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Fibers

Fibers, like graphite, are highly crystalline and oriented, giving them much higher strength

and stiffness than epoxy matrices [4]. This is especially true at high rates o f strain. Due to their

high stiffness, Fibers typically strain less than do matrices, especially at high strain rates. In

addition, fiber failure is generally defined at the fracture strain. Some fibers, however, like Kevlar

(aramid), actually have a higher creep rate than epoxy at low stresses [5], which may contribute to

Kevlar-epoxy’s relatively high fracture toughness. Graphite and glass fibers do not fall into this

category. Individual fibers may break at less than 50% of the ultimate tensile load of the composite

[8]. This is a random process due to randomly distributed defects in the fibers. Some researchers

have modeled fiber failure due to such defects using a Weibull distribution. This idea is explained

more fully in Chapter Two.

Agarwal and Broutman [8] discuss a rule of mixtures approach to define the energy required

per unit area of the composite for fracture of fibers in tension, W , as well as energy release rateb

caused by fiber breakage during fracture, G:

W =G  = b

V o 1f f

6E„
(2.6)

where V is the volume fraction of fibers, is the fiber ultimate strength, 1 is the fiber length, and 

Ef is the fiber Young’s modulus. When a fiber fails, other fibers must take up the load, leading to 

additional fiber failures [6]. This may be an incremental process; however, if it occurs abruptly, it 

may result in catastrophic failure.

Fiber-Matrix Debonding

Matrix microcracking generally does not lead to catastrophic failure, but rather, dissipates 

energy. Matrix microcracks are, however, nuclei for further damage. When matrix microcracks



reach fibers, debonding between the fiber and the matrix usually occurs. The purpose of the matrix 

is to transfer load to the fibers and it does this by a shear mechanism. Since the fibers are stiffer 

than the matrix, they prevent the matrix from elongating near the fiber. This results in a local strain 

at the fiber, which is higher than that in the bulk of the matrix [9]. If the corresponding local stress 

is greater than the local interfacial strength, debonding will occur. Although the matrix-fiber 

interface is often assumed to be perfect in analytical models, it actually has rough surfaces with 

comers, which act as stress concentrators. Thus the local stress is even higher than is usually 

predicted, resulting in premature debonding.

Cracking in a fiber-matrix composite can be modeled using a bimaterial plate, in which one 

phase is more brittle than the other. The crack propagates in the more ductile portion at, we 

assume, some constant velocity. As it approaches the second phase, it slows down and stops at the 

interface in what Theocaris [9] calls the crack-arrest phenomena. The crack then propagates along 

the interface until the strain energy necessary for it to propagate in phase two is reached. Now there 

are two independently propagating cracks. While this is a very interesting model, Theocaris, 

unfortunately, does not develop an equation for the energy of debonding. Kelly [1] does develop 

such a relation by equating the work of debonding with the strain energy appearing in the filament as 

a result of debonding. He finds that the work or energy of debonding is:

2 2 
7TT (7 X

W = ------ -  (2.7)
6E

where r is the fiber radius, Ef is the fiber modulus, <rf is the fiber breaking strength, and x is the 

length of the debond. Debonding contributes less to the fracture toughness than does fiber pull-out, 

as shall be shown.
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Fiber Pull-Out

Fiber pull-out generally occurs after a fiber has broken near, but not in the plane of, a 

matrix crack. The fiber will debond from the matrix and, since it can no longer carry a load, will 

pull away from the rest of the fiber, leaving a fiber-shaped hole in the matrix. This phenomenon is 

shown in Figure 2.2, where the central fiber has broken at a distance, L, from the crack face. Fiber 

pull-out increases fracture toughness and is enabled by a low interfacial shear strength. Pull-out is 

most likely to occur when the fiber length is less than the critical fiber length, which is the fiber 

length needed for the in situ fiber stress to reach its maximum value at the fiber midpoint. 

However, Piggott [10] has shown that fiber pull-out can occur in continuous fiber composites 

provided that it is preceded by fiber breakage and/or debonding between fiber and matrix. In a 

continuous fiber composite, it is usually fiber breakage that precedes pull-out, since it is unlikely that 

debonding will occur along the entire length of a fiber without fiber breakage occurring, as has been 

explained by Theocaris [9]. In addition, the fiber will probably break at the point of an inherent 

flaw.

—  x

Figure 2.2. Fibers Bridging a Crack [10]
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Kelly [1] defines the critical spacing of flaws as y ,
C

cr - a  * 
f f r Ac

(2.8)

Here, a  is the fiber strength, a *  is the strength at the flaws, Atr is a -a *, r  is the fiber radius, r  
I f f f f i

is the interfacial shear strength, and 1̂  is the critical fiber length, such that the in situ fiber strength 

reaches of in the middle. If the actual spacing of flaws is y where y < y  , then all fibers will break
C

at flaws lying within a distance ^ y from the crack. The average pull-out work per fiber is then:

2irrr.y
W = -----—  (2.9)

p 12

or for the composite per unit area,

V  /
W = - L 2 _  (2 .io )

p 12r

If, on the other hand, y >  y , a fraction of fibers equal t o  will break at flaws and pull
c y 

yc
out, while a fraction of fibers equal to 1——  will not pull out but will break in the plane of the 

matrix crack. Then the work of fracture for the composite is:

V t y3
W (2.11)

p 12ry

By setting y=yc, the dependence of W on r. and cr can be seen.
P 1 f
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I f  y = y c’ c

w  =
, 2 t/.yf  1 c

1 A cr l
c f

V r a
f  i f

(2 . 12)
12r 12r

Now,

1 <7̂ r 
0 7".i

(2.13)

so,

V rA<r2
W =  — ------  (2.14)

p 12 r
i

Since Acr^ is proportional to W increases with increasing cr̂  and decreasing r . In 

addition, to increase fracture toughness, the fiber/matrix interfacial shear strength should be reduced 

relative to the fiber longitudinal tensile strength. In fact, Piggott [10] has shown experimentally that, 

when the residual interfacial cure shrinkage stress is decreased, the work of fracture increases. In 

addition, work of fracture decreases as fiber modulus increases. The fiber stress is small near the 

break and this loss of stress upon fracture causes the fiber to shrink longitudinally and expand 

radially. Thus, the fiber wants to pull out and does work during pull-out. If the fiber is brittle, it 

will exhibit less shrinkage and less expansion, lowering the work of fracture. Piggott also points out 

that, in order for fiber pull-out to occur, the crack must be very large. This means that even though 

fiber pull-out is a useful mechanism for increasing fracture toughness, the crack required is often so
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large that the material is already in danger of certain failure. Fiber pull-out simply works to slow 

the failure process.

It can now be shown that the contribution of pull-out energy to fracture toughness is greater 

than that of debonding. Combining equations 2.8 and 2.10, we see that for a single fiber, the ratio 

of the pull-out work to the work of debonding, W /W , is proportional to E/tr which is equal to thep d t

reciprocal of the maximum breaking strain. As stated earlier, fibers are very stiff, so the maximum

breaking strain is always very small, on the order of a few percent. Therefore, Kelly states that E la

is never less than 50 [1]. Hence, Wp, the energy associated with fiber pull-out, is substantially

greater than W , the energy associated with debonding. In addition, since a small interfacial bond d

strength is required for both debonding and pull-out, a small interfacial shear strength will produce 

debonding followed by fiber pull-out. Therefore, it is worthwhile to look more closely at the 

interfacial bond strength.

The Interfacial Bond

The relationship between interfacial bond strength and fracture toughness can be illustrated 

by comparing graphite-epoxy and aramid-epoxy laminates. The interfacial bond strength in 

graphite-epoxy laminates is twice as high as the bond strength in aramid-epoxy composites, and this 

is likely the main reason that aramid-epoxy composites have a higher fracture toughness than 

graphite-epoxy materials. Penn, et al., [11] investigated the reasons for this phenomena by 

performing single filament pull-out tests. They suggest three possible reasons for the difference, 

namely, intermolecular interactions, chemical bonding, and mechanical interference.

Intermolecular interactions and chemical bonding were quickly ruled out, since graphite and 

aramid have similar forces acting at their surfaces, and they have nearly identical surface 

functionalities. The difference in modulus was also considered and was ruled out. Penn, et al., [11] 

found that the most likely cause for the difference in fracture toughness is the radial compression or
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tension exerted by the matrix on the fiber because of thermal mismatch between matrix and fiber 

during cool-down after cure.

The coefficients of thermal expansion for fibers increase as temperature is raised, thus, 

fibers shrink in length and expand in diameter as the temperature is raised, and the opposite occurs 

upon cooling. Since graphite’s transverse thermal expansion coefficient is less than that of a typical 

epoxy, the graphite fiber will not shrink upon cooling as much as the annulus of matrix around it 

will decrease. Therefore, a high compressive stress will be exerted on the fiber by the matrix. 

Aramid’s diameter decreases more upon cooling than does the diameter of graphite, giving a looser 

fit between matrix and fiber for Aramid. The difference in fit leads to a difference in interfacial 

shear strength. In fact, the interfacial shear strength between graphite fibers and epoxy is about 

three times greater than the shear strength between Aramid fibers and epoxy.

Delamination

Delamination is a result of failure of the matrix and of the fiber-matrix interface. 

Saghizadeh and Dharan [13] have made some interesting observations regarding delamination and the 

relative contributions of matrix cracking and fiber-matrix debonding to delamination fracture 

toughness. Since the delamination crack must work its way around fibers as it propagates, the local 

fracture mode is a mixture of Mode I and Mode III, even if the macroscopic fracture mode is Mode 

I delamination. This is shown in Figure 2.3. They found that delamination fracture toughness 

depends strongly on the fiber volume fraction; therefore, interfacial fracture toughness is more 

important than neat resin fracture toughness. Since fiber-matrix debonding, fiber pull-out, and fiber 

breakage energies also depend on fiber volume fraction and matrix failure does not, one may 

conclude that debonding, pull-out, and fiber breakage are greater contributors to delamination 

fracture toughness than is matrix fracture. Specifically, Saghizadeh and Dharan found that for 

graphite composites, the crack energy release rate decreases with fiber volume fraction. This is 

because increased fiber volume fraction increases the interfacial surface area, which lowers the crack
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energy release rate, in effect, toughening the composite. Therefore, a fiber-reinforced epoxy 

laminate with a high fiber volume fraction should have a high resistance to delamination.

M atrix
f r a c tu r e

In te rfac ia l
fa i lu re

F ib e r

Figure 2.3. Crack Path Around Fibers During Delamination [13]

Relationship between Microstracure and Fracture Toughness

We have seen that fracture toughness depends on matrix, fiber, and interface properties. In 

addition, it is evident that fiber pull-out is the greatest contributor to fracture toughness, but it cannot 

occur without being preceded by matrix microcracking, matrix-fiber debonding and fiber breakage. 

Often, as is shown in Figure 2.2, fibers will bridge a crack. Fiber bridging is another factor in 

preventing catastrophic failure, but it leads to complications in analyzing composite fracture. All of 

the mechanisms discussed are important to the development o f fracture toughness in continuous fiber 

composites.

The fiber-matrix interface has been examined to see the effects of intermolecular and 

chemical bonds, as well as mechanical interactions between fibers and matrix [11,12]. For graphite- 

and aramid-epoxy composites, thermal mismatch between fibers and matrix is probably the most 

important factor in determining the strength of the interfacial bond. Penn, et al. [11] and Piggott 

[10] looked at aspects of this post-cure phenomenon. A tight fit increases interfacial shear strength 

and decreases fracture toughness, while a loose fit decreases shear strength and increases fracture
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toughness. This helps explain the fact that aramid-epoxy has a higher fracture toughness than 

graphite-epoxy.

The ideas developed herein show relationships between various microscopic material 

characteristics and fracture toughness. Fracture toughness depends strongly on fiber pull-out energy, 

which in turn depends on the interfacial bond strength. Interfacial bond strengths have not been 

tabulated for many systems, making micromechanical models somewhat impractical at present. 

Although the models to be described in the next section are not micromechanical in nature, the 

behaviors they pbenomenologically describe are micromechanical.

Progressive Failure Models

Progressive failure of a fiber reinforced composite usually begins with matrix microcracking 

in off-angle plies. In unidirectional laminates loaded parallel to the fiber direction, failure initiates 

by longitudinal splitting, followed rapidly by fiber failure. In this section, the focus is on laminates 

with angle plies. As a result of the matrix cracking in transverse or near transverse plies, there is a 

greater mismatch in local average strains between adjacent plies; therefore, delamination occurs. 

Final failure is usually preceded by or coincides with fiber failure in the 0° or nearly 0° plies. A 

critical literature survey is given of theories for transverse matrix cracking, edge and local 

delamination, and fiber failure.

Summary of Methods Used to Study Composite Fracture

Kanninen and Popelar [14] do an excellent job of summarizing composite fracture mechanics 

research and laying groundrules for such work. Two major types of analysis are those that take a 

continuum approach and those that use micromechanics. In addition, some researchers have used 

models that combine the two, using a continuum approach where possible, and integrating it with a 

micromechanics approach where it is needed to accurately describe the material behavior. 

Complications arise in any method, because crack growth is not likely to always be self-similar and
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K depends on the crack path in composites. Obviously, the simple rule of mixtures is not adequate

to describe composite fracture. Anisotropic fracture mechanics is a better macromechanical 

approach, and the equations derived in detail by Sih and Liebowitz [15] are given below:

G =  irk2 
I I,

a a 
11 22

a 2a + a 
22 . 12 66

a 2 a
11 11 J

(2.15)

G =  irk2 —
n 11V5

a 2a + a  122 12 66---- H---------------
* a 2 a

11 11 J

(2.16)

G =  irk m m
44*55

(2.17)

where the a., are elements of the compliance matrix, and the k. are given by:

kj =  p Va 

kn  =  q yjl

kIII =  s ^

(2.18)

(2.19)

(2.20)

where p is a constant surface pressure on the crack, q is a uniform in-plane shear stress acting on the 

crack, and s is a uniform antiplane shear stress acting on the crack. These expressions become 

straightforward for the case of a uniform tensile stress a  acting at an angle a  to die crack plane in an 

infinite sheet, where the crack is assumed to be aligned with the planes of material symmetry. In
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that case,

(2 .21)

(2 .22)

where K =o<pm. sin a, K =cr^/5ra sina cosa, and 2a is the crack length [14, 15]

In early fracture studies, it was noted that the reduction in strength for tension specimens 

containing holes or cracks depended on the size of the hole or crack, and that this effect could not be 

explained by a classical stress concentration factor approach. Waddoups, et al. [16], hypothesized 

that an intense energy region near the crack tip or hole, which could be modeled by linear elastic

and 1, a dimension of a characteristic intense energy region at the crack tip, to be found from 

experiment. Whitney and Nuismer [17], on the other hand, explained the hole size effect by 

examining the normal stress distribution ahead of the hole. They found that a sharper stress gradient 

exists near a smaller hole; thus, a critical defect is more likely to occur in the high stress region 

around a large hole. This point stress criterion has been generalized to laminates with cracks, but 

seems to be a poor predictor of cracking behavior [8],

Poe [18] took Whitney and Nuismer’s [17] approach one step further by proposing a new 

fracture toughness parameter, which is independent of laminate layup. This parameter is

proportional to the ultimate tensile strain of the fibers and is valid only for through-wall crack 

growth, not delamination or splitting. Poe’s results are better in some cases and worse in other cases 

than Whitney and Nuismer’s results. Potter examines failure only in terms of fiber failure. As 

fibers fail in the loading direction for uniaxial tension, a damage zone develops. Potter [19] looks at 

the notch effect in terms of material heterogeneity, showing that it is governed by the properties of

fracture mechanics, would account for the hole size effect. Their model is semi-empirical with K
1C
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fiber, matrix, and the fiber/matrix interface. He notes that the sequential fiber failure process is the 

primary factor in the tensile failure of notched composites. The model is useful because it 

differentiates between a large, blunt notch, which causes brittle failure governed by his initiation 

criterion and a small defect, which causes propagation of damage between fibers.

The models discussed so far are useful for determining failure due to self-similar 

propagation of through-wall cracks. They do not, however, incorporate changes in crack direction. 

Harrison’s [20] model allows for non-self-similar crack growth by assigning two different strain 

energy release rates for growth in the plane of or normal to the crack, but it is only applicable to 

unidirectional composites. In addition G is hard to calculate for non-self similar crack growth.

The previously discussed models do not include matrix cracking or delamination, but are 

only used to predict composite failure governed by fiber breakage. Kanninen and coworkers [14] 

have developed a hybrid model, in which a local heterogeneous region around the crack tip is 

embedded in an anisotropic elastic continuum. The heterogeneous region contains the fiber, the 

matrix, and the fiber/matrix interface region; therefore, the constitutive relations of each of these 

elements must be known up to the point of failure. The model is useful in that it can show the 

occurrence of fiber breakage, matrix microcracking, crack bridging, matrix/fiber debonding and axial 

splitting. In addition, it can be used to model any crack orientation. However, it is limited in that 

it cannot be accurately used for a real material, and, in fact, Kanninen, et al. have obtained 

qualitative results only. This is because the fiber/matrix interface is very difficult to study, so it’s 

properties are unknown for most materials. The properties of an individual ply can be obtained 

readily and are available for many materials; therefore, it may be that a better approach is to use a 

mechanics model of a lamina in transverse tension, which experiences matrix cracking followed by 

delamination. This idea will be explored later.

Other models have been eliminated from consideration for the present work based on the 

advice of Reddy [21]. He compares several analytical and numerical methods for studying 

anisotropic materials with cracks, including classical, classical variational, such as Ritz and Galerkin,



finite difference, finite element, and boundary element formulations. He recommends use of the 

finite element method. Some very useful work has been done using the finite element method; for 

example, Lee [22] has developed a three dimensional damage accumulation model, which vividly 

shows transverse matrix cracking followed by fiber breakage in the load-carrying plies. Failure of an 

element occurs in a certain mode when the stress appropriate for that failure mode reaches a critical 

value. Appropriate elements of the stiffness matrix for the failed finite element are then set to zero. 

Lee’s model also accounts for delamination, but no delamination results are shown. Other finite 

element models include those of Sandhu, et al. [23], and Murray [24], which do not model 

delamination. The boundary element method, which is used by Tan and Bigelow [25] gives an 

approximation only on the boundary of the domain, ignoring the interior of the material. Since 

damage in a composite often begins with transverse matrix cracking in the interior of the laminate, 

this method is not useful for development of a general damage propagation model. S. S. Wang’s 

[26] edge delamination model is also not easily applied to interior cracking, although elements of it 

are useful as will be seen later.

While finite element models are useful and have given good predictions for matrix cracking 

and delamination, an analytical approach is used in the present work, with the goal of obtaining 

closed form expressions for crack density and stiffness change as a load is applied to a laminate. 

With this goal in mind, the most interesting and useful models for transverse matrix cracking, edge 

delamination, and local delamination are discussed in the following sections.

Shear Lag Theory and Transverse Matrix Cracking

Shear lag theory was first used to simplify the equilibrium equations for the problem of a 

broken fiber surrounded by matrix. This type of modeling approach is epitomized by the work of 

Dharani, Jones and Goree [27]. The shear lag model for laminates with a cracked ply group was 

first proposed by Bailey and coworkers and expanded upon by Flaggs, Nuismer and coworkers, Lee 

and Daniel, Daniel and Tsai, and Laws and Dvorak [28-36]. In essence, a shear lag model states



that the interlaminar shear stress is proportional to the difference in the average displacements o f the 

two laminae under an applied load. One type uses an energy criterion for matrix cracking, while the 

other relies on a strength criterion. The constant of proportionality is called the shear lag parameter. 

Flaggs’ [30] paper, which will be discussed in more detail later, shows that, at least in some 

instances, 2-D shear lag theory predicts experimental behavior better than the finite element method. 

Thus, the shear lag model is the type to be developed herein for transverse matrix cracking. There 

are essentially two kinds of shear lag models, those which use critical strain energy release rate as a 

criterion for cracking, and those which rely on laminate failure theories to determine the onset of 

cracking. They are typified by Lee and Daniel [32] and Laws and Dvorak [33]. Both are discussed 

in this section.

Laws and Dvorak [33] assume that a transverse crack propagates when it is energetically

favorable to do so and use a probability density function to define the locations of cracks. Laws and

Dvorak’s model only considers a [0n/90m]s laminate (Figure 2.6). The model includes residual

R Rstresses after cure, which are defined as a ̂  and for the residual stresses in the transverse or 90°

b

Figure 2.4. Symmetric Cross-Ply Laminate Under Axial Load [33]

plies and longitudinal or 0° plies, respectively. It assumes uniform displacements, u(x) and v(x), for 

the 0° and 90° laminae, respectively.

The fundamental relationship in shear lag theory is:
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where r  is the interlaminar shear stress and the constant, K, is one form of the shear lag parameter. 

Thus, the differential equations for shear lag theory are:

A 2  t 2 i 2d (  £

,  2  " 3 a t =  '  ~ adx d d

E
R ta +— a
1 EO

d \  f2 ?
and

dx2 d2 ‘ dW J f + T ' J  ( 2 ' 2 4 )

where £ is the non-dimensional form of the shear lag parameter.

KdfbEj +dEt) 

bE El t

(2.25)

Solving the differential equations for ^  and a  with the boundary condition, <7=0 for x = ± h  at each 

crack, gives:

a  =
t

E
R ta + — cr
1 E 'O

1 -
c o sh d̂

J h
C O StH -J

d

El
<7 =  ----- <7

1 E aO

1 +
dE cosh—'1 d

bE cosh^j i d-

+  <7 1 -

cosh^"1
d

cosh£h

(2.26)

(2.27)

These are the stress distributions in each ply between two cracks a distance 2h apart. Neglecting the 

strain due to residual stress, one can calculate the average strain, e , in the uncracked portion of the
a

laminate in terms of <7 , the applied stress. This leads to:

=  E =  E
0  dE £ 

1 H tanh-
£ bE 0}

(2.28)
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where /? = r  and is the crack density parameter. As /? -* 0, E -* E and as /? -> o d ,  E -* bE /(b+d), n o !

which is the same as ply discount theory.

The change in strain energy when a third crack is introduced between the first two is given

by:

A W ={(b+d)ffa+b / } [ u 2-ui]® + d /{ [v 2-vi] S [ v 2-vi]®} (2.29)

where aa is the applied stress and the subscripts, 1 and 2, refer to the states before and after the 

introduction of the next crack. Incidentally, Laws and Dvorak postulate three probability density 

functions to predict the site of the next crack. The work done by the applied loads is:

W . =2(b+d)cr [u -u ]B (2.30)
applied a 2 1 A

Knowing that G =  &l2d, since G is the energy released per unit area of the 90° ply, and using

& =W  . -AW to get the energy released per unit width of composite, G can be foimd.
applied

d(b +  d)E E
^  o / R , 1G =   (<r H a )

£bE E 1 E a1 t O

*h, tfi2 Ch
tanh htanh tanh—

2d 2d d
(2.31)

First ply failure (fpf) occurs when G =G  and a = trfpf. If  G and crfpf are known, i  can
C a a C a

be found; however, Gc  is difficult to measure accurately in composites, and the above equation 

requires an iterative solution. Laws and Dvorak circumvent the latter problem by assuming that the 

distances between cracks are still large at first ply failure, which causes the term containing tanh’s to 

go to 1. Note that, under this definition, first ply failure in and of itself has a small effect on the 

stiffness of the laminate. After first ply failure, increasing crack density causes the laminate stiffness 

to decrease rather rapidly, as will be shown in the chapter on results. Since Gc  is difficult to



measure in composites and has not been documented for many composite materials, many researchers 

believe it would be wise to develop a theory which does not require determination of Gc 

experimentally.

Lee and Daniel [32] have developed a theory without using G^. It is almost identical to 

that of Laws and Dvorak with some important exceptions. Assuming a linear variation o f the shear 

stress in the z direction, Lee and Daniel use general parabolic equations to determine the 

displacements in each layer as a function of z. Daniel corrected this problem in a more recent paper 

[34]. The shear stresses in each layer are given by:

du= u
xzl

r  = G ^  =  G (2C z+ C  ) 
12dz 12 1 2 (2.32)

r  = G ^  =  G (2C z+ C  ) 
xzt 23dz 23 4 5'

where the subscript notation is the same as that of Laws and Dvorak [33]. The C. are integration 

constants. Actually, r  ( is proportional to G . Lee and Daniel ignore the transverse deformation 

and assume ^Ut auth °r thinks this assumption, which amounts to saying the material is

transversely isotropic with respect to the 2-3 plane, is poor, because the fibers are not necessarily 

uniformly distributed throughout the cross-section of a lamina. With these relations in mind, Lee 

and Daniel apply their boundary conditions of zero transverse stress at the crack faces, zero out of 

plane shear and z direction normal stress at z= 0  and z= d + b , and equality of out of plane shear and 

z direction normal stress in the two plies at z= d . The displacements u and v are also assumed equal 

at z= d , which is a good assumption if bonding is perfect between the layers. Once delamination has 

occurred, this is not true at the locations of delamination. The resulting average displacements give:



Using the shear lag equation, r=H (v-u), with equation (2.33), one finds:

23

H =
3G G 

12 2 3

bG +dG 
23 12

where H is the shear lag parameter. The shear stress at the interface between layers is:

t =  -a  d

*

fE . + r]—  a +  tr 
_  a t Eo J

sinh ax

cosh ah

where

2 (d + b >Eo „  a  =  -------------H
d b E jE t

Since the shear stress distribution is assumed to be linear, r  and r  are related to r  by:
xzl xzt

t  = r  d<z<b+d and r  — r  z<d
xzl b ” xzt d

8a St
Using equations (2.35) and (2.37), along with equilibrium , 1— —= 0, Lee and Daniel

Sz 8x

following through thickness normal stresses:

(2.34)

(2.35)

(2.36)

(2.37)

get the
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a  = -  
zl dE 2b

*

cosh ax

cosh ah

(2.38)

2_ a  Et
<u j2 2nb d -z cosh ax

21 dE0 2 2d cosh ah

These are, of course, found using the appropriate boundary conditions. These two relations (2.34) 

are a significant contribution on the part of Lee and Daniel, since they can be used to define the 

onset of delamination. In addition, the a  ̂ and a distributions are similar to those predicted by the 

three-dimensional elasticity results of Pagano and coworkers [37, 38]. However, there is a 

discrepancy between Lee and Daniel’s results for t  and those of Pagano. Because of the stress

free condition at the crack face in the 90° layer, r  should go to zero there for all z < d ,  as
xz

predicted by Pagano. In Lee and Daniel’s model, is only zero at z= 0 . In addition, the correct

value for a  in Lee and Daniel’s model is open to question due to the use o f G rather than G in
12 13

the expression for H.

Lee and Daniel use Case I of Laws and Dvorak [33], which is that the next crack must

occur exactly between the originally existing cracks. Rather than using energy considerations

involving G , Lee and Daniel assume that a new crack forms when a reaches the transverse tensile 
c t

strength, F . While this assumption works adequately in Lee and Daniel’s model, it is quite 

controversial. In fact, A.S.D. Wang [39] noted that: "It is the total strain energy trapped in the 90° 

layer that determines the onset of matrix cracking, not the in-situ tensile stress." The relationship 

between applied stress and crack density is found by substituting F for a and 0 for x in equation

(2.27) to get:



This equation is much simpler than Laws and Dvorak’s Case I equation for a , which involves G in
a C

fnf
the expression for tr . Lee and Daniel’s expression for decremented axial modulus is identical to

a

that of Laws and Dvorak given in equation (2.24). The two methods thus give essentially the same

result for the decremented stiffness due to cracking.

Nuismer and Tan [31] have developed a more general relationship between laminate

properties and crack density. They used the orthotropic constitutive equations for each lamina, so

they could model any laminate of type [±0/90 ] , where ply group 1 refers to the inner 90° plies and
n s

ply group 2 refers to the outer ±0 plies. They also assumed general in-plane loading. Out of plane 

shear is given by:

*
T = A 55

(2.40)

where

T- (1 ) (2)
55 55

A55= ---------      (2.41)

h  55 + h  55

and is from the i*  lamina’s stiffness matrix, h® is the thickness of the i*  lamina, and h =
55

h ^ + h ® . Note that this expression for is similar to that given for the shear lag parameter, K. 

The notation used in this section and throughout this work is the standard notation used for laminates 

as defined by Jones [38]. The effective damaged laminate compliance relations are given by:
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7 ^ = 1 +
1 2

X

I * J L

s (1)s (1)-s (I)s w  
11 22  12 12

s (1)s (1) 
11 22

o  o  +i> a  + e  
11 x 12 y xN

(2.42)

y 12 x 22 y yN
(2.43)

7 (1>=xy P3

S (1)r (1) 
66 xy

(2.44)

where S^1"* are elements o f the compliance matrix for ply group 1, e and e are nonmechanical 
ij xN yN

strains, e and a  are averaged strains and stresses, and

Pr l
tanh ( o-jL)

c l L 1

£2= i +
h(1)Qi(| ) ta n h (a L )  

h(2)Q (2)a  L^11 l

*3 =  1
tanh( a^L)

“ 2L

P =  1 +
h(1>Q66> tan h(a2L)

(2) (2) 
h 66 2

(2.45)

Now Q.. are elements of the lamina stiffness matrix, 2L is the distance between matrix cracks, and

3 C ( 1 ) C (2)
2 55 55a  =---------------------------

1
h  55 55

h Q,, +h Qn

h(2)Q (2)h (1)Q (1)

(2.46)

3 C ( 1 ) C (2)
2 44 44a  =---------------------------

2 h(1)c (2)+h(2)c (,)
44 44

h(,)Q (1)+h (2 )Q (2) 
66 66

h(2)Q (2)h ( ,)Q (1) 
66 66

In addition, Nuismer and Tan [34] used strain, rather than stress, to define first ply failure.


