
Louisiana State University Louisiana State University 

LSU Scholarly Repository LSU Scholarly Repository 

LSU Master's Theses Graduate School 

7-26-2022 

2-Dimensional String Problems: Data Structures and Quantum 2-Dimensional String Problems: Data Structures and Quantum 

Algorithms Algorithms 

Dhrumilkumar Patel 
Louisiana State University and Agricultural and Mechanical College 

Follow this and additional works at: https://repository.lsu.edu/gradschool_theses 

 Part of the Theory and Algorithms Commons 

Recommended Citation Recommended Citation 
Patel, Dhrumilkumar, "2-Dimensional String Problems: Data Structures and Quantum Algorithms" (2022). 
LSU Master's Theses. 5642. 
https://repository.lsu.edu/gradschool_theses/5642 

This Thesis is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It has 
been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Scholarly 
Repository. For more information, please contact gradetd@lsu.edu. 

https://repository.lsu.edu/
https://repository.lsu.edu/gradschool_theses
https://repository.lsu.edu/gradschool
https://repository.lsu.edu/gradschool_theses?utm_source=repository.lsu.edu%2Fgradschool_theses%2F5642&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=repository.lsu.edu%2Fgradschool_theses%2F5642&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/gradschool_theses/5642?utm_source=repository.lsu.edu%2Fgradschool_theses%2F5642&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


2-DIMENSIONAL STRING PROBLEMS: DATA
STRUCTURES AND QUANTUM ALGORITHMS

A Thesis

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Masters in Computer Science

in

The Department of Computer Science

by
Dhrumilkumar Patel

B.Tech., International Institute of Information Technology, Hyderabad, India, 2019
August 2022



Dedicated to my Mummy, Papa, and Poodi

ii



Acknowledgements

My Master’s journey was indeed a difficult landscape with many surprising uphill and

downhill battles. Reaching my goal would not be possible without the guidance of some

people.

I first thank my advisor Rahul Shah for taking me as his student and imparting his

wisdom along the way. I still remember when I first met him in his office and discussed

a personal problem that I had. He was really understanding and helped me overcome

that issue. The most important thing that I learned from his unending criticism is how

to approach a problem and come up with some novel ideas. Whenever I had a doubt

about something, I would not hesitate calling him even at midnight. I suppose the kind

of support and environment that he provided made me stronger. I only wish if I am able

to implement and maintain his teachings in the future.

I am also in debt to my co-advisor Mark Wilde for providing a significant boost to

my initial interest in the world of Quantum Computing. I cannot think of a better guide

than Mark for navigating this amazing world and meeting new people along the way. It

is quite motivating to observe him work alongside you and tackling stunning problems.

I still remember the day I was introduced to the field of quantum information theory

in 2016 by his book. From initially reading his books and papers to working with him

directly was a amazing step forward in my quantum journey, which I did not anticipate,

but I am really grateful for.

I next thank Arnab Ganguly and Sharma Thankachan for their collaborations. I

would like to thank my peers Vishal Singh, Soorya Rethinasamy, Aby Philip, Margarite

LaBorde, and Arshag Danageozia for endless meetings and presentations that help me

understand topics in quantum information theory different from mine. I specially would

like to thank Aliza Siddiqui for all the telephonic, as well as one-on-one discussions about

the future of our careers. It was good to see that I share my dual interests, i.e, in computer

science and quantum information theory, with someone else.

iii



I finally thank my friends and family for their undying support and understanding.

I am grateful for all the friendships that I had along the way. Each was different from

the other and gave different perspectives in life. I specially would like to thank Simran

Dhingra, Shalin Sheth, and Nidhi Khulkarni for all the late night philosophical talks,

amazing Indian food and watching random comedy scenes of movies. Lastly, I would

like to thank my parents and my little brother Poojan without whom this journey is

meaningless. I really appreciate them sending me to the USA for advancing my career.

It is not an easy task emotionally and financially. Finally, I would like to say that my

father is my superman.

iv



Table of Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.. Suffix Tree, Suffix Array, and Inverse Suffix Array . . . . . . . . . . . 7
2.2.. LF-mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.. Succinct Trees with Full Functionality . . . . . . . . . . . . . . . . 8
2.4.. 2-Dimensional Suffix Tree, Suffix Array, and Inverse Suffix Array . . . . . 9
2.5.. Quantum Primitives . . . . . . . . . . . . . . . . . . . . . . . . 11

3. Inverse Suffix Array Queries for 2-Dimensional Pattern Matching in Near-Compact
Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.. Splitting of an Lsuffix . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.. Computing LFISA-mapping . . . . . . . . . . . . . . . . . . . . 18
3.4.. Space and Time Complexity . . . . . . . . . . . . . . . . . . . . 26
3.5.. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4. Sublinear-Time Quantum Algorithm for 2-Dimensional Longest Common Sub-
string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.. Useful Subroutines . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.. A Quantum Algorithm for 2D-LSC . . . . . . . . . . . . . . . . . 32
4.3.. Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

v



List of Figures

3.1. Lsuffixes and LF-mapping. a) Splitting of an Lsuffix : The characters inside
circles are a part of the horizontal suffix SH

i−1,j−1 = abcde . . ., and this
suffix resides on the horizontal suffix tree. Similarly, the characters inside
triangles are a part of the vertical suffix SV

i,j−1 = fkpu... and this suffix
resides on the vertical suffix tree. Additionally, the linear form of the 2D
suffix starting from the position (i, j) is formed by the characters inside
rectangles i.e. SL

i,j = g · l · hm · qr · ins · vwx · joty and this linear suffix
resides on the Lsuffix tree (the biggest tree on the right). Here α · β
denotes concatenation of strings α and β. Now the Lsuffix starting at the
position (i − 1, j − 1) is formed by characters of these three sequences, i.e.,
SL

i−1,j−2 = a · f · bg · kl · chm · pqr · dins · uvwx · ejoty b) LF-mapping:
LF-mapping takes from the leaf corresponding to the Lsuffix starting at a
position (i, j) to that of the Lsuffix starting at a position (i−1, j−1). A lot
of new characters are introduced in doing so. Therefore, the LF-mapping
operation in case of 2D pattern matching problem is not trivial to evaluate. 15

3.2. For a particular marked node vL in STL (shown in red color), the array
INLEFT corresponding to vL stores the start of its associated intervals.
Likewise, the array INLEN stores the length of such intervals and the array
PSLEN is the prefix-sum array of INLEN. The points (pL, pH, pV) are the
shadow points of vL (shown as X in the figure shown on the right side). . 23

vi



Abstract

The field of stringology studies algorithms and data structures used for processing

strings efficiently. The goal of this thesis is to investigate 2-dimensional (2D) variants

of some fundamental string problems, including Exact Pattern Matching and Longest

Common Substring.

In the 2D pattern matching problem, we are given a matrix M[1 . . n, 1 . . n] that con-

sists of N = n × n symbols drawn from an alphabet Σ of size σ. The query consists of a

m × m square matrix P[1 . . m, 1 . . m] drawn from the same alphabet, and the task is to

find all the locations of P in M. For such square patterns, data structures such as suffix

trees and suffix arrays exist for the task of efficient pattern matching. However, a suffix

tree occupies O(N log N) bits, which is significantly more than that of the original text’s

size of N log σ bits. Therefore, the design of compressed data structures, that supports

pattern matching queries efficiently and occupies space close to the original text’s size,

is imperative. In this thesis, we show an interesting result by designing a compact text

index of size O(N log log N + N log σ) bits that at least supports efficient inverse suffix

array queries. Although, the question of designing a compressed text index that would

lead to efficient pattern matching is still evasive, this index gives a hope on the existence

of a full 2D compressed text index with all functionalities similar to that of 1D case.

On the other hand, the Longest Common 2D substring problem consists of two 2D

strings (matrices), and the task is to report the size of the longest common 2D substring

(submatrix) of these 2D strings. It is interesting to know if there exists a sublinear-

time algorithm for solving this task. We answer this question positively by presenting

a sublinear-time quantum algorithm. In addition to this, we prove that any quantum

algorithm requires at least Ω̃(N2/3) time to solve this problem.

vii



Chapter 1.

Introduction

In the field of theoretical computer science, the study of fundamental string problems,

also known as stringology, (the name was coined by computer scientist Zvi Galil), is an

important area of research that has a rich literature. Some of these fundamental string

problems include Exact Pattern Matching, Longest Common Substring, Longest Palin-

dromic Substring, and Lexicographical Minimal Substring. Out of which, we focus on

the 2-dimensional variants of the Exact Pattern Matching and Longest Common Sub-

string problems for the purpose of this thesis. The Exact Pattern Matching problem

has a wide variety of applications in the field of bioinformatics, genemoics, databases,

data-mining, network systems, etc. On the other hand, the Longest Common Substring

problem has played a vital role in plagiarism detection and data deduplication. Stringol-

ogy has been a classic field of research since the last 50 years, and most of these problems

have linear-time algorithms. The key idea of string algorithms is to manipulate strings

of characters in such a way that it becomes easier to do certain operations, including

comparing them, counting characters, or inspecting its properties, in an efficient man-

ner. For doing this, these string algorithms predominately exploit some hidden structure

associated with strings.

In the Exact Pattern Matching problem, we are given a 1-dimensional (1D) string

or text T of length N . The characters of this text are drawn from an alphabet Σ of

size σ. Along with this text, we are also given another 1D string P of length M , which

is often called a pattern, as an input. The task is to locate all the occurrences of P

in T. Sometimes, the task is to just count the number of times P occurs in T. There

exist linear-time algorithms that locate all the occurrences of P in T in O(N + M) time

[KMP77, KR87]. Usually, the text T is a fixed string and is much longer than the highly

variable pattern P. Thus, the most natural thing to do is to preprocess the text and

construct a data structure, that can efficiently answer pattern matching queries. Such

data structures are known as text indexes. Most popular text indexes include a suffix

1



tree [McC76a, Ukk95, FFM00, Wei73] and suffix array [MM93] that are constructed

employing the suffixes of a given text. However, a suffix tree and suffix array both

occupy O(N log N) bits of space, which is in contrast to N⌈log σ⌉ bits of space occupied

by the original text T. Just to give an intuition of how much space these data structures

take in comparison to the original text, let us take an example of a human DNA. There

are at least 3 billion base pairs in a human genome, which takes approximately 0.8

GB of memory. However, the suffix tree of this genome occupies around 35-45 GB of

memory. This memory consumption is even more during the construction of this tree.

This example motivates the intuition that the factor of log N in memory of the suffix tree

quickly becomes an overhead as compared to the factor of log σ, which stays the same for

a given problem. Such a drawback of the memory usage of a suffix tree and suffix array

led to the idea of compressed text indexes, which asks the following question:

Is it possible to design a text index that occupies space similar to the original text such

that the pattern-matching query time stays within poly-logarithmic factor of the suffix tree

or suffix array?

Grossi and Vitter [GV05], Ferragina and Manzini [FM05] positively answered the

above question by presenting compressed text indexes known as Compressed Suffix Array

and FM-index, respectively. On the other hand, the introduction of the Compressed

Suffix Tree ensured full-functionalities of suffix trees simulated in compressed space of

O(N log σ) bits [Sad07]. At the heart of FM-index lies a key property known as Last-

to-Front mapping (LF-mapping), which can be efficiently computed using the Burrows-

Wheeler transform of the original text. As LF-mapping is cricitcal for the purpose of

this thesis, we discuss more about it in the ensuing chapter. Furthermore, these initial

breakthroughs led to the field of compressed text indexing, which has seen a myriad

number of results in the last two decades with many positive developments [Nav16].

There are other variants of text indexing problems where suffix trees and suffix arrays

exist, but their compressed counterparts have yet to be found. One of these problems,

which has proven to be hard in this context, is the problem of 2-dimensional (2D) pattern

2



matching. In this problem, a text is arranged as a matrix M[1 . . n, 1 . . n] and consists of

N = n × n symbols, which are drawn from an alphabet Σ of size σ. The query consists

of a m × m square matrix P[1 . . m, 1 . . m], which is also drawn from the same alphabet.

Now, the task is to find all the locations of P in M. The patterns can be of any size,

but as long as they are square in shape, data structures such as suffix tree and suffix

array exist [Gia95, KKP98] for the task of efficient 2D pattern matching. These data

structures are essentially 2D counterparts of the data structures previously mentioned

for the 1D pattern matching problem. A natural question which arises here is what do

we mean by a suffix of a matrix. In the following chapter, we go over the definition of a

2D suffix of a matrix and also briefly discuss on how such suffixes can be indexed using a

suffix tree akin to the 1D case. The problem of designing a text index for the 2D pattern

matching problem in compressed space of O(N log σ) bits, based on the idea of Burrows-

Wheeler transform or otherwise, has been long open. There were some attempts and

partial results [AG04, MN08], but these mainly focused on entropy compression, without

first addressing the more fundamental problem of achieving the optimal space complexity.

This gives rise to the following fundamental question regarding compressed text indexing

in the 2D pattern matching problem:

Analogous to the 1D pattern matching problem, is it possible to design a succinct or

compressed text index for the 2D case?

However, achieving a complexity breakthrough similar to the 1D case has yet to be

found, in Chapter 3, we present a text index that at least can answer inverse suffix array

queries in near compact space in O(polylog(n)) time. Note that similar to a suffix array,

an inverse suffix array is also important in the context of pattern matching. We show

this by introducing a novel technique named LFISA-mapping that is an analogue of the

LF-mapping operation. Our 2D succinct text index design is based on two 1D compressed

suffix trees, and it occupies O(N log log N +N log σ)-bits of space as compared to previous

non-compact space of O(N log N)-bits.

3



Another fundamental string problem, that we study in this thesis, is the 2-dimensional

variant of the Longest Common Substring problem. But first, let us look at the classic

version of this problem. In the Longest Common Substring problem, we are given two

strings S and T of length N as an input. The task is simple, and it is to report the

maximum possible length of a substring that exists in both S and T. To solve this task,

there exists a linear-time algorithm, which is based on the suffix tree of the concatenated

string S$T# [Wei73, Far97]. Here, $ and # are used as delimiters. Recently, due to

a rapid growth of interest in the field of quantum computing, some of the stringology

research community is asking the following question:

Is it possible to design a quantum algorithm that can offer some speedup compared to

classical algorithms for these fundamental string problems?

Le Gall and Seddighin answered the above question positively by proposing sublinear-

time quantum algorithms for some of these fundamental string problems [LGS22]. Out of

which, they gave a Õ(N5/6)-time quantum algorithm for the Longest Common Substring

problem. In addition to this, they proved that any quantum algorithm for this problem

requires at least Ω̃(N2/3) time. This gap in time complexity was successfully filled by the

authors of Ref. [AJ21], where they proposed a Õ(N2/3)-time quantum algorithm for the

Longest Commong Substring problem.

In this thesis, we investigate the 2D version of the Longest Common Substring prob-

lem. As an input to this modified problem, we are given two 2D strings (matrices), and

the task is to report the size of the longest common 2D substring (submatrix) of these 2D

strings. Here, the input 2D strings are square in shape. Note that we refer to this problem

as the longest common 2D substring instead of the largest common submatrix problem

as it makes the naming convention easily extendable to higher dimensional strings.

Similar to the original Longest Common Substring problem, there exists a linear-

time algorithm, which is also based on the suffix tree constructed by the 2D suffixes of

the input 2D strings. But for the 2D case, the question of designing a sublinear-time

quantum algorithm is still open. In Chapter 4, we positively answer this question based

4



on a conjecture that we mention later on in this thesis. In addition to presenting a

quantum algorithm for the Longest Common 2D Substring problem, we prove that any

quantum algorithm for this problem requires at least Ω̃(N2/3) time.

Checkpoints: Here, we present the layout of this thesis, mentioning briefly about

the chapters and their contents. To begin with, Chapter 2 sets up the ground by shortly

discussing some relevant concepts needed to understand the algorithms presented in this

thesis. Chapter 3 provides the details related to our compact text index that can answer

inverse suffix array queries efficiently. In Chapter 4, we present our quantum algorithm

for the Longest Common 2D Substring problem. Finally, we conclude our thesis with

some open problems and future directions.

5



Chapter 2.

Preliminaries

To begin with, we need to understand some basic concepts associated with the traditional

or 1D pattern matching problem that includes suffix tree and suffix array. This develop-

ment will help in understanding similar concepts that are generalized to the 2D case. We

also briefly give an overview of two basic quantum algorithms, including Grover’s search

algorithm and quantum walk algorithm, as they prove to be useful subroutines for our

quantum algorithm.

In the traditional or 1D pattern matching problem, we are given a 1D text T of length

N over an alphabet Σ, where Σ is a finite totally ordered set of size σ, and a 1D pattern

P of size M , which is also drawn from the same alphabet. The task is to obtain the

locations of all the occurrences of P in T. We use the notation occ to denote the number

of such occurrences for a particular problem instance. As mentioned before in Chapter

1, in most cases, P is a much smaller string than T, which is a long fixed string. Thus,

pre-processing T and creating a data structure or an index beforehand, in order to make

it query efficient, makes more sense than reading the entire text repeatedly for answering

every new query. This led to the development of text indexes, including suffix trees and

suffix arrays.

Answering a pattern matching query efficiently means that we can locate all the

occurrences of P in O((M + occ)polylog(N)) time. The text indexes such as suffix trees

and suffix arrays occupy Θ(N log N) or Θ̃(N) bits of space, which is quite large compared

to the size of the text T, i.e., N⌈log σ⌉. A text index is called a compact text index if it

occupies Θ(N log σ) bits of space, which is quite comparable to the actual text size.

In the next section, we recall some important definitions and data structures that are

relevant for both the problems considered in this thesis.

6



2.1. Suffix Tree, Suffix Array, and Inverse Suffix Array

Let Ssuff = {T[i . . n]|1 ≤ i ≤ n} be the set of all the suffixes of T. The suffix tree

(denoted by ST) of T is an edge-labeled compact trie constructed from all the suffixes

in Ssuff [McC76b, Ukk95, FFM00, Wei73]. In ST, concatenating all the edge labels on a

particular root-to-leaf path, we get one of the suffixes in Ssuff . In other words, each leaf

of ST corresponds to a suffix of T. Additionally, as each suffix T[i . . n] in Ssuff is uniquely

identified with its starting position i in T, we can map text positions to the leaves of ST.

Now, we introduce some additional notations associated with a suffix tree that we

use in this thesis. We refer to a character on an edge of ST as a point. Given a point

c on ST, let string(c) denote the concatenation of all the characters from the root to c

(including c) along the root-to-c path of ST. The depth of this point c on the root-to-c

path of ST is given by the length of string(c), i.e., depth(c) = length(string(c)). A node

(or a vertex) of ST is a also point because it is represented by the character (point) just

above it. The locus u of c on ST is the highest node of ST such that string(c) is the

prefix of string(u). We denote it as u = locus(c). We say that a point c on ST is marked

iff marked(c) = 1, and its 0 otherwise. We denote the leftmost and rightmost leaves of

the subtree of a particular point c as lleaf(c) and rleaf(c), respectively. Specifically, the

notations lleaf(c) and rleaf(c) represent the leaf numbers of the respective leaves, where

the numbering of the leaves start from the leftmost leaf of ST. Additionally, we denote

rth leftmost leaf of ST as ℓr. The difference between the above two notations of a leaf is

that the latter notation is point-independent. Let lca(c1, c2) denote the lowest common

ancestor of points c1 and c2. The lowest common ancestor as the name suggests is the

node which is a common ancestor of two points with the maximum depth.

Upon traversal of the leaves of a suffix tree from left-to-right, we get suffixes sorted

lexicographically, and then storing the corresponding text positions in an array gives an

indexing data structure called suffix array (SA) [MM93]. Here by i = SA[r], we mean

that the rth leftmost leaf (ℓr) in ST corresponds to the suffix T[i . . n]. In other words,

r is the lexicographical order or rank of the suffix T[i . . n]. Similarly, the inverse suffix

7



array (ISA) is defined as ISA[i] = SA−1[i] = r. In other words, the inverse suffix array

maps each text position i to the leaf position r in ST.

2.2. LF-mapping

The Last-to-Front mapping or in short LF-mapping is a mapping between a leaf ℓr of

ST associated with the suffix T [i . . n] to a leaf ℓr′ associated with the suffix T [i − 1 . . n].

In other words, given the lexicographical rank of T [i . . n], it outputs the lexicographical

rank of T [i − 1 . . n]. Formally, LF-mapping is defined in terms of the suffix array as

LF(r) = SA−1[SA[r] − 1]. This way of computing LF-mapping requires us to store the

entire suffix array. However, in case of compressed text indexes, including FM-index,

we only store a sampled suffix array. Hence, such indexes efficiently computes the LF-

mapping using the Burrows Wheeler Transform (BWT) [BW94] of the original text along

with some auxiliary counting data structures. We do not dwell into the details of BWT in

this thesis. The LF computation via BWT lies at the heart of BWT-based text indexes,

which enables them to answer pattern matching queries without actually storing the

costly suffix array and instead replacing it with a sampled suffix array.

2.3. Succinct Trees with Full Functionality

A fully functional compact/compressed suffix tree is realized using three components:

1) its compressed tree topology that supports navigational functionalities (see Fact 2.1

below), 2) a compressed suffix array (see Fact 2.2 below), and 3) some auxiliary data

structures that support longest common prefix (LCP) information.

Fact 2.1 (Fully-Functional Succinct Suffix Tree [Sad07]). The topology of a suffix tree

can be encoded in 4n + o(n) bits to support the following operations in O(1) time:

• pre-order(u)/post-order(u): pre-order/post-order rank of a node u,

8



• parent(u): parent of a node u,

• nodeDepth(u): number of edges on the root-to-u path of a node u,

• child(u, q): qth leftmost child of a node u,

• sibRank(u): number of children of parent(u) to the left of a node u,

• lca(u, v): lowest common ancestor (LCA) of two nodes u and v,

• lleaf(u)/rleaf(u): the leftmost/rightmost leaf in the subtree of a node u,

• levelAncestor(u, d): ancestor of a node u such that nodeDepth(u) = d

Fact 2.2 (Compressed Suffix Array [Sad07]). The compressed suffix array part of the

above compressed suffix tree can be encoded in O(n log σ) bits to support the following

operations:

• lookup(r): returns SA[r] in time O(logϵ N)

• inverse(i): returns r = SA−1[i] in time O(logϵ N).

2.4. 2-Dimensional Suffix Tree, Suffix Array, and Inverse Suffix Array

In this section, we generalize the aforementioned notions of a 1D suffix tree, 1D suffix

array, and 1D inverse suffix array to the 2D case. We utilize these concepts for building

a near compact size data structure that can efficiently answer inverse suffix array queries

for 2D pattern matching problem. To begin with, we recall the problem of 2D pattern

matching.

In the 2D pattern matching problem, a text is arranged as a matrix M[1 . . n, 1 . . n]

and consists of N = n × n symbols, which are drawn from an alphabet Σ of size σ. The

query consists of a m × m square matrix P[1 . . m, 1 . . m], which is also drawn from the

9



same alphabet. Now, the task is to find all the locations in M where P appears as a

contiguous submatrix. The patterns can be of any size, but as long as they are square

in shape, data structures like suffix tree and suffix array exist [Gia95, KKP98] for the

task of efficient pattern matching. These data structures are essentially 2D counterparts

of the data structures previously discussed for traditional 1D pattern matching problem.

These data structures work on the basis of a linearization of 2D suffixes of M, which

would preserve the prefix-match property, i.e., every pattern match is a prefix of some

suffix. In order to understand the concepts of a suffix tree and suffix array associated

with the 2D pattern matching problem, we need to first define what we mean by a 2D

suffix of M.

For a 1D text T, an ith suffix is the largest substring of T starting from the ith position,

i.e., T[i . . n]. Similarly, this way of defining a suffix can be extended to 2D suffixes of a

matrix as well. We define a 2D suffix in the following way:

Definition 2.3. A 2D suffix S2D
i,j defined for a position (i, j) is the largest square sub-

matrix of a matrix M starting at (i, j) position, i.e., M[i . . i + l, j . . j + l], where l =

n − max{i, j}.

Giancarlo [GG97] proposed a method for linearizing a 2D suffix such that the final

form follows the constraints of completeness and common prefix property similar to 1D

suffixes. The completeness constraint is that every square submatrix of M in a linear

form must correspond to some prefix (whatever the definition of prefix is) of some suffix

of M, each represented linearly. The common prefix constraint is that a square submatrix

of M should be a prefix of some suffixes of M after linearizing them. Giancarlo first

defined Lsuffix, which is a linear representation of a 2D suffix. Here, L stands for linear.

An Lsuffix SL
i,j of a 2D suffix S2D

i,j is the concatenation of strings a0, a1, a2, . . . , al, where

a0 = M[i, j] and ak = M[i + k, j..j + k − 1] · M[i..i + k, j + k]. Here, l = n − max{i, j} for

all k ̸= 0 (see Figure 3.1 for example). Here, α · β refers to the concatenation of strings

α and β.

10



Let SL be the set of all Lsuffixes of M. Here, |SL| = N because there are N 2D

suffixes of M. Let STL be the suffix tree constructed from Lsuffixes in SL (also known as

Lsuffix tree). The uncompressed version of STL [Gia95] takes Θ(N log N) bits of space,

which is very large compared to the optimal space required to store the original matrix

M, i.e., N⌈log σ⌉. Similarly, the uncompressed version of the suffix array (SAL) [KKP98]

for such suffixes also requires Θ(N log N) bits of space. The suffix array and inverse

suffix array are defined in a similar fashion as defined in the 1D case. For the suffix

array, given a rank r, it outputs the position in the matrix of the corresponding Lsuffix

SL
i,j i.e. SAL[r] = (i, j). Furthermore, the inverse suffix array for Lsuffixes is defined as

ISAL[i, j] = r. We continue this development further in Chapter 3, where we propose a

compact text index that supports efficient inverse suffix array queries.

2.5. Quantum Primitives

In this section, we briefly go over some of the fundamental quantum algorithms, including

Grover’s search and quantum walks. It is worth understanding them first because these

algorithms prove to be useful subroutines for our quantum algorithm for the 2D Longest

Common Substring problem.

2.5.1. Grover’s Search

Lov Grover first proposed a quantum algorithm for searching an item in an unstructured

database [Gro96]. This algorithm is well known as Grover’s search algorithm. More

formally, we can state this searching task in the following way:

Search: Given a classical function f : {0, 1}n → {0, 1}, where n is the size of input

bit strings, find an input bit string x such that f(x) = 1 or report that no such

input bit string exists.

11



Using a classical computer, we need to perform O(N) queries to solve the above task.

Here, N = 2n. However, Grover’s search algorithm solves this task quadratically faster

than a classical computer with a high probability. By quadratically faster we mean that

it requires Õ(
√

N) queries instead of O(N) queries. Furthermore, if the number of input

bit strings, that outputs 1, is M , then Grover’s search algorithm finds one such input bit

string using Õ(
√

N/M) queries to the input oracle.

2.5.2. Quantum Walks

A quantum walk is a quantum version of a classical random walk. Here, we specifically

discuss about the quantum walk algorithm proposed by Magniez, Nayak, Roland, and

Santha [MNRS11]. We apply this walk on Johnson graphs.

A Johnson graph J(m, r) has vertices corresponding to the subsets of {1, . . . , m}, each

with r elements. There is an edge between two vertices if their respective subsets differ

by one element. In other words, suppose R1 and R2 are r-subsets of the set {1, . . . , m}

such that |R1 ∩ R2| = r − 1, then the vertices corresponding to these two r-subsets are

neighbours.

Suppose we have a Johnson graph with some marked vertices and the task is to find

one of these marked vertices. More formally, we can state the task in the following way:

Find Marked Vertices: Given a Johnson graph J(m, r) such that ϵ fraction of

vertices are marked. The task is to find one of these marked vertices.

In the quantum walk algorithm, each vertex u ∈
(

m
r

)
is represented as a unique

quantum state. In addition to this, we augment each vertex with some data data(u),

which helps in efficiently finding a marked vertex. Let S denote the cost associated with

setting up or initializing the data. Let U denote the cost of updating the data from data(u)

to data(v), where u and v are neighbouring vertices. Additionally, let C denote the cost

12



for checking if the current vertex is a marked vertex or not. Here, by cost we mean time

or query complexity.

A classical random walk algorithm finds a marked vertex with a cost of the order

S +
(

m
r

)2
(rU + C). However, a quantum walk algorithm provides a quadratic speedup

over its classical counterpart. In other words, a quantum walk algorithm can search for

a marked vertex with a cost of the order S + m
r

(
√

rU + C).

13



Chapter 3.

Inverse Suffix Array Queries for 2-Dimensional Pattern Matching
in Near-Compact Space

As discussed in Chapter 1, although, a compact text index that can efficiently answer 2D

pattern matching queries has yet to be found, in this chapter, we present a compact text

index that can answer inverse suffix array queries in O(polylog(N)) time. We show this by

introducing a novel technique named LFISA-mapping that is an analogue of LF-mapping

operation typically associated with Burrows–Wheeler Transform. This technique works

with the linearization scheme for 2D suffixes introduced in Ref. [Gia95] (see Section 2.4.

of Chapter 2). Our 2D succinct text index design is based on two 1D compressed suffix

trees, and ,overall, it occupies O(N log log N + N log σ) bits of space as compared to

previous uncompressed indexes that took O(N log N) bits of space. Here, N is the size

of the input matrix and σ is the size of the alphabet.

The following theorem states the objective of this chapter more formally:

Theorem 3.1. The text index for a matrix M of size N = n × n can be encoded in

O(N log σ + N log log N)-bit space, and an entry in the inverse suffix array ISAL can be

decoded in time O(log N · tLFISA), where tLFISA = O((log N/ log log N)3).

Proof. Refer to Section 3.4. for the proof.

3.1. Definitions

Recall that we introduced notions of 2D suffixes, 2D suffix tree, 2D suffix array, and 2D

inverse suffix array in Chapter 2. We also presented a method for linearizing 2D suffixes

of a matrix in that chapter. In this section, we advance that discussion by introducing

new concepts related to the 2D pattern matching problem, including LFISA-mapping.

14



a b c d e

f g h i j

k l m n o

p q r s t

u v w x y

M(i-1,j-1)

M(i,j)

(a) Splitting of an Lsuffix

l
g

h

q

i
r

s
n

g

b

a
f

k
l

c
h

w
x

v

dr
p

q

m

ni
sLF Mapping

a

b
a

c
d

a

f
k
p

Horizontal
Suffix Tree

Vertical
Suffix Tree

(i,j) (i-1,j-1)

(b) LF-mapping

Figure 3.1: Lsuffixes and LF-mapping. a) Splitting of an Lsuffix: The characters
inside circles are a part of the horizontal suffix SH

i−1,j−1 = abcde . . ., and this suffix
resides on the horizontal suffix tree. Similarly, the characters inside triangles are a
part of the vertical suffix SV

i,j−1 = fkpu... and this suffix resides on the vertical suffix
tree. Additionally, the linear form of the 2D suffix starting from the position (i, j) is
formed by the characters inside rectangles i.e. SL

i,j = g · l · hm · qr · ins · vwx · joty
and this linear suffix resides on the Lsuffix tree (the biggest tree on the right). Here
α · β denotes concatenation of strings α and β. Now the Lsuffix starting at the position
(i − 1, j − 1) is formed by characters of these three sequences, i.e., SL

i−1,j−2 = a · f ·
bg · kl · chm · pqr · dins · uvwx · ejoty b) LF-mapping: LF-mapping takes from the leaf
corresponding to the Lsuffix starting at a position (i, j) to that of the Lsuffix starting at
a position (i − 1, j − 1). A lot of new characters are introduced in doing so. Therefore,
the LF-mapping operation in case of 2D pattern matching problem is not trivial to

evaluate.

First, we introduce the LF-mapping operation associated with 2D suffixes (denoted

as LFL-mapping) in the following way:

LFL(r) = ISAL[i − 1, j − 1], (3.1)

where SAL[r] = (i, j). We assume that ISAL[0, j′] = ISAL[i′, 0] = Ø. In other words,

LFL-mapping operation outputs the rank of an Lsuffix SL
i−1,j−1 given the rank of the

diagonally-below Lsuffix, i.e., SL
i,j.

Figure 3.1 shows an example of a particular LF-mapping operation and how new

characters get introduced when going from the Lsuffix SL
i,j to SL

i−1,j−1 in contrast to the

addition of only one character (in front) in the case of 1D suffixes, i.e., going from T[i . . n]

to T[i − 1..n]. This is the reason why it is not trivial to evaluate LF-mapping for the 2D

case.

15



As LFL-mapping is related to the suffix array SAL, we introduce a similar mapping for

the inverse suffix array ISAL, which we call LF-mapping for ISA (LFISAL). We define this

mapping in the following manner:

LFISAL(i, j) = ISAL[i − 1, j − 1]. (3.2)

Specifically, given the position and rank of an Lsuffix SL
i,j, LFISAL-mapping outputs

the rank of the diagonally-above Lsuffix, i.e., SL
i−1,j−1. Here, for computational pur-

poses, we provide ISAL[i, j] as an additional parameter. The psuedocode for computing

LFISAL(i, j, ISAL[i, j]) is given in Section 3.3.2.3..

Now, in order to compute the value of an ISAL entry, as storing the entire ISAL

takes much space, we sample it and store only those ISAL[i, j] values such that i =

1 + (k − 1)∆, where k = {1, 2, ..., ⌈
√

N
∆ ⌉}. This reduces the problem of computing an ISAL

value to computing at most ∆ LFISAL-mapping operations. Now, in the latter sections, we

show how to compute LFISAL-mapping in tLFISA = O((log N/ log log N)3) time using our

O(N log σ + N log log N)-bit index. Therefore, ISAL value for any position in the matrix

can be calculated in tISA = ∆ · tLFISA = O(log N · tLFISA) time, as we take ∆ = O(log N)

for our case.

Firstly, given a matrix M, we linearize it horizontally by concatenating all the rows

of M one after another to get a single 1D text TH of length N . The set of all the suffixes

of TH is defined as SH = {TH[i..N ]|1 ≤ i ≤ N}. We denote such suffixes as horizontal

or Hsuffixes. Let STH be the compressed suffix tree obtained from all the Hsuffixes of

TH. Secondly, by concatenating all the columns into a single text TV, we linearize M

vertically. The set of all the suffixes of TV is defined as SV = {TV[i..N ]|1 ≤ i ≤ N}.

Such suffixes are denoted as vertical or Vsuffixes. Here, let STV be the compressed suffix

tree constructed from all the Vsuffixes of TV. From the context of M, Hsuffix and Vsuffix

starting from the position (i, j) can be written in the following way:

SH
i,j = M[i, j..n] · M[i + 1, 1..n] · M[i + 2, 1..n] · ... · M[n, 1..n]

16



SV
i,j = M[i..n, j] · M[1..n, j + 1] · M[1..n, j + 2] · ... · M[1..n, n].

Finally, as STH and STV are the compact versions of the original suffix trees, they only

occupy O(N log σ) bits of space which is very close to the space required by the original

matrix [Sad07]. Fact 2.1 from Chapter 2 mentions their full functionalities. Next, we

relate all these defined suffixes.

3.2. Splitting of an Lsuffix

In this section, we show how to split an Lsuffix into three different subsequences. Given

an Lsuffix SL
i,j in the 2D form, we can split it into three subsequences: 1) The horizontal

subsequence, i.e., the first row M[i, j . . n], 2) the vertical subsequence, i.e., the first column

M[i + 1 . . n, j], and 3) the subsequence (linear form) of the remaining square submatrix,

i.e., SL
i+1,j+1. An example of such a splitting is provided in Figure 3.1. Here, M[i, j . . n]

and M[i+1 . . n, j] subsequences come from the Hsuffix SH
i,j and Vsuffix SV

i+1,j, respectively.

Let hk and vk be (k + 1)th characters of M[i, j . . n] and M[i + 1 . . n, j], respectively.

Now as mentioned before, an Lsuffix SL
i,j is the concatenation of strings a0, a1, a2, . . . , al,

where a0 = M[i, j] and ak = M[i + k, j . . j + k − 1] · M[i . . i + k, j + k], which is of length

2k + 1 and l = n−max(i, j) for k ̸= 0. Similarly, let SL
i+1,j+1 be the concatenation of

strings b0, b1, b2, . . . , bl−1, where b0 = M[i + 1, j + 1] and bk = M[(i + 1) + k, (j + 1) . . (j +

1) + k − 1] · M[(i + 1) . . (i + 1) + k, (j + 1) + k] for all k ̸= 0. For simplicity, we break each

ak and bk into two parts in the following way:

a
′

k = M[i + k, j . . j + k − 1]

a
′′

k = M[i . . i + k, j + k]

b
′

k = M[(i + 1) + k, (j + 1) . . (j + 1) + k − 1]

b
′′

k = M[(i + 1) . . (i + 1) + k, (j + 1) + k].

17



We can rewrite ak in the following way:

a
′

k = M[i + k, j..j + k − 1] = vk−1b
′

k−1

a
′′

k = M[i..i + k, j + k] = hkb
′′

k−1

Therefore, we can say that ak is the concatenation of strings vk−1, b
′
k−1, hk, and b

′′
k−1. We

have b
′
0 = Ø b

′′
0 = b0, and a0 = h0 because h0 = M[i, j]. We want to redirect the reader’s

attention to Figure 3.1 where we showcase an example that helps in better understanding

of the above concept.

Now, given ak we can get vk−1, b
′
k−1, hk, and b

′′
k−1 because vk−1 and hk are characters

and b
′
k−1 and b

′′
k−1 are strings of length k − 2 and k − 1, respectively. Here, vk−1 and hk

can be thought of as delimiters of the string ak, and these two uniquely break down ak

into its constituents. Since we know that given ak we can get vk−1, b
′
k−1, hk, b

′′
k−1 and vice

versa, we denote the horizontal component of the Lsuffix SL
i,j by hc(SL

i,j) = h0h1h2...hl.

Similarly, we denote the vertical component of SL
i,j by vc(SL

i,j) = v0v1v2...vl−1 and the

square component of SL
i,j by sc(SL

i,j) = b0b1b2...bl−1. Likewise, we can define these three

components for any prefix pf of the Lsuffix SL
i,j. We can state the following fact about

the relation between the length of the three components of the prefix pf of SL
i,j and its

length. Here, by length, we mean the length of the string.

Fact 3.2. length(pf) = length(hc(pf)) + length(vc(pf)) + length(sc(pf))

Now, intuitively, we use such a splitting to evaluate a single LFISA-mapping operation.

3.3. Computing LFISA-mapping

Just to recall, we have three suffix trees based on three different types of suffix definitions

as shown before, i.e. STL, STH and STV. Here, we store STH and STV as compressed

suffix trees (CST) [Sad07] with full functionalities (see Fact 2.1 and 2.2 in Chapter 2 for

more details), and together they occupy only O(N log σ) + O(N log σ) = O(N log σ) bits

18



of space. On the contrary, we won’t be storing the entire STL but only the compressed

topology of the tree that has navigational functionalities each supported in constant

time and occupies 4N + o(N) bits of space (see Fact 2.1 in Chapter 2). In the ensuing

subsection, first, we show a scheme of marking some relevant points on these trees and

then explain how these marked points will help in computing LFISA-mapping. We call

this step the construction step of our algorithm.

3.3.1. Marking Scheme and Mapping

Firstly, we mark some nodes on Lsuffix tree STL. We mark a node vL
i of STL such that

vL
i = lca(ℓ(i−1)g+1, ℓig), where i = {1, 2, ..., ⌈N

g
⌉} and g is a grouping factor. Furthermore,

we define Gi = [(i − 1)g + 1, ig] as a grouping interval. For our case, we shall use

g = ⌈log3 N⌉. Hence, the total number of marked nodes on STL is O( N
log3 N

). Now, we

define marked ancestor, lowest marked ancestor, cover of a leaf, and coveredby(vL) set of

a marked node in the following way:

Definition 3.3 (Marked Ancestor). A marked node vL is a marked ancestor of a leaf ℓ

iff vL lies on the root-to-leaf path of ℓ in the suffix tree.

Definition 3.4 (Lowest Marked Ancestor). A node vL is the lowest marked ancestor of

a leaf ℓ iff it is the lowest (one with the maximum string depth) among all the marked

ancestors of ℓ.

Definition 3.5 (Cover). A node vL is the cover of the leaf ℓ iff it is the lowest marked

ancestor of ℓ.

Definition 3.6 (coveredby(vL) set). A coveredby(vL) is the set of the leaves for which vL

is the cover.

As mentioned before in Section 3.2. showcasing the splitting of an Lsuffix, given a

marked node vL, we split its associated string, i.e., string(vL) into its horizontal, vertical,

and square components, i.e., hc(string(vL)) , vc(string(vL)) and sc(string(vL)), respectively.

19



For a marked node vL in STL, we mark a point pH in STH corresponding to its horizontal

component such that string(pH) = hc(string(vL)). Similarly, we mark points pV and pL

corresponding to its vertical and square components in STV and STL, respectively. We

refer these points as shadow points. Just to recall, a point is any character on the edge

of the suffix tree. Note that vL is not the same marked node as pL even though they are

marked on the same tree (see Figure 3.2). We repeat the above process for every marked

node on vL in STL.

At the end of the marking process, let MPH, MPV, and MPL be the sets of all the

shadow points on STH, STV, and STL, respectively. Hence, a marked node vL in STL can

be viewed as a unique triplet of shadow points in STH, STV, and STL, i.e., vL = (pH, pV, pL).

Therefore, the total number of shadow points in each tree is bounded because the number

of marked nodes are bounded. In other words, |MPH| = |MPV| = |MPL| = O( N
log3 N

),

where |X| is the cardinality of a set X. Due to this one-to-one correspondence between a

marked node and triplet of shadow points, we define a set U ⊆ MPH × MPV × MPL which

consists of only those triplets of shadow points that represent valid marked nodes.

Now, we state our central task as follows:

Given ISAL[i, j], compute ISAL[i − 1, j − 1].

We shall preprocess a given 2D text of size N as an input and then contruct data structures

that occupies near-compact space and achieve the aforementioned task in O(polylogN)

time. The next step in this is to use the above marked and shadow points for computing

LFISAL(i, j, ISAL[i, j]). In the following subsection, we show the details on how to achieve

this task, and thereafter we outline its pseudocode for understanding the overall picture.

3.3.2. Computing LFISAL(·)

In this section, we show the details for evaluating LFISAL(i, j, ISAL[i, j]) given a matrix

position (i, j) and ISAL[i, j] as inputs. First, using the inverse(·) function of STH and

20



STV (see Fact 2.1 in Chapter 2), we evaluate inverse suffix array values ISAH[i − 1, j − 1]

and ISAV[i, j − 1], respectively. For simplicity, let ISAL[i, j] = r, ISAH[i − 1, j − 1] =

h, ISAV[i, j − 1] = v, and ISAL[i − 1, j − 1] = LFISAL(i, j, ISAL[i, j]) = s.

As the inverse suffix array values are related to the leaves of a suffix tree, let ℓh, ℓv, and

ℓr be hth, vth, and rth leftmost leaves in their respective suffix trees. The aim here is to

find the leaf ℓs in STL using the information provided by the shadow points of our index

along the root-to-leaf paths of ℓh, ℓv and ℓr in tLFISA time. We shall use some auxiliary

data structures that we introduce latter.

Now, we define a set as A = {(pH, pV, pL) ∈ U | ℓh, ℓv, and ℓr lie in the respective

subtrees of pH, pV and pL}. To put it another way, A is a set of valid triplets of shadow

points that lie on the root-to-leaf paths of ℓh, ℓv and ℓr in their respective trees. Out of

all the valid triplets that are in A, let a specific triplet or its corresponding marked node

vL
max be defined as follows,

vL
max = argmax

vL=(pH,pV,pL)∈A

(depth(string(vL))). (3.1)

Recall that there is a one-to-one correspondence between the marked nodes in STL and

triplets in U .

Lemma 3.7 proves that the marked node vL
max is the lowest marked ancestor (or cover)

of the leaf ℓs. Therefore, the marked node vL
max along with some augmenting information

shown in later subsection, will lead us to the leaf ℓs, which is what we are interested in.

But first, we need to obtain vL
max. For that, let us refer the query given by (3.3.2.) as

lowest marked ancestor query.

Lemma 3.7. The marked node vL
max in STL is the lowest marked ancestor (or cover) of

the leaf ℓs.

Proof. Firstly, we prove that a valid triplet vL = (pH, pV, pL) ∈ A is a marked ancestor of

the leaf ℓs. As pH is a shadow point on the root-to-leaf path of ℓh, string(pH) is a prefix

21



of the horizontal suffix SH
i−1,j−1 because ISAH[i − 1, j − 1] = h. Similarly, string(pV) and

string(pL) are prefixes of the vertical suffix SV
i,j−1 and Lsuffix SL

i,j, respectively.

Furthermore, as string(pH), string(pV), and string(pL) are the horizontal, vertical, and

square components of the string(vL), respectively (according to the marking scheme), one

of the occurrences of string(vL) in its 2D form is at matrix position (i−1, j−1). Therefore,

it is a prefix of the suffix starting at the position (i − 1, j − 1), which in its linear form is

represented as SL
i−1,j−1. Therefore, vL lies on the root-to-leaf path of the leaf representing

the Lsuffix SL
i−1,j−1, and that leaf is ℓs. Hence, vL is a marked ancestor of ℓs.

Moreover, as vL
max ∈ A and is the output of the lowest marked ancestor query that

maximizes over string depth over all triplets vL ∈ A, vL
max is the lowest marked ancestor

or cover of ℓs.

For obtaining vL
max, we reduce the above lowest marked ancestor query to a stabbing-

max query. This reduction is interesting and useful in our context due to the result

mentioned in Theorem 3.8. The details concerning this reduction is discussed in the next

subsection. Furthermore, after finding vL
max, in order to uniquely go to the correct leaf

ℓs, we store additional augmenting information that is discussed in a latter subsection.

This shows the computation of an LFISAL operation. The time complexity of such an

operation and the space complexity of our index is discussed in Section ??.

3.3.2.1. Reduction to 3-dimensional (3D) Stabbing-Max Query

In this section, we show how to reduce that the aforementioned lowest marked ancestor

query to a 3-dimensional (3D) stabbing-max query. In [Nek11], the authors proved the

following theorem:

Theorem 3.8. [Nek11] Given a set I of n 3D rectangles in R3, where each rectangle

rec has a weight w(rec) associated with it, the task of finding a rectangle with maximum

22



vL.INLEN = 6, 4, 3

Intervals of vL

38456
No of leaves in 
each section

vL

vL.PSLEN = 6, 10, 13

vL.INLEFT = 1, 12,24

Associated Arrays

X

lhlr
lv

PL

PVPH

Marked Node

Shadow Points

X

Three intervals forming 3D rectangle

Figure 3.2: For a particular marked node vL in STL (shown in red color), the array
INLEFT corresponding to vL stores the start of its associated intervals. Likewise, the
array INLEN stores the length of such intervals and the array PSLEN is the prefix-sum
array of INLEN. The points (pL, pH, pV) are the shadow points of vL (shown as X in the

figure shown on the right side).

weight containing (or stabbed by) a 3D query point q can be done in O(( log n
log log n

)3) time

using a data structure occupying O(n( log n
log log n

)2) bits of space.

We define the sides of a 3D rectangle rec for each marked node vL = (pH, pV, pL) in U

as follows:

(xleft, xright) =
(
lleaf(pH), rleaf(pH)

)
,

(yup, ydown) =
(
lleaf(pV), rleaf(pV)

)
,

(zfront, zback) =
(
lleaf(pL), rleaf(pL)

)
,

w(rec) = depth(string(vL)).

This shows that each triplet in U or its corresponding marked node vL in STL is uniquely

represented by a weighted rectangle.

Next, we define a 3D query point as q = (h, v, r). Therefore, the output of this 3D

stabbing-max query is the rectangle with the maximum weight. This rectangle corre-

sponds to the cover of the leaf ℓs, i.e, vL
max. Furthermore, after obtaining the cover of the

leaf, we now provide details on what augmenting information to store in order to get the

desired leaf uniquely, i.e., ℓs, in the next subsection.

23



3.3.2.2. Augmenting Information for getting ℓs from its Cover vL
max

In this section, we explain the procedure of obtaining the correct leaf ℓs from its cover

vL
max by storing this leaf’s rank q (say). Now, we define the task for this section: given q

and vL
max, find the qth leftmost leaf in coveredby(vL

max) (see Definition 3.6).

The challenge here lies due to the fact that vL
max may have multiple marked nodes in

its subtree, and because of this there may be leaves in its subtree whose lowest marked

ancestor or cover is not vL
max. Therefore, the set of leaves for which vL is the cover, i.e.,

coveredby(vL), can be represented as a set of contiguous intervals. Let us denote this

set as CI = {I1, I2, ..., Ik}. Here, Ii = [ai, bi], where i ∈ {1, 2, ..., k}, and all the leaves

between ℓai
and ℓbi

belongs to coveredby(vL). Here CI is an abbreviation for covered

intervals.

Lemma 3.9 proves that the total number of intervals in CI is O(σ), i.e., k = O(σ).

Additionally, this lemma establishes that the total number of leaves, for which vL is the

cover, is ∑k
a=1 |Ia| = O(k log3 N) = O(σ log3 N), where |I| is the length of an interval

I. Furthermore, since there is a one-to-one correspondence between a marked node and

weighted rectangle, as shown before, we store augmenting information for each rectan-

gle rather than storing it explicitly for the respective marked node. Let the rectangle

associated with vL
max be denoted as rec. Therefore, we let CIrec = CI for simplicity.

Lemma 3.9. The total number of intervals in CIrec is O(σ), and the total number of

leaves, for which a marked node (here vL
max) is a cover, is O(σ log3 N).

Proof. Let cL be one of the child nodes of vL
max. Assume that lleaf(cL) and rleaf(cL) lie

inside the intervals Ii and Ij respectively. First, we prove that Ii and Ij are consecutive

intervals.

Suppose there is an interval Ik between Ii and Ij. This means that Ik is entirely

contained inside the subtree of cL. In other words, there is an interval of leaves Ik

completely inside the subtree of cL for which vL
max is the cover. This implies that there

24



is at least one grouping interval of leaves completely contained inside the subtree of cL

for which vL
max is the lowest common ancestor (lca) of its leftmost and rightmost leaves

(see marking scheme for more details). But this is not possible as for vL
max to be the lca,

the leftmost and rightmost leaves of that grouping interval should exist on two separate

downward branches of vL
max. This is the contradiction. Therefore, this means that there is

no grouping interval completely contained inside the subtree of the child node cL. Hence,

there is no Ik that is entirely contained inside the subtree of cL.

The above argument implies that Ii and Ij are consecutive intervals. Therefore, the

subtree of a child node of vL
max overlaps with at most 2 consecutive intervals in CIrec.

Furthermore, there are at most σ child nodes of vL
max. Hence, the total number of intervals

in CIrec is O(σ).

Secondly, there are at most O(σ) grouping intervals under the subtree of vL
max for which

vL
max is the lca of its leftmost and rightmost leaves, as each grouping interval need to span

over two separate downward branches of vL
max for vL

max to be that lca. Additionally, the

total number of leaves in all such grouping intervals combined is bounded by O(σ · g) =

O(σ · log3 N) where g is the grouping factor. This implies that the total number of leaves

for which vL
max is the lowest marked ancestor or the cover is (σ log3 N).

The above lemma proves that the set of leaves, for which vL is the cover, is divided

into contiguous intervals of leaves. Now in order to go from vL to ℓs, first we store some

information to retrieve which interval this leaf belongs to, and then where exactly that

leaf is inside that interval.

For each marked node (here vL
max or its associated rec), we begin by storing the start

of each interval in an array INLEFTrec[·]. Additionally, we store the size of such intervals

in another array INLENrec[·]. Moreover, we store the prefix-sum array of INLENrec[·] in

an array PSLENrec[·] (see Figure 3.2 for example). Since we are not storing the entire

ISAL[·, ·] because it requires O(log N) bits for each leaf, instead we store what we call a

miniISAL[·, ·]. This is a 2D array that stores a O(log σ + log log3 N)-bit number for each

25



matrix position (i, j). This is because each entry in the miniISAL[i, j] is the lexicographical

rank of the leaf associated with ISAL[i, j] under its lowest marked ancestor and the total

number of leaves for which a marked node is the lowest marked ancestor is O(σ log3 N)

(Lemma 3.9). Now let miniISAL[i, j] = q. First we do binary search of q in PSLENrec[·]

and get the index e such that the value of PSLENrec[e] is the largest number smaller than

q. Now return the final output s = INLEFTrec[e] + (q − PSLENrec[e]).

3.3.2.3. Pseudocode of LFISAL-mapping Operation

Below, we outline the pseudocode for LFISAL-mapping operation:

Algorithm 1: LFISAL(i, j, ISAL(i, j))
1: h = STH.inverse(i, j)

2: v = STV.inverse(i, j)

3: s = ISAL[i, j]

4: rec = 3d_stabbing_max(h, v, s)

5: q = miniISAL[i, j]

6: e = binary_search(PSLENrec, q)

7: s = INLEFTrec[e] + (q − PSLENrec[e])

8: return s

3.4. Space and Time Complexity

3.4.1. Space Complexity

At the end of the construction step, we have three suffix trees in our index based on three

different types of suffix definitions, along with some auxiliary structures that we store.

The horizontal and vertical suffix trees, i.e., STH and STV, are stored as compressed suffix

trees (see Fact 2.1 and 2.2 in Chapter 2), which together occupy O(N log σ)+O(N log σ) =

O(N log σ) bits of space. On the contrary, we only store the compressed topology for the

26



Lsuffix tree STL rather than storing the entire suffix tree. This compressed topology

provides navigational functionalities, and overall it occupies 4N + o(N) bits of space (see

Fact 2.1 in Chapter 2).

As previously mentioned in the marking scheme section, the number of marked nodes

on STL is O(N/ log3 N). Thus, the number of their corresponding shadow points on

STL, STH, and STV is also O(N/ log3 N). Additionally, due to one-to-one correspondence

between marked nodes and 3D rectangles, the number of such rectangles is also bounded

from above by the same factor.

Each 3D rectangle has a set of arrays associated with it. The length of each of these

arrays (INLEFTrec[·], INLENrec[·],PSLENrec[·]) is the number of intervals under the marked

node of that rectangle. As per the marking scheme, the number of grouping intervals

is bounded by O(N/ log3 N). Therefore, the total number of intervals across all the

rectangles is also bounded by O(N/ log3 N) [implication from Lemma 3.9]. Each number

in these auxiliary data structures take O(log N) bits to store. Identifiers for each marked

node or shadow points also take at most O(log N) bits. Thus, the storage space required

for all the auxiliary structures is O(N/ log2 N) = o(N) bits.

If there are t rectangles, the data structure for stabbing-max query takes O(t(log t/ log log t)2)

bits of space [Nek11], which is O(t log2 t) bits of space. By taking t = O(N/ log3 N) for

our case, the stabbing-max data structure takes O(N/ log N) words of space which is

equivalent to O(N) bits of space. This is because each word occupies O(log N) bits of

space.

Finally, for our miniISAL structure, we simply store a matrix of dimensions n × n,

with each entry miniISAL[i, j] taking O(log σ + log log N) bits. This is because an entry

in miniISAL stores a position of the desired leaf among at most σ log3 N leaves, which

have the same lowest marked node. Hence, in total, we get O(N log σ + N log log N)

bits of space for this part. Additionally, we store the sampled inverse suffix array which

has O(N/ log N) elements, where each element takes O(log N) bits. Therefore, overall, it

takes O(N) bits of space.

27



After summing up all the five parts that are considered in our index, we get O(N log σ)+

o(N)+O(N)+O(N log σ+N log log N)+O(N) bits of space. This simplifies to O(N log σ+

N log log N) bits as claimed in Theorem 3.1.

3.4.2. Time Complexity

For evaluating the time complexity of the query evaluation, as a key component, we

first focus on computing the LFISAL-mapping operation. We follow the pseudocode (see

Algorithm 3.3.2.3.) step by step for this. The first two steps take tinverse as given by

CST, which is O(logϵ n) (see Fact 2.2 in Chapter 2). The third step takes O(1) time

since the value is provided as a part of the function. The most time consuming part

is the stabbing-max data structure, which takes O((log N/ log log N)3) time. Finding

corresponding marked node can be done in O(1) time using succinct tree data structure

and searching for prefix sum in the array associated with the rectangle can be done

via binary search in O(log N) time. Thus, overall, the LFISAL-mapping operation takes

O((log N/ log log N)3) time. Finally, considering that our query algorithm for ISAL can

have at most log N applications of the LFISAL-mapping operations, we get our total time

complexity as O(log4 N/(log log N)3) (as claimed in Theorem 3.1).

3.5. Conclusion

To conclude, we provide an O(N log σ+N log log N)-bit index that supports inverse suffix

array queries in O(log4 N/(log log N)3) time. Even though the main goal of developing

2D text index that can allow pattern matching, i.e., to compute suffix array (SA) value

or LF values efficiently is not achieved, we think this is a significant step forward in

understanding the structure of the problem. Exploring the inter-relations here may lead

us to better tools to compute LF operation efficiently in compact space.

28



Chapter 4.

Sublinear-Time Quantum Algorithm for 2-Dimensional Longest
Common Substring

We begin by formally defining the 2-dimensional Longest Common Substring problem

(2D-LCS) in the following manner:

Definition 4.1 (2-dimensional Longest Common Substring). Let S and T be input 2D

strings (matrices), each of size N = n × n and are drawn from an alphabet Σ of size σ.

Then the task is to find the maximum length ℓ such that there occurs a 2D substring

(submatrix) of size L = ℓ × ℓ in both S and T.

We already know that there exists an Õ (N)-time classical algorithm, which is based on

first constructing a 2D suffix tree and then answering a 2D-LCS query. However, we are

interested in understanding if it is possible to design a sublinear-time quantum algorithm

under the assumption that quantum query model is our input model (see Section 4.1.).

In this chapter, we focus on solving the decision version of the 2D-LCS problem: given

2D input strings S and T of size N = n × n, decide if they have a common 2D substring

of size at least D = d × d. We perform binary search over the threshold length d in order

to output the size of the longest common 2D substring.

Our quantum algorithm for solving the above decision problem is based on an an-

choring technique, which was previously used for classical and quantum 1D-LCS algo-

rithms [AJ21]. For this anchoring technique, we first need to construct an anchor set. We

discuss more about anchor sets latter in this chapter. For the 1D-LCS problem, there ex-

ists a sublinear-time algorithm for constructing an anchor set of small size. However, the

question of designing an algorithm for constructing anchor sets for 2D-LCS is still open.

For the purpose of this thesis, we assume that there exists a sublinear-time algorithm for

anchor set construction. We formalize this notion in Conjecture 4.6. We now summarize

our contribution in the following theorem and prove this theorem in Section 4.2.:

29



Theorem 4.2. If Conjecture 4.6 is true, then the decision version of the 2-dimensional

Longest Common Substring problem with a threshold length d can be solved using a quan-

tum algorithm with Õ
(
N2/3d1/3

)
query and time complexity.

In addition to proving the aforementioned theorem, we provide a lower bound of

quantum query complexity for the 2D-LCS problem. This bound does not match with

the query complexity of our quantum algorithm, implying that either there exists a better

lower bound and our algorithm is optimal, or there exists a more efficient algorithm

that matches this lower bound. We prove this bound by a reduction from the Element

Distinctioness Problem [Amb07]. Finally, we formally state this result in the following

theorem and prove this theorem in Section 4.3.:

Theorem 4.3 (Lower Bound). The 2-Dimensional Longest Common Substring problem

requires an algorithm with Ω̃(N2/3) quantum query complexity.

4.1. Useful Subroutines

We start by defining our computational model. Our computational model is based on

the quantum query model, where we assume that the input 2D strings are accessed using

quantum oracles. This type of assumption is quite standard in the field of quantum

algorithms. Let S be an input 2D string of size N = n × n, whose characters are drawn

from an alphabet Σ. Assume that we have an access to an oracle OS such that the

following unitary mapping holds:

OS|i, j, c⟩ → |i, j, c ⊕ S[i, j]⟩, (4.0)

where given indices i, j ∈ [n] and a fixed character c ∈ Σ, Os provides access to the

character at the (i, j) position of S. The symbol ⊕ denote the XOR operation between

the binary encodings of characters. The quantum oracles can be queried in superposition,

where each query incurs a unit cost.

30



The query complexity of an algorithm is the number of queries made to the input oracle

for solving a given problem. On the other hand, the time complexity of an algorithm also

counts the number of elementary gates associated with each unitary operations besides

the input oracle. One of the useful subroutines for designing a time-efficient version

of a query-efficient quantum algorithm is quantum random access memory (QRAM). In

QRAM, we have a working memory for storing all the items already queried till now,

and we have access to its elements at unit cost. The assumption of QRAM is also

quite standard in the design of time-efficient implementations of query-efficient quantum

algorithms.

We have already briefly introduced quantum primitives such as Grover’s search algo-

rithm and quantum walk algorithm in Chapter 2. Using Grover’s search algorithm as a

subroutine, one can compare any given two strings, as well as compute the length of the

longest common prefix (LCP). By comparing two strings we mean that one can determine

if they are the same or not. We formalize this notion in the following lemma:

Lemma 4.4 (Lexicographical Comparison of Strings and Computing thier LCP). Given

two 1D strings S and T of length N , one can determine their lexicographical order, i.e.,

S ≺ T, S ≻ T, or S = T, in Õ(
√

N) time using Grover’s algorithm. Additionally, we can

determine their LCP within the time complexity.

Proof. The authors of Ref [OR07] show how to compare two strings using Grover’s search

algorithm in Õ(
√

N) time. This determines the lexicographical ordering between the two

given strings. Furthermore, for computing LCP, one can perform binary search over

the length of the prefixes and at each iteration compare the prefixes using the above

string-comparison quantum algorithm.

31



4.2. A Quantum Algorithm for 2D-LSC

In this section, we present our sublinear-time quantum algorithm based on the an-

choring technique, which was previously used for classical and quantum 1D-LCS algo-

rithms [AJ21]. We employ the quantum walk framework discussed in Chapter 2 to apply

this technique.

Our quantum algorithm consists of two steps: 1) construction of small anchor sets

and 2) anchoring via the quantum walk framework. First, in Section 4.2.1., we conjecture

that there exists an efficient sublinear-time construction algorithm that outputs small

anchor sets. Then, in Section 4.2.2., we show that our quantum walk algorithm, based

on these anchor sets, have sublinear quantum query complexity. Additionally, we design

data structures for our quantum walk algorithm and show that our algorithm runs in

sublinear time as well. In other words, the time complexity of our algorithm is up to no(1)

factors of the query complexity.

4.2.1. Constructing Small Anchor Sets

We follow Ref. [AJ21] for some standard definitions and terminologies. First, we extend

the definition of good anchor sets to the 2D case and introduce good 2D anchor sets in

the following manner:

Definition 4.5 (Good 2D Anchor Sets). Let S and T be input 2D strings. We say that

AS, AT ⊆ {((1, 1), (1, 1)), . . . , ((n, n), (n, n))} are good anchor sets if the longest common

2D substring of S and T has size at least D = d × d, then there exists positions (i, i′) and

(j, j′) and shifts h′, h′′ ∈ [0, d], such that S[i . . i + d, i′ . . i′ + d] = T[j . . j + d, j′ . . j′ + d],

((i+h′, i′+h′), (i+d+h′′, i′+d−h′′)) ∈ AS, and ((j+h′, j′+h′), (j+d+h′′, j′+d−h′′)) ∈ AT.

Here, each anchor is a tuple of positions on a 2D string. Suppose A = AS ∪ AT =

{A1, . . . , AM}, and there exists a quantum algorithm, such that given an index 1 ≤ m ≤

32



M , it computes an element Am in T (N, d) time. If this computation is possible, then we

say that A is T (N, d)-quantum-time constructible.

We prefer an anchor set with a size much smaller than the size of the input 2D strings,

i.e, M ≪ N , as well as a sublinear-time algorithm to construct this set. For 1D strings, we

can use methods such as difference covers [BK03] and partitioning sets [BGP] to construct

anchor sets. There exists a trade-off between the size and construction time of anchor sets

using these methods. Using difference covers, there exists an algorithm that constructs

an anchor set of size O(N/
√

d). This way of constructing anchor sets does no depend

on the input strings. However, another method, which is based on partitioning sets, is

dependent on the input strings and constructs an anchor set of size O(N/d). Although,

the size of the anchor set is smaller using the latter method, its construction time is not

sublinear. Therefore, this method is not useful for our case. Then, there is a hybrid

method that is based on the notion of approximate difference covers combined with the

idea of the string synchronizing sets, introduced in Ref. [AJ21]. This hybrid approach

constructs anchor sets in Õ
(
N/d3/4

)
time, such that mth anchor can be computed in

T = Õ(
√

d) time.

However, it is not trivial to extend any of the above methods from the 1D case to

construct good 2D anchor sets that has a favourable trade-off between the construction

time and size of the anchor sets. Therefore, we assume that if the following conjecture

holds, then our quantum algorithm runs in sublinear quantum query and time complexity:

Conjecture 4.6. There exists a sublinear time construction algorithm that generates an

Õ(d)-quantum-time constructible anchor set of size M = O(N/d).

Before moving forward, recall that we can linearize a 2D string using the linearization

scheme of Ref. [Gia95]. We mentioned this scheme before when we defined 2D suffixes in

Chapter 2. We denote such a linear form of a 2D string S by L(S). Now, if we split a 2D

subtring relative to a position (i, i′), there there will be four regions or quadrants. We

denote the d × d 2D string representing the upper-left quadrant by ULd(i, i′). Similarly,

33



we denote upper-right, lower-left, and lower-right quadrants by URd(i, i′), LLd(i, i′) and

LRd(i, i′), respectively. For linearizing these 2D strings, we begin linearizing from (i, i′)

and then continue linearizing until we hit the diagonally-opposite end of the square.

For every anchor A(k) = ((ak, a′
k), (bk, b′

k)), we associate it with the following d × d

size 2D strings:

SQ1(k) = ULd(ak, a′
k),

SQ2(k) = LRd(ak, a′
k),

SQ3(k) = ULd(ak + d/2, a′
k + d/2),

SQ4(k) = LRd(ak − d/2, a′
k − d/2),

SQ5(k) = URd(bk, b′
k),

SQ6(k) = LLd(bk, b′
k),

SQ7(k) = URd(bk + d/2, b′
k − d/2),

SQ8(k) = LLd(bk − d/2, b′
k + d/2).

We also keep track of which set the anchor A(k) belongs to, i.e, A(k) ∈ AS or A(k) ∈ AT.

For simplicity of the presentation, we say that A(k) is blue if A(k) ∈ AS, and A(k) is

green if A(k) ∈ AT. Similarly, we color the above mentioned 2D strings depending on

which colored anchor they associate with.

From the above development, we make the following observation:

Proposition 4.7 (Witness Pair). The longest common 2D substring of S and T has size

at least D = d×d, if and only if, there exists a blue anchor A(x) = ((ax, a′
x), (bx, b′

x)) and

green anchor A(y) = ((ay, a′
y), (by, b′

y)), for some x, y ∈ {1, . . . , M}, such that exactly one

of the following cases holds. We call such pairs as witness pairs. Here, the LCP of two

2D strings is evaluated by first linearizing them.

34



• Case 1:

lcp
(
ULd(ax, a′

x), ULd(ay, a′
y)

)
≤ d/2 × d/2,

lcp
(
URd(bx, b′

x), URd(by, b′
y)

)
≤ d/2 × d/2,

lcp
(
ULd(ax, a′

x), ULd(ay, a′
y)

)
+ lcp

(
LRd(ax, a′

x), LRd(ay, a′
y)

)
≥ d × d,

lcp
(
ULd(ax + d/2, a′

x + d/2), ULd(ay + d/2, a′
y + d/2)

)
≥ d/2 × d/2,

lcp
(
URd(bx, b′

x), URd(by, b′
y)

)
+ lcp

(
LLd(bx, b′

x), LLd(by, b′
y)

)
≥ d × d,

lcp
(
URd(bx + d/2, b′

x − d/2), URd(by + d/2, b′
y − d/2)

)
≥ d/2 × d/2.

• Case 2:

lcp
(
ULd(ax, a′

x), ULd(ay, a′
y)

)
≤ d/2 × d/2,

lcp
(
URd(bx, b′

x), URd(by, b′
y)

)
≥ d/2 × d/2,

lcp
(
ULd(ax, a′

x), ULd(ay, a′
y)

)
+ lcp

(
LRd(ax, a′

x), LRd(ay, a′
y)

)
≥ d × d,

lcp
(
ULd(ax + d/2, a′

x + d/2), ULd(ay + d/2, a′
y + d/2)

)
≥ d/2 × d/2,

lcp
(
URd(bx, b′

x), URd(by, b′
y)

)
+ lcp

(
LLd(bx, b′

x), LLd(by, b′
y)

)
≥ d × d,

lcp
(
LLd(bx − d/2, b′

x + d/2), LLd(by − d/2, b′
y + d/2)

)
≥ d/2 × d/2.

• Case 3:

lcp
(
ULd(ax, a′

x), ULd(ay, a′
y)

)
≥ d/2 × d/2,

lcp
(
URd(bx, b′

x), URd(by, b′
y)

)
≤ d/2 × d/2,

lcp
(
ULd(ax, a′

x), ULd(ay, a′
y)

)
+ lcp

(
LRd(ax, a′

x), LRd(ay, a′
y)

)
≥ d × d,

lcp
(
LRd(ax − d/2, a′

x − d/2), LRd(ay − d/2, a′
y − d/2)

)
≥ d/2 × d/2,

lcp
(
URd(bx, b′

x), URd(by, b′
y)

)
+ lcp

(
LLd(bx, b′

x), LLd(by, b′
y)

)
≥ d × d,

lcp
(
URd(bx + d/2, b′

x − d/2), URd(by + d/2, b′
y − d/2)

)
≥ d/2 × d/2.

35



• Case 4:

lcp
(
ULd(ax, a′

x), ULd(ay, a′
y)

)
≥ d/2 × d/2,

lcp
(
URd(bx, b′

x), URd(by, b′
y)

)
≥ d/2 × d/2,

lcp
(
ULd(ax, a′

x), ULd(ay, a′
y)

)
+ lcp

(
LRd(ax, a′

x), LRd(ay, a′
y)

)
≥ d × d,

lcp
(
LRd(ax − d/2, a′

x − d/2), LRd(ay − d/2, a′
y − d/2)

)
≥ d/2 × d/2,

lcp
(
URd(bx, b′

x), URd(by, b′
y)

)
+ lcp

(
LLd(bx, b′

x), LLd(by, b′
y)

)
≥ d × d,

lcp
(
LLd(bx − d/2, b′

x + d/2), LLd(by − d/2, b′
y + d/2)

)
≥ d/2 × d/2.

Intuitively, the above cases tell us the positions of the anchor A(x) with respect to a longest

common 2D substring it is anchoring. Similarly, it tells the position of the anchor A(y).

4.2.2. Anchoring via the Quantum Walk Framework

Now, we present our quantum walk algorithm that finds such a witness pair. From the

above proposition, we know that if such a witness pair exists, then there exists a common

2D substring of size at least D = d × d.

We begin by defining a Johnson graph J(M, r) on which we will do our walk. Here, M

is the size of our anchor set A = AS ∪ AT = {A(1), . . . , AM}. Please refer Chapter 2 for

a brief overview of the quantum walk framework. Each vertex in this graph corresponds

to an r-subset of {1, . . . , M}. Therefore, the graph consists of
(

M
r

)
number of vertices.

Furthermore, a vertex R = {k1, k2, . . . , kr} is called a marked vertex, if and only if, R

contains a witness pair. Overall, if S and T have a common 2D substring of size D = d×d,

then at least
(

M−2
r−2

)
/

(
M
r

)
fraction of vertices of the graph are marked vertices. On the

contrary, if S and T do not have a common 2D substring of size D = d × d, then there

are no marked vertices. We also augment a vertex R = {k1, k2, . . . , kr} with the following

data:

• The set R = {k1, k2, . . . , kr} itself.

36



• The anchors {A(k1), . . . , A(kr)}.

• The array {kSQ1
1 , . . . , kSQ1

r } ordered in a such way that L(SQ1(kSQ1
i )) ⪯ L(SQ1(kSQ1

i+1 ))

for all 1 ≤ i ≤ r. Similarly, we store such ordered arrays for {SQ2(ki)}i, . . . , {SQ8(ki)}i.

• The LCP array hSQ1
1 , . . . , hSQ1

r−1, where hSQ1
i = lcp

(
SQ1(kSQ1

i ), (SQ1(kSQ1
i+1 )

)
. Similarly,

we store LCP arrays for {SQ2(ki)}i, . . . , {SQ8(ki)}i.

Note that we do not need to store entire 2D strings {SQ1(ki)}i, . . . , {SQ8(ki)}i in order

to solve our central problem of searching for a witness pair. We can efficiently evaluate

LCP between any pair of 2D strings, say SQ1(kSQ1
i ) and SQ1(kSQ1

j ), using the above two

arrays associated with 2D strings {SQ1(ki)}i.

We are now in a position to define our key task that we are trying to solve:

Check for a Witness Pair: Given the above mentioned augmented data with

respect to a vertex R, find if R consists of a pair of anchors such that one of the

cases of Proposition 4.7 hold.

We show how to implement the above task in sublinear time in Section 4.2.3. using our

quantum walk algorithm. For now, we evaluate the query complexity of our quantum

walk algorithm in order to solve the above task. As mentioned before in Chapter 2, a

quantum walk algorithm can search for a marked vertex with a cost of the following order:

S + M

r

(√
rU + C

)
, (4.0)

where S, U , and C are the costs associated with the stepup, update, and checking steps

of our algorithm. For evaluating the query complexity of our algorithm, we need to

determine these costs in terms of the query complexity.

Proposition 4.8 (Checking Cost in the Query Complexity). We can check whether a

vertex R = {k1, . . . , kr} is marked or not using just the data associated associated with

37



R. Therefore, the checking cost is zero because we do not need to make any additional

queries to the input oracle.

Proof. Let P be a d×d size 2D substring of S or T, and let A be its anchor. From Propo-

sition 4.7, we say that the 2D strings defined for A completely covers P. Additionally,

the data associated with the anchor A exactly determines the LCP value of every pair.

Therefore, we do not need to make additionaly queries to the input oracle for checking if

a vertex consists of a witness pair or not.

Next, we evaluate the cost of an update step of our walk, i.e, going from a vertex to

one of its neighbours. Recall that any two vertices of a Johnson graph are neighbours,

if and only if, their respective sets differ in exactly two elements. In other words, if we

delete an element from the set and insert a new one, then this updated set corresponds

to one of the neighbours of the vertex.

Algorithm 2: Inserting a new anchor with an index k

1 Compute the anchor A(k) = ((ak, a′
k), (bk, b′

k))

2 Compute the lexicographical rank i of SQ1(k) among
{
SQ1(kSQ1

1 ), . . . , SQ1(kSQ1
r )

}
3 Compute hpred = lcp(SQ1(k), SQ1(kSQ1

i−1 ))

4 Compute hsucc = lcp(SQ1(k), SQ1(kSQ1
i ))

5 Compute h = lcp(SQ1(kSQ1
i−1 )), SQ1(kSQ1

i ))

6 Update the indices as
(
kSQ1

1 , . . . , kSQ1
i−1 , k, kSQ1

i , . . . , kSQ1
r

)
7 Using h update the LCP array as

(
hSQ1

1 , . . . , hSQ1
i−2 , hpred, hsucc, hSQ1

i , . . . , hSQ1
r

)
8 Repeat Steps 3-8 for SQ2(k), . . . , SQ8(k)

Proposition 4.9 (Update Cost in the Query Complexity). The update cost of each step

of our quantum walk algorithm is U = Õ(d).

Proof. In an update step, we insert a new anchor k, as well as delete an existing anchor

from a given set {k1, . . . , kr}. The pseudocode for inserting a new anchor point and

updating its corresponding data is given in Algorithm 2. On the other hand, deleting

an anchor along with its associated data is precisely the reverse of the insertion process.

38



Therefore, the query complexity of the deletion process stays the same as that of the

insertion process.

We follow the pseudocode given by Algorithm 2 for computing the query complexity

of the above insertion process. Step 1 computes the anchor A(k) in Õ(d) (see Conjec-

ture 4.6). In Step 2, for computing the lexicographical rank of SQ1(k), we perform binary

search over the set
{
SQ1(kSQ1

1 ), . . . , SQ1(kSQ1
r )

}
. During each step of this binary search,

we need to compare the given two 2D strings of size D = d × d, and this comparison

can be done in Õ(
√

D) = Õ(d) time, according to Lemma 4.4. Steps 3, 4, and 5 involve

computing LCP values between two 2D strings of size D, which can be done in Õ(d) (see

Lemma 4.4). Steps 6 and 7 are Õ(1)-time operations, because here we are just updating

the arrays with newly computing LCP values. Finally, we are repeating the above steps

a constant number of times. Therefore, the total query complexity of inserting a new

anchor is Õ(d).

The setup step of our quantum walk algorithm actually involves r insertions. There-

fore, we can make the following statement about the query complexity of the setup step:

Proposition 4.10 (Setup Cost in the Query Complexity). The setup cost of our quantum

walk algorithm is S = Õ(rd).

Bringing all the aforementioned costs together, we obtain the following query com-

plexity of our quantum walk algorithm:

S + M

r

(√
rU + C

)
= rd + Md√

r
. (4.0)

Now, substituting r = M2/3 and M = Õ(N/d) (see Conjecture 4.6), we get the overall

query complexity is Õ(N2/3d1/3). This is the query complexity claimed in Theorem 4.2,

and this completes the proof of one part of this theorem. For the other part of this

theorem, we need to prove that the time complexity of our algorithm matches our query

complexity up to poly-logarithmic factors. Therefore, in Section 4.2.3., we begin by first

39



presenting data structures for storing and retrieving the data associated with the anchors

in a time efficient manner. Then, we show how to use these data structures in order to

efficiently implement the setup, update, and checking steps.

4.2.3. Time-efficient Implementation

Our quantum walk algorithm consists of the following two steps that are time consuming:

• Insert and delete operations in each update step.

• Checking if a vertex is marked or not during the checking step.

In this section, we present data structures that implement the above two steps in a time-

efficient manner. Then, we show that using these data structures, the setup, update,

and checking step cost in terms of time complexity are S = Õ(rd), U = Õ(d), and C =

Õ(
√

rd). This implies that the overall time complexity of our quantum walk algorithm

is Õ(N2/3d1/3).

Data structures for insert and delete operations: We prefer data structures that

can perform insertions and deletions in Õ(1) time so as to maintain time complexities

of update and setup steps within the same order as their query complexity, i.e., S =

Õ(rd) and U = Õ(d). However, there are additional constraints that these data structures

should follow in order to be useful for our quantum walk algorithm. These constraints

are as follows:

• The data structure needs to be history-independent, i.e., the data structure should

solely depend on the data being stored and not on the series of operations that

resulted in this data.

• The data structure should have a worst-case time complexity for all the required

operations and not expected or amortized time complexity.

40



The above constraints rule out most of the data structures that support these update

operations in Õ(1) time. Ambainis [Amb07] introduced a data structure based on hash

tables and skip lists that satisfies both the constraints and supports inserting, deleting,

and searching in constant time. Furthermore, the authors of Ref. [BLPS21] gave a data

structure that also supports indexing, i.e., given an index k, retrieve the kth element from

the set.

As our quantum walk algorithm is over the Johnson graph J(M, r), for consistency, we

mention the size of the following data structures in terms of r. First, we use hash tables,

introduced in Ref. [Amb07], for efficient lookup operations. For more details, please refer

to this reference.

Fact 4.11 (Hash Tables). A hash table supports the following operations in Õ(1) time by

maintaining a set of at most r key-value pairs {(key1, value1), . . . , (keyr, valuer)}, where

keyi ∈ [M ], within Õ(r) space. This table satisfies the history-independence property.

• Lookup: Given a key ∈ [M ], return the value associated with it.

• Insertion: Given a (key, value) pair, insert it into the existing table.

• Deletion: Given a (key, value) pair, delete it from the existing table.

We also need a data structure that supports indexing, insertion, deletion, and other

operations that support range-minimum queries. For this, we use a skip list, which was

first introduced in Ref. [Amb07]. We actually employ the modified version of skip lists,

that was presented in Ref. [AJ21] to support indexing and other operations.

Fact 4.12. A skip list is a history-independent probabilistic data structure that supports

the following operations in Õ(1) time and with high success probability by maintaining an

array of items (key1, value1), . . . , (keyr, valuer), where keyi ∈ [M ], within Õ(r) space:

• Insertion: Given an index i ∈ [r] and a (key, value) pair, insert this pair into the

list at the ith index.

41



• Deletion: Given an index i ∈ [r], delete the ith key-value pair from the list.

• Location: Given a key, find its index or location in the list.

• Indexing: Given an index i ∈ [r], return the ith key-value pair.

• Range-minimum query: Given an index range [a, b], return mini∈[a,b] valuei.

Now, we use hash tables (see Fact 4.11) for storing the anchor A(k) corresponding to

each index k ∈ R. We employ skip list data structure, from Fact 4.12, for maintaining

lexicographical orderings and LCP arrays. For k ∈ R and i ∈ [8], we use the notation

lexirSQi(k) to denote the lexicographical rank of SQi(k) among the 2D strings {SQi(k)}k∈R.

Using the aforementioned data structures, given k1, k2 ∈ R, we can also compute the

following useful information in constant time:

• We can compute the color of k and sizes of 2D strings {SQi(k)}i∈[8] by quickly

looking up for A(k) from the hash table.

• We can compute lexirSQi(k) for i ∈ [8] by using the location operation of the respec-

tive skip list (see Fact 4.12).

• We can compute lcp (SQi(k1), SQi(k2)) for i ∈ [8] by first computing j = lexirSQi(k1)

and j′ = lexirSQi(k2). Then assuming j′ > j, we can compute lcp (SQi(k1), SQi(k2)) =

lcp
(
SQi

(
kSQ1

j

)
, SQi

(
kSQ1

j′

))
= min

{
hSQ1

j , . . . , hSQ1
j′

}
using the range-minimum query

operation of the corresponding skip list, which is a constant time operation. Similar

argument holds when j′ < j.

Data structures for the checking step: In addition to the above data structures,

we also need a 6D range-sum data structure because our task for our checking step (see

Task 4.2.2.) reduces to a 6D orthogonal range query. But first, we outline our quantum

algorithm that solves Task 4.2.2. during the checking step. This will help in formalizing

the intuition of the above reduction to a 6D orthogonal range query.

42



Algorithm 3: Find a Witness Pair - Checking Step Algorithm
1 Grover’s Iterations over blue anchor indices kblue ∈ R

2 Obtain the anchor A(k) = ((ak, a′
k), (bk, b′

k)) using the hash table
/* Without the loss of generality, we assume 0 ≤ bk − ak ≤ d/2.

Similar steps are executed for other cases with a small

difference. */

3 Find a range [startSQ1 , endSQ1 ], such that
lcpSQ1(kSQ1

i , SQ1(kSQ1
blue) ≥ d+ax+a′

x−bx−b′
x

2

4 Find a range [startSQ2 , endSQ2 ], such that
lcpSQ2(kSQ2

i , SQ2(kSQ2
blue) ≥ d − d+ax+a′

x−bx−b′
x

2

5 Find a range [startSQ3 , endSQ3 ], such that
lcpSQ3(kSQ3

i , SQ3(kSQ3
blue) ≥ d/2 + d+ax+a′

x−bx−b′
x

2

6 Find a range [startSQ5 , endSQ5 ], such that
lcpSQ5(kSQ5

i , SQ5(kSQ5
blue) ≥ d−ax+a′

x+bx−b′
x

2

7 Find a range [startSQ6 , endSQ6 ], such that
lcpSQ6(kSQ6

i , SQ6(kSQ6
blue) ≥ d − d−ax+a′

x+bx−b′
x

2

8 Find a range [startSQ7 , endSQ7 ], such that
lcpSQ7(kSQ7

i , SQ7(kSQ7
blue) ≥ d/2 + d−ax+a′

x+bx−b′
x

2

9 if there exists a green index kgreen ∈ R such that the following holds: the point
(lexirSQ1(kgreen), . . . , lexirSQ6(kgreen)) lies inside the 6D rectangle created by the
above mentioned ranges then

10 return True
11 return False

Lemma 4.13 (6D Range-sum). There exists a history-independent data structure that

maintains a set of 6D points, where each coordinate is an integer, in Õ(r) space, and this

data structure supports the following operations in O(1) time and high success probability.

• Insertion: Given a new 6D point, insert it in the current set.

• Deletion: Given a 6D point, delete it from the current set if it exists.

• Range-sum query: Given a 6D rectangle, find the number of points in the current

set lying inside this rectangle.

43



Proof. We use a cascaded segment tree for our data structure. Let N = [1, . . . , N ] be a

set from which each coordinate is drawn, where N is a power of two. We first show how

to make a 1D segment tree. Then we can extend this construction to the 6D case. For

this, we break up the range N into smaller sub-segments in the following manner:

N1 = {[1, . . . , N ]},

N2 = {[1, . . . , N/2], [N/2 + 1, . . . , N ]},

N3 = {[1, . . . , N/4], [N/4 + 1, . . . , N/2], [N/2 + 1, . . . , 3N/4], [3N/4 + 1, . . . , N ]},

...

Nlog N = {[1, . . . , 1], [2, . . . , 2], [3, . . . , 3], . . . , [N, . . . , N ]}.

Now, it is clear that a range [x, y] can be represented as a disjoint union of 2 log N

sub-segments of N . We can now extend this to the 6D case by incorporating a segment

tree of segment trees, i.e., a cascaded segment tree with 6 levels of cascading, where a

6D rectangle can be represented as a disjoint union of O(log6 N) 6D sub-rectangles of

N 6. For every 6D sub-rectangles with non-zero sum, we store this sum in a hash table.

Using this data structure, given a query 6D rectangle, we can answer range-sum queries

by adding the individual sums of its O(log6 N) 6D sub-rectangles in Õ(1) time. Finally,

when inserting a new element, we just need to update the range-sum of O(log6 N) many

rectangles, which can be done in Õ(1) time.

Currently, we are at a stage, where we can analyse the time complexity of Algorithm 3

by following its pseudocode step-by-step. In this algorithm, we perform Grover’s itera-

tions over the blue indices, and as there can be at most r blue indices associated with a

vertex, total number of such iterations is Õ(
√

r). The checking step will be time-efficient

if each iteration can be performed in O(polylog(N)) time. In Step 3, we compute the range

[startSQ1 , endSQ1 ] following the condition mentioned in the pseudocode. This range can

be computed in Õ(1) time using the LCP array associated with 2D strings {SQ1(k)}k∈R.

44



Similarly, in Step 4-8, we obtain such ranges corresponding to other 2D strings based

on some conditions mentioned before. Finally, Step 9 is reduced to a 6D orthogonal

range query, which can be again computed in Õ(1) time using the technique presented in

Ref. [AJ21]. Indeed, the authors used their technique for 2D orthogonal range queries,

but it can be easily extendable to 6D orthogonal range queries. Thus, the overall time

complexity of Algorithm 3 is C = Õ(
√

r).

We know that the cost associated with the quantum walk algorithm to find a marked

vertex of a Johnson’s graph is S + M/r(
√

rU + C). Substituting S = Õ(rd), U = Õ(d),

C = Õ(
√

r), r = M2/3, and M = Õ(N/d) in this expression, we obtain the total time

complexity of our quantum walk algorithm as Õ(N2/3d1/3). This completes the proof of

the second part of Theorem 4.2.

4.3. Lower Bound

In this section, we provide a lower bound to the 2D Longest Common Substring problem

by reducing the Element Distinctness problem to it, consequently proving Theorem 4.3.

Let us take the following version of the Element Distinctness problem: Let A be a list

of ℓ elements drawn from an alphabet of size ℓ. The list A is prepared in such a way that

either all its elements are distinct or there exists one element that repeats twice. The

task is to decide which is the case. Ref [Amb07] proves that the above problem has a

Ω(ℓ2/3)-query lower bound. Now, we take an alphabet of size ℓ for our 2D-LCS problem.

We draw ℓ/2 characters uniformly at random from the alphabet and prepare a 2D string

S of size
√

ℓ/2 ×
√

ℓ/2. With the rest of the characters, we prepare a 2D string T of

the same size. Now, if all the elements of A are distinct , then S and T does not have a

common substring. On the contrary, if there exists an element that repeats in A, then

with probability at least 1/2, S and T have a common 2D substring of size 1. This shows

a randomized reduction from the Element Distinctness problem to the 2D-LCS problem.

45



Therefore, by taking N = ℓ/2, we proved that the 2D-LCS problem requires a quantum

algorithm with Ω(N2/3) quantum query complexity.

4.4. Conclusion

To conclude, we design a sublinear-time quantum algorithm for the 2-dimensional Longest

Common Substring problem. Specifically, the query, as well as time complexity of our

proposed quantum walk algorithm is Õ(N2/3d1/3). Also, we gave a lower bound for this

problem by reducing the Element Distinctness problem to it, consequently proving that

any quantum algorithm solving the 2-dimensional Longest Common Substring problem

requires at least Ω̃(N2/3) time.

Some of the open questions and future directions are as follows:

• Closing the gap in query and time complexity either by presenting a better quantum

algorithm or by proving a tighter lower bound that matches our complexity.

• Our sublinear-time quantum algorithm relies on the conjecture that there exists a

sublinear-time quantum algorithm for constructing anchor sets. Therefore, another

step is to prove or disprove this conjecture.

46



Bibliography

[AG04] Jeffrey Scott Vitter Ankur Gupta, Roberto Grossi. Entropy-compressed in-
dexes for multidimensional pattern matching. In DIMACS working group on
Burrows-Wheeler Transform, 2004.

[AJ21] Shyan Akmal and Ce Jin. Near-optimal quantum algorithms for string prob-
lems, 2021.

[Amb07] Andris Ambainis. Quantum walk algorithm for element distinctness. SIAM
Journal on Computing, 37(1):210–239, 2007.

[BGP] Or Birenzwige, Shay Golan, and Ely Porat. Locally Consistent Parsing for
Text Indexing in Small Space, pages 607–626.

[BK03] Stefan Burkhardt and Juha Kärkkäinen. Fast lightweight suffix array con-
struction and checking. In Annual Symposium on Combinatorial Pattern
Matching, pages 55–69. Springer, 2003.

[BLPS21] Harry Buhrman, Bruno Loff, Subhasree Patro, and Florian Speelman. Limits
of quantum speed-ups for computational geometry and other problems: Fine-
grained complexity via quantum walks, 2021.

[BW94] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression
algorithm. Technical report, 1994.

[Far97] M. Farach. Optimal suffix tree construction with large alphabets. In Pro-
ceedings 38th Annual Symposium on Foundations of Computer Science, pages
137–143, 1997.

[FFM00] Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan. On the
sorting-complexity of suffix tree construction. J. ACM, 47(6):987–1011, 2000.

[FM05] Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J. ACM,
52(4):552–581, 2005. An extended abstract appeared in FOCS 2000 under the
title “Opportunistic Data Structures with Applications”.

[GG97] Raffaele Giancarlo and Roberto Grossi. Suffix tree data structures for ma-
trices. In Alberto Apostolico and Zvi Galil, editors, Pattern Matching Algo-
rithms, pages 293–340. Oxford University Press, 1997.

[Gia95] Raffaele Giancarlo. A generalization of the suffix tree to square matrices, with
applications. SIAM J. Comput., 24(3):520–562, 1995.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of
Computing, STOC ’96, page 212–219, New York, NY, USA, 1996. Association
for Computing Machinery.

47



[GV05] Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suf-
fix trees with applications to text indexing and string matching. SIAM J.
Comput., 35(2):378–407, 2005. An extended abstract appeared in STOC 2000.

[KKP98] Dong Kyue Kim, Yoo Ah Kim, and Kunsoo Park. Constructing suffix arrays
for multi-dimensional matrices. In Martin Farach-Colton, editor, Combina-
torial Pattern Matching, 9th Annual Symposium, CPM 98, Piscataway, New
Jersey, USA, July 20-22, 1998, Proceedings, volume 1448 of Lecture Notes in
Computer Science, pages 126–139. Springer, 1998.

[KMP77] Donald E. Knuth, James H. Morris, Jr., and Vaughan R. Pratt. Fast pattern
matching in strings. SIAM Journal on Computing, 6(2):323–350, 1977.

[KR87] Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-
matching algorithms. IBM Journal of Research and Development, 31(2):249–
260, 1987.

[LGS22] François Le Gall and Saeed Seddighin. Quantum meets fine-grained complex-
ity: Sublinear time quantum algorithms for string problems. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2022.

[McC76a] Edward M. McCreight. A space-economical suffix tree construction algorithm.
J. ACM, 23(2):262–272, apr 1976.

[McC76b] Edward M. McCreight. A space-economical suffix tree construction algorithm.
J. ACM, 23(2):262–272, 1976.

[MM93] Udi Manber and Eugene W. Myers. Suffix arrays: A new method for on-line
string searches. SIAM J. Comput., 22(5):935–948, 1993.

[MN08] Veli Mäkinen and Gonzalo Navarro. On self-indexing images - image compres-
sion with added value. In 2008 Data Compression Conference (DCC 2008),
25-27 March 2008, Snowbird, UT, USA, pages 422–431. IEEE Computer So-
ciety, 2008.

[MNRS11] Frédéric Magniez, Ashwin Nayak, Jérémie Roland, and Miklos Santha. Search
via quantum walk. SIAM Journal on Computing, 40(1):142–164, 2011.

[Nav16] Gonzalo Navarro. Compact Data Structures - A Practical Approach. Cam-
bridge University Press, 2016.

[Nek11] Yakov Nekrich. A dynamic stabbing-max data structure with sub-logarithmic
query time. In Takao Asano, Shin-Ichi Nakano, Yoshio Okamoto, and Osamu
Watanabe, editors, Algorithms and Computation - 22nd International Sym-
posium, ISAAC 2011, Yokohama, Japan, December 5-8, 2011. Proceedings,
volume 7074 of Lecture Notes in Computer Science, pages 170–179. Springer,
2011.

[OR07] David Oliveira and Rubens Ramos. Quantum bit string comparator: Circuits
and applications. Quantum Computers and Computing, 7, 01 2007.

48



[Sad07] Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory
Comput. Syst., 41(4):589–607, 2007.

[Ukk95] Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–
260, 1995.

[Wei73] Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium
on Switching and Automata Theory, Iowa City, Iowa, USA, October 15-17,
1973, pages 1–11. IEEE Computer Society, 1973.

49



Vita

Dhrumil Patel was born in Ahmedabad, India in 1995. He received his bachelor’s de-

gree from International Institute of Information Technology, Hyderabad, India. Dhrumil

published 7 papers during his master’s journey at Louisiana State University (LSU). He

anticipates his graduation from LSU with a master’s degree on August 2022. His inter-

ests lie in the field of algorithms, especially quantum algorithms, data structures, and

computational complexity.

50


	2-Dimensional String Problems: Data Structures and Quantum Algorithms
	Recommended Citation

	Acknowledgements
	List of Figures
	Abstract
	1 Introduction
	2 Preliminaries
	2.1. Suffix Tree, Suffix Array, and Inverse Suffix Array
	2.2. LF-mapping
	2.3. Succinct Trees with Full Functionality
	2.4. 2-Dimensional Suffix Tree, Suffix Array, and Inverse Suffix Array
	2.5. Quantum Primitives

	3 Inverse Suffix Array Queries for 2-Dimensional Pattern Matching in Near-Compact Space
	3.1. Definitions
	3.2. Splitting of an Lsuffix
	3.3. Computing LFISA-mapping
	3.4. Space and Time Complexity
	3.5. Conclusion

	4 Sublinear-Time Quantum Algorithm for 2-Dimensional Longest Common Substring
	4.1. Useful Subroutines
	4.2. A Quantum Algorithm for 2D-LSC
	4.3. Lower Bound
	4.4. Conclusion

	Bibliography
	Vita

