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Abstract

Given a finite index subgroup of PSL2(Z), one can talk about the different prop-

erties of this subgroup. These properties have been studied extensively in an attempt to

classify these subgroups. Tim Hsu created an algorithm to determine whether a subgroup

is a congruence subgroup by using permutations [9]. Lang, Lim, and Tan also created an

algorithm to determine if a subgroup is a congruence subgroup by using Farey Symbols

[15]. Sebbar classified torsion-free congruence subgroups of genus 0 [25]. Pauli and Cum-

mins computed and tabulated all congruence subgroups of genus less than 24 [3]. However,

there are still some problems left to be solved.

In the first part of this thesis, we will use the concept of Farey Symbols and bipar-

tite cuboid graphs to determine when two subgroups of PSL2(Z) are in the same conju-

gacy class in PSL2(Z). We implemented this algorithm, and other related algorithms, with

SageMath [23]. In the second part of the thesis, we will extend these ideas to general tri-

angle groups. Specifically, we will classify some small index conjugacy classes of subgroups

of the triangle group 4(2, 4, 6).

v



Chapter 1. Preliminaries

1.1. Hyperbolic Geometry

In this section, we will recall some basic facts about hyperbolic geometry following

the notations of Katok [11]. Let H = {z = x + iy ∈ C|Im(z) > 0} be the upper half

complex plane with the differential form

ds =

√
dx2 + dy2

y
.

The length of a curve C parameterized by x(t) and y(t) for 0 ≤ t ≤ 1 is defined by

h(C) =

∫ 1

0

√(
dx
dt

)2
+
(
dy
dt

)2

y(t)
dt.

The hyperbolic distance between z1, z2 ∈ H is given by ρ(z1, z2) = inf h(C) where C is all

differentiable curves connecting z1 and z2.

Definition 1. For z1, z2 ∈ H, the shortest curve connecting z1 and z2 with respect to this

metric is called the geodesics between z1 and z2.

It is well known that geodesics on H are either vertical lines or semicircles with

endpoints on R ∪ {∞}. Then it is not hard to see that for any two distinct points z1, z2 ∈

H, there exists a geodesic connecting z1 and z2 and that the geodesic is unique. The hy-

perbolic area for A ⊂ H is defined to be

µ(A) =

∫
A

dxdy

y2
.

A hyperbolic triangle is a region in H that is bounded by three geodesics.

Theorem 1 (Gauss-Bonnet [11]). Let 4 be a hyperbolic triangle with angles π
a
, π
b
, π
c

where

a, b, c > 0 ∈ Z. Then µ(4) = π − π
a
− π

b
− π

c
.
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Note that as µ(4) > 0, the above theorem implies that 1
a

+ 1
b

+ 1
c
< 1. When

1
a

+ 1
b

+ 1
c

= 1 (resp. 1
a

+ 1
b

+ 1
c
> 1), 4 is euclidean (resp. spherical) and we can classify

(a, b, c) into a finite number of cases [17]. When 4 is hyperbolic, there are infinitely many

cases. We will provide an algorithm for classifying specific cases when 4 is hyperbolic in

the latter half of this thesis.

1.2. Triangle Groups

Let a, b, c ≥ 2 ∈ Z and 4 to be a hyperbolic triangle with angles π
a
, π
b
, π
c
. One

can also suppose that a ≤ b ≤ c. Let G be a group generated by reflections across each

sides of the triangle 4. Note that by reflections, one can tile the upper half plane using

the triangle 4. A triangle group 4(a, b, c) is a subgroup of G containing only the orienta-

tion preserving elements. Note that depending on context, we will use 4(a, b, c) to either

denote the triangle group or the hyperbolic triangle with angles π
a
, π
b
, π
c
.

Recall that SL2(R) is the group of 2 by 2 matrices with entries in R and determi-

nant 1. There is an action of SL2(R) on H given by the Möbius transformation,

γz :=
az + b

cz + d
for z ∈ H and γ =

[
a b

c d

]
∈ SL2(R).

Note that for −I =

[
−1 0

0 −1

]
, −Iz = Iz = z. Sometimes it will be more convenient

to consider PSL2(R) = SL2(R)/{I,−I}. Since orientation preserving isometries on H are

Möbius transformations which are represented by some ±M ∈ SL2(R), 4(a, b, c) is then a

subgroup of PSL2(R). Following the notations presented in [2], 4(a, b, c) have presentation

4(a, b, c) = 〈σa, σb, σc|σaa = σbb = σcc = σaσbσc = −1〉. (1.1)

We will define 4(a, b, c) = 4(a, b, c)/{±1}. We also note that we only need 2 generators

to describe 4(a, b, c) since there is a relation among the 3 generators.
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Let P1(R) denote the set R ∪ {∞}. SL2(R) also acts on P1(R). For a discrete sub-

group Γ of SL2(R), the action of Γ will split P1(R) into equivalence classes. We will denote

H ∪ P1(R) as H. For z1, z2 ∈ H, z1 is equivalent to z2 if there exists γ ∈ Γ such that

γz1 = z2.

Recall that the modular group is defined as

SL2(Z) =

{[
a b

c d

]
: a, b, c, d ∈ Z and ad− bc = 1

}
.

Let PSL2(Z) := SL2(Z)/{±I}, then SL2(Z) ∼= 4(2, 3,∞) and PSL2(Z) ∼= 4(2, 3,∞). We

will discuss more about why we would want to use PSL2(Z) in a later section.

Example 1.2.1. Using the Gauss-Bonnet theorem, we have that µ(4(2, 3,∞)) = π − π
2
−

π
3
− π
∞ = π

6
, where we take π

∞ to be 0.

Let be M =

[
a b

c d

]
∈ SL2(R) and pM(x) be the charateristic polynomial of M .

Then pM(x) = x2 − tr(M)x + 1. We apply the quadratic formula to find that the discrimi-

nant is tr(M)2− 4. If |tr(M)| < 2, the eigenvalues of the matrix M are not real. The other

cases, |tr(M)| = 2 and |tr(M)| > 2, give us either 1 real eigenvalue or 2 real eigenvalues.

Now let us look at the fixed points of M . A point z ∈ H is fixed by M if

az + b

cz + d
= z.

Then we have

cz2 + (d− a)z − b = 0.

The discriminant of this equation is

(d− a)2 + 4bc = (a+ d)2 − 4(ad− bc) = tr(M)− 4det(M) = tr(M)− 4.

These facts give us a classification for the matrices in SL2(R).

3



Definition 2. A non-identity element γ ∈ SL2(R)/{±I} is called elliptic, parabolic, or

hyperbolic, if

|tr(γ)| < 2, |tr(γ)| = 2, or |tr(γ)| > 2,

respectively. Equivalent, γ ∈ SL2(R)/{±I} is called elliptic, parabolic, or hyperbolic if γ

has one fixed point in H, γ has one fixed point on P1(R), or γ has two distinct fixed points

on P1(R) respectively.

Definition 3. Let τ ∈ H ∪ R ∪ {∞}. This element τ is called an elliptic point if it is

fixed by an elliptic element. It is called a cusp if it is fixed by a parabolic element.

Definition 4. Given a discrete subgroup Γ of PSL2(R), the modular curve YΓ is defined

as the quotient space

YΓ := Γ\H.

This curve can be viewed as a noncompact Riemann surface. In order to compact-

ify YΓ, we have to add back in the cusps of Γ. This gives us a compact Riemann surface

for the curve XΓ := Γ\H. A more in-depth discussion can be found in chapters 2 and 3 of

[6].

Definition 5. The genus of a discrete subgroup Γ of SL2(R) is defined as the genus of

XΓ as a compact Riemann surface.

For a given triangulation of X, the Euler number is defined as

V − E + F,

where V is number of vertices, E is the number of edges, and F is the number of faces.

The Euler characteristic can be similarly defined for connected plane graphs. The genus
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gX of X is defined to be

2− 2gX = V − E + F.

We note that the genus of 4(a, b, c) is 0.

To compute the genera of finite index subgroups of a given triangle group, one can

use a powerful tool called the Riemann-Hurwitz formula. The following are from chapters

2 and 3 of [6]. Let f : X → Y be a nonconstant holomorphic map between compact ori-

entable Riemann surfaces and d be the degree of f . For x ∈ X, let ex be the ramification

degree of f at x. Let gX and gY be the genera of X and Y . Then the Riemann-Hurwitz

formula state

2gX − 2 = d(2gY − 2) +
∑
x∈X

(ex − 1). (1.2)

In fact, the derivation of the Riemann-Hurwitz formula does involve the Euler char-

acteristic of the surfaces X and Y . A short discussion can be found in chapter 3 of [6].

1.3. Generators of Triangle Groups

Given 4(a, b, c) with the presentation given in equation (1.1), there exists an em-

bedding

4(a, b, c) ↪→ SL2(R)

that is unique up to conjugation in SL2(R). The embedding is given by Petersson [22] (see

Clark and Voight [2] or Petersson [22]). For s ≥ 2 ∈ Z, let ζs = e
2πi
s . Then

λs = ζs +
1

ζs
= 2 cos(

2π

s
) and µs = 2 sin(

2π

s
) = −i

(
ζs −

1

ζs

)

5



where ζ∞ = 1, λ∞ = 2, and µ∞ = 0. Finally, for 4(a, b, c) ↪→ SL2(R) with 4(a, b, c)

having the presentation given in 1.1,

σa 7→ ga :=
1

2

[
λ2a µ2a

−µ2a λ2a

]
(1.3)

σb 7→ gb :=
1

2

[
λ2b tµ2b

−µ2b/t λ2b

]
(1.4)

where

t+ 1/t = 2
λ2aλ2b + 2λ2c

µ2aµ2b

. (1.5)

Let c = λ2aλ2b+2λ2c
µ2aµ2b

. Then t = c ±
√
c2 − 1. Notice that there are two choices for

t. The choice of t correspond to conjugacy in the embedding. Let t+ = c +
√
c2 − 1 and

t− = c−
√
c2 − 1 and S =

[
0 1

−1 0

]
. Some computation will shows that t+t− = 1. Then

S−1

[
λ2b t+µ2b

−µ2b/t+ λ2b

]
S =

[
λ2b µ2b/t+

−t+µ2b λ2b

]
=

[
λ2b t−µ2b

−µ2b/t− λ2b

]
.

So up to conjugation, we’ll choose t+ for the map. We can also apply S to the

mapping of σa to get

S−1

[
λ2a µ2a

−µ2a λ2a

]
S =

[
λ2a −µ2a

µ2a λ2a

]
=

[
λ2a µ2a

−µ2a λ2a

]−1

.

This mapping gives us a set of generators ga, gb that generate a subgroup of SL2(R)

isomorphic to 4(a, b, c) = 〈σa, σb, σc|σaa = σbb = (σaσb)
c = −1〉. Therefore, ga and gb also

have the property that gaa = gbb = (gbga)
c = −I.

Example 1.3.1. Recall that SL2(Z) ∼= 4(2, 3,∞). Using the embedding above gives us

the matrices [
0 1

−1 0

]
and

[
1/2 3/2

−1/2 1/2

]
.

6



The conjugation in SL2(R) is M = 1√
2

[
1 1

−1 1

]
.

M

[
0 1

−1 0

]
M−1 =

[
0 1

−1 0

]

M

[
1/2 3/2

−1/2 1/2

]
M−1 =

[
1 1

−1 0

]
.

1.4. Permutation Representation

Let 4(a, b, c) be a group with generators ga and gb satisfying the relations gaa =

gbb = (gagb)
c = ±1. Let Γ be a discrete index n subgroup of 4(a, b, c) and let {γi}, with

γ1 = I, be a set of left coset representatives in 4(a, b, c). Then 4(a, b, c) =
⋃n
i=1 γiΓ. For

g ∈ 4(a, b, c), g acts on the left cosets of Γ by multiplication on the left. This action is the

same as group homomorphisms from Γ to a subgroup of the symmetric group Sn. So there

exists a homomorphism

θ : 4(a, b, c)→ Sn

where if θ(g) = σg, then gγiΓ = γθg(i)Γ. Then by defining θ(ga) = σa and θ(gb) = σb, we

can represent any finite index n subgroups as a pair of permutations σa and σb satisfying

σaa = σbb = (σaσb)
c = 1. The transitivity of the group generated by σa and σb comes from

ga and gb generating 4(a, b, c).

Conversely, suppose that σa and σb, with relations σaa = σbb = (σaσb)
c = 1, generate

a transitive subgroup of Sn with a homomorphism θ as defined above. Let

Γ = {g ∈ 4(a, b, c) | θ(g)(1) = 1}.

Note that g ∈ 4(a, b, c) is in Γ if and only if gΓ = Γ, i.e. σg(1) = 1. Therefore, if

θ(g)(1) 6= 1, then g /∈ Γ and gΓ is a coset. Then by transitivity of σa and σb, Γ is an index

7



n subgroup of 4(a, b, c). A more general discussion can be found in Hall’s The Theory of

Groups in chapter 5 [18].

1.5. Fundamental Domain

Definition 6. For a discrete subgroup Γ of SL2(R), a fundamental domain for Γ is a

connected hyperbolic polygon F with boundary ∂F on H such that

� ∀z ∈ H, there exists γ ∈ Γ such that γz ∈ F ;

� If z, z′ ∈ F and z′ = γz for some nonscalar γ ∈ Γ, then z and z′ belong to ∂F .

Proposition 1. Let Γ be a discrete subgroup of SL2(R), F a fundamental domain of Γ,

and Γ′ ⊂ Γ be a finite index subgroup. Let {γi} be the set of left cosets for Γ′ such that⋃
i γ
−1
i F is connected and write Γ as a disjoint union of cosets

Γ =
⋃
i

γiΓ
′.

Then

F ′ =
⋃
i

γ−1
i F

is a fundamental domain for Γ′.

Proof. Let z ∈ H. Then z′ = γz where z′ ∈ F and γ ∈ Γ. We also have that γ = γiγ
′

where γ′ ∈ Γ. Then γ′z ∈ γ−1
i F.

Now suppose that to the contrary, for z1, z2 ∈ F ′ and z2 = γz1 for some nonscalar

γ ∈ Γ′, but z1 and z2 is not in ∂F ′. Then z1 = γ−1
i y1 and z2 = γ−1

j y2 for yi ∈ F . Then

y2 = γjγγ
−1
i y1 is an equivalence relation in Γ which contradicts the fact that F is a funda-

mental domain.

Note that we can choose {γi} so that F ′ is connected by propagating F using the

generators of Γ.

8



For a triangle group 4(a, b, c) with a fundamental domain F , the elliptic points of

4(a, b, c) lie on the boundary of F . By labeling each fixed point of order a (resp. order b)

with a white (resp. black) dot, we can obtain a bipartite graph from the fundamental do-

main. We can also find a bipartite graph corresponding to subgroups of 4(a, b, c) by prop-

agating the fundamental domain of 4(a, b, c). A more in-depth discussion of the bipartite

graphs arising from fundamental domains will appear in Chapter 3.

1.6. Modular Group and Its Finite Index Subgroups

There are many different classes of triangle groups that have been studied over

the years. One important class of triangle groups is arithmetic triangle groups. These are

groups which parameterize certain abelian surfaces admitting quarternionic multiplica-

tion [26]. The classification for these arithmetic triangle groups has been done by Takeuchi

[28]. A related discussion in terms of generalized Legendre curves is given in this paper

[4]. Another class of triangle groups is of the form 4(2, b,∞) where b ≥ 2 ∈ Z. These

groups are called Hecke groups. Hecke groups are special because it contains cusps, which

does not exists if a, b, c < ∞. Recall that cusps are fixed by parabolic elements, and

any parabolic element is conjugate by some matrix A ∈ SL2(R) to ±

[
1 b

0 1

]
for some

b ∈ R [11][Section 1.4]. Therefore, cusps are fixed points of elements with infinite order,

which does not exists in the case of a, b, c < ∞ where all the generators have finite or-

der. In [14], C.L. Lang and M.L. Lang studied Hecke groups and produced an algorithm

to find the Hecke Farey Symbol, an extension of the classical Farey Symbol. We will dis-

cuss Farey Symbol in a later section. Within the class of Hecke groups, one specific group

is the group SL2(Z) ∼= 4(2, 3,∞) which is called the modular group. This group parame-

9



terizes the isomorphism classes of elliptic curves [6][Theorem 2.5.1] and it will be the dis-

cussion point for the majority of this thesis.

First, we recall some basic facts regarding SL2(Z) and PSL2(Z). The proof of these

statements can be found in [6].

Theorem 2. Let S =

[
0 −1

1 0

]
and T =

[
1 1

0 1

]
. The group SL2(Z) is generated by the

matrices S and T .

Proposition 2. The cusps of PSL2(Z) are P1(Q), all of which are equivalent in PSL2(Z).

Proposition 3. Every elliptic element of PSL2(Z) has order 2 or 3. Moreover, the is one

inequivalent class of order 2 and one inequivalent class of order 3.

Definition 7. Let Γ be a finite index subgroup of PSL2(Z) and z be a cusp of Γ. Then

there exists an element M ∈ PSL2(Z) such that MTM−1 fixes z. The smallest positive

integer n such that MT nM−1 ∈ Γ is called the width of the cusp z.

For a positive integer N , here are some classical subgroups of SL2(Z):

Γ(N) =

{[
a b

c d

]
∈ SL2(Z)

∣∣∣∣
[
a b

c d

]
≡

[
1 0

0 1

]
mod N

}

Γ1(N) =

{[
a b

c d

]
∈ SL2(Z)

∣∣∣∣
[
a b

c d

]
≡

[
1 ∗
0 1

]
mod N

}

Γ0(N) =

{[
a b

c d

]
∈ SL2(Z)

∣∣∣∣
[
a b

c d

]
≡

[
∗ ∗
0 ∗

]
mod N

}

Definition 8. A subgroup of SL2(Z) is called a congruence subgroup if it contains

Γ(N) for some N . The smallest N such that the containment holds is called the level of

the subgroup.

The groups Γ(N),Γ1(N), and Γ0(N) are all congruence subgroups. Dennin [5]

showed that for a given genus, the number of congruence subgroups is finite. On the other

10



hand, Jones [10] showed that there are infinitely many noncongruence subgroups for a

given genus.

A standard fundamental domain for PSL2(Z) is

F =

{
z ∈ H :

−1

2
≤ <(z) ≤ 1

2
and |z| ≥ 1

}
.

A visual representation of F is given in Figure 1.1.

Figure 1.1: A standard fundamental domain for PSL2(Z) with ρ = 1+
√
−3

2

From the given fundamental domain, ρ is an elliptic point of order 3 fixed by

ST−1 =

[
0 1

−1 1

]
and is equivalent to ρ2 by Sρ = ρ2. The point i is an elliptic point

of order 2 fixed by S. The cusp is ∞ fixed by

[
1 1

0 1

]
. This fundamental domain also

contains 2 copies of the hyperbolic triangle for 4(2, 3,∞) (one copy is the shaded part

in Figure 1.1) with internal angles π/2, π/3, and 0. Note that we need 2 copies to satisfy

the orientation preserving condition. Recall from before that 4(2, 3,∞) have area π
6
, so

the area of this fundamental domain is π
3
. As a corollary of Proposition 3, we see that the

elliptic points of PSL2(Z) are equivalent to either i or ρ.

Using the fundamental domain F for PSL2(Z), we can cover the upper half com-

plex plane using F and the generators of PSL2(Z) as given in Figure 1.2.

Example 1.6.1. Figure 1.3 is a fundamental domain for Γ0(4). The transformations on
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Figure 1.2: A partial tessellation of H

the boundary of the domain produce the following set of matrices[
1 1

0 1

]
,

[
1 0

4 1

]
,

[
1 0

−4 1

]
,

[
−1 1

−4 3

]
,

pairing a to b, c to h, d to g, and e to f respectively in an orientation reversing manner.

Note that up to signs, we have that[
1 0

−4 1

]
= −

[
1 1

0 1

]−1[
−1 1

−4 3

]−1

,

[
1 0

4 1

]
= −

[
−1 1

−4 3

][
1 1

0 1

]
.

Figure 1.3: A fundamental domain of Γ0(4) using cosets

We can obtain another representation for a fundamental domain of PSL2(Z) as fol-

lows by applying S to the left side of Figure 1.1 downward to get Figure 1.4. The new

polygon is a special polygon (see Definition 9).
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Figure 1.4: A special polygon for PSL2(Z) with o = 1+
√
−3

2

In Figure 1.4, we note that i and o are still elliptic points of order 2 and 3 respec-

tively. However, there are now two vertices that correspond to the cusps, ∞ and 0. In this

case, those two cusps are equivalent by the matrix S. The angle between the two red lines

meeting at o is 2π
3

.

By propagating the special polygon in Figure 1.4 using some Möbius transforma-

tions from PSL2(Z), we attain Figure 1.5 as a partial tessellation of H.

Figure 1.5: A partial tessellation of H using the special polygon in Figure 1.4

In this thesis, the fundamental domains for triangle groups are hyperbolic triangles.

Consequently, the tessellation obtained from a fundamental domain is made up of hyper-

bolic geodesics. More than that, the geodesics that connect the cusps are semicircles, or
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vertical lines, and their endpoints are on Q ∪ {∞}. Any two cusps a
b

and c
d

in the lowest

form that are joined by a blue line satisfy the condition that |ad− bc| = 1. Note the points

in the middle of the blue line (marked by ◦) are images of i and the points formed by the

intersections of the red arcs (marked by •) which are images of ρ.

Example 1.6.2. Figure 1.6 is another fundamental domain for Γ0(4). The side pairings

labeled by 1’s and 2’s give rise to the matrices[
1 1

0 1

]
,

[
3 −1

4 −1

]

respectively, which generate Γ0(4) in PSL2(Z).

Figure 1.6: Γ0(4) with images of elliptic points labeled

Compared to Example 1.6.1, the set of generators given the side pairings of a spe-

cial polygon is minimal. This is the motivation for using special polygons as our funda-

mental domains. For a more general discussion, refer to Maskit’s [19] paper on Poincaré’s

polygons.

We denote the hyperbolic geodesic from 0 to i (resp. from 0 to ρ = 1+
√
−3

2
) by Ae

(resp. Ao). For any γ ∈ PSL2(Z), γAe (resp. γA0) is called an even (resp. odd) edge.

In Figure 1.6, the blue line consists of 2 even edges connected at i and it is called an even

line. The red line contains 3 odd edges connected at ρ. Two even lines are considered
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paired if they share the same integer labeling as in Figure 1.6. The paired lines (the lines

with the same labeling) are called free sides. The fundamental domain given above for

Γ0(4) is a special polygon.

Definition 9. A special polygon P is a convex hyperbolic polygon with boundary ∂P

which is a union of even and odd edges satisfying the following:

P1) The even edges in ∂P come in connected pairs and form a semi-circle or vertical
lines.

P2) The odd edges in ∂P come in connected pairs. An odd edge a is paired to an odd
edge b which makes an internal angle of 2π

3
with a.

P3) Let e, f be two even edges in ∂P forming an even line. Then either e is paired to f ,
or e and f form a free side of P and is paired to another free side of P .

P4) 0 and ∞ are two vertices of P .

Definition 10. Let P be a special polygon. The inner tessellation of P consists of even

and odd edges contained inside P but not including the boundary.

The vertices of a special polygon can either be a cusp on P1(Q) or an elliptic point

located in H located on the boundary of the special polygon. The odd and even pairings

come from the fact that the elliptic points can be order 2 or 3.

Note that in the picture for Γ0(4) (i.e. Figure 1.6), 1
2

can be computed as the medi-

ant between 0 and 1.

Definition 11. For a
b
, c
d
∈ P1(Q) in simplest form, where we denote ∞ (resp. −∞) as 1

0

(resp. −1
0

), the mediant of a
b

and c
d

is denoted by mediant
(
a
b
, c
d

)
and computed by a+c

b+d
.

For a geodesic with endpoints a
b
, c
d
∈ P1(Q) in lowest form and |ad − bc| = 1, us-

ing the endpoints and the mediant as vertices, we obtain a hyperbolic triangle. By Gauss-

Bonnet, the area of this hyperbolic triangle is π.
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Theorem 3 (Kulkarni [12] Theorem 3.2). A special polygon is a fundamental domain for

the subgroup of PSL2(Z) generated by the side-pairing transformations and these trans-

formations form an independent set of generators for the subgroup. Conversely every sub-

group of finite index in PSL2(Z) admits a special polygon as a fundamental domain.

Note that special polygons for a given finite index group Γ of PSL2(Z) are not

unique.

Example 1.6.3. Figure 1.7 is another special polygon corresponding to Γ0(4). Note that

while the special polygons for Figure 1.6 and Figure 1.7 share the same number of hyper-

bolic triangles, their vertices are different.

Figure 1.7: Another special polygon for Γ0(4) with different vertices

1.7. Overview

There are two major ideas that will be used throughout this thesis. One is that a

fundamental domain for a finite index subgroup of PSL2(Z) can be obtained by propagat-

ing a fundamental domain of PSL2(Z). The other is that the set of generators obtained

from a special polygon is minimal. Using these two ideas, we will discuss and develop

computational methods for working with finite index subgroups of PSL2(Z). We will look

at these methods from three different angles. One will be from the perspective of Farey
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Symbols. Another will be using permutation representations. The last will be using bipar-

tite cuboid graphs.

For the second part, we will try to generalize these ideas to general triangle groups

4(a, b, c). The extension of permutation representations and graphs can be extended in an

obvious manner. However, we may not have Farey Symbols, which rely heavily on cusps.

Using these theories, we will develop algorithms involving triangle groups and finite index

subgroups of triangle groups. The algorithms include finding a set of generators and deter-

mining whether a given matrix is contained in a given finite index subgroup of 4(a, b, c).

We will also classify nonequivalent isomorphism classes of subgroups of 4(2, 4, 6) for index

up to 11.
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Chapter 2. Farey Symbols

For a special polygon, one can describe the polygon using its vertices. This descrip-

tion is called a Farey Symbol. The following discussion is based on the work of Kulkarni

[12].

2.1. Introduction

We recall the following classical definition of a Farey Sequence.

Definition 12. A Farey Sequence is a sequence of completely reduced rational numbers

between 0 and 1 in ascending order where each adjacent pair of numbers have cross-ratio

1. The cross-ratio of x1
y1
, x2
y2
∈ P1(Q) is denoted as |x1y2 − x2y1|.

Lemma 1. Let x1
y1
, x2
y2
∈ P1(Q) be in simplest form with cross-ratio 1 and z be the

mediant
(
x1
y1
, x2
y2

)
. Then the cross-ratio of

(
x1
y1
, z
)

and the cross-ratio of
(
z, x2

y2

)
are also 1.

Proof. Suppose a, b ∈ P1(Q) with a = x1
y1

and b = x2
y2

and |x1y2 − x2y1| = 1. Let c = x1+x2
y1+y2

.

Then the cross-ratio of a and c is |x1(y1 + y2)− y1(x1 + x2)| = |x1y2 − x2y1| = 1. Similarly,

the cross-ratio of b and c is also 1.

Lemma 2. Let M =

[
a b

c d

]
∈ SL2(Z) and x1

y1
, x2
y2
∈ P1(Q) be in simplest form. Then

mediant
(
M
(
x1
y1

)
,M

(
x2
y2

))
= M

(
mediant

(
x1
y1
, x2
y2

))
.

Proof.

mediant

(
M

(
x1

y1

)
,M

(
x2

y2

))
=
ax1 + by1 + ax2 + by2

cx1 + dy1 + cx2 + dy2

=
a(x1 + x2) + b(y1 + y2)

c(x1 + x2) + d(y1 + y2)

= M

(
x1 + x2

y1 + y2

)
= M

(
mediant

(
x1

y1

,
x2

y2

))
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Definition 13. A generalized Farey Sequence is an expression of the form of

{−∞ =
“ − 1 ”

0
, x1, x2, . . . , xn,

“ 1 ”

0
=∞}

where

i) x1 and xn are integers and for exactly one xi, xi = 0.

ii) xi = ai
bi

are rational numbers in their reduced form and in an increasing order, such
that

|ai+1bi − aibi+1| = 1, i = 1, 2, . . . , n− 1.

Definition 14. A Farey Symbol is a generalized Farey Sequence with pairing informa-

tion between any two adjacent entries. The pairing is labeled as follow:

� If xi and xi+1 are endpoints of two paired even edges, then the pairing is labeled .

� If xi and xi+1 are endpoints of two paired odd edges, then the pairing is labeled .

� If xi and xi+1 are endpoints of a free side and paired with x′i and x′i+1, then the
pairing is labeled by an integer. Different pairings are labeled by different integers.

Example 2.1.1. A Farey Symbol for Γ0(4) corresponding to Figure 1.6 is

−∞ 0
1

1
2

1
1 ∞

2 1 1 2

We can compute the matrices for the pairings explicitly by finding the Möbius

transformations for the edges. For 1, we need to find a, b, c, d such that

[
a b

c d

]
1
2

= 1
2
,[

a b

c d

]
0 = 1, and

[
a b

c d

]
∈ SL2(Z). For 2, we need a matrix

[
a b

c d

]
∈ SL2(Z) that fixes

∞ and sends 0 to 1. We find that 1 corresponds to the matrix

[
3 −1

4 −1

]
and 2 corresponds

to the matrix

[
1 1

0 1

]
.
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Example 2.1.2. Consider the following Farey Symbol

−∞ 0
1

1
2

1
1 ∞

1 • • 1

This Farey Symbol shares the same entries as Example 2.1.1. However, by chang-

ing the pairings, this Farey Symbol now represents a different subgroup. The subgroup

corresponding to this Farey Symbol is now of index 8. Similar to Example 2.1.1, we can

compute the matrices for the pairings explicitly. The matrix corresponding to 1 is

[
1 1

0 1

]
.

For the odd pairing between 0 and 1
2
, we first note that the odd edges forming this pair-

ing lie inside a hyperbolic triangle with vertices 0, 1
3
, and 1

2
. Therefore, we need to find[

a b

c d

]
∈ SL2(Z) that permutes these vertices. The matrix is ±

[
2 −1

7 −3

]
. For the second

odd pairing, we need a matrix that permutes 1
2
, 2

3
, and 1

1
. The matrix is ±

[
4 −3

7 −5

]
. An

explicit algorithm is given in Theorem 4.

Figure 2.1: A partial special polygon with vertices 0, 1, and ∞

2.2. Invariants From Farey Symbols

Given a finite index subgroup Γ of PSL2(Z), one can use the Farey Symbol to rep-

resent the subgroup in a concise way. From the Farey Symbol, we can obtain invariants for
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the given subgroup. The number of even (resp. odd) pairing is the number of inequivalent

elliptic points of order 2 (resp. order 3).

Let F be a Farey Symbol and {−∞, x1, . . . , xn,∞} be the corresponding general-

ized Farey Sequence with xi = ai
bi

. The generalized Farey Sequence will also have a cyclic

order. This means that xn+1 = ∞ = −∞ = x0. The width of each vertex xi can be calcu-

lated from the Farey Symbol as follows:

width(xi) = |ai−1bi+1 − ai+1bi−1|+ c

where c is 0, 1
2
, or 1 if xi is adjacent to 0, 1, or 2 odd edges respectively. The width of the

vertex ∞ is

width(∞) = |anb1 − a1bn|+ c.

The vertices can be partitioned into equivalent classes {xi}, which are cusps. If xi

and xi+1 are paired by an even or odd pairing, then xi and xi+1 are equivalent cusps. If xi

and xi+1 are paired with x′i and x′i+1 by a free pairing, then xi and x′i+1 are equivalent and

xi+1 and x′i are equivalent.

Then the width of a cusp {xi} is the sum of the width of xj ∈ {xi}. Let n be the

index of a finite index subgroup with a set of inequivalent cusps {xi}. Then

n =
∑
i

width(xi).

We can also obtain the genus of Γ by applying the Riemann-Hurwitz formula given

in equation (1.2) [12]. Let Γ be an index n subgroup of PSL2(Z) and e2, e3, c be the num-

bers of inequivalent order 2 elliptic points, order 3 elliptic points, and cusps respectively.
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Then the genus g of Γ is given by

g = 1 +
n

12
− e2

4
− e3

3
− c

2
.

The generators of Γ are given by the pairing information of the Farey Symbol.

Theorem 4 (Kulkarni [12] Theorem 6.1). Suppose ai
bi

and ai+1

bi+1
are two adjacent entries of

a Farey Symbol F . Then if the pairing between them, pi+1, is an even pairing, let:

Gi+1 =

[
ai+1bi+1 + aibi −a2

i − a2
i+1

b2
i + b2

i+1 −ai+1bi+1 − aibi

]
.

If pi+1 is an odd pairing, let:

Gi+1 =

[
ai+1bi+1 + aibi+1 + aibi −a2

i − aiai+1 − a2
i+1

b2
i + bibi+1 + b2

i+1 −ai+1bi+1 − ai+1bi − aibi

]
.

If pi+1 is a free pairing that is paired with the side between ak
bk

and ak+1

bk+1
, let:

Gi+1 =

[
ak+1bi+1 + akbi −akai − ak+1ai+1

bkbi + bk+1bi+1 −ai+1bk+1 − aibk

]
.

Then Gi+1 is the side transformation corresponding to the pairing between pi+1.

Example 2.2.1. The Farey Symbol for Γ0(4) is

−∞ 0
1

1
2

1
1 ∞

2 1 1 2

The generators are

[
1 1

0 1

]
and

[
3 −1

4 −1

]
. There are no elliptic points. The cusps

0 and 1 are equivalent. So there are 3 inequivalent cusps: 0, 1
2
, and ∞. The cusp 0 has

width 4, 1
2

has width 1, and ∞ has width 1. The index is 6. The genus is 0.

2.3. Algorithm for Constructing Farey Symbol

The following algorithm was given by Kurth [13] based on the work of Kulkarni.

Currently in SageMath, there exists the KFarey package [24] for producing a Farey Sym-

bol along with the invariants for a given finite index subgroup of PSL2(Z). We expand
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upon that algorithm to produce a bipartite cuboid graph with labelings. We will discuss

more about bipartite cuboid graphs in the next chapter.

There are two facts to be noted prior to discussing the algorithm. The first fact is

Lemma 2 . Let M =

[
a b

c d

]
∈ SL2(Z) and 0, 1,∞ be the vertices of a hyperbolic tri-

angle. Then the image of the hyperbolic triangle under the action of M will have vertices

a
c
, a+b
c+d

, b
d
. Therefore, to find the image of the hyperbolic triangle with vertices 0, 1,∞ under

M , we only need to find the image of 0 and ∞. The last vertex comes from the mediant of

the image of 0 and ∞. The second fact is the following. Let b
d
< a

c
∈ P1(Q) in simplest

form with |ad− bc| = 1. Then M =

[
a b

c d

]
takes 0 to b

d
and ∞ to a

c
.

Using these two facts, we can propagate our special polygon (Figure 2.1) along any

of its sides by finding the mediant between the corresponding two vertices.

Figure 2.2: Figure 2.1 reflected down Figure 2.3: Figure 2.1 reflected right

Example 2.3.1. Recall Figure 2.1. If we want to reflect the triangle downward, we only

need to find the mediant of 0 and 1. The mediant(0, 1) is 1
2
. The vertices 0, 1, and 1

2
pro-

duce the polygon in Figure 2.2. If we want to reflect the triangle to the right, we find the

mediant between 1 and ∞. The mediant(1,∞) is 2 and the polygon is the one in Figure

2.3.
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Algorithm 1 Produce a Farey Symbol given a finite index subgroup Γ of PSL2(Z) and a

fundamental domain

1: Check if

[
1 1

0 1

]
and

[
0 −1

1 0

]
is in Γ

2: if Yes then

3: Return
−∞ 0 ∞

4: Return Figure 1.4

5: Terminate

6: else if

[
0 1

−1 −1

]
and

[
−1 1

−1 0

]
are in Γ then

7: Γ = Γ2, where Γ2 is the unique subgroup of index 2

8: Return

−∞ 0
1 ∞

9: Terminate

10: end if

11: Make a partial Farey Symbol:

−∞ 0
1

1
1 ∞.

12: Let F be the hyperbolic triangle with vertices {0, 1,∞} with labeling given in Figure

2.1

13: n = 3

14: while There are unpaired entries do

15: Check whether you can pair the entries. If yes, assign the appropriate pairing

16: if Pairing between pi
qi

and pi+1

qi+1
is odd then
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17: Reflect one portion of F over the geodesic with endpoints {pi
qi
, pi+1

qi+1
}. Specifi-

cally, let

Gi+1 =

[
pi+1qi+1 + piqi+1 + piqi −p2

i − pipi+1 − p2
i+1

q2
i + qiqi+1 + q2

i+1 −pi+1qi+1 − pi+1qi − piqi

]

and let pt be the fixed point of Gi+1. The new hyperbolic triangle will have vertices

{pi
qi
, pt, pi+1

qi+1
}

18: Label the new region n+ 1

19: Let n = n+ 1

20: end if

21: if all entries have been paired then

22: terminate

23: else if There are any unpaired entries, say pi
qi

and pi+1

qi+1
then

24: We add a new entry, pi+pi+1

qi+qi+1

25: Reflect F along the geodesic with endpoints pi
qi

and pi+1

qi+1
forming a new hyper-

bolic triangle with vertices {pi
qi
, pi+pi+1

qi+qi+1
, pi+1

qi+1
}

26: Label the region with n+ 1, n+ 2, n+ 3 in a counterclockwise manner

27: n = n+ 3

28: end if

29: end while

Example 2.3.2. We apply the algorithm to Γ0(15) and it will produce Figure 2.4. We can

also call upon functions from the KFarey package to find the invariants. The dash lines in-

dicate the points that will be paired in the corresponding bipartite graph. We will discuss

bipartite cuboid graphs in the next chapter.
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Figure 2.4: The Farey Symbol and special polygon for Γ0(15) using Algorithm 1
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Chapter 3. Bipartite Cuboid Graphs

3.1. Interpreting Fundamental Domains of Subgroups of PSL2(Z) as Graphs

Definition 15. A bipartite cuboid graph (BCG) is a finite connected bipartite graph,

which can be embedded on an orientable surface, such that

� every white (resp. black) vertex is of degree 1 or 2 (resp. 1 or 3),

� there is a cyclic order on the edges incident at each vertex.

We will choose counterclockwise as our direction for the cyclic order on the edges

for the rest of this paper.

By using Algorithm 1, one can produce a fundamental domain for a finite index

subgroup Γ of PSL2(Z). Given a fundamental domain F with the inner tessellation (defi-

nition 10), let the images of the elliptic points of order 3 (resp. order 2) of PSL2(Z) under

the actions arising from the left cosets be represented as the black (resp. white) vertices.

One can obtain a graph from a fundamental domain by connecting the black vertices to

their neighboring white vertices. We will demonstrate this process by the following exam-

ple. Note that the number of edges added to connect black and white vertices is the num-

ber of 4(2, 3,∞) used to tessellate the fundamental domain of Γ, which is also the index

of Γ in PSL2(Z).

Example 3.1.1. Consider the fundamental domain with its inner tessellation for Γ0(4) in

Figure 3.1. Then we can construct the associated BCG by adding edges connecting each

black vertex to its neighboring white vertices (Figure 3.2). We also give a label to each

newly added edge. If there exists a dashed line between two vertices indicating there is a

pairing between them, we pair those two vertices. The resulting BCG is Figure 3.3.
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Figure 3.1: Γ0(4) with im-
ages of the elliptic points

Figure 3.2: Γ0(4) with
labels on the black edges

Figure 3.3: Γ0(4) repre-
sented as a BCG

The figures in Example 3.1.1 can also be obtained by applying Algorithm 1.

Lemma 3. Given an index n subgroup of PSL2(Z), the corresponding BCG has n edges.

Proof. Recall Proposition 1. For an index n subgroup Γ of PSL2(Z), the fundamental do-

main of Γ contains n copies of the fundamental domain of PSL2(Z). From the construc-

tion of the BCG for Γ, each edge of the BCG corresponds to a copy of the fundamental

domain for PSL2(Z).

From a BCG, we can obtain the same invariants that we found from using Farey

Symbols. An even (resp. odd) leaf is a white (resp. black) vertex of degree 1. The invari-

ants can be obtained as follows:

e2 = number of even leaves,

e3 = number of odd leaves,

c = number of faces.

Recall that for a planar graph, a face is a region enclosed by a cycle. There is also

the infinite face which is the region “outside” of the graph.

Example 3.1.2. In Figure 3.3, the subgraph given by edges 1 and 2 is called a face. This

face corresponds to a cusp of width 1. Another face is the subgraph with edges 5 and 6.

28



This face corresponds to another cusp of width 1. There is also the infinite face corre-

sponding to a cusp of width 4.

Note that not all BCG’s are planar. Since BCG’s come from finite index subgroups

of PSL2(Z), there are BCG’s with positive genus. A positive genus for a BCG means

that the BCG contains edges that cross each other. Then the faces for that BCG become

harder to identify visually. We will present a way to extend the definition of faces and

identify them by using permutations in a later discussion.

Example 3.1.3. Figure 3.4 is the BCG corresponding to the subgroup Γ0(15). While we

know the genus and the cusps of this subgroup from Figure 2.4, it is not easy to determine

those invariants from the BCG.

Figure 3.4: The corresponding BCG for Γ0(15) in Figure 2.4

From Figure 3.4, one might be tempted to move the edges and vertices to make

the graph into a plane graph. However, this might not work. Figure 3.4 is not a standard

graph, but rather a BCG (recall Definition 15), so there is a cyclic ordering on the edges.

By removing the crossings, the new BCG might not be isomorphic to the original BCG.

We define isomorphisms between BCG’s below.

Definition 16. Two BCG’s are isomorphic if there exists a bijective map between the

BCG’s that sends edges to edges while keeping edge adjacency and the cyclic ordering
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around the vertices.

Theorem 5 (Kulkarni [12] Theorem 4.2). There is a bijective correspondence between iso-

morphism classes of bipartite cuboid graphs and conjugacy classes of finite index subgroups

of PSL2(Z).

Example 3.1.4. Figure 3.5 shows two BCG’s that are isomorphic to each other. Note

that the cyclic ordering around each vertex is preserved along with edge adjacency. Figure

3.6 shows two BCG’s that are not isomorphic to each other. As standard graphs in the

plane, they are isomorphic. However, as BCG’s, there is no way to label the edges so that

both adjacency and cyclic ordering will be simultaneously preserved.

Figure 3.5: Isomorphic Figure 3.6: Non-isomorphic

Example 3.1.5. Figure 3.7 and Figure 3.8 are not isomorphic as BCG’s. The crossing in

Figure 3.8 indicates the genus of that graph is 1.

Figure 3.7: BCG with Genus 0 Figure 3.8: BCG with Genus 1
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Examples 3.1.4 and 3.1.5 show that the process of determining the isomorphism

between two BCG’s is not particularly straightforward. This process only grows in diffi-

culty as the BCG’s increase in size or they become more homogeneous. Consider Figure

3.9, 3.10, and 3.11. We would like to determine if there are any isomorphisms among those

three BCG’s. We will use permutation representations to help us find the isomorphisms if

there are any. We will find that only Figures 3.9 and 3.10 are isomorphic to each other.

Figure 3.9: A BCG with
36 edges

Figure 3.10: Another BCG
with 36 edges

Figure 3.11: A third BCG
with 36 edges

3.2. Interpreting Graphs as Permutations

So far, we have seen how to consider finite index subgroups of PSL2(Z) as Farey

Symbols and BCG’s. Now we consider these subgroups as permutations. Recall from Sec-

tion 1.4 that we can associate a permutation representation to a finite index subgroup of

4(a, b, c). In the case for finite index subgroups of PSL2(Z), we state the following theo-

rem from Millington [20].

Let X be a finite set of n letters and x1 a fixed member of X. A pairing (σ2, σ3)x1

is defined as an equivalence class of pairs of permutations σ2, σ3 acting on X under the

equivalence relation ∼, where

� σ2
2 = σ3

3 = I,
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� the group generated by σ2 and σ3 is transitive on X,

� (σ2, σ3) ∼ (σ′2, σ
′
3) if there exists a permutation τ ∈ Sn such that

τσ2τ
−1 = σ′2, τσ3τ

−1 = σ′3, τx1 = x1.

Theorem 6 (Millington [20] Theorem 1). Suppose that {σ2, σ3} ∈ Sn generate a transi-

tive subgroup on X, a finite set of n letters. Also suppose that σ2
2 = σ3

3 = 1. Then there

is a one-to-one correspondence between finite index subgroups Γ of PSL2(Z) and pairings

(σ2, σ3)x1 acting on a set X of n letters. Moreover, Γ has invariants n, g, e2, e3, c satisfying

the Riemann-Hurwitz formula and n =
∑

αi
width(αi), where αi are the inequivalent cusps,

if and only if

1. σ2 fixes e2 letters of X,

2. σ3 fixes e3 letters of X,

3. σ2σ3 consists of c disjoint cycles of length width(αi) for inequivalent cusps αi.

From a permutation representation, one can also obtain the standard invariants

(e2, e3, c, etc.) of the corresponding finite index subgroup Γ of PSL2(Z) by the results of

Theorem 6. One can obtain a set of permutations for a given subgroup Γ by following the

discussion in Section 1.4.

Another way to find σ2 and σ3 is by looking at BCG’s. Recall that we can repre-

sent a finite index subgroup of PSL2(Z) as a BCG. For the BCG, we can give it a labeling

on the edges. We can find σ2 and σ3 from a BCG with labels by reading the labels around

each vertex in a counterclockwise orientation. The labels around each white (resp. black)

vertex form a cycle in an order 2 (resp. 3) permutation. We present an example of this

process below.

Example 3.2.1. For Γ0(4) as given in Figure 3.3, the permutations are σ2 = (1, 2)(3, 4)(5, 6),
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σ3 = (1, 3, 2)(4, 5, 6), and σ2σ3 = (1)(6)(2, 3, 5, 4). From Millington’s Theorem 6, we can

find the invariants of this subgroup. This subgroup is torsion-free. There are 3 inequiva-

lent cusps of width 1, 1, and 4. The genus is 0.

Example 3.2.2. For Γ0(13), the permutations are

σ2 = (1, 3)(2, 4)(5, 7)(6, 10)(8, 13)(12, 14)(9)(11)

σ3 = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)(13)(14).

σ2σ3 = (1)(2, 5, 8, 13, 9, 7, 6, 11, 12, 14, 10, 4, 3)

This subgroup has 2 order 2 elliptic points, 2 order 3 elliptic points, and 2 cusps. One

cusp is of width 1 and the other is width 13. The genus is 0.

By using permutations, we can give a new definition for faces of a BCG.

Definition 17. For a BCG with a set of permutations {σ2, σ3}, the faces of the BCG

bijectively correspond to the disjoint cycles of the permutation σ2σ3.

3.3. Isomorphisms Between BCG’s

In the previous section, we established a way to go from a BCG with labelings to

a set of permutations. In this section, we will work with permutations. However, associ-

ated to the permutations is a BCG. In other words, determining whether two BCG’s are

isomorphic is equivalent to finding the conjugation between two sets of permutations if it

exists. We will establish an algorithm to go from permutations back to BCG’s in a later

section.

Definition 18. For permutations {σ2, σ3} and {σ′2, σ′3} such that 〈σ2, σ3〉 generate a tran-

sitive subgroup of Sn for some n ∈ N, we say that these two sets are conjugates of each

other if there exists a τ ∈ Sn such that τ{σ2, σ3}τ−1 = {σ′2, σ′3}.
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Example 3.3.1. Let

σ2 = (1, 2)(3, 4)(5)(6), σ3 = (1, 2, 3)(4, 5, 6),

σ′2 = (1, 2)(5, 6)(3)(4), σ′3 = (1, 5, 6)(2, 3, 4)

in S6. Then τ = (6, 4, 2)(3, 1, 5) will satisfy τ{σ2, σ3}τ−1 = {σ′2, σ′3}.

Example 3.3.2. Let

σ2 = (1, 4)(2, 6)(3, 5), σ3 = (1, 2, 3)(4, 5, 6),

σ′2 = (1, 4)(3, 6)(2, 5), σ′3 = (1, 2, 3)(4, 5, 6)

in S6. Since conjugation does not change cycle type, if there exists a τ ∈ S6 that con-

jugates the permutations, then σ2σ3 must have the same cycle type as σ′2σ
′
3. However,

σ2σ3 = (1, 5)(2, 4)(3, 6) and σ′2σ
′
3 = (1, 5, 3, 4, 2, 6). Therefore, there is no τ ∈ S6 such

that τ{σ2, σ3}τ−1 = {σ′2, σ′3}.

As n increases, trying to find a conjugation τ ∈ Sn becomes exponentially harder if

one were to naively find τ by checking all elements in Sn. We will introduce the concept of

paths to produce a more sophisticated method of finding τ .

Definition 19. Let X be a set of n letters and σ2, σ3 ∈ Sn, a path starting from k ≤ n is

a sequence {xi}, xi ∈ X with no repeated entries where

x1 = k, x2 = σ3(x1), x3 = σ2(x2), x4 = σ3(x3), x5 = σ2(x4), ..., xi = σj(xi−1)

where j = 3 if i is even and j = 2 if i is odd. A path is called maximal if {x1, x2, . . . , xi}

is a path but xi+1 = xj for some j ≤ i.

In the definition of paths, σ2 and σ3 only need to be elements of Sn. However, for

σ2 and σ3 arising from a BCG, it is necessary that 〈σ2, σ3〉 is a transitive subgroup of Sn.

From now, the set X will be the set of labels of a BCG. Also note that in the defi-

nition of paths, the starting direction is fixed.
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Definition 20. Given a maximal path p = {x1, . . . , xi}, if σj(xi) = xk where k ≤ i, then

we say the path type of this path is (k, i− k + 1).

Example 3.3.3. Recall the graph for Γ0(4) (Figure 3.3) and the permutation represen-

tation σ2 = (1, 2)(3, 4)(5, 6) and σ3 = (1, 3, 2)(4, 5, 6). A path staring at 1 would be

{1, 3, 4, 5, 6} with path type (3, 3). A path starting at 3 would be {3, 2, 1} with path type

(1, 3). To be more precise, we can track the numbers as follows:

3
σ37−→ 2

σ27−→ 1
σ37−→ 3

1
σ37−→ 3

σ27−→ 4
σ37−→ 5

σ27−→ 6
σ37−→ 4.

Let P be a set containing maximal paths starting at i for 1 ≤ i ≤ n.

Lemma 4. If {σ2, σ3} is conjugate to {σ′2, σ′3} in Sn, then for all p ∈ P , there exists p′ ∈

P ′ such that |p| = |p′| and p and p′ have the same path type.

Proof. Suppose that {σ2, σ3} is conjugate to {σ′2, σ′3}. Then there exists a τ ∈ Sn such

that τσ2τ
−1 = σ′2 and τσ3τ

−1 = σ′3. Let p = {x1, x2, . . . , xk} be a path in P . Let x′1 = τx1.

Since 1 ≤ x′1 ≤ n, there is a path in P ′ that start at x′1. For the path starting at x′1,

x′2 = σ′3(x′1) = τσ3τ
−1(τx1) = τσ3(x1) = τ(x2). Therefore, for a path p ∈ P , there exists a

path p′ = τp in P ′ with the same length with the same path type.

Note that if xi is a label corresponding to a leaf of a BCG, then xi is either the

starting point of a path or it is the ending point of a path.

Lemma 5. Let X be a set of n labels and {σ2, σ3} ∈ Sn. Let P be defined as above for

X. Then |{paths of length 1}| ≤ n
3

+ 2.

Proof. By definition of a path, paths of length 1 correspond to elliptic points of order 3.
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Then consider the Riemann-Hurwitz formula for PSL2(Z)

g = 1 +
n

12
− e2

4
− e3

3
− c

2

where n is the index, g is the genus, e2, e3 are the number of elliptic points of the corre-

sponding order, and c is the number of cusps. Some rearrangement yields

e2 +
4e3

3
= 4 +

n

3
− 2c− 4g.

So we have

e2 + e3 ≤ 4 +
n

3
− 2c− 4g

≤ 4 +
n

3
− 2− 4g

≤ n

3
+ 2.

Definition 21. A covering of a set X with n labels is a minimal set {pi} ∈ P such that

∪ipi ⊇ {1, 2 . . . , n}.

By using the definitions above and Lemma 4, we can now describe how to deter-

mine whether or not two sets of permutations are conjugate of one another, and corre-

spondingly, whether or not two BCG’s are isomorphic to each other. First we want to

note that for {σ2, σ3} and {σ′2, σ′3} in Sn, the sets P and P ′ are finite. Specifically, |P | =

|P ′| = n. The set P also contains a longest path, say p1. By Lemma 4, if there exists a

conjugation τ , then p1 is mapped to some p′1 in P ′ with the same length and path type.

We then attempt to construct τ by looking at the mappings of the paths. In the worst-

case scenario, we have to look at all mappings of p1 into P ′. Then we use a depth-first

search starting from p1 to get a covering C. In terms of graphs, this is the same as find-

ing a spanning tree. We find C ′ using the same depth-first search. If at any time where pi
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does not match up with p′i, then we have to choose a new path p′1 and do the depth-first

search again. Therefore, by the end of the algorithm, we either found a possible candidate

τ or we exhausted all possible mappings for p1. Then we verify whether τ is indeed the

conjugation.

Theorem 7. Algorithm 2 terminates and produces a conjugate τ between {σ2, σ3} and

{σ′2, σ′3} if it exists. This algorithm have time complexity O(n3) where n is size of the set

X.

Proof. Suppose that the time it takes for a program to compare two elements or to do

one computation is 1 time unit. For a set X with n labels, finding P takes n2 time units.

Finding P ′ would also take n2 time units. Therefore, finding P and P ′ would take 2n2

time units. In the worst-case scenario, we have to map p1 ∈ P to all paths in P ′ before

finding the correct map or conclude that such a map does not exist. This will take at

most n time units. Finding a covering will take n2 time units. At worse, we need to find

a covering C ′ for each mapping of p1. Altogether, it would take time O(n3) to determine

whether or not a conjugation element τ exists.

Note that if there are invariants between {σ2, σ3} and {σ′2, σ′3} that do not corre-

late, then {σ2, σ3} and {σ′2, σ′3} are not conjugates. We only go through the full algorithm

when the corresponding BCG’s are extremely similar (for example Figure 3.6).

Algorithm 2 Determining Isomorphism Between 2 BCG’s

1: Given 2 BCG’s, find the corresponding permutation representation σ = {σ2, σ3} and

σ′ = {σ′2, σ′3}

2: Check possible invariants between σ and σ′
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3: if Some invariants do not match up then

4: Output ”Not conjugate” and Terminate

5: end if

6: i = 1, C ′ = {}

7: Pick one of the longest paths p1 ∈ P , and let C = {p1}

8: while There is no isomorphism do

9: Find p′i ∈ P ′ that matches pi ∈ C by depth-first search

10: if p′i exists and i = 1 then

11: Add p′i to C ′

12: Remove p′i from P ′

13: else if p′i does not exist and i = 1 then

14: Break and print ”No conjugate”

15: end if

16: if no such p′i exists and i 6= 1 then

17: i = 1

18: C ′ = {}

19: Go back to start of While

20: else

21: if C is not a covering and |C| = i then

22: Find pi+1 ∈ P by depth first search

23: Add pi+1 to C

24: else if C is a covering and |C| = i then

25: Find and check τ using C and C ′.
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26: If τ is a conjugate, output τ and Terminate.

27: If not, i = 1, C ′ = {} and go back to start of while

28: end if

29: i = i+ 1

30: end if

31: end while

The implementation of Algorithm 2 can be found on the author’s website [23] in

the file of the same name. We can then use this algorithm to classify subgroups of triangle

groups. Note that algorithms for classifying subgroups of PSL2(Z) already exist (for exam-

ple [3] and [30]). However, those algorithms are restricted to PSL2(Z). On the other hand,

Algorithm 2 works for subgroups of any triangle group with permutation representation

{σa, σb}. We will demonstrate this in Section 4.4 for classifying subgroups of 4(2, 4, 6).

Example 3.3.4. Let

σ2 = (1, 3)(2, 4)(5, 13)(6, 7)(8, 21)(9, 10)(11, 12)(14, 16)(15, 19)(17, 18)(20, 22)(23, 24)

σ3 = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)(13, 14, 15)(16, 17, 18)(19, 20, 21)(22, 23, 24)

σ2σ3 = (2, 5, 14, 17, 16, 15, 20, 23, 22, 21, 9, 11, 10, 7, 4, 3)(6, 8, 19, 13)

σ′2 = (1, 3)(2, 4)(5, 13)(6, 7)(8, 21)(9, 10)(11, 12)(14, 16)(15, 19)(17, 18)(20, 22)(23, 24)

σ′3 = (1, 2, 3)(4, 6, 5)(7, 9, 8)(10, 11, 12)(13, 15, 14)(16, 17, 18)(19, 21, 20)(22, 23, 24)

σ′2σ
′
3 = (2, 6, 9, 11, 10, 8, 20, 23, 22, 19, 14, 17, 16, 13, 4, 3)(5, 15, 21, 7)

These permutations represent two conjugacy classes of index 24 subgroups of

PSL2(Z). Since there is no differences in the obvious invariants such as the number of
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Figure 3.12: Example 1 of Algorithm 2

elliptic points or cusps, we cannot yet determine if these two conjugacy classes are the

same. We apply the algorithm to determine that they are conjugates (Figure 3.12).

Example 3.3.5. Let

σ2 = (1, 2)(3, 4)(5, 10)(6, 7)(8, 9)(11, 16)(12, 13)(14, 15)(17, 19)(18, 24)(20, 23)(21, 22)

σ3 = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)(13, 14, 15)(16, 17, 18)(19, 20, 21)(22, 23, 24)

σ2σ3 = (1, 3, 5, 11, 17, 20, 24, 16, 12, 14, 13, 10, 6, 8, 7, 4)(18, 22, 19)(21, 23)

σ′2 = (1, 2)(3, 4)(5, 10)(6, 7)(8, 9)(11, 16)(12, 13)(14, 15)(17, 19)(18, 24)(20, 23)(21, 22)

σ′3 = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 12, 11)(13, 14, 15)(16, 17, 18)(19, 20, 21)(22, 23, 24)

σ′2σ
′
3 = (1, 3, 5, 12, 14, 13, 11, 17, 20, 24, 16, 10, 6, 8, 7, 4)(18, 22, 19)(21, 23)

Once more, the two sets of permutations produce the same set of invariants. How-

ever, the algorithm determines that these two sets of permutations are not conjugates

(Figure 3.13). By looking at the paths, the longest path for {σ2, σ3} starts at 2. The path
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Figure 3.13: Second example of Algorithm 2

has length 13 with path type (7, 7). The longest path for {σ′2, σ′3} starts at 19 and also

have length 13. However, the path type is (11, 3).

3.4. Permutations Back to BCG’s

From a BCG with labelings, we saw how one can obtain the corresponding set of

permutations that represent the given BCG. Now, we can apply the idea of paths and cov-

ering to obtain a BCG from a set of permutations. The main idea of the algorithm is to

reverse the process of finding a covering. For the algorithm, any newly added edges will be

added in a clockwise manner.

Algorithm 3 Produce a BCG from a set of permutations

1: Given {σ2, σ3} ∈ Sn, find the set P

2: Find a covering C as in Algorithm 2

3: For c1 ∈ C, draw a path for c1 including the path type and label the edges

4: for ci in C with i > 1 do

5: Draw ci including the path type. Anytime a new edge is found, it is added in a

clockwise manner
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6: end for

7: Output the BCG corresponding to the set of permutations

For a given covering C, the algorithm runs through C without having to look at

any element more than once. This will give us linear time for the for-loop in the algo-

rithm. The majority of the time cost will be in finding P and C. As before, finding P and

C will take O(n2) time.

3.5. BCG’s Back to Generalized Farey Symbols

Given a BCG, one can also obtain a Farey Symbol. The following algorithm is from

Caranica’s thesis [1].

Algorithm 4 Produce a Farey Symbol given a graph

1: Break up the graph at even vertices until the graph is a tree

2: Pick a leaf as the starting vertex

3: if starting vertex is odd then

4: Assign the vertex and the adjacent vertex the set a = {0
1
, 1

0
}

5: else

6: Assign the vertex the set a = {0
1
, 1

0
}

7: end if

8: while there are leaves without a set do

9: Pick an odd vertex that is adjacent to an even vertex that has been assigned a set

10: Set a to be the set of that even vertex

11: In a counterclockwise manner starting from the chosen odd vertex, assign the ad-

jacent even vertices that does not have a set the set b = {mediant(a),min(a)} and

c = {mediant(a),max(a)} respectively
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12: end while

13: For any remaining odd leaves, assign to it the same set as the one for their adjacent

even vertex.

Note that in the algorithm above, the choice of the starting leaf was not defined.

By choosing different leaves as the starting point, one might obtain different Farey Sym-

bols which represent different subgroups. However, those subgroups will be in the same

conjugacy class.

Definition 22. Any BCG with a fixed starting vertex is called a marked bipartite

cuboid graph.

Theorem 8 (Vidal [30]). There is a one-to-one correspondence between the marked bipar-

tite cuboid graphs and finite index subgroups of PSL2(Z).

Example 3.5.1. Consider the subgroup Γ0(3). The BCG corresponding to Γ0(3) is Figure

3.14.

Figure 3.14: The BCG for Γ0(3)

We apply Caranica’s Algorithm 4 to the BCG to find a Farey Symbol. We begin by

breaking up the cycles.

Figure 3.15: The tree for Γ0(3)

Now we have choices for a starting leaf. We choose the two even leaves and find the

corresponding Farey Symbols using the algorithm.
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Figure 3.16: Choosing the bottom
leaf as the starting leaf

Figure 3.17: Choosing the top leaf
as the starting leaf

The dashed lines in Figures 3.16 and 3.17 are there to remind us that we need

to pair up the corresponding entries in the Farey Symbols. The Farey Symbols for both

graphs are below.

−∞ 0 1 ∞
1 • 1

Figure 3.18: Farey Symbol for Fig-
ure 3.16

−∞ 0 1 ∞
1 1 •

Figure 3.19: Farey Symbol for Fig-
ure 3.17

The generators for the left Farey Symbol are

[
1 1

0 1

]
and

[
1 −1

3 −2

]
. The generators

for the right Farey Symbol are

[
−1 −1

1 0

]
and

[
2 −1

1 0

]
. These generators have the follow-

ing relations [
0 1

−1 1

][
−1 −1

1 0

][
0 1

−1 1

]−1

=

[
1 −1

3 −2

]
[

0 1

−1 1

][
2 −1

1 0

][
0 1

−1 1

]−1

=

[
1 1

0 1

]−1

.

These two Farey Symbols represent different subgroups in the same conjugacy class

in PSL2(Z).

As we discussed in previous sections, there is a bijection between labeled BCG’s

and sets of permutations. This allows us to translate Algorithm 4 into an algorithm that

takes in a set of permutations and produces a Farey Symbol.
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Algorithm 5 Produce a Farey Symbol given a set of permutations

1: Given {σ2, σ3} ∈ Sn. Create σ′2 by splitting all possible length-2 cycles of σ2 into

length-1 cycles such that 〈σ′2, σ3〉 remains a transitive subgroup of Sn

2: Pick a 1 cycle from σ′2 or σ3 as the starting point and denoted it as x1

3: unchecked = []

4: if x1 is in σ3 then

5: Assign x1 and x2 = σ2(x1) the set a1 = {0
1
, 1

0
}

6: Add x2 to unchecked

7: else

8: Assign x1 the set a1 = {0
1
, 1

0
}

9: Add x1 to unchecked

10: end if

11: checked = []

12: while there are still xi in unchecked[] do

13: Find xi+1 = σ3(xi) and xi+2 = σ3(xi+1)

14: if xi+1 ! = xi+2 then

15: Assign xi+1 (resp. xi+2) the set ai+1 = {mediant(ai),min(ai)} (resp. ai+2 =

{mediant(ai),max(ai)})

16: Assign σ′2(xi+1) (resp.σ′2(xi+2)) the set ai+1 = {mediant(ai),min(ai)} (resp.

ai+2 = {mediant(ai),max(ai)})

17: If σ′2(xi+1) ! = xi+1, add σ′2(xi+1) to unchecked[]. Else, add xi+1 to checked[]

18: If σ′2(xi+2) ! = xi+2, add σ′2(xi+2) to unchecked[]. Else, add xi+2 to checked[]

19: Remove xi from unchecked[]

45



20: Add xi to checked[]

21: else

22: Remove xi from unchecked[]

23: Add xi to checked[]

24: end if

25: end while

26: For xi corresponding to length-1 cycles in σ′2 or σ3, the associated set ai gives the en-

tries in the Farey symbols.

27: If σ3(xi) = xi, then it is an odd pairing. If σ2(xi) = xi, then it is an even pairing. If

xi, xj are in a 2-cycle in σ2, then it is a free pairing.

Example 3.5.2. Let

σ2 = (1, 7)(2, 11)(3, 4)(5, 10)(6, 8)(9, 12)

σ3 = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12).

Then we have

σ′2 = (1)(7)(2)(11)(3, 4)(5)(10)(6, 8)(9, 12).

Let x1 = 1 and attach a1 = {0
1
, 1

0
}.

The algorithm will produce the list in Table 3.1.

(1,{0
1
, 1

0
}) (4,{1, 1

0
}) (8,{2, 1

0
}) (12,{3, 2})

(2,{0
1
, 1}) (5,{2, 1}) (9,{3, 2}) (10,{5

2
, 2})

(3,{1, 1
0
}) (6,{2, 1

0
}) (7,{3, 1

0
}) (11,{5

2
, 3})

Table 3.1: Edges and labelings from Algorithm 5

Since 1, 2, 5, 7, 10, 11 are 1-cycle in σ′2, the generalized Farey Sequence is
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−∞ 0 1 2
5
2 3 ∞

Then we use σ2 and σ3 to get the appropriate pairings. A Farey Symbol for a sub-

group in this conjugacy class is

−∞ 0 1 2
5
2 3 ∞

1 2 3 3 2 1

This Farey Symbol has generators[
1 3

0 1

]
,

[
8 −3

3 −1

]
,

[
7 −12

3 −5

]
.

Figure 3.20: A special polygon corresponding to the Farey Symbol in Example 3.5.2

Note that the labelings on the graph in Figure 3.20 does not match the given σ2.

However, they are conjugates by τ = (4, 12, 8, 6, 11, 7, 5, 10, 9).

Once again, the implementation of these algorithms can be found on the author’s

website [23].
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Chapter 4. Extension to General Triangle Groups

4.1. Introduction

In this section, we will discuss general triangle groups. As these groups arise nat-

urally from hyperbolic geometry, they are used in many other contexts. As mentioned

previously, these triangle groups are not only groups but can also be interpreted as Rie-

mann surfaces and modular curves. Shimura’s works on these subgroups led to a class of

algebraic curves known as Shimura curves [26]. Takeuchi [28] considered a special class

of triangle groups called arithmetic triangle groups and produced a classification for all

arithmetic triangle groups. Clark and Voight [2] worked with these curves and their corre-

sponding Bely̆i maps to extend the idea of congruence subgroups to finite index subgroups

of hyperbolic triangle groups. Triangle groups also arise in Tu and Yang’s works [29] [33]

on transformations of hypergeometric functions. Note that this list is not exhaustive as

there are many more people who are working on this topic such as Elkies [7], Sijsling [27],

Milne [21], Fuselier, Long, Ramakrishna, Swisher and Tu [8], and Voight [31, 32, etc].

4.2. Drawing Fundamental Domains for Finite Index Subgroups of 4(a, b, c)

Let Γ be a finite index subgroup of 4(a, b, c) represented by σa and σb. Ling Long,

Fang-Ting Tu, and I collaborated to produce the following algorithm to draw a fundamen-

tal domain for Γ. The implementation of this algorithm and the algorithms above can be

obtained on the author’s website [23]. This algorithm will also output a set of generators

and the associated pairings of the boundaries. The method used in this algorithm relies on

the discussions in Sections 1.3, 1.4, and 1.5.

Note that John Voight also created a variant of this algorithm using quaternion
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algebras [16, 31, 32].

Algorithm 6 Draw a fundamental domain for a given finite index subgroup of 4(a, b, c)

1: Given a finite index subgroup of 4(a, b, c) represented as a pair of permutations

{σa, σb}, use the embeddings given in (1.3) and (1.4) to obtain generators 〈ga, gb〉 for

4(a, b, c) with gaa == gbb == (gagb)
c == ±I

2: Using fixed points of ga, gb, and gagb, draw a hyperbolic triangle 4(a, b, c). Then we

reflect the triangle across the geodesic connecting the fixed points of ga and gb. The

union of the two copies is a fundamental domain for 4(a, b, c).

3: For a given subgroup of 4(a, b, c) of index n given by permutations σa and σb where

σaa == σbb == (σaσb)
c == ±1, check if σa and σb form a transitive subgroup of Sn. If

yes, continue. If not, Terminate.

4: Pick i = 1 to represent the fundamental domain of 4(a, b, c)

5: checkedlist = [1]

6: matrixlist = [I]

7: k = a

8: while len(checkedlist)< n do

9: for i in checkedlist do

10: if σk(i) not in checkedlist then

11: Add σk(i) to checkedlist

12: Add matrixlist[checkedlist.index(i)]∗gk to matrixlist

13: end if

14: end for

15: if k==a then

49



16: k=b

17: else

18: k=a

19: end if

20: Draw the translations of 4(a, b, c) using matrices in matrixlist[]

21: end while

22: Find the pairing for the boundaries and the matrices corresponding to the fixed

points

23: Output a fundamental domain and a set of generators

Examples for Algorithm 6 can be found in the Appendix.

4.3. Group Membership

Lemma 6. For {ga, gb} defined in equations (1.3) and (1.4), the fixed points of ga and gb

have real parts equal to 0.

Proof. Let ga =

[
a b

−b a

]
and gb =

[
a tb

−b/t a

]
where t came from the embeddings in Sec-

tion 1.3. Finding the fixed point(s) z for ga gives us z2 = −1. Finding the fixed point(s) z

for gb gives us z2 = −t2 where t is defined in equation (1.5).

From the proof of Lemma 6, we can see that i will be a fixed point of the funda-

mental domain of 4(a, b, c) given by ga and gb. This lemma allows us to use the idea of

Lim, Lang, and Tan [15] to create an algorithm to check whether a matrix M ∈ SL2(R) is

in 4(a, b, c) under the embeddings given in Section 1.3.

We will briefly discuss Lim, Lang, and Tan’s algorithm. For a matrix M =[
a b

c d

]
∈ SL2(Z), there exists a geodesic with endpoints b

d
and a

c
. This geodesic is the
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image of the geodesic {0,∞} under the action of M . For a finite index subgroup Γ of

PSL2(Z), let F be a special polygon corresponding to Γ and {gi} be the corresponding

generating set. Then using powers of {gi}, the algorithm will move the geodesic { b
d
, a
c
}

back into the special polygon. After a finite number of steps, we obtain a matrix Mk such

that Mk({ bd ,
a
c
}) intersects F . If Mk({ bd ,

a
c
}) lies on the boundary of F , then M is in Γ.

Otherwise, M is not in Γ.

We extend this algorithm to general 4(a, b, c) with generating set {ga, gb} by first

drawing a fundamental domain F and picking a starting line. Let l be the partial geodesic

containing i on the boundary of F with endpoints x and y fixed by gagb and gbga respec-

tively. For M ∈ SL2(R), let l′ = M(l). Then we apply powers of the generators {ga, gb}

to l′ to bring it back into F . At each step, we choose the power that reduces the hyper-

bolic distance between i and the current location of the image of i. After a finite number

of steps, we obtain a matrix Mk such that Mk(l
′) intersects F . If Mk(l

′) is a boundary of

F , then M is in 4(a, b, c). If Mk(l
′) intersects F at either x or y, apply powers of gagb or

gbga and check if (gagb)
jMk(l

′) (or (gbga)
jMk(l

′)) for 1 ≤ j ≤ order(gagb) is a boundary of

F . If Mk(l
′) intersects F at any other points, M is not in 4(a, b, c). This process will also

give M as a word using the generators of 4(a, b, c).

Algorithm 7 Determine whether a matrix M ∈ SL2(R) is in 4(a, b, c)

1: Use Algorithm 6 to get a fundamental domain F and a set of generators {ga, gb} for

4(a, b, c) with gaa == gbb == (gagb)
c == ±I

2: if M is a generator or ±I then

3: Terminate and output ”In group”

4: end if
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5: Pick the boundary on the fundamental domain with endpoints {x, y} where

x = Fixedpoint(gagb) and y = Fixedpoint(gbga)

6: {x1, y1} = M{x, y}

7: mid = Midpoint(x, y)

8: mid1 = Midpoint(x1, y1)

9: d1 = HyperbolicDistance(mid,mid1)

10: word = []

11: while d1 > 0 do

12: for k from 1 to b− 1 do

13: Find the distance d between gkbmid1 and mid

14: if d < d1 then

15: d1 = d; mid1 = gkbmid1; {x1, y1} = gkb {x, y}; gtemp = gkb

16: end if

17: end for

18: Add gtemp to word[]

19: if {x1, y1} intersects F but x1 6= x and y1 6= y then

20: Terminate and output ”Not in group”

21: end if

22: if a 6= 2 then

23: for k from 1 to a− 1 do

24: Find the distance d between gkamid1 and mid

25: if d < d1 then

26: d1 = d; mid1 = gkamid1; {x1, y1} = gka{x, y}; gtemp = gka
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27: end if

28: end for

29: Add gtemp to word[]

30: if {x1, y1} intersects F but x1 6= x and y1 6= y then

31: Terminate and output ”Not in group”

32: end if

33: else

34: Find the distance d between gamid1 and mid

35: d1 = d

36: mid1 = g1mid1

37: {x1, y1} = g1{x, y}

38: Add ga to word[]

39: end if

40: if {x1, y1} intersects F but x1 6= x and y1 6= y then

41: Terminate and output ”Not in group”

42: end if

43: end while

44: if {x1, y1} intersects F but x1 6= x and y1 6= y then

45: Terminate and output ”Not in group”

46: else

47: Terminate, output ”In group”, output word[]

48: end if
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Example 4.3.1. Let

M =

 −16−10
√

3

(1+
√

3)
3

√
2 (16+9

√
3)

(1+
√

3)
2

(−22−12
√

3)
√

2

(1+
√

3)
4

34+20
√

3

(1+
√

3)
3

 ,

ga =

[
0 1

−1 0

]
, gb =

[ √
2

2
1
2

+
√

3
2

− 1
1+
√

3

√
2

2

]
.

Figures 4.1 to 4.5 show the steps that the algorithm takes to determine whether a matrix

M ∈ SL2(R) is in 4(2, 4, 6) with generating set {ga, gb}.

Figure 4.1: Step 1 Figure 4.2: Step 2 Figure 4.3: Step 3

Figure 4.4: Step 4 Figure 4.5: Step 5 Figure 4.6: Results

Figure 4.6 shows M written as a word using g1 = ga and g2 = gb

M = g2g1g
2
2g1g2g1g

3
2.

4.4. Classifications of Subgroups of 4(2, 4, 6) up to Index 11

In this section, we will list the conjugacy classes of finite index subgroups of

4(2, 4, 6) up to index 11. We present the conjugacy classes in terms of their permutation
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representations.

For a given index n, we fix an order 2 permutation σ2. Then we iterate through Sn

to find all possible order 4 permutations σ4 satisfying the relations in equation (1.1) and

produce a transitive subgroup in Sn. This process gives us a list of pairs of permutations.

Then we use Algorithm 2 to check for isomorphisms between the pairs of permutations

which then give a complete list of conjugacy classes of index n subgroups.

The invariants of a given subgroup can be obtained from the corresponding permu-

tations σ2 and σ4. The elliptic points of 4(2, 4, 6) have order dividing 2, 3, 4, or 6. If we

write the permutations σ2, σ4, and σ2σ4 as products of disjoint cycles, then the numbers

of elliptic points of order 2, 3, 4, and 6 are:

e2 =number of length-1 cycles of σ2

+ number of length-2 cycles of σ4,

+ number of length-3 cycles of σ2σ4,

e3 =number of length-2 cycles of σ2σ4,

e4 =number of length-1 cycles of σ4

e6 =number of length-1 cycles of σ2σ4.

Using the Riemann-Hurwitz formula 1.2, we find that the genus formula for sub-

groups of 4(2, 4, 6) is

g =
1

24
n− 3

8
e4 −

1

2
e3 −

1

4
e2 −

5

12
e6 + 1.
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Table 4.1: A Table of Conjugacy Classes of Subgroups of 4(2, 4, 6), Index 1-7

Index Order 2 Order 4 Order 6 Genus

2
(1,2)
(1,2)
(1)(2)

(1)(2)
(1,2)
(1,2)

(1,2)
(1)(2)
(1,2)

0
0
0

3 (1,2) (2,3) (1,3,2) 0

4

(1,2)(3)
(1,2)(3)
(1,2)(3,4)
(1,2)(3,4)

(1,3,2,4)
(1,3,4,2)
(1,3)(2,4)
(1,3,4,2)

(1,4)(2,3)
(2,3,4)
(1,4)(2,3)
(2,3)

0
0
0
0

5 (1,2)(3,4) (2,4,5,3) (1,4,2)(3,5) 0

6

(1,2)
(1,2)(3,4)
(1,2)(3,4)
(1,2)(3,4)
(1,2)(3,4)
(1,2)(3,4)(5,6)
(1,2)(3,4)(5,6)
(1,2)(3,4)(5,6)
(1,2)(3,4)(5,6)
(1,2)(3,4)(5,6)

(1,5)(2,3,4,6)
(1,4)(2,5)(3,6)
(1,4,5,6)
(1,4)(2,6,3,5)
(1,5,4,6)
(1,4)(2,5)(3,6)
(1,5,2,4)(3,6)
(1,5)(2,3,4,6)
(2,5)(4,6)
(1,6,2,3)

(1,3,4,6,2,5)
(1,5,2,4,6,3)
(1,2,4,3,5,6)
(1,6,3)(2,4,5)
(1,2,5,4,3,6)
(1,5,3)(2,4,6)
(1,4,6,2,5,3)
(1,3,6)(2,5)
(1,5,4,3,6,2)
(1,3,4)(2,6,5)

0
0
0
0
0
0
1
0
0
0

7

(1,2)(3,4)(5,6)
(1,2)(3,4)(5,6)
(1,2)(3,4)(5,6)
(1,2)(3,4)(5,6)

(2,4,5,6)(3,7)
(2,5,6,4)(3,7)
(1,2,7,3)(4,5)
(1,2,3,7)(4,5)

(1,4,7,3,5,2)
(1,5,4,7,3,2)
(1,7,3,5,6,4)
(1,3,5,6,4,7)

0
0
0
0
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Table 4.2: A Table of Conjugacy Classes of Subgroups of 4(2, 4, 6), Index 8-9

Index Order 2 Order 4 Order 6 Genus

8

(1,2)(3,4)
(1,2)(3,4)
(1,2)(3,4)(5,6)
(1,2)(3,4)(5,6)
(1,2)(3,4)(5,6)
(1,2)(3,4)(5,6)
(1,2)(3,4)(5,6)
(1,2)(3,4)(5,6)
(1,2)(3,4)(5,6)
(1,2)(3,4)(5,6)
(1,2)(3,4)(5,6)(7,8)
(1,2)(3,4)(5,6)(7,8)
(1,2)(3,4)(5,6)(7,8)
(1,2)(3,4)(5,6)(7,8)

(1,6,8,3)(2,4,5,7)
(1,3,6,4)(2,8,7,5)
(1,4,8,5)(2,6)(3,7)
(1,4,7,3)(2,6)(5,8)
(1,2,7,5)(3,4,8,6)
(1,6,8,3)(2,4,5,7)
(1,8,4,6)(2,5,7,3)
(1,7,3,5)(2,6)(4,8)
(1,2,5,7)(3,4,6,8)
(1,2,4,7)(3,5,6,8)
(1,8,3,6)(2,4,5,7)
(1,7)(2,3,6,8)
(1,2,7,5)(3,4,8,6)
(1,4,8,5)(2,6,7,3)

(1,4)(2,6,8,3,5,7)
(1,8,7,5,2,3)(4,6)
(1,6)(2,4,7,3,8,5)
(1,6,8,5,2,4)(3,7)
(1,7,5,3,8,6)
(1,4)(2,6,7)(3,5,8)
(1,5)(2,8,4)(3,6,7)
(1,6)(2,7,3,8,4,5)
(1,5,8,3,6,7)
(1,4,5,8,3,7)
(1,4,6,7,3,5)(2,8)
(1,3,4,6,5,8)(2,7)
(1,7,6)(3,8,5)
(1,6)(2,4)(3,8)(5,7)

0
0
0
0
0
0
0
0
0
0
1
0
0
0

9

(1,2)(3,4)(5,6)
(1,2)(3,4)(5,6)
(1,2)(3,4)(5,6)
(1,2)(3,4)(5,6)
(1,2)(3,4)(5,6)(7,8)
(1,2)(3,4)(5,6)(7,8)
(1,2)(3,4)(5,6)(7,8)
(1,2)(3,4)(5,6)(7,8)
(1,2)(3,4)(5,6)(7,8)
(1,2)(3,4)(5,6)(7,8)
(1,2)(3,4)(5,6)(7,8)
(1,2)(3,4)(5,6)(7,8)

(1,8,6,4)(2,9,7,5)
(1,9,3,7)(2,4,6,8)
(1,9,5,7)(2,6,8,4)
(1,7,8,9)(2,3,5,4)
(1,8)(2,3,7,9)(4,5)
(1,6)(2,7)(4,9,5,8)
(2,5,6,7)(3,9,4,8)
(1,3,2,7)(5,8)(6,9)
(1,7,9,4)(2,5,6,8)
(1,6,5,4)(2,3,8,9)
(2,7,4,3)(5,9,6,8)
(1,5,8,9)(3,6)(4,7)

(1,9,7,5,4,3)(2,8,6)
(1,4,7)(2,9,3,6,5,8)
(1,6,7)(2,9,5,8,4,3)
(1,3,2,7,8,9)(4,5,6)
(1,3,5,6,4,7)(2,8,9)
(1,7,4,3,9,5)(2,6,8)
(1,5,7,3,8,2)(4,9)
(1,7,5,9,6,8)(2,3,4)
(1,5,8,9,4,3)(2,7)
(1,3)(2,6,4,8,7,9)
(1,7,5,8,4,2)(6,9)
(1,2,5,3,7,9)(4,6,8)

0
0
0
0
0
0
0
0
0
0
0
0
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Table 4.3: A Table of Conjugacy Classes of Subgroups of 4(2, 4, 6), Index 10-11

Index Order 2 Order 4 Order 6 Genus

10

(1,2)(3,4)(5,6)(7,8)
(1,2)(3,4)(5,6)(7,8)
(1,2)(3,4)(5,6)(7,8)
(1,2)(3,4)(5,6)(7,8)
(1,2)(3,4)(5,6)(7,8)
(1,2)(3,4)(5,6)(7,8)
(1,2)(3,4)(5,6)(7,8)
(1,2)(3,4)(5,6)(7,8)
(1,2)(3,4)(5,6)(7,8)
(1,2)(3,4)(5,6)(7,8)
(1,2)(3,4)(5,6)(7,8)
(1,2)(3,4)(5,6)(7,8)
(1,2)(3,4)(5,6)(7,8)(9,10)
(1,2)(3,4)(5,6)(7,8)(9,10)
(1,2)(3,4)(5,6)(7,8)(9,10)
(1,2)(3,4)(5,6)(7,8)(9,10)
(1,2)(3,4)(5,6)(7,8)(9,10)

(1,5,10,6)(2,7)(3,9,4,8)
(1,2,7,3)(4,9,5,8)(6,10)
(1,2,8,4)(3,6,10,7)(5,9)
(1,8,5,2)(3,10,9,6)(4,7)
(1,8,3,6)(2,9,4,7)(5,10)
(1,5,10,6)(2,9,4,7)(3,8)
(1,2,9,6)(3,10,8,5)(4,7)
(1,6,7,8)(2,4,5,9)(3,10)
(1,8,4,6)(2,10,9,7)(3,5)
(1,8)(2,6,7,9)(3,5,10,4)
(1,4,5,6)(2,10,9,7)(3,8)
(1,9,4,7)(2,8)(3,6,10,5)
(1,6,9,4)(2,7)(3,10,5,8)
(1,7,5,2)(3,9,8,6)
(1,10,2,3)(4,7,6,5)
(1,10,2,3)(4,8,7,6)
(1,10,4,8)(2,5,3,9)

(1,7,3,8,2,5)(4,9)(6,10)
(1,7,4)(3,9,5,10,6,8)
(1,8,3)(4,6,9,5,10,7)
(2,8,4,10,9,6)(3,7,5)
(1,9,4,6,10,5)(2,8)(3,7)
(1,9,4,8,2,5)(3,7)(6,10)
(1,9,6,3,7,5)(4,10,8)
(1,4,10,3,5,7)(2,6,9)
(1,10,9,7,4,5)(2,8)(3,6)
(1,6,10,4,5,7)(2,8,9)
(1,10,9,7,3,5)(2,4,8)
(1,8)(2,9,4,6,3,7)(5,10)
(1,7,3)(2,6,8)(4,10)(5,9)
(2,7,6)(3,4,9,10,8,5)
(1,3,7,8,6,4)(2,10,9)
(1,3,8,6,5,4)(2,10,9)
(1,5,6,3,8,7)(2,10)(4,9)

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

11

(1,2)(3,4)(5,6)(7,8)(9,10)
(1,2)(3,4)(5,6)(7,8)(9,10)
(1,2)(3,4)(5,6)(7,8)(9,10)
(1,2)(3,4)(5,6)(7,8)(9,10)
(1,2)(3,4)(5,6)(7,8)(9,10)
(1,2)(3,4)(5,6)(7,8)(9,10)
(1,2)(3,4)(5,6)(7,8)(9,10)
(1,2)(3,4)(5,6)(7,8)(9,10)

(1,9)(2,4,7,10)(3,6,8,11)
(1,6,11,7)(2,8)(4,10,5,9)
(2,9,4,7)(3,6,11,8)(5,10)
(2,8,3,7)(4,9)(5,11,6,10)
(1,11,6,8)(2,7,9,4)(5,10)
(1,11,6,8)(2,7,10,5)(4,9)
(1,8,11,5)(2,6,7,9)(4,10)
(1,7,11,6)(2,8)(4,10,5,9)

(1,4,6,5,8,10)(2,9)(3,7,11)
(1,8)(2,6,9,5,11,7)(3,10,4)
(1,9,5,11,8,2)(3,7)(4,6,10)
(1,8,2)(3,9,5,10,4,7)(6,11)
(1,7)(2,11,6,10,4,3)(5,8,9)
(1,7)(2,11,6)(3,9,5,8,10,4)
(1,6)(2,8,9,4,3,10)(5,7,11)
(1,8,11,6,9,5)(2,7)(3,10,4)

0
0
0
0
0
0
0
0
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Appendix. Examples for 4(2, 4, 6)

Example 0.0.1. Using Algorithm 6, we can get a fundamental domain for the triangle

group 4(2, 4, 6) as given in Figure 1.

Figure 1: A fundamental domain for 4(2, 4, 6)

59



Example 0.0.2. Let
σ2 = (1, 4)(2, 5)(3, 6)

σ4 = (1, 2, 3, 4)(5, 6)

σ6 = (1)(2, 6, 4)(3, 5).

Then Algorithm 6 produced a fundamental domain and generators given in Figure

2.

Figure 2: A fundamental domain for a subgroup of 4(2, 4, 6)
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