6] proved a criterion to determine congruences and incongruences

for a large class of modular forms including eta quotients. In [20], Garthwaite and Jameson

developed the above mentioned criterion and proved incongruences between modular forms

and partitions. Here we use the expansions of the generating modular functions for p[1cℓd](n) in

terms of the explicit basis of modular forms to determine incongruences.

Corollary 1.0.6. Let Ar be the non-negative integer defined in equation (4.3.1), and nr be the

integer mentioned in Theorem 1.0.3. If Ar = 0 then for ℓ = 5, 7, and 13, there is some integer

m such that

p[1cℓd](ℓrm+ nr) ̸≡ 0 (mod ℓ). (1.0.2)

This result holds for r = 1 when ℓ = 11 and 17.

Remark 1.0.7. For ℓ = 11, we expect the incongruences should hold for all positive integers r

since Ar is the best possible bound as shown in [18], but we do not prove it in this thesis.

Theorem 1.0.3 can be applied to prove several recent results about partitions. For ex-

ample, let bℓ(n) be the ℓ-regular partition function and it counts the number of partitions of

a natural number n with the condition that the parts are not divisible by ℓ. We provide more

5



details about bℓ(n) in Section 3.2. In 2017 and 2018, Wang proved the following Ramanujan

congruences for bℓ(n).

Corollary 1.0.8 (Wang, [43, 44]). For any positive integer k and for m > 0,

b5

(
52km+ 52k − 1

6

)
≡ 0 (mod 5k),

b7

(
72k−1m+ 3 · 72k−1 − 1

4

)
≡ 0 (mod 7k).

In 1992, using the theory of modular forms modulo ℓ, Kimming and Olsson [29] proved

several exceptional congruences for p−k(n) and we state them in Theorem 3.1.4. We can em-

ploy Theorem 1.0.3 to prove most of these congruences.

Corollary 1.0.9. For all positive integers m, we have

p−3(11m+ 7) ≡ 0 (mod 11),

p−5(11m+ 8) ≡ 0 (mod 11),

p−7(11m+ 9) ≡ 0 (mod 11),

p−3(17m+ 15) ≡ 0 (mod 17).

Next we look at a more modern way of proving partition congruences that was intro-

duced by Folsom, Ono and Kent in [17].

There is a sequence of modular functions (Lℓ(c, d, b; z), defined in (4.2.3)) that relate

to p(n). We study the ℓ-adic module structure associated with these forms. Then, the par-

tition congruences can be obtained by calculating a bound for the rank of an ℓ-adic module

associated with these forms. More explicitly, Folsom-Kent-Ono proved that using the theory of

modular forms modulo ℓ developed by Serre, the sequence Lℓ(c, d, b; z) lies in a Z/ℓmZ module

with rank ≤ ⌊ ℓ−1
12 ⌋ − ⌊ ℓ2−1

24ℓ
⌋. This gives a conceptual proof for the fact that all Ramanujan

congruences are the congruences that stated in theorem 1.0.1.
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The partition function p(n) and its associated ℓ-adic module structures have been

studied further by Boylan and Webb in [12]. Their work has been extended by Belmont, Lee,

Musat and Trebat-Leder in [13] to include k-colored partitions and Andrews spt-function. In

this dissertation, we extend the work of Boylan and Web further, and obtain results about

ℓ-adic module structures associated with the partition function p[1cℓd](n).

Definition 1.0.10. For b, c, d ≥ 0, we set

Pℓ(c, d, b; z) :=
∞∑

n=0
p[1cℓd]

(
ℓbn+ ℓd+ c

24

)
qn/24.

Following [12] and [13], for c, d ≥ 0, we define

Λodd
ℓ (c, d, b,m) :=SpanZ/ℓmZ{Lℓ(c, d, β; z) (mod ℓm) : β ≥ b, and b, β are odd}

Λeven
ℓ (c, d, b,m) :=SpanZ/ℓmZ{Lℓ(c, d, β; z) (mod ℓm) : β ≥ b, and b, β are even}

(1.0.3)

Let △ℓ(c, d, b,m) denote the Z/ℓmZ-module that works for most integers c and d. We

define this module using the Z/ℓmZ-modules defined in (1.0.3).

△odd
ℓ (c, d, b,m) =



Λodd
ℓ (c, d, b,m) if c ≥ 0, d ≥ 0,

Λodd
ℓ (c− 2, 2ℓ+ d, b,m) if c ≥ 2, d < 0, 2ℓ+ d ≥ 0

Λodd
ℓ (ℓ, ℓ+ d− 1, b,m) if c = 1, d < 0, ℓ+ d ≥ 1,

Λodd
ℓ (2ℓ+ c− 2, 2ℓ+ d− 2, b,m) if c < 0, d < 0, ℓ+ c, ℓ+ d ≥ 2.

Here we consider only four cases. There are other possible cases to consider. For exam-

ple, d = 1, and c < 0. This case is similar to the case c = 1, and d < 0 by the symmetry of the

operator Tℓ(c, d) which we define in Section 5.1.

We will define the quantity v(c, d) in (5.1.6). This gives a lower bound for the prime ℓ

such that the lemmas and theorems are valid.
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Theorem 1.0.11. Let Sk denotes the cusp forms on SL2(Z) of weight k, let ℓ ≥ v(c, d) be

prime and m > 0. Then there is an integer bℓ(c, d,m) that satisfies,

1. The nested sequence of Z/ℓmZ-modules

△odd
ℓ (c, d, 1,m) ⊇ △odd

ℓ (c, d, 3,m) · · · ⊇ △odd
ℓ (c, d, 2b+ 1,m) ⊇ · · ·

is constant for all b with 2b + 1 ≥ bℓ(c, d,m). Moreover if one denotes the stabilized

Z/ℓmZ-module by Ωodd
ℓ (c, d,m), then its rank rℓ(c, d) is at most Rℓ(c, d), where

Rℓ(c, d) :=



dim
(
S(⌊ e

2 ⌋+1)(ℓ−1)
)

−
⌊

e(ℓ2−1)
24ℓ

⌋
if c, d ≥ 0,

dim
(
S(⌊ e

2 ⌋+2)(ℓ−1)
)

−
⌊

e(ℓ2−1)
24ℓ

⌋
if c = 1, d < 0, and ℓ+ d ≥ 1,

or if c ≥ 2, d < 0, and 2ℓ+ d ≥ 0,

dim
(
S(⌊ e

2 ⌋+3)(ℓ−1)
)

−
⌊

e(ℓ2−1)
24ℓ

⌋
if c < 0, d < 0, and 2ℓ+ c, 2ℓ+ d ≥ 2.

and

e = max{c, d} if c, d ≥ 0, but not both zero,

e ∈



{c− 2, 2ℓ+ d} if c ≥ 2, d < 0, and 2ℓ+ d ≥ 0,

{ℓ, ℓ+ d− 1} if c = 1, d < 0, and ℓ+ d ≥ 1,

{2ℓ+ d− 2, 2ℓ+ c− 2} if c < 0, d < 0, and 2ℓ+ c, 2ℓ+ d ≥ 2,

then we choose e between the two values such that the quantity Rℓ(c, d) is the minimum.

2. The nested sequence of even Z/ℓmZ-modules {△even
ℓ (c, d, b,m) : b ≥ bℓ(c, d,m)} is

constant for all b with 2b ≥ bℓ(c, d,m). If we denote the stable module by Ωeven
ℓ (c, d,m), then

its rank is at most Rℓ(c, d).

This theorem provides a conceptual explanation for the existence of congruences for a

large class of partitions. Moreover, we see that these partitions are in a space with small dimen-
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sion modulo ℓm. Hence the partition functions satisfy a nice congruence properties among each

other.

For example, when c = 2 and d = 8, we have the rank of the stabilized module is at

most dim(S5(ℓ−1)) − ⌊8(ℓ2−1)
24ℓ

⌋ when ℓ > 7. We see that the right hand of the inequality is

zero when ℓ = 11. Therefore, from Theorem 1.0.11 we see that Ramanujan congruences occur

when ℓ = 11.

If we take c = 1 and d = −1, we get ℓ-regular partitions bℓ(n). Theorem 1.0.11 says

that the stabilized module has rank at most dim
(
S(ℓ−1)( ℓ+3

2 )

)
− ⌊ ℓ(ℓ2−1)

24ℓ
⌋. Hence we have

Ramanujan congruences for ℓ = 5, 7, and 11. These results are justified by the Wang’s congru-

ences stated in Theorem 1.0.8.

As the final example, we take c = 4 and d = −3. As we will shown in Section 6.2,

when ℓ = 7, the generating function of the partition function p[14ℓ−3](n) arises as a part of the

generating function of another partition function called 7-colored Frobenius partition function.

We apply Theorem 1.0.11 to prove striking congruences. The theorem says that the rank of

the stabilized module is bounded by dim(S⌊ 2ℓ+1
2 ⌋(ℓ−1)) − ⌊ (2ℓ−1)(ℓ2−1)

24ℓ
⌋. Therefore, the congru-

ences must exist for ℓ = 5, 7, 11, and 23. In fact calculating p[14ℓ−3](n), we see that, for all

m ≥ 1, we have

p[1423−3](232m+ 372) ≡ 0 (mod 23).

In Chapter 2, we give a brief introduction to modular forms, congruence subgroups,

and the operators on modular forms. We also introduce several modular functions, modular

equations, and the filtrations of modular forms. Moreover, we state the basic results that we

need later when we prove our results in Chapters 4 and 5.
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In Chapter 3, we introduce the partition functions that we are working on in this dis-

sertation. We also state several recent congruence relations of these partitions. We will prove

some of these relations later in Chapter 6 using Theorem 1.0.3 and Theorem 1.0.11.

In Chapter 4, first we prove Theorem 1.0.3 for primes ℓ = 5, 7, and 13. For that, we

obtain several inequalities that give us a lower bound for the ℓ-adic orders of the Fourier co-

efficients of certain modular functions. Then we construct modular functions such that they

generate the partitions p[1cℓd](n). In the later part of the Chapter, we prove Theorem 1.0.3 for

primes 11 and 17.

In Chapter 5, we prove Theorem 1.0.11. We first obtain Lemmas about the action

of the operators on forms modulo prime powers. Then we construct an injective function to

determine an upper bound for the rank of the stabilized module.

Finally, in Chapter 6, we apply Theorem 1.0.3 and Corollary 1.0.4 to several partition

functions and prove congruences and incongruences. Next, we apply Theorem 1.0.11 and calcu-

late upper bounds of the ranks of certain ℓ-adic modules related to some partition functions.

10



Chapter 2. Preliminaries

In this chapter, we briefly discuss the basic definitions, properties and theorems about

modular forms. Detailed explanations can be found in [15], [25], and [39].

2.1. Basic definitions of modular forms

Let G be a finite index subgroup of SL2(Z) and k be an integer. A modular form f of

weight k is a function on the extended complex upper-half plane H∗ := H∪P1(Q) = H∪Q∪{∞}

satisfying the following three conditions:

1. f is a holomorphic function on H.

2. f is holomorphic at all elements of P1(Q) and z in H.

3. f satisfies the following transformation property,

f

(
az + b

cz + d

)
= (cz + d)kf(z), for any matrix γ = ( a b

c d ) ∈ G.

Furthermore, if f vanishes at all points in P1(Q), f is called a cusp form. In the case of k = 0,

we allow f to have poles and we say that f is a modular function on G.

Remarks:

1. For a given weight k, the set of modular forms forms a finite dimensional vector

space, denoted by Mk(G). We use Sk(G) to denote the space of cusp forms on G. By replac-

ing the holomorphic requirement with meromorphic in condition (2), we get weakly holomor-

phic modular forms and we denote this set by M !
k(G).

2. On SL2(Z), every modular form or function f satisfies f(z) = f(z + 1), and hence

f has a Fourier expansion ∑∞
n=m anq

n, where q = e2πiz, and m is some finite integer. For

examples, the well-known weight -k Eisenstein series, the weight-12 delta function, and the

11



elliptic j-function have the following q-expansions.

Ek(z) := 1 − 2k
Bk

∞∑
n=1

nk−1qn

1 − qn
= 1 − 2k

Bk

∞∑
n=1

σk−1(n)qn,

∆(z) := q
∞∏

n=1
(1 − qn)24 = q − 24q2 + 252q3 + 1472q4 − 4830q5 + · · · ,

j(z) := E3
4(z)

∆(z) = q−1 + 744 + 196884q + 21493760q2 . . . ,

where Bk is the k-th Bernoulli number and σk(n) is the k-th power divisor function of n.

Let Mk := Mk(SL2(Z)) and Sk := Sk(SL2(Z)).

Theorem 2.1.1 (Theorem 1.23, [32]). If k ≥ 4 is even, then Mk is generated by the monomials

of the form

E4(z)aE6(z)b,

where 4a+ 6b = k and a, b ≥ 0.

Proposition 2.1.2 (Proposition 1.25, [32]). If k ≥ 4 is even, then

dimC (Mk) = dimC (Sk) + 1,

dim (Mk) =


⌊ k

12⌋ if k ≡ 2 (mod 12),

⌊ k
12⌋ + 1 if k ̸≡ 2 (mod 12).

There are some available tools to construct modular forms or functions explicitly on

SL2(Z) and its finite index subgroups. One of them is the Dedekind eta function

η(z) := q1/24
∞∏

n=1
(1 − qn) = ∆(z)

1
24 .

This is a weight 1/2 modular form of SL2(Z) under the following transformation property.

Let γ = ( a b
c d ) ∈ SL2(Z). Then, we have

η

(
az + b

cz + d

)
= ν(γ)(cz + d)1/2η(z),

12



where ν(γ) is given by

ν(γ) =


(

d
|c|

)
exp

(
πi
12(a+ d− 3)c− bd(c2 − 1)

)
if c ̸ | 2,

(
c

|d|

)
exp

(
πi
12(a− 2d)c− bd(c2 − 1) + 3d− 3

)
ϵ(c, d) if c|2,

where
(

c
d

)
is Kronecker-Legendre symbol and ϵ(c, d) = −1 when c ≤ 0 and d < 0 and

ϵ(c, d) = 1 otherwise.

2.2. Congruence subgroups, modular curves, and modular forms on congruence sub-
groups

Let N be a positive integer. The principal congruence subgroup of level N for SL2(Z)

is defined by

Γ(N) :=
{
( a b

c d ) ∈ SL2(Z) : ( a b
c d ) ≡ ( 1 0

0 1 ) (mod N)
}

Definition 2.2.1. A subgroup Γ of SL2(Z) is a congruence subgroup of level N , if Γ(N) ⊂ Γ

for some N ∈ Z+.

Other important congruence subgroups:

Γ0(N) :=
{
( a b

c d ) ∈ SL2(Z) : ( a b
c d ) ≡ ( ∗ ∗

0 ∗ ) (mod N)
}

Γ1(N) :=
{
( a b

c d ) ∈ SL2(Z) : ( a b
c d ) ≡ ( 1 ∗

0 1 ) (mod N)
} (2.2.1)

We can calculate the index of Γ(N) in SL2(Z) using the fact that Γ(N) is the kernel

of the natural homomorphism SL2(Z) → SL2(Z/NZ). Hence we see that the index [SL2(Z) :

Γ(N)] is finite for all N and if ℓ is a prime, we have

[SL2(Z) : Γ(N)] = N3 ∏
ℓ|N

(
1 − 1

ℓ2

)
.

Similarly, we can show that

[SL2(Z) : Γ1(N)] = N2 ∏
ℓ|N

(
1 − 1

ℓ2

)
,

[SL2(Z) : Γ0(N)] = N
∏
ℓ|N

(
1 + 1

ℓ

)
.

13



2.2.1. Modular curves

The group SL2(Z) and its subgroups act on the extended complex upper half plane H∗

by linear fractional transformation.

( a b
c d ) · z = az + b

cz + d

Let π : H → Y (Γ) be the natural surjection defined by π(z) = Γz.

Definition 2.2.2 (Definition 2.2.1, [15]). Let Γ be a subgroup of SL2(Z). For each point

z ∈ H, let Γz be the isotropy subgroup of z, i.e., the z-fixing subgroup of Γ,

Γz = {γ ∈ Γ|γ(z) = z}.

A point z ∈ H is an elliptic point for Γ if Γz is non-trivial as a group of transformations, that

is, if the containment {±I}Γz ⊃ {±I} of matrix groups is proper. The corresponding point

π(z) ∈ Y (Γ) is also called an elliptic point.

The cups of Γ are the Γ-equivalent classes of Q ∪ {∞}. In the case of SL2(Z), all

rational numbers are equivalent to ∞ since every rational number can be written as a
c

with

gcd(a, c) = 1 and there exists a matrix γ = ( a b
c d ) ∈ SL2(Z) which sends ∞ to a/c if c ̸= 0.

Hence SL2(Z) has only one cusp ∞. Let ℓ be a prime. On Γ0(ℓ), all rational numbers are

equivalent to 0 or ∞. Hence it has two cusps 0, and ∞.

For any subgroup Γ of SL2(Z), we denote Y (Γ) the quotient space of orbits under Γ,

Y (Γ) := Γ\H = {Γz|z ∈ H}.

The curve Y (Γ) is a non-compact Riemann surface, and it can be compactified by

adjoining cusps to it. We denote X(Γ) the compactification of Y (Γ),

X(Γ) := Γ\(H ∪ Q ∪ {∞}).

14



For the congruence subgroups Γ0(N),Γ1(N), and Γ(N), we denote the compactified modular

curves by X0(N), X1(N), and X(N).

Theorem 2.2.3 (Theorem 3.1.1,[15]). Let Γ be a finite index subgroup of SL2(Z). Let ϵ2

and ϵ3 denote the number of Γ-inequivalent elliptic points of order 2 and 3 in X(Γ), let ϵ∞ the

number of Γ-inequivalent cusps of X(Γ). Then the genus of X(Γ) is

g = 1 + d

12 − ϵ2

4 − ϵ3

3 − ϵ∞

2 .

where

d =


[SL2(Z) : Γ]/2 if − I /∈ Γ,

[SL2(Z) : Γ] otherwise.

For example, the genus of X0(5) is 0. This follows from the facts that Γ0(5) has 2

cusps and 2 elliptic points which are of order 2, and the index of Γ0(5) of Γ0(1) is 6. Hence we

see that the genus of X0(5) is zero. It can be proved similarly that the genera of X0(7) and

X0(13) are 0 and the genera of X0(11) and X0(17) are 1.

If the genus of a modular curve is zero, the modular function field is generated by a sin-

gle element and the generator has one simple pole and one simple zero. From this fact we can

see that all the modular functions on SL2(Z) are generated by the j-function. If the modular

curve has genus 1, it is an elliptic curve and the field of modular functions is generated by two

elements.
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2.2.2. Dedekind eta-products and quotients as modular forms

Definition 2.2.4. We say χ : Z :→ C a Dirichlet Character modulo m ≥ 1, if it satisfies the

following conditions for all a, b ∈ Z.

χ(ab) = χ(a)χ(b),

χ(a)


= 0, if gcd(a,m) > 1,

̸= 0, if gcd(a,m) = 1,

χ(a+m) = χ(a).

Definition 2.2.5 (Definition 1.15, [32]). If χ is a Dirichlet character modulo N , then we say

that a form f(z) ∈ Mk(Γ1(N)) (resp. Sk(Γ1(N))) has Nebentypus character χ if

f

(
az + b

cz + d

)
= χ(d)(cz + d)kf(z)

for all z ∈ H and all ( a b
c d ) ∈ Γ0(N). The space of such modular forms (resp. cusp forms) is

denoted by Mk(Γ0(N), χ) (resp. Sk(Γ0(N), χ)).

If χ = χ0 is trivial, then we denote Mk(Γ0(N), χ0) (resp. Sk(Γ0(N), χ0)) by

Mk(Γ0(N)) (resp. Sk(Γ0(N))).

The following proposition is useful to identify Dedekind eta products and quotients as

modular forms on congruence subgroups on Γ0(N) and Γ1(N).

Proposition 2.2.6 (Proposition 2.27, [30]). Suppose that there is some N ≥ 1 such that

f(z) = ∏
δ|N η

rδ(δz), with the additional properties that k := 1
2
∑

δ|N rδ ∈ Z and

∑
δ|N

δ · rδ ≡
∑
δ|N

N

δ
· rδ ≡ 0 (mod 24).

If the expression

N

24
∑
δ|N

(c, δ)2 · rδ

(c, N
c

) · cδ
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is non-negative (resp. vanishes) for each divisor c|N then,

f(z) ∈ Mk (Γ0(N), χ) (resp f(z) ∈ Sk (Γ0(N), χ)).

The character here is χ(d) := ( (−1)ks
d

), where s := ∏
δ|N δ

rδ .

The following theorem can be used to determine the order of vanishing of an eta-

quotient at cusps.

Theorem 2.2.7 (Theorem 1.65, [32]). Let c, d and N be positive integers with d|N and

gcd(c, d) = 1. If f(z) is an eta-quotient satisfying the conditions of Proposition 2.2.6 for

N ≥ 1, then the order of vanishing of f(z) at the cusp c
d

is

N

24
∑
δ|N

gcd(d, δ)2rδ

gcd(d, N
d

)dδ
.

A theorem of Sturm provides a criterion for deciding when two modular forms with

integer coefficients congruent modulo a prime number. Let m ≥ 1 be an integer, and let

f(z) = ∑∞
n=0 a(n)qn be a modular form with integer coefficients. Then we define

ordm(f(z)) = min{n : a(n) ̸≡ 0 (mod ℓ)}

If no such n exists, then we say that ordm(f(z)) := ∞.

Theorem 2.2.8 (Sturm, Theorem 2.3, [42]). Suppose that N is a positive integer, ℓ is prime,

and f(z), g(z) ∈ Mk(Γ0(N), χ) ∩ Z[[q]]. If

ordℓ(f(z) − g(z)) > k

12[SL2(Z) : Γ0(N)],

then we have f(z) ≡ g(z) (mod ℓ).

2.2.3. Several modular functions

Then we study several modular functions on the congruence subgroup Γ0(N) where N

is a prime or a prime square. These functions play a special role in our work.
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The function gℓ(z):

For a prime ℓ, we define gℓ,r(z) on H by

gℓ,r(z) :=
{
η(ℓz)
η(z)

}r

(2.2.2)

Theorem 2.2.9 (Theorem 1, chapter 7, [25]). If ℓ(> 3) is a prime and r is an integer such that

r(ℓ− 1) ≡ 0 (mod 24), then gℓ,r(z) is a modular function on Γ0(ℓ).

The function ϕℓ(z):

Let ℓ > 3 be a prime. Let ϕℓ(z) be defined in H by

ϕℓ(z) := η(ℓ2z)
η(z) . (2.2.3)

Theorem 2.2.10 (Theorem 2, Chapter 7, [25]). If ℓ is a prime greater than 3 then ϕℓ(z) is a

modular function on Γ0(ℓ2).

The function Sℓ,r(z):

Let ℓ > 3 be a prime number and r be any integer. We define Sℓ,r(z) by

Sℓ,r(z) :=
ℓ−1∑
k=0

ϕr
ℓ

(
z

−ℓkz + 1

)
. (2.2.4)

Theorem 2.2.11 (Theorem 03, [25]). Sℓ,r(z) is a modular function with respect to Γ0(ℓ) and is

holomorphic for all z ∈ H. If r > 0, Sℓ,r(z) has at most a pole at 0 and is holomorphic at ∞.

If r < 0, Sℓ,r(z) is holomorphic at 0 and has at most a pole at ∞.

The following theorem describes the Fourier expansion of Sℓ,r(z).

Theorem 2.2.12 (Theorem 4, [25]). Let the integer pr(n), n ≥ 0, be defined by means of,

∞∏
m=1

(1 − qm)r =:
∞∑

n=0
pr(n)qn, (2.2.5)
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and for a prime ℓ > 3, we put v = ℓ2−1
24 . Then if r is even

Sℓ,r(z) = −ℓ−r/2e(πir/4)(1−ℓ) + ϕr
ℓ(z)

+ ℓ1−r/2e(πir/4)(1−ℓ)
∞∏

n=1
(1 − xn)−r

∞∑
n=0

n≡rv (mod ℓ)

pr(n)qn.
(2.2.6)

If r is odd,

Sℓ,r(z) = ϕr
ℓ(z)

+ ℓ(1−r)/2e(πir(1−ℓ)2/8e(πir/4)(1−ℓ)
∞∏

n=1
(1 − xn)−r ×

∞∑
n=0

(
rv − n

ℓ

)
pr(n)qn.

(2.2.7)

2.2.4. Modular equations

Let ℓ ≥ 5 be a prime number and gℓ(z) be the modular form gℓ,r(z) where r is the least

positive integer satisfying the condition r(ℓ− 1) ≡ 0 (mod 24).

By the modular equation for prime ℓ, we refer to an algebraic equation connecting two

modular forms gℓ(z) and ϕℓ( z
ℓ
).

Theorem 2.2.13. For ℓ = 5, 7, 13 these equations are,

(ℓ = 5)

ϕ5
5(z) = g5(5z)

(
52ϕ4

5(z) + 52ϕ3
5(z) + 5 · 3ϕ2

5(z) + 5ϕ5(z) + 1
)
. (2.2.8)

(ℓ = 7)

ϕ7
7(z) = g2

7(7z){343ϕ6
7(z) + 343ϕ5

7(z) + 147ϕ4
7(z) + 49ϕ3

7(z) + 21ϕ2
7(z)

+ 7ϕ7(z) + 1} + g7(7z){7ϕ4
7(z) + 35ϕ5

7(z) + 49ϕ6
7(z)}.

(2.2.9)

(ℓ = 13)

ϕ13
13(z) +

13∑
r=1

7∑
p=⌊(r+2)/2⌋

mr,pg
p
13(13z)ϕ13−r

13 (z) = 0, (2.2.10)

where,
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(mr,p) =



−11·13 −36·132 −38·133 −20·134 −6·135 −136 −136

204·13 346·132 222·133 74·134 136 136

−36·13 −126·132 −102·133 −38·134 −7·135 −7·135

346·13 422·132 184·133 37·134 3·135

−38·13 −102·132 −56·133 −135 −15·134

222·13 184·132 51·133 5·134

−20·13 −38·132 −134 −19·133

74·13 37·132 5·133

−6·13 −7·132 −15·132

132 3·132
−13 −7·13

13
−1


.

Here we explain how to obtain the equation for the prime 5, and the other modular

equations can be obtained similarly.

Proof. First notice that to find an equation between the two functions ϕ5(z) and g5(5z), it is

enough to consider the order of vanishings at cusps. This is because the zeros or poles of these

functions occur at only cusps since they have infinite product expansions. Here ϕ5(z) = η(25z)
η(z)

and g5(5z) =
(

η(25z)
η(5z)

)6
are modular functions on X0(25). The modular curve X0(25) has 6

cusps 0,∞, 1
5 ,

2
5 ,

3
5 , and 4

5 . Using Theorem 2.2.7, we calculate the order of vanishing of these

modular functions at cusps and they are stated in Table 2.1.

Table 2.1. The order of vanishing at cusps
0 ∞ 1

5
2
5

3
5

4
5

ϕ5(z) −1 1 0 0 0 0
g5(5z) −1 5 −1 −1 −1 −1

We first consider 1
g5(5z) . This function has only a pole of order 5 at ∞ and holomorphic

at every point on the upper half plane. Now by subtracting relevant negative powers of ϕ5(z)

and comparing the Fourier expansions, we remove the pole at ∞. The resulting function,

1
g5(5z)

− 1
ϕ5

5(z)
− 5
ϕ4

5(z)
− 15
ϕ3

5(z)
− 52

ϕ2
5(z)

− 52

ϕ5(z)

does not have any poles on the modular curve X0(25). Hence by Liouville’s theorem, it is a

constant. Then comparing Fourier expansions we see that the constant is zero.
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Remark 2.2.14. Gordon in [18] found a modular equation for ℓ = 11 and Hughes in [23] found

a modular equation for ℓ = 17. However these equations are complicated and we do not state

them in this dissertation.

2.3. Operators on modular forms

In this section, we introduce some operators acting on the space of modular forms. Let

f(z) ∈ M !
k (Γ0(N)) and γ = ( a b

c d ) ∈ GL+
2 (Q). The slash operator is defined as

(f(z)
∣∣∣
k
γ)(z) = (det(γ)) k

2 (cz + d)−kf(γz).

We now introduce Hecke operators for modular forms. These operators play a signifi-

cant role establishing the congruences between the Fourier coefficients of modular forms and

functions.

Definition 2.3.1 (Definition 2.1, [32]). If ℓ is a prime number and f(z) = ∑∞
n=0 a(n)qn ∈

Mk (Γ0(N), χ), then the action of the Hecke operator Tℓ,k,χ on f(z) is defined by

f(z)|Tℓ,k,χ :=
∞∑

n=0

(
a(ℓn) + χ(ℓ)ℓk−1a(n/ℓ)

)
qn.

If ℓ ∤ n, then we agree that a(n/ℓ) = 0. More generally, if m is a positive integer, then the

action of Tm,k,χ is defined by

f(z)|Tm,k,χ :=
∞∑

n=0

( ∑
d|gcd(m,n)

χ(d)dk−1a(mn/d2)
)
qn.

Note that χ(n) = 0 if gcd(N, n) ̸= 1.

If χ is the trivial character modulo N , then we write Tℓ,k = Tℓ,k,χ.

Proposition 2.3.2 (Proposition 2.3, [32]). Suppose that

f(z) ∈ Mk(Γ0(N), χ).
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If m ≥ 2, then f(z)|Tm,k,χ ∈ Mk(Γ0(N), χ). Moreover, f(z)|Tm,k,χ is a cusp form if f(z) is a

cusp form.

There are two other operators acting on the space of modular forms that are important

for us.

Definition 2.3.3. For a Laurent series f(z) = ∑
n≥N a(n)qn, we define the Uℓ and Vℓ operators

by

Uℓ

 ∞∑
n≥N

a(n)qn

 :=
∞∑

ℓn≥N

a(ℓn)qn, (2.3.1)

and

Vℓ

 ∞∑
n≥N

a(n)qn

 :=
∞∑

n≥N

a(n)qℓn.

Let g(z) = ∑
n≥N b(n)qn be another Laurent series. The following simple property will

play a key role in Section 4.2 when constructing the sequence of modular forms that is related

to the generating function of the partition p[1cℓd](n).

Uℓ (f(z)g(ℓz)) = g(z)Uℓ (f(z)) . (2.3.2)

Proposition 2.3.4 ([3], Lemma 7). If f(z) is a modular function for Γ0(N), if ℓ2|N , then

Uℓ

(
f(z)

)
is a modular function for Γ0(N/ℓ).

Lemma 2.3.5 (Lemma 2.1, [12]). Let f(z) ∈ M !
k(Γ0(ℓj)) and k ∈ Z. Then we have

1. Uℓ

(
f(z)

)
∈


M !

k(Γ0(ℓ)) if j ∈ {0, 1},

M !
k

(
Γ0(ℓj−1)

)
otherwise

2. Vℓ

(
f(z)

)
∈ M !

k

(
Γ0(ℓj+1)

)
(2.3.3)

Uℓ operator is an extremely useful tool to detecting congruences of partition functions.
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For example, consider the Fourier expansion of ϕ5(z) at ∞.

ϕ5(z) = q
∞∏

n=1

(
1 − q25n

1 − qn

)
= q + q2 + 2q3 + 3q4 + 5q5 + 7q6 + 11q7 + 15q8 + 22q9 + 30q10 + · · ·

Now using (2.3.2) and U5 operator, we see that

U5 (ϕ5(z)) =
∞∏

n=1
(1 − q5n)U5

( ∞∑
n=0

p(n)qn+1
)

=
∞∏

n=1
(1 − q5n)

∞∑
n=1

p(5n− 1)qn.

Now applying the U5 operator to the Fourier expansion of ϕ5(z) at ∞, we have that

∞∏
n=1

(1 − q5n)
∞∑

n=1
p(5n− 1)qn = 5q + 30q2 + · · · .

Even though this not a proof for the famous Ramanujan congruence modulo 5, but it gives a

way to check for congruences computationally.

Let f(z) ∈ M !
k(Γ0(ℓ)). We can define the Uℓ operator in the following way.

Uℓ

(
f(z)

)
= ℓk/2−1

ℓ−1∑
j=0

f(z)|k
(

1 j
0 ℓ

)
(2.3.4)

The expansion given in (2.3.4) is useful when calculating the Fourier expansion at the cusp 0 of

Γ0(ℓ).

Definition 2.3.6. Let γ1, γ2, · · · , γℓ+1 be a set of coset representatives of Γ0(ℓ)\SL2(Z). If

f(z) ∈ M !
k(Γ0(ℓ)), then we define the trace operator of f by

Tr(f) :=
ℓ+1∑
j=1

f |kγj.

The trace Tr(f) is independent of the choice of coset representatives and it is a modu-

lar form of weight k on SL2(Z).

Lemma 2.3.7 (Lemma 7, [39]). For f(z) ∈ M !
k(Γ0(ℓ)), we have

Tr(f) = f + ℓ1− k
2 (f |kW (ℓ)) |U(ℓ), (2.3.5)

where W (ℓ) := ( 0 1
−ℓ 0 ).
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The Atkin-Lehner operator W (ℓ) stabilizes Γ0(ℓ). Hence if f(z) ∈ M !
k(Γ0(ℓ)) then

f(z)|kW (ℓ) ∈ M !
k(Γ0(ℓ)). Therefore, we substitute f(z)|kW (ℓ) for f in equation (2.3.5) and

we obtain

ℓ
k
2 −1 Tr

(
f(z)|kW (ℓ)

)
= ℓ

k
2 −1f |kW (ℓ) + f |U(ℓ). (2.3.6)

For a rational integer a, let πℓ(a) to be the ℓ-adic order of a. If

f(z) :=
∑

n≥n0

a(n)qn,

we define,

πℓ (f(z)) := min
n≥n0

{πℓ(a(n)} . (2.3.7)

The following version of the statement in equation (2.3.6) is useful when finding forms

on SL2(Z) such that they congruent to forms on Γ0(ℓ) modulo certain powers of ℓ.

Lemma 2.3.8. Let f(z) ∈ M !
k(Γ0(ℓ)). Then f(z)|U(ℓ) is congruent modulo ℓj to a form on

SL2(Z) with the same weight for any positive j if

πℓ

(
ℓ

k
2 −1f(z)|kW (ℓ)

)
≥ j.

Now we define another modular form. We use this form in Chapter 5 to prove Theorem

1.0.11. Let

hℓ(z) = h(z) := Eℓ−1(z) − ℓℓ−1Eℓ−1(z)|V (ℓ) (2.3.8)

From Lemma 2.3.5, we see that h(z) ∈ Mℓ−1(Γ0(ℓ)). We need the following two lemmas of

Serre [39].

Lemma 2.3.9 (Lemma 8, [39]). Let a ≥ 4 be an integer and assume that ℓ− 1|a, then we have

h(z) ≡ 1 (mod ℓ), h(z)|aW (ℓ) ≡ 0 (mod ℓ1+a/2) (2.3.9)
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Lemma 2.3.10 (Lemma 9, [39]). Let f be a modular form of weight k with rational coefficients

on SL2(Z). Then for any integer m ≥ 0, we have

πℓ

(
Tr
(
f(z)h(z)ℓm

)
− f(z)

)
≥ inf

(
m+ 1 + πℓ(f(z)), ℓm + 1 + πℓ(f |kW (ℓ)) − k

2

)
.

2.4. Modular forms modulo ℓ

The modern approach of studying the sequence (Lℓ(c, d, b; z)) stated in (4.2.3) is using

the theory of modular forms modulo a prime ℓ which was developed by Serre [39] in 1970s. In

fact this has been used by Boylan and Ahlgren in [4] to prove that there are no Ramanujan

congruences for primes other than 5, 7 and 11.

2.4.1. Structure of modular forms modulo ℓ

Theorem 2.4.1 (Clausen-von Staudt). Let Bk be the kth Bernouilli number. Then for all k ∈ Z

and for a prime ℓ, we have

Bk +
∑

ℓ prime
ℓ−1|k

1
ℓ

∈ Z.

In particular, vℓ(Bk) = −1 if ℓ− 1|k and vℓ(Bk) ≥ 0 otherwise.

Theorem 2.4.2 (Kummer congruences). If k, k′ ∈ N are even and with k ≡ k′ ̸≡ 0 (mod ℓ− 1)

then

Bk

k
≡ Bk′

k′ (mod ℓ).

More generally, if k, k′ ∈ N are even, not divisible ℓ− 1, and k ≡ k′ (mod ℓa(ℓ− 1)) then

(1 − ℓk−1)Bk

k
≡ (1 − ℓk′−1)Bk′

k′ (mod ℓa+1)

Recall

Ek(z) = 1 − 2k
Bk

∞∑
n=1

σk−1(n)qn
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Clausen-von Staudt’s theorem says vℓ( k
Bk

) ≥ a+ 1 when k ≡ 0 (mod ℓa(ℓ− 1)). Hence we have

Eℓ−1(z) ≡ 1 (mod ℓ) and Eℓa(ℓ−1)(z) ≡ 1 (mod ℓa+1).

As in Theorem 2.1.1, a modular form f(z) of weight k can be written uniquely as

f(z) =
∞∑

m,n=0
αm,nE4(z)mE6(z)n,

where αm,n ∈ Q such that 4m+ 6n = k. Now let f(z) has the following Fourier expansion.

f(z) :=
∞∑

r=0
a(r)qr.

Then comparing coefficients, we have a(r) ∈ Q and a(r) is ℓ-integral for all r if and only if

αm,n is ℓ-integral for all m,n. Now assume f(z) is a modular form with ℓ-integral coefficients.

Then consider the formal power series

f(z) =
∞∑

r=0
a(r)qr

where a(r) is the reduction modulo ℓ. If f(z) and g(z) are modular forms such that f(z) ≡

g(z) (mod ℓ) then we have the equality f = g.

From this way we obtain a subalgebra (over Fℓ) of Fℓ[[q]] and called the algebra of

modular forms modulo ℓ and it is denoted by M(ℓ).

Let A(X, Y ) to be the polynomial

Eℓ−1(z) = A(E4(z), E6(z)).

The polynomial A has rational, ℓ-integral coefficients. Reducing the coefficients modulo ℓ, we

have A(X, Y ) ∈ Fℓ[X, Y ] and from [40], we have

M(ℓ) = Fℓ[E4(z), E6(z)] ≡ Fℓ[X, Y ]/(A(x, y) − 1).
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For any even integer k ≥ 4, we denote by Mk(Fℓ) the subspace of M(ℓ) consisting of reduc-

tions of modular forms of weight k. Then we have

Mk(Fℓ) ⊆ Mk+ℓ−1(Fℓ) ⊆ Mk+2(ℓ−1)(Fℓ) ⊆ · · · .

Now for s ∈ Z/(ℓ− 1)Z we set,

M s(Fℓ) =
⋃

k≡s (mod ℓ−1)
Mk(Fℓ).

Then we have

M(ℓ) =
⊕

α∈Z/(ℓ−1)Z
Mα(Fℓ).

2.4.2. Filtrations of modular forms

Let f(z) and g(z) are modular forms of weight k1 and k2 respectively and that they

have ℓ-integral coefficients in their q-expansions. Furthermore, we assume that f(z) ≡ g(z) ̸≡

0 (mod ℓ). Then both f(z) and g(z) belong to M s(Fℓ) for some s ∈ Z/(ℓ − 1)Z. Hence we

have k1 ≡ k2 (mod ℓ− 1).

Let ℓ be a prime, then we denote Z(ℓ) be the localization of Z at prime ℓ.

Let k ≥ 4 be even, and let f(z) ∈ Mk ∩ Z(ℓ)[[q]] with f(z) ̸≡ 0 (mod ℓ). The filtration

of f(z) is defined by

ωℓ(f) := inf{k′ : f ≡ g (mod ℓ), g ∈ Mk′ ∩ Z(ℓ)[[q]]}.

If f(z) ≡ 0 (mod ℓ), we set ωℓ(f) = −∞. The following Lemma of Serre describes the basic

properties of filtrations of modular forms.
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Lemma 2.4.3 (Lemma 2, [39]). Let ℓ ≥ 5 be a prime, and f(z) ∈ Mk ∩Z(ℓ)[[q]]. Then we have

1. ωℓ (f(z)|Uℓ) ≤ ℓ+ ωℓ(f(z)) − 1
ℓ

,

2. If ωℓ(f(z)) = ℓ− 1 , then ωℓ (f(z)|Uℓ) = ℓ− 1,

3. if ωℓ(f(z)) = a(ℓ− 1), for some a ≥ 2, then ωℓ (f(z)|U(ℓ)) ≤ (a− 1)(ℓ− 1),

4. If ωℓ (f(z)) = ℓ− 1, then ωℓ

(
∆(z)

ℓ2−1
24 f(z)|U(ℓ)

)
∈ {0, ℓ− 1}.

A theorem of Serre provides a key fact of congruences among modular forms.

Theorem 2.4.4 (Theorem 1, [39]). Let f(z) and g(z) be two modular forms with rational

coefficients, of respective weights k1 and k2. Assume also that f(z) ̸= 0 and that:

πℓ (f(z) − g(z)) ≥ πℓ(f(z)) +m, for some integer m ≥ 0,

f(z)(̸≡ 0 (mod ℓ)) ∈ Mk1 ∩ Z(ℓ)[[q]] and g(z) ∈ Mk2 ∩ Z(ℓ)[[q]] with f(z) ≡ g(z) (mod ℓm).

Then we have k1 ≡ k2 (mod ℓm−1(ℓ− 1)).
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Chapter 3. Several Partition Functions and Their Congruences

3.1. The k-colored partition function

The k-colored partition functions (also known as multi-partitions or multi-colored parti-

tions) is denoted by p−k(n) and it counts the partitions of n into k colors. For example p−2(3),

counts partitions of 3 into 2 colors and there are 10 such partitions.

31, 21+11, 11+11+11, 32, 22+12, 12+12+12, 21+12, 22+11, 12+11+11, 12+12+11.

Notice here that, if a partition consists with same parts, then we need to number the colors

and arrange the parts in a decreasing order with respect to the colors. The following function is

the generating function of p−k(n).

∞∑
n=0

p−k(n)qn :=
∞∏

m=1

1
(1 − qn)k

= q
k
24

ηk(z) . (3.1.1)

This partition function has been studied by many researchers in the past half century. In 1960’s

Atkin studied this function using modular equations and proved congruence relations modulo

primes ℓ = 2, 3, 5, 7, 13 in [1].
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Theorem 3.1.1 (Theorem 1, [18] ). Let k > 0 and ℓ be one of the primes 2, 3, 5, 7, or 13.

Then if 24m ≡ k (mod ℓr) we have p−k(m) ≡ 0 (mod ℓαr/2+ϵ) where ϵ = ϵ(k) = O(log(k))

and α = α(k, ℓ) depending on ℓ and the residue of k modulo 24 according to Table 3.1 for

k > 0.

Table 3.1. Values of α(k, ℓ)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

2 - - - - - - - 3 - - - - - - - 3 - - - - - - - 3
3 - - 3 - - 2 - - 3 - - 2 - - 1 - - 2 - - 1 - - 0
5 2 1 1 1 2 2 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0
7 1 1 1 2 1 1 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0
13 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In 1981, Basil Gordon in [18] extended Atkin’s result to prime 11 using a linear basis for

modular functions on Γ0(11) constructed by A.O.L. Atkin.

Theorem 3.1.2 (Gordon, 1981). If 24n ≡ k (mod 11r), then p−k(n) ≡ 0 (mod 11
r·α11

2 +ϵ)

where ϵ = ϵ(k) = O
(

log |k|
)
, if k ≥ 0, α11(k) depends on the residue of k (mod 120) and

they are listed in Table 3.2.

Table 3.2. Values of α11(k)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 2 1 2 1 1 1 2 2 1 1 2 2 1 2 1 0 0 1 1 0 0 1 1 0
24 1 1 1 1 2 2 1 1 2 2 1 0 0 0 0 1 1 0 0 1 1 1 0 0
48 1 1 2 2 1 1 1 0 1 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0
72 2 1 1 1 2 1 2 1 2 1 2 2 1 1 1 2 1 2 1 2 1 1 1 0
96 0 0 1 0 1 0 1 0 1 1 0 0 0 1 0 1 0 1 0 1 1 0 0 0

Here the entry is α11(24i+ j) where rows are labeled as 24i and columns are labeled as

j. When k < 0, the last column is changed to 2, 2, 2, 0, 2.

This result has been extended to prime 17 by Kim Hughes in 1991 in [23] using a linear

basis for modular functions on Γ0(17).
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Theorem 3.1.3 (Hughes, 1991). Let k be a nonzero integer. If 24n ≡ k (mod 17r), then

p−k(n) ≡ 0 (mod 17
r·α17

2 +ϵ), where ϵ = ϵ(k) = O(log(k)) and α17 = α17(k) depends on the

residue of k (mod 96). The dependence of α17 on k is given in Table 3.3 for k > 0.

Table 3.3. Values of α17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
48 1 1 1 1 1 2 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
72 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Here the entry is α17(24i+ j) where rows are labeled as 24i and columns are labeled j.

When k < 0, the last column is changed to 0, 2, 0, 0.

In [33, 34] we have extended all of these results to two-parameter partition function

that we called p[1cℓd](n).

The k-colored partitions also satisfy more general ℓ-adic congruences. In [29], Kimming

and Olsson studied these properties using the theory of modular forms modulo ℓ and proved

the following result.
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Theorem 3.1.4 (Theorem 4, [29]). For n ∈ N, we have

p−3(11n+ 7) ≡ 0 (mod 11),

p−5(11n+ 8) ≡ 0 (mod 11),

p−7(11n+ 9) ≡ 0 (mod 11),

p−3(17n+ 15) ≡ 0 (mod 17),

p−9(17n+ 11) ≡ 0 (mod 17),

p−13(17n+ 14) ≡ 0 (mod 17),

p−7(19n+ 9) ≡ 0 (mod 19),

p−9(19n+ 17) ≡ 0 (mod 19),

p−13(19n+ 14) ≡ 0 (mod 19),

(3.1.2)

In 2016, Dawsey and Wagner, in [31] proved the following result using the theory of

newforms.

Theorem 3.1.5 (Theorem 1-Theorem 3, [31]). For a prime ℓ and positive integers h and t,

let k + h = ℓt, and let δk,ℓ be the integer such that 24δk,ℓ ≡ k (mod ℓ). Then we have the

following Ramanujan-type congruence

p−k(ℓn+ δk,ℓ) ≡ 0 (mod ℓ)

if any of the following holds:

(1). We have h ∈ {4, 8, 14} and ℓ ≡ 2 (mod 3).

(2). We have h ∈ {6, 10} and ℓ ≡ 3 (mod 4).

(3). We have h = 26 and ℓ ≡ 11 (mod 12).
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3.2. The ℓ-regular partition function

The ℓ-regular partition function is denoted by bℓ(n) and it counts the number of parti-

tions of a natural number n with the condition that parts are not divisible by ℓ. For example,

there are 4 3-regular partitions.

4, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.

The generating function for these partitions is given by the following product function.

∞∑
n=0

bℓ(n)qn :=
∞∏

m=1

(1 − qℓn)
(1 − qn) = q

1−ℓ
24
η(ℓz)
η(z) .

Congruences properties of ℓ-regular partitions have been studied by several researchers

in recent years. The following theorems describe several recent results about bℓ(n).

Theorem 3.2.1 (Liuquan Wang, [44]). For any positive integer k and for n > 0,

b5

(
52kn+ 52k − 1

6

)
≡ 0 (mod 5k).

Theorem 3.2.2 (Liuquan Wang, [45]). For any positive integer k and for n > 0,

b7

(
72kn+ 72k − 1

4

)
≡ 0 (mod 7k).

Webb in [42] used Sturm’s criterion (Theorem 2.2.8) to prove the following result which

was previously conjectured by Callin.

Theorem 3.2.3. For all integers n and r with n ≥ 0 and r ≥ 2, we have

b13

(
3rn+ 5 · 3r−1 − 1

2

)
≡ 0 (mod 3).
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3.3. The t-core partition function

t-cores are partitions of a number n with hook numbers of the entries of the Ferrers dia-

gram not divisible by ℓ and denoted by at(n). For example, the Ferrers diagram of the partition

3 + 2 + 1 + 1 and Ferrers diagram with their hook numbers are shown in the following diagrams.

13

1

6

4

2

1

t-cores are also played a special role in a variety of areas. Especially when t is a prime

ℓ, they characterize ℓ modular irreducible representation of the symmetric group Sn. They also

have been used to define a crank function (t-core rank) that can be used to prove the famous

Ramanujan congruences.

at(n) has the following generating function:

∞∑
n=0

at(n)qn :=
∞∏

m=1

(1 − qtm)t

(1 − qm)

t-cores satisfy the famous Ramanujan congruences when t = 5, 7, 11 due to the bijec-

tion discovered by Frank Garvan, Dennis Stanton, and Donshu Kim in [21]. As a corollary of

our main theorem we prove these congruences in chapter 6.

In 2002, Matthew Boylan [13] proved congruences for 2t-core partitions by studying the

action of the Hecke operator Tℓ,k when ℓ is an odd prime, on S4t+1−4 with integer coefficients

modulo 2.

Theorem 3.3.1 (Boylan, [8]). For any positive integer t ≥ 1, if p1, · · · , p(4t−1)/3 are distinct
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odd primes, then

a2t

p1 · · · p (4t−1)
3
N − 4t−1

3

8

 ≡ 0 (mod 2),

for every N with gcd(N,∏ pi) = 1.

3.4. The k-colored generalized Frobenius partition function

k-colored Generalized Frobenius partition function cϕk(n) is introduced by G.E. An-

drews [5] in 1984. They are two-array partitions with non negative entries with monotonically

decreasing order on each row, a1 a2 · · · ad

b1 b2 · · · bd


and satisfy the following conditions

(i). n = d+∑d
i=1 ai +∑d

i=1 bi,

(ii). Parts can appear at most k times,

(iii). Parts are colored, colors are numbered from 1 to k and ordered in decreasing

order.

Ex: cϕ2(2) = 9;
(

11
01

)
,
(

11
02

)
,
(

12
01

)
,
(

12
02

)
,
(

01
11

)
,
(

02
11

)
,
(

01
12

)
,
(

02
12

)
,
(

02 01
02 01

)
.

The generating function for cϕk(n) is denoted by CΦk(q) and it is given by the follow-

ing function.

CΦk(q) =
∞∑

n=0
cϕk(n)qn =

∞∏
m=0

1
(1 − qm)k

∑
m1,m2,···mk−1∈Z

qQ(m1,m2,···mk−1)

where Q(m1,m2, · · ·mk−1) =
k−1∑
i=1

m2
i +

∑
1≤i<j≤k−1

mimj.

Now we state several congruence properties of cϕk(n). Luis Kolitsch in 1989 in [27]

found an identity between p(n) and cϕ5(n) and an identity between p(n) and cϕ7(n). Then he

used them to prove congruences for cϕ5(n) and cϕ7(n).
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Theorem 3.4.1 (Kolitsch, [27]). For r a positive integer, let δr and λr be the reciprocals of 24

modulo 5r and 7r respectively. Then for all n ≥ 0,

cϕ5

(
5r−1n+ δr + 1

5

)
≡ 0 (mod 5r+1),

cϕ7

(
7r−1n+ λr + 2

7

)
≡ 0 (mod 7⌊ r+4

2 ⌋).
(3.4.1)

Frank Garvan and James Sellers [22] in 2013 proved a result that can be used to prove

congruences for cϕk(n) for a large number of colors from known congruences modulo primes.

Theorem 3.4.2 (Garvan–Sellers, [22]). Let ℓ be prime and let r be an integer such that 0 <

r < ℓ. If

cϕk(ℓn+ r) ≡ 0 (mod ℓ),

for all n ≥ 0, then

cϕℓN+k(ℓn+ r) ≡ 0 (mod ℓ),

for all N ≥ 0 and n ≥ 0.

In 2012, Peter Paule and Silviu Radu [35] used modular forms to prove the following

result which was previously conjectured by James Sellers in 1994.

Theorem 3.4.3 (Radu-Paule, [35]). For each r ≥ 0, let λr be the smallest positive integers

such that 12λr ≡ 1 (mod 5r). Then for all n ≥ 0 we have,

cϕ2(5rn+ λr) ≡ 0 (mod 5r). (3.4.2)

In 2018, H.H. Chan, Y. Yang, and L. Wang further investigated modular properties of

the generating function CΦk(q). Let

Ak(q) :=
∞∏

n=1
(1 − qm)kCΦk(q) =

∑
m1,m2,···mk−1∈Z

qQ(m1,m2,···mk−1).
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Theorem 3.4.4 (H.H. Chan, L. Wang, Y. Yang, 2018). If k = 2r + 1 is odd,

Ak(q) ∈ M(k−1)/2

(
Γ0(k), (−1)r · k

·

)

Using this result they found different representations for CΦk(q) for various k values.

Theorem 3.4.5 (Chan, Wang, Yang [16]). Let CΦk(q) be the generating function of the

k-colored generalized Frobenius partitions. We have

CΦ5(q) =
∞∏

n=1

1
1 − q5n

+ 25q
∞∏

n=1

(1 − q5n)5

(1 − qn)6 , (3.4.3)

CΦ7(q) =
∞∏

n=1

1
1 − q7n

+ 49 · q
∞∏

n=1

(1 − q7n)3

(1 − qn)4 + 343 · q2
∞∏

n=1

(1 − q7n)7

(1 − qn)8 , (3.4.4)

CΦ11(q) =
∞∏

n=1

1
1 − q11n

+ 11
∞∑

j=1
p(11j − 5)qj. (3.4.5)

CΦ13(q) = 1
(q13; q13)∞

+ 13
∞∑

n=0
p(13n− 7)qn + 26 · q

∞∏
n=1

(1 − q13n)
(1 − qn)2 . (3.4.6)

They have also found expressions for CΦk(q) with k = 4, 6, 8, 10, 12, 15, and 16.

37



Chapter 4. Ramanujan Congruences Modulo Powers of Primes 5, 7,
and 13

4.1. Important inequalities

Theorem 4.1.1 (Newton’s Formula, Theorem 9, Chapter 7, [25]). Let

f(x) = xq − p1x
q−1 + p2x

q−2 − · · · + (−1)qpq,

where pi ∈ Z with roots ϕ1, · · · , ϕq. For a positive integer h, we put, Sh = ∑q
i=1 ϕ

h
i . Then if

1 ≤ h ≤ q,

Sh − p1Sh−1 + p2Sh−2 − · · · + (−1)h−1ph−1S1 + (−1)hphh = 0.

if h > q,

Sh − p1Sh−1 + p2Sh−2 − · · · + (−1)qpqSh−q = 0.

As described in [25], using the notation of Newton’s formula, we let Sr,ℓ(z) be the sum

of the rth power of the roots of the modular equation for prime ℓ.

Sr,ℓ =
ℓ−1∑
k=0

ϕr
ℓ(ζk

ℓ q
1
ℓ ). (4.1.1)

Let h(z) be a modular function on Γ0(ℓ). As shown in Lemma 2, Chapter 8 of [25], we

have

Uℓ(h(z)) = 1
ℓ

ℓ−1∑
k=0

h

(
ζk

ℓ q
1
ℓ

)
. (4.1.2)

Now combining equations (4.1.1) and (4.1.2),

Sr,ℓ(z) = ℓ · Uℓ

(
ϕr

ℓ(z)
)
. (4.1.3)

We use the modular equations to find Laurent series expansions for Sr,ℓ(z) in gℓ(z). Lemmas

4.1.2-4.1.4 describe the ℓ-adic orders of the coefficients in those expansions. For convenience,

we use ar,p to denote a(ℓ)
r,p which are the coefficients of gℓ(z) in the series expansion of Sr,ℓ(z).
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Lemma 4.1.2. Let r be a non zero integer. Then Sr,5(z) is a Laurent polynomial in g5(z) of

the form Sr,5(z) = ∑∞
p=−∞ ar,pg5(z)p, where ar,p is an integer divisible by 5 and satisfying

π5(ar,p) ≥
⌊5p− r + 1

2

⌋
, (4.1.4)

for r > 0, ar,p ̸= 0 for ⌊ r+4
5 ⌋ ≤ p ≤ r and for r < 0, ar,p = 0 for ⌊ r+4

5 ⌋ > p.

Proof. For r > 0 this inequality can be found in [25]. We prove this inequality for r < 0 here.

To calculate Sr,5(z) when r < 0, we modify the modular equation for prime 5 by dividing the

both sides of (2.2.8) by ϕ5
5(z) and g5(5z).(

ϕ−1
5 (z)

)5

+ 5
(
ϕ−1

5 (z)
)4

+ 5 · 3
(
ϕ−1

5 (z)
)3

+ 52
(
ϕ−1

5 (z)
)2

+ 52
(
ϕ−1

5 (z)
)

−
(
g−1

5 (5z)
)

= 0.

Then using Newton’s formula, we have

S−1,5(z) = −5,

S−2,5(z) = −5,

S−3,5(z) = 25,

S−4,5(z) = −25,

S−5,5(z) = 5g−1
5 (z),

Sr,5(z)=−5Sr+1,5(z) − 15Sr+2,5(z) − 25Sr+3,5(z) − 25Sr+4,5(z) + g−1(z)Sr+5,5(z).

First of all using induction with the help of the recurrence relation satisfied by Sr,5(z)

we see that for r < 0, ar,p = 0 for ⌊ r+4
5 ⌋ > p.

Now notice that above claim is true for r = −1 · · · − 5. Then we assume the claim holds

for any r < −5. Again from the recurrence relation, we have

ar,p = −5ar+1,p − 15ar+2,p − 25ar+3,p − 25ar+4,p + ar+5,p+1 (4.1.5)
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By the assumption, the 5-adic valuation of the terms in the right hand side of (4.1.5) satisfies

the inequality (2.2.8). Hence, we have

π5 (ar,p) ≥min{π5(ar+1,p) + 1, π5(ar+2,p) + 1, π5(ar+3,p) + 2,

π5(ar+4,p) + 2, π5(ar+5,p+1)}

=
⌊5p− r + 1

2

⌋
.

Lemma 4.1.3. Let r be a non zero integer. Then, Sr,7(z) is a Laurent polynomial in g7(z) of

the form Sr,7(z) = ∑∞
p=−∞ ar,pg

p
7(z), where ar,p is an integer divisible by 7 and satisfying

π7(ar,p) ≥
⌊7p− 2r + 3

4

⌋
, (4.1.6)

for r > 0, ar,p ̸= 0 for ⌊2r+6
7 ⌋ ≤ p ≤ 2r. For r < 0, ar,p = 0 for ⌊2r+6

7 ⌋ > p.

Proof. For r > 0, the proof of the inequality can be found in [25]. We here prove it when

r < 0. To calculate Sr,7(z), when r < 0, we modify the modular equation by dividing (2.2.9)

by ϕ7
7(z) and g2

7(7z). Then using Newton’s formula, we have

S−1,7(z) = −7,

S−2,7(z) = 7,

S−3,7(z) = −72,

S−4,7(z) = −72 − 22 · 7g−1
7 (z),

S−5,7(z) = 73 + 10 · 7g−1
7 (z),

S−6,7(z) = 73,

S−7,7(z) = 73g−1
7 (z) + 7g−2

7 (z).
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For r ≤ −8,

Sr,7(z) = − 7Sr+1,7(z) − 3 · 7Sr+2,7(z) − 72Sr+3(z)

− (3 · 72 + 7g−1
7 (z))Sr+4,7(z) − (73 + 5 · 7)Sr+5(z)

− (73 + 72g−1
7 (z))Sr+6,7(z) + g−2

7 (z)Sr+7,7(z).

(4.1.7)

Similar to the proof of Lemma 4.1.2, we can use the recurrence relation satisfied by Sr,7(z) to

see that for r < 0, ar,p = 0 for ⌊2r+6
7 ⌋ > p.

Now notice that (4.1.6) is true for r = −1 · · · − 7. Then we assume the claim holds for

any r < −7. Again from the recurrence relation (4.1.7), we have

ar,p = − 7ar+1,p − 3 · 7ar+2,p − 72ar+3,p − 3 · 72ar+4,p − 7ar+4,p+1

− 73ar+5,p − 5 · 7ar+5,p+1 − 73ar+6,p − 72ar+6,p+1 + ar+7,p+2.

(4.1.8)

Now by the assumption, the terms in the right hand side of (4.1.8) satisfy inequality (4.1.6).

Hence, we have

π7(ar,p) ≥ min
{
π7(ar+1,p) + 1, π7(ar+2,p) + 1, π7(ar+3,p) + 2, π7(ar+4,p) + 2,

π7(ar+4,p+1) + 1, π7(ar+5,p) + 3, π7(ar+5,p+1) + 1, π7(ar+6,p) + 3,

π7(ar+6,p+1) + 2, π7(ar+7,p+2)
}

=
⌊7p− 2r + 3

4

⌋
.

Lemma 4.1.4. Let r be a non zero integer. Then Sr,13(z) is a Laurent polynomial in g13(z) of

the form Sr,13(z) = ∑∞
p=−∞ ar,pg

p
13(z), where ar,p is an integer divisible by 13, and satisfying

π13(ar,p) ≥
⌊13p− 7r + 13

14

⌋
, (4.1.9)

for r > 0, ar,p ̸= 0 for ⌊7r+12
13 ⌋ ≤ p ≤ 7r. For r < 0, ar,p ̸= 0 for ⌊7r+12

13 ⌋ ≤ p ≤ 0.
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Proof. For r > 0, this is proved in [7]. For r < 0, we modify (2.2.10) by dividing it by ϕ13
13(z)

and g7
13(z). Then we derive Sr,13(z) for negative r using Theorem 4.1.1.

Sr,13(z) :=
∑

⌊ 7r+12
13 ⌋≤p≤0

ar,pg
p
13(z). (4.1.10)

Here {ar,p}r<0,p≤0 given in the matrix below,


··· 13
··· −2·13 −13
··· 132

··· 26 12·133 467·133

··· −260 2018·132 467·133

··· 130 −20·134 36·134 2807·133

··· 98·13 −26336·132 −12·135 935·134

··· −70·13 84·134 −684·134 −120·135 3743·134

··· −162·13 176544·132 −15996·133 −9030·134 937.135

··· 238·135 −396·134 4740·134 −192·135 −24·137 1871·135

··· −902·13 −737836·132 210588·133 10722·134 −17806·135 −136

··· −418·13 1260·134 −16812·134 7416·135 120·137 −336·137 −1873·136

···13 51·133 125764·133 −77470·134 28214·135 10000·136 −815·137 −72·138
··· ··· ··· ··· ··· ··· ··· ···


From the above matrix we can see that the result holds for r = −13 to −1. Now fix

r < −13. Assume the result holds for all negative numbers greater than r. Using Theorem

4.1.1 and (2.2.10), we see that Sr,13(z) satisfies the following recursive formula when r ≤ −14.

Sr,13(z) :=
13∑

i=1
(−1)i+1C−iSr+i,13(z),

where C−i :=(−1)i+1
7∑

ρ=⌈ 14−i
2 ⌉

m13−i,ρg
ρ−7
13 (z), 1 ≤ i ≤ 13.

(4.1.11)

Notice that m0,7 := 1 here. Now combining (4.1.10) and (4.1.11), for r ≤ −14, we have

ar,p =
13∑

i=1

0∑
t=⌊ 7r+7i+12

13 ⌋

m13−i,p−t+7 · ar+i,t. (4.1.12)

Now using (2.2.10), we see that

π13 (mr,p) ≥
⌊13p− 7r + 13

14

⌋
.
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Then using the induction hypothesis, we have

π13(ar,p) = min
1≤i≤13, ⌊ 7r+7i+12

13 ⌋≤t≤0
{π13(m13−i,p−t+7) + π13(ar+i,t)} .

≥
{⌊

13(p− t+ 7) − 7(13 − i) + 13
14

⌋
+
⌊

13(t) − 7(r + i) + 13
14

⌋}
,

=
{⌊13p− 13t+ 7i+ 13

14

⌋
+
⌊13t− 7r − 7i+ 13

14

⌋}
,

≥
⌊13p− 7r + 13

14

⌋
, for all i, t.

Here we used the fact that if X, Y are integers then

⌊
X

14

⌋
+
⌊
Y

14

⌋
≥
⌊
X + Y − 13

14

⌋
.

Lemma 4.1.5. Let r be a non zero integer. Then we have

1. π5 (Sr,5(z)) = π5

(
a

(5)
r,⌊ r+4

5 ⌋

)
= 1 iff r ̸≡ 1, 2 (mod 5).

2. π7 (Sr,7(z)) = π7

(
a

(7)
r,⌊ 2r+6

7 ⌋

)
= 1 iff r ̸≡ 1, 4 (mod 7).

3. π13 (Sr,13(z)) = π13

(
a

(13)
r,⌊ 7r+12

13 ⌋

)
= 1 iff r ̸≡ 10 (mod 13).

For all the other cases, ℓ-adic orders of Sr,ℓ(z) is greater than or equal to 2.

Proof. The proof follows from induction on r. To prove the induction step, we use the recur-

sive expression for Sr,ℓ(z) that can be obtained from the modular equations. We demonstrate

this by proving (1) when r is a positive multiple of 5.

By Lemma 4, Chapter 8 of [25], we have S5,5 only divisible by 5 and π5(a(5)
5,1) = 1. Now

we assume for r > 1, π5(a(5)
5r−5,r−1) = 1. Then by the recursive formula for Sr,5(z), we have

S5r,5(z) =52g5(z)S5r−1,5(z) + 52g5(z)S5r−2,5(z) + 15g5(z)S5r−3,5(z)

+ 5g5(z)S5r−4,5(z) + g5(z)S5r−5,5(z).
(4.1.13)

Then the result follows comparing the coefficient of gr
5(z).
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Remark 4.1.6. For ℓ = 5, 7, and 13, the ℓ-adic order of Sr,ℓ(z) is equal to the ℓ-adic order of

the coefficient of gℓ(z) with the least exponent when r is positive. Otherwise it is the ℓ-adic

order of the coefficient of gℓ(z) with the highest exponent. This follows from Lemma 4.1.5 and

inequalities (4.1.4), (4.1.6), and (4.1.9).

Let Vℓ be the vector space of modular functions on Γ0(ℓ) where ℓ = 5, 7, 11, 13 and 17,

which are holomorphic everywhere except possibly at 0 and ∞. Vℓ is mapped to itself by the

linear transformation

Tλ : f(z) → Uℓ

(
ϕℓ(z)λf(z)

)
,

where λ is an integer. Let (Cλ
µ,ν)µ,ν be the matrix of the linear transformation Tλ with respect

to a triangular basis of Vℓ with integral coefficients.

For primes ℓ = 5, 7, and 13, we can use {gν
ℓ (z)|ν ∈ Z+} as a basis of Vℓ to calculate

the matrix elements when λ > 0. For λ < 0, we can take {gν
ℓ (z)|ν ∈ Z−} as a basis. For

ℓ = 11, and 17, finding a basis is complicated and they were derived by A.O.L Atkin in [2], and

Kim Hughes in [23] respectively.

Now let {Jℓ,ν(z)|ν ∈ Z} be an upper triangular basis for Vℓ with ℓ-integral coefficients.

Then we have

Uℓ

(
ϕℓ(z)λJℓ,µ(z)

)
=
∑

ν

Cλ
µ,νJℓ,ν(z). (4.1.14)

Therefore, the Fourier series of Tλ (Jℓ,µ(z)) has all coefficients divisible by ℓ if and only if

Cλ
µ,ν ≡ 0 (mod ℓ) for all ν.

Now we define θℓ(λ, µ) = 1 if all the coefficients of Uℓ(ϕλ
ℓ Jℓ,µ(z)) divisible by ℓ. Otherwise we

put θℓ(λ, µ) = 0.
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Lemma 4.1.7. The values of θ5(λ, µ) can be calculated explicitly for all λ and µ using Table

4.1 with the following relations.

θ5(λ, µ) = θ5(λ+ 5, µ),

θ5(λ, µ+ 1) = θ5(λ+ 6, µ).
(4.1.15)

Table 4.1. Values of θ5(λ, µ).
λ

µ 0 1 2 3 4
0 0 1 1 0 0

Proof. First notice that using (2.2.8), and (2.3.2), we have that

U5
(
ϕλ+5

5 (z)gµ
5 (z)

)
= g5(z)U5

(
ϕλ

5(z)gµ
5 (z)

)
(mod 5).

Now using (4.1.14), we have

Cλ+5
µ,ν ≡ Cλ

µ,ν−1 (mod 5).

Hence we have the first equality of (4.1.15). To get the second equality, notice that

U5
(
ϕλ

5(z)gµ+1
5 (z)

)
= g−1

5 (z)U5
(
ϕλ+6

5 (z)gµ
5 (z)

)
.

Hence we have

Cλ
µ+1,ν = Cλ+6

µ,ν+1.

Therefore we have the second equality of (4.1.15). Now using (4.1.4), we can find θ5(λ, µ)

values for all λ and µ.
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Lemma 4.1.8. The values of θ7(λ, µ) can be calculated explicitly for all λ and µ using Table

4.2 with the following relations.

θ7(λ, µ) = θ7(λ− 7, µ),

θ7(λ, µ+ 1) = θ7(λ+ 4, µ).
(4.1.16)

Table 4.2. Values of θ7(λ, µ).
λ

µ 0 1 2 3 4 5 6
0 0 1 0 0 1 0 0

Proof. First notice that using (2.2.9) and (2.3.2)

U7
(
ϕλ+7

7 (z)gµ
7 (z)

)
= g2

7(z)U7
(
ϕλ

7(z)gµ
7 (z)

)
(mod 7).

Now using (4.1.14), we have

Cλ+7
µ,ν ≡ Cλ

µ,ν−2 (mod 7).

Hence we have the first equality of (4.1.16). To get the second equality, notice that

U7
(
ϕλ

7(z)gµ+1
7 (z)

)
= g−1

7 (z)U7
(
ϕλ+4

7 (z)gµ
7 (z)

)
.

Hence we have

Cλ
µ+1,ν = Cλ+4

µ,ν+1.

Therefore we have the second equality of (4.1.16). Now using (4.1.6), we can find θ7(λ, µ)

values for all λ and µ.

Lemma 4.1.9. The values of θ13(λ, µ) can be calculated explicitly for all λ and µ using Table

4.3 with the following relations.

θ13(λ, µ) = θ13(λ− 13, µ),

θ13(λ, µ+ 1) = θ13(λ+ 2, µ).
(4.1.17)
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Table 4.3. Values of θ13(λ, µ).
λ

µ 0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 0 0 0 0 0 0 0 1 0 0

Proof. Again notice that using (2.2.10), and (4.1.14), we have that

U13
(
ϕλ+13

13 (z)gµ
13(z)

)
= g7

13(z)U13
(
ϕλ

13(z)g
µ
13(z)

)
(mod 13).

This implies that

Cλ+13
µ,ν ≡ Cλ

µ,ν−7 (mod 13).

Hence we have the first equality of (4.1.17). To get the second equality, notice that

U13
(
ϕλ

13(z)g
µ+1
13 (z)

)
= g−1

13 (z)U13
(
ϕλ+13

13 (z)gµ
13(z)

)
.

Hence we have

Cλ
µ+1,ν = Cλ+2

µ,ν+1.

Therefore we have the second equality of (4.1.17). Now using (4.1.9), we can find θ13(λ, µ)

values for all λ and µ.

4.2. Constructing modular functions

We construct a sequence of modular functions that are the generating functions for the

p[1cℓd](n) restricted to certain arithmetic progressions. This generalizes Gordon’s construction

for k-colored partitions. Here we use (2.3.2) repeatedly.
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Let Lℓ(c, d, 0; z) := 1 and δℓ := ℓ2−1
24 ,

Lℓ(c, d, 1; z) : = Uℓ (ϕℓ(z)c) ,

= Uℓ

(
qδℓ·c

∞∏
n=1

(1 − qℓ2·n)c(1 − qℓ·n)d

(1 − qn)c(1 − qℓ·n)d

)
,

=
∞∏

n=1
(1 − qℓ·n)c(1 − qn)d

∞∑
m≥⌈ δℓ·c

ℓ
⌉

p[1cℓd](ℓ ·m− δℓ · c)qm.

Similarly we define

Lℓ(c, d, 2; z) : = Uℓ

(
ϕd

ℓ (z)Lℓ(c, d, 1; z)
)
,

Lℓ(c, d, 2; z) =
∞∏

n=1
(1 − qℓ·n)d(1 − qn)c

∞∑
m≥
⌈

δℓ·d+⌈
δℓ·c

ℓ
⌉

ℓ

⌉ p[1cℓd](ℓ2m− δℓ · ℓ · d− δℓ · c)qm.

Now, to get an equation for higher powers, we define

Lℓ(c, d, r; z) := Uℓ

(
ϕ

λr−1
ℓ (z)Lℓ(c, d, r − 1; z)

)
, (4.2.1)

where

λr =


c if r is even ,

d if r is odd.
(4.2.2)

Then by a short calculation using (2.3.2), there exist integers nr and µr such that

Lℓ(c, d, 2r; z) =
∞∏

n=1
(1 − qn)c(1 − qℓ·n)d

∑
m≥µ2r

p[1cℓd](ℓ2rm+ n2r)qm,

Lℓ(c, d, 2r − 1; z) =
∞∏

n=1
(1 − qℓ·n)c(1 − qn)d

∑
m≥µ2r−1

p[1cℓd](ℓ2r−1m+ n2r−1)qm.

(4.2.3)

From (4.2.1) and (4.2.3) we can see that

n2r,ℓ(c, d) = −δℓ · d · ℓ2r−1 + n2r−1,

n2r−1,ℓ(c, d) = −δℓ · c · ℓ2r−2 + n2r−2.

Since n0,ℓ = 0, using above recurrence relations, we have

48



n1,ℓ(c, d) = −δℓ · c,

n2,ℓ(c, d) = −δℓ · ℓ · d− δℓ · c.

Using the summation of a geometric series,

n2r−1,ℓ(c, d) = −c
(
ℓ2r − 1

24

)
− ℓ · d

(
ℓ2r−2 − 1

24

)
. (4.2.4)

n2r,ℓ(c, d) = −c
(
ℓ2r − 1

24

)
− ℓ · d

(
ℓ2r − 1

24

)
.

From this we have that

24 · n2r−1,ℓ ≡ (c+ ℓ · d) mod ℓ2r−1 and 24 · n2r,ℓ ≡ (c+ ℓ · d) mod ℓ2r.

Therefore, each nr satisfies

24nr,ℓ(c, d) ≡ (c+ ℓ · d) mod ℓr.

Now, we need to find µr in terms of integers c, d. Using (4.2.1), we have that

µr,ℓ =
⌈
δℓλr−1 + µr−1

ℓ

⌉
. (4.2.5)

Notice also that µr is the least integer m such that ℓrm+ nr ≥ 0, which implies that

µ2r−1,ℓ =
⌈
ℓ · c+ d

24 − c+ ℓ · d
24 · ℓ2r−1

⌉
, (4.2.6)

µ2r,ℓ =
⌈
c+ ℓ · d

24 − c+ ℓ · d
24 · ℓ2r

⌉
.

Following Gordon, we represent these formulas in the following form.

µ2r−1,ℓ =
⌈
ℓ · c+ d

24

⌉
+ ωℓ(c, d) if |c+ ℓ · d| < ℓ2r−1, (4.2.7)

µ2r,ℓ =
⌈
c+ ℓ · d

24

⌉
+ ωℓ(c, d) if |c+ ℓ · d| < ℓ2r ,

where ωℓ(c, d) =


1 if c+ ℓ · d < 0 and 24|(c+ ℓ · d),

0 otherwise.
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4.3. Proofs of congruences

Now we define,

Ar,ℓ(c, d) :=
r−1∑
i=0

θℓ(λi, µi), (4.3.1)

for any positive integer r and integers c, d. We put A0 := 0.

We prove πℓ(Lℓ(c, d, r; z)) ≥ Ar(c, d).

Proof. For ℓ = 5, 7 and 13, we calculate

Lℓ(c, d, 0; z) :=1,

Lℓ(c, d, 1; z) :=Uℓ

(
ϕℓ(z)λ0gµ0

ℓ

)
=

∑
ν1=µ1

Cλ0
µ0,ν1g

ν1
ℓ ,

Here we have πℓ(Lℓ(c, d, 1; z)) ≥ θℓ(λ0, µ0),

Lℓ(c, d, 2; z) :=Uℓ

(
ϕλ1

ℓ Lℓ(c, d, 1; z)
)

= Uℓ

(
ϕℓ(z)λ1

∑
ν1=µ1

Cλ0
µ0,ν1g

ν1
ℓ

)

=
∑

ν1=µ1

Cλ0
µ0,ν1Uℓ

(
ϕℓ(z)λ1gν1

ℓ

)
,

=
∑

ν1=µ1

Cλ0
µ0,ν1

∑
ν2=µ2

Cλ1
ν1,ν2g

ν2
ℓ =

∑
ν2=µ2

(
Cλ0

µ0,µ1C
λ1
µ1,ν2 + · · ·

)
gν2

ℓ .

Here we have πℓ(Lℓ(c, d, 2; z)) ≥ θℓ(λ0, µ0) + θℓ(λ1, µ1).

Now by induction we have that,

Lℓ(c, d, r; z) :=
∑

νr=µr

(
Cλ0

µ0,µ1C
λ1
µ1,µ2 · · ·Cλr−1

µr−1,νr
+ · · ·

)
gνr

ℓ . (4.3.2)

Here λr and µr are defined in the previous section. Also notice that it is sufficient to consider

the first coefficient of the series expansion of Sℓ,r to get a lower bound for πℓ(Lℓ(c, d, r; z)) by

remark 4.1.6.
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Proof of corollary 1.0.4. Recall (4.3.1),

Ar,ℓ(c, d) =
r−1∑
i=0

θℓ(λi, µi).

In [33] we used Gordon’s argument from Section 4 of [18] to obtained the result for ℓ = 11.

Here we use similar argument for primes ℓ = 5, 7, 13 with k replaced by c + ℓd, . Note that

Gordon’s calculations had terms involving 11k, which will be written in a more symmetric

shape here using the fact that ℓ(c+ ℓd) ≡ ℓc+ d (mod 24) for any prime ℓ ̸= 2, 3.

Ar,ℓ(c, d) =
logℓ(c+ℓd)∑

i=0
θℓ(λi, µi) +

r−1∑
i=logℓ(c+ℓd)

θℓ(λi, µi)

=
logℓ(c+ℓd)∑

i=0
θℓ(λi, µi) +N1,ℓ · θℓ

(
d,
⌈
ℓc+ d

24

⌉
+ ωℓ(c, d)

)

+N2,ℓ · θℓ

(
c,
⌈
c+ ℓd

24

⌉
+ ωℓ(c, d)

)
.

Here N1,ℓ is the number of odd integers and N2,ℓ is the number of even integers in the

interval
(

logℓ |c+ ℓd|, r − 1
)

respectively.

Set αℓ := αℓ(c, d) = θℓ

(
d,
⌈
ℓc+ d

24

⌉
+ ωℓ(c, d)

)
+ θℓ

(
c,
⌈
c+ ℓd

24

⌉
+ ωℓ(c, d)

)
. (4.3.3)

Now if r ≤ logℓ |c+ ℓd| + 1 then N1,ℓ = N2,ℓ = 0,

Ar ≤ logℓ |c+ ℓd|.

If r > logℓ |c+ ℓd| + 1,

∣∣∣∣N1,ℓ − 1
2(r − 1 − logℓ(c+ ℓd))

∣∣∣∣+ ∣∣∣∣N2,ℓ − 1
2(r − 1 − logℓ(c+ ℓd))

∣∣∣∣ < 1.

Now consider, ∣∣∣∣Ar,ℓ − 1
2αℓ(r − 1 − logℓ(c+ ℓd))

∣∣∣∣ < 2 + logℓ |c+ ℓd|,
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∣∣∣∣Ar,ℓ − αℓr

2

∣∣∣∣ < 2 + αℓ

2 + (1 + αℓ

2 ) logℓ |c+ ℓd|.

So we have Ar,ℓ = 1
2αℓr + O (log |c+ ℓd|).

Now we prove the condition for αℓ. As in [33], the proof is complete once we show that

αℓ only depends on c + ℓd with the period 24 when ℓ = 5, 7 and 13. Periodicity follows by

lemmas 4.1.7, 4.1.8, 4.1.9, and αℓ(c+ ℓd) is invariant under the maps,

c → c+ 24 − ℓk and d → d+ k for each integer k.

When c + ℓd < 0 and 24|(c + ℓd), using (4.2.7), ωℓ(c, d) is 1. Thus, using (4.3.3) we have to

change the last column of the table 1.1 for entries when ℓ = 5 and 7.

4.4. Using bases for the field of modular functions on Γ0(11) and Γ0(17)

Let V11 be the vector space of modular functions on Γ0(11), which are holomorphic

everywhere except possibly at 0 and ∞. Atkin constructed a basis for V , Gordon in [2] slightly

modified these basis elements and defined Jν(z). For detailed information about the construc-

tion of the basis elements see [2].

Theorem 4.4.1 (Gordon [18]). For all ν ∈ Z, we have:

1. Jν(z) = Jν−5(z)J5(z),

2. {Jν(z)| − ∞ < ν < ∞} is a basis of V ,

3. ord∞Jν(z) = ν,

4.

ord0Jν(z) =


−ν if ν ≡ 0 (mod 5),
−ν − 1 if ν ≡ 1, 2 or 3 (mod 5),
−ν − 2 if ν ≡ 4 (mod 5).

5. The Fourier series of Jν(z) has integer coefficients, and is of the form Jν(z) = qν + . . . .
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Now recall

ϕ11(z) := q5
∞∏

n=1

(
1 − q121n

1 − qn

)
= η(121z)

η(z) .

This is a modular function on Γ0(121) by proposition 2.3.4, hence V is mapped to itself

by the linear transformation,

Tλ : f(z) → U11
(
ϕ11(z)λf(z)

)

where λ is an integer. Let (Cλ
µ,v)µ,ν be the matrix of the linear transformation Tλ with respect

to the basis elements Jν(z).

U11
(
ϕ11(z)λJµ(z)

)
=
∑

ν

Cλ
µ,νJν(z) (4.4.1)

Gordon in [18], proved an inequality (equation (17)) about the 11-adic orders of the matrix

elements (denoted by π(Cµ,ν)).

π11(Cλ
µ,ν) ≥

⌊
11ν − µ− 5λ+ δ11

10

⌋
. (4.4.2)

Here δ = δ(µ, ν) depends on the residues of µ and ν (mod 5) according to the Table 4.4.

Table 4.4. Values of δ11(µ, ν).
ν

µ 0 1 2 3 4
0 -1 8 7 6 15
1 0 9 8 2 11
2 1 10 4 13 12
3 2 6 5 4 13
4 3 7 6 5 9

We can clearly see from the table that δ ≥ −1, so we can rewrite (4.4.2) as,

π11(Cλ
µ,ν) ≥

[
11ν − µ− 5λ− 1

10

]
. (4.4.3)
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Now by Lemma 2.1(v), the Fourier series of Tλ(Jµ(z)) has all coefficients divisible by

11 if and only if,

Cλ
µ,ν ≡ 0 (mod 11) for all ν.

Similarly we define θ11(λ, µ) = 1 if all the coefficients of U11(ϕλ
11Jµ(z)) are divisible by 11.

Otherwise we put θ11(λ, µ) = 0.

Now from the recurrences obtained in [18] page 119, we have

θ11(λ− 11, µ) = θ11(λ+ 12, µ− 5) = θ11(λ, µ). (4.4.4)

Therefore the values of θ11(λ, µ) are completely determined by its values in the range 0 ≤ λ ≤

10 and 0 ≤ µ ≤ 4. Those values are listed in Table 4.5.

Table 4.5. Values of θ11(λ, µ).
λ

µ 0 1 2 3 4 5 6 7 8 9 10
0 0 1 0 1 0 1 0 1 1 0 0
1 1 1 0 1 0 0 0 1 1 0 0
2 1 1 1 0 0 0 0 1 1 0 0
3 1 0 1 0 0 0 0 1 1 0 0
4 1 0 1 0 1 0 1 1 0 0 0

Kim Hughes calculated the θ17(λ, µ) values in [23], using a linear bases for modular

functions on Γ0(17).

Lemma 4.4.2. The values of θ17(λ, µ) can be calculated explicitly for all λ and µ using Table

4.6 with the following relations.

θ17(λ, µ) = θ17(λ− 17, µ),

θ17(λ, µ) = θ17(λ+ 6, µ− 4).
(4.4.5)
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Table 4.6. Values of θ17(λ, µ).
λ

µ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

4.5. Proofs for the congruences modulo powers of 11 and 17

Here we follow Gordon’s argument to prove π11 (L11(c, d, r; z)) ≥ Ar(c, d).

Proof of Theorem 1.0.3 for ℓ = 11. We see that using Proposition 2.3.4, L11(c, d, r; z) ∈ V for

all r. So we have

L11(c, d, r; z) =
∑

ν

ar,νJν . (4.5.1)

Now by (2.3.1), (4.2.1) and (4.5.1),

ar,ν =
∑

µ≥µr−1

ar−1,µC
λr−1
µ,ν . (4.5.2)

Now we prove by induction,

π11(L11(c, d, r; z)) ≥ Ar +
[
ν − µr

2

]
for ν ≥ µr. (4.5.3)

π11(ar,ν) ≥ Ar +
[
ν − µr

2

]
for ν ≥ µr.

Since A0 = 0, the result holds for r = 0. Now assume the result is true for r − 1. Using

(4.5.3) we have,

π11(ar−1,ν) ≥ Ar−1 +
[
ν − µr−1

2

]
for ν ≥ µr−1. (4.5.4)

Now from equation (4.5.2) we have,

π11(ar,ν) ≥ min
µ≥µr−1

(
π11(ar−1,µ) + π11(Cλr−1

µ,ν )
)
. (4.5.5)
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From (4.4.3) and (4.5.4) the right hand side of (4.5.5) is at least equal to,

Ar−1 +
[
µ− µr−1

2

]
+
[

11ν − µ− 5λr−1 − 1
10

]
. (4.5.6)

This expression cannot decrease if µ is increased by 2, so its minimum occurs when

µ = µr−1 + 1, therefore at,

Ar−1 +
[

11ν − µr−1 − 5λr−1 − 2
10

]
. (4.5.7)

Now from (4.2.1) we have,

µr =
⌈

5λr−1 + µr−1

11

⌉
, (4.5.8)

therefore µr ≥
(

5λr−1 + µr−1

11

)
.

Plugging it in (4.5.7), the right hand side of (4.5.4) is at least equal to

Ar−1 +
[11ν − 11µr − 2

10

]
= Ar−1 + 1 +

[
11(ν − µr) − 12

10

]

≥ Ar +
[
ν − µr

2

]
for all ν ≥ µr + 2,

since Ar−1 + 1 ≥ Ar.

Now consider ν = µr or ν = µr + 1.

If µ = µr−1,

π11(ar−1, µr−1) + π11
(
Cλr−1

µr−1,ν

)
≥ Ar−1 + θ(µr−1, λr−1) = Ar.

This also works when µ ≥ µr−1 + 2, since by induction hypothesis,

π11(ar−1, µ) ≥ Ar−1 +
[
µ− µr−1

2

]
≥ Ar.

Now consider µ = µr−1 + 1,
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Now we need to show,

π11(ar−1, µr−1 + 1) + π11(Cλr−1
µr−1+1,ν) ≥ Ar−1 +

[
11ν − (µr−1 + 1) − 5λr−1 + δ(µr−1 + 1, ν)

10

]
.

Since ν = µr or µr + 1, it suffices to show that when θ(λr−1, µr−1) = 1,

[
11µr − µr−1 − 1 − 5λr−1 + δ(µr−1 + 1, µr)

10

]
≥ 1,

and [
11(µr + 1) − µr−1 − 1 − 5λr−1 + δ(µr−1 + 1, µr + 1)

10

]
≥ 1.

Now from (4.4.4), Table 4.4 and Table 4.5 we see that the above claims hold.

We do not provide a proof for ℓ = 17 here, since it is similar to the proof of Theorem 3

in [23].

Proof of Corollary 1.0.4 for ℓ = 11 and 17. .

The proof is very similar to the proof of Corollary 1.0.4 for primes 5, 7, and 13. There-

fore, we only prove the condition for α11. The proof is complete once we show that α11 only

depends c+11d with the period 120. Periodicity follows by the fact that α11(c+11d) is invariant

under the each maps,

c → c+ 120 − 11k and d → d+ k for each integer k.

Then notice that, when ℓ = 17, α17(c + ℓd) is invariant under the following maps by Lemma

4.4.2.

c → c+ 96 − 17 · k and d → d+ k for each integer k.

.
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Chapter 5. ℓ-adic Module Structures Associated with Partition
Functions

5.1. More definitions and basic results

Now we define the operators that we are going to use throughout this chapter.

Definition 5.1.1. For non negative integers c and d, we define

f(z)|Dc(ℓ) :=
(
f(z) · (ϕℓ(z))c

)
|U(ℓ)),

f(z)|Tℓ(c, d) :=
(
f(z)|Dc(ℓ)

)
|Dd(ℓ),

(5.1.1)

Recall from Chapter 4, (4.2.1), we have for all r ≥ 0

Lℓ(c, d, r; z) =


1 if r = 0,

Lℓ(c, d, r − 1; z)|Dλr−1(ℓ), if r ≥ 1.

(5.1.2)

where

λr =


c if r is even ,

d if r is odd.
Lemma 5.1.2. For b ≥ 0, we have that

Lℓ(c, d, b; z) =


ηc(z)ηd(ℓz) · Pℓ(c, d, b; z) if b is even,

ηc(ℓz)ηd(z) · Pℓ(c, d, b; z) if b is odd.

Lemma 5.1.3. If b ≥ 1 is an integer then, Lℓ(c, d, b; z) is in M !
0(Γ0(ℓ)) ∩ Z[[q]].

Now we define important variables which play an important role in the weight calcula-

tion. Let r ≥ 2 be an integer. Then we define

kℓ(r, j) :=



(1 + ⌊ r
2⌋)(ℓ− 1), j = 1,

⌊ r
2⌋ℓ(ℓ− 1), j = 2,

ℓj−1(ℓ− 1), j ≥ 3.

(5.1.3)
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We define kℓ(r, j) := ℓj−1(ℓ− 1) for r = 0, 1. We also set, for r ≥ 0,

κℓ(r, j) := kℓ(r, j) + (ℓ− 1),

ar(j) := kℓ(r, j)
ℓ− 1 .

We also define the quantity v(c, d). This gives a lower bound for the primes ℓ ≥ 5 such

that Theorem 1.0.11 is true. Here we only consider the cases

(1). c ≥ 0 and d ≥ 0, but not both c and d are zero.

(2). c ≥ 2, d < 0, and 2ℓ+ d ≥ 0,

(3). c < 0, d < 0, 2ℓ+ c− 2 ≥ 0, and 2ℓ+ d− 2 ≥ 0,

(4). c = 1, d < 0, and ℓ+ d− 1 ≥ 0.

For cases (1) − (3), we define

y(c, d) :=


5 + 2⌊ c

2⌋ + d if d odd,

3 + ⌊ c
2⌋ + ⌊d

2⌋ if d even.
(5.1.4)

For case (4), we define

y(c, d) :=


4 + d if d odd,

2 + ⌊d
2⌋ if d even.

(5.1.5)

Then we define

v(c, d) := max{5, y(c, d)} (5.1.6)

for each c, d discussed in (5.1.4) and (5.1.5).

Remark 5.1.4. There are other conditions need to satisfy for the prime ℓ. For example, for

cases (1) − (3), when c is odd, we need ℓ ≥ 5 + c + 2⌊d
2⌋. Similarly, when c is even, we need
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ℓ ≥ 3+⌊ c
2⌋+⌊d

2⌋. This follows from the symmetry of the operator Tℓ(c, d) introduced in (5.1.1).

We discuss how to obtain these conditions in Remark 5.2.8.

Remark 5.1.5. For c = 1, d = 0, we can take ℓ ≥ 5 as shown in [12]. Now from the symmetry

of the operator, we have the same bound when d = 1, c = 0. For d = 0 and for any c ≥ 1,

we can take ℓ ≥ c + 5 as shown in [13]. Again from the symmetry of the operator, we have

ℓ ≥ d+ 5 when c = 0 and for any d ≥ 1.

We then calculate lower bounds for the ℓ-adic orders of the several modular forms under

the Atkin-Lehner operator. Notice that similar calculations have been used in [12] and [13].

Lemma 5.1.6. Let k be a positive integer.

1. Let f ∈ M2k(SL2(Z)) ∩ Z[[q]]. Then

πℓ (f |2kW (ℓ)) ≥ k.

2. Let Aℓ(z) := ηℓ(z)
η(ℓz) ∈ M ℓ−1

2
(Γ0(ℓ)) ∩ Z[[q]]. Then

πℓ

(
A2k

ℓ |k(ℓ−1)W (ℓ)
)

≥ k

(
ℓ+ 1

2

)
.

Proposition 5.1.7. For all j ≥ 1, we have,

Eℓj−1

ℓ−1 (z) ≡ 1 (mod ℓj), A2ℓj−1

ℓ (z) ≡ 1 (mod ℓj)

Proposition 5.1.8 (Proposition 2.3, [12]). Let k ≥ 1, and let f(z) ∈ M
′
k ∩ Z(ℓ)[[q]],

1. We have f(z)|Tℓ,k ≡ f(z)|U(ℓ) (mod ℓk−1)

2. The operator U(ℓ) stabilizes M ′
k ∩ Z(ℓ)[[q]] modulo ℓk−1.

5.2. Important lemmas about operators

5.2.1. U(ℓ) and Dr(ℓ) preserve modular forms

Definition 5.2.1. we will write f ∈j S if f is congruent modulo ℓj to a modular form in a space

S.
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Lemma 5.2.2. Let ℓ ≥ v(c, d) be a prime, c, d, be non negative integers (not both zero) and

m ≥ 1. If b ≥ 0 is even, then we have that Lℓ(c, d, b; z) ∈j Mkℓ(d,j) (for b > 0, Lℓ(c, d, b; z) is

a cusp form). If b ≥ 1 is odd, then Lℓ(c, d, b; z) ∈j Mkℓ(c,j).

Here we only prove Lemma 5.2.2 for c, d ≥ 1. Boylan and Webb proved the case where

c = 1 and d = 0 in [12]. For c = 0 and d = 1, the result holds for sending b to b+ 1 in Corollary

3.5 of [12]. For d = 0, and c ≥ 1 the result follows from Lemma 3.4(2) in [13]. Again sending

b to b+ 1 in Lemma 3.4(2), the result follows for c = 0, and d ≥ 1.

For b = 0, since Lℓ(c, d, 0; z) = 1 and Eℓj−1
ℓ−1 ≡ 1 (mod ℓj).Thus Lℓ(c, d, 0; z) ∈j

Mkℓ(d,j) for j ≥ 1.

Now we need to prove the induction step for even b to b+2 and even b to b+1. This is

given in next lemma.

Lemma 5.2.3. Let ℓ ≥ v(c, d) be a prime, c, d ≥ 0, and suppose that we have ψ(z) ∈j Mkℓ(d,j)

for 1 ≤ j ≤ m. Then for all 1 ≤ j ≤ m, we have ψ(z)|Tℓ(c, d) ∈j Skℓ(d,j). Furthermore,

ψ(z)|Dc(ℓ) ∈j Skℓ(c,j) for 1 ≤ j ≤ m.

Proof. By the symmetry, it is enough to show that if ψ(z)|Dc(ℓ) ∈j Skℓ(c,j).

We first prove the case when j = 1.

Consider ψ(z)|Dc(ℓ). Let f(z) = ψ(z)ϕℓ(z)c, then using Lemma 2.4.3 and using that

ϕ(z) ≡ ∆(z) ℓ2−1
24 (mod ℓ), we have

ωℓ (f(z)|U(ℓ)) ≤ℓ+
(ℓ− 1)(1 + ⌊d

2⌋) + c( ℓ2−1
2 ) − 1

ℓ

=
ℓ2 − 1 + (ℓ− 1)(1 + ⌊d

2⌋) + c( ℓ2−1
2 )

ℓ

=(ℓ− 1)
(

1 + c

2 +
2 + c

2 + ⌊d
2⌋

ℓ

)

≤(ℓ− 1)(1 + ⌊ c2⌋),
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if

ℓ >


4 + c+ 2⌊d

2⌋ if c odd,

2 + c
2 + ⌊d

2⌋ if c even.

Hence ψ(z)|Dc(ℓ) ∈1 Mkℓ(c,1) and ψ(z)|Tℓ(c, d) ∈1 Mkℓ(d,1), if

ℓ >


4 + d+ 2⌊ c

2⌋ if d odd,

2 + d
2 + ⌊ c

2⌋ if d even.

Now for j ≥ 2, we use the decomposition in (5.2.1). Notice that similar decompositions

have been used in [12] and [13].

ψ(z)|Dc(ℓ) ≡gj−1(z)Eℓ−1(z)ad(j)

Aℓ(z)2ad(j−1) |Dc(ℓ)

+
(
gj−1(z)Eℓ−1(z)ad(j)−ad(j−1) − gj−1(z)Eℓ−1(z)ad(j)

Aℓ(z)2ad(j−1)

)
|Dc(ℓ)

+
(
gj(z) − gj−1(z)Eℓ−1(z)ad(j)−ad(j−1)

)
|Dc(ℓ) (mod ℓj).

(5.2.1)

Here gj(z) ∈ Mkℓ(d,j) such that ψ(z) ≡ gj(z) (mod ℓj) for all j.

Now lets show each part satisfies the required condition. For the first part, we define,

fj(z) := gj−1(z)ϕℓ(z)c

Aℓ(z)2ad(j−1) |U(ℓ). (5.2.2)

Recall h(z) := Eℓ−1(z) − ℓℓ−1Eℓ−1(ℓz) ∈ Mℓ−1(Γ0(ℓ)) and h(z) ≡ 1 (mod ℓ). Hence we

have,

h(z)ac(j) ≡ 1 (mod ℓj).

Now we use Lemma 2.3.10, to show that

fj(z) ≡ Tr(fj(z)h(z)ac(j)) (mod ℓj). (5.2.3)
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Table 5.1. Lower bounds of the ℓ-adic orders
gj−1(z)|kℓ(d,j−1)γk (Aℓ(z)2ad(j−1)|kℓ(d,j−1)γk)−1 ϕℓ(z)c|0γk

1 ≤ k ≤ ℓ− 1 0 0 −c
2

k = 0 kℓ(d, j − 1) −ℓad(j − 1) -c

Therefore, we will show that,

πℓ

(
Tr(fj(z)h(z)ac(j))) − fj(z)

)
≥ j. (5.2.4)

Consider

fj(z)|0W (ℓ) = gj−1(z)ϕℓ(z)c

Aℓ(z)2ad(j−1) |U(ℓ)|0W (ℓ) = 1
ℓ

ℓ−1∑
k=0

gj−1(z)ϕℓ(z)c

Aℓ(z)2ad(j−1) |0( 1 k
0 ℓ )|0( 0 −1

ℓ 0 )

Let γk = ( 1 k
0 ℓ )( 0 −1

ℓ 0 ) =
(

kℓ −1
ℓ2 0

)
. For that, we calculate the lower bounds of the valuations of

the factors of fj(z)|0W (ℓ). We list these values in Table 5.1. We do not provide details here

since these calculations are given in [12]. Using the table values, we have that

πℓ (fj(z)|0W (ℓ)) ≥ −1 + kℓ(d, j − 1) − ℓad(j − 1) − c,

= − 1 + kℓ(d, j − 1) − ℓkℓ(d, j − 1)
ℓ− 1 − c,

= − 1 − ad(j − 1) − c.

(5.2.5)

Now from Lemma 2.3.10, we have

πℓ

(
Tr(fj(z)h(z)ac(j)) − fj(z)

)
≥ min (j + ordℓ(fj(z)), ac(j) + 1 + ordℓ(fj(z)|0W (ℓ))) ,

= ac(j) − ad(j − 1) − c,

≥ j,

(5.2.6)

if

ℓ >


4 + c+ 2⌊d

2⌋ if c odd,

2 + c
2 + ⌊d

2⌋ if c even.
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Hence by proposition 5.1.8, the first summand is satisfied the required property, now

consider we second summand,

gj−1(z)Eℓ−1(z)ad(j)−ad(j−1)−gj−1(z)Eℓ−1(z)ad(j)

Aℓ(z)2ad(j−1)

= Eℓ−1(z)ad(j)−ad(j−1)
(
gj−1(z) − gj−1(z)Eℓ−1(z)ad(j−1)

Aℓ(z)2ad(j−1)

)
.

Now we define

Bj,ℓ(z) := gj−1(z) − gj−1(z)Eℓ−1(z)ad(j−1)

Aℓ(z)2ad(j−1) ≡ 0 (mod ℓj−1)

Hence, we have
Bj,ℓ(z)
ℓj−1 Eℓ−1(z)ad(j)−ad(j−1) ≡ Bj,ℓ(z)

ℓj−1 (mod ℓ),

and
Bj,ℓ(z)
ℓj−1 |Dc(ℓ) ≡ Bj,ℓ(z)

ℓj−1 ∆(z)c( ℓ2−1
24 )|U(ℓ)Eℓ−1(z)tj(ℓ) (mod ℓ),

where, tj(ℓ) :=


ℓ(ℓ− ⌊d

2 − c
2⌋) − c

2 if j = 3,

ℓj−2(ℓ− 1) − c
2(ℓ+ 1) if j > 3.

We use Lemma 2.3.8 to show that Bj,ℓ(z)∆(z)c( ℓ2−1
24 )|U(ℓ) congruent modulo ℓj to a

form on SL2(Z) with the same weight.

For j = 2, we have Bj,ℓ(z) ∈2 S
kℓ(d,1)+c

(ℓ2−1)
2

. Therefore, we have

Bj,ℓ(z)
ℓj−1 |Dc(ℓ) ∈2 Skℓ(c,2).

Hence the second summand is also satisfied the required condition.

Now consider the third summand,

(
gj(z) − gj−1(z)Eℓ−1(z)ad(j)−ad(j−1)

)
|Dc(ℓ)
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Let Fj,ℓ(z) := gj(z) − gj−1(z)Eℓ−1(z)ad(j)−ad(j−1) ≡ (mod ℓj−1). Hence we have

Fj,ℓ(z)
ℓj−1 |Dc(ℓ) ≡ Fj,ℓ(z)

ℓj−1 ∆(z)c( ℓ2−1
24 )|U(ℓ) (mod ℓ), (5.2.7)

Then we apply Lemma 2.4.3. Since Fj,ℓ(z) ∈ Mkℓ(d,j), we have

ωℓ

(
Fj,ℓ(z)
ℓj−1 ∆(z)c( ℓ2−1

24 )|U(ℓ)
)

≤ ℓ+
kℓ(d, j) + c( ℓ2−1

2 ) − 1
ℓ

.

Then we have

ωℓ

(
Fj,ℓ(z)
ℓj−1 ∆(z)c( ℓ2−1

24 )|U(ℓ)
)

= 1 + ⌊ c2⌋ + ad(j)
ℓ

,

if 2 + c < ℓ for c odd, and 1 + c
2 < ℓ for c even.

Then by easy calculation, we have

Fj,ℓ(z)|Dc(ℓ) ≡ Fj,ℓ(z)∆(z)c( ℓ2−1
24 )|U(ℓ)Eℓ−1(z)mj(ℓ) (mod ℓj), (5.2.8)

where

mj(ℓ) :=


⌊ c

2⌋(ℓ− 1) − 1 − ⌊d
2⌋ if j = 2,

ℓj−2(ℓ− 1) − 1 − ⌊ c
2⌋ if j ≥ 3.

Hence the third term has the required weight modulo ℓj.

This shows that ψ(z)|Dc(ℓ) ∈j Skℓ(c,j) for all j ≥ 1. Similarly we can show that

ψ(z)|Tℓ(c, d) ∈j Skℓ(d,j) for all j ≥ 1 if we have

ℓ >


4 + d+ 2⌊ c

2⌋ if d odd,

2 + d
2 + ⌊ c

2⌋ if d even.

Now we consider the cases where the integers c or d is negative. Notice that in these

cases, we have negative powers of ϕℓ(z) according to (4.2.1), hence we loose the holomorphic-
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ity at he cusp ∞. To avoid this issue, we define the sequence of functions Lℓ(c, d, b; z) a little

differently.

First consider the case where c ≥ 2, d < 0 and 2ℓ+ d ≥ 0.

Lℓ (c, d, 0; z) := 1,

Lℓ (c, d, 1; z) := ϕc
ℓ(z)|U(ℓ),

Lℓ (c, d, 2; z) := A2
ℓ(z)ϕ2ℓ+d

ℓ (z)Lℓ (c, d, 1; z) |U(ℓ)

Now for b ≥ 3, we define,

Lℓ (c, d, b; z) :=


Lℓ (c, d, b− 1; z)ϕc−2

ℓ (z)|U(ℓ) if b is odd

Lℓ (c, d, b− 1; z)ϕ2ℓ+d
ℓ (z)|U(ℓ) if b is even.

(5.2.9)

For c = 1 and ℓ+ d ≥ 1, we define

Lℓ (1, d, 0; z) := 1,

Lℓ (1, d, 1; z) := ϕℓ(z)|U(ℓ),

Lℓ (1, d, 2; z) := Aℓ(z)Aℓ(ℓz)ϕℓ+d
ℓ (z)Lℓ (1, d, 1; z) |U(ℓ)

(5.2.10)

Now for b ≥ 3, we define,

Lℓ (1, d, b; z) :=


Lℓ (1, d, b− 1; z)ϕℓ

ℓ(z)|U(ℓ) if b is odd

Lℓ (1, d, b− 1; z)ϕℓ+d−1
ℓ (z)|U(ℓ) if b is even.

(5.2.11)

Finally, we consider c < 0, d < 0, 2ℓ + c ≥ 2, and 2ℓ + d ≥ 2. In this case we define

Lℓ(c, d, b; z) by

Lℓ (c, d, 0; z) := 1,

Lℓ (c, d, 1; z) := A2
ℓ(z)ϕ2ℓ+c

ℓ (z)|U(ℓ),

Lℓ (c, d, 2; z) := A2
ℓ(z)ϕ2ℓ+d−2

ℓ (z)Lℓ (c, d, 1 : z) |U(ℓ)

66



Now for b ≥ 3, we define,

Lℓ (c, d, b; z) :=


Lℓ (c, d, b− 1; z)ϕ2ℓ+c−2

ℓ (z)|U(ℓ) if b is odd

Lℓ (c, d, b− 1; z)ϕ2ℓ+d−2
ℓ (z)|U(ℓ) if b is even.

Next lemma shows the relation between Lℓ(c, d, b; z) when c and d are non negative

and Lℓ(c, d, b : z) when c or d is negative. Here we show it only for c ≥ 2 and d < 0. It can be

shown similarly that this is true for the other cases.

Lemma 5.2.4. Lℓ(c, d, b; z) defined in (5.2.9) and Lℓ(c, d, b; z) defined in (4.2.3) generate

partitions p[1cℓd](n) in the same arithmetic progressions for c ≥ 2 and d < 0.

Proof. By the definition of Lℓ(c, d, b; z) given in equation (5.2.9), we have the following rela-

tion.

Lℓ (c, d, b; z) =
∞∏

n=1
(1 − qℓn)c(1 − qn)d

∞∑
n≥µ1

p[1cℓd] (ℓn+ n′
1) qn, if b = 1,

∞∏
n=1

(1 − qℓn)2ℓ+d(1 − qn)c−2
∞∑

n≥µb

p[1cℓd]

(
ℓbn+ n′

b

)
qn, if b even,

∞∏
n=1

(1 − qn)2ℓ+d(1 − qℓn)c−2
∞∑

n≥µb

p[1cℓd]

(
ℓbn+ n′

b

)
qn, if b(> 1) odd.

(5.2.12)

Comparing coefficients we have,

n′
2b = −ℓ2b−1(2ℓ+ d) · δℓ + n′

2b−1 = −2ℓ2bδℓ − d · δℓ · ℓ2b−1 + n′
2b−1,

n′
2b−1 = −(c− 2)δℓℓ

2b−2 + n′
2b−2 = −cδℓℓ

2b−2 + 2ℓ2b−2δℓ + n′
2b−2.

(5.2.13)

Therefore, we have

n′
2b−1 = −c

(
ℓ2b − 1

24

)
− ℓ · d

(
ℓ2b−2 − 1

24

)
,

n′
2b = −2ℓ2b · δℓ − c

(
ℓ2b − 1

24

)
− ℓ · d

(
ℓ2b − 1

24

)
.

(5.2.14)
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We have calculated the quantities nb in [34] page 18 with respect to Lℓ(c, d, b; z) that

we defined when c > 0 and d > 0. Since equation (5.2.9) generate partitions p[1cℓd](n) a little

differently than in [34], we have two different values for nb and n′
b when b is even. However,

comparing (5.2.14) and (4.4) in [34], we see that they both agree modulo ℓb.

The following lemma describes the modular properties of the sequence of generating

functions of all other cases.

Lemma 5.2.5. The following are true.

1. For c ≥ 1, d < 0:

(i). For c ≥ 2 and 2ℓ+ d ≥ 0, we have

Lℓ(c, d, b; z) ∈j Mκℓ(2ℓ+d,j) ∩ Z(ℓ)[[q]] for b ≥ 2 and b even.

Lℓ(c, d, b; z) ∈j Mκℓ(c−2,j) ∩ Z(ℓ)[[q]] for b ≥ 3 and b odd.

(ii). For c = 1 and ℓ+ d ≥ 1, we have

Lℓ(1, d, b; z) ∈j Mκℓ(ℓ+d−1,j) ∩ Z(ℓ)[[q]] for b ≥ 2 and b even.

Lℓ(1, d, b; z) ∈j Mκℓ(ℓ,j) ∩ Z(ℓ)[[q]] for b ≥ 3 and b odd.

2. For c < 0, d < 0, 2ℓ+ c ≥ 2, and 2ℓ+ d ≥ 2, we have

Lℓ(c, d, b, z) ∈j Mκℓ(2ℓ+d−2,j)+(ℓ−1) for b ≥ 4 and b even.

Lℓ(c, d, b, z) ∈j Mκℓ(2ℓ+c−2,j)+(ℓ−1) for b ≥ 3 and b odd.

We need the following lemma.

Lemma 5.2.6. The following are true.

1. For ℓ ≥ 5, c ≥ 1, d < 0:

(i). For c ≥ 2, 2ℓ+ d ≥ 0, let ψ(z) ∈j Mkℓ(c,j). Then for all j ≥ 1, we have

ψ(z)A2
ℓ(z)ϕℓ(z)2ℓ+d|U(ℓ) ∈j Mκℓ(2ℓ+d,j).
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(ii). For c = 1, ℓ+ d ≥ 1, let ψ(z) ∈j Mkℓ(1,j). Then for all j ≥ 1, we have

ψ(z)Aℓ(z)Aℓ(ℓz)ϕℓ(z)ℓ+d−1|U(ℓ) ∈j Mκℓ(ℓ+d−1,j)

2. For ℓ ≥ 5, let c < 0, d < 0, 2ℓ+ d ≥ 2, and 2ℓ+ c ≥ 2. Let ψ(z) ∈j Mκℓ(2ℓ+c,j). Then

for all j ≥ 1, we have

ψ(z)A2
ℓ(z)ϕ2ℓ+d−2

ℓ (z)|U(ℓ) ∈j Mκℓ(2ℓ+d−2,j)+(ℓ−1).

Proof. We prove the case where c ≥ 1 and d < 0 of Lemma 5.2.6 here. The other case can be

proved similarly. For j = 1, from Proposition 5.1.7, we have

Aℓ(z) ≡ 1 (mod ℓ).

Hence, applying Lemma 2.4.3, we have

ωℓ

(
ψ(z)|D2ℓ+d(ℓ)

)
≤ℓ+

(1 + ⌊ c
2⌋)(ℓ− 1) + (2ℓ+d)(ℓ2−1)

2 − 1
ℓ

,

= (ℓ− 1)
1 + ⌊ c

2⌋ + ℓ+ 1 + (2ℓ+d)(ℓ+1)
2

ℓ


≤ (ℓ− 1)

(
2 + ⌊2ℓ+ d

2 ⌋
)
,

(5.2.15)

if

ℓ >


4 + d+ 2⌊ c

2⌋ if d odd,

2 + d
2 + ⌊ c

2⌋ if d even.

Hence ψ(z)|D2ℓ+d(ℓ) ∈1 Mκℓ(2ℓ+d,1) and the result is true for j = 1. Now for j ≥ 2, consider

the following decomposition.

ψj(z)A2
ℓ(z)ϕℓ(z)2ℓ+d|U(ℓ) ≡ gj−1(z)Eℓ−1(z)ac(j)

Aℓ(z)2ac(j−1) A2
ℓ(z)ϕℓ(z)2ℓ+d|U(ℓ)

+
(
gj−1(z)Eℓ−1(z)ac(j)−ac(j−1) − gj−1(z)Eℓ−1(z)ac(j)

Aℓ(z)2ac(j−1)

)
A2

ℓ(z)ϕℓ(z)2ℓ+d|U(ℓ)

+
(
gj(z) − gj−1(z)Eℓ−1(z)ac(j)−ac(j−1)

)
A2

ℓ(z)ϕℓ(z)2ℓ+d|U(ℓ) (mod ℓj).

(5.2.16)
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Now lets show each part satisfies the required condition. For the first part, we define

sj(z) := gj−1(z)
Aℓ(z)2ac(j−1)A

2
ℓ(z)ϕℓ(z)2ℓ+d|U(ℓ), (5.2.17)

In the proof of lemma 5.2.2, we used Lemma 2.3.10, to show that a similar form is

congruent to a form with same weight on SL2(Z) . Here we use the same method. Therefore,

we show that

sj(z) ≡ Tr
(
sj(z)h(z)a2ℓ+d(j)

)
(mod ℓj). (5.2.18)

Hence we need to show that

πℓ

(
Tr(sj(z)h(z)a2ℓ+d(j)) − sj(z)

)
≥ j. (5.2.19)

We consider the left hand side of (5.2.19). By Lemma 2.3.10 and Table 5.1, we have

≥a2ℓ+d(j) + πℓ

(
gj−1(z)ϕℓ(z)2ℓ+d

Aℓ(z)2ac(j−1)−2 |U(ℓ)|ℓ−1W (ℓ)
)
,

=a2ℓ+d(j) + kℓ(c, j − 1) − (2ℓ+ d) − ℓac(j − 1) + ℓ+ ℓ− 1
2 ,

=a2ℓ+d(j) − ac(j − 1) − (2ℓ+ d) + 3ℓ− 1
2 ,

≥j,

(5.2.20)

if

ℓ >


4 + d+ 2⌊ c

2⌋ if d odd,

2 + d
2 + ⌊ c

2⌋ if d even.

Notice that there is additional ℓ−1
2 term on the right side of (5.2.20) coming from the U(ℓ)

operator by (2.3.4). Hence sj(z) ∈j Mκℓ(2ℓ+d,j) for j ≥ 2.

Now we consider the second summand.

Let βj(z) := gj−1E
ac(j)−ac(j−1)
ℓ−1 −

gj−1E
ac(j)
ℓ−1

A
2ac(j−1)
ℓ

.
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βj(z) = E
ac(j)−ac(j−1)
ℓ−1

gj−1 −
gj−1E

ac(j−1)
ℓ−1

A
2ac(j−1)
ℓ

 ≡ 0 (mod ℓj−1).

We can see that βj(z) ∈ Mkℓ(c,j)(Γ0(ℓ)). Now the second summand can be written as

βj(z)
ℓj−1 A

2
ℓ(z)ϕ2ℓ+d

ℓ (z)|U(ℓ) ≡ βj(z)
ℓj−1 ∆(z)

ℓ2−1
24 (2ℓ+d)|U(ℓ)Eℓ−1(z) (mod ℓ).

This implies

βj(z)A2
ℓ(z)ϕ2ℓ+d(z)|U(ℓ) ≡ βj(z)∆(z)( ℓ2−1

24 )(2ℓ+d)|U(ℓ)Eℓ−1(z) (mod ℓj).

Using a similar method in the proof of Proposition 3.3 in [12], we see that

gj−1(z)Eℓ−1(z)ac(j−1)

Aℓ(z)2ac(j−1) · ∆(z)( ℓ2−1
24 )(2ℓ+d)|U(ℓ) ∈j S

kℓ(c,j−1)+( ℓ2−1
2 )(2ℓ+d).

For j = 2, we see that the filtration of βj(z)A2
ℓ(z)ϕ2ℓ+d(z)|U(ℓ) is ⌊2ℓ+d

2 ⌋ℓ(ℓ− 1) + ℓ− 1.

Hence the middle term satisfies the required condition.

Then we consider the third summand.

Let Fj(z) := gj − gj−1E
ac(j)−ac(j−1)
ℓ−1 ≡ 0 (mod ℓj−1).

Hence we can write the third summand as

Fj(z)
ℓj−1 A

2
ℓ(z)ϕ2ℓ+d

ℓ (z)|U(ℓ) ≡ Fj(z)
ℓj−1 ∆(z)( ℓ2−1

24 )(2ℓ+d)|U(ℓ) · Eℓ−1(z) (mod ℓ).

Here we have Fj(z)
ℓj−1 ∆(z)( ℓ2−1

24 )(2ℓ+d) ∈ S
kℓ(c,j)+ (ℓ2−1)(2ℓ+d)

2
. Now we apply Lemma 2.3.8.

ωℓ

(
Fj(z)
ℓj−1 ∆(z)( ℓ2−1

24 )(2ℓ+d)|U(ℓ)
)

≤ ℓ+
kℓ(c, j) + ( ℓ2−1

2 )(2ℓ+ d) − 1
ℓ

Therefore Fj(z)
ℓj−1 ∆(z)( ℓ2−1

24 )(2ℓ+d) is congruent modulo ℓ to a form on SL2(Z) with the weight

(ℓ− 1)(1 + ⌊ c
2⌋ + ⌊2ℓ+d

2 ⌋) for j = 2 and (ℓ− 1)(ℓj−2 + 1 + ⌊2ℓ+d
2 ⌋) for j ≥ 3.

Let Sj(z) be such forms. Then

Fj(z)
ℓj−1 ∆(z)( ℓ2−1

24 )(ℓ+d) ≡ Sj(z) ≡ Sj(z)Etj+1
ℓ−1 (mod ℓ)
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where

tj =


⌊2ℓ+d

2 ⌋(ℓ− 1) − 1 − ⌊ c
2⌋ for j = 2,

ℓj−2(ℓ− 1) − 1 − ⌊2ℓ+d
2 ⌋ for j ≥ 3.

Now we prove part (b). Again using (5.2.15) and replacing 2ℓ+ d with ℓ+ d− 1, we see

that the result is true for j = 1 when 3 + d < ℓ.

Then for j ≥ 2, we use the following decomposition.

ψj(z)Aℓ(z)Aℓ(ℓz)ϕℓ+d−1
ℓ |U(ℓ) ≡

gj−1E
ac(j)
ℓ−1

A
2ac(j−1)
ℓ

Aℓ(z)Aℓ(ℓz)ϕℓ+d−1
ℓ |U(ℓ)

+
gj−1E

ac(j)−ac(j−1)
ℓ−1 −

gj−1E
ac(j)
ℓ−1

A
2ac(j−1)
ℓ

Aℓ(z)Aℓ(ℓz)ϕℓ+d−1
ℓ |U(ℓ)

+
(
gj − gj−1E

ac(j)−ac(j−1)
ℓ−1

)
Aℓ(z)Aℓ(ℓz)ϕℓ+d−1

ℓ |U(ℓ) (mod ℓj).

(5.2.21)

The rest of the proof is similar to the proof given for part (a) except the first part of the de-

composition.

Let s′
j(z) = gj−1E

ac(j)
ℓ−1

A
2ac(j−1)
ℓ

Aℓ(z)Aℓ(ℓz)ϕℓ+d−1
ℓ |U(ℓ). Then we need to do the following

changes in (5.2.20).

≥aℓ+d−1(j) + πℓ

(
gj−1ϕ

ℓ+d−1
ℓ Aℓ(ℓz)

Aℓ(z)2a1(j−1)−1 |U(ℓ)|ℓ−1W (ℓ)
)
,

=aℓ+d−1(j) + kℓ(1, j − 1) − (ℓ+ d− 1) − ℓa1(j − 1) + ℓ+ ℓ− 1
2 ,

=aℓ+d−1(j) − a1(j − 1) + 3ℓ− 1
2 − (ℓ+ d− 1),

≥j,

(5.2.22)

if

ℓ >


3
2 + d

2 if d odd,

3 + d if d even.
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Now we need the following lemma.

Lemma 5.2.7. The following are true.

1. For ℓ ≥ 5, c ≥ 1, d < 0:

(i). let c ≥ 2, d < 0, 2ℓ + d ≥ 0, and ψ(z) ∈j Mκℓ(2ℓ+d,j). Then ψ(z)|Dc−2(ℓ) ∈j

Mκℓ(c−2,j) for all j ≥ 1.

(ii). For c = 1, ℓ + d ≥ 1, let ψ(z) ∈j Mκℓ(ℓ+d−1,j). Then for all j ≥ 1, we have

ψ(z)|Dℓ(ℓ) ∈j Mκℓ(ℓ,j).

2. For ℓ ≥ 5, let c < 0, d < 0, 2ℓ+d ≥ 2, and 2ℓ+c ≥ 2. Let ψ(z) ∈j Mκℓ(2ℓ+d−2,j)+(ℓ−1).

Then for all j ≥ 1, we have ψ(z)|D2ℓ+c−2(ℓ) ∈j Mκℓ(2ℓ+c−2,j)+(ℓ−1).

Proof. The proof follows similarly to the proof of Lemma 5.2.3. For example, the proof follows

from changing c to c− 2 and d to 2ℓ+ d in the proof of Lemma 5.2.3.

Remark 5.2.8. As we see in the proofs of Lemmas 5.2.3 and 5.2.6, we need ℓ ≥ v(c, d). Other

conditions stated with v(c, d) follow from each case of Lemma 5.2.7. These conditions can be

obtained in a similar way as for the case where c, d ≥ 2. For example, when c ≥ 2, d < 0, and

2ℓ+ d > 0, we need to have

ℓ >


4 + c+ 2⌊d

2⌋ if c is odd,

2 + c
2 + ⌊d

2⌋ if c is even.

Proof of Lemma 5.2.5. We prove the case where c ≥ 2, d < 0, and 2ℓ+ d ≥ 0. All other cases

are similar. From Lemma 5.2.6, we see that Lℓ(c, d, 2; z) ∈j Mκℓ(2ℓ+d,j). Changing kℓ(d, j) with

κℓ(d, j) in Lemma 5.2.3, we see that Lℓ(c, d, b; z) ∈j Mκℓ(c−2,j) when b ≥ 2.

Let e be a non-negative integer, m be a positive integers, and ℓ ≥ 5 be a prime. Then

we define M(e, ℓ,m) denotes the Z/ℓmZ-module of modular forms in Mkℓ(e,j) ∩ Z(ℓ)[[q]] with
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coefficients modulo ℓm. Then Lemma 5.2.2 implies that we have the following nesting property.

M(d, ℓ,m) ⊇ Λeven
ℓ (c, d, 0,m) ⊇ Λeven

ℓ (c, d, 2,m) ⊇ · · · Λeven
ℓ (c, d, 2b,m) ⊇ · · ·

M(c, ℓ,m) ⊇ Λodd
ℓ (c, d, 1,m) ⊇ Λodd

ℓ (c, d, 3,m) ⊇ · · · Λodd
ℓ (c, d, 2b− 1,m) ⊇ · · ·

From Lemma 5.2.5, for each case we have a corresponding nesting property. For example,

when c ≥ 2, d < 0, and 2ℓ+ d ≥ 0, we have

M(2ℓ+ d, ℓ,m) ⊇ △even
ℓ (c, d, 2,m) ⊇ △even

ℓ (c, d, 4,m) ⊇ · · · △even
ℓ (c, d, 2b,m) ⊇ · · ·

M(c, ℓ,m) ⊇ △odd
ℓ (c, d, 1,m) ⊇ △odd

ℓ (c, d, 3,m) ⊇ · · · △odd
ℓ (c, d, 2b− 1,m) ⊇ · · ·

As pointed out in [12] and [13], since M(e, ℓ,m) has finite rank, these sequences stabi-

lized to a finite rank module, we call Ωodd
ℓ (c, d,m) for b is odd, and Ωeven

ℓ (c, d,m) for b is even.

In Section 5.3, we calculate an upper bound for the rank of the stabilized modules.

5.3. Bound for the rank of the stabilized modules

Lemma 5.3.1 (Lemma 4.1,[13]). Let A be a finite local ring, M be a finitely generated A-

module, and T : M −→ M be an A−isomorphism.

1. There exists an integer n > 0 such that T n is the identity map on M .

2. For all µ ∈ M and n ≥ 0, we have

µ ∈ A[T n(µ), T n+1(µ), · · · ]

Theorem 5.3.2. If ℓ ≥ v(c, d) is prime and m ≥ 1, then there exist injective Z/ℓmZ-module

homomorphisms,

Πeven
ℓ (c, d) : Ωeven

ℓ (c, d,m) ↪→ Skℓ(d,1) ∩ Z(ℓ)[[q]].

Πodd
ℓ (c, d) : Ωodd

ℓ (c, d,m) ↪→ Skℓ(c,1) ∩ Z(ℓ)[[q]].
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Satisfying the property that for all µ1 ∈ Ωeven
ℓ (c, d,m) and µ2 ∈ Ωodd

ℓ (c, d,m) with ordℓ(µi) =

ji < m.

Πeven
ℓ (c, d)(µ1) ≡ µ1 (mod ℓj1+1),

Πodd
ℓ (c, d)(µ2) ≡ µ2 (mod ℓj2+1).

Definition 5.3.3. We consider the following two sub modules of Skℓ(d,m) ∩ Z(ℓ)[[q]],

Sodd
o (c, d,m) :=

{
f(z)E

kℓ(c,m)−kℓ(c,1)
ℓ−1

ℓ−1 : f(z) ∈ Skℓ(c,1) ∩ Z(ℓ)[[q]]
}

Sodd
1 (c, d,m) :=

{
g(z) : g(z) =

∞∑
j=m0

ajq
j ∈Skℓ(c,m) ∩ Z(ℓ)[[q]]

with m0 > dim(Skℓ(c,1))
}

We can construct a basis {f1 = q + · · · , · · · , fn = qn + · · · } for Skℓ(c,m) ∩ Z(ℓ)[[q]] with

fk(z) ∈ Sodd
o (c, d,m) for k ≤ dim(Skℓ(c,1)) and fk(z) ∈ Sodd

1 (c, d,m) otherwise. Therefore we

have,

Skℓ(c,m) ∩ Z(ℓ)[[q]] = Sodd
o (c, d,m) ⊕ Sodd

1 (c, d,m).

Let Sodd(c, d) ⊂ Skℓ(c,m) ∩ Z(ℓ)[[q]] be the largest Z
ℓmZ -module such that Tℓ(d, c) is an isomor-

phism on Sodd(c, d) (mod ℓm). Similarly, we define Seven(c, d).

Lemma 5.3.4 (Lemma 4.4, [12]). Suppose that f(z) ∈ Sodd(c, d) and ordℓ(f) = i < m,

and that f(z) = f0(z) + f1(z) with fi(z) ∈ Sodd
i (c, d,m). Then we have ordℓ(f1) > i and

ordℓ(f0) = i.

Corollary 5.3.5 (Corollary 4.7. [12]). Let f(z), g(z) ∈ Sodd(c, d), and suppose that f(z) =

f0(z) + f1(z) and g(z) = g0(z) + g1(z) with fi, gi ∈ Sodd
i (c, d,m). Suppose further that

f0(z) ≡ g0(z) (mod ℓm). Then we have f(z) ≡ g(z) (mod ℓm).
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Proof. We construct injective homomorphisms ϕ1, ϕ2 and ϕ3 similar to [12],and [13]. Since

Sodd(c, d) is the largest Z
ℓmZ -module such that Tℓ(d, c) is an isomorphism on Sodd(c, d)

(mod ℓm), we see that Ωodd
ℓ (c, d,m) ⊆ Sodd(c, d). We define ϕ1 be the inclusion map

Ωodd
ℓ (c, d,m) ↪→ Sodd(c, d).

Let f(z) ∈ Sodd(c, d) with f(z) = f0(z) + f1(z) where fi ∈ Sodd
i (c, d,m). We assume

that νℓ(f) = i < m then by Lemma 4.4, we have f(z) ≡ f0 (mod ℓνℓ(f) + 1). Now we define

ϕ2 : f(z) → f0(z) (mod ℓνℓ(f)+1) and ϕ2 : Sodd(c, d) → Sodd
0 (c, d,m). Here we see that ϕ2 is

injective by corollary 5.3.5.

Now let f(z) ∈ Sodd
0 (c, d,m). Then f(z) = g(z)E

kℓ(c,m)−kℓ(c,1)
ℓ−1

ℓ−1 for some g(z) ∈ Skℓ(c,1) ∩

Z(ℓ)[[q]]. We define ϕ3 : Sodd
0 (c, d,m) → Skℓ(c,1) ∩ Z(ℓ)[[q]] by sending f(z) → g(z). So we have,

Πodd
ℓ : Ωodd

ℓ (c, d,m) ϕ1−→ Sodd(c, d) ϕ2−→ Sodd
0 (c, d,m) ϕ3−→ Skℓ(c,1) ∩ Z(ℓ)[[q]].

Further, if we suppose µ1 ∈ Ωodd
ℓ (c, d,m) has νℓ(µ1) < m, then we have,

Πodd
ℓ (µ1)E

kℓ(c,m)−kℓ(c,1)
ℓ−1

ℓ−1 ≡ µ1 (mod ℓνℓ(µ1)+1).

Remark 5.3.6. First notice that applying Dc(ℓ) to a form f(z) := ∑∞
n=0 anq

n satisfying

f |Dc(ℓ) =
∞∑

n≥⌊ c(ℓ2−1)
24ℓ

⌋

anq
n.

We have isomorphsms Dc(ℓ) : Seven(c, d) → Sodd(c, d) and Dd(ℓ) : Sodd(c, d) → Seven(c, d),

hence

rankZ/ℓmZ (Ωeven
ℓ (c, d,m)) = rankZ/ℓmZ

(
Ωodd

ℓ (c, d,m)
)

= rℓ(c, d),

where rℓ(c, d) ≤ dim
(
Skℓ(e,1)

)
−
⌊

e(ℓ2−1)
24ℓ

⌋
where e = max{c, d}.
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Corollary 5.3.7. For the cases where c or d is negative, we have the following upper bounds for

rℓ(c, d).

rℓ(c, d) ≤



dim
(
S(⌊ e

2 ⌋+2)(ℓ−1)
)

−
⌊

e(ℓ2−1)
24ℓ

⌋
if c = 1, d < 0, and ℓ+ d ≥ 1,

dim
(
S(⌊ e

2 ⌋+2)(ℓ−1)
)

−
⌊

e(ℓ2−1)
24ℓ

⌋
if c ≥ 2, d < 0, and 2ℓ+ d ≥ 0,

dim
(
S(⌊ e

2 ⌋+3)(ℓ−1)
)

−
⌊

e(ℓ2−1)
24ℓ

⌋
if c < 0, d < 0, and 2ℓ+ c, 2ℓ+ d ≥ 2,

(5.3.1)

and

e ∈



{ℓ, ℓ+ d− 1} if c = 1, d < 0, and ℓ+ d ≥ 1,

{c− 2, 2ℓ+ d} if c ≥ 2, d < 0, and 2ℓ+ d ≥ 0,

{2ℓ+ d− 2, 2ℓ+ c− 2} if c < 0, d < 0, and 2ℓ+ c, 2ℓ+ d ≥ 2.

Then we choose e between the two values such that the quantity on the right hand side of

(5.3.1) is the minimum.

Proof. The proof follows replacing c and d with corresponding integers for each case. For

example, when c ≥ 2, d < 0, and 2ℓ + d ≥ 0, we replace c with c − 2 and d with 2ℓ + d in

Theorem 5.3.2.
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Chapter 6. Applications

6.1. Applications for Theorem 1.0.3

Corollary 6.1.1. For any integer m ≥ 0 and for each positive integer r, we have

b5

(
52rm+ 52r − 1

6

)
≡ 0 (mod 5r),

b7

(
72rm+ 72r − 1

4

)
≡ 0 (mod 7r),

b11

(
112rm+ 5 · 112r − 1

12

)
≡ 0 (mod 11r).

Corollary 6.1.2. For each positive integer r, and for some integer m, we have

b13

(
132rm+ 132r − 1

2

)
̸≡ 0 (mod 13),

b17 (17m− 12) ̸≡ 0 (mod 17).

Proof. The proof of Corollaries 6.1.1, and 6.1.2, follows from the entries of Table 6.1. The

Calculation of Ar follows from Table 3 in [33] when ℓ = 11.

Table 6.1. Calculations for ℓ-regular partitions
ℓ n2r µr Ar

5 52r−1
6 µ2r−2 = 0, µ2r−1 = 1 A2r = r

7 3·72r−1
4 µ2r−2 = 0, µ2r−1 = 1 A2r = r

11 5·112r−5
12 µ2r−2 = 0, µ2r−1 = 1 A2r = r

13 n1 = −7 µ2r−2 = 0, µ2r−1 = 1 Ar = 0
17 n1 = −12 µ2r−2 = 0, µ2r−1 = 1 Ar = 0

6.1.1. Congruences for ℓ-core partitions

Corollary 6.1.3. For integers m ≥ 0 and for each positive integer r, we have

a5 (5rm− 1) ≡ 0 (mod 5r),

a7 (7rm− 2) ≡ 0 (mod 7r),

a11 (11rm− 5) ≡ 0 (mod 11r)
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Table 6.2. Calculations for ℓ-core partitions.
ℓ nr µr Ar

5 nr = −1 µ2r = 0, µ2r−1 = 1 A2r = r
7 nr = −2 µ2r = 0, µ2r−1 = 1 Ar = r
11 nr = −5 µ0 = 0, µ2r = −4, µ2r+1 = 1 Ar = r
13 n2r = −7 µ0 = 0, µ2r = −6, µ2r−1 = 1 Ar = 0
17 n1 = −12 µ0 = 0, µ2r = −11, µ2r−1 = 1 Ar = 0

Corollary 6.1.4. For each positive integer r and for some integer m, we have

a13
(
132rm− 7

)
̸≡ 0 (mod 13),

a17 (17m− 12) ̸≡ 0 (mod 17).

Proof. Similarly, the proof of Corollaries 6.1.3 and 6.1.4 follows from the entries of Table 6.2,

and the calculation of Ar follows from Table 3 in [33] when ℓ = 11.

6.2. Congruences for ℓ-colored generalized Frobenius partitions

In 2018, Chan, Wang, and Yang in [16] studied these partitions using the theory of

modular forms and derived new representations. Using their work and Theorem 1.0.3, we

proved the congruences for cϕk(n) for k = 5, 7, and 11.

Corollary 6.2.1. For all positive integers r, and for all m, we have

cϕ5

(
52rm+ 19 · 52r + 5

24

)
≡ 0 (mod 52r−1), (6.2.1)

cϕ7

(
72rm+ 17 · 72r + 7

24

)
≡ 0 (mod 7r), (6.2.2)

cϕ11

(
112rm− 112r+1 − 11

24

)
≡ 0 (mod 112r−1). (6.2.3)

We also use Corollary 1.0.6 to prove an incongruence for k = 13.

Corollary 6.2.2. For each positive integer r, and for some integer m, we have

cϕ13

(
132rm− 13 − 132r+1

24

)
̸≡ 0 (mod 13). (6.2.4)
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Proof. We combine Theorem 1.0.3, and Theorem 1.1 to prove congruences of k-colored gener-

alized Frobenius partitions. First notice that using (3.4.3), we have that

CΦ5(q) =
∞∑

n=0

(
p[1051](n) + 25p[165−5](n− 1)

)
qn. (6.2.5)

Now using (4.2.4), we have

n2r,5(0, 1) = 5 − 52r+1

24 , n2r,5(6,−5) = 19 · 52r − 19
24 . (6.2.6)

Observe that using (4.2.2), and (4.2.6), we have that

µr,5(0, 1) =


0 when r = 1,

1 when r ≥ 2.

λr(0, 1) =


0 when r is even,

1 when r is odd.
(6.2.7)

µr,5(6,−5) =


2 when r is odd,

0 when r is even.
λr(6,−5) =


6 when r is even,

−5 when r is odd.

Now using θ5(λ, µ) values from Table 4.1, we have

A2r(0, 1) = 2r − 1 , A2r(6,−5) = 2r.

Therefore, using Theorem 1.0.3, for all m ≥ 1, and r ≥ 1, we have

p[1051]

(
52rm+ 5 − 52r+1

24

)
≡ 0 (mod 52r−1),

p[165−5]

(
52rm+ 19 · 52r − 19

24

)
≡ 0 (mod 52r).

(6.2.8)

Now using (6.2.5), and the fact that (6.2.8) is true when m replaced by m + 1, we see that

(6.2.1) is true.

Now we prove (6.2.2). From (3.4.4), we have

CΦ7(q) =
∞∑

n=0

(
p[1071](n) + 72p[147−3](n− 1) + 73p[187−7](n− 2)

)
qn. (6.2.9)
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Now using (4.2.4), we have

n2r,7(0, 1) =7 − 72r+1

24 , n2r,5(4,−3) = 17 · 72r − 17
24 ,

n2r,7(8,−7) =41 · 72r − 41
24 .

(6.2.10)

To find µr,ℓ(c, d), we use (4.2.2), and (4.2.6). Thus, we have

µr,7(0, 1) =


0 when r = 1,

1 when r ≥ 2.

λr(0, 1) =


0 when r is even,

1 when r is odd.
(6.2.11)

µr,7(4,−3) =


2 when r is odd,

0 when r is even.
λr(4,−3) =


4 when r is even,

−3 when r is odd.

µr,7(8,−7) =


3 when r is odd,

0 when r is even.
λr(8,−7) =


8 when r is even,

−7 when r is odd.

Now using (6.2.10), and values of θ7(λ, µ) from Table 4.2, we have

A2r(0, 1) = r, A2r(4,−3) = r, A2r(8,−7) = r. (6.2.12)

Therefore, using (6.2.12), and Theorem 1.0.3, for all m ≥ 1, and r ≥ 1, we have

p[1071]

(
72rm+ 7 − 72r+1

24

)
≡ 0 (mod 7r),

p[147−3]

(
72rm+ 17 · 72r − 17

24

)
≡ 0 (mod 7r),

p[187−7]

(
72rm+ 41 · 72r − 41

24

)
≡ 0 (mod 7r).

(6.2.13)

Now using (6.2.9), and the fact that (6.2.13) is true when m replaced by m+ 1, and m+ 2, we

can see that (6.2.2) is true.
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Now we prove (6.2.3). From (3.4.5), we have

CΦ11(q) =
∞∑

n=0

(
p[10111](n) + 11 · p(11n− 5)

)
qn. (6.2.14)

Now using (4.2.4), we have

n2r,11(0, 1) = 11 − 112r+1

24 , n2r+1,11(1, 0) = −112r+1 + 1
24 (6.2.15)

To find µr,ℓ(c, d), we use (4.2.2), and (4.2.6). Thus, we have

µr,11(0, 1) =


0 when r = 1,

1 when r ≥ 2.

λr(0, 1) =


0 when r is even,

1 when r is odd.
(6.2.16)

µr,11(1, 0) = 1, for all r, λr(4,−3) =


1 when r is even,

0 when r is odd.

Now using (6.2.10), and the values of θ11(λ, µ) from Table 3 in [33], we have

A2r(0, 1) = 2r − 1, A2r(1, 0) = 2r. (6.2.17)

Therefore using (6.2.17) and Theorem 1.0.3, for all m ≥ 1, and r ≥ 1, we have

p[10111]

(
112rm+ 11 − 112r+1

24

)
≡ 0 (mod 112r),

p

(
112r+1m+ 1 − 112r+2

24

)
≡ 0 (mod 112r+1).

(6.2.18)

Now using (6.2.14) and (6.2.18), we can see that (6.2.3) is true.

Then we prove (6.2.4). From (3.4.6), we have

CΦ13(q) ≡
∞∑

n=0
p[10131](n)qn (mod 13). (6.2.19)
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For c = 0, d = 1, we see that using Table 4.3, θ(λ1, µ1) = 0 by equation (4.2.4). Hence, we

have

n1,13(0, 1) = 0.

Hence, by Corollary 1.0.6, for some m, we have

p[10131]

(
132rm− 13 − 132r+1

24

)
̸≡ 0 (mod 13).

6.3. Applications for Theorem 1.0.11

In this section, we calculate examples for our results. Here we discuss three examples,

one for when c, d > 1, one for c = 1, d < 0, and finally for c < 0, and d < 0.

We first consider c = 2, d = 8 case:

We apply Theorem 1.0.11 to this case. Remark 5.1.4 and (5.1.6) give a lower bound

for the prime ℓ such that Theorem 1.0.11 is true. Since c and d are even, we see that the

Theorem 1.0.11 is true for primes ℓ > 7. Hence the rank of the stabilized module satisfies

rℓ

(
Ωodd

ℓ (2, 8)
)

≤ dim(S5(ℓ−1)) − ⌊8(ℓ2 − 1)
24ℓ ⌋.

We calculate the right hand side in Table 6.3. We have the right hand side is zero for primes

11 and is 1 for primes 13 and 17. For ℓ = 7, the bound given by the theorem is not accurate

and the generating functions L7(2, 8, b; z) ∈1 S36 ∩ Z(7)[[q]] when b ≥ bℓ(2, 8, 1). Since the

bound is 1, Theorem 1.0.11 cannot be used to prove the existence of Ramanujan congruences

for ℓ = 7.

Hence using Theorem 1.0.3, for all m, r ≥ 1, we have

p[12118]

(
112rm− 15(112r − 1)

4

)
≡ 0 (mod 112r−1).
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Table 6.3. Bounds for the ranks when c = 2, d = 8.
ℓ dim

(
S5(ℓ−1)

)
⌊8(ℓ2−1)

24ℓ
⌋ Bound

7 3 2 1
11 3 3 0
13 5 4 1
17 6 5 1

Table 6.4. Bounds for ranks when c = 1 and d = −1.
ℓ dim

(
S(2+⌊ ℓ

2 ⌋)(ℓ−1)

)
⌊ ℓ(ℓ2−1)

24ℓ
⌋ Bound

5 1 1 0
7 2 2 0
11 5 5 0
13 8 7 1
17 13 12 1

We also see that there are no Ramanujan congruences for 13. Calculating coefficients

using a computer, we see that

p[12138](133m− 3108) ≡ p[12138](13m− 14) (mod 13).

We then consider the case where c = 1 and d = −1. In this case, we get so called

ℓ-regular partitions. Using Remark 5.2.8 and (5.1.6), Theorem 1.0.11 is true primes ℓ ≥ 5. We

now use the theorem to find bounds for the rank of the stabilized module.

r
(
ΩODD

ℓ (1,−1)
)

≤ dim
(
Sκℓ(ℓ,1)

)
−
⌊
ℓ(ℓ2 − 1)

24ℓ

⌋
,

= dim
(
S(2+⌊ ℓ

2 ⌋)(ℓ−1)

)
−
⌊
ℓ(ℓ2 − 1)

24ℓ

⌋
.

We state our calculations in Table 6.4. Hence we see that we have congruences for

primes 5, 7, and 11. This confirms our findings in Corollary 6.1.1.

We now consider the case where c = −3 and d = −2. Then from Corollary 5.3.7, we

have the stabilized module has rank at most

dim
(
Sκℓ(2ℓ−5,1)+(ℓ−1)

)
−
⌊

(2ℓ− 5)(ℓ2 − 1)
24ℓ

⌋
.
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Table 6.5. Bounds for ranks when c = −3 and d = −2.
ℓ dim

(
S(3+⌊ 2ℓ−5

2 ⌋)(ℓ−1)

)
⌊ (2ℓ−5)(ℓ2−1)

24ℓ
⌋ Bound

5 1 1 0
7 3 2 1
11 8 7 1
13 13 11 2

Then we calculate the right hand sides for primes ℓ = 5, 7, 11, and 13 in Table 6.5.

Hence we see that we have a congruence for 5. When compared to the other cases, in

this case, we see that we need to choose the minimum number between 2ℓ − 4 and 2ℓ − 5 to

get some what better upper bound for rank of the stabilized module. However, using Theorem

1.0.3, we have

p[1−35−2](5n+ 3) ≡ 0 (mod 5),

p[1−37−2](7n+ 6) ≡ 0 (mod 7),

p[1−311−2](11n+ 4) ≡ 0 (mod 11),

p[1−313−2](13n+ 8) ≡ 0 (mod 13).

(6.3.1)

Therefore we see that our bound for the rank is not the optimal bound.

6.4. Improvements

6.4.1. ℓ-adic module structures related to ℓ-core partitions

For c = 1 and d < 0, we defined the sequence of modular functions Lℓ(c, d, b; z) for

p[1cℓd](n) in (5.2.10) and (5.2.11). However, this construction only works for ℓ + d ≥ 1. For

ℓ-core partitions, we define the generating sequence of modular functions Lℓ(1,−ℓ, b; z) in the
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Table 6.6. Bounds for ℓ-core partitions
ℓ dim

(
S(3+⌊ 2ℓ−1

2 ⌋)(ℓ−1)

)
⌊ (2ℓ−1)(ℓ2−1)

24ℓ
⌋ Bound

5 2 1 1
7 4 3 1
11 10 9 1
13 15 13 2
17 25 23 2

following way.

Lℓ (1,−ℓ, 0; z) := 1,

Lℓ (1,−ℓ, 1; z) := ϕℓ(z)|U(ℓ),

Lℓ (1,−ℓ, 2; z) := A2
ℓ(z)A2

ℓ(ℓz)ϕℓ−2
ℓ (z)Lℓ (1,−ℓ, 1; z) |U(ℓ),

Lℓ (1,−ℓ, b; z) :=


ϕℓ(z)2ℓ−1Lℓ(1,−ℓ, b− 1; z)|U(ℓ) if b ≥ 3 odd,

ϕℓ(z)ℓ−2Lℓ(1,−ℓ, b− 1; z)|U(ℓ) if b ≥ 3 even.

(6.4.1)

Using a similar calculation that we used to prove Lemma 4.1.5, we see that

Lℓ(1,−ℓ, b; z) ∈j


Mκℓ(2ℓ−1,j)+(ℓ−1) ∩ Z(ℓ)[[q]] for b ≥ 2 odd,

Mκℓ(ℓ−2,j)+(ℓ−1) ∩ Z(ℓ)[[q]] for b ≥ 2 even.

Hence similarly as Corollary 5.3.7, we have the rank of the stabilized module Ωℓ(1,−ℓ,m) has

rank at most

dim(Sκℓ(e,j)+(ℓ−1)) −
⌊
e(ℓ2 − 1)

24ℓ

⌋
, where e = max{2ℓ− 1, ℓ− 2}.

We calculated the bound for ℓ ≤ 17 in Table 6.4.1.

Then comparing the results we obtained in Table 6.2, we see that we do not have the

optimal bound in this case. Therefore, there may be a better way to define these functions so

that we have the correct bound.
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Remark 6.4.1. Recall that bℓ(c, d,m) is the least non negative integer such that Lℓ(c, d, b; z) ∈

Ωℓ(c, d,m) for all b ≥ bℓ(c, d,m). Authors in [12], [13], and [17], found a bound for bℓ(c, d,m)

for each corresponding cases. For example, Boylan and Webb shows that under certain assump-

tions, bℓ(1, 0,m) ≥ 2m− 1.
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