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ABSTRACT

Although it is well-known that the usage of information usually follows the 80/20 

rule and concentrates on a few items, there has not been an analytical model to depict 

this skew distribution. This dissertation provides a theoretical foundation, based on 

Simon’s modeling of empirical phenomena and Chen’s index approach, to identify the 

factors which shape this usage pattern. Using Chen’s index approach, we conclude that 

the distance and slope of the data points determine the shape of the distribution. We 

further examine the critical parameters in Simon’s model through computer simulations, 

and we find the probability of new entry (a) and the rate of "decay" (15) to be two 

predominant factors that affect the patterns of information usage. Based on the effects 

of these two parameters we can establish the limiting conditions under which these 

empirical phenomena hold true. Finally, we show how our findings can be applied to 

enhance the weeding process in libraries — a procedure that can be extended to the 

archive management of information systems.

v



CHAPTER 1 

INTRODUCTION

Usages in information systems (IS) usually follow a skew distribution: for 

examples, in a software some functions are used more than the others; and in the 

information retrieval process a relatively large number of activities are concentrated on 

a few records. In order to design more efficient IS based on these usage patterns, we 

need to: ( 1) identify factors that affect usages, and (2 ) identify the limiting conditions 

of our model. Fortunately, similar phenomena have been observed in social aggregates 

such as personal wealth, incomes, size of business firms or cities, publication 

frequencies, and word frequencies (Ijiri and Simon 1977). In Ijiri and Simon’s words, 

these "social phenomena" exhibit "distributions [which] fit quite closely a Pareto 

distribution." In this chapter we study what others have done in modeling this skew 

distribution, and we suggest that Simon’s models to these social phenomena allow us to 

explain this usage concentration.

1.1 Empirical Phenomena of Information Usage

1.1.1 80/20 Rule (Pareto Principle)

The simplest way to describe the pattern of usage concentration is to assign some 

kind of quantitative measurement to it. Vilfredo Pareto (1909) first reported that in Italy 

about 80% of wealth was concentrated in about 20% of its population. Since then, many 

other sociological, economic, political, and natural phenomena have been observed to

1
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follow the similar pattern. J. M. Juran, a well-known figure in quality management,

claims credit for coining the term Pareto Principle, which is in effect the 80/20 Rule

(Sanders 1987). According to Zunde (1984):

It has been observed that many other empirical phenomena, both in the 
domain of information science and in other fields, obey this [Pareto] 
probability distribution law or exhibit dependencies derivable from it.

The 80/20 measure is not a ratio. It has been used mostly as a heuristic to

differentiate the "significant few" from the "trivial many," and it was not originally

intended as a rule for action (Sanders 1987). For example, approximately 80% of the

information usages might involve only about 20% of the resources. Similarly, in

libraries (Lancaster and Lee 1985) roughly 80% of transactions involve 20% of holdings.

The measure may be 85/35 (85% of sales are generated from 35% of accounts, for

instance), 88/40 or 95/25, or any of several other pairings, depending on the point we

select to analyze. We may choose the unique point where these two numbers add up to

be 100 to describe different usage patterns, thus 70/30 or 90/10. In this example, 90/10

has a higher usage concentration.

The applications of this rule often emphasize the "significant few ." For example,

Boehm (1987) suggested that 80 percent of rework costs in software development

typically result from 20 percent of the problems. The implication is that software

verification and validation should focus on identifying and eliminating the high-risk

problems in a software project.
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1.1.2 Lotka’s Law

A high degree of skewness exists in the distribution of output among individuals 

in certain human activity. The concept of "significant few" and "trivial many" is 

embedded in "success breeds success;" i.e., successes in many fields tend to center 

around a few persons, resulting in a relatively small number of people dominating the 

breakthrough activities in an entire field.

Lotka’s law of scientific productivity is an example. In the academic world a 

frequently cited paper is more likely to be cited again, and a prolific author is more 

likely to publish again than ones that have published little. In his 1926 paper Lotka 

examined patterns of scientific productivity among chemists and physicists. He 

discovered that if he classified this population of scientists according to their publication 

productivity, then the number of chemists who published n papers was approximately 

a/n2, for some positive constant a, i.e., 

f(n) =  an'2, n =  1,2,3,....

Based on this observation, Lotka concluded that the number of persons making 2 

contributions is about one-fourth of those making one, the number making 3 

contributions is about one-ninth the number making one, and the number making n 

contributions is about 1/n2 of those making one. The proportion of all contributors that 

make a single contribution is about 60 percent (Lotka 1926). Similar ratios were found 

in finance and accounting publications (Chung and Cox 1990; Chung, Pak and Cox 

1992).



Recently Lotka’s law was applied to managing technical innovations. Coile 

(1988) concluded that an environment that nurtures those rare innovators and encourages 

somewhat "undisciplined creativity" would be the most beneficial to the company’s 

technical development in the long run, since their successes would most likely bring even 

more successes. Thus, according to Coile (1988), we should design reward systems that 

try to support their innovativeness, not stop it.

1.1.3 Bradford’s Law

Bradford’s law states that a large number of articles related to the same topic 

seems to concentrate in a few journals. According to Bradford (1934), if a 

comprehensive literature search is conducted on a subject covering a specified period of 

time, we often find that the literature is scattered in a regular pattern over a very large 

number of sources. Further, if we arrange these sources in descending order of 

productivity (i.e., the journal yielding the most articles at the top of the list and the 

journals yielding the fewest at the bottom), the sources can be divided into several 

groups of journals with each group containing the same number of articles. In these 

succeeding groups, the number of journals will be 1 : j : j2: ..., for some constant j. 

That is, a linear increase in the number of articles requires a geometric increase in the 

number of journals.

Bradford’s law plays a significant role in effective management of library 

information systems (White and McCain 1989), especially in the area of information 

retrieval. For example, in systems of limited size (such as ABI/INFORM), the objective



is to include those few important journals which contain a high proportion of the 

essential articles (Tague 1988).

1.1.4 Zipf’s Law

In his 1949 book Human Behavior and the Principle o f Least Effort, Zipf stated 

that "if one takes the words making up an extended body of text and ranks them by 

frequency of occurrence, then the rank r multiplied by its frequency of occurrence, g(r), 

will be approximately constant." In symbolic form,

g(r) =  b r \  r =  1,2,3,...

where b is a positive constant whose value depends on the type of text (Zipf 1949). This 

is usually known as Z ipfs first law.

The application of Zipf’s first law in IS is frequent. In special-purpose codes 

such as the family of Huffman codes, a more frequently used character is represented 

by a shorter bits. Thus structured, Huffman coding can best be used to compress files; 

however, its variable lengths require time-consuming bit-by-bit examination to decode 

(Loomis 1989). On the other hand, a fixed-length code would be more convenient to 

decode, but would have the disadvantage of requiring more storage spaces. Based on 

Z ipfs first law, Thiel and Heaps (1972) designed a scheme to achieve a data 

compression ratio close to that of the Huffman codes while allowing more rapid decoding 

of the stored data.

Z ipfs first law focuses mainly on words of high frequency (Chen 1989a). In 

contrast, the formulation of other Z ip fs  law (often called Z ipfs second law) associates 

with words that rarely occurred (Chen and Leimkuhler 1990, Chen 1989b). Letting f(n)



be the number of words appearing n times in a literary text, then the ratio of f(l) (the 

number of words occurring once) to the total number of different words in the same text 

is approximately 0.50. In addition, we have f(2)/f(i) ~  0.33, f(3)/f(l) ~  0.17, f(4)/f(l) 

«  0.10, and f(5)/f(l) ~  0.07. In this dissertation we will refer to Z ip fs  first law 

simply as Z ipfs law, and we will make specific reference to Z ip fs  second law when 

necessary.

1.1.5 Observation-Class Relationships

These four empirical findings all show observation-class relationship (Chen and 

Leimkuhler 1986). To be more specific, each empirical finding studies a particular data 

arrangement. The 80/20 rule in Pareto’s form studies the cumulative fraction of 

observations (e.g., income) and the cumulative fraction of class (e.g., people); Lotka’s 

law relates the observation (e.g., the papers) and the class (e.g., an author) by a 

frequency-size approach. Bradford’s law relates the observation (e.g., the papers) and 

the class (e.g., a journal) by a cumulative-frequency-log-rank approach. Zipf’s law 

relates the observation (e.g., the word occurrences) and the class (e.g., a word) by a 

frequency-rank approach.

More important, it turned out that underlying all these laws is the same 

mathematical model — the Pareto distribution (Zunde 1984). Chen and Leimkuhler 

(1986), through their index approach, proved the mathematical equivalence of Lotka’s 

law, Bradford’s law, and Zipf’s law. However, there has not been an analytical model 

for the 80/20 rule. This index approach will be described fully in Chapter 2 to pave the 

way for our analytical model o f the 80/20 rule in Chapter 3.
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1.2 Problems of Applying Empirical Findings in IS

According to Zunde (1984), we call a proposition of science an "empirical law" 

if "it contains only constructs that refer to observables or are operationally definable ... 

and laws been extensively verified and found to hold under a variety of conditions." 

Since these empirical findings hold in general and the assessment is only a snapshot of 

a usually dynamic system, there is no assurance that even if they hold true at a particular 

time that they would hold at a later date. Use the 80/20 rule for instance. According 

to a survey of software development managers (Nash 1992), only 5 of the 10 most 

important systems development issues in 1990 remained in the list in 1992 and with their 

orders reshuffled. On the other hand, issues that ranked 19 and 17 in 1990 now ranked 

10 and 9, respectively, in 1992. Some issues did not even exist in 1990.

These findings may have many exceptions and different forms. For example, 

Lotka’s law holds when the number of journals under study is large; and when broken 

down to subclasses o f journals, the distribution varies according to the quality of journals 

(Chung, Pak and Cox 1992). In Zipf-type curves, English words have a linear curve, 

and Latin words form a curve with the concavity to the origin (Chen and Leimkuhler 

1987a). Bradford’s curve, depending on the data used, may take any of the six general 

shapes as shown in Figure 1.1; each requires a different formulation (Chen and 

Leimkuhler 1987b).

In spite of the problems of stability over time and variations over data, many 

theories have been developed assuming these findings to be true. Thus, we need to 

identify factors which influence these findings and the conditions under which these
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findings would hold as formulated in order to establish the proper environment in which 

these findings are applicable.

1.3 Simon’s Approach to Empirical Modeling

To identify factors influencing empirical phenomena is a typical example of

extreme hypotheses. According to Simon (1968), extreme hypotheses are "assertions

that a particular specific functional relationship holds between the independent and the

dependent variable." A standard practice for testing extreme hypotheses is the use of

goodness-of-fit tests; however, Simon argued that those testing procedures are

fundamentally unsatisfactory. He states:

An extreme hypothesis cannot be sensibly identified with the null 
hypothesis without shifting completely the burden of proof that is 
supposed to be assured by a new theory, and what is worse, without 
making the tacit assumption that the correctness of a theory is an all-or- 
none matter and not simply a matter of goodness of approximation.

Thus, Simon emphasized that science should be the discovery of theories rather than the

testing of them; therefore, he suggested that theories should rise inductively from data

instead of data being collected to fit pre-existing theories.

1.3.1 Empirical Modelling through Successive Refinements

Instead of testing hypotheses, Simon recommended changing the question to that

of estimation. Ijiri and Simon (1977) stated:

We are interested in knowing what part of the variance of the data is 
explained by the theory, and how the remaining variance can be 
accounted for by successive approximations, rather than in testing whether 
the variance can be proved to be statistically significant.

Thus, he suggested an approach that consisted of combinations of generalization and

refinements. Before one can find phenomena that fit empirical data, one must have
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appropriate data that look as though a smooth mathematical function could generate 

them. "It’s the recipe for rabbit stew all over again: First catch the rabbit" (Simon 

1991, pp. 372-374).

Simon’s (1955) five-step modeling process is listed below:

(1) Begin with empirical data, not hypotheses;

(2) Draw a simple generalization that approximately summarizes striking features of 

the data;

(3) Find limiting conditions under which deviations from a generalization are small;

(4) Construct simple mechanisms to explain the simple generalizations; and

(5) Propose the explanatory theories that go beyond simple generalizations and create 

experiments for empirical observations.

Simon’s three models of skew distribution are described below. Since his first and 

second models are quite similar, we refer to them as Simon’s Basic Models throughout 

this dissertation.

1.3.2 Simon’s Two Basic Models

Based on Simon’s theory of modeling discussed in the previous section, Simon 

and Van Wormer (1963) proposed a model, in the form of a generating mechanism, 

which aptly approximated these skew distributions. In terms of simulating information 

usage patterns, this model would have the following assumptions:

Assumption I: The probability that the (k+  l)-st information accessed will

be an information that has not previously been accessed is 

a(k), and
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Assumption II: The probability that the (k+  l)-st information accessed will

be an information that has already been accessed i times 

( i>  1) is proportional to i-f(i,k), where f(i,k) is the number 

of distinct information that have been accessed exactly i 

times each in the first k accesses.

The first assumption differentiates two classes of selections: the information 

items that have not been selected before ("new” items) and those that have already been 

chosen ("used" items). The parameter a , therefore, determines whether an item needs 

to be moved from the class of "no usage" to the class of "used once." If the selection 

is deemed to be a "used" one, we determine its previous usage through the second 

assumption. This second assumption essentially describes the property of "success 

breeds success" by assigning proportionally higher probability of usage to more 

frequently used information. Thus, a selection that has been used more frequently before 

is more likely to be selected again.

Simon and Van Wormer (1963) began by assuming the parameter a(k) to be a 

constant, thus independent of the number of selections, k, that have taken place. They 

noted that this basic model is only a simple generalization that approximately summarizes 

striking features of the data. This model of first approximation was further refined by 

modifying cn(k) to be a decreasing function of k: i.e., there is a decreasing probability 

function a(k), 0  <  a(k) <  1 , that the (k + l)-s t selection is chosen for the first time. 

The values of a  in either model are determined by the environment in which the 

selection process takes place; some environments espouse new selections while others
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discourage them. For example, depending on the library and its patrons, rarely used 

materials may remain just that — rarely used. However, some libraries may have 

patrons (e.g., scholarly researchers) who actively look for new materials. Their 

familiarity with library materials and activities of seeking out new information will be 

reflected in a higher a  for this library. In payroll processing, each subsequent selection 

involves a brand new record, thus we have an extreme case of a  = 1 .

Simon’s two basic models use a weak assumption which concerns only with a 

class of information that is used a particular number of times (Ijiri and Simon 1977). 

It is not required to know which information is used how many times. Simon’s next 

refinement, the autoregressive model, does allow the tracking of the usage pattern of 

individual items.

1.3.3 Simon’s Autoregressive Model

The probability of usage for those already-chosen information is assumed to be 

proportional to its previous usage in Simon’s basic models. However, the information 

not used has a tendency of being "forgotten." In library science it is called "aging" or 

"decay" (Anderson 1990; Burrell 1980). In other words, the probability of the usage 

will decrease with time if the book is not in use. Some highly-used library books, once 

out of fashion, can be neglected for years to come. For analyzing firm sizes which have 

the same skew distribution as the information usage, Ijiri and Simon (1977) refined the 

Assumption II of his basic models further to better reflect the reality. This model takes 

into consideration the recent usage when assigning probability of selection for an "used" 

information. Simon’s autoregressive model is described below.
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In terms of information usage, the identity of each information item is maintained 

from one time period to the next. The selection of the next item is governed by a 

stochastic process, which depends on how much the item has been used before, and also 

upon when it was last selected. For simplicity in his computations, Simon assumed that 

only one item is selected at each time period. The probability that an item is chosen 

next is assumed proportional to a weighted sum of its usage history, where the weight 

of a usage decreases geometrically, at a rate 7 , from the time it was last used. Since the 

time interval is functionally equivalent to the number of selections, we only indicate the 

number of selections in lieu of time interval in this dissertation.

Simon formalized these notions as follows: Let yj(k), equals to 1 or 0, be our 

selection of j-th information item during the k-th selection, then the total usage of the j-th

k
item at the end of the k-th selection is simply £  y.(r). If we denote T to be the total

t -1 ^

number of distinct items that have been selected at least once at the end of the k-th 

selection, then the expected usage of the j-th item for the (k + l)-s t selection is

p [y  (k + 1) -  1] -  J _ £  y (r)7 k r 
Wk

where

W. - E E  y , W -
j-l r-l

Wk is the same for all items.

1.4 Dissertation Contributions and Organization

The contributions of this dissertation is threefold. First, we conduct analytical 

examination of the 80/20 rule in order to find the characteristics of the distribution of



information usage. Second, we simulate information usage patterns using Simon’s 

generating mechanisms to see the effect of different factors on the 80/20 rule and other 

empirical phenomena. We find that different forms of empirical phenomena can be 

reproduced by different combinations of parameter values. Based on results of our 

analytical model for the 80/20 rule, we also estimate the parameter values of empirical 

data and then use these values to simulate future usage patterns. Third, we use the 

weeding policy in the library resource management as a case study to demonstrate the 

applicability of Simon’s usage model in improving the productivity of information 

systems.

The organization of this dissertation is as follows. Chapter 2 is the presentation 

of the index approach and Simon’s generating mechanism. In this chapter we first define 

the notations used in this dissertation, and we explain Chen’s index approach which is 

essential in establishing the relationships between the 80/20 rule and Simon’s model. We 

also review the indexed formulations of Lotka’s law, Bradford’s law, and Zipf’s laws 

— which have already been conducted in the literature. Thereafter, we describe the 

simulation models and algorithms used in examining the important parameters of these 

empirical phenomena.

The contributions of this dissertation are presented from Chapter 3 on. Chapter 

3 is the analytical analysis which, based on the index approach, provides a theoretical 

foundation for the 80/20 rule. The resultant formulation requires less assumptions and 

parameters. Chapters 4 and 5 are in-depth discussions of applications of Simon’s model 

to the simulation of the four empirical phenomena described in this chapter.



Specifically, Chapter 4 examines Simon’s two basic models and Chapter 5 the 

autoregressive model. Here we discuss the simulation results of altering the three 

parameters (the probability of new entry, a ; the decay factor, 7 ; and the total number 

of iteration, N), and how different versions of empirical phenomena can be simulated 

through different values of these parameters. The significance of the findings in these 

two chapters is two fold: first, we demonstrate that Simon’s model provides a unifying 

theoretical foundation for all of these empirical phenomena in question; and second, we 

now have a means to estimate the values of parameters through observing the usage 

pattern of a particular set of data. Furthermore, Chapters 4 and 5 provide limiting 

conditions in which these empirical phenomena hold. Chapter 6  uses actual usage 

pattern of a regional university to test our findings, and we demonstrate that Simon’s 

model can provide theoretical support to the weeding policy used in library resource 

management. Finally, Chapter 7 is the conclusion.



CHAPTER 2

LITERATURE REVIEW ON THE INDEX APPROACH 

AND SIMON’S GENERATING MECHANISM

As part of the literature review, in this chapter we first describe the index 

approach proposed by Chen and Leimkuhler (1986) and the notations used; then we 

discuss Simon’s generating mechanism as the backbone of simulation in studying 

empirical phenomena. These two tools are essential in the development of our analytical 

model and simulations in this dissertation.

2.1 The Index Approach

2.1.1 Notations and Examples

Let us take Kendall’s (1960) study on 1763 papers published on operational 

research (Table 2.1, columns denoted nj and f(nf)) as an example to understand these 

empirical phenomena. If we tabulate the number of authors who have published n papers 

and arrange this list in the ascending order of n, we would find that n does not run 

consecutively at places, especially when n is large. We would also find that there are 

m different clusters of authors who publish the same number of papers, and m < 

max{n}. To take into account the scatter of the larger values of n, Chen and Leimkuhler 

(1986) introduced an index i =  l,2 ,...,m , for the m successive observations of n and let 

nj denote the i-th nonzero value of n where n( <  ni+1.

16
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Table 2.1: Demonstration of Empirical Laws Using Kendall’s Data (1960)

i Hi f (ni) n4f (nj!I G(ri) di log(ri) log(g(rj)

1 1 203 203 1 242 0..003 0..137 0 .. 000 2.. 384
2 2 54 108 2 356 0.,005 0..202 0..301 2.. 057
3 3 29 87 3 458 0..008 0..260 0..477 2 .. 009
4 4 17 68 4 553 0.. 011 0..314 0 ..602 1.. 978
5 5 10 50 5 611 0.. 014 0..347 0 ,.699 1..763
6 6 6 36 6 660 0.. 016 0..374 0 .. 778 l ..690
7 7 8 56 7 694 0..019 0 ,.394 0,.845 1.. 531
8 8 8 64 9 738 0., 024 0 ..419 0..954 1.. 342
9 9 4 36 11 780 0 ., 030 0..442 1.. 041 1.. 322

10 10 3 30 13 820 0 .. 035 0 ..465 1.. 114 1..301
11 11 5 55 14 838 0..038 0 ..475 1,. 146 1..255
12 12 2 24 18 902 0 ..049 0,.512 1..255 1..204
13 14 1 14 20 932 0.. 054 0,. 529 1 .301 1.. 176
14 15 2 30 21 946 0 .. 057 0..537 1 . 322 1.. 146
15 16 4 64 23 970 0..062 0 ,. 550 1,.362 1.. 079
16 18 1 18 28 1025 0..076 0 .. 581 1..447 1.. 041
17 20 2 40 31 1055 0.. 084 0 ..598 1..491 1,. 000
18 21 2 42 35 1091 0..095 0..619 1.. 544 0 ,. 954
19 22 2 44 43 1155 0..116 0 ,.655 1 .633 0 ,. 903
20 34 1 34 51 1211 0,.138 0 ..687 1 .708 0,.845
21 49 1 49 57 1247 0.. 154 0,. 707 1,. 756 0 .. 778
22 58 1 58 67 1297 0.. 181 0 ..736 1,.826 0..699
23 95 1 95 84 1365 0..227 0 ,. 774 1,. 924 0 ..602
24 102 1 102 113 1452 0..305 0 ,.824 2 .053 0 ..477
25 114 1 114 167 1560 0..451 0,.885 2 ..223 0,.301
26 242 1 242 370 1763 1..000 1..000 2 .568 0 .. 000

m=26 T=370 N=1763 fi=4 .764 9

80/20: d i vs. x i(- % cumulative transactions vs. % cumulative
holdings; x ; is r^/T and 6 j is Gir^/IC.

Lotka: f(ni) vs. n i(- number of publication vs. number of authors.
Bradford: G(rj) vs. logtrj); cumulative papers at rank vs. log of rank.
Zipf: log(g(ri)) vs. logtrj); log of word frequency vs. log of the

rank; glr^) is essentially nm_i + 1.



In terms o f information usage, we define:

m = the maximum number of clusters of items with the same usage;

lij =  the number of times an information item is used, i =  l , 2 ,...m ;

f(ni) =  the number of items that have been used ^  times;

F(nj) =  the number of items that have been used no less than n, times;

r, =  £  f(nk)=  t*ie ran*c ° f  *tem ranked according to its usage;
k - i n - i  + 1

g(r() =  nm_i+1 =  the number of times an item with rank r( was used;
in

G(rj) =  £  nkf(nk)= the total number of usages for items ranking no greater
k - m - i  + 1

than rj;

m

T = y, f(n ) =  the total number of different items;
i - l  ' 

m
N = y  n. f(n ) =  the total number of usages; and

i - l  ' '

X; =  rj/T =  the fraction of total items which have been used at least n; times;

0j =  G(rj)/N =  the fraction of total usage for the first i items;

ix =  N/T =  the average usage per item.

Table 2 .1 uses Kendall’s (1960) data to demonstrate how parameters used in these

empirical phenomena are transformed from the raw data. This table is the basis of the

following graphs: the 80/20 rule (Figure 2.1a), Lotka’s law (Figure 2.1b), Bradford’s

law (Figure 2.1c), and Zipf’s law (Figure 2. Id).

The column X; is the percent of total holding at this rank. For example, ranks

1 through 67 (meaning that there are 67 authors who published at least 5 papers) is

18.1 % of the total 370 authors examined. The column 6t shows the cumulative activities

as a percent of the total usage. For example, by rank 67 there have been 1297 papers
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Xi  ( p e r  c  ft n 1 o f  t o t a l  i t e m s )

Figure 2.1a: 80/20 Rule Using Kendall’s Data
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published (67 authors published 1297 papers), and that is 73.6% of the total 1763 papers 

studied. In this particular case, the concentration measurement is 74/18 (74% of papers 

are published by 18% of authors), or we may examine Figure 2.1a and describe the 

curve to be 78/22, which is rather close to 80/20.

Lotka’s curve is drawn using f(n() vs. nj (the number of authors vs. the number 

of paper each of them publishes). Suppose we use a modified form of this curve which 

uses log(f(nj)) and log(nj) instead; since f(n,) =  anf2, we expect the shape of the curve 

to be linear with a slope of -2. For Bradford type of curves, we have G(rj) vs. log(rj); 

therefore, for a linear growth of G(r;) (total number of usage) and a geometric growth 

of Tj (the number of items required), the curve is expected to be linear with a positive 

slope. Zipf’s curves are plotted using log(g(i;)) (log of the number of usage for the item) 

vs. log(rj) (the log of the item’s rank). Since g(rs) =  br^1, we expect to have the curve 

to be linear with a slope of -1.

Notice that the skew distribution has two extremes — only a few items that are 

used many times, and many items that are used only a few times — and those in 

between. Each of these empirical phenomena has concerns with different parts of the 

same set of usage data. In the 80/20 rule, we are more interested in those few items that 

are frequently used, while Lotka’s law places emphasis on the large number of authors 

who publish only a few papers. Bradford’s law shows the connection between these two 

extremes in terms of clustering the number of papers. Zipf’s first law is mainly 

concerned with the relationship between high-usage items and their ranks, and Zipf’s 

second law shows the ratio relationship between those many items that are used only a
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few times. However, all these observations are based on different transformation of the 

same set of usage data.

2.1.2 Three Significant Clusters

The index approach (Chen and Leimkuhler 1986) identifies three significant 

clusters of n: (a) where i is small and n: =  i; (b) where i is large and f(n;) =  1; and (c) 

those in between. Let if be the largest i where ni =  i, and let iu be the smallest i where 

f(iii) =  1, i =  u,u +  l ,...,m , and f(nul) ^  1 to define the following properties: 

cluster 1: n, =  i, 1 <  i <  if,

cluster 2: n, «  i and f(ns) «  1, if +  1 <  i <  iu - 1, (2.1)

cluster 3: f(ns) =  1, iu <  i <  m.

For example, n, =  i for 1 <  i <  10 (cluster 1); ii; ~  i and f(n,) «  1 for i =  11 (cluster 

2); and f(nj) =  1 for 12 <  i <  14 (cluster 3) in Table 2.1(a). In Table 2.1(b) clusters

1, 2, and 3 are 1 <  i <  12; 13 <  i <  19; and 20 <  i <  26, respectively. Notice that

for small i, nj = i; and for i «  m, f(nj =  1. Correspondingly cluster 1 contains the 

items of low usage while cluster 3 items have the highest usage frequency. These three 

clusters are essentia! in the analytical examination of the empirical phenomena.

2.2 Applying Index Approach to Empirical Laws

This section summarizes findings of Chen and Leimkuhler (Chen and Leimkuhler 

1986, 1987a, 1987b; Chen 1989) on Lotka’s law, Bradford’s law, and Zipf’s laws.
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2.2.1 Mathematical Equivalence of Empirical Laws

Chen and Leimkuhler (1986) used the index approach and showed that the three 

empirical laws are mathematically equivalent. That is, for i =  l,2 ,..,m , Equations 2.2, 

2.3, and 2.4 have the following relationship:

F(iii) =  dnt - b (2.2)

iff G(r.) = a £  [rk'(rk -  rk_,)] (2-3)
k-1

and

iff g(r;) =  a(r, +  b)c, (2.4)

where a, b, c, d, e are constants and a,d >  0; c,e <  0; ce =  1, dau =  1, and b > -1.

These three equations, without the index notations, are general formulations of Lotka’s 

law (Chen 1989), Bradford’s law (Chen and Leimkuhler 1987b), and Zipf’s law (Chen 

and Leimkuhler 1987a), respectively. Equations 2.2 and 2.4 will be used later to help 

derive the indexed version of the 80/20 rule in Chapter 3.

This result not only shows that these three laws are basically different ways of 

looking at the same phenomenon but also enlarges the number of tests that might be 

applied to a particular set of data (Chen and Leimkuhler 1986). Furthermore, since 

Lotka’s law deals with the most original form of data (n; and fin,)), the effort of 

modeling the following three empirical phenomena can be reduced to modeling Lotka’s 

law. This will be addressed in Section 2.2.4.

2.2.2 Bradford’s Law

Through the index approach, Chen and Leimkuhler (1987b) studied the three 

clusters as depicted in Equation 2.1. They concluded that the six different classes of
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Bradford as illustrated in Figure 1.1 can be explained by the three corollaries in their 

study. Assuming the index version of Lotka’s law holds, they found that cluster 2 is 

approximately linear. The concavity, linearity, or convexity of cluster 1 and 2 are 

determined by h; and e, respectively, where

i *+ 1l O g  -----;----n . &
h. = —m  -  -

n ., , i +2m-'-i log------
i + 1

and e is defined as in the previous section.

2.2.3 Zipf’s Two Laws

Although Zipf’s curves all show a linear decreasing pattern to the right of the 

graph, a segment of the curve can be either convex or concave to the origin. Through 

analyzing the slopes of Zipfian curves using Equation 2.4 (indexed version of Zipf’s 

law), Chen and Leimkuhler (1987a) show that the Zipf-type curve can be concavely 

decreasing, linearly decreasing, or convexly decreasing, depending on the value of b. 

As in Bradford’s law, cluster 2 is nearly linear. Cluster 3 is also linear and has a lope 

equal to c. The indexed version of Zipf’s law takes explicit account of the sequence of 

observed values of the variables and makes it possible to account for the variations 

normally encountered with Zipf-type data (Chen and Leimkuhler 1987a).

Using definition of q and g(q), Chen and Leimkuhler (1990) derived FOt) =  d - 

b, and f(n;) =  d(ic - ( i+ l )0), i « m; which implies the Zipf’s second law when c =  -1, 

b =  0, and i =  1,2,3,4,5.
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2.2.4 Lotka’s Law

Since Bradford’s law, Z ip f s law, and Lotka’s law are mathematically equivalent, 

the study comes down to the stochastic modeling of Lotka’s law because of its simplicity. 

Chen (1989) adapts Simon’s five-step modeling process to study Lotka’s law. Using the 

index approach, Chen finds that in cluster 1, where ^  =  i, 

f(i) = d(k - (i + l ) e); 

and in cluster 3 where f(n;) =  1, 

n, =  a(m - i +  1 +  b)c.

Chen (1989) shows that the empirical phenomena are marginal properties of the 

time series he has studied, and the two influential variables are the entrance of new 

journals and the productivity of old journals. Since Simon and Van Wormer’s (1963) 

generating mechanism (Simon’s model) incorporates the concept of new and old entities, 

Chen (1989) further shows that Equation 2.2 can be derived from the expected value 

derived from the two assumptions in Simon’s basic models. Thus, Simon’s generating 

mechanism provides a theoretical foundation for these empirical phenomena.

2.3 Simon’s Generating Mechanism

2.3.1 The Algorithm for Simon’s Two Basic Models

The two versions of Simon’s model can be easily programmed on a computer to 

simulate empirical data (n^fto)), i =  l,2 ,...,m . The simulation algorithm consists of two 

steps (Simon and Van Wormer 1963):

Step 1: For each selection k (1 <  k <  N), we generate a random number

a from the uniform distribution with range 0 to I. If a <  a(k),



Step 2

2.3.2

Stage

Stage

f(l,k ) =  f( 1,k-1) +  1 — i.e., this is a "new" item and we add it 

to the "used once" category; otherwise we go to step 2 to find out 

its usage history.

A random number b is drawn from the uniform distribution with 

range 1 <  b <  k. Begin with j =  1, the cumulant of j*f(j,k-l)

n

is computed to find an n such that £  j f ( j ,k - l )  >  b. Tlien
j-i

f(n,k) =  f(n,k-l) - 1, and f(n + l,k ) =  f(n + l,k - l)  +  1. This is 

equivalent to saying that the k-th item selected was used n times 

before, and now it is used n+1 times.

The Algorithm for Simon’s Autoregressive Model

In the autoregressive model, the selection of the k-th item is made in two stages: 

: This stage is similar to the Step 1 stated in the previous section.

I: This stage is a refinement of the Step II in the basic models. The

weight of previous usages are changed by a factor y  at each 

selection. Since the weight of the usage during period (k-1) is 1, 

this weight will become y '  0 by period (k-r). The sum of these 

weights, i.e., W (k-l) =  DjWj(k-l), are kept for all items. We 

draw a random number b from a uniform distribution between 0 

and W (k-l), and assign the k-th selection to the j-th item, where 

j is the smallest integer which satisfies X w.(k-1) >  b.
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2.3.3 Initial Conditions of the Simulation Models

The simulation data for Simon’s basic models were obtained from a computer 

program written in Turbo Pascal running on a 386 personal computer. To start the 

simulation program, the initial conditions f(n,0), n =  were provided. Since

moderate changes in the initial conditions do not appear to affect the equilibrium 

distributions (Simon and Van Wormer 1963), we set the initial conditions with f(l,0) = 

3, and f(n,0) =  0 for n =  2 ,...,N ; i.e., there already exist three items with one previous 

usage each.

In addition to these initial conditions, the simulations were carried out with N 

ranging from 1,000 to 30,000. On the other dimension, a  also was varied. For constant 

a, it ranged from 0.1 to 0.9 with 0.1 increment plus the two extreme conditions of a = 

0.01 and a  =  0.99. For the decreasing function, we used a  =  A/ln(R), R =  1,2,...N , 

where A ranged from 1.00 to 2.00 with 0.25 increment. A sample program is listed in 

Appendix A. Once the usage pattern is generated, the data (i.e., n, and f(ti;)) are entered 

into a Lotus program setup similar to that of Table 2.1, from which we generate graphs 

for the empirical phenomena.

For the autoregressive models, since stage II of the process requires that some 

"used" items exist, we set the initial conditions the same as those in basic models. The 

final distribution is not entirely independent of the initial conditions but tends to become 

independent as N grows large. Because of the amount of memory space required for 

tracking activities of individual items in the autoregressive model, the simulations were 

run on an IBM 9370 mainframe computer, using IBM VS Pascal Release 2. The
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program is listed in Appendix B. Since this model generates individual usage 

frequencies, they are sorted and tabulated to generate a summary of (n ^ n ,) )  pairs. This 

summary data are then processed the same way as those in basic models. For reasons 

to be discussed in Chapter 5, most of the results of autoregressive model were obtained 

using a  =  0.20 and N =  20,000.



CHAPTER 3

THE ANALYTICAL STUDY OF THE 80/20 RULE

We apply the index approach to analytically examine the 80/20 rule in this 

chapter.

3.1 On the 80/20 Rule

Burrell (1985) studied the 80/20 rule and found that the minimum holdings 

needed for 80% of the circulation varies inversely with the average circulation rate and 

is usually greater than 20%. Using notations as defined in Section 2.1.1 (replacing 

"holdings" for "information items" and "circulation" for "usage"), by assuming f(n) 

follows a negative binomial distribution Burrell (1985) derived the relationship:

^ ____  ( 3 . 1)
/*log[(*t-l)//x]

Subsequently, Egghe (1986) showed that the minimum holdings is close to 20% when 

the frequency follows Lotka’s law, i.e., f(n) =  a/n2, and derived the relationship:

0(x,/*) = 1 -  ( J _ ) [ E  + lo g (A ) ]  (3-2>
7 T >  7T X

where E =  0.57722... is Euler’s number. Both formulations exhibit the inverse 

property: given 9 = 0.80, x increases if and only if decreases.

Both Burrell and Egghe’s approaches assume that the values of n run

consecutively from 1 to N. However, as we have pointed out in Section 2.1.1, in real

data the circulation values observed for the more frequently used items tend to jump
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erratically until reaching the largest circulation value. The following analysis uses the 

index approach as described in Section 2.1 and does not require the above-mentioned 

assumptions.

3.1.1 General Formulas 

Theorem 1: For i =  l,2 ,...m ,

Proof: Let X; be the fraction of holdings, 0, be the fraction of circulation, and /x, be 

average circulation per holding for the top i holdings, so that

From this relationship between /x and /xh we can immediately conclude that for 

the 80/20 rule to be true there must exist an i, 1 <  i <  m, such that (x„6) =  (0.2,0.8) 

and n, — 4/x; i.e., the average circulation per holding for the top class of holdings is four 

times the average circulation for all holdings.

In the following theorem, we use interpolation to derive the exact formulation of 

the 80/20 curve.

(3.3)

(3.4)

(3.5)

and

(3.6)

By rearranging Equation 3.6 we obtain Equation 3.3. [ ]
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Theorem 2: F o ri =  

e  = x. . O n  + (x -x . (3-7)
1 f X  J I X

where x is given and j is the smallest i, such that x, >  x.

Proof: Let j be the smallest i, such that x, >  x and Sj is the slope of the line segment

between (xj.,,^.,) and (Xj,0j), i =  l,2 ,...,m  and (xo,0o) =  (0,0). Given x,

9 = 0J., + (x -  xH) Sj, (3-8)

and from Equations 3.4 and 3.5

0.-9. , T  n . ,
s. = _2 i ±  = _Ln . , = ;:-lL . (3.9)
J x .-x . , N ra"Jtl fxj j-i r

Equations 3.8 and 3.9 derive Equation 3.7. [ ]

Equation 3.6 is a special case of Equation 3.7 when x =  Xj.,. Equation 3.7 can 

be rewritten as follows:

X = ^ ~ Xj-I^V l~nmjt|) (3.10)

where 6 is given and j is the smallest i such that 9, >  9. Equation 3.10 shows that the 

80/20 rule is determined by four types of parameters: ju, j, fxj.,, and nmj+l, for all j, 

which depend on the value of parameter m, the distribution of f(iii), and the scattering 

pattern of ni? for i =  l,2 ,...m .

A simpler alternative for analyzing the 80/20 rule is to examine the scattering 

pattern of slope-distance pairs of the data. Let s, and d, be the slope and distance of the 

line segment between (Xj.,,^.,) and (xh0i), i =  1,2 , . . . , in, respectively, and (x„, 0O) = 

(0,0), then we have 

Theorem 3: F o ri =  l,2 ,...,m ,
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s _ ^ ± L  (3-11)
i

M
and

d. = — J(fjL2 + n2 . ) f  (n . ) (3-12)
i V r  m - i  + 1 '  v m - i f l '

Proof: From Equations 3.4 and 3.5, we obtain

6.-6.  , T n ,
s. = -  — n ., =■ -  -  m - i + ix ,- x M N —  [x 

and

d, -  (/<x, - xm)! ♦

f(n  n2 . F(n . )
x  m - i  + K  ^  m -i + 1  v  m - n K

= — Jin2 + n2 . f (n  . .)V m - m  y m - m 7

[]

Since (sbdi) uniquely determines (xh6) and vice versa, for i = l,2 ,...,m , and for 

each i, (s^dj) has much simpler formulation than ( x ^ ) ,  we will focus on the set of (s^di), 

i =  l,2 ,...,m , in the rest of this section. Theorem 3 and the three properties shown in 

Equation 2.1 enable us to derive immediately the following corollary:

Corollary 1:

(a) For 1 <  i <  m-iu+ l ,

n .,
s. = "“‘V-

6-

and
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(b) For m-iu+ 2  <  i <  m-if,

M
and

(3.14)

(c) For m-if+ l  <  i <  m, 
m-i+1

and

d. = + f(m -i+ 1) . [ ]  (3.15)

Let us define the three categories of Sj and d, — where 1 <  i <  m-iu+ 1, m-iu+2

< i <  m-if, and m-if+ l  <  i <  m — to be region I, region II, and region III, 

respectively. Equation 3.13 indicates that the shape of the curve in region I depends on 

the value of f x ,  N, and the scattering pattern of lij, iu <  j <  m. Since n; is an increasing 

function for iu <  j <  m, we see that s, and d; to be decreasing for 1 <  i <  m-iu+ l .  

Equation 3.14 indicates that the shape of the curve in region II depends on m, f x ,  and N, 

which are all constants. As such, s, and d; are decreasing for m-iu+ 2  <  i <  m-i,. 

Finally, Equation 3.15 indicates that the values m, f x ,  N, and f(j), 1 <  j <  i(, determine 

the shape of the curve, where s, is a decreasing function with respect to i, for m-if+ l

<  i <  in. Since f(j) is a strictly decreasing function for 1 <  j <  if, we see that d| 

shows an increasing pattern for m-if+ l  <  i <  m.



3.1.2 Three Significant Regions

Region I: the Significant Few

Equation (3.13) implies that

(s„d,) -  ),
i x  IN

( M 2) -

and (3.16)

(s . .,d . ) = — r  + n 2 ) .
v m - u l 1 t n - i ^ l 7 jU. N

Since nj is an increasing function for iu <  j <  m, we see that s; and d, are decreasing 

for 1 <  i <  m-iu+ l .  Furthermore, the shape of the curve in region I depends on the 

value of ix, N, and the scattering pattern of nj5 iu <  j <  m. An immediate implication 

of the slope-distance pairs above is that the 80/20 rule does not hold if s, <  4. On the 

other hand, the 80/20 rule holds if s, = 4  and d, =  ^0.68 .

Recalling Equation 2.1, the region where iu <  i <  m and f/n j =  1 contains the 

elements of the "significant few." One of the most cited laws of the significant few is 

based on Zipf’s rank-frequency approach. By applying Zipf’s rank-frequency approach 

and Equation 2.4, we can simplify the slope-distance pairs in region I as follows: 

Corollary 2: If the indexed formulation of Zipf’s law holds, then the slope-distance 

pairs of the curve in region I are:
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(s,.d,) -  ( ^ ,  + a'(kb)“ ) ,  (3.17)
fl N

i =  l,2 ,...,m -iu+ l .

Proof: Since nm >  nm., >  ... > n  the ranks correspond to nm, mml, ..., n., a r e

1 ,2 ,..., m-iu+ l ,  respectively. If the indexed formulation of Zipf’s law holds, then 

Rank Frequency based on Zipf’s Law

1 n,„ =  a ( l+ b )c
2 nm_, =  a(2+b)c

m-iu+ l  n =  a((m-iu+ l) + b ) c

By substituting the equated formula of nm, nml,.. . ,  and nm Ul into Equation 3.16, we 

derive Equation 3.17. [ |

Equation 3.17 implies that when Zipf’s law holds, the shape of the 80/20 curve 

in region I is influenced by five parameters, n, N, a, b, and c.

Region II: the Middle Class

Equation 3.14 indicates that the shape of the curve in region II depends on m, /x, 

and N which are all constant. Thus, sh and d; are decreasing for m-iu+ 2  <  i <  m-if. 

Region III: the Trivial Many

Equation 3.15 implies that
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Thus, Equation 3.15 indicates that the values m, /x, N, and f(j), 1 <  j <  if determine 

the shape of the curve, s, is a decreasing function with respect to i, for m-if+ l  <  i < 

m. Since f(j) is a strictly decreasing function for 1 <  j <  if, we see that di shows an 

increasing pattern for m-it+ l  <  i <  m.

Recalling Equation 2.1, f(n;) denote frequencies of the "trivial many" in the 

region where 1 <  i <  if and ni =  i. One of the most cited laws of the trivial many is 

Lotka’s law. By applying the indexed version of Lotka’s law (Equation 2.2), we can 

simplify the slope-distance pairs in region III to be:

Corollary 3: If the index formulation of Lotka’s law holds, then the slope-distance pairs 

of the curve in region III are

(sPd ) = ( i ^ — i- l /d (M2 + (m -i+ l)2)((m -i+ l)e-(m -i+ 2 )e) ) ,  (3-19)
fJL IN

where i =  m-if+ l , . . . ,m .

Proof: If the indexed formulation of Lotka’s law holds, then f(n.) = d (n.e -  n.e ), for

i =  l ,2 , . . . , i t. Since Equation 2.1 indicates n, =  i, 1 <  i <  if, for i =  1,2, ,if we

have f(i) =  d(ie - (i-L l)e>* By substituting the last equation into Equation 3.15 we derive 

equation 3.19 immediately. [ ]

Equation 3.19 implies that when Lotka’s law holds, the shape of the 80/20 curve 

in region III is influenced by four parameters /x, N, d, and e. Furthermore, from 

Equation 3.18, sm =  l/,u.. We will used s„, to estimate a. in Sections 3.2 and 4.5.1.

3.1.3 On Burrell’s Finding

With the insights gained from using index approach, we now revisit findings of 

Burrell (1985) and Egghe (1986) discussed in Section 3.1. To study Burrell’s finding



of the inverse relationship between minimum holdings and the average circulation rate 

(Equation 3.1), we define two curves C' and C" to be those formed by {(x/,#/): i =

l,2 ,...m '}  and {(x",9"):  i =  l,2 ,...m "} , respectively. As an example, in Figure 3.1 

C' refer to Kendall’s data (Table 3.1a) curve and C" refer to Bradford’s data (Table 

3.1b) curve. Burrell (1985) found that x' <  x" if fx' > fx" and 9' =  9" =  0.8. For 

example, in Table 3.1 and Figure 3.1, when 9' =  9" =  0.8, /x' =4.765 >  fx" =2.409 

and x '=0.25 <  x"=0.52 .

We may study this effect by setting 9' =  9" =  0.8 in Equation 3.10 and compute 

x' - x"; however, the equation for x' - x" involves eight types of parameters. The 

following theorem about the slopes for the two curves C ' and C" provides a simpler way 

to explain Burrell’s finding.

Theorem 4: Suppose we denote the upper portion of the curve C' and C" to be C 'upp„r 

and C"upper, respectively. If (x ',0 .8) and (x",0.8) fall in C 'uppcr and C"uppcr, respectively, 

and fx’>ix" then x '< x "  where

C  = {(x/ , . , 0 / , . ) , . . . , ( x ' „ 0 / ,)}, , ,upper  ' v  t n - i , ’  m - i / ’  , v  in  ’ nv7 - ' ’

C" = {(x//. . ,0 ,/. .) , . . . ,( x //.,0//.)},upper  v n r - J 0’ n r - i / 7 , v  m  ’ tn 7 •» ’

and jQ = m inim 7-i',+  1, m ^-i'f+ l} .

Proof: Note that Equation 3.9 shows that the slopes for the two curves C ' and C" are:
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Figure 3.1: 80/20 Rule Using Kendall and Bradford’s Data
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Table 3.1: Indexed Data on Two Collections for 80/20 Formulations

(a) Kendall's Data (1960)
A B C D E F
i rii f (n,) n,f (nf) xi 0i

1 1 203 203 0.003 0 .137
2 2 54 108 0.005 0 .202
3 3 29 87 0.008 0.260
4 4 17 68 0. 011 0.314
5 5 10 50 0 . 014 0.347
6 6 6 36 0.016 0.374
7 7 8 56 0.019 0.394
8 8 8 64 0.024 0.419
9 9 4 36 0.030 0 .442

10 10 3 - 30 0 . 035 0.465
11 11 5 55 0 . 038 0.475
12 12 2 24 0 . 049 0 .512
13 14 1 14 0 . 054 0 . 529
14 15 2 30 0 . 057 0.537
15 16 4 64 0. 062 0.550
16 18 1 18 0 . 076 0.581
17 20 2 40 0.084 0 .598
18 21 2 42 0 . 095 0.619
19 22 2 44 0 . 116 0 . 655
20 34 1 34 0 .138 0.687
21 49 1 49 0 .154 0.707
22 58 1 58 0 .181 0.736
23 95 1 95 0 .227 0.774
24 102 1 102 0.305 0.824
25 114 1 114 0.451 0.885
26 242 1 242 1.000 1.000

m=26 T=370 N=1763 H = 4.765
Column A  = index i ( i=l,2,...m. 
Column B = number of papers nj. 
Column C = number of journals f(n.) . 
Column D = Column B * Column C. 
Column E = Equation 3.4 in the text. 
Column F = Equation 3.5 in the text.



Table 3.1 Continued

(b) Bradford's Data (1934)
A B C D E F
i ni f (nt) ntf (nj x i 0,

1 1 102 102 0.006 0 . 056
2 2 25 50 0 . 012 0 .101
3 3 13 39 0.018 0.139
4 4 2 8 0. 030 0 .205
5 5 7 35 0 . 043 0 .256
6 6 1 6 0.049 0.278
7 7 3 21 0 . 067 0.339
8 8 3 24 0.085 0.392
9 9 1 9 0.091 0.408

10 10 2 20 0.134 0.496
11 13 2 26 0.146 0 .516
12 15 1 15 0.226 0.615
13 18 1 18 0.378 0 . 742
14 22 1 22 1.000 1 . 000

m=14 T=164 N=3 95 ^=2.409

Column A = index i, i=l,2,...,m . 
Column B = number of papers ns. 
Column C = number of journals f(nj . 
Column D = Column B * Column C. 
Column E = Equation 3.4 in the text. 
Column F = Equation 3.5 in the text.
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which, with reference to Equation 2.1 (the three regions), can be simplified to be:

(3.22)

Equation 3.22 shows that if /x' > fx" then / <  g// s/ <  s// w here
m '  i n " ’  * ’ m ' - i  ni" i ’

i = min{m/- i l/,+ l, nU -i'M }. Since the two curves C' and C" end at the same point

(1,1), Equation 3.22 also implies that if /x' >/x", then the upper portion of the curve C' 

is over the upper portion of the curve C". Thus, if (x',0.8) and (x",0.8) fall in C 'upp,r

As an example, Kendall and Bradford’s data (Tables 3. la  and 3. lb; Figure 3.1), 

give m' =  26, Vv =  12, m" =  14, i"r  =  10, and i0 =  min{15,5} =  5. The two points

{(x"9,0"9) ,.. . ,(x "M,0"M)}, respectively. Hence, we may find from Figure 3.1 that 

x '= 0 .25  < x"=0.52. Note that if one of the two points (x ',0.8) and (x",0.8) does not 

lie in the upper portion of the curve C 'uppL,r or C"uppcr, then Burrell's finding might not be 

true. This explains the exception of Public Library B noted in Burrell's paper (1985).

3.1.4 On Egghe’s Finding

In Egghe’s study (1986) of the relationship between x and 6 (Equation 3.2), 

Lotka’s law was assumed. Here we use the indexed version of Lotka’s law (Equation 

2.2) to simplify Equation 3.10 where the important factors affecting the 80/20 rule are 

index size m, distribution f(nj), and the scattering pattern of n^ for i =  l,2 ,...,m . Using 

Equation 2.2, we can derive the following theorem:

Theorem 5: Assuming the indexed version of Lotka’s law holds, then

and C"uppcr, respectively, and if ix '>n"  then x '< x " . []

(x',0.8) and (x",0.8) fall in C 'upper =  {(x'21,0 '21) ,. . . ,(x '26,0 '26)} and C" upper
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m - j  + l

x  =  n » - j .2 +  7 j — jr r r   £  "  ( 1 - 0 ) - ^ ,  <3 ' 2 3 )(d -b )n  .
v 7 m - j  +

n . .
m-j+ 1

where 9 is given and j is the smallest i such that 9■, >  6.

Proof: Since FOij) =  dn“ - b and n, =  1, we have T =  F(n,) =  d - b,

m - j

- j
I  nt f(nk) N - E n . f d O  M -  "'■j—b

k - m - j  + 1 __ k - 1  U  U

£  f(i\) xj
k - m - j  + 1

and, by definition,

F(n .,) d n e . . - b  n c ., -b /d
_  v m - j  + l 7 _  m - j + l  _  m - j  + l ^  ^ e

j " F(n,) d - b  1 -b /d  n,jtl'

Therefore, from Equation 3.10,

m - j  + l

E i\f (n t)
k-1

^ — c T b T -x - d -   — l i g — jx,., + - t - 9 .

Thus,

x. , n . , J n . ,
j - 1  m - j  + l m - j  + l

m - j  + l

S nk f(nk) [ j
k -> _  (\ 91 1 Jx =  C . +2 +   "  (1 ~0)(d -  b) n ., n .,

v  7 m - j  + l m - j + l

Let C be the curve formed by the m points {(\n9-X i =  l,2 ,...m } . Then 

Equation 3.23 can be simplified to describe the upper portion of the curve by means of 

the following corollary.

Corollary 4: For j =  m - 1, 0 <  t <  iu-3, where t =  m - j and j is the smallest i such 

that X| >  x:



Proof: For j =  m - 1, 0 <  t <  iu-3, and using Equations 2.1, 3.4, and 3.24,

I
k-> _ M I*X =  n e + ™---------  -  (1 -0 )

Ma (d -b )  nltl

l+l
£ k f(k )

= (t + 2)e + - ± i   -  (1 -0 ). **
(d -  b)(t + 1) t+1

l + l
d E k ( n ; - n ; tl)

= (t + 2)c + -±1--------------  -  (1 -0 ). **
(d -b ) ( t+ l)  t + 1

l + l  t+1

Ek-ke- £ k ( k  + l ) e 
*  (t + 2)e + ±1-------- ™------------  -  (1 - 0 ) _ iL

t+1 t+1

To apply Equation 3.24 to the 80/20 rule, the point (x,0.8) must fall in the upper

portion of the curve C; i.e., the point (x,0.8) is on the line segments formed by 

C = {(x. „0. ) ,(x. „0. , ) , . . . , (x ,0 )}.
upper  v io- 3 ’ i<- 3 / , v  i , - 2 ’ 1 , - 2 ' ’ , v  i n ’ n r - *

If this is the case, then we can plug (x,0) =  (0.2,0.8) into Equation 3.24 and obtain

ix -  5[ 1 +2e + ... + (t+2)e] -  (t+1). <3-25)

We can then conclude that the 80/20 rule holds if the parameters /x, e, and t satisfy

Equation 3.25. Comparing Equations 3.10 with 3.25, we find that the indexed version

of Lotka’s law enables us to reduce the number of parameters influencing the 80/20 rule.

3.2 Relationship Between sm and a  in the 80/20 Rule

Equation 3.18 indicates that s,,„ the slope between points (xm.i,0ml) and 

(100%, 100%), to be the inverse of the average rate of transaction, or \/fx. Consider that 

l/fx =  T/N, or the average number of distinct items per usage; since every "distinct"
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item is once a "new entry" over the span of total transaction, we reason that s,„ is 

basically the same as the probability of new entry, ex.

There is a plausible reason that sm can be used to estimate or. The last data point 

which leads to (100%, 100%) is f(l), or the number of items which are used only once. 

Unlike the other items whose usages depend upon their previous usages, the make up of 

f(l) is strictly from Assumption I, or dependent on a.  Thus, sm approximates a. We 

will verify this heuristic through simulation in Section 4.5.1.

3.3 The Need of Computational Experiment

The index approach provides much insight to these empirical phenomena, and 

Chen (1989) has shown that Simon’s generating mechanism can be used to model these 

empirical phenomena; however, there are limitations in what analytical studies can do. 

As demonstrated in this chapter, the number of parameters involved render the analytical 

methods impossible. On the other hand, stochastic models admitting serial correlation 

have proved to be too complex to be solved explicitly in closed form for the equilibrium 

distribution (Ijiri and Simon 1977, p. 159). As Neuts (1986b) suggested, 

experimentation should be used to study the validity of an hypothesis when it cannot be 

settled by other means. Furthermore, because the conventional analytical methods can 

only derive the "average behavior" of the distributions, Leimkuhler (1988) suggested that 

computational experimentation be used for modeling empirical phenomena, especially in 

studying the distributions under "extreme conditions" (Leimkuhler 1988, Neuts 1986a). 

Computational experimentation also allows researchers to examine details as the 

assumptions are relaxed (Neuts 1986b, Simon and Van Woriner 1963). Simon’s three
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models and their corresponding generating mechanisms will be used in Chapters 4 and 

5 to show the pattern changes in these empirical phenomena as we vary the parameters.

3.4 Summary of Findings

In this chapter we take explicit account of the sequence of observed values of the 

variables by means of an index. As the index approach reveals, the 80/20 curve 

basically is influenced by the distribution of f(nj), i =  l,2 ,...,m . Without making any 

assumption on the distribution, we are able to identify several inherent properties of the 

80/20 curve as shown in Theorem 1 and Corollary 1. Continuing the analysis of the 

Pareto principle using the 80/20 rule, we investigate the unknown distributions f(i), 1 < 

i <  if, and nb iu <  i <  m by posing some conditions.

Lotka’s law was introduced in Corollary 3 to describe f(i), 1 <  i <  if; and 

Zipf’s law was introduced in Corollary 2 to describe ni5 iu <  i <  m. The two laws and 

the index approach enable us to identify the parameters influencing the three regions of 

the 80/20 curve. In addition:

(1) Equation 3.9, showing the slope of the 80/20-type curve, allows us to derive a

sufficient condition for Burrell’s inverse relationship between minimum holdings 

and the average circulation rate; and

(2) Equation 3.10 and the indexed version of Lotka’s law enable us to derive a

sufficient condition related to Egghe’s finding on the 80/20 rule.

(3) Equation 3.18 provides a heuristic to estimate the probability of new entry, a,

in Simon’s model.



CHAPTER 4

COMPUTATIONAL RESULTS OF SIMON’S TWO BASIC MODELS

In this chapter we discuss the simulation results and show the behaviors of the 

80/20 curve and other three empirical phenomena when parameters are changed in 

Simon’s two basic models. Specifically, we try to answer the following three questions: 

(1) what are the effects of changing parameters? (2) what is the effect of time 

(expressed as the total number of usages)? and (3) under what condition would the 

80/20 rule and other empirical phenomena hold? We find the rate of new entry a  to 

have the greatest influence to the curves of these phenomena. Basically, small a 

generates high usage concentration. The total number of iterations (the total usages) N 

plays a role only when a  is a decreasing probability function. Important values of a are 

noted, especially those under which the empirical laws hold. We also verify the 

heuristics suggested in Section 3.2, and we use Kendall’s (1960) data to demonstrate its 

application.

4.1 The 80/20 Rule 

Constant oc

Although we can use measures such as 80/20 or 90/10 to describe the shapes of 

the curves which reflect the usage patterns, this unique point where the two fractions add 

up to 100% is not always accurately obtainable from the data. For example, even 

though we may approximate the measure to be 78/22 in Kendall’s Data, these numbers

48
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are found through visual inspection of the graph and do not always have a corresponding 

data point.

Since usage patterns with higher concentration tend to have larger area above the 

midline, we devise a parameter Area to measure the level of usage concentration. The 

parameter Area is defined as the area between the curve formed by { (x ^ ) , i =  l,2 ,...,m } 

and the 0, =  X; line, i.e.,

A r*„ + ^  ( X 2 -  X )  A ( 6 2 +  6 )  (X3~X2) A (0„M + (X , -  X„, ,) _ 1
2 2 2 2 2 (4 . 1)

= _L [(0,x„-0,x.) + (0,x,-0_x,) + . . .+ (6 x - 0  x ) -  1]
2  L V 1 2 2 V  v 2 3 3 27 x m -1 m tn n i - r  J

Thus, an Area of 0 means that Xj =  everywhere; each item is used only once, and 

there is no concentration whatsoever.

Table 4.1 is a summary of the simulation results o f seven different parameters 

a , N, m, nm, f(l), \x, and Area. It shows that the N does not seem to affect the outcome 

of the simulation results. The simulation was carried out with N ranging from 1,000 to 

30,000 usages, and the resulting values of Area and p were strikingly similar at all usage 

levels. For example, when a =  0.20, Area varies within a narrow range of 0.3561 and 

0.3593, and /i fluctuates between 4.9538 to 5.4645. We can conclude that when other 

things held equal, the total number of usage N does not change the usage pattern.

On the other hand, when N is held constant, say at 20,000, results show that 

Area and a  are inversely related. Visually, smaller a  produces graphs that curve to the 

northwest direction (Figure 4.1), and numerically, Figure 4.2 illustrates this relationship, 

using N =  20,000. Since the graph is near linear, a simple regression analysis is 

employed to obtain the relationship Area =  0.4612 - 0.4725a with R2 =  0.9917.
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Table 4.1: 80/20 Rule Simulation Results: Constant Entry Rates

a  N(000) m nm f (1) n  Area
0 . 01 1 6 534 4 111. 1100 0 .3840

5 13 2624 25 113 .6300 0.4711
10 16 5235 54 95 .2380 0.4827
15 19 7917 70 100 . 6711 0.4854
20 23 10578 98 97 . 5610 0 .4871
25 27 13216 123 101.6200 0.4882
30 28 15740 153 98 .6842 0.4889

0 .10 1 16 371 47 11.3636 0 .4184
5 34 1618 254 10 . 5485 0.4262

10 46 3015 540 10 . 0200 0.4245
15 57 4383 791 9.9734 0.4240
20 66 5722 1025 10.1420 0.4245
25 81 2332 2738 10.2669 0.3591
30 84 2677 3272 10 .2916 0 .3589

0.18 1 23 181 80 5 . 9880 0 .3655
5 41 697 486 5 .6180 0 . 3715

10 54 1257 986 5 .5157 0.3702
15 64 1765 1525 5 .4526 0.3703
20 72 2246 1982 5.5203 0.3711
25 78 2693 2484 5 . 5371 0.3712
30 86 3093 2958 5 . 5607 0 .3714

0.20 1 22 175 90 5 .4645 0.3561
5 43 642 537 5.0505 0.3593

10 55 1120 1105 4.9554 0.3582
15 65 1547 1682 4.9358 0.3582
20 74 1935 2170 5.0112 0.3589
25 81 2332 2738 5.0070 0.3591
30 84 2677 3272 5.0100 0.3589

0 .50 1 17 35 319 2.0161 0.2077
5 27 67 1651 2.0105 0.2107

10 38 94 3242 2 .0346 0.2132
15 43 119 4837 2.0305 0.2122
20 48 137 6576 2.0169 0.2118
25 50 148 8235 2.0134 0.2114
30 55 161 9857 2.0146 0.2114

0.70 1 10 13 556 1.3966 0.1211
5 15 19 2625 1.4492 0.1314

10 19 25 5305 1.4422 0.1304
15 20 28 8096 1.4310 0.1288
20 23 31 10788 1.4323 0.1292
25 23 32 13500 1.4310 0.1289
30 25 32 16218 1.4286 0.1283

0. 99 1 3 3 975 1.0131 0.0064
5 3 3 4916 1 . 0086 0.0042

10 3 3 9838 1.0082 0.0040
15 3 3 14744 1.0086 0.0042
20 3 3 19635 1.0092 0.0045
25 3 3 24544 1.0092 0.0045
30 3 3 29450 1.0093 0.0045

R = total number of usages,
Of = entry rate of new items,
m = the maximal index as defined in Section 2.1,
n,„ = the maximal number of usage for an item,
f (1) = the number of items which have been used 1 time,

= average usage per item, and
Area = Equation 4.1 in the text.
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The inverse relationship implies that an increase in the probability of new entries (higher 

a) increases the number of distinct items accessed. The usages are spread over more 

items, resulting in less concentration in usage patterns. This is evident in the reduction 

of nm, the usage frequency of the most-used item. For example, in Table 4.1, with N 

= 20,000, nm declines from 10,578 (a =  0.01) to 13 (a =  0.70) — that is, nothing is 

used more than 13 times when a = 0.70.

Since the relationship between Area and a is smooth and linear, Figure 4.1 

indicates that 80/20 is reached only when a ~  .18; however, for the convenience of 

discussion we will refer to this a  as 0.20.

Decreasing a

Several decreasing functions were used in the simulations, and results are 

summarized in Table 4.2. In general, results show that the faster the a decreases, the 

higher the concentration (Figure 4.3). For example, leta(R ) — A/ln(R), R =  1,2,...,N , 

where A is a constant ranging from 1 to 2 with 0.25 increment, and N =  20,000, the 

measure of 80/20 can be approximated at A = 1.25. When a(R) = 2/ln(R) the measure 

is approximately 75/25.The regression analysis obtains Area =  0.4750 - 0.0748A, with 

R2 = 0.9977. Thus, faster decreasing functions generate lower a  which in term 

translates to lower probability of new entries, resulting in higher concentrations. On the 

other hand, higher N increase usage concentration by reducing a  in the long run.

Our simulation results indicate that a  affects the usage concentration in both cases 

of constant and decreasing a . We will discuss the method of estimating a  of an 

empirical data through analyzing its 80/20 curve in Section 4.5.



Table 4.2: 80/20 Rule Simulation Results at Decreasing Entry Rates a  =  A/ln(R),
R =  1 ,2 ,...N.

N (000) m n. f (1) M Area
1 26 101 70 5.9172 0 . 3422
5 48 426 346 7.2886 0 . 3821

10 68 794 630 7.9239 0.3921
15 80 1143 881 8.3333 0.3971
20 84 1500 1098 8.7719 0 .4014
25 95 1854 1323 9.1008 0 .4042
30 101 2192 1579 9.3168 0.4066
1 24 62 95 4.7169 0.3135
5 55 254 417 5.9171 0 .3582

10 68 476 789 6.3452 0 .3698
15 80 675 1097 6.7355 0.3763
20 96 879 1413 6.9905 0.3811
25 100 1074 1706 7.2380 0.3846
30 111 1260 2014 7.4129 0.3872
1 23 51 139 3.6900 0.2925
5 48 194 514 4.8402 0 .3349

10 68 365 939 5.2938 0.3482
15 80 515 -1365 5.5555 0 .3563
20 95 673 1733 5.8055 0.3616
25 102 800 2098 5.9895 0.3653
30 111 955 2470 6 . 1287 0 .3682
1 22 39 165 3.1545 0.2671
5 49 133 620 4.1017 0 .3144

10 67 252 1137 4.4743 0.3289
15 80 356 1657 4.6904 0.3371
20 88 460 2072 4.9152 0.3427
25 104 539 2512 5.0813 0 .3468
30 110 641 2937 5.2047 0.3497
1 21 28 185 2.8735 0.2501
5 42 97 720 3.6576 0.2994

10 62 182 1331 3.9494 0.3140
15 77 248 1875 4.1666 0 .3219
20 89 314 2347 4.3610 0 . 3271
25 100 362 2893 4.4779 0.3315
30 109 432 3365 4 . 5837 0 .3343
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Al  p h a * A f  I n ( R)  , R -  1 , 2 . . . . . . . . . .  2 0 0 0

t o p  d o w n :  A - 1  , 1 . 2 5 ,  1 . 5 ,  1 . 7 5 ,  2
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Figure 4.3: Results for 80/20 Formulation, Decreasing a
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4.2 Lotka’s Law

Since a full graph of Lotka’s law in most of our simulation results only show 

curves hugging both axes, we only show the partial graph near the origin in our figures. 

In addition to the original presentation of Lotka’s law of using ns and f(n,); we use log(n;) 

and log(f(ni)) to highlight the effects of changing parameters.

Constant a

Figure 4.4 is one example of the simulation result of Lotka’s curves, with N = 

20,000 and a  = 0 .1 0  and 0.90. In general, as indicated in the previous section, a large 

a tends to have a smaller n„, (the horizontal part of the graph), and it reduces the curve 

to a near vertical line approaching the y-axis. In terms of the three clusters described 

in Section 2.1.2, high a  decreases the cluster 3 where f(n,) =  I. Note that when a ~  

0.90, nm =  m and there is no excessive cluster 3. In other words, with high a, we can 

find items that have been used n times, with n running from 1 to m, consecutively.

In order to describe the changing curvatures of these graphs, we define the 

parameter Area,, to be the area under the Lotka’s curve, formed by {(n^ffiii)), 

i =  l,2 ,...,m } , i.e.,

Area, = A[ (f(n,) + f(n2)) (n2 -  n,) + (f(n2) + f(n3))(n3-n 2) +...+ (f(nni ,) (4 2)

+ f(n ))(n - n  )]
v m/ /  v m  i n - 1 '  J

Table 4.3 shows that Area, increases linearly with respect to the size of N when 

a  is held equal. For example, at a = 0.01, AreaL =  15943.0 when N =  30,000 — or 

approximately 30 times of the Area, of 536 when N =  1,000. Since N has little effect 

on the shape of the curves, we arbitrarily selected N = 20,000 as a representative in our
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Figure 4.4: Results for Lotka’s Law, Constant a



58

Table 4.3: Simulation Results of Lotka’s Law and Z ipf s Second Law, Constant a

N
(000)

m T f (1)/ f (2)/ 
T f (1)

f (3) / f (4 ) / f (5) / 
f (1) f(l) f(l)

AreaL A,.

0.01 1 6 534 9 0.4444 0.0000 0.2500 0.0000 0.0000 536 0.2509
0.10 1 16 371 88 0.5341 0.2128 0.1702 0.1915 0.0638 420 0.0241
0.20 1 22 175 183 0.4918 0.4556 0.1556 0.0556 0.0556 292 0.0185
0.30 1 21 91 302 0.5993 0.2099 0.1381 0.1105 0.0497 282 0.0171
0.40 1 18 44 401 0.6060 0.2510 0.1728 0.0658 0.0412 316 0.0295
0.50 1 17 35 496 0.6431 0.2978 0.0909 0.0596 0.0251 356 0.0319
0.60 1 13 16 611 0.7201 0.2114 0.0818 0.0341 0.0136 394 0.0559
0.70 1 10 13 716 0.7765 0.1871 0.0486 0.0306 0.0018 441 0.0609
0.80 1 6  8 799 0.8260 0.1530 0.0364 0.0152 0.0030 472 0.0894
0.90 1 5  5 906 0.9205 0.1367 0.0360 0.0144 0.0120 488 0.1170
0.99 1 3  3 987 0.9878 0.0113 0.0010 0.0000 0.0000 499 0.1706
0 . 01 
0 .10 
0.20 
0.30 
0.40 
0 . 50 
0.60 
0.70 
0.80 
0.90 
0.99

5
5
5
5
5
5
5
5
5
5
5

13 2624
34 1618
43
40
39
27
21
15
9
7
3

642
303

12
7
3

44
474
990

1523
109 2014
67 2487
26 2958
19 3450

3954
4492
4957

0.5682 0 
0.5359 0 
0.5424 0 
0.5896 0 
0.6346 0 
0.6639 0 
0.7093 0 
0.7609 0 
0.8283 0 
0,9103 0 
0.9917 0

. 2 0 0 0  0 

.2913 0 

.3240 0. 

.3129 0 

.2551 0. 

.2489 0, 

.2288 0. 

.1996 0. 

.1450 0. 

.0792 0. 

.0079 0.

0800 0, 
1654 0. 
1620 0. 
1 1 0 2  0 , 

1072 0. 
1127 0. 
0791 0. 
0530 0. 
0345 0. 
0147 0. 
0004 0.

1200 0 
0748 0 
0950 0 
0735 0 
0689 0 
0424 0 
0381 0 
0232 0 
0168 0 
0037 0 
0000 0

. 0400 

. 0591 

. 0447 

.0367 

. 0352 

. 0279 

.0186 

. 0175 

. 0046 

.0005 

. 0 0 0 0

2642 0. 
1935 0. 
1331 0. 
1339 0. 
1450 0. 
1705 0. 
1918 0. 
2142 0. 
2321 0. 
2447 0. 
2498 0.

0403
0047
0039
0049
0104
0154
0352
0429
0590
0855
1694

0 . 01 
0 .10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
0 . 99

10
10
10
10

16
46
55
52

10 49
10
10

38
27

10 19
10 10
10
10

5235
3015
1120
506
174
94
36
25
12
7
3

105 0 
998 0 

2018 C. 
3036 0. 
3985 0. 
4915 0. 
5933 0. 
6934 0. 
7939 0. 
9008 0. 
9918 0.

.5143 0, 

.5411 0. 

.5476 0 

.5827 0. 

.6211 0. 

.6596 0. 

.7106 0. 

.7651 0. 

.8293 0. 

.9112 0. 
9919 0.

3333
3019
3113
3041
2764
2619
2265
1919
1472
0803
0079

0 . 1481 0. 
0.1204 0, 
0.1620 0 
0.1357 0. 
0.1329 0. 
0.0956 0. 
0.0804 0. 
0.0586 0. 
0.0328 0. 
0.0125 0. 
0 . 0 0 0 2  0 .

0741 0 
0963 0, 
0887 0 
0820 0. 
0549 0. 
0506 0. 
0372 0. 
0234 0. 
0150 0. 
0035 0. 
0000 0.

0926
0667
0516
0447
0303
0312
0209
0124
0050
0007
0000

5300 0. 
3704 0. 
2545 0. 
2626 0. 
2879 0. 
3353 0. 
3838 0. 
4287 0. 
4649 0. 
4904 0. 
4998 0.

0187
0023
0021
0029
0067
0110
0253
0323
0588
0853
1693

0 . 0 1  
0 . 1 0  
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0 . 90 
0.99

15
15
15
15
15

19
57 
65
58 
56

15 43
15
15
15
15
15

30
20
12

7917
4383
1547
649
220
119
46
28
15
8
3

149 0 
1504 0 
3039 0 
4538 0 
5930 0 
7388 0 
8917 0 

10482 0 
11954 0 
13491 0 
14871 0

.4698 0. 

.5259 0, 

.5535 0, 

.5837 0. 

.6147 0. 

.6547 0. 

.7102 0. 

.7724 0. 

.8329 0. 

.9106 0. 

.9915 0.

3429 0. 
3338 0. 
3002 0. 
2990 0. 
2914 0. 
2756 0. 
2291 0. 
1821 0, 
1443 0. 
0801 0. 
0085 0.

2857 0 
1517 0. 
1576 0. 
1351 0. 
1265 0. 
0980 0. 
0764 0. 
0581 0 
0318 0. 
0136 0. 
0001 0.

0857 0. 
0796 0, 
0779 0. 
0774 0. 
0642 0. 
0476 0. 
0403 0. 
0240 0. 
0131 0. 
0031 0. 
0000 0.

0714
0544
0559
0521
0326
0269
0210
0120
0061
0010
0000

8034 0. 
5446 0. 
3703 0. 
3838 0. 
4285 0. 
5056 0. 
5777 0. 
6446 0. 
6980 0. 
7348 0. 
7498 0.

0145
0016
0014
0022
0053
0088
0198
0284
0467
0748
1695
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Table 4.3 Continued

a N
(000)

0.,01 20 23
0..10 20 66
0..20 20 74
0 ..30 20 69
0..40 20 60
0..50 20 48
0..60 20 34
0..70 20 23
0..80 20 12
0 ..90 20 8
0..99 20 3
0 ..01 25 27
0..10 25 72
0 ..20 25 81
0 ,.30 25 75
0..40 25 66
0 ..50 25 50
0 ..60 25 37
0 ,.70 25 23
0 ,.80 25 13
0 ..90 25 8
0 .99 25 3
0.. 01 30 28
0,.10 30 84
0 .20 30 84
0 .30 30 83
0 .40 30 68
0 .50 30 55
0 .60 30 38
0 .70 30 25
0 .80 30 13
0 . 90 30 8
0 .99 30 3

T f(l)/ 
T

f (2)/ 
f (1)

f (3) / 
f (1)

f (4)/
f (1)

f (5) / 
f (1)

Area. A,

5722
1935
783
260
137

205
1972
3991
6023
8011
9916

48 11899 
31 13963 
15 15936 
8 18015 
3 19816

2332
917
295
148
50
32
16
8
3

8154
2677
1031
327
161
51
32
16
8
3

0.4780 0. 
0.5198 0. 
0.5437 0. 
0.5816 0. 
0.6243 0. 
0.6632 0. 
0.7131 0. 
0.7726 0. 
0.8328 0. 
0.9112 0. 
0.9909 0.

246 0 
2435 0 
4993 0 
7539 0 
9992 0 

12417 0 
14892 0 
17470 0 
19958 0 
22509 0 
24770 0

304 0 
2915 0 
5988 0 
9033 0 

11987 0 
14891 0 
17899 0 
2 1 0 0 0  0 
23988 0 
27036 0 
29722 0

.5000 0 

.5170 0 

.5484 0 

.5832 0 

.6247 0 

.6632 0 

.7123 0 

.7728 0 

.8342 0 
9109 0 
9909 0
.5033 0 
.5252 0 
.5464 0 
.5818 0 
.6243 0 
.6619 0. 
.7122 0. 
.7723 0. 
.8348 0. 
9112 0. 
.9908 0.

3878 0. 
3356 0. 
3217 0. 
3060 0. 
2729 0. 
2576 0. 
2209 0. 
1813 0. 
1435 0. 
0804 0. 
.0091 0.
.3008 0. 
.3249 0. 
.3112 0 
.2986 0. 
.2695 0 
.2590 0 
.2252 0. 
.1810 0. 
.1412 0. 
.0803 0. 
.0090 0.
.3203 0. 
.2972 0. 
.3139 0 
.2986 0 
.2700 0 
.2605 0. 
.2255 0. 
.1839 0. 
. 1416 0. 
0804 0. 
0090 0.

1837 0 
1483 0 
1581 0 
1285 0 
1244 0 
0999 0 
0844 0 
0586 0 
0333 0 
0129 0 
0002 0

1327 0 
.1063 0 
.0820 0 
.0748 0 
.0630 0 
.0465 0 
.0346 0 
.0227 0 
.0129 0 
.0025 0 
. 0 0 0 0  0

2033
1581
1494
1321
1245
0938
0802
0581
0348
0134
0002

0.1057 0 
0.1033 0 
0.0829 0 
0.0771 0 
0.0628 0 
0.0488 0 
0.0347 0 
0.0233 0 
0 . 0 1 2 1  0 
0.0027 0 
0.0000 0

2288 0. 
1450 0. 
1494 0. 
1376 0. 
1235 0. 
0989 0. 
0813 0. 
0572 0. 
0334 0. 
0131 0. 
0002 0.

.0612 

.0537 

. 0539 

.0514 

.0338 

. 0295 

.0206 

. 0125 

.0057 

. 0010 

.0000

. 0650 

. 0627 

.0606 

. 0484 

. 0344 

. 0270 

. 0228 

. 0132 

. 0055 

. 0009 

. 0000

0784 0. 
1156 0. 
0889 0. 
0735 0. 
0643 0. 
0518 0. 
0346 0. 
0231 0. 
0123 0. 
0026 0. 
0000 0.

0523
0614
0581
0464
0339
0264
0223
0118
0055
0009
0000

10713 0.,0103
7162 0 .. 0012
4780 0 .. 0011
4997 0 ..0018
5719 0 .. 0044
6719 0 .. 0075
7674 0..0188
8578 0.. 0256
9309 0.. 0468
9806 0 .. 0747
9997 0.. 1697

13376 0 .. 0082
8710 0 .. 0010
5883 0..0009
6202 0 . 0015
7114 0 .0039
8404 0..0069
9606 0.. 0181

10731 0 . 0248
11637 0 . 0437
12256 0 . 0747
12496 0 . 1697
15943 0 ..0066
10224 0..0008
6964 0..0008
7370 0 . 0014
8529 0 .0035

10071 0.. 0063
11545 0..0178
12898 0.. 0249
13980 0 . 0436
14717 0 . 0747
14994 0 . 1697
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discussion. We select a slightly higher N also to avoid the instability that usually occurs 

when the number of usage is low.

Since large N automatically increase Area,., AreaL is adjusted as a fraction of the 

corresponding nmf(l) — the rectangular area that has the two maximum values at its 

corners. The resulting fractions are denoted AL, and they are listed in Table 4.3. Figure 

4.5 indicates how A,, varies at different levels of a  and N. It is clear that regardless the 

magnitude of N, larger a  increases AL. AL continues to increase with oc and finally 

converges to approximately 16.97% when a  =  0.99 for all N. The only exception takes 

place at the other extreme condition a = 0.01 where AL is higher than when a = 0.1.

This convergence is characterized by the uniform n,„ =  3 for all N when a =

0.99, meaning that due to the high probability of new entry no one item is used more 

than 3 times. From Equation 4.2

A f(l) + f(2) , f(2) + f(3) _ f(l) + 2f(2) +f(3)
2 2 2

Since we have defined AL =  AreaL/nmf(l), and nm =  3 for all N, we have

A -  f(D +2f(2)+f(3) _ 1 x 2f(2) + f(3)
L 6 f(l) 6 6f(l)

With 1/6 =  16.67% and f(l) quite large (see Table 4.3), the convergence to 

approximately 16.9% is a logical conclusion.

The discrepancy between m and nm in Table 4.3 indicates the nature of scattering 

observed values in the dataset. For example, the first row in Table 4.3 (with a =  0.01 

and N =  1,000) shows nm =  534 and m =  6.
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Figure 4.5: Area under Lotka’s Curve (A,.), Constant a
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We also use a modified Lotka’s curve to show the effect of oc. Figures 4.6a 

through 4.6d (a  =  0.1, 0.3, 0.5, and 0.9, respectively) shows Lotka’s curves using 

log(ni) and log(f(n;)) to highlight the rate of change. These four graphs show how the 

slope of the curve and the three clusters are affected by oc. Since cluster 3 is 

characterized by f(n;) =  1, it is the section where log(f(iii)) =  0. On the other hand, 

cluster 1 (where ^  =  i) is characterized by its linearity. Thus, Figure 4.6 shows that 

when oc is high: (1) cluster 3 shrinks to eventually nothing; and (2) the slope becomes 

steeper, basically through increasing the number of low-usage items.

We find that when oc = 0.30 (Figure 4.6b) the slope of this modified Lotka’s 

curve is estimated to be approximately -2 — by which Lotka’s law holds. Consistent 

with Lotka’s prediction, f(l) is nearly 60% of the total items T at this oc.

Decreasing oc

Simulation results are summarized in Table 4.4. Similar to the effect of constant 

a, increasing A causes the curve to move away from the origin. However, Table 4.4 

indicates that although AreaL increases with ce at a slower rate than in the case of 

constant oc. Furthermore, when N is large, the rate of increase is even smaller. This 

is understandable since eventually the decreasing function will generate a small enough 

a  (when R becomes large enough) that the value of A has little effect to the value of the 

function. Thus, the total number of usage N indirectly affects usage pattern by directly 

affecting oc. Consistent with these observations, Table 4.4 shows that the decreasing 

A, with respect to N is caused largely by the much faster increase in n,„f(l).
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Figure 4.6a: Modified Lotka’s Curve, a  = 0 .1 0
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a l p h a  •  0 . 3 0
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Figure 4.6b: Modified Lotka’s Curve, a  =  0.30
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Figure 4.6c: Modified Lotka’s Curve, a  =  0.50
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Figure 4.6d: Modified Lotka’s Curve, a  =  0.9



67

Table 4.4: Simulation Results of Lotka’s Law, Decreasing a , a  =  A/ln(R) where R
= 1,2,...,N

A N m 
(000)

f (1) 
/T

f (2) 
/f (1)

f (3) 
/f (1)

f (4)
/f (1)

f (5)
/f (1)

Area, A,

00
25
50
75
00

1.00 
1.25 
1.50 
1.75 
2 . 00

1 . 0 0  10  
1.25 10 
1.50 10 
1.75 10 
2 . 0 0  10

1.00 15
1.25 15
1.50 15
1.75 15
2.00 15
1 . 0 0  20
1.25 20
1.50 20
1.75 20 
2 . 0 0  20

26 101 169 0.4142 0.6143 0.1571 0.1000 0.0429
24 62 212 0.4481 0.4421 0.1895 0.0526 0.0421
23 51 271 0.5129 0.3309 0.1079 0.1079 0.1079
22 39 317 0.5205 0.3091 0.1394 0.1818 0.0727
21 28 348 0.5316 0.2811 0.1676 0.1622 0.0595
48 426 686 0.5044 0.2977 0.1590 0.0838 0.0694
55 254 845 0.4935 0.3309 0.1511 0.1199 0.0959
48 194 1033 0.4976 0.3346 0.1868 0.1109 0.0603
49 133 1219 0.5086 0.3387 0.1935 0.0952 0.0645
42 97 1367 0.5267 0.3417 0.1528 0.0931 0.0569
68 794 1262 0.4992 0.2952 0.1714 0.0984 0.0810
68 476 1576 0.5006 0.3105 0.1736 0.1065 0.0659
68 365 1889 0.4971 0.3365 0.1715 0.1076 0.0756
67 252 2235 0.5087 0.3369 0.1803 0.0915 0.0730
62 182 2532 0.5257 0.3366 0.1630 0.0924 0.0594
80 1143 1800 0.4894 0.3326 0.1657 0.0988 0.0795
80 675 2227 0.4926 0.3254 0.1778 0.1112 0.0720
80 515 2700 0.5056 0.3216 0.1692 0.1070 0.0571
80 356 3198 0.5181 0.3132 0.1768 0.0863 0.0670
77 248 3600 0.5208 0.3419 0.1552 0.1003 0.0624
84 1500 2280 0.4816 0.3597 0.1585 0.1056 0.0692
96 879 2861 0.4939 0.3390 0.1599 0.1125 0.0672
95 673 3445 0.5030 0.3289 0.1679 0.1062 0.0600
88 460 4069 0.5092 0.3369 0.1747 0.0936 0.0565
89 314 4586 0.5118 0.3524 0.1670 0.0950 0.0609

1.00 25 95 1854 2747 0.4816 0.3492 0.1602 0.1156 0.0582
1.25 25 100 1074 3454 0.4939 0.3353 0.1530 0.1184 0.0645
1.50 25 102 800 4174 0.5026 0.3308 0.1540 0.1115 0.0686
1.75 25 104 539 4920 0.5106 0.3229 0.1684 0.0999 0.0685
2.00 25 100 362 5583 0.5182 0.3246 0.1701 0.0954 0.0667
1.00 30 101 2192 3220 0.4904 0.3097 0.1659 0.1203 0.0665
1.25 30 111 1260 4047 0.4977 0.3133 0.1708 0.1087 0.0665
1.50 30 111 955 4895 0.5046 0.3186 0.1688 0.0980 0.0745
1.75 30 110 641 5764 0.5095 0.3201 0.1709 0.1042 0.0678
2.00 30 109 432 6545 0.5141 0.3337 0.1664 0.1004 0.0627

214 ,. 5 0 .. 0303
204 . 0 0 .. 0346
230,. 5 0 ,. 0325
257 .. 0 0 ..0399
264 ,. 5 0 .. 0511
917 .. 0 0 .. 0062
838 .. 0 0 .. 0079
928 .. 0 0 .. 0093
994 .. 0 0 .. 0121

1076 . 0 0 .. 0154
1676 .. 5 0 ..0034
1606 . 0 0 ..0043
1724 .. 5 0 .. 0050
1853 .. 5 0 ,. 0065
1996 .. 0 0 .. 0082
2427 . 0 0 .. 0024
2298 .. 5 0.. 0031
2471.. 5 0.. 0035
2654 ..0 0 .. 0045
2844 ,. 0 0 .. 0061
3176 .. 5 0 .. 0019
2964 . 0 0 .. 0024
3169 .. 0 0 .. 0027
3435 . 5 0 ..0036
3642 .. 0 0 ., 0049
3883 ,. 0 0 ..0016
3604 .. 5 0 ..0020
3849 .. 5 0 ..0023
4109 ,. 0 0 .. 0030
4409 .. 5 0 .. 0042
4657 .. 0 0 ..0013
4210 .. 0 0 ..0017
4590 .. 0 0 .. 0019
4858 .. 0 0 .. 0026
5195 .. 5 0 .. 0036
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4.3 Bradford’s Law

We began the analysis of Bradford’s law by calculating the area under the 

Bradford’s curve, denoted as Area„, using the following formula:

Area,, = 1  [(G ^ + G fr^X lo g r^ -lo g r,) + (G(r,)+G(r2))(logr3- lo g r2) +... (4 3)

+ (G(rn) + G(rii.])(logrm- lo g r ii,)]

Constant a.

We denote AB = Area„/[G(rJlog(rm)], where the denominator is the largest area 

possible for the curve. Figure 4.7 illustrates the effect of a and N on A„, and it shows 

that these curves are mirror image of Figure 4.5. For example, at a = 0.01 (an extreme 

condition), A„ of different N converges at approximately 0.95. Note that G(r,„) is 

equivalent to N, and rm =  3 when a =  0.01. We can demonstrate that this is inherently 

true using similar method as in Section 4.2. On the other hand, as a increases A„ 

decreases at approximately the same rate across all N until a  reaches another extreme 

condition of 0.99, then AB shows sudden increases, yet still at about the same rate for 

all N. Results of AreaB and AB are summarized in Table 4.5.

Based on Figure 4.7, we can easily visualize the maximum, minimum, and the 

point where AB is approximately 50% of all possible area (in this case, N-log(rn,)). 

Using N =  20,000 as an example, these points are approximately at a = 0.01, 0.90, 

and 0.20, respectively.

When a — 0.20 Bradford’s law holds, since at this a, A„ *  50% and the curve 

is near linear with a positive slope (Figure 4.8). As a  decreases from 0.20, two things 

happen. First, G(l) increases; and second, the curve moves northwesterly and causes
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Table 4.5: Simulation Results o f Bradford’s and Z ip f s Law, Constant a

N log(r) log(g(r)) 
( 0 0 0 )

AreaB Areaz A, Az

0 . 0 1  
0.10 
0 . 2 0  
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
0. 99
0 . 01  
0 . 1 0  
0 . 2 0  
0.30 
0.40 
0.50 
0.60 
0 .70 
0.80 
0 . 90 
0 . 99

0 . 954
1 . 944 
2.262 
2.480 
2.603
.695 
.786 
. 855 
.903 
. 957 
. 994

1.643 
2 .676
2 . 996
3 .183 
3 .304 
3 .396 
3 .471 
3.538 
3 . 597 
3 . 652 
3.695

2 . 728 
2 .569
2 .243 
. 959 
.643 
. 544 
.204

1.114 
0.903 
0 .699
0 .477
3.419
3 .209 
2 .808 
2.481 
2 . 037
1 . 826 
1.415 
1 .279 
1 . 079 
0.845 
0 .477

869. 
1505 . 
1387 . 
1241. 
1044 . 
951 . 
835 . 
770 . 
719 . 
739 . 
996 .

7729. 
9883 . 
8320. 
6935. 
5766 . 
5001. 
4394 . 
3960. 
3682 . 
3661. 
5352 .

9 1.441
0 2.328
5 2.559
8 2.505 
3 2.361 
0 2.182
9 1.894
6 1.669
1 1.163
5 0.947
6 0.708

316
827
064
932
677
348
937
551
128
674
824

0 . 9118 
0 . 7742 
0.6134 
0.5007 
0 .4012 
0.3529 
0.3000 
0.2699 
0.2477 
0.2501 
0 .3329
0.9409 
0 .7387 
0 .5555 
0 .4358 
0.3490 
0 .2946 
0 .2532 
0 .2239 
0 .2048 
0.2005 
0 .2897

0.5537 
0.4661 
0.5044 
0.5155 
0.5521 
0.5245 
0.5646 
0.5249 
0.4435 
0.4581 
0.4958
0.4123 
0.4457 
0.4831 
0.4979 
0.5464 
0.5399 
0.5980 
0.5638 
0.5482 
0.5424 
0.4674

0 . 0 1  
0 . 1 0  
0 . 2 0  
0.30 
0.40 
0.50 
0.60 
0 .70 
0.80 
0.90 
0.99

10
10
10
10
10
10
10
10
10
10
10

2 . 021  
2.999 
3 .305 
3 .482 
3.692 
3 .692 
3 . 773 
3 .841 
3 . 900 
3 . 955 
3 . 996

3 .719 
3 .479 
3 .049 
2 .704 
2 .241 
1. 973 
1 . 556 
1.398 
1 . 079 
0 .845 
0 .477

19072
21552
17572
14307
11826
10172
8855
7961
7370
7325

10770

934 
604 
827 
654 
34 3 
946 
425 
964 
420 
905 
938

0 . 9437 
0.7187 
0.5317 
0.4109 
0.3203 
0.2755 
0 .2347 
0.2073 
0.1890 
0 .1852 
0.2695

0.3904 
0.4413 
0.4790 
0.4943 
0.5249 
0.5417 
0.5834 
0.5520 
0.5751 
0.5700 
0.4921

0 . 0 1  
0 . 10  
0 . 2 0  
0.30 
0.40 
0 .50 
0.60 
0 . 70 
0.80 
0.90 
0 . 99

15
15
15
15
15
15
15
15
15
15
15

2 . 173
3 . 177 
3.483 
3 .657 
3 .773 
3 .869
3 . 950
4 . 020 
4 . 078 
4.130 
4 . 172

3 .899 
3 .642 
3 .189 
2 .812 
2 . 342 
2 . 076 
1.663 
1.447 
1 .176 
0.903 
0.477

30812
33737
27084
21828
17970
15322
13320
11983
11097
10996
16015

.9 3.292 

.3 5.096 

.5 5.310 

.4 5.113 

.1 4.763 

.2 4.306 

.8 3.746 

.8 3.243 

.0 2.679 

.1 2.092 

.0 1.013

0.9453 
0 .7079 
0.5184 
0.3979 
0.3175 
0.2640 
0.2248 
0.1987 
0.1814 
0.1775 
0.2559

0.3885 
0.4404 
0.4781 
0.4972 
0.5390 
0.5361 
0.5703 
0.5575 
0.5586 
0.5609 
0.5090
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Table 4.5 Continued

N log(r) log(g(r)) Arean Area, 
( 0 0 0 )

A, A*

0 . 01  
0 . 1 0  
0 . 2 0  
0.30 
0.40 
0.50 
0.60 
0 .70 
0.80 
0 . 90 
0. 99

20
20
20
20
20
20
20
20
20
20
20

2 .312 
3.295
3 .601 
3 .780 
3.904
3 . 996
4 . 076 
4 . 145 
4 .202 
4 .2.56 
4.297

4.024 
3 .758 
3 .287 
2 .894 
2 .415 
2 . 137 
1 .681 
1.491 
1 . 176 
0 . 903 
0 .477

43742. 
46252. 
36674. 
29274. 
24039. 
20513. 
17826. 
16004, 
14797, 
14669. 
21098.

3 .552 
5.465 
5 .672 
5 .443 
5 . 051 
.569 
.966 
.418 
.837 
. 937

5 1.000

0.9460 
0.7019 
0.5092 
0.3872 
0.3079 
0.2567 
0.2187 
0.1931 
0.1761 
0.1723 
0.2455

0.3818 
0.4414 
0.4792 
0.4975 
0.5357 
0 . 5351 
0 . 5789 
0.5531 
0.5742 
0.5039 
0.4877

0 . 01  
0 . 1 0  
0 . 2 0  
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0 . 90 
0.99

25
25
25
25
25
25
25
25
25
25
25

2.391
3.386
3.698
3 .877 
4.000
4 . 094 
4.173 
4 .242 
4.300 
4 .352 
4 .394

4 . 121 
3 .843 
.368 
.962 
.470 
. 170 
.699 
.505 
.204 

0 . 903 
0 .477

56597
58938
46442
36876
30247
25685
22281
19976
18483
18321
26372

768 
755 
959 
708 
300 
781 
138 
550 
922 
009 

.8 0.989

0.9468 
0 .6963 
0.5023 
0.3805 
0.3025 
0.2510 
0 .2136 
0 .1884 
0.1719 
0 .1684 
0 .2401

0 .3824 
0.4423 
0 .4784 
0 .4970 
0.5365 
0.5381 
0 .5836 
0.5561 
0 . 5644 
0.5113 
0.4717

0 . 01 
0 . 10  
0 . 2 0  
0.30 
0.40 
0 . 50 
0.60 
0 .70 
0 .80 
0.90 
0.99

30
30
30
30
30
30
30
30
30
30
30

2.483 
3 .465 
3 .777
3 .956
4 . 079 
4 . 173 
4 .253 
4 . 322 
4 .380 
4 .432 
4 .473

4 . 197 
3 . 911

428 
013 
515 
207 
708 

1 .505 
1 .204 
0 . 903 
0 .477

70564.
71836
56089,
44354,
36381
30854
26746
23961,
22163
21980
31608

942
004
2 0 1
928
499
955
285
660
013
065
951

0 . 9473 
0.6911 
0.4950 
0 . 3737 
0.2973 
0.2465 
0.2096 
0 .1848 
0.1687 
0.1653 
0.2356

0.3783 
0.4431 
0.4789 
0.4973 
0.5360 
0.5380 
0 . 5899 
0.5627 
0 .5713 
0.5159 
0.4459
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Figure 4.8: Results o f Bradford’s Law, Constant a
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AreaB to increase. Most of the drastic slope changes take place at the first few points 

on the curve, then the curve return to its linear form, though with a flatter slope. The 

slope of the curve where q is large is directly related to a, while the slope of the curve 

where is small is inversely related to a. Note that the 80/20 rule also holds when a 

*  0 .20 .

In terms of the six different classes of Bradford curves illustrated in Figure 1.1, 

we are able to reproduce four of the curves using Simon’s basic model alone. As 

expected, the 4th class, with its linearity, can be reproduced using a = 0.18. The first 

class requires 0.2 <  a < 0.5, the 3rd class uses a  >  0.5, and the 6th class is 

approximated when a = 0.10.

Decreasing a

Table 4.6 summarizes the values of AreaB and A„ at different levels of A and N, 

and it shows that AB decreases as A (thus alpha) increases, independent of N. In fact, 

we selected N =  1,000, 20,000, and 30,000 for illustration purpose, and the three 

curves basically overlap each other. Since the "all possible area" can also be expressed 

as N-log(rm), it automatically increases when the total number of usage N increases; 

however, AreaB (the nominal area) changes proportional to N, thus A„ appears to remain 

unaffected by changing N.

Based on Figure 4.9, the maximum, minimum, and the 50% points of A„ are 

determined to be at approximately A = 1.0, 2.0, and 1.25, respectively. Figure 4.9 is 

the composite graph of these three curves. Similar to Figure 4.8, the 50% curve (A = 

1.25) is the most linear one, the minimal curve (A = 2.00) bends southeasterly, and the



Table 4.6: Simulation Results of Bradford’s and Zipf’s Law; Decreasing a,
a  =  A/ln(R) where R = 1 ,2 ,...,N

A N (000) log(r) log(g(r)) AreaB Areaz Ab Az

1. 00 1 2 .228 2.004 1237 .2 2 .615 0.5553 0.5856
1.25 1 2 . 326 1.792 1138 .4 2.575 0 .4894 0.6177
1.50 1 2.433 1.708 1107 . 0 2 .510 0.4550 0.6039
1 . 75 1 2.501 1 .591 1020.4 2 .406 0.4080 0.6046
2 . 00 1 2 . 542 1.447 963.0 2.323 0.3788 0.6317

1 . 00 5 2.836 2 .629 7908 . 0 4 .153 0.5577 0.5570
1.25 5 2 . 927 2 .405 7233 . 0 4 .119 0 .4942 0.5851
1. 50 5 3 .014 2 .288 6777 .1 4 . 052 0 .4497 0.5875
1.75 5 3 . 086 2 . 124 6304 . 0 3.939 0.4086 0.6010
2.00 5 3 .136 1.987 5949.7 3.830 0.3794 0 .6147

1. 00 10 3 .101 2.900 17267.9 4 . 943 0.5568 0.5497
1.25 10 3 .198 2.678 15798 .8 4 . 912 0 .4940 0 .5735
1 .50 10 3 .276 2 .562 14699.3 4 .840 0.4487 0 . 5767
1 .75 10 3 .349 2 .401 13693 .6 4 .721 0.4089 0.5871
2.00 10 3 .403 2.260 12921. 3 4 .600 0.3797 0.5981

1.00 15 3 .255 3 . 058 27166.2 5.444 0.5564 0.5469
1.25 15 3 .348 2 .829 24847.5 5.415 0 .4948 0.5717
1 . 50 15 3 .431 2.712 23168 .7 5.342 0.4502 0.5741
1.75 15 3 .505 2.551 21513 .1 5 .213 0.4092 0.5830
2.00 15 3 .556 2.394 20231. 1 5.087 0.3793 0.5976

1.00 20 3 . 358 3 .176 37419.1 5.816 0.5572 0.5453
1.25 20 3 .457 2 . 944 34234 .8 5.786 0.4952 0.5686
1.50 20 3 .537 2 . 828 31856 . 0 5 .712 0.4503 0.5710
1.75 20 3 .609 2 .663 29544 . 1 5 . 584 0.4093 0 .5810
2 .00 20 3.661 2 .497 27680.7 5.448 0.3780 0 .5960

1.00 25 3.439 3 .268 47879.2 6 . 113 0.5569 0.5439
1.25 25 3 .538 3 . 031 43844 . 0 6 . 085 0.4957 0.5674
1 . 50 25 3 .621 2. 903 40739.6 6 . 011 0.4500 0.5718
1 .75 25 3 .692 2 .732 37749 .6 5.878 0.4090 0.5828
2 .00 25 3 . 747 2 . 559 35432 . 5 5 .743 0.3782 0 . 5989
1.00 30 3 . 508 3 . 341 58540.8 6 .364 0.5563 0 . 5430
1.25 30 3 .607 3 .100 53549 .2 6.333 0 .4949 0.5664
1 . 50 30 3 .690 2.980 49694 .1 6 .257 0.4489 0.5690
1.75 30 3 .761 2.807 46031.2 6 . 122 0 .4080 0.5799
2.00 30 3 .816 2.635 43142 .1 5 . 979 0.3769 0.5947
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maximal curve bends northwesterly. Again, when a  increases both Area,, and A„ 

decrease, and vice versa.

4.4 Zipf’s Law

The Area under Z ip f s curve (Areaz) is calculated as follows:

Areaz = 1  [(logg(r2) + loggO^Xlogr.-logr,) + (logg(r3) + logg(r2))(logr3-lo g r2) (4 4)

+ ... + (logg(rJ + loggC ^JM log^ -log rm _,)]

We also define Az =  Areaz/| (log(g(r,n))(log(r„,)) | , where the denominator is the largest

possible Areaz.

Constant a

Figure 4.10 shows how Az varies under different a and N. The pattern here is 

less clearly defined, especially when N =  1,000; however, the changes in Az with 

respect to a  for all N still follow a general pattern. The effect of N on Az also shows 

greater dispersions than those described in previous sections. The values of Areaz and 

Az are summarized in Table 4.6. The nominal values of the area, Areaz, follows the 

general pattern of Az: as a  increases, it increases also; however, after reaching certain 

maximum point it eventually decreases.

Based on Figure 4.10, again we select the minimum, the maximum, and the 50% 

points of Az at a  =  0.01, 0.60, 0.30, respectively. We also add to our graph two other 

important points: the other extreme point a  =  0.99, and a = 0.2 where the graph is 

near linear and has a slope »  -1. These Z ipfs curves are plotted in the same graph in 

Figure 4.11. In this case, because of the "kink" at the very beginning of the curve, the 

point Az =  50% does not correspond to the ideal condition in which Zipf’s law holds.
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Figure 4.11 can be analyzed from several angles. First, the general negative 

slope remains to be the characteristics of these Zipf’s curves; however, the slope flattens 

with the increase of a. Second, the initial "kink" in the Zipf’s curve remains but 

becomes less pronounced as a  increases. Third, log(g(ri)) decreases when a  increases, 

but log(r) increases when a  increases; thus, the "largest area possible" as we have used 

previously changes its shape from an vertical rectangles to horizontal rectangles. Note 

that similar to the results obtained from previous sections, when a  =  0.60 and Az *  

50%, the curve is near linear. However, the curve is also near linear when a  =  0.99, 

partly due to the much fewer clusters of items with the same usage (m, the maximum 

index, is 3). On the other hand, coinciding with the 80/20 rule and Bradford’s law, 

Zipf’s law holds at oc *  0.20 when the slope approximates -1.

As we have discussed in Section 1.1.4, Zipf’s second law expresses the ratios 

among the number of items of those with low usages, and these ratios can be reproduced 

in our simulations. Table 4.3 shows that when a =  0.20 the ratios (f(l)/T « 0 .5 4 , 

f(2)/f(l) * 0 .4 3 , f(3)/f(l) *0 .1 6 , f(4)/f(l) * 0 .08 , and f(5)/f(l) *0 .05) approximate those 

in Section 1.1.4 (0.5, 0.33, 0.17, 0.10, and 0.07, respectively).

Decreasing a

Table 4.6 is the summary of values of Areaz and Az under different A and N. 

Note that Areaz and Az are inversely related. Since the minimal Areaz is greater than 

50%, only the minimum and maximum points are selected to plot the Zipf’s curves in 

Figure 4.12.
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When these decreasing functions are evaluated at A = 1.0 and 2.0, and N = 

2 0 ,0 0 0 , the minimum values o f a  are «  0 . 1  and ® 0 .2 , respectively, at the end of the 

iteration, thus, it is no surprise that these two curves lie somewhere around the curve 

of the constant a  =  0.30 in Figure 4.11. Most of the observations made in constant-a 

model still hold: the flatten slope, the reduction of the initial "kink," the decreasing 

log(g(ri)) and increasing logfo) — as a  increases.

Table 4.4 shows ratios of low-frequency usage comply very well with the 

theoretical figures of Z ip f s second law. For instance, when A =  1.5 and N =  20,000, 

the ratios are approximately 0.50, 0.33, 0.17, 0.11, and 0.06 (compare with 0.5, 0.33, 

0.17, 0.10 and 0.07 in Section 1.1.4).

4.5 Additional Observations

4.5.1 Verification of the Relationship Between sm and a

Section 4.1 has shown that the area under the 80/20 curve is inversely related to 

a , and Figure 4.1 is the visual presentation of this relationship. Table 4.7 shows that 

the slope between points (xm_,,0 m.,) and ( 1 0 0 %, 1 0 0 %), or sm, seem to decrease as a  

increases. In fact, regression analysis yields s„, =  0.0001553 +  0.996082a, with R2 = 

0.9983. We thus verify the findings in Section 3.2, and we can estimate the a  of an 

empirical data set through examining its sm.

Using Kendall’s data as an example, we find that xm., =  0.451 and 0m., =  0.885; 

therefore, the sm is determined to be 0.209. We ran a simulation using a  =  0.209 and 

N = 1763 (the total number of papers in Kendall’s data), and the result is very similar 

to the actual data. A better fit is found at a — 0.2225. Table 4.8 compares these three
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Table 4.7: sm at different N and a

N(OOO)

10

15

20

a X„-i A.-! s„
0 . 0 1 0.556 0.996 0 . 009
0.10 0.466 0.953 0.088
0.20 0.508 0.910 0.183
0 .30 0.401 0.819 0.302
0.40 0.394 0 .757 0.401
0.50 0.357 0 .681 0.496
0.60 0.280 0.560 0.611
0.70 0 .223 0.444 0.716
0.80 0 .174 0.340 0.799
0 . 90 0.079 0 .166 0 . 906
0.99 0.012 0.025 0.987
0.01 0.486 0.995 0.010
0.10 0.459 0.946 0.100
0.20 0.452 0.890 0.201
0 .30 0 .417 0.823 0 .304
0.40 0.379 0.753 0.398
0.50 0 .340 0.676 0.491
0.60 0.289 0.578 0.594
0.70 0.235 0.470 0.693
0.80 0.171 0.342 0.794
0.90 0.089 0 .179 0.901
0.99 0.008 0.016 0.992
0 . 01 0.530 0.995 0 . Oil
0 .10 0 .474 0.947 0 .101
0.20 0.447 0.888 0.203
0.30 0.416 0.823 0.303
0.40 0.385 0.757 0.395
0.50 0 . 345 0.678 0.492
0.60 0.290 0 . 578 0.594
0 .70 0 .228 0.460 0.699
0.80 0.167 0 .336 0 .797
0 . 90 0.089 0 .181 0.899
0 . 99 0 . 009 0 . 017 0.992
0 . 01 0 .522 0 .995 0.010
0 .10 0.480 0.949 0.098
0.20 0.456 0 .892 0 .199
0.30 0.418 0.825 0.301
0.40 0.376 0.700 0.481
0.50 0.337 0 . 671 0.496
0.60 0.287 0.576 0.595
0.70 0 .227 0.461 0 .697
0.80 0.167 0 .336 0.797
0.90 0.089 0 .179 0.901
0.99 0.009 0 . 018 0.991

s,„ = (1 - 0m.,) / (1 - X m. , )
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Table 4.8: Simulated Kendall’s Data

i
Kendall's 
n, f(nj

a =
ns

.209 
f (nj

a = 

rii

.2225 
f (n;)

1 1 203 1 168 1 198
2 2 54 2 59 2 68
3 3 29 3 30 3 32
4 4 17 4 14 4 16
5 5 10 5 12 5 5
6 6 6 6 4 6 6
7 7 8 7 1 7 7
8 8 8 8 2 8 3
9 9 4 9 6 9 4

10 10 3 10 2 10 1
11 11 5 11 1 11 5
12 12 2 12 3 12 3
13 14 1 13 2 13 1
14 15 2 14 3 14 2
15 16 4 15 2 15 1
16 18 1 16 1 18 3
17 20 2 17 1 20 1
18 21 2 18 2 22 1
19 22 2 23 1 23 1
20 34 1 24 1 25 1
21 49 1 28 1 35 1
22 58 1 35 1 40 1
23 95 1 37 1 41 1
24 102 1 38 1 44 1
25 114 1 46 1 54 1
26 242 1 51 1 101 1
27 54 1 213 1
28 102 1 270 1
29 219 1
30 279 1

T 370 325 367
4 .76 5.43 4.80
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sets of data. We can see that when a = 0.2225, the total number of items T, the total 

number of index m, and the usage distributions are similar to those in Kendall’s data.

If we denote the slope between (0,0) and (x,,0,) to be s,, then we find that the log 

of s, decreases linearly with a , though not unitarily. Using only N = 20,000 as an 

example, we have log(s,) =  3.061187 - 2.51188a, with R2 =  0.9946. However, this 

measure has little predictive value in estimating a  of an empirical data, because, as we 

will discuss in Chapter 5, it may be affected by other factors also.

4.5.2 Effect of a  on m

Figure 4.13 indicates that regardless the level of N, simulation generates the 

maximum number of indexes (total number of types) with constant a = 0.20. Within 

the scope of our simulation, all indexes are reduced to be three when a  =  0.99, 

regardless o f the level of N. The maximum number of indexes m increases between a 

=  0 . 0 1  to 0 . 2 0  then decline at an increasing rate as a  continue to increase.

4.5.3 Effect of a  on nm

Figure 4.14 shows that nm declines continuously at a decreasing rate as a  

declines. Similarly, it shows that the highest number of occurrences, n„„ decreases 

rapidly as a  increases. In this instance, at the levels where a  >  0.50, nm becomes 

indistinguishable for all levels of N; in fact, Table 4.3 shows that even with 30,000 

usages, no or.c item is used more than 51 times at a  =  0.60. We will discuss further 

the effect of these extreme points to the usage concentration in Chapter 5.
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4.5.4 Empirical Phenomena at «  = 0.20

When a  «  0.20, many things seem to come together. As we have demonstrated 

in Sections 4.1 to 4.4, the 80/20 rule, Bradford’s law, and Zipf’s law all hold at a ~  

0.20, and Lotka’s law holds when a ~  0.30. This reflects the reality that these 

empirical phenomena are different perspective to the same dataset. Also interestingly, 

the total number of index m also peak at a. =  0 .2 0 , although at this time we do not have 

an explanation.

The fact that Lotka’s law holds at a different a  does not necessarily represent a 

deviation from other empirical phenomena. As we have pointed out at Section 2.1.1, 

Lotka’s law basically focuses on cluster 1, or where many items are used only a few 

times. In the modified Lotka’s curve (e.g., Figure 4.6a), cluster 1 is reflected in the 

initial linear portion of the curve and where we estimated the curve’s slope. Given that 

cluster 3 disappears with the increase in a , the difficulty in estimating slopes may have 

contributed to this deviation.

4.6 Summary of Findings

The usage concentration and the shapes of the curves in all four empirical 

distributions are affected the most by a. We have postulated that since the total number 

of different items used (T) is the product of a  and N, higher a  increases the number of 

items to distribute the usage, therefore decreases the concentration. On the other hand, 

higher a decreases nra, the usage frequency of the most active item.
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If we hold a  unchanged, the time span does not affect the usage pattern. 

However, in the cases of decreasing function, larger N causes the a  to become smaller 

eventually, and the distributions are affected accordingly.

The simulation results in Sections 4.1 to 4.4 show that these empirical laws hold 

only within a very narrow range of a values. Specifically, 80/20 rule, Bradford’s law, 

and Z ip f s law hold when a is around 0.20; and Lotka’s law holds when a ~  0.30. On 

the one hand, this narrowness suggests the close relationship among these laws; on the 

other hand, when the probability of new entry deviates from this narrow range then the 

appropriateness of assuming these laws hold need to be reexamined. While it is possible 

that many data satisfy the restriction of having a = 0.20, researches based on Simon’s 

model is more robust because it does not require these restrictive assumptions on data 

distributions at all. As we have also demonstrated in Section 4.3, we can generate usage 

patterns of four of the six known Bradford’s curve by changing a  alone. In fact, these 

four curves represent a near complete spectrum of Bradford’s curve represented by 

Simon’s basic models.

Paving the way for Chapter 6  where we demonstrate our findings using Simon’s 

model to library weeding policy, we verify the validity of the method of estimating a 

from the empirical data proposed in Section 3.2. This technique allows us to classify 

systems according to an attribute that directly affects their usage patterns.



CHAPTER 5

COMPUTATIONAL RESULTS OF SIMON’S AUTOREGRESSIVE MODEL

Chapter 4 analyzes the simulation results of the 80/20 rule and other empirical 

phenomena, and we find that a higher probability of new entry a  reduces the 

concentration of information usage. This chapter shows the results of using Simon’s 

autoregressive model to incorporate the "decay" factor y  into the simulation. We 

explore how y  affects the shape of the curves and usage concentration as demonstrated 

in the 80/20 rule and other empirical phenomena, and we find that Simon’s basic model 

with constant a  represents an upper bound for the concentration measures generated from 

the autoregressive model. In light of this, we further specify the limiting conditions, 

with respect to y, under which these empirical phenomena would hold as formulated.

5.1 The 80/20 Rule

In terms of Area of the 80/20 curves (Equation 4.1), when a  and y  are held 

constant, the total number of usages N does not affect the outcomes beyond a certain 

point in our simulation (see Figure 5.1). It seems that this stochastic process yields 

stable results when N >  15,000; thus, we arbitrarily chose the same N =  20,000 to 

show our simulation results. Furthermore, since we have determined in Chapter 4 that 

when a  «  0.20, the 80/20 rule, Bradford’s law, and Zipf’s law hold; and Lotka’s law 

is approximated, we demonstrate our simulation results centering on holding a = 0 .2 0 .

89
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Figure 5.2 shows that 80/20 curves overlap at the "end" points despite the wide 

range of 7 . This is verified in Table 5.1 which shows that sm ~  0.2021 for all 7 ; 

therefore, the method proposed in Section 4.6 for estimating a  will still work. For the 

initial point of 80/20 curves, we find that higher 7  increases log(s,) almost linearly. 

Note, however, the big difference between the curves of 7  =  0.99 and 7  = 1.0. 

Excluding the point of 7  =  1.0, regression analysis yields log(s,) =  0.8141 +  0 .5 7 7 , 

with R2 =  0.9426. Examining only the range of 7  =  0.99 and 1, log(s,) and 7  seems 

to have a linear relationship also, though with a much steeper increase. Since high a 

decreases s, geometrically (Section 4.5) and high 7  increases it, s, has no predictive 

power without holding one factor constant. Furthermore, simulation results show that 

when 7  =  1 . 0  the curve is basically identical to that of the basic model, thus, the big 

change in concentration is indicative the strong effect of 7  on the usage pattern, and it 

allows us to detect the existence of autoregression by seeing the deviation from the 

curves obtained through the basic model of constant a.

Consider the meaning of 7 : a higher 7  means a slower rate of decay; i.e., an 

item’s usage probability is little affected by its not being used. Thus, when 7  = 1.0, 

there is no decay takes place at all, and the result should be identical to those of basic 

models. On the other hand, a small 7  signifies that items that have not been used 

recently will possibly be neglected for a long time to come, regardless how active they 

had been previously. A related interpretation is that previously-inactive items do have 

a chance to become dominant in the future selection process, albeit perhaps temporarily.
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Figure 5.2: Results for 80/20 Rules, a  =  0.20, 7  =  0.1 to 1.0, N =  20,000
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Table 5.1: Slopes of the 80/20 Curves in the Autoregressive Model, a = 0.2 and N
=  20,000

7 X! e 1 0 .., s,„ s, log (s,)

.10 . 00025 . 00200 .74474 . 98840 .2021 8.0 . 9031

.20 . 00025 . 00230 .69330 . 93800 .2022 9.2 . 9638

.30 .00025 . 00235 .65100 . 92945 .2021 9.4 . 9731

.40 .00025 . 00240 .62107 . 92341 .2021 9.6 .9823

.50 .00025 . 00340 .60425 . 92000 .2021 13 .6 1.1335

.60 .00025 .00325 .57927 . 91495 .2021 13.0 1.1139

.70 .00025 .00390 .56790 .91265 .2022 15.6 - 1.1931

.80 .00025 .00415 .56369 .91180 .2021 16 .6 1.2201

.90 .00025 .00555 .54366 . 90775 .2022 22 .2 1.3464

. 99 .00025 .00690 .54440 .90790 .2022 27 .6 1 .4409
1.00 .00025 .09585 .43408 .88560 .2021 383.4 2.5837

s, = 0,/x,
sm = (1 - 0„-,) / (1 -
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Therefore, it is plausible that a lower 7  (i.e., with high decay rate) should induce less 

concentration in its usage pattern.

Since 7  <  1 reduces the usage concentration, and under most circumstances it 

is not plausible that 7  >  1 . 0  (i.e., the lack of usage of an item increases the probability 

of its selection); we suggest that Simon’s basic model with constant a provides the 

maximum concentration for a given a. Thus we may conclude that the 80/20 rule is true 

if and only if ce <  0.20. Since lower 7  decreases concentration, our simulation shows 

that a combination of a <  0 . 2 0  and some proper 7  can also achieve 80/20 (e.g., a  = 

0 . 1  and 7  =  0 .8 ).

5.2 Lotka’s Law

Figures 5.3a through 5.3d show modified Lotka’s curves under 7  =  0.1, 0.5, 

0.99, and 1.0, respectively. Three observations can be made on the effect of 7 . First, 

notice the lack of region 3 where log(f(ni)) =  0 (recall that in region 3 f(nj =  1) in all 

cases except that of 7  =  1 . 0  (the basic model); second, the negativity of slope reduces 

(flattened curves) with the decrease of 7 ; and third, when 7  <  0.5, the linear region 1 

becomes curves.

As we have discussed in Section 4.2, the lack of region 3 means few items have 

extremely high frequency of usage, thus less usage concentration. Recall that at a ~  

0.30 this slope is approximately -2 and Lotka’s law holds, since a lower 7  produces a 

less steep slope, in order for Lotka’s law to be true, it is necessary that a <  0.30. 

However, the problem of linearity would arise if 7  <  0.5. Therefore, we propose that 

Lotka’s law holds if and only if a <  0.30 and 7  >  0.5.
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Figure 5.3a: Modified Lotka’s Curve, with a  =  0 .2 , 7  =  0.1 , and N =  20,000
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Figure 5.3b: Modified Lotka’s Curve, a  =  0 .2 , y  =  0.5, and N =  20,000
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Figure 5.3c: Modified Lotka’s Curve, a  =  0.2 , 7  =  0.99, and N =  20,000
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5.3 Bradford’s Law

Figure 5.4 shows the effect of 7  on Bradford’s curves. It is amazing that there 

is basically no resemblance between the basic model (i.e., 7  =  1 .0 ) and any of the 

curves where 7  <  1. More strikingly, most of the simulation results of 7  <  0.99 have 

a curve that is below the diagonal line that has a slope of 1. In other words, if we use 

the measurement AB as defined in Section 4.3, A„ <  0.5 when 7  <  0.99 for most a. 

Even in the extreme case of a. = 0.01 where A„ is large, A„ drops rapidly from 0.945 

in the basic model to 0.675 when 7  =  0.90.

Such drastic flattening of the initial points can be seen in Table 5.2. For 7  

decreases from 1.0 to 0.99, we can compare the first two points on the graph, G(r,) and 

G(r2), and see a steep fall of from 1917 to 138 for G(r,) and from 3191 to 270 for G(r2). 

This drop is reflected in a smaller initial slope and a lower y-intercept for the 7  = 0.99 

curve. Since G(r,) is the usage frequency of the most-used item, and G(r,) measures the 

usage of the first two most-used items, this flatten initial slope signals a drastic reduction 

of usage concentration — a finding that is consistent with our previous analyses. On the 

other hand, the numbers of seldom-used items f(l) and f(2 ) (used only once and twice, 

respectively) also fall. Interestingly, although f(l) declines quickly when 7  is low, f(2) 

does not change much. Since the total number of usage N =  20,000, a combination of 

decline in f(l) and G(r,) means less extreme cases of high and low usage, thus creating 

a usage pattern that has relatively similar amount of items in every usage class.

By adding 7  to the simulation we can also produce the second class of Bradford’s 

curve which we could not simulate previously using Simon’s basic model alone. The
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Figure 5.4: Bradford’s Curves for a  =  0.2, y  =  0.1, 0.5, 0.99, and 1.0



Table 5.2: Initial Points and End Points of Bradford’s Curves

1 0 1

7 m G (r,) G(r,) G (rj /G (r2) f (1) f (2)
0.10 35 40 77 51. 9% 1032 575
0.20 37 46 86 53.5% 1240 567
0.30 41 47 93 50.5% 1411 562
0.40 44 48 95 50.5% 1532 595
0.50 46 68 129 52 .7% 1600 591
0.60 50 65 127 51.2% 1701 587
0 .70 54 78 220 35 .5% 1747 611
0.80 62 83 160 51 . 9% 1764 664
0.90 71 111 215 51.6% 1845 633
0 . 95 70 111 208 53 .4% 1843 639
0.99 73 138 270 51.1% 1842 674
0 .995 74 288 501 57.5% 1839 678
0 .9995 74 1213 2007 60.4% 1948 660
1.00 70 1917 3191 60.1% ^288 694
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results are presented in Figure 5.5. These curves also highlight the decreasing low- 

frequency items when y  is low (near the top of the graph). We suspect that the 

remaining 5th class is a combination of two different Bradford’s curves.

5.4 Zipf’s Law

Figure 5.6 indicates that similar to the modified Lotka’s curves, Zipf’s curve 

flattens and loses its linearity as y  decreases. Recall our finding in Section 4.4 that 

Zipf’s curve has a slope approximates -1 when a ® 0.20, we may conclude that Zipf’s 

law holds as formulated if and only if a <  0.20. However, as Figure 5.6 indicates, 

even with y  =  0.99 the curve begins to lose linearity. Thus, because of the restrictive 

condition for Zipf’s law to hold, it is even more impressive that many data do exhibit 

Zipf’s curve.

As we have indicated in Section 4.4, a flat Zipf’s curve means that the usage 

frequency for an item decreases at a slower rate than its rank. In other words, the 

infrequently-used words now have higher-than-expected usage relative to Zipf’s law as 

formulated. The lower y-intercept again reflects lower values of G(r,) (see Table 5.2). 

On the other hand, when log(g(r)) is small (meaning low usage), we can see the effect 

of lower f(l) values associated with lower y  in Table 5.2. The steeper slope at the end 

of Zipf’s curve with y  =  0.1 actually indicates that the difference between f(l) and f(2) 

is not as much as that of higher y.

This interpretation reflects our previous findings of 7 ’s effect on usage patterns: 

fewer items dominate the usage and fewer items are totally neglected when 7  is 

introduced.
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5.5 Summary of Findings

In Simon’s two basic models a. is the primary force that affects the shapes of the 

empirical phenomena. Higher a  produces lower concentration in usage patterns. We 

have attributed this phenomenon to the increasing new comers forcing the spreading out 

of usages. In Simon’s autoregressive model, lower 7  (higher decay) reduces 

concentration because it provides an environment in which new comers and the 

previously low-usage items are not overwhelmed by previously-active items. It is 

important to note that we hold N and a constant in our model, thus the total number of 

different items T is fixed in each simulation. The changes in concentration, therefore, 

solely come from the different distribution of the N usages to these T items.

In the 80/20 curves, changing 7  affects the shape of the curves and the usage 

concentration, but not sm; thus a can still be estimated independent of 7 . Generally, 

Simon’s basic model with constant a provides an upper-bound for the concentration 

measure, because a positive decay ( 7  <  1) reduces the concentration measure.

This reduction of concentration is also evident in the other empirical laws, and 

it is better shown through analyzing the effect of 7  on f(l) and nm (equivalent to G(l)). 

It is when any 7  <  1 is introduced into the simulation, these two measures decrease 

rapidly. This reduction is caused partly because of the total number of iteration N we 

have selected is quite high. At this number, although the distribution stabilizes, the 

effect of 7  has also been magnified tremendously. However, the implication remains to 

be that a unused item loses its potential of being used again — no matter how historically 

active it has been. Thus, not only the frequency of usage is important in determine the
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future activity of an item as proposed in Simon’s two basic models, the timing of usage 

is also important in the autoregressive model. Since this usage "decay" or "forgetting" 

increases the chance for competition from other information items, both f(l) (measuring 

inactivity or neglect) and n„, (measuring popularity) all fall drastically.



CHAPTER 6

WEEDING LIBRARY COLLECTIONS: AN APPLICATION

In this chapter, we attempt to show an example of applying our findings in this 

dissertation to weeding process of library collections. Similar process can be applied to 

other suitable subjects. For example, according to one study, up to 80% of the servers’ 

disks are occupied by inactive files (Stuart 1992). Facing limited disk space, we often 

have to determine which information to keep active and what to archive. Libraries face 

similar problems deciding what to keep on shelves and what to keep in storage. This 

chapter is an application of Simon’s model to the weeding process, using the library 

circulation data at Southeastern Louisiana University as the basis of the study.

6.1 The Need for Weeding Library Collections

Philip Morse (1968) in his landmark book Library Effectiveness: A Systems 

Approach said that the major task of most libraries is to provide the material desired by 

the majority of its users, and to provide it as quickly and to as many users as is 

compatible with its budget. On the one hand, the rapidly growing collections, shortage 

of space, the high cost of storing books on open stacks, and the high costs of new 

buildings force libraries to consider storage space when acquiring new books (Slote 

1989). On the other hand, libraries must remove unneeded items from the shelf to help 

users find the items of information they need with a minimum of delay and frustration.

107
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This problem of storage space and the cost of search will remain even if all holdings are 

digitized some day (Morse 1968).

This process of identifying books to discard is called "weeding" (Slote 1989, 

Evans 1987). Clark (1991) suggests that if a collection contains many items of little 

interest, those that are useful will not be so readily visible or accessible; therefore, 

weeding would increase circulation. Furthermore, collections should be weeded to 

increase the speed of access and to improve the accuracy in retrieval; and finally, those 

books least likely to be used in the future should be removed to reduce the costs of 

maintaining a large collection (Slote 1989). If storage space is limited, it would be 

essential to separate little-used books from a working collection of highly-used ones, and 

then discarding duplicates, worn out volumes, and obsolete material.

In order to separate "little-used" items from a highly-used "working collection," 

we need to examine the usage pattern of library materials. In literature, the usage of 

library resources are found to show the so-called "Matthew Effect" (Merton 1973), i.e., 

the more a book has been used before, the more likely it will be used again. Burrell 

(1980) points out that a library holding is selected according to its desirability to users. 

Environmental factors may cause some subjects to become "hot topics" at a particular 

time, thus affect the desirability and the usage pattern of the library holdings. The 

literature also described an "aging" factor in which the probability of usage decays with 

time (Kent et al. 1979, Burrell 1980, Anderson 1990) perhaps due to obsolescence. 

Thus, the usage pattern of library holdings follows the empirical phenomena described
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in this dissertation that "success breeds success" and is a good candidate for applying 

Simon’s model to describe its characteristics.

6.2 Methods of Weeding

Several weeding criteria are used in libraries: for example, weeding based on 

appearance or condition of the holdings, upon superfluous or duplicate volumes, or upon 

age of the holdings alone. The weeding policy varies according to the type of the library 

and its environment (Kovacs 1990). For example, while weeding and deselection were 

at a minimum in public libraries because computer data are not widely available, some 

medical school libraries weed out only duplicated copies. At Southeastern Louisiana 

University where we collected circulation data, state regulations mandate that books 

cannot be discarded, therefore holdings are taken out of circulation mostly for their poor 

appearances.

As we have found out, even with the automated system in place, it is still quite 

cumbersome for librarians to retrieve information from the database for analysis. A 

more systematic way of weeding is described below. Specifically, we discuss Slote’s 

(1989) method which has been used extensively in the United States. Although Slote 

recognized that his method can be fully programmed in an automated system, the 

computer’s role in his example was limited to providing on-line information on the last 

charged-out date of the holdings in a manual procedure.

Slote’s method relies almost exclusively on circulation data to identify possible 

weeding candidates, while others may take the age of publication into consideration 

(Evans 1987). However, as Slote (1989) points out, decision making based on the age
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of publication is complex and subjective and therefore useless as a systematic approach. 

To implement Slote’s method, we need to acquire the following information from the 

computer system (Slote 1989, pp. 176-185): (1) The date of previous use, (2) The date 

of accession the book (i.e., the date the book is added to the system), (3) The number 

of uses this volume has experienced since the computer circulation control system was 

initiated, (4) The imprint date of the volume, and (5) A "dusty book" list: all volumes 

showing no use since the system started up.

Slote’s method consists of tabulating the date of the previous use of at least 400 

volumes at the circulation desk, representing consecutive volumes being charged out. 

This sample may be of all classes of books or of any subclasses. He tallies books 

according to the year the book was last checked out. In the case that the book has not 

been checked out before, he records the year of the book’s accession. He calculates 

each year’s usage as a percentage of the sample and then the cumulative percentage from 

the current year. A reasonable, arbitrary "keeping level," say 96 percent of sample 

usage, is established, and a cut-off point is created from these data. Using Slote’s 1989 

example, he finds that 96% of the sample usage involves books that were last used or 

acquired since 1984, therefore, if he weeded out books that have not been used since 

1983, he could still assure that 96% of usage in the library can be satisfied.

Prior to weeding, Slote suggests that the "elapsed time since installation" of the 

computer system is measured to assure that sample data is stable enough. Basically, he 

breaks this same circulation sample into three groups: ( 1) the ones that have been used 

before, (2 ) the ones that have not been used but were acquired after the installation of
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the system, and (3) those that have not been used but were acquired before the time of 

installation. Slote recommended that the percentage of the last group must not exceed 

15 percent.

6.3 Simon’s Model and Its Applicability

In terms of the selection of resources, Simon’s two assumptions as described in

Section 1.3.2 can be restated to thusly:

( 1) there is a constant probability, a, that the (t+ l)-s t circulation will be a

new holding that has not been used in the first t circulations; and

(2 ) the probability that the (t+  l)-st circulation is a holding that has been used

n times is proportional to n-f(n,t), where f(n,t) is the number of distinct 

holdings that have circulated exactly n times each in the first t circulations 

of holdings.

Thus, the simulation mechanism is still valid in generating the usage patterns. 

Furthermore, the y  in the autoregressive model represents the aging/decay factor as 

described by researchers (Kent et al. 1979, Burrell 1980).

Since this chapter is a demonstration of applying our findings through analyzing 

the 80/20 rule using Simon’s model, our usage pattern analysis is based on the 

methodology discussed in Section 4.5.

6.3.1 Library Data

We collected the usage information from the library information system of Sims 

Memorial Library of Southeastern Louisiana University, Hammond, LA. The following 

data fields were extracted from the database: (1) the item number assigned to each book,
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(2) the number of its charge-outs (previous usage), (3) the year and date this book was 

last charged out, and (4) the status of the book (active or inactive). These raw data were 

then processed using a SPSS program to generate the (n,, f(n,)) dataset. We determined 

that there were 201,118 books in the library that are bar-coded and registered in the 

automated system, though the actual number could be somewhat higher. Excluding 

damaged and other inactive books, the total holdings available for circulation were 

183,713. The system has been in place since Spring 1991, and we were informed that 

books which have not been bar-coded were not used during this period of time. 

Furthermore, the reserved books are required to be processed through the automated 

system, thus their usage is included in our study. The total number of transactions since 

the implementation of the automated system was 154,703.

Table 6.1 is the usage summary of the library data. The most active book was 

checked out 619 times (f(619) =  1) in the last 2 Vi years, and there were 31,113 books 

that have been checked out only one time each (f(l) =  31,113). The total number of 

books that have ever been used during this period was 61,606, or approximately 33.5 % 

of the holdings that have been bar-coded. There are 103 clusters of books with different 

usages (m =  103), and 122,107 books had not been checked at all.

6.3.2 Estimating N

For our simulation purpose, we use N = 154,703, the total number of 

transactions since the automated system was first put in place in Spring 1991. Dividing 

N by 2.5, we obtain the annual average of 61,881 transactions. Suppose that we are 

interested in finding the usage pattern on an annual basis, then we would set N — 61,881.
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Table 6.1: SLU Library Holding Usage Pattern

i rii f (n,) i Hi f (n,) i f (n.)
1 1 31113 41 42 2 81 104 2
2 2 12913 42 43 3 82 106 2
3 3 6829 43 44 3 83 108 2
4 4 3769 44 45 3 84 113 1
5 5 2240 45 46 2 85 114 1
6 6 1431 46 47 1 86 115 1
7 7 896 47 48 2 87 117 3
8 8 665 48 49 3 88 118 2
9 9 441 49 51 4 89 120 1

10 10 308 50 52 3 90 123 1
11 11 207 51 53 2 91 126 1
12 12 151 52 56 2 92 131 1
13 13 122 53 57 3 93 146 1
14 14 78 54 59 4 94 157 1
15 15 62 55 60 1 95 161 1
16 16 51 56 62 2 96 165 1
17 17 30 57 63 2 97 188 1
18 18 30 58 64 2 98 224 1
19 19 16 59 65 1 99 236 1
20 20 14 60 66 1 100 305 1
21 21 14 61 69 2 101 311 1
22 22 14 62 70 1 102 590 1
23 23 14 63 71 3 103 619 1
24 24 12 64 72 1
25 25 17 65 76 1
26 26 4 66 77 1
27 27 7 67 78 1
28 28 8 68 79 1
29 29 8 69 80 1
30 30 9 70 84 3
31 31 3 71 85 1
32 32 1 72 86 1
33 33 4 73 88 1
34 34 6 74 90 1
35 35 2 75 91 1
36 36 1 76 94 1
37 38 3 77 97 3
38 39 3 78 99 1
39 40 1 79 101 1
40 41 7 80 103 1

N = 154,703 
T = 61,606 
H  = 2.5112
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6.3 .3  Estimating a

Figure 6 .1 is the 80/20 curve for the library data, and the curve tells us that the 

proper concentration measurement is really 70/30. That is, 70% of the total transactions 

involve approximately 30% of the bar-coded holdings. Our calculation shows that xm., 

=  0.49497 and 0mA =  0.79889, thus sm =  0.398 for the SLU data — which, amazingly, 

is exactly the same as the ratio of the total number of holdings used (61,606) to the total 

transaction (154,703). Therefore, the a  for our library data is determined to be 

approximately 0.40. For comparison purpose, from Table 2. la we calculate Bradford’s 

data to have sm =  0.414, and the total number of authors is 41.5% of the total number 

of paper published. Similar phenomenon can be observed in Kendall’s data as well. 

This outcome of T/N ~  a would be expected from simulation results: in Simon’s model 

a is the probability of new entry, therefore the total number of books ever used should 

be the product of N and a. The amazing part is the exactness of outcomes shown even 

in empirical data regardless of different magnitudes and the selection processes.

6.3 .4  Estimating y

We ran several simulations with various y  but held N = 154,703 and a  =  0.40 

to generate 80/20 curves, and we compared the s, of the library data with the simulation 

results. We find that although s, is not as effective in determining y  as sm is to a ,  

through visual inspection of 80/20 curves it allows us to determine that y  falls in the 

neighborhood of 0.9995. If we use log(s,) to estimate y , then since log(s,) = 2.6090 for 

y  =  1.0, 1.8379 for y  —  0.9995, and 2.3919 for SLU data; we interpolated 7  to be 

0.99986 in SLU data. However, when we compare the actual library data with
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simulation result of y =  0.9995, we find that the curve for SLU data falls below instead 

of above the simulated curve (Figure 6.2).

Table 6.2 is the simulated usage distribution. It shows that although it brings to 

question the predictive power of s, to y, the general usage patterns between the simulated 

data and the actual data show remarkable resemblance, as demonstrated in Figure 6.2. 

Similarities are observed between Table 6.1 and Table 6.2 also. For instance, the 

average transaction per holding is 2.5418 in the simulated data (compare with 2.5112 of 

the actual data). On the other hand, even though the maximum index m in the simulated 

data is far less than the actual data, another simulation using ce =  0.398 and y = 

0.99986 yields m =  76, nm =  317, f(l) =  33,823, and T =  60632 — a closer 

approximation. Therefore, Simon’s model can simulate real usage patterns when the 

accuracy of parameter values is maximized.

6.4 Contributions to the Weeding Process

There are several contributions in supplementing Slote’s method with Simon’s 

model. Primarily, Simon’s model generates quantifiable parameter values for decision 

makings, and it provides a sound theoretical foundation to the current method used.

A Quantifiable Method to Estimate the "Aging" Factor

We can use y as a means to estimate the aging factor which in turn can be used 

to determine when a book should be weeded because of lack of use. At first glance, an 

aging factor of y = 0.99986 for SLU data seems to contradict what has been recognized 

in the literature as use of library material decaying rapidly with time. However, when 

we consider that this y  represents the aging factor of one transaction, then we can
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Table 6.2: Simulated Usage Distribution, a  =  0.4 , y  =  0.9995, and N =  154,703

i rii f (nj i ni f (n.
1 1 33788 41 45 2
2 2 10754 42 46 3
3 3 5094 43 50 1
4 4 3079 44 52 2
5 5 2188 45 56 1
6 6 1332 46 61 1
7 7 1012 47 62 1
8 8 715 48 63 1
9 9 610 49 68 1

10 10 476 50 90 1
11 11 311 51 129 1
12 12 236 52 138 1
13 13 248 53 175 1
14 14 186
15 15 150
16 16 116
17 17 66
18 18 81
19 19 57
20 20 55
21 21 37
22 22 50
23 23 . 33
24 24 27
25 25 20
26 26 16
27 27 22
28 28 11
29 29 11
30 30 14
31 31 6
32 32 4
33 33 12
34 34 2
35 35 6
36 36 3
37 38 3
38 39 6
39 40 5
40 41 4

N = 154,703 
T = 60,863 
H  = 2.5418
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calculate this aging factor for SLU library to be (0.99986)N. Therefore, after one year 

(61,881 transactions) the probability of selection gained from the last selection only 

retains 0.00017 of its original weight. Although using this approach to determine 

weeding policy will require further calibration, results show that the aging is indeed 

rapid in library holdings, and this approach no longer requires the tedious and costly 

survey at the check-out counter.

A Quantifiable Method to Classify Libraries

The determinant of the adequate elapsed time since installation is really the 

probability that a new entry is not newly acquired, If we can calculate the a  of several 

libraries we may find an a level that would indicate the stability of the sample data. 

Thus, instead of classifying libraries by descriptive characteristics such as "public 

libraries" or "medical libraries" or by nonproven attributes such as their different sizes, 

we now have a method of differentiate libraries according to their usage pattern; namely, 

their a and 7 . Those libraries which are in the same category should be able to use 

similar weeding policies. This eliminates the need for surveying all libraries.

A Quantifiable Method o f Estimating the Risk o f Unavailability

Section 6.3.2 provides a method to estimate quickly the probability that a weeded 

book will be requested again. We can estimate a and multiply it by annual transaction 

to find the number of books that will be requested next year that have not previously 

being checked out. Therefore, we can conclude that there will be 24,752 books checked 

out for the first time next year. Suppose we store away the entire 122,107 books that
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have not been used before, then there is a 20.3% chance that one of the weeded books 

would be needed next year.

Providing Theoretical Support fo r  Small Sample Size

As illustrated in Bradford’s 1934 data as well as SLU data, the proper 

concentration measurement should be about 70/30 rather than 80/20. More importantly, 

since the measurement is independent of N, as we have suggested in Chapter 4, Slote’s 

method of using 400 sample consecutive transactions is supported by our model as being 

adequate.

Enhancing the Concept o f "Keeping-Level"

Slote conscientiously separates transactions into groups according to their previous 

usage, and his "keeping-level" is essentially a measure of the current usage pattern. In 

other words, keeping-level reflects the end-result of the selection process up to this point. 

Suppose there are changes in the usage pattern, the library would not have a means of 

detecting such changes or anticipating future changes. By shifting the focus to the 

measurement of a  and how it changes over time for different subclass of holdings, we 

have a better way to estimate future usages.

6.5 Possible Future Refinements

To verify that these parameters for a library are stable, we can repeat the 

estimation of a and t  once every six months. Over the period of time the characteristics 

of patrons may change, thus changing the usage pattern of the library. This longitudinal 

study may ensure that the library has an up-to-date policy to meet the changing demands 

of its users. We can also compare the a estimate of different time spans to see if a is
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indeed a constant. It is possible that a  is overstated in SLU data because of the newness 

of the automated system. It is possible that a becomes quite stable if the environment 

of the library holdings are stable, and will change when socio-economic conditions or 

the demography of its patrons change. We will need longitudinal study across more 

libraries to substantiate our hypotheses.

One of the problems in generating a usage pattern resembling SLU data is to 

generate an adequately high n,„. We need to note that 619 usages in V h  years translated 

to over 20 usages each month. This is plausible in SLU data because it includes 

reserved books which may be checked out several times a day. Given that there may be 

several hundred students who are required to read the reserve material, we may want to 

separate these reserved holdings from the data and see if the usage pattern would change 

significantly. Unfortunately, under current automated system this process is still quite 

time consuming, and there may not be adequate records kept for all books that have ever 

been kept in reserve in all semesters.



CHAPTER 7

CONCLUSION

This dissertation, by using Chen’s index approach, provides an analytical analysis 

for the 80/20 rule in an attempt to model information usage patterns. It also discusses 

other empirical phenomena that are closely associated with this skew distribution. In 

Chapter 3 we used the slope-distance pair to identify three important properties of the 

80/20 curves without unreasonable assumptions and with fewer parameters than the 

traditional x (fraction of holdings) and 6 (fraction of transactions) approach.

We then use Simon’s three models of information usage and their generating 

mechanisms to produce the fundamental usage dataset (ni5 f(n;>) — the frequency of usage 

and the number of information items which have been used that many times — to 

examine the effects of changing parameters of the 80/20 rule and other empirical 

phenomena. We find Simon’s models to be simple yet robust in testing the extreme 

conditions. For instance, even though Simon’s most complex model (the autoregressive 

model) has only two parameters — a  (the probability of new entry) and y  (the 

decay/aging factor) — we were able to reproduce five of the six different classes of 

Bradford’s curve, and the remaining one seem to be a combination of two classes. In 

fact, four of these five classes were generated using Simon’s basic models which have 

only a  as the parameter.

122



123

Through simulations we find the probability of new entry, ce, to be the most 

influential factor in determining the shape of the 80/20 curve and other empirical 

phenomena. In general, simulation results show that with a low probability of new entry 

a , the usage becomes concentrated on a few items. On the other hand, lower 7  

(meaning more rapid decay) reduces the concentration of usage patterns. Since in 

Simon’s autoregressive model he assumes one transaction takes place within a time unit, 

we can proxy the time span by the total number of iterations in our simulation model. 

Consequently, because the total number of usages has little effect on the simulation 

results once the system is stabilized (e.g., N >  15,000), we conclude that without 

changes in the fundamental factors such as a and y , the time span has little effect on 

usage patterns except in the case that a  is a decreasing function of time. Furthermore, 

assuming that the probability of new entry is at a constant rate, the 80/20 rule and most 

of other empirical laws hold at a very narrow range of a ~  0.20. When the decay 

factor, 7 , is introduced, we find it to reduce the usage frequency of the most-used item 

and the number of items that are used only once. The end result is a more evenly 

distributed usage.

From examining Simon’s assumptions, these results are plausible. Since we 

define higher a  to mean more new entries, then given the same number of usages they 

will have to be distributed among more items, resulting in lower concentrations. 

Suppose a(R) is a decreasing function with respect to time, R =  1,2,...N , then large N 

would produce smaller a in the long run thus increase the usage concentrations. On the 

other hand, the effect of "aging" or "decay" reduces usage concentrations by reducing
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the dominance of the active items. A low y  means rapid reduction of the usage 

probability for those items which have not been used recently, thus providing an 

opportunity for inactive files to be selected in the future. When 7  =  1, there is no aging 

factor, and therefore the probability of future usage of an item is strictly determined by 

its historical usage rate. Therefore, Simon’s basic models are simply special cases of 

his autoregressive model.

The parameters in Simon’s models affect usage patterns the following ways. 

Cluster 1, where ns =  i consists of f(l) (the number of items that are used only once), 

is mostly influence by Simon’s first assumption (new entry rate a). With a given a, the 

total number of different items to be used is fixed, therefore the distribution of usages 

is determined by the second assumption and the decay factor y. Simon’s second 

assumption reflects "success breeds success," while the y  in his autoregressive model 

allows the rising of new "success" by allowing a combination of repeated usage of new 

items and the decay of previously-active items to affect the usage probability structure. 

Simon’s second assumption affects primarily the most-active item (whose usage 

frequency is nm) by providing it higher probability of being used again. The decay factor 

7 , on the other hand, reduces nm in time and thus decreases the concentration of the 

usage pattern over time.

Taking cue from our analytical finding (Equation 3.18), we find that a can be 

reliably estimated from an empirical dataset, and we applied this technique to the process 

of weeding library holdings. Since a  determines f(l), we can use s,„ of an empirical data 

to estimate its a. An alternative is to use T/N to estimate a , and these two approaches
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yield similar results in empirical data testing. We can use this a and the given N of the 

empirical data to simulate the usage pattern of the dataset and to estimate its y. The a  

and 7  then can be used to show the characteristics of the empirical data. For instance, 

we estimated the usage pattern for SLU library holdings to have a ~  0.398 and y  ~  

0.99986. These parameter values provide a bietter identification of the usage pattern of 

the system than, say, the traditional 80/20 measure, since these indicators can help us 

assess the future usage patterns in a changing environment.
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APPENDIX A: PROGRAM FOR BASIC MODELS

(* This program generates information usage pattern *)
(* ■ according to Simon's algorithm *)
Program Simon,- 
uses printer;
CONST

Nrlongint = 20000; (* N is total number of usage *)
MAX = 20; (* MAX is m, the largest index *)

VAR
f : ARRAY[1..MAX] OF INTEGER;
(* f(l,k), only the last update kept *)

a, b, bb, cumulant, alpha, r, mu REAL;
i, j, k, index, loop : INTEGER;

BEGIN
alpha := 0.9; 
index := 0;
f [ 1] := 3; (* initial condition f(l,0)=3 *)
FOR i := 2 TO MAX DO f[i] := 0; (* f(i,0)=0 for i>l *)

FOR k:= 4 TO N DO 
BEGIN

a := RANDOM; 
writeln (k:5);

(* Note: replace alpha with A/log(k) for decreasing function model *) 
IF a <= alpha
THEN f f1 ] := f [1] + 1  (* Program step 1 *)
ELSE

BEGIN (* Program step 2 *)
cumulant := 0; (* cumulant = Ej-f(j,k-l) *)
bb := RANDOM;
b := 1 + bb*(k-2); (* standardized b *)
j : = o ;
REPEAT (* find the right f(n,k) *)

j := j + 1;
cumulant := cumulant + j*f[j];

UNTIL cumulant >= b;
i : = j ;
f[i] := f[i] - 1; 
f[i+l] := f[i+l] + 1;

END; (* ELSE *)
END; (* k loop *)
cumulant := 0; (* Calculate total usage count *)
for i :=1 to MAX DO cumulant := cumulant + i*f [i] ;

(* output header, N, and a  *)
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writeln (LST,'Word C o u n t c u m u l a n t :10:0,' alpha = ' ,alpha:4:2); 
writeln;

writeln (1st); r :=0;
(* Print out the usage frequency distribution *)

FOR i := 1 TO MAX DO 
BEGIN

r : = r + f [ i ] ;
IF f[i]>0
THEN
BEGIN

index := index + 1;
WRITELN (LST, index: 3 f (',i :4, /,',N:6,')',f[i]:10);

END; (* IF-THEN-ELSE *)
END;
writeln(lst);
writeln(lst, 'total f[i] = ',r:10:0);
mu := cumulant/r; (* average usage *)
writeln (1st) ; writeln (1st, ' Average transactions per holding:' , m u : 10 :4)

END.



APPENDIX B: PROGRAM FOR THE AUTOREGRESSIVE MODEL

( * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

*  *

* Simon's Third Model with Serial Correlation
*

* CONSTANT ENTRY RATE (ALPHA)
it

* LAST UPDATE: 5/23/93 (MVS VERSION)
*

*********************************************************

PROGRAM SIMON3SC(OUTPUT);
CONST

R = 20000;
RC = 1;
MAX = 40000;
MAXINDEX = 8 00;
ALPHA = 0.20;
GAMMA = 0.85;
SEED1 = 12 3;
SEED2 = 12345;
SEED3 = 78 901;
SEED4 = 965431;
SEED = SEED1;

TYPE
AINT = ARRAY(.1..MAX.) OF INTEGER;
AREAL = ARRAY(.1..MAX.) OF REAL; (* FIRM SIZE AND WEIGHT TYPE *)
AMAXI = ARRAY(.0..MAXINDEX.) OF INTEGER;

VAR
S : AINT; (* CURRENT FIRM SIZE *)
W : AREAL; (* CURRENT WEIGHT OF FIRM *)
A, B, CUMULANT: REAL;
nk : INTEGER; (* NO. OF FIRM CURRENTLY *)
aa : INTEGER; (* ASSETS ALLOCATED INITIALLY*
I, J, TEMP: INTEGER; (* LOOP COUNTER AND TEMP VAR *
c, ST, T: INTEGER; (* CYCLE # AND ASSET RANGE ALLOCATED *
K: INTEGER; (* AGGREGATED ASSET SIZE *)
MINREAL1: REAL;
WEIGHTSUM: REAL; (* WEIGHT SUM OF ALL FIRMS *)

(* NUMBER OF ITERATIONS EACH CYCLE *) 
(* NUMBER OF CYCLES EACH RUN *)
(* MAXIMUM NUMBER OF FIRMS EACLE *)

(* MAXIMUM RANK INDEX NUMBER *)
(* PROBABILITY OF NEW ENTRY *)

(* GEOMETRIC RATE OF DIE OUT *)

(* RANDOM # GENERATOR SEED *)

*

★
*
*
*
*

it -k it it \

(* initialize # of firms with size and weight *)
procedure initialize; 
var

i: integer; 
begin

A := RANDOM(SEED); (* INITIALIZE RANDOM NUMBER *)
MINREAL1 := 100*MINREAL;
S ( . 1 . ) : = 1 ;
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S ( . 2 . ) := 1;
S ( . 3 . ) : = 1 ;
W ( . 1 . ) : = 1 ;
W ( . 2 . ) : = 1 ;
W ( . 3 . ) : = 1 ;
nk := 3; (* SET INITIAL FIRM DISTRIBUTION *)
WEIGHTSUM := 0; 
aa := 0;
for i:= 1 to nk do 
BEGIN

AA := AA + S ( .I .) ; (* SUM INITIAL ASSETS ALLOCATED *)
WEIGHTSUM := WEIGHTSUM + W(.I.)

END
end;

(* CALCULATE THE CONCENTRATION MEASURE OF 8 0/2 0 RULE *)
PROCEDURE GETA80(F , G: AMAXI; INDEXNOW: INTEGER);
VAR

I: INTEGER;
A8 0: REAL;

BEGIN
A8 0 := 0;
FOR I := 1 TO INDEXNOW DO

A8 0 := A8 0 + (G(.I.) + G (.I-1.))*(F(.I .) - F (.I-1.));
A80 := A80/(2*T*NK) - 0.5;
WRITELN;
WRITELN;
WRITELN(' AREA OF CONCENTRATION OF 80/20 RULE ==== A80:6:4);
WRITELN 

END;

(* output current firm size and weight information in various format *)
procedure sortout(size:aint; w t :areal; nof:integer); 
var

I, J, TEMP: INTEGER;
rtemp: REAL; (* TEMPORARY VARIABLE FOR SWAPPING *)
fid: AINT; (* STORE FIRM IDENTIFICATION NUMBER *)
CF, CG: AMAXI;
INDEXNOW: INTEGER;

begin
WRITELN;
WRITELN;
WRITELN ( ' ***** f i r m  SIZE AND WEIGHT LIST *****'),-
write
WRITELN('
WRITE(' IN ENTRY ORDER a IN DECENDING');
WRITELN(' ORDER OF SIZE');
WRITE
WRITELN
FOR I := 1 TO NOF DO 

FID(.I . ) := I;
(* KEEP TRACK OF INITIAL FIRM ID *)
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FOR I := 1 TO NOF-1 DO (* SORT THE FIRM BASED ON SIZE *)
FOR J := 1+1 TO NOF DO (* KEEP TRACK OF FIRM ID*)

IF SIZE(.J .) > SIZE(.I .) THEN 
begin

TEMP := SIZE(.I .);
SIZE(.1.) := SIZE(.J.);
SIZE(.J .) := TEMP; (* SWAP FIRM SIZE *)
RTEMP := W T (.I .);
W T (.I .) : = W T (.J .) ;
W T (.J .) := RTEMP; (* SWAP FIRM WEIGHT *)
TEMP := FID(.I .);
F ID(.1.) := FID(.J .);
FI D (.J .) := TEMP

END; (* KEEP TRACK OF FIRM ID *)
IF NOF>50 THEN J:=50

ELSE J := NOF; (* OUTPUT UPTO FIRST 50 FIRMS *)
FOR I := 1 TO J DO (* PRINT OUT THE FINAL FIRM SIZE*)
BEGIN

WRITE('S(' ,I :3,')= ' ,S (.1.) :5, '; W(',I:3,') = W(.I.):7:4);
WRITE(' a S(',FID(.I.):5,') = ');
WRITELN(SIZE(.I.) :5, '; W (' ,FID(.I .) :5, ') = W T (.I .) :7 : 4) ;

end;
PAGE ;
WRITELN;
WRITELN;
WRITELN;
WRITE('RANK SIZE # OF FIRM TOTAL WEIGHT ');
WRITELN('INC. P. IF NOT NEW');
WRITE ('-----------------------------        ');
WRITELN('------------ ');
j := 1; (* INITIAL RANK VALUE *)
temp := 1; (* # OF FIRM OF SAME SIZE *)
RTEMP := W T (.1.); (* SUM FIRMS' WEIGHT OF SAME SIZE *)
C G (.0.) := 0;
CF(.0.) := 0;
for i := 2 TO NOF DO (* WORK ON DESCENDING FIRM LIST *)
begin

IF SIZE (.1-1.) > SIZE(.I .) THEN 
begin

W R I T E ( J : 3 , , SIZE(.I-1.):8,' ', TEMP;8, RTEMP:16:4);
IF RTEMP > (MINREAL*WEIGHTSUM) THEN 

WRITELN(RTEMP/WEIGHTSUM:16:4)
ELSE
BEGIN

RTEMP := 0;
WRITELN(RTEMP:16:4) (* TO AVOID REAL TYPE UNDERFLOW *)

END;
C G (.J .) := C G ( . J - 1 . )  + SIZE(.1-1.)*TEMP;
C F (.J .) := C F (.J-1.) + TEMP; (* CUMULATIVE FREQUENCY, ETC.*)
j := j +1;temp := 1;
RTEMP := W T (.I .) 

end
ELSE (* FIRM OF EQUAL SIZE *)
begin

temp := temp+1;
RTEMP := RTEMP+WT(.I .) 

end



end; (* MARGINAL CONDITION *)
WRITE(J :3,':', SIZE(.NO F .):8,' TEMP:8, RTEMP:16:4);
WRITELN(RTEMP/WEIGHTSUM:16:4);
C G (.J .) := C G (.J-1.) + SIZE(.NOF.)*TEMP;
C F (.J .) := C F (.J-1.) + TEMP;
GETA8 0(CF, CG, J)

end;

BEGIN (* main *)

= ' ) ;

ALPHA = ',ALPHA:3:2,' 

' ) ;

GAMMA = ',GAMMA:5:4);

initialize;
PAGE ;
WRITELN;
WRITELN;
WRITELN;
WRITE('
WRITELN('==:
WRITE('
WRITELN('
WRITELN;
WRITE('
WRITELN('
WRITELN;
WRITE('
WRITELN('
WRITELN;
WRITE('
WRITELN('
WRITELN;
WRITE(' ');
WRITE(' NUMBER OF FIRMS = ',NK:3, ' ASSETS ALLOCATED = ',AA:4); 
WRITELN;
WRITE(' ');
WRITELN('======================================================');

CYCLE SIZE = ',R:6, '; # OF CYCLE EACH RUN = ',R C :2);

' ) ; *** INITIAL CONDITIONS ***');

' ) ;
RANDOM # GENERATOR SEED = ', SEED:6);

St := AA + 1;
T := 0;

(* ASSIGN INITIAL STARTING ASSET

for c := 1 to rc do 
begin

T := T + R;
FOR k := St TO t DO 
BEGIN

A := RANDOM(0) ;
IF a <= alpha 
THEN 
begin

for i:=l to nk do
IF W(.I.) > MINREAL1 THEN 

W( . I . ) := W (.I .)*GAMMA;
(* ADJUST WEIGHT OF EXISTING FIRMS *)

nk := nk + 1;
S ( .N K .) := 1 ;
W (.N K .) := 1 (* SIZE AND WEIGHT AT OUTSET *)

end 
ELSE
BEGIN (* ALLOCATE TO AN EXISTING FIRM *)

B := RANDOM(0)*WEIGHTSUM; (* STANDARDIZED B *)

(* LOOP START/END # OF THIS CYCLE *)
(* START ONE CYCLE OF A. ALLOCATION 
(* GET RANDOM NUMBER IN (0,1) *)

(* ALLOCATE TO A NEW FIRM *) 

(* PREVENT DATA UNDERFLOW *)
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cumulant := 0; 
j : = 0;
REPEAT

j := j + l;
CUMULANT := CUMULANT + W (.J .);

UNTIL cumulant >= b; 
for i:=l to nk do

IF W(.I.) > MINREAL1 THEN (* TO PREVENT UNDERFLOW *)
W(.I.) := W (.I .)*GAMMA; (* ADJUST ALL FIRM WEIGHTS *)

W(.J.) := W(.J.) + 1;
S(.J.) := S(.J.) + 1 

END; (* ALLOCATE TO EXISTING FIRM *)
WEIGHTSUM := WEIGHTSUM*GAMMA + 1
END; (* K LOOP: ONE CYCLE *)
PAGE;
WRITELN; 
WRITELN; 
WRITE(' 
WRITELN(' 
WRITE('

 ' ) ;
CURRENT PERIOD ENDING AFTER ASSETS ALLOCATED

' ) ;

' ) ;
WRITELN(T:6);
writeln; 
WRITELN(' 
WRITE(' 
WRITELN('

CURRENT TOTAL NUMBER OF FIRMS =', NK:5);
' ) ;

sortout(s, w, nk);
ST := 1 + T;

END (* FOR LOOP *)
END.
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