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Deep in the human unconscious is a
pervasive need for a logical universe
that makes sense. But the real
universe is always one step beyond
logic.

—Frank Herbert
Dune
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Abstract

We show that the contact gluing map of Honda, Kazez, and Matic has a natural

algebraic description in bordered sutured Floer homology. In particular, we establish

Zarev’s conjecture that his gluing map on sutured Floer homology is equivalent, in the

appropriate sense, to the contact gluing map. This further solidifies the relationship

between bordered Floer theory and contact geometry.
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Chapter 1. Introduction

Contact geometry originates from the study of dynamical systems. Like sym-

plectic geometry, it is a natural model for phase spaces in classical mechanics, and has

applications to control theory, optics, and thermodynamics. While contact structures

exist in all odd dimensions, they have been most studied in dimension 3. A contact 3-

manifold is a pair (M, ξ), where ξ is a non-integrable 2-plane field on a 3-manifold M .

A consequence of the non-integrability condition is that there is no embedded surface

whose tangent bundle is contained in ξ.

In recent years, Floer theory has yielded numerous gauge-theoretic invariants

for studying 3-manifolds, knots, and contact structures. Among these, Heegaard Floer

invariants are particularly easy to compute concretely. First formulated by Ozsváth and

Szabó [OS04], the theory associates a chain complex ĈF(Y ) to a Heegaard splitting of

a closed 3-manifold Y . Since the chain homotopy type of the complex is independent of

the splitting, its homology ĤF(Y ) is an invariant of Y called Heegaard Floer homology.

There are also invariants adapted to cut-and-paste operations. A bordered

3-manifold, is a 3-manifold Yi with boundary and a fixed identification ∂Yi ∼= F ,

for some surface F . Lipshitz, Ozsváth, and Thurston [LOT18] assign A∞-modules

ĈFA(Yi), ĈFD(Yi) called bordered modules, such that if Y = Y1 ∪F Y2, then

ĈFA(Y1) � ĈFD(Y2) ' ĈF(Y ). Here the box tensor product � is a model for the

A∞-tensor product. While the other homology theories we discuss can be defined with
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Z-coefficients, the bordered invariants are only defined over F2-coefficients. As such, we

exclusively work with F2-coefficients through the entirety of this paper.

There is another version of the theory particularly well-suited for contact ge-

ometry. A balanced sutured manifold (M,Γ) is a 3-manifold M with boundary and a

multicurve Γ ⊂ ∂M satisfying certain conditions. Juhász [Juh06] associates a complex

SFC(M,Γ) whose homology SFH(M,Γ), called sutured Floer homology, is an invariant

of (M,Γ). If a contact manifold has a convex boundary, then the dividing set on the

boundary determines a balanced sutured manifold. The requirement that the bound-

ary be convex is not restrictive, since any boundary can be made convex after a small

perturbation.

For a closed contact manifold (Y, ξ), Ozsváth and Szabó [OS05] defined a con-

tact invariant c(ξ) ∈ ĤF(−Y ). This invariant vanishes on overtwisted contact struc-

tures and is always non-zero when (Y, ξ) is Stein fillable. Honda, Kazez, and Matić

[HKM09] define a more general invariant EH(ξ) ∈ SFC(−M,−Γ) of contact mani-

folds with boundary (M,Γ). These and other versions of the contact invariant have pro-

foundly advanced our understanding of contact geometry in dimension three. Ghiggini

[Ghi05, Ghi06b, Ghi06a] has used them to study the fillability of closed 3-manifolds. In-

variants commonly referred to as LOSS invariants for Legendrian and transverse knots

were introduced by Lisca, Ozsváth, Stipsicz, and Szabó [LOSS09]; connections with the

invariant defined by Honda, Kazez, and Matić were first shown by Stipscz and Veŕtesi
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[SV09], and extended by Etnyre, Vela-Vick, and Zarev [EVZ17].

Much of the power of Heegaard Floer invariants stem from their functorial prop-

erties, which come in two flavors. If Y1 and Y2 are closed 3-manifolds, then Osváth

and Szabó [OS04] showed that a cobordism X with ∂X = −Y1 t Y2 induces a map

FX : ĤF(Y1) → ĤF(Y2). Juhász [Juh16] defined the notion of a sutured cobordism

between balanced sutured manifolds. He also showed that a sutured cobordism (X,Z, ξ)

from (M1,Γ1) to (M2,Γ2) induces a map F(X,Z,ξ) : SFH(M1,Γ1)→ SFH(M2,Γ2). These

cobordism maps are one sense in which Floer theory is functorial.

The other notion of functoriality is provided by contact gluing maps. Honda,

Kazez, and Matić [HKM08] constructed the first such map Φξ, commonly referred to as

the HKM map, associated to a proper inclusion of sutured manifolds (M,Γ) ⊂ (M ′,Γ′)

and a compatible contact structure ξ on the complement M ′ \ Int(M). When M ′ \ Int(M)

has no connected components disjoint from ∂M ′, the gluing map takes the form

Φξ : SFH(−M,−Γ)→ SFH(−M ′,−Γ′).

This map preserves the contact invariant EH in the following way. If ζ is a contact

structure on (M,Γ) compatible with ξ, then

Φξ(EH(ζ)) = EH(ζ ∪ ξ).

The HKM map is also functorial in the sense that it satisfies identity and composition

laws; see Section 6 of [HKM08].
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Because of these properties, HKM maps play an important role in both sutured

Floer theory and contact geometry. Of note, Juhász [Juh16] employed them in his con-

struction of cobordism maps on sutured Floer homology and Golla [Gol15] used HKM

maps to relate the LOSS invariant for Legendrian knots in S3 with the invariant de-

fined by Honda, Kazez, and Matić. HKM maps can often track contact invariants under

cut-and-paste operations. In this regard, Massot [Mas12] used them to systematically

produce isotopy classes of universally tight, torsion-free contact structures with van-

ishing Ozsváth–Szabó contact invariant. Recently, Juhász and Zemke [JZ20] gave an

alternate description of the HKM map in terms of contact handles and used it to prove

several results about cobordisms maps in sutured Floer homology.

Outside the realm of contact geometry, Zarev [Zar11] defined a gluing operation

∪F for sutured manifolds (M1,Γ1), (M2,Γ2) with suitable sutured subsurfaces F ⊂ ∂M1,

F ⊂ ∂M2. He also defined an associated gluing map which takes the form of a pairing

ΨF : SFH(M1,Γ1)⊗ SFH(M2,Γ2)→ SFH((M1,Γ1) ∪F (M2,Γ2).

If M1 is equipped with a contact structure ξ compatible with Γ1, then we can define a

map which is formally similar to the HKM map

Ψξ : SFH(−M2,−Γ2)→ SFH((−M1,−Γ1) ∪−F (−M2,−Γ2))

by Ψξ(y) = Ψ−F(EH(ξ) ⊗ y). We will refer to Ψξ as the bordered contact gluing map,

since Zarev used bordered sutured theory to define the map ΨF .
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Due to its algebraic nature, it not clear a priori whether this map deserves the

moniker of contact gluing map. Indeed, it is not apparent from the definition that Ψξ

sends contact invariants to contact invariants. Despite this, Zarev claimed that the

HKM and bordered contact gluing maps are equivalent. The main result of this paper

affirms this conjecture; we give a rough formulation here and the precise statement in

Theorem 7.0.3.

Theorem 1. Suppose that Φξ is the HKM map for a proper inclusion (M,Γ) ⊂ (M ′,Γ′)

of sutured manifolds with no isolated components and compatible contact structure ξ.

There is a sutured contact manifold (M ′′,Γ′′, ξ′′) and graded isomorphisms f, g such that

(M ′,Γ′) ∼= (M ′′,Γ′′) ∪F (M,Γ), the contact structures ξ and ξ′′ have equivalent contact

handle decompositions, and the following diagram commutes.

SFH(−M,−Γ) SFH(−M,−Γ)

SFH(−M ′,−Γ′) SFH((−M ′′,−Γ′′) ∪−F (−M,−Γ))

f

Φξ Ψξ′′

g

The strategy for attacking this theorem is as follows. We first describe the HKM

maps for contact handle attachments in terms of certain diagrammatic maps for contact

handles. We then identify these diagrammatic maps with bordered contact gluing maps

for contact handle attachments. Next, we prove that an arbitrary bordered contact

gluing map is a composition of such handle attachment maps; along the way, we must
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show that Ψξ maps contact invariants to contact invariants and satisfies an appropriate

identity law. Combining all these results with the functorial properties of the HKM

map yields Theorem 1.

Remark 1.0.1. Note that the hypothesis of Theorem 1 requires that M ′ \ int(M) have

no components disjoint from ∂M ′ (no “isolated components”); this ensures that ξ can

be decomposed using only contact 1-and 2-handles.

Remark 1.0.2. It is natural to ask whether the graded isomorphisms in Theorem 1

can be chosen to be identity maps. As of the writing of this paper, the map ΨF is only

known to be well-defined up to maps induced by graded homotopy equivalence, since

it is defined using bordered sutured theory. A stronger version of Theorem 1 would

require naturality of bordered sutured Floer homology.

Theorem 1 has several interesting consequences. First, we obtain a bordered

version of the HKM map.

Corollary 1.0.3. Let M = (M,γ,F ,Z) and M′ = (M ′, γ′,F ,Z) be bordered sutured

manifolds with M ⊂M ′ and M ′ \ int(M) a sutured manifold equipped with a compatible

contact structure ξ. Then there exists a map of type-D structures induced by ξ

Φξ : B̂SD(−M)→ B̂SD(−M′),

which is natural with respect to gluing bordered sutured manifolds along F .

Similar statements can be formulated for type-A structures and the various bi-

module structures involved in the bordered sutured theory. Of note, Etnyre, Vela-Vick,
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and Zarev [EVZ17] used this corollary as a fundamental tool to prove their alternate

characterization of the minus version of knot Floer homology. As Mathews [Mat19]

points out, this corollary also has interesting implications for the relationship between

sutured Floer homology and the contact category defined by Honda and Tian [HT16].

Theorem 1 also provides an alternate proof of Juhasz and Zemke’s description

of contact gluing maps for contact handle attachments found in [JZ20]. Honda, Kazez,

and Matić’s original description of their gluing map required Heegaard diagrams to sat-

isfy a number of technical conditions, collectively referred to as contact-compatibility.

Even for contact handle attachments, the use of contact-compatible Heegaard diagrams

often renders the associated HKM gluing map uncomputable on the level of chain com-

plexes. As a result, most prior applications relied only on formal properties of the HKM

maps. However, there are a priori diagram-dependent maps σi associated to contact

handle attachments which are simple to compute at the level of chain complexes; see

chapter 3. It is possible to describe a given HKM map in terms of diagrammatic maps;

see Lemma 3.0.8. It turns out that these diagrammatic maps are well-defined up to

graded isomorphism. This means that an arbitrary diagrammatic map induces the

HKM up to graded ismorphism.

Corollary 1.0.4. The diagrammatic maps σi are well-defined up to graded isomorphism.

In particular, any diagrammatic map induces the corresponding HKM map up to graded

isomorphism.
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Finally, we use Corollary 1.0.4 to provide an algorithm for computing the HKM

map combinatorially following Plamenevskaya’s work in [Pla07].

Corollary 1.0.5. Given a proper inclusion of sutured manifolds (M,Γ) ⊂ (M ′,Γ′) with

no isolated components and compatible contact structure ξ on M ′ \ int(M), there are

nice Heegaard diagrams H,H′ for (−M,−Γ), (−M ′,−Γ′) respectively and an inclusion

of complexes SFC(H) → SFC(H′) which can be used to compute the HKM map Φξ :

SFH(−M,−Γ)→ SFH(−M ′,−Γ′) up to graded isomorphism.

Organization

In chapter 3, we introduce the diagrammatic maps and relate them to the corre-

sponding HKM maps; see Lemma 3.0.8. In chapter 4, we review the bordered sutured

theory that goes into Zarev’s gluing map ΨF on sutured Floer homology. We define

the associated contact gluing map Ψξ in chapter 5 and prove that it satisfies the com-

position law Lemma 5.0.13. chapter 6 reviews more background on making concrete

computations with the bordered gluing map and using the formula in Lemma 6.0.1 in

particular. We relate the diagrammatic maps with the bordered contact gluing map

in chapter 7 by Lemma 7.0.1 and Lemma 7.0.2 and use them to prove two versions of

Theorem 1. We discuss corollaries and applications in chapter 8.
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Chapter 2. General Background

We outline the basic ideas in contact geometry and Floer theory necessary to

understand most of the paper.

An important idea in contact greometry is the dichotomy of overtwisted versus

tight. A contact 3-manifold (M, ξ) is overtwisted if there is an embedded disk D ⊂ M

with T (∂D) ⊂ ξ. If a contact manifold is not overtwisted, it is called tight. Eliashberg

[Eli89] showed that the overtwisted contact structures on a given M are equivalent

to some well-understood algebro-topological information about M . As such, current

research on contact 3-manifolds focuses on tight contact structures.

There is a refinement of classical knot theory in contact geometry. A knot K ⊂

(M, ξ) is transverse if TpK ∩ ξp = 0 ∈ TpM for all p ∈ K. Knots K,K ′ are said to be

transversely isotopic if they are isotopic through transverse knots. A knot K ⊂ (M, ξ)

is Legendrian if TpK ⊂ ξp for all p ∈ K. Knots K,K ′ are Legendrian isotopic if they

are isotopic through Legendrian knots. Any knot in a contact manifold is C0-close to

a transverse or Legendrian knot. The construction of partial open books discussed in

Subsection 3.0.2 uses a Legendrian graph, which is an embedded graph whose edges are

Legendrian. The problem of classifying the transverse and Legendrian knots sharing a

given knot type is of interest in its own right. Furthermore, by Etnyre and Van Horn-

Morris [EV11], a contact structure is determined by its transverse knot theory.

The maps we study in this paper are associated to cutting and gluing operations
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on contact manifolds; these operations are the concern of convex surface theory. A

surface F in a contact manifold (M, ξ) is convex if there is a vector field v on M that is

transverse to F and whose flow preserves ξ. This condition is not restrictive, since any

surface is C∞-close to a convex surface. The set of points on a convex surface where the

vector field v is tangent to ξ is called the dividing set on F . The dividing set does not

depend on the choice of v up to isotopy. It is standard practice to confuse a dividing set

with its isotopy class, and we do so in this paper. We will also allow our convex surfaces

to have corners. In this case, the dividing set has breaks at the corners. However, there

is a canonical way to close the curves of the dividing set when one smooths the corners.

This is referred to as smoothing, and we use it implicitly throughout the paper. See the

Edge-rounding Lemma in [Hon00].

The contact invariants under consideration only depend on the isotopy class of

the associated contact structure. For contact manifolds with convex boundary, these

invariants also do not distinguish between contact structures related by flexibility as de-

fined in [BS16]. In a neighborhood of the boundary, the contact structure is determined

up to isotopy and flexibility by the dividing set. The upshot is that a dividing set for a

convex surface roughly encodes the information needed to glue two contact structures

together.

There is a version of Morse theory for contact manifolds with boundary. The

theory allows us to decompose a contact manifold into the usual, 0,1,2, and 3-handles

10



equipped with a certain tight contact structure; these are called contact handles. For

the most part, we will only need to concern ourselves with the dividing sets on the

boundary of these handles. Contact 0-handles and 3-handles are Darboux balls, so

the dividing set on each is a single simple closed curve. The dividing sets for contact

1-handles and 2-handles are shown in Figure 3.1; note that we have smoothed each di-

viding set as discussed previously. See [Ozb11] for more regarding the theory of contact

handle decompositions.

Sutured Floer homology was defined by Juhász in [Juh06]. A balanced sutured

manifold (M,Γ) is a 3-manifold M with boundary with an embedded oriented multic-

urve Γ ⊂ ∂M such that

• ∂M \ Γ = R+ tR−

• the induced orientation on ∂R+ agrees with the orientation on Γ

• the induced orientation on ∂R− disagrees with the orientation on Γ

• χ(R+) = χ(R−), where χ is the Euler characteristic

A diagram H = (Σ,α,β) for a balanced sutured manifold consists of an ori-

ented surface with boundary Σ along with two collections of pairwise disjoint embedded

curves α = {α1, . . . , αg} and β = {β1, . . . , βg}. The balanced sutured manifold describe

by this diagram is obtained by attaching 2-handles along each curve αi × {−1} and

βj × {1} in Σ× [−1, 1]; the suture set Γ is the multicurve ∂Σ× {0}.

We must impose some technical condition on our diagrams. The regions of a

11



diagram are the closures of components of Σ \ (⋃
α ∪ ⋃

β); a region is a basepoint region

if it has non-empty intersection with ∂Σ. The domains of a diagram are elements of the

free abelian group generated by all non-basepoint regions; a periodic domain is domain

whose boundary is a sum of curves in α and β. A diagram is admissible if each of its

periodic domains have both positive and negative coefficients.

One associates a chain complex SFC(H) to an admissible diagram H = (Σ,α,β)

in the following way. The generators G of H are unordered g-tuples of points x =

(x1, . . . , xg) in α ∩ β such that each αi and βj intersects x in a single point. As a vector

space, SFC(H) is the free F2-module generated by G. The differential is given by

∂x =
∑
y∈G

#M(x,y)

where #M(x,y) is a modulo 2 count of holomorphic disks/bigons which correspond to

certain domains. We direct the unacquainted reader to [Juh06] for details.

The homology of this complex is SFH(H), the sutured Floer homology associated

the diagram. It is equipped with gradings which we do not need to consider. It is well-

defined up to graded homotopy equivalence. Indeed, if we alter the β-curves to get

another diagram H′ = (Σ,α,β′) for the sutured manifold, there is a graded homotopy

equivalence

ΨH,H′ : SFC(H)→ SFC(H′)

which counts holomorphic triangles in the triple diagram (Σ,α,β,β′), provided it is

12



admissible in the appropriate sense. We compute some such maps in 7.0.3. See [OS04]

for details.
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Chapter 3. HKM Handle Attachments

The goal of this section is to describe the HKM maps associated to contact i-

handle attachments in terms of the diagram-dependent maps σi. The ideas described

here are familiar to experts, though we record them for the sake of clarity and self-

containment.

Remark 3.0.1. Note that the discussion in this section parallels many ideas in [JZ20].

In particular, our padded contact handles are analogous their Morse-type contact han-

dles and Lemma 3.0.8 is analogous to their Theorem 5.8.

We assume familiarity with some basic ideas in contact geometry, particularly

in convex surface theory. Throughout this paper, the contact structures we consider

are defined up to isotopy. As such, we make implicit use of Giroux’s uniqueness and

flexibility theorems; see [Gir91]. We also assume familiarity with Heegaard diagrams

arising from partial open books, though we review some key features in Subsection 3.0.2

to clarify notation. We refer to such diagrams as partial open book diagrams; we will

represent a partial open book diagram as in [HKM08] by the quotient of a surface S

with embedded β-arcs and α-arcs. The full Heegaard surface Σ is formed by identifying

pairs of intervals in ∂S, which we shade black, so that each arc becomes a closed curve

after identification1. All our pictures represent diagrams (Σ,α,β) for (M,−Γ) with
1While Σ is usually defined by gluing a copy of a subsurface Q ⊂ S to S along ∂Q∩ ∂S, the condition

that the α-arcs in S form a basis guarantees that the diagram (S ∪ Q,β,α) is diffeomorphic to (S/ ∼
,β,α), where ∼ is the relation which identifies pairs of intervals in ∂S.

14



Figure 3.1. Contact 1- and 2-handle attachments

the positive orientation of Σ as depicted in Figure 3.7. We reverse the roles of α-curves

and β-curves, and we think of these as diagrams (Σ,β,α) for (−M,−Γ), as is standard

when working with partial open books.

3.0.1. Diagrammatic maps for handles and bypasses

p

q
−→

Figure 3.2. A diagrammatic contact 1-handle attachment.

p

q

x0

x0

−→

Figure 3.3. A diagrammatic contact 2-handle attachment.
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We need to define diagrammatic maps associated to contact handle attachments

in order to relate the HKM and bordered contact gluing maps. We refer to the work

of Giroux [Gir91] and Ozbagci [Ozb11] for the notion of contact handles in dimension

three. Contact 1-and 2-handles are shown in Figure 3.1 along with their dividing sets.

Denote the result of attaching a contact i-handle hi to (M,Γ, ξ) by (Mi,Γi, ξi). Note

too that we can attach a contact handle to a balanced sutured manifold (M,Γ). Iden-

tify a neighborhood of ∂M with ∂M × [−1, 0] and let ξΓ be the [−1, 0]-invariant contact

structure compatible with Γ. Then we can attach hi to ∂M = ∂M×{0}, and the induced

dividing set will make the result a balanced sutured manifold, denoted (Mi,Γi).

Let H = (Σ,β,α) be a diagram for (−M,−Γ). Recall that we recover (−M,−Γ)

from H by attaching 2-handles along (β × {0}) t (α × {1}) to (Σ × [0, 1], ∂Σ × {1
2}).

With this identification, a contact 1-handle attachment along ({p} × {1
2}) t ({q} ×

{1
2}) ⊂ Γ, corresponds to attaching a 2-dimensional 1-handle to Σ along {p, q} to obtain

a new surface Σ1. Then H1 = (Σ1,β,α) is a diagram for (−M1,−Γ1); see Figure 3.2.

A contact 2-handle attached along a curve δ with δ ∩ Γ = {p} × {1
2} ∪ {q} × {

1
2}

effects the following change at the level of diagrams. Attach a 2-dimensional 1-handle

to Σ along {p, q} to obtain a new surface Σ2; call the core of the 1-handle λ. Define

arcs b = δ ∩ R+(Γ) and a = δ ∩ R−(Γ), and let β0 = b ∪ λ, α0 = a ∪ λ. Perturb

these curves so that β0 and α0 intersect a single time positively in the 1-handle. Then

H2 = (Σ2,β ∪ β0,α ∪ α0) is a diagram for (−M2,−Γ2); see Figure 3.3.
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We refer to these operations on diagrams as diagrammatic contact handle attachments.

Furthermore, if H is a partial open book diagram compatible with ξ, then the result

of a diagrammatic handle attachment Hi is a partial open book diagram compatible

with ξi = ξ ∪ hi; see the proof of Proposition 3.0.6 or [HKM09] for a more detailed

discussion. Additionally, if x is the canonical collection of intersection points represent-

ing EH(ξ), then x represents EH(ξ1) and (x, x0) represents EH(ξ2). In the case of the

2-handle, call x0 the preferred intersection point of H2; this parallels the terminology in

Subsection 3.0.2.

In general, a diagrammatic handle attachment induces an obvious inclusion of

the associated sutured Floer complexes.

Definition 3.0.2. Let H be a Heegaard diagram for (−M,−Γ). Let Hi be a diagram for

(−Mi,−Γi) obtained from H by a diagrammatic contact i-handle attachment. For i = 1,

the associated diagrammatic map is the map σ1 : SFC(H)→ SFC(H1) given by σ1(y) =

(y). For i = 2, the associated diagrammatic map is the map σ2 : SFC(H) → SFC(H2)

given by σ2(y) = (y, x0).

Note that these maps depend on a choice of diagram, and it is not clear a pri-

ori whether or not they induce well-defined maps on SFH. We will show in the course

of this paper that the diagrammatic maps for i-handle attachments are well-defined

up to graded homotopy equivalence and induce maps on homology which are equiva-

lent to the HKM contact gluing maps for the corresponding handle attachments; see
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Corollary 1.0.4. Note that Juhász and Zemke have shown in [JZ20] that this is the case,

though our proof is independent from theirs.

x0

x0

Figure 3.4. A diagrammatic positive trivial bypass.

x0 x0

Figure 3.5. A diagrammatic negative trivial bypass.

In the course of identifying these diagrammatic maps with the HKM map, we

will also need maps associated to trivial bypasses. Attaching a bypass can be viewed as

attaching a contact 1-handle followed by a contact 2-handle; as such, trivial bypasses

have associated diagrammatic maps. A diagrammatic positive trivial bypass attachment

is depicted in Figure 3.4 and a diagrammatic negative trivial bypass attachment is de-

picted in Figure 3.5.

Definition 3.0.3. Let H be a Heegaard diagram for (−M,−Γ), and let H12 be a di-

agram for (−M,−Γ) obtained from H by a diagrammatic trivial bypass attachment.
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The associated diagrammatic map is the map τ : SFC(H) → SFC(H12) given by

τ(y) = (y, x0).

We will need the following standard computation; a stronger version can be

found in [HKM08].

Lemma 3.0.4. The map τ : SFC(H)→ SFC(H12) associated to a diagrammatic trivial

bypass is a graded isomorphism of complexes.

Proof. For a positive bypass, x0 is the only intersection point in the new α-curve; see

Figure 3.4. For a negative bypass, x0 is the only intersection point in the new β-curve;

see Figure 3.5. In either case, the map τ thus gives a one-to-one correspondence be-

tween generators of H and generators of H12. Furthermore, holomorphic disks in H12

correspond exactly to holomorphic disks in H.

3.0.2. HKM maps for contact handle attachments.

Since HKM maps are only defined for proper inclusions (M,Γ) ⊂ (M ′,Γ′) of

sutured manifolds, diagrammatic handle attachments do not obviously fit into the HKM

framework. We will introduce proper inclusions associated to contact handle attach-

ments which allow us to relate diagrammatic and HKM contact handle attachment

maps.

Definition 3.0.5. Given a sutured manifold (M,Γ), let the padding be the sutured

contact manifold (P = ∂M × [0, 1],−Γ t Γ, ξΓ), where −Γ t Γ = −Γ × {0} t Γ × {1}
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and ξΓ is the [0, 1]-invariant contact structure compatible with −Γ t Γ. A padded contact

i-handle (Pi,−Γ t Γi, ξi) is the result of attaching a contact i-handle to ∂M × {1} in

(P,−Γ t Γ, ξΓ).

We will often omit the contact structure ξi from the notation and write (Pi,−Γ t

Γi) for a padded i-handle. The result of attaching a padded contact handle to (M,Γ) is

diffeomorphic to (Mi,Γi). Moreover, the inclusion M ⊂M ∪ Pi has an associated HKM

map Φi : SFH(−M,−Γ)→ SFH(−Mi,−Γi).

Figure 3.6. Padded contact handles.

Before identifying diagrammatic and HKM handle attachment maps, we will

need to review the pertinent features of the definition of the HKM map. To give con-

text and set notation, we first recall how partial open books are constructed follow-

ing [HKM09]; see also [EO11]. Here and throughout this paper, N(L) denotes a small

neighborhood of a submanifold L. If L is a Legendrian graph, N(L) is a standard neigh-

borhood unless otherwise indicated.

Given a sutured contact manifold (M,Γ, ξ), a partial open book decomposition
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is determined by a graph K ⊂ M satisfying the conditions of Theorem 1.1 of [HKM09].

This guarantees that M \ N(K) is product disk decomposable so that we can write

M \ N(K) = H1 = (S × [−1, 1])/∼ and N(K) = H2 = (Q × [1, 2])/∼, where Q ⊂

S and the relations ∼ collapse each interval of the form {s} × [−1, 1], s ∈ ∂S and

{q} × [1, 2], q ∈ ∂Q ∩ ∂S to a single point; the respective dividing sets are the images

of ∂S × [−1, 1] and ∂Q × [1, 2] under ∼. This decomposition determines a monodromy

map h : Q × {2} → S × {−1} with h|Q∩∂S = IdQ∩∂S so that (M,Γ) is diffeomorphic to

H1 ∪Q×{1} H2/∼h.

The Heegaard surface for an associated partial open book diagram is the image

of −S × {−1} ∪ Q × {1} in the quotient. Curves are determined by a choice of arcs

{a1, . . . , am} in Q which form a basis for (S \Q,R+(Γ)) in the sense that (S × {1}) \ ∪ak

deformation retracts to R+(Γ). For each k, let bk be a perturbation of ak such that ∂bk

is ∂ak moved in the ∂S direction and bk ∩ak is a single intersection point. The sets of full

curves α,β are given by the images of the ak×{1}∪ak×{−1} and bk×{1}∪h(bk)×{−1}

respectively.

Observe that the image of ∂Σ = ((∂Q \ ∂S) × {1}) ∪ (−(∂S \ ∂Q) × {−1}) cor-

responds to −Γ in the quotient, so that the diagram (Σ,α,β) is a balanced Heegaard

diagram for (M,−Γ). Then (Σ,β,α) is a diagram for (−M,−Γ); we call any such dia-

gram constructed this way a partial open book diagram.
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R−(Γ)

S × {−1}

S × {1}

Q× {2}

h

Figure 3.7. On the left a partial open book M = (S × [−1, 1] ∪ Q × [1, 2])/∼. On the
right the Heegaard surface embedded in (M,Γ); the black arrows represent the positive
orientation of Σ.

When defining the HKM map, one uses diagrams H = (Σ,β,α) for (−M,−Γ)

and H′ = (Σ′ ⊃ Σ,β ∪ β′′,α ∪ α′′) for (−M ′,−Γ′) which satisfy a number of technical

conditions collectively referred to as contact-compatibility; in this context, H is called a

contact-compatible diagram and H′ is called a contact-compatible extension of H. The

idea is that the these diagrams will mimic partial open book diagrams to a large degree,

with some necessary adaptations. We will need to understand some of these conditions,

which we now describe, following section 4 of [HKM08]. Note that there are some no-

tational differences; the roles of objects decorated by single primes and undecorated

objects are reversed, and we use Q instead of P .

Parametrize a neighborhood of ∂M ⊂M ′ by ∂M× [−1, 1], where ∂M = ∂M×{0}

and V = ∂M × [−1, 0] is contained in M . Note that the sutures Γ determine a [−1, 0]-
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invariant contact structure ζ on V . The Heegaard splitting for a contact-compatible

diagram of (−M,−Γ) is determined by a choice of an embedded graph K whose restric-

tion to V satisfies the conditions in Theorem 1.1 of [HKM09] with respect to ζ. (The

conditions in Theorem 1.1 of [HKM09] guarantee that a Legendrian graph determines a

compatible partial open book decomposition.) In particular, K|V is Legendrian and the

handlebodies V \N(K) and N(K)|V are each product disk decomposable with respect to

the sutures induced by ζ.

The essential choices made in constructing a contact-compatible extension of H

are as follows. Let W = ∂M × [0, 1], and note that ξ can be perturbed to restrict to the

[0, 1]-invariant contact structure on W . The extension is determined by a Legendrian

graph KW ∪ K ′′ ⊂ M ′ \ Int(M), with KW ⊂ W and K ′′ ⊂ M ′′ = M ′ \ Int(M ∪W ).

(If one compares with [HKM08], a standard neighborhood of our KW is the complement

of a standard neighborhood of their K ′′′.) Both KW and K ′′ are required to satisfy the

conditions of Theorem 1.1 of [HKM09] on W and M ′′ with respect to ξ. This splits M ′

into handlebodies H1 = M \N(K ∪KW ∪K ′′) and H2 = N(K ∪KW ∪K ′′); however, H1

and H2 need not be product disk decomposable, since K is not necessarily Legendrian

for some contact structure on M \ V . If we restrict our attention to V ∪W ∪M ′′, we

have an honest contact manifold with contact structure ζ ∪ ξ. The restrictions J1 and

J2 of the handlebodies H1 and H2 to V ∪W ∪M ′′ are product disk decomposable and

can be written as J1 = S ′ × [−1, 1]/∼ and J2 = Q′ × [1, 2]/∼, with Q′ ⊂ S ′ and ∼ the
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relation which collapses each interval {s′} × [−1, 1], s′ ∈ ∂S ′ and {q′} × [−1, 1], q′ ∈ ∂Q′

to a point, just as for an ordinary partial open book decomposition.

Define the full Heegaard surface Σ′ to be the complement of R+(Γ′) in ∂H1.

More explicitly, Σ′ is given by ∂(M \ (N(K) ∪ V )) ∪ (S ′ × {−1} ∪Q′ × {1}). The curves

in β′ and α′ are defined to be the curves in β and α together with additional curves

β′′,α′′ that are generated in the following way. Chose a collection of arcs {a′′1, ..., a′′m}

on Q′ × {1} which form a basis for (S ′ \ Q,R+(Γ′)) in the sense that (S ′ \ Q) \ ∪mk=1a
′′
k

deformation retracts to R+(Γ′); here, S ′ is identified with S ′ × {1}, while Q is the restric-

tion of Q′ × {1} to V ⊂ M . For each k, let b′′k be a perturbation of a′′k such that ∂b′′k is

∂a′′k moved in the ∂S ′–direction and b′′k ∩ a′′k is a single intersection point, as is standard

procedure when constructing a partial open book diagram. Call the collection of these

intersection points the preferred intersections of the extension, and denote it by x′′. The

arcs {b′′k}, {a′′k} are completed to full sets of curves β′′,α′′ in H′ using the monodromy

map h : Q′ × {2} → S ′ × {−1} obtained from the identification of V ∪W ∪M ′′ with

J1 ∪h J2. More explicitly, β′′i and α′′i are the respective images of b′′i × {1} ∪ h(b′′i × {2})

and a′′i × {1} ∪ a′′i × {−1} under the relation ∼.

3.0.3. Identifying diagrammatic and HKM maps

In this section we identify the diagrammatic and HKM contact handle attach-

ment maps. We will show that a diagrammatic handle attachment can be chosen to

respect contact-compatibility and the preferred intersections.
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R−(Γ′)

K ′′K ′′

R−(Γ′1)

Figure 3.8. Left: (M ′,Γ′) and H′; Right: (M ′
1,Γ′1) and H′1

L

K ′′K ′′

L

R−(Γ′2)

Figure 3.9. Left: (M ′
2,Γ′2); Center: M ′

2 \N(L); Right: H′2

Proposition 3.0.6. Let H = (Σ,β,α) be a contact-compatible diagram for (−M,−Γ)

and H′ = (Σ′,β ∪ β′′,α ∪ α′′) be a contact compatible extension of H for (−M ′,−Γ′).

Let (M ′
i ,Γ′i) be the result of attaching a contact i-handle to (M ′,Γ′). Then there is a

contact-compatible extension H′i of H for (−M ′
i ,−Γ′i) which is obtained from H′ by a

diagrammatic handle attachment.

Proof. The graphs involved in the definition of a contact-capatible extension are all

required to satisfy a number of conditions; however, K ′′ need only
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1. satisfy the conditions of Theorem 1.1 of [HKM09] with respect to (M ′′, ξ|M ′′)

2. have each component intersect Γ′ at least twice

3. have ∂K ′′ disjoint from ∂KW .

Attaching a contact handle to ∂M ′ only alters K ′′ and the choice of basis arcs, so it suf-

fices to verify that there are modifications of K ′′ and {a′′k} which satisfy the properties

describe above. The reader may verify that no other conditions in contact-compatibility

are affected, and may be safely swept under the rug.

Given a 1-handle attachment (M ′
1,Γ′1), the feet of the 1-handle can be isotoped

to be disjoint from ∂K ′′, since K ′′ meets ∂M ′ in a finite number of points by Theorem

1.1 of [HKM09]. The graph K ′′ ⊂ M ′ ⊂ M ′
1 still satisfies the conditions of Theorem 1.1

of [HKM09] with respect to ξ1 = ξ ∪ h1, since one can cut M ′′
1 along the cocore of h1 to

recover M ′′, i.e. a system of compressing disks for M ′′
1 \N(K ′′) can be obtained by adding

the cocore of h1 to a system of compressing disks for M ′′ \ N(K ′′). The new Heegaard

surface is obtained from Σ′ by attaching a strip at the attaching sphere of h1, since that

is the corresponding change on S ′; see Figure 3.8. The basis {a′′k}mk=1 for H′ is still a

basis for the new extension. Since the monodromy is unaffected, the curves also remain

the same. This new extension is thus exactly a diagrammatic 1-handle attachment H′1.

Given a 2-handle attachment (M ′
2,Γ′2) with attaching curve δ, the attaching

region can be isotoped to be disjoint from K ′′, since K ′′ meets ∂M ′ in a finite number

of points by Theorem 1.1 of [HKM09]. Let L be a Legendrian approximation of the
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cocore of h2 with ∂L ⊂ Γ′2. The graph K ′′ ∪ L satisfies the conditions of Theorem 1.1

of [HKM09] with respect to the contact structure ξ2 obtained by attaching the contact

2-handle h2 to ξ, since M ′′
2 \ N(K ′′ ∪ L) is contactomorphic to M ′′ \ N(K ′′). Note

that K ′′ ∪ L also satisfies the other two conditions listed above. Let S ′2 play the role of

S ′ for the new extension. While S ′2 is diffeomorphic to S ′, there is an additional strip

in Σ′2 due to the new component ∂N(L) \ ∂h2 of Q′2 coming from L; see Figure 3.9.

This strip does not deformation retract to a subset of R+(Γ′2), so the arcs {a′′k}mk=1 no

longer form a basis. Let µ be a meridian of ∂N(L) \ ∂h2, and define a′′0 to be the arc

R+(∂N(L) \ ∂h2) ∩ µ. The collection {a′′k}mk=0 is now a basis for the new extension.

Since the arc b′′0 is completed to a full β-curve using the core of the new strip

attached along δ ∩ Γ′, this new extension is exactly a diagrammatic 2-handle attachment

H′2.

Proposition 3.0.7. Let H, H′, and H′i be as above, and φξ : SFC(H)→ SFC(H′) be the

map y→ (y,x′′) which induces the HKM map as described above. Then the map σi ◦ φξ :

SFC(H)→ SFC(H′i) induces the HKM map Φξi : SFH(−M,−Γ)→ SFH(−M ′
i ,−Γ′i).

Proof. For i = 1, the preferred intersections x′′ of H′ are also the preferred intersections

of H′1. The HKM map Φξ1 is thus induced by the chain map y→ (y,x′′), which factors

as σ1 ◦ φξ.

For i = 2, the preferred intersections of H′2 are x′′ ∪ x0, where x0 = b′′0 ∩ a′′0, the
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preferred intersection of the diagrammatic 2-handle. The HKM map Φξ2 is thus induced

by the chain map y→ (y,x′′, x0), which factors as σ2 ◦ φξ.

We are now ready to relate diagrammatic and HKM maps.

Lemma 3.0.8. Let (M,Γ) be a balanced sutured manifold. There is a contact-compatible

diagram H for (−M,−Γ), a contact-compatible extension H′ for (−(M ∪ P ),−Γ), a

diagrammatic handle attachment H′i for (−(M ∪ Pi),−Γi), and a graded homotopy

equivalence φξΓ : SFC(H)→ SFC(H′) such that the induced map on homology

(σi ◦ φξΓ)∗ : SFH(−M,−Γ)→ SFH(−(M ∪ Pi),−Γi) ≈ SFH(−Mi,−Γi)

is the HKM map Φi.

Proof. From the proof of Theorem 6.1 in [HKM08], there is a contact compatible exten-

sion H′ of a contact-compatible diagram H such that the map φξΓ : SFC(H)→ SFC(H′)

which induces ΦξΓ is a graded homotopy equivalence induced by a composition of di-

agrammatic trivial bypass maps. The lemma then follows immediately from Proposi-

tion 3.0.7.
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Chapter 4. Background on Zarev’s Gluing Map

We now turn our attention to Zarev’s bordered gluing map ΨF . In this section

we review the requisite bordered sutured Floer theory for understanding the structure

of this gluing map, though the interested reader should look in [Zar11] for a full treat-

ment of the topological and algebraic objects involved. Readers familiar with bordered

sutured theory and Zarev’s gluing map should skip to chapter 5, where we define the

associated contact gluing map Ψξ and prove that it satisfies the composition law neces-

sary for the proof of Theorem 1.

We deviate from Zarev’s notational conventions in the following ways. Through-

out, we reserve script letters for partially sutured manifolds, bordered sutured mani-

folds, and sutured surfaces. We avoid using them for honest sutured manifolds, except

when the margins of the page force us to compress notation. We distinguish between

suture sets on sutured manifolds and dividing sets on sutured surfaces by using a lower

case γ instead of Γ for the dividing set on a sutured surface. As mentioned in Subsec-

tion 4.0.1, we denote the mirror of a partially sutured manifold W by W instead of

−W. If H is a diagram for a sutured manifold (M,Γ), then Zarev treats SFC(M,Γ)

as the A∞–homotopy type of the complex SFC(H); morphisms between sutured Floer

complexes are then defined up to A∞–homotopy equivalence. We will instead work

with representatives of these invariants, treating sutured Floer complexes as honest

graded F2-vector spaces, and graded chain maps as morphisms. Similarly, we treat the
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bordered invariants B̂SA, B̂SD, and B̂SAA as honest Type-A, Type-D, and Type-AA

structures, instead of their A∞–homotopy classes.

4.0.1. Some basic objects

We first review some topological objects which play an important role in bor-

dered sutured theory. A sutured surface is an oriented surface F with boundary and a

number of signed points Λ ⊂ ∂F which alternate in sign as one traverses each com-

ponent of ∂F ; each component of ∂F is required to intersect Λ. A sutured surface

F = (F,Λ) has associated sutured surfaces −F = (−F,−Λ) and F = (−F,Λ). A

dividing set on a sutured surface is a collection of embedded, oriented arcs and closed

curves γ ⊂ F such that ∂γ = −Λ and such that each component of F \ γ can be oriented

so that the induced orientation on the boundary agrees with the orientation of γ. Com-

ponents where this orientation agrees with the orientation on F constitute the R+(γ)

region, while the other components constitute the R−(γ) region. Unless otherwise indi-

cated, we assume that all sutured surfaces are non-degenerate, i.e. they have no closed

components.

A partially sutured manifold W = (W, γ,F) is a manifold M whose boundary

is the union of two sutured surfaces with common boundary, one of which (usually

referred to as the “sutured part of the boundary”) has a dividing set γ and the other

being F . If W1 = (W1, γ1,F1 t F2) and W2 = (W2, γ2,−F2 t F3) are partially sutured

30



manifolds, then we can glue or concatenate them along F2 to obtain

W1 ∪F2 W2 = (W1 ∪F W2, γ1 ∪Λ2 γ2,F1 t F3).

If W = (W, γ,F) is a partially sutured manifold, we denote (−W,−γ,−F) by

−W and (−W, γ,F) by W. Note that this differs from Zarev’s notation, where there

is no notation for the former and the latter is denoted −W. In the special case of an

honest sutured manifold, i.e. F = (∅, ∅), we have −(M,Γ) = (−M,−Γ), and (M,Γ) =

(−M,Γ).

If (M,Γ) is a sutured manifold, and W = (W, γ,F) is a partially sutured mani-

fold with W ⊂M , Int(F ) ⊂M , ∂W \ Int(F ) ⊂ ∂M , and γ ⊂ Γ, we denote the partially

sutured manifold (M \W,Γ \ Int(γ),−F) by (M,Γ) \W .

A bordered sutured manifold (M,γ,F ,Z) is a partially sutured manifold whose

non-sutured part F of the boundary is parametrized by an arc diagram Z. We discuss

arc diagrams in Subsection 6.0.1

Let F = (F,Λ) be a sutured surface and γ a dividing set on F . The cap associ-

ated to γ is the partially sutured manifold (F × [0, 1], (Λ× [0, 1]) ∪ (γ × {1}),−F). The

caps associated to contact 1-and 2-handle attachments are shown in Figure 4.1.

The positive twisting slice T WF ,+ for F is the partially sutured manifold (F ×

[0, 1], γ,−F ∪ −F), where γ is obtained by giving Λ × [0, 1] a minimal fractional Dehn

twist in the ∂F -direction. The positive twisting slices for contact 1-and 2-handles are

shown in Figure 4.2. The negative twisting slice T WF ,− for F is defined the same way,
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Figure 4.1. Caps for contact 1-and 2-handles. The dividing set γ is shown on the top
and sides, while the bottom −F is undecorated.

except that one twists in the −∂F -direction. Note that −T WF ,+ ∼= T W−F ,−.

Given a partially sutured manifold W with non-sutured boundary F , the double

D(W) of W is the sutured manifold W ∪F T WF ,− ∪−F W. Suppose W is the cap for a

dividing set γ on F , and consider the the [0, 1]-invariant contact structure ξγ on F × [0, 1]

associated to γ. Then ξγ induces a dividing set Γγ on F × [0, 1] such that (F × [0, 1],Γγ)

is diffeomorphic to D(W) as sutured manifolds. Note that Γγ is a dividing set in the

sense of convex surface theory, not in the sense of sutured surfaces discussed above.

4.0.2. Gluing along sutured surfaces

We now review the operation of gluing sutured manifolds in the sense of [Zar11]

and its connection with contact geometry.

Let F = (F,Λ) be a sutured surface with dividing set γ. Let (M1,Γ1) and

(M2,Γ2) be sutured manifolds with embeddings (F, γ) ⊂ (∂M1,Γ1) and (−F, γ) ⊂

(∂M2,Γ2). The embedding F → ∂M1 extends to an embedding W → M1, where W is

the cap for the dividing set γ on F . Similarly, −F → ∂M2 extends to an embedding
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Figure 4.2. The positive twisting slices for contact 1-and 2-handles.

Figure 4.3. A bordered gluing operation along an annulus. The caps W and W are a
neighborhood of the shaded region.

W →M2. Zarev defines the result of gluing (M1,Γ1) to (M2,Γ2) along (F , γ) to be the

manifold

(M1,Γ1) ∪F (M2,Γ2) := ((M1,Γ1) \W) ∪F T WF ,+ ∪−F ((M2,Γ2) \W),

where T WF ,+ is the positive twisting slice associated to F . We refer to the gluing op-

eration above as a bordered gluing to distinguish it from a proper inclusion of sutured

manifolds; a bordered gluing operation is shown in Figure 4.3. Note that the manifold

(M1,Γ1) ∪F (M2,Γ2) is independent of the dividing set γ; however, the bordered gluing

map defined below will depend on it.

Bordered gluing operations describe how to glue the sutured manifolds underly-
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ing contact structures with convex boundary; however, there is a necessary orientation

reversal. Let (M,Γ, ξ) be a connected sutured contact manifold and let F = (F,Λ) be a

sutured surface with (F, ∂F,Λ) ⊂ (M,∂M,Γ); (Int(F ) ⊂ Int(M); F convex with respect

to ξ; and ∂F Legendrian. If M \ F has two connected components, then its closure may

be decomposed as sutured contact manifolds (M1,Γ1, ξ1) t (M2,Γ2, ξ2), where ξi = ξ|Mi

and Γi is the dividing set induced by ξi after smoothing corners. Suppose the normal

vector for F in M points out of M1 and into M2. If W = (W,Γ1|F ,−F) is the cap for

F , then we can write

(M,Γ) ∼= ((M1,Γ1) \W) ∪F T WF ,− ∪−F ((M2,Γ2) \W).

We will use the notation ξ = ξ1 ∪F ξ2 to describe the relationship among these contact

structures.

Note that the twist of dividing sets which arises from smoothing corners is nega-

tive, instead of the positive twist used in the bordered gluing operation. This is consis-

tent with the orientation reversal associated to the contact invariant, since we have

(−M1,−Γ1)∪−F (−M2,−Γ2) = ((−M1,−Γ1)\−W)∪−F T W−F ,+∪F ((−M2,−Γ2)\−W),

which is just

−[((M1,Γ1) \W) ∪F T WF ,− ∪−F ((M2,Γ2) \W)] = (−M,−Γ).

Thus, it makes sense for the contact invariants EH(ξ1) ∈ SFH(−M1,−Γ1) and
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EH(ξ2) ∈ SFH(−M2,−Γ2) to be paired by the bordered gluing map to EH(ξ1 ∪F ξ2); see

Lemma 5.0.12.

Remark 4.0.1. Note that we are using the symbol ∪F for the distinct operations of

gluing partially sutured manifolds along components of their non-sutured boundaries,

gluing balanced sutured manifolds along sutured subsurfaces of their boundaries with

dividing sets, and gluing contact structures along convex surfaces. We rely on context

to distinguish them.

Zarev shows that if (M1,Γ1) and (M2,Γ2) are balanced, so is (M1,Γ1) ∪F (M2,Γ2).

He also defines a gluing map

SFH(M1,Γ1)⊗ SFH(M2,Γ2) ΨF,γ−−−→ SFH((M1,Γ1) ∪F (M2,Γ2)),

associated to the bordered gluing operation. To avoid confusion with the HKM con-

tact gluing map, we will refer to this map as the bordered gluing map. Also, when F

is embedded in the boundary of a sutured manifold, we will assume unless otherwise

stated that the dividing set is the restriction of the sutures to F ; in this case we omit

the dividing set from the notation and write ΨF for the bordered gluing map.

Remark 4.0.2. The bordered gluing map is well-defined up to maps induced by graded

homotopy equivalence. It is not known to be natural with respect to holomorphic trian-

gle maps in the way that the HKM map is.

The bordered gluing operation is a special case of the join operation found in

[Zar11]. Similarly, the bordered gluing map is a special case of the join map. We will
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use the fact the the bordered gluing map possesses the following properties of the join.

Theorem 4.0.3 (Zarev). The bordered gluing map ΨF satisfies the following properties:

• (Symmetry) Let (M1,Γ1), (M2,Γ2) be sutured manifolds with embeddings

F ⊂ ∂M1, F ⊂ ∂M2. There are graded isomorphisms f, g such that the following

diagram commutes

SFH(M1,Γ1)⊗ SFH(M2,Γ2) SFH(M2,Γ2)⊗ SFH(M1,Γ1)

SFH((M1,Γ1) ∪F (M2,Γ2)) SFH((M2,Γ2) ∪F (M1,Γ1)))

f

ΨF ΨF
g

• (Associativity) Let (M1,Γ1), (M2,Γ2), (M3,Γ3) be sutured manifolds and F1,F2

be sutured surfaces with embeddings F1 ↪→ ∂M1, (F1 t F2) ↪→ ∂M2, and

F2 ↪→ ∂M3. Write Mk = (Mk,Γk). The following diagram commutes up

to graded isomorphism:

SFH(M1)⊗ SFH(M2)⊗ SFH(M3) SFH(M1)⊗ SFH(M2 ∪F2 M3)

SFH(M1 ∪F1 M2)⊗ SFH(M3) SFH(M1 ∪F1 M2 ∪F2 M3)

ΨF2

ΨF1 ΨF1

ΨF2

• (Identity) Let (M,Γ) be a sutured manifold with embedded cap W for F , and let

D(W) be the double of W. There is a distinguished class [∆] ∈ SFH(D(W)),

called the diagonal class such that the map

ΨF( · , [∆]) : SFH(M,Γ)→ SFH((M,Γ) ∪F D(W))

is a graded isomorphism.
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Chapter 5. The Bordered Contact Gluing Map

The goal of this section is to define the bordered contact gluing map and prove

that it satisfies functorial properties akin to the HKM map.

5.0.1. The bordered contact gluing map

We will need to introduce a technical condition on the dividing set γ in order to

ensure that the bordered contact gluing map possesses the desired functorial properties

found in Subsection 5.0.2.

Definition 5.0.1. A dividing set γ on a sutured surface F is disk-decomposable if the

underlying sutured manifold of the I-invariant contact structure for γ on (F × I) has a

product disk decomposition.

Definition 5.0.2. Let (M ′′′,Γ′′) and (M,Γ) be sutured manifolds which can be glued

along a sutured surface F with disk-decomposable dividing set γ. Let ξ be a compatible

contact structure on M ′′. The associated bordered contact gluing map

Ψξ : SFH(−M,−Γ)→ SFH((−M ′′,−Γ′′) ∪−F (−M,−Γ))

is defined to be Ψξ([y]) = Ψ−F(EH(ξ), [y]).

If (M ′′,Γ′′) is a contact handle hi with attaching region Fi, then we denote this

map by Ψi : SFH(−M,−Γ)→ SFH(−Mi,−Γi).

Remark 5.0.3. Note that the dividing sets for contact handle attachments are disk-

decomposable; see Subsection 6.0.2.
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Remark 5.0.4. Note that some restriction on the dividing set is necessary, since

the identity property Lemma 5.0.6 is false when the I-invariant contact structure

is overtwisted. We conjecture that the bordered contact gluing map map satisfies

Lemma 5.0.6, Lemma 5.0.12, and Lemma 5.0.13 whenever the I-invariant contact

structure associated to the dividing set is tight. It would suffice to prove Lemma 5.0.7

for such dividing sets, since the rest of the arguments carry through.

Lemma 5.0.5. The map Ψξ is well-defined up to graded isomorphism.

Proof. This is immediate from the fact that Ψ−F is defined up to graded isomorphism.

5.0.2. Properties of the bordered contact gluing map

We will now prove that Ψξ satisfies identity, EH-preservation, and composi-

tion laws analogous to the ones satisfied by the HKM-map. The composition law

Lemma 5.0.13 is necessary for the proof of Theorem 1, and our proof the composition

law requires the other two properties.

Lemma 5.0.6. Let (M,Γ) be a sutured manifold and F ⊂ ∂M be a sutured surface

with disk-decomposable dividing set γ. Let W be the cap for −γ on −F and let ξγ be the

I-invariant contact structure for −γ on the double D(W). Then

Ψξγ : SFH(−M,−Γ)→ SFH(D(W) ∪−F (−M,−Γ))

is a graded isomorphism.
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Proof. This follows immediately from the identity and symmetry properties of the bor-

dered gluing map along with Lemma 5.0.7.

Lemma 5.0.7. Let W be the cap for a disk-decomposable dividing set γ on a sutured

surface F . Let ξ be the I-invariant contact structure on F × I. Then the diagonal class

[∆] ∈ SFH(D(W)) is the contact class EH(ξ).

Proof. The diagonal class is always non-trivial by [Zar11]. Because the dividing set is

disk-decomposable, SFH(D(W)) has rank 1 and the contact invariant is non-trivial.

Thus, the contact invariant and the diagonal class are the same.

We now wish to prove that the bordered contact gluing map preserves the con-

tact invariant. To do this, we rely on the identification of the bordered contact handle

maps with HKM handle maps provided by Lemma 7.0.1 and Lemma 7.0.2. This shows

that each bordered contact handle map Ψi preserves the contact invariant. We then

need to leverage associativity of the bordered gluing map; see Theorem 4.0.3. However,

we can only do this with contact handles which have disjoint attaching regions, and

this cannot always be achieved when the attaching curve of a 2-handle runs over a 1-

handle. To get around this problem, we now introduce a version of the padded handles

of Subsection 3.0.2 adapted to our needs. We will prove that the bordered contact maps

associated to these modified handle attachments are equivalent to the Ψi.

Let (M,Γ) be a balanced sutured manifold and ξΓ be the [−1, 0]-invariant con-
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tact structure in a closed neighborhood N(∂M) ∼= ∂M × [−1, 0] of the boundary

∂M × {0}. Let Σ be a subsurface of ∂M such that γ = Γ|Σ is a dividing set for the

(possibly degenerate) sutured surface (Σ,−∂γ). Let ξγ be the [0, 1]-invariant contact

structure on Σ× [0, 1] compatible with γ.

If hi is a contact handle whose attaching region A is contained in Σ, let L be a

Legendrian graph of the form {qk} × [0, 1] where each qk is a point in γ disjoint from A

and each component of γ contains at least one qk. The punctured padding associated to

(Σ, A) and L is the contact manifold ((Σ× [0, 1])\N(L), ξLγ ), where ξLγ is the restriction of

ξγ to (Σ× [0, 1]) \N(L). We denote the underlying sutured manifold by (PL,ΓL), where

ΓL is the dividing set induced by ξLγ . The punctured padded contact i-handle associated

to Σ, hi, and L is ((Σ × [0, 1]) \ N(L), ξLγ ) ∪A×{1} hi; we denote the associated sutured

contact manifold by (PL
i ,ΓLi , ξLi ). The sutured surface (Σ \N({qj}),−∂(γ \N({qj}))) is

denoted FL. Note that ξΓ∪Ahi is contactomorphic to ξΓ∪FL ξLi relative to ∂M×[−1,−1
2 ].

Remark 5.0.8. Note that a contact handle decomposition of 1-and 2-handles can be

described by a punctured padded contact handle decomposition. If a contact structure

ξ can be factored into padded handles (Pi1 , ξi1), . . . , (Pin , ξin) attached to an I-invariant

contact structure (P, ξΓ), we can choose Legendrians Lj ⊂ Pij so that each Lj can be

extended through Pij+1 ∪ . . .∪Pin without intersecting the attaching region of any contact

handle; see Figure 5.1. One can do this in such a way that ξ restricted to P ∪ PL1
i1 ∪

. . . ∪ PLn
in is contactomorphic to ξ. One can also perform a similar construction if each
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padded handle (Pij , ξij) is replaced by (Σj × [j, j + 1], ξγj) ∪ hij , where each Σj is a

(possibly degenerate) sutured surface with dividing set γj. We employ this latter case in

Lemma 5.0.12 and Lemma 5.0.13; details are left to the reader.

In order to make use of these modified contact handles, we need to to know that

the dividing set ΓL|FL = γ \N({qj}) is disk-decomposable.

Lemma 5.0.9. Let Σ be a (possibly degenerate) sutured surface with dividing set γ,

and let {pk} be a finite collection of points which has non-empty intersection with each

closed component of γ. Let F be the surface Σ \ N({pk}). Then (F,−∂γ|F ) is a non-

degenerate sutured surface and the dividing set γ|F is disk-decomposable.

Proof. (F,−∂γ|F ) is non-degenerate by construction. Let ξ be the [0, 1]-invariant con-

tact structure on F × [0, 1] compatible with γ|F and Γξ be the sutures induced by ξ. Note

that ξ is tight, since γ|F has no closed components.

We can choose a collection of disjoint embedded arcs {ai} ⊂ F \ γ|F with ∂ai ⊂

∂F such that F \ ∪ai is a number of disks. The collection {ai × [0, 1]} ⊂ F × [0, 1]

determines a product disk decomposition of ξ. (Each ∂(ai × [0, 1]) intersects Γξ twice

because of smoothing at the corners.) Thus, SFH(F × [0, 1],Γξ) has rank one.

Note that punctured padded handles depend on a choice of subsurface Σ and

Legendrian graph L. We will show that this ambiguity does not affect the associated

gluing maps. To prove this and the remaining properties of Ψξ, we assume the following
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consequence of Lemma 7.0.1 and Lemma 7.0.2; we may do this, since the proof of these

these lemmas does not depend on any of the results in this section.

∼=

Figure 5.1. Decomposing a contact structure into padded handle attachments. A choice
of Legendrians which determine a punctured padded handle decomposition are indi-
cated by dashed lines.

Lemma 5.0.10. Let (Mi,Γi, ξi) be a sutured contact manifold obtained from (M,Γ, ξ) by

a contact i-handle attachment, and let Ψi : SFH(−M,−Γ) → (−Mi,−Γi) be the associ-

ated bordered contact gluing map. Then Ψi(EH(ξ)) = EH(ξi) up to graded isomorphism.

Proof. By Lemma 3.0.8, Lemma 7.0.1, and Lemma 7.0.2, the bordered contact gluing

map Ψi equals the corresponding HKM-map Φi up to graded isomorphism. Since Φi

preserves the contact class, so does Ψi up to graded isomorphism.

Now we show that the bordered contact gluing maps for punctured padded han-

dle attachments and ordinary contact handle attachments agree.
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Lemma 5.0.11. Let (M,Γ) be a sutured manifold, hi be a contact i-handle, and

(PL
i ,ΓLi , ξLi ) be a punctured padded contact i-handle. Under the identification

(M,Γ) ∼= (PL,ΓL) ∪FL (M,Γ) the corresponding bordered contact gluing maps

Ψi,ΨξLi
: SFH(−M,−Γ)→ SFH(−Mi,−Γi)

are equal up to graded isomorphism.

Proof. Split (PL
i ,ΓLi , ξLi ) into a contact handle hi and the I-invariant contact structure

ξLΓ on the punctured padding (PL,ΓL). By associativity of the bordered gluing map, the

following diagram commutes up to graded isomorphism:

SFH(−hi)⊗ SFH(−PL,−ΓL)⊗ SFH(−M,−Γ) SFH(−PL
i ,−ΓLi )⊗ SFH(−M,−Γ)

SFH(−hi)⊗ SFH(−PL ∪ −M,−Γ) SFH(−PL
i ∪ −M,Γi)

Ψ−Fi

Ψ−FL Ψ−FL
Ψ−Fi

By Lemma 5.0.10, the bordered gluing map Ψ−Fi on the top sends (EH(hi),EH(ξLΓ ))

to EH(ξLi ), up to graded isomorphism. Evaluating on the contact elements yields the

following commutative diagram:

SFH(−M,−Γ) SFH(−M,−Γ)

SFH(−PL ∪ −M,−Γ) SFH(−PL
i ∪ −M,Γi)

Id

Ψ
ξLΓ

Ψ
ξL
i

Ψi

The map ΨξLΓ
is a graded isomorphism by Lemma 5.0.6, since the dividing set on FL is

disk-decomposable by Lemma 5.0.9. Since the diagram commutes up to graded isomor-

phism, the lemma follows.
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We now show that the bordered contact gluing map preserves the contact class.

Lemma 5.0.12. Let (M,Γ) and (M ′′,Γ′′) be sutured manifolds with compatible contact

structures ζ and ξ respectively, and let (M ′,Γ′) = (M ′′,Γ′′) ∪F (M,Γ) for some sutured

surface F with disk-decomposable dividing set. Then

Ψξ(EH(ζ)) = EH(ξ ∪F ζ)

up to graded isomorphism.

Proof. Decompose (M ′′,Γ′′) into a number of punctured padded handles (PL1
i1 ,Γ

L1
i1 ), . . . ,

(PLn
in ,Γ

Ln
in ) and let us consider two particular compositions of bordered gluing maps

SFH(−PLn
in ,−ΓLnin )⊗ . . .⊗ SFH(−PL1

i1 ,−ΓL1
i1 )⊗ SFH(−M,−Γ)→ SFH(−M ′,−Γ′)

corresponding to gluing in different orders. One composition corresponds to attaching

the punctured padded handles sequentially to (M,Γ), while another composition cor-

responds to attaching the punctured padded handles sequentially to (PL1
i1 ,Γ

L1
i1 ) to get

(M ′′,Γ′′) before finally gluing to (M,Γ). By Theorem 4.0.3, these compositions give rise

to the following diagram which commutes up to graded isomorphism:

SFH(−PLn
in ,−ΓLnin )⊗ . . .⊗ SFH(−PL1

i1 ,−ΓL1
i1 )⊗ SFH(−M,−Γ)

SFH(−M ′′,−Γ′′)⊗ SFH(−M,−Γ) SFH(−M ′,−Γ′)Ψ−F

By Lemma 5.0.11 and Lemma 5.0.10, each punctured padded handle attachment

map preserves the contact invariant up to graded isomorphism. The vertical arrow thus
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maps EH(ξLnin )⊗ . . .⊗EH(ξL1
i1 )⊗EH(ζ) to EH(ξ)⊗EH(ζ), while the diagonal arrow maps

EH(ξLnin )⊗ . . .⊗ EH(ξL1
i1 )⊗ EH(ζ) to EH(ξ ∪F ζ). Since Ψξ is the evaluation of Ψ−F on

EH(ξ), it must send EH(ζ) to EH(ξ ∪F ζ) up to graded isomorphism.

We can finally prove the composition law which we need in our proof of Theo-

rem 1.

Lemma 5.0.13. Let (M1,Γ1), (M2,Γ2), and (M3,Γ3) be sutured manifolds with com-

patible contact structures ξ on (M1,Γ1) and ξ′ on (M2,Γ2). Suppose that F and F ′

are sutured surfaces with disk decomposable dividing sets such that the bordered gluing

(M1,Γ1) ∪F (M2,Γ2) ∪F ′ (M3,Γ3) is defined. Then

Ψξ∪Fξ′ = Ψξ ◦Ψξ′

up to graded isomorphism.

Proof. Write Mk = (Mk,Γk). The following diagram commutes up to graded isomor-

phism by associativity of Zarev’s bordered gluing map.

SFH(−M1 t −M2 t −M3) SFH(−M1 t −M2 ∪−F ′ −M3)

SFH(−M1 ∪−F −M2 t −M3) SFH(−M1 ∪−F −M2 ∪−F ′ −M3)

Ψ−F′

Ψ−F Ψ−F
Ψ−F′

By Lemma 5.0.12, the map Ψ−F on top sends EH(ξ)⊗ EH(ξ′)⊗ [y] to EH(ξ ∪F ξ′)⊗ [y]

for any cycle y. By evaluating on contact elements, we obtain the following diagram
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which also commutes up to graded isomorphism.

SFH(−M3) SFH(−M2 ∪−F ′ −M3)

SFH(−M3) SFH(−M1 ∪−F −M2 ∪−F ′ −M3)

Ψξ′

Id Ψξ
Ψξ∪F ξ′

46



Chapter 6. Background on Computing the Bordered Gluing
Map

This section contains the background necessary for computing the bordered

contact gluing map in the case of a contact handle attachment. We will need this in

Subsection 7.0.1 when identifying the bordered map with the diagrammatic maps of

Subsection 3.0.1.

6.0.1. Arc diagrams, bordered algebras, and bordered sutured diagrams

Computing the bordered gluing map explicitly requires one to identify a par-

ticular generator in a certain Heegaard diagram for the twisting slice T W−F ,+; see

Lemma 6.0.1. This section is devoted to the background necessary to construct this

diagram and identify the generator. Those familiar with Auroux-Zarev diagrams or

willing to take this identification on faith may skip to chapter 7 and simply refer to Fig-

ure 6.3 and Lemma 6.0.1 when proving Lemma 7.0.2. We first review arc diagrams and

describe the bordered algebras associated to contact handles.

An arc diagram Z is a union of oriented intervals Z = tZi, an even number of

marked points {zj} ⊂ Int(Z), and a 2-to-1 function µ : {zj} → Z>0. Points zj and

zk are said to be matched if µ(zj) = µ(zk). We require that the result of surgery on

Z along all pairs of matched points µ−1(l) have no closed components. An oriented

subinterval of Z from one marked point to another (not necessarily matched) marked

point is called a Reeb chord. Arc diagrams also come with a type: α-type or β-type.
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Figure 6.1. Arc diagrams Z1 (Far left) and Z2 (Middle right) for contact 1-and 2-
handles. The sutured surfaces F1 (Middle left) and F2 (Far right) they parametrize are
also depicted. Note that these diagrams have α-type, though we have drawn the arcs
blue since we will be working with Heegaard diagrams of the form (Σ,β,α).

Given Z, there is an arc diagram −Z obtained by changing the orientation of each Zi,

and another arc diagram Z obtained by changing the type.

The graph G(Z) of an arc diagram is the ribbon graph obtained by attaching

arcs {al} to Z so that ∂al = µ−1(l). If Z is α-type, the arcs are attached on the left

with respect to the orientation on the intervals Zi; if Z is β-type, the arcs are attached

on the right. The graph G(Z) is obtained by reversing the cyclic ordering around each

vertex in ∪∂al. Alternatively, G(Z) is G(Z) as a ribbon graph.

An arc diagram Z parametrizes a sutured surface F = (F,Λ) if there is an em-

bedding G(Z) ⊂ F such that ∂(∪Zi) = Λ as oriented manifolds, and F deformation re-

tracts onto G(Z). If Z parametrizes F , then −Z parametrizes −F and Z parametrizes

F .

The bordered algebra A = A(Z) associated to an arc diagram Z is generated

as an F2-vector space by certain formal sums of strand diagrams; multiplication corre-
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sponds to concatenation of strand diagrams. A is a differential graded algebra over the

ground ring I ⊂ A consisting of idempotents of A.

There is a preferred basis of idempotents which is in one-to-one correspon-

dece with collections of arcs of Z; we denote the basis idempotent corresponding to

{ai1 , . . . , aip} by ιi1,...,ip . The basis of idempotents can be extended to a basis of A by

adding algebra elements associated to collections of Reeb chords; we will abuse notation

and write ρ for the algebra element associated to a single Reeb chord ρ. (We will not

need to consider algebra elements associated to collections of multiple Reeb chords.)

The algebra and the idempotents split as A = ⊕
iA(i) and I = ⊕

i I(i), each

indexed by the number of strands in the associated diagrams. (Note that we are follow-

ing Zarev’s convention for indexing summands of the algebra, which deviates from the

convention in [LOT15].) Since we only need to understand the bordered algebras for the

arc diagrams we have chosen for contact 1-and 2-handles, we omit the general definition

here, and explicitly describe the salient features of the algebras we need. The interested

reader can find formal definitions in [LOT15] and [Zar11]. Note that the bordered al-

gebras A(−Z) and A(Z) are isomorphic to the opposite algebra A(Z)op, which is A(Z)

with multiplication reversed.

Let Z1 be the arc diagram on the left of Figure 6.1 which parametrizes the su-

tured surface F1 = (F1,Λ1) for a contact 1-handle. The associated bordered algebra

A1 = A(Z1) has rank 1; the only non-trivial summand is A1(0) = I1(0), with basis
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ι1 ι2 ρ1 ρ2 ρ12

Figure 6.2. Strand diagrams corresponding to basis elements of A2(1). The two leftmost
diagrams correspond to basis idempotents, while the others correspond to Reeb chords.
Multiplication is given by concatenating, i.e. ρ1 · ρ2 = ρ12.

element the idempotent ι∅ corresponding to the strand diagram with no strands.

Let Z2 be the arc diagram on the right of Figure 6.1 which parametrizes the

sutured surface F2 = (F2,Λ2) for a contact 2-handle. The associated bordered algebra

A2 = A(Z2) has rank 9 with three non-trivial summands. Just as for Z1, the summand

A2(0) = I2(0) has rank 1, with basis element the idempotent ι∅ corresponding to the

strand diagram with no strands. The summand A2(1) has rank 5, with basis elements

corresponding to the strand diagrams depicted in Figure 6.2. The ground ring I2(1) is

generated by the basis idempotents ι1, ι2. Each of these corresponds to a formal sum

of two strand diagrams, each such sum is represented by a superposition of the two

diagrams with dashed lines. The nontrivial actions by idempotents are

ι2 · ρ1 · ι1 = ρ1 ι1 · ρ2 · ι2 = ρ2 ι2 · ρ12 · ι2 = ρ12,

while the only other non-trivial multiplication is ρ1 · ρ2 = ρ12. Multiplication is given by

concatenating strand diagrams. The summand A2(2) has rank 3; it does not appear in

our computations.

Furthermore, each algebra is equipped with a grading and a differential; we will
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not need to consider either.

Suppose Zα is an α-type arc diagram and Zβ is a β-type arc diagram. A bor-

dered sutured Heegaard diagram H = (Σ,α,β,Zα,Zβ) consists of

• an oriented surface Σ without closed components

• a collection α = αc ∪αa of pairwise disjoint, properly embedded curves αc and

arcs αa in Σ

• another collection β = βc ∪ βa of pairwise disjoint, properly embedded curves βc

and arcs βa in Σ

• embeddings (G(Zα),Zα) ⊂ (Σ, ∂Σ) and (G(Zβ),Zβ) ⊂ (Σ, ∂Σ) such that Zα

and Zβ are disjoint, the orientation on each component of Zα t Zβ agrees with

the orientation on ∂Σ, the arcs of G(Zα) agree with the arcs of αa, the arcs of

G(Zβ) agree with the arcs of βa, and no component of Σ \α or Σ \ β is disjoint

from ∂Σ \ (Zα t Zβ).

Let A = A(Zα) and B = A(Zβ) be the bordered algebras with respective

subrings of idempotents Iα ⊂ A, Iβ ⊂ B. We can choose to consider the bordered

module B̂SAA(H) as an (Iα)op, Iβ–bimodule generated by tuples of intersection points

which occupy each curve in αc ∪ βc exactly once and each arc in αa ∪ βa at most

once. If a generator x occupies arcs which correspond to ai1 , . . . , aip ⊂ G(Zα) and

bj1 , . . . , bjq ⊂ G(Zβ), then we have the algebra action ιi1,...,ip · x · ιj1,...,jq = x. Since

these are the unique basis idempotents which act nontrivially on x we will also write
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this equation as ιL(x) · x · ιR(x) = x.

The differential and A∞-algebra actions are determined by counting certain

pseudoholomorphic curves. The A∞-module actions are maps

mi|1|j : (Aop)⊗i ⊗ B̂SAA(H)⊗B⊗j → B̂SAA(H)

which satisfy certain relations, where each tensor product is over (Iα)op or Iβ as appro-

priate.

One similarly defines Type-A and Type-D structures B̂SA, B̂SD for diagrams

of the form (Σ,α,β,Zα,∅) or (Σ,α,β,∅,Zβ). Just as for B̂SAA, these invariants are

generated as F2-vector spaces over tuples of intersection points which occupy each full

curve exactly once and each arc in at most once.

A bordered sutured diagram is nice, if every component of Σ \ (α ∪ β) is one of

the following:

1. a region with non-trivial intersection with (∂Σ) \ (Zα t Zβ); referred to as

a basepoint region or suture region

2. a bigon with no side in Zα t Zβ

3. a quadrilateral with at most one side in Zα t Zβ.

In this case the differential of B̂SAA(H) is given by counting each region which

is an embedded bigon or rectangle in the interior of the Heegaard surface, and which

is disjoint from the basepoint regions. The A∞-module actions are given by counting

each region which is an embedded rectangle with one side a Reeb chord ρ in Zα t Zβ ⊂

52



∂Σ and the other three sides in Int(Σ). More precisely, let x = (x0, z1, . . . , zn) and

y = (y0, z1, . . . , zn) be generators in a nice bordered diagram H with basis idempotent

actions ιL(x) · x · ιR(x) = x and ιL(y) · y · ιR(y) = y, and let ρ be a Reeb chord in Zα.

Suppose there is a rectangular region D which has corners {x0, y0} ∪ ∂ρ, goes out of x0,

goes into y0, and has no zk in its interior. Then D contributes a y term to the action

m0|1|1(x, ιL(x) · ρ · ιR(y)). If ρ is a chord in Zβ instead, then D contributes a y term to

the action m1|1|0(ιL(y) · ρ · ιR(x),x). The only other non-trivial actions in either case

come from compatible idempotents, i.e. m0|1|1(x, ιR(x)) = m1|1|0(ιL(x),x) = x.

As an example, we explicitly compute some actions of the A∞-bimodule

B̂SAA(HAZ) associated to the nice diagram HAZ = (Σ,β,α,Z2 t Z2) on the right

hand side of Figure 6.3. We will give B̂SAA(HAZ) a right action by A(−Z2) ≈ A(Z2)op

and a left action by A(Z2) ≈ A(Z2)op. Note that the usual roles of α and β curves are

reversed and Z2 has α-type.

The region D1 contributes the action m1|1|0(ρ1, z1) = ρ1 · z1 = z4. The region

D1 ∪D2 contributes the action m1|1|0(ρ12, z1) = ρ12 · z1 = z3. The region D5 contributes

the action m0|1|1(z2, ρ1) = z2 · ρ1 = z3. The region D3 ∪ D4 contributes m0|1|1(z4, ρ2) =

z4 · ρ2 = z5. The region D1 ∪D3 ∪D4 contributes no action, since it has two sides which

hit the boundary.

In fact, B̂SAA(HAZ) is isomorphic to the dual algebra A(−Z2)∨ as an A∞-

bimodule; see page 122 of [Zar11] for the general relationship between the actions of
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a bimodule M and its dual M∨. This can be seen by identifying z1 with ρ∨12, z2 with ρ∨1 ,

z3 with ι∨2 , z4 with ρ∨2 , and z5 with ι∨1 . Under this identification, the actions described

above are dual to the multiplications ρ2 ·ρ1 = ρ12, ι2 ·ρ12 = ρ12, ρ1 ·ι2 = ρ1, and ρ2 ·ι1 = ρ2

in A(−Z2) ≈ A(Z2)op. The reader may verify that the remaining actions of B̂SAA(HAZ)

and A(−Z2)∨ correspond exactly.

We will see in the next section that understanding this identification is necessary

for computing the bordered gluing map.

6.0.2. Computing the bordered gluing map with Heegaard diagrams

In this section we discuss how to compute the bordered gluing map in the special

case of contact handle attachments.

Let (W ,−Z) = (W, γ,−F ,−Z) be the bordered cap for a sutured surface

F = (F,Λ), where F is parametrized by Z. Now, suppose that sutured manifolds

(M1,Γ1) and (M2,Γ2) can be glued along F ; this is equivalent to saying that there are

embeddings (F,Λ) ⊂ (∂M1,Γ1) and (−F,Λ) ⊂ (∂M2,Γ2) which extend to embeddings

W ⊂ (M1,Γ1) and W ⊂ (M2,Γ2). Then (M1,Γ1) \ W and (M2,Γ2) \ −W are par-

tially sutured manifolds with sutured surfaces F and F , so that ((M1,Γ1) \ W ,Z) and

((M2,Γ2) \ W ,Z) are bordered sutured manifolds. Note that the positive twisting slice

(T WF ,+,−Z t−Z) is also a bordered sutured manifold.

Choose bordered sutured Heegaard diagrams HW for (W ,−Z), HU for ((M1,Γ1) \

W ,Z), and HV for ((M2,Γ2) \W ,Z). These determine Type-D structures U = B̂SD(HU )
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and V = B̂SD(HV ), along with a Type-A structure W = B̂SA(HW ). The mirror image

H−W of HW is a Heegaard diagram for W and the corresponding Type-A structure is

B̂SA(H−W ) = W∨. Let A = A(Z). There is a nice diagram HAZ for (T WF ,+,−Z t

−Z), discovered independently by Auroux and Zarev, such that B̂SAA(HAZ) ∼= A∨

as A∞-bimodules over A. The Auroux-Zarev diagrams associated to contact handle

attachments are depicted in Figure 6.3; see Proposition 12.4.2 in [Zar11] for the general

construction as well as [Aur10] and [LOT11] for computations.

Now, we have

SFC(M1,Γ1)⊗ SFC(M2,Γ2) ' U �W ⊗W∨ � V, and

SFC((M1,Γ1) ∪F (M2,Γ2)) ' U � A∨ � V.

With these identifications, [Zar11] gives an explicit formula for computing the bordered

gluing map when the bordered module W = B̂SA(W) has a single generator and trivial

structure maps; in this case W is called elementary. Note that if H = (Σ,α,β,Zα,Zβ)

is a bordered sutured diagram with a single generator and all regions adjacent to the

intervals Zα t Zβ ⊂ ∂Σ are basepoint regions, then the bordered modules for H are

elementary.

Lemma 6.0.1. (Zarev) Let U, V,W,A be as above. Suppose that W is an elementary

module with unique generator w. The bordered gluing map ΨF is induced by the map
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ψF : U �W ⊗W∨ � V → U � A∨ � V defined by

ψF(u � w ⊗ w∨ � v) = u � ιL(w)∨ � v,

where u ∈ U,v ∈ V are arbitrary and ιL(w) is the basis idempotent in A which acts

non-trivially on w.

ρ1

ρ2

z4/ρ
∨
2

z1/ρ
∨
12

z5/ι
∨
1

z2/ρ
∨
1

z3/ι
∨
2

D1

D2

D3
D4

D5

ρ2

ρ1

Figure 6.3. Left: HAZ for Z1; Right: HAZ for Z2. Each point is additionally labeled by
the basis element it corresponds to under the identification B̂SAA(HAZ) ∼= A(−Z2)∨.
The orientations of the Reeb chords agrees with the boundary orientation, i.e. the
chords on the right are oriented upward, while the chords on the left are oriented down-
ward.

Figure 6.4 shows how to decompose each contact handle −hi into a bordered cap

(−Wi,Zi) and a bordered contact handle (−hi \ −Wi,−Zi), along with the parametriza-

tions of Fi and −Fi in each case. Figure 6.5 shows the diagrams HU ∪HW correspond-

ing to this decomposition. Suppose that H is a Heegaard diagram for the manifold

(−M,−Γ) to which the contact handle −hi is attached. After some Heegaard moves, we

may arrange that a neighborhood of the attaching region in −M be represented by a
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Figure 6.4. Decomposition of a contact 1-handle (Left) and a contact 2-handle (Right)
into a cap and a bordered contact handle. The bordered part is shaded and parametriz-
ing arc diagrams are depicted.

e

w

c

Figure 6.5. HU ∪HW for a contact 1-handle (Left) and a contact 2-handle (Right).

copy of H−W embedded in H, so that H = H−W ∪ HV . To attach −hi, one forms the

concatenation HU ∪HAZ ∪HV . Note that, for each contact handle, the bordered module

B̂SA(HW ) is elementary, so that we can use Lemma 6.0.1 for computations.

57



Chapter 7. Proof of the Main Theorem

The goal of this section is the proof of Theorem 1. We will start by relating the

diagrammatic and bordered contact gluing maps for contact handles.

7.0.1. Diagrammatic and bordered contact gluing maps

Lemma 7.0.1. Given an admissible diagram H for (−M,−Γ), there is a diagram-

matic handle attachment H′ for (−M1,−Γ1) such that the diagrammatic map σ1 :

SFC(H) → SFC(H′) induces the bordered contact gluing map Ψ1 : SFH(−M,−Γ) →

SFH(−M1,−Γ1) on homology.

Proof. Use the diagram HU ∪ HW shown in Figure 6.5 for −h1. Note that any admis-

sible Heegaard diagram H for (−M,−Γ) splits as H = H−W ∪ HV , where H−W is a

neighborhood of the attaching region of h1 in H.

The intersection point e represents the sole generator EH(h1) of SFH(−h1); it

is also the generator of B̂SD(HU). The diagram HW for the cap has no curves, so the

generator w of B̂SD(HW ) is the empty element. (In bordered sutured theory, a diagram

with no generator is allowed; in this case the bordered invariants have rank 1, generated

p

q

e

Figure 7.1. Gluing a contact 1-handle.
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by the empty set.) We have ι∅ · w = w, where ι∅ is the unique generator of A(−Z1); it

corresponds to the strand diagram with no strands. Fix an arbitrary cycle y ∈ SFC(H)

and note that it corresponds to (w∨,y) ∈ SFC(H−W ∪ HV ). Since B̂SD(HW ) is an

elementary module, we can use Lemma 6.0.1 to see that the bordered contact gluing

map is induced by

ψ−F(e⊗ y) = ψ−F((e, w)⊗ (w∨,y)) = (e, ι∨∅,y).

x0

x0

y0α0

β0 βg+1 αg+1

Figure 7.2. (Left) The diagram H1 with arcs for the contact 2-handle; (Right) Attach-
ing the first trivial bypass.

w∨ w∨

x0x0

y0
βg+2

αg+2

Figure 7.3. (Left) The attaching curve for the 2-handle and the associated trivial by-
pass arcs in ∂M ; (Right) Attaching the second trivial bypass to obtain H2.
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Since the diagram HAZ for the twisting slice has no curves, ι∨∅ is the empty set,

and we have (e, ι∨,y) = (e,y). Now, destabilizing yields the diagram for (−M,−Γ) with

a 1-handle attached to the Heegaard surface, exactly as in the case of the diagrammatic

map. The map (e,y) → y is a graded homotopy equivalence, so that Ψ1[y] = [y] =

[σ1(y)].

Note that H′ = HU ∪ HAZ ∪ HV is admissible, since its periodic domains corre-

spond to the periodic domains of H.

Lemma 7.0.2. Given an admissible diagram H1 for (−M,−Γ), there are admissible

diagrams H3 for (−M,−Γ), H4 for (−M2,−Γ2), and H6 for (−M2,−Γ2); and graded

isomorphisms f, g making the following diagram commute.
SFH(H1) SFH(H3)

SFH(H6) SFH(H4)

f

(σ2)∗ Ψ2

g

Proof. We will show how to compute Ψ2 from a given diagram for σ2 by a sequence of

diagrams {Hi}. For the most part, the diagram Hi+1 will differ from Hi by a number

of Heegaard moves, so we have graded isomorphisms ΨHi,Hi+1 : SFH(Hi) → SFH(Hi+1)

induced by holomorphic triangle counts; f and g will be compositions of such maps. To

ease discussion, we defer the computations of these triangle maps to Subsection 7.0.3.

Let H1 be an admissible Heegaard diagram for (−M,−Γ) and use the diagram

HU ∪ HW shown in Figure 6.5 for −h2. The tuple (c, w) represents the unique gen-

erator EH(h2) of SFH(−h2), while w is the sole generator for B̂SA(HW ). Referencing
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w∨
y0

x0

y0

x0

Figure 7.4. Left: H2; Right: H3

Figure 6.3, we have ι2 · w = w. The dashed lines in Figure 7.2 are the curves α0, β0 for

the diagrammatic 2-handle attachment. Fix a cycle y ∈ SFC(H1).

In order to compute the bordered contact gluing map, we must find a way to

realize (−M,−Γ) as −W2∪−F ((−M,−Γ)\W2) at the level of Heegaard diagrams, where

W2 is the cap for the 2-handle. For this purpose, we peform two stabilizations. The first

is depicted on the right side of Figure 7.2 so that βg+1 agrees with β0. The second is

depicted in Figure 7.3. This yields a diagram H2 where αg+2 agrees with α0 outside a

neighborhood of β0. (One can think of these stabilizations as attaching trivial bypasses

along arcs which approximate the attaching curve for the 2-handle; see Figure 7.3.)

The map ΨH1,H2 sending [y] to [(w∨, y0,y)] is induced by a well-defined isomorphism of

graded complexes. Handleslide βg+1 over βg+2 to obtain the diagram H3. The triangle

count ΨH2,H3 sends [(w∨, y0,y)] to [(w∨, y0,y)].

The right hand side of Figure 7.4 shows how to split H3 as H3 = H−W ∪ HV .

Performing a bordered gluing with the 2-handle yields the diagram H4 = HU ∪ HAZ ∪
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z3

c

z1/ρ∨12

z2/ρ∨1
z3/ι∨2

α′g+2

αg+3

Figure 7.5. Destabilizing from H4 to H5; points on the right are additionally labelled by
the algebra elements in A(−Z2)∨ they correspond to as in Figure 6.3.

HV . Note that z3 corresponds to the basis idempotent ι2 which acts non-trivially on w;

compare with Figure 6.3. The associated bordered gluing map is induced by

ψ−F((c, w)⊗ (w∨, y0,y)) = (c, z3, y0,y).

After gluing, we destabilize to obtain H5 as depicted in Figure 7.6. The part of H5

which represents −h2 ∪ T W−F ,+ before and after the destabilization are shown in Fig-

ure 7.5. This destabiliation is equivalent to performing two handleslides followed by a

trivial destabilization. The triangle count ΨH4,H5 sends [(c, z3, y0,y)] to [(z3, y0,y)].

Since y is a cycle, we have ∂(z1, y0,y) = (z3, y0,y) + (z2, x0,y); this can be seen

from Figure 7.6, where the shaded regions correspond to the terms on the right. Thus,

[(z3, y0,y)] = [(z2, x0,y)].

Now, perform a small Hamiltonian isotopy to remove z1 and z3, handleslide βg+1

over β′g+2, and perform a trivial destabilization to obtain H6; this is the diagram for a
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z3 z1

z2

x0

y0

x0

β′g+2

βg+1

Figure 7.6. H5; the regions shaded grey represent terms in ∂(y, y0, z1).

x0

x0

Figure 7.7. H6
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diagrammatic 2-handle attachment on H1. The associated triangle count ΨH5,H6 sends

[(z2, x0,y)] to [(x0,y)].

By composing these maps, we see that the bordered contact gluing map from H1

to H6 is

[y]
ΨH1,H2−−−−→ [(w∨, y0,y)]

ΨH2,H3−−−−→ [(w∨, y0,y))] Ψ2−→ [(c, z3, y0,y)]

ΨH4,H5−−−−→ [(z3, y0,y)] = [(z2, x0,y)]
ΨH5,H6−−−−→ [(x0,y)] = [(y, x0)],

which is the map on homology induced by σ2.

Note that all the diagrams we have used are admissible by the following argu-

ment. In general, let α ⊂ α be a curve in a diagram which abuts a suture region on

each side. Without loss of generality, suppose that α appears in the boundary of a

periodic domain D, and the multiplicity of D on each region to the left of α is non-

negative. Since there is a basepoint region D on the left where D has multiplicity zero;

let a = ∂D ∩ α. Let D′ be the region with ∂D′ ∩ α = −a. Then D must have negative

multiplicity on D′.

Thus, if one is looking for a periodic domain with no negative coefficients, one

can erase any curve (not just an α-curve) which abuts the basepoint region on both

sides. In each of the diagrams H2 through H6, we can erase a number of such curves

to obtain H1 with a number of strips attached to the boundary; the periodic domains

of each diagram obtained this way are exactly the periodic domains of H1. Since H1 is

admissible by hypothesis, so are H2 through H6.
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7.0.2. Proof of Theorem 1

We are now ready to prove the precise formulation of the main theorem.

Theorem 7.0.3. Suppose that Φξ is the HKM map for a proper inclusion (M,Γ) ⊂

(M ′,Γ′) of sutured manifolds with no isolated components and compatible contact struc-

ture ξ. There is a sutured contact manifold (M ′′,Γ′′, ξ′′), a sutured surface F = (F,Λ),

and graded isomorphisms f, g such that

1. (M ′,Γ′) ∼= (M ′′,Γ′′) ∪F (M,Γ)

2. (M ′ \ Int(M), ξ) is contactomorphic to (M ′′ ∪F (∂M × [0, 1]), ξ′′ ∪F ξΓ), where ξΓ

is the [0, 1]-invariant contact structure compatible with Γ

3. the dividing set Γ|F is disk-decomposable as defined in Subsection 5.0.1

4. the following diagram commutes
SFH(−M,−Γ) SFH(−M,−Γ)

SFH(−M ′,−Γ′) SFH((−M ′′,−Γ′′) ∪−F (−M,−Γ))

f

Φξ Ψξ′′

g

Proof of Theorem 1. Decompose ξ into a sequence of contact handles hi1 , . . . , hin at-

tached to ∂M × {1} in (∂M × [0, 1],−Γ t Γ, ξΓ). We can factor the HKM map as

Φξ = Φin ◦ . . . ◦ Φi1 , where each Φij is the HKM-map for attaching a padded handle

(Pij ,Γij , ξij).

We can also decompose ξ as a sequence of punctured padded handles

(PL1
i1 ,Γ

L1
i1 , ξ

L1
i1 ), . . . , (PLn

in ,Γ
Ln
in , ξ

Ln
in ) attached to (∂M × [0, 1],−Γ t Γ, ξΓ) along a
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surface F ⊂ ∂M × {1}. Let (M ′′,Γ′′, ξ′′) be the structure obtained by attaching

(PL2
i2 ,Γ

L2
i2 , ξ

L2
i2 ), . . . , (PLn

in ,Γ
Ln
in , ξ

Ln
in ) to (PL1

i1 ,Γ
L1
i1 , ξ

L1
i1 ).

By construction, (M ′′,Γ′′)∪F (M,Γ) can be decomposed as a number of punctured

padded handle attachments to (M,Γ) with bordered contact gluing maps Ψi1 , . . . ,Ψin ,

where each Ψij corresponds to (PLj
ij ,Γ

Lj
ij , ξ

Lj
ij ). By Lemma 5.0.11, these are also the

maps for the hij up to graded isomorphism. The bordered contact gluing map Ψξ′′

factors as Ψξ′′ = Ψin ◦ . . . ◦Ψi1 up to graded isomorphism by Lemma 5.0.13.

By Lemma 3.0.8, Lemma 7.0.1, and Lemma 7.0.2 the gluing maps Φij and Ψij

equal (σij)∗ up to graded isomorphism for each j. By the composition law for the HKM

map and Lemma 5.0.13, Φξ = Ψξ′′ up to graded isomorphism.

While we have couched Theorem 1 in terms of constructing a bordered contact

map from an HKM map, we can also go in the other direction.

Theorem 7.0.4. Let (M ′′,Γ′′) ∪F (M,Γ) be a bordered gluing, where the dividing set Γ|F

on F is disk-decomposable, and let ξ′′ be a compatible contact structure on M ′′. There is

a sutured manifold (M ′,Γ′), a proper inclusion (M,Γ) ⊂ (M ′,Γ′), a compatible contact

structure ξ on M ′ \ Int(M), and graded isomorphisms f ′, g′ such that

1. (M ′,Γ′) ∼= (M ′′,Γ′′) ∪F (M,Γ)

2. (M ′ \ Int(M), ξ) is contactomorphic to (M ′′ ∪F (∂M × [0, 1]), ξ′′ ∪F ξΓ), where ξΓ

is the [0, 1]-invariant contact structure compatible with Γ
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3. the proper inclusion has no isolated components

4. the following diagram commutes
SFH(−M,−Γ) SFH(−M,−Γ)

SFH((−M ′′,−Γ′′) ∪−F (−M,−Γ)) SFH(−M ′,−Γ′)

f ′

Ψξ′′ Φξ

g′

Proof. Let (M ′,Γ′) = (M ′′,Γ′′)∪F×{1}(M∪∂M×{0}(∂M×[0, 1]),Γ) and let ξ = ξ′′∪F×{1}ξΓ.

It is clear that the first two conditions are satisfied by construction.

Furthermore, any isolated component of the proper inclusion (M,Γ) ⊂ (M ′,Γ′)

would correspond to a component of M ′′ whose boundary is entirely contained in F ,

or a closed component of M ′′. Since bordered gluings are only allowed along proper

sutured subsurfaces, the former case is not allowed, while the latter is excluded by hy-

pothesis.

Since ξ and ξ′′ are constructed from I-invariant contact structures by attaching

corresponding contact handles, we can argue as in the proof of Theorem 1 that Φξ and

Ψξ′′ are equal up to graded isomorphism.

7.0.3. Triangle counts

We now verify that the maps in the proof of Lemma 7.0.2 are graded isomor-

phisms. All these maps are induced by the standard holomorphic triangle counts associ-

ated to handleslides. For α-handleslides, triangle counts induce chain maps of the form

SFC(Σ,β,α) ⊗ SFC(Σ,α,α′) → SFC(Σ,β,α′), while triangle counts induce maps of
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the form SFC(Σ,β′,β) ⊗ SFC(Σ,β,α) → SFC(Σ,β′,α) for β-handleslides. We color

α-curves red and α′-curves orange; we color β-curves blue and β′-curves purple.

We will decorate generators in each (Σ,β,α′) or (Σ,β′,α) with primes and leave

generators in each (Σ,β,α) undecorated. We relabel after each computation, i.e. the

generator (c′, z′3, y′0,y′) in H4,4.5 is the generator (c, z3, y0,y) in H4.5,5. We denote the

highest degree element in each (Σ,α,α′) or (Σ,β′,β) by Θ and the lowest degree ele-

ment by η.

We will make use of the following standard fact in our computations. Let D and

D′ be regions in a Heegaard diagram with a common edge in an oriented α-curve α0,

and let D be the domain of a Whitney polygon with holomorphic representative. If

α0 abuts a basepoint region on the left and a basepoint region on the right, then the

multiplicities of D on D and D′ differ by at most 1. In particular, if the common edge

is contained in ∂D and D is a basepoint region, then D has multiplicity one on D′.

Proposition 7.0.5. ΨH2,H3 [(w, y0,y)] = [(w′, y′0,y′)] .

Proof. Consider Figure 7.8. Note that any triangle exiting y0 must have multiplicity 1

on D and multiplicity 0 on D′. There is a unique such triangle, and it sends y0 to y′0.

We can erase the curves which contain y0 or y′0, and the new diagram is the diagram

for a small Hamiltonian isotopy. The corresponding triangle map is chain homotopic

to the identity, and thus sends [(w,y)] to [(w′,y′)]. We then have ΨH2,H3 [(w, y0,y)] =

[(w′, y′0,y′)].
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w′w

y′0y0

Θ

D′

D

Figure 7.8. The diagram for ΨH2,H3 .

Proposition 7.0.6. ΨH3,H4 [(c, z3, y0,y)] = [(z′3, y′0,y′)].

Proof. Let H4.5 be the diagram obtained by handlesliding α′g+2 over αg+3 and consider

the triple diagram in Figure 7.9 for this move. Any triangle for ΨH4,H4.5 exiting z3 must

have must have multiplicity 0 on D1 and D3 and multiplicity 1 on D2; this follows

Θ

z′3

z3
D1

D2
D3

Figure 7.9. The diagram for ΨH4,H4.5 .
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Θ

z′3

z3

c′ c
η

Θ

D1

D2 D3 D′
D

Figure 7.10. The diagrams for ΨH4.5,H5 .

from the observation that the curve α′g+2 abuts a basepoint region on both the left and

the right. (This cannot be seen in Figure 7.9, but it is true in the complete diagram.)

There is a unique such triangle; it enters z′3. Erasing curves yields a diagram for a small

Hamiltonian isotopy, so that ΨH4,H4.5 [(c, z3, y0,y)] = [(c′, z′3, y′0,y′)].

To compute ΨH4.5,H5 , consider the diagram on the left of Figure 7.10. Any trian-

gle exiting z3 must have multiplicity 0 on D1 and D3 and multiplicity 1 on D2. There

is a unique such triangle; it enters z′3. Erasing curves yields the diagram on the right

of Figure 7.10. Since no triangle in our count can enter η, all triangles must have mul-

tiplicity 0 on D′. There is a unique such triangle exiting c; its domain is the region D,

and it enters c′. Erasing curves yields a diagram for a small Hamiltonian isotopy, and

the corresponding triangle map sends [(c, z3, y0,y)] to [(c′, z′3, y′0,y′)]. We now obtain

H5 by performing a trivial destabilization. The associated map sends [(c, z3, y0,y)] to

[(z′3, y′0,y′)] so that ΨH4.5,H5 [(c, z3, y0,y)] = [(z′3, y′0,y′)].

Proposition 7.0.7. ΨH5,H6 [(z2, x0,y)] = [(x′0,y′)].
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x′0
x0

z′2

z2

Θ

Θ

x′0 x0

z′2
z2

Θ
Θ

D1

D2 D3

D D′

Figure 7.11. ΨH5,H5.5 and ΨH5.5,H6 .

Proof. Let H5.5 be the diagram obtained by performing the obvious finger move on H5;

diagrams for ΨH5,H5.5 and ΨH5.5,H6 are shown in Figure 7.11. On the left, any triangle

exiting x0 must have multiplicity one on D and D′. There is a unique such triangle; it

enters x′0. On the right, any triangle exiting x0 must have multiplicity one on D2 and

multiplicity zero on D1 and D3. There is a unique such triangle; it enters x′0.

In each diagram in Figure 7.11, erasing curves yields a diagram for a small

Hamiltonian isotopy. Each corresponding triangle map sends [(z2, x0,y)] to [(z′2, x′0,y′)].

We then obtain H6 by performing a trivial destabilization; the corresponding map sends

[(z2, x0,y)] to [(x′0,y′)].

Note that the diagrams used in Proposition 7.0.5, Proposition 7.0.6, and Proposi-

tion 7.0.7 are all admissible, since the admissibility argument at the end of Lemma 7.0.2

holds for triply-periodic domains in triple diagrams. Each of the diagrams can be re-

duced to a diagram for a small Hamiltonian isotopy by erasing curves which abut su-
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ture regions on both sides. Since the diagram for a small Hamiltonian isotopy in an

admissible diagram is itself admissible, so is each diagram in Proposition 7.0.5, Proposi-

tion 7.0.6, and Proposition 7.0.7.
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Chapter 8. Applications

Our first corollary is the extension of contact gluing maps to the bordered su-

tured category, Corollary 1.0.3 from chapter 1. This corollary is an essential ingredient

in [EVZ17].

Corollary 8.0.1. Let M = (M,γ,F ,Z) and M′ = (M ′, γ′,F ,Z) be bordered sutured

manifolds with M ⊂ M ′ and M ′ \ int(M) a sutured manifold equipped with a compat-

ible contact structure ξ and no isolated components. Let HM and HM ′ be admissible

diagrams for −M and −M′, respectively. Then there exists a map of type-D structures

induced by ξ

φξ : B̂SD(HM)→ B̂SD(HM ′),

satisfying the following property. If N = (N, γN ,−F ,−Z) is a bordered sutured mani-

fold with diagram HN for −N , then the map

φξ � IdB̂SA(HN ) : B̂SA(HM) � B̂SD(HN )→ B̂SA(HM′) � B̂SD(HN )

induces the contact gluing map Φξ : SFH(−M∪−F −N ) → SFH(−M′ ∪−F −N ) up to

graded homotopy equivalence.

Similar statements hold for the type-A and bimodule structures found in the

bordered sutured theory.

Proof. Bordered gluing operations and the bordered gluing map extend to the bordered
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sutured category. Using the notation of Subsection 6.0.2, a bordered gluing map

ΨF : SFH(M1,Γ1)⊗ SFH(M2,Γ2)→ SFH((M1,Γ1) ∪F (M2,Γ2))

is induced by a map of the form

IdU �∇W � IdV : U �W ⊗W∨ � V → U � A∨ � V.

Zarev [Zar11] proves that ΨF is well-defined by showing that the algebraic join

∇W : W ⊗ W∨ → A∨ is well-defined up to A∞-homotopy, and using the fact that

(�V,� IdV ) is a dg-functor from the category of A∞-modules to the category of chain

complexes; see [LOT15] for explanation.

Note that the bordered gluing operation ∪F as discussed in Subsection 4.0.2

extends to partially sutured and bordered sutured manifolds. The role of one or both

(Mi,Γi) can be replaced by Mi = (Mi, γi,Fi,Z) with (±F, γ) ⊂ (∂Mi) \ Fi. As in Theo-

rem 1, there is a sutured manifold (M ′′,Γ′′) such that (M ′′,Γ′′) ∪F ′M∼=M′, where the

dividing set on F ′ is disk-decomposible. Furthermore, we can choose F ′ such that the

dividing set has no closed components, so that we can choose a parametrization of F ′

by an arc diagram Z ′ so that the dividing set is elementary with respect to Z ′. Let A′

be the associated bordered algebra. Let HW ′ be a diagram for the cap W ′ for the divid-

ing set on F ′; let HU ′ be a diagram for (−M ′′,−Γ′′) \ −W ′; and let HV ′ be a diagram for

(−M \ −W ′. Let U ′, V ′, and W ′ be the bordered modules B̂SD(HU ′), B̂SDD(HV ′), and

B̂SA(−HW ′) respectively. Note that W ′ has a single generator w, since the dividing set
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on F ′ is elementary by Proposition 15.1.2 in [Zar11]. We can define a map

ψ−F ′ = IdU ′ �∇W ′ � IdV ′ : U ′ �W ′ ⊗ (W ′)∨ � V ′ → U ′ � (A′)∨ � V ′.

which is well-defined up to graded homotopy equivalence of Type-D structures, since by

Lemma 2.3.13 of [LOT15], · � IdV ′ is an A∞-functor.

Similar to Theorem 1, note that there is a compatible contact structure ξ′′ on

M ′′ such that ξ is contactomorphic to ξ′′ attached to an I-invariant contact structure.

Since U ′ �W ′ is homotopy equivalent to SFC(−M ′′,−Γ′′), we can define φξ : (W ′)∨ �

V → U ′ � (A′)∨ � V ′ by

φξ(w∨ � y) = ψ−F ′(x � w,w∨ � y),

where x � w represents EH(ξ′′).

Denote B̂SD(HN) by X. Since (W ′)∨ � V ′ � X ' SFC(HM ∪F HN) and U ′ �

(A′)∨ � V ′ �X ' SFC(HM ′ ∪F HN), the bordered contact gluing map Ψξ′′ is induced by

evaluating

IdU ′ �∇W ′ � IdV ′�X

on x � w, while φξ � IdX is the evaluation of

IdU ′ �∇W ′ � IdV ′ � IdX

on x � w. It is clear that these maps are equal up to homotopy equivalence since

IdV ′ � IdX is homotopic to IdV ′�X . (This is from Lemma 2.3.13 in [LOT15].)
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Note that by Theorem 1, Ψξ′′ agrees with the contact gluing map Φξ up to

graded isomorphism. Also, since ψ−F ′ is defined up to graded homotopy equivalence,

so is φξ, so we can define φξ : B̂SD(HM)→ B̂SD(HM ′) by using homotopy equivalences

W ′ � V ′ ' B̂SD(HM) and U ′ � (A′)∨ � V ′ ' B̂SD(HM ′).

This completes the proof for type-D structures. Similar arguments hold for type-

A modules and bimodules.

We also obtain an independent proof of Juhász and Zemke’s result that dia-

grammatic maps agree with the corresponding contact gluing maps; see [JZ20]. This is

Corollary 1.0.4 in chapter 1.

Corollary 8.0.2. Given a diagram H for (−M,−Γ), there is a diagram for (−Mi,−Γi)

such that the HKM map Φi : SFH(−M,−Γ) → SFH(−Mi,−Γi) is induced by the

diagrammatic map σi up to graded isomorphism. Furthermore, given any other diagram-

matic attachment for (−Mi,−Γi), the associated diagrammatic map σ′i also induces Φi

up to graded isomorphism.

Proof. The first statement is immediate from Lemma 3.0.8. By Lemma 7.0.1 and

Lemma 7.0.2, both (σi)∗ and (σ′i)∗ are equal to bordered contact gluing maps Ψi and Ψ′i

respectively, up to graded isomorphism. Since the map Ψ−F is well-defined, Ψi and Ψ′i

are equal up to graded isomorphism. Then (σi)∗ and (σ′i)∗ are also equal up to graded

isomorphism.
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As a final application, we use Corollary 8.0.2 to show that the HKM map can be

computed using nice diagrams by extending Plamenevskaya’s application of the Sarkar–

Wang algorithm in [Pla07]. This is Corollary 1.0.5 in chapter 1.

Corollary 8.0.3. Suppose that (−M,−Γ) ⊂ (−M ′,−Γ′) is a proper inclusion of sutured

manifolds with no isolated components and contact gluing map Φξ. Given an admissi-

ble diagram H0 for (−M,−Γ), there is a diagram H2 for (−M ′,−Γ′), a nice diagram

Hnice for (−M,−Γ), a nice diagram Hnice
2 for (−M ′,−Γ)′, a map φniceξ : SFC(Hnice) →

SFC(Hnice
2 ) of the form y→ (y,x0), and graded isomorphisms f, g such that the follow-

ing diagram commutes:
SFH(H0) SFH(Hnice)

SFH(H2) SFH(Hnice
2 )

f

Φξ φniceξ

g

Some discussion is in order before we begin the proof. By Corollary 1.0.4, the

HKM map can be factored into diagrammatic maps Φξ = (σin ◦ . . . σi1)∗ up to graded

isomorphism. Let H be a diagram for (−M,−Γ) and H′ a diagram for (−M ′,−Γ′) ob-

tained by diagrammatic handle attachments. The composition σin ◦ . . . ◦ σi1 takes

the form φξ(y) = (y,x0), where x0 is the collection of preferred intersections of the

2-handles. We wish to show that this situation can be realized by nice diagrams and

that the preferred intersections in the nice diagrams correspond to x0 up to graded

homotopy equivalence.
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Note that we cannot just perform diagrammatic handle attachments on a given

nice diagram for (M,Γ), since a diagrammatic contact 2-handle attachment on a nice

diagram need not result in a nice diagram. We will instead find a nice diagram for

(M ′,Γ′) and work backwards to obtain a suitable diagram for (M,Γ).

As in [Pla07], the difficulty is showing that the Sarkar–Wang algorithm may be

applied in a way that preserves x0. More precisely, we wish to show there is a diagram

which is commutative up to homotopy,

SFC(H) SFC(Hnice)

SFC(H′) SFC((Hnice)′)

ψ

φξ z→(z,xnice0 )

ψ′

where xnice0 is the preferred intersection in (Hnice)′ and ψ, ψ′ are triangle maps induced

by Heegaard moves in the Sarkar–Wang algorithm. In [Pla07], they key idea is to show

that one can apply Sarkar–Wang without performing a finger move around a full β-

curve. This implies that no handleslide maps arise, and the preferred intersections are

preserved by the maps which arise in the course of the algorithm.

In our setting, we cannot always rule out finger moves around full β-curves

in general, but we can rule out finger moves around β-curves coming from contact 2-

handle attachments. Recall that attaching a contact 2-handle adds a strip to the Hee-

gaard surface. If a finger move which enters this strip does not cross the corresponding
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Figure 8.1. Finger moves cannot pass through a strip coming from a 2-handle attach-
ment.

x′0

x0

Θ

Figure 8.2. A strip coming from a 2-handle attachment in a triple diagram.

α-curve, then it can be isotoped outside the strip. If it crosses the α-curve, it must ter-

minate there, since the α-curve borders a basepoint region on one side. In this case, we

can also isotope the finger move outside the strip; see Figure 8.1. This means that we

can apply Sarkar–Wang without handlesliding over any of the new β-curves.

This is sufficient for our purposes, since if we perform a handleslide over a β-

curve coming from H or a finger move, then the diagram for the triangle count in the

strip looks like Figure 8.2. It is easy to see that these maps all preserve the preferred

intersections.
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Proof. Let H0 = (Σ,β,α) be a diagram for (−M,−Γ) and apply the Sarkar–Wang

algorithm to obtain a nice diagram Hnice
0 . Decompose (−M ′,−Γ′) as (−M,−Γ)∪j−h1

j ∪k

−h2
k. We attach diagrammatic 1-handles to form a diagram Hnice

1 for (−M,−Γ) ∪j −h1
j

which is nice, since we have only modified the sutured region.

Now, attach diagrammatic 2-handles to Hnice
1 to obtain a diagram H2 = (Σ′,β ∪

β0,α ∪ α0) for (−M ′,−Γ′). Apply Sarkar–Wang again to get a nice diagram Hnice
2 =

(Σ′,β′ ∪ β′0,α ∪ α0). As discussed above, we can do this so that all finger moves are

performed in the complement of the strips for the contact handles, Σ′ \ Int(Σ). Thus,

the triangle map ψH2,Hnice2
sends generators of the form (y,x0) to generators of the form

(z,xnice0 ).

Now, let Hnice = (Σ,β′,α) be the Heegaard diagram for (−M,−Γ) obtained by

removing all the diagrammatic handles from Hnice
2 . Note that it is nice, since it differs

from Hnice
0 by some finger moves which appear in the Sarkar-Wang algorithm. Consider

the triple diagram (Σ′,β ∪ β0,β
′ ∪ β′0,α ∪ α0) for ΨH2,Hnice2

; let x0 and xnice0 be the

preferred intersections in β0 ∩ α0 and β′0 ∩ α0 respectively. Since we only care about

the image of the contact gluing map, we can restrict the triangle count for ΨH2,Hnice2
to

the subspace of SFC(H2) generated by tuples of the form (y,x0). This restricted count

is the same as the full triangle count for ΨH0,Hnice arising from (Σ,β,β′,α), so that for

a cycle y in SFC(H0), we have ψH2,Hnice2
(y,x0) = (ψH0,Hnice(y),xnice0 ). We can define a
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map φniceξ : SFC(Hnice)→ SFC(Hnice
2 ) by

φniceξ (ψH0,Hnice(y)) = (ψH0,Hnice(y),xnice0 ),

so that for any cycle z ∈ SFC(Hnice) we have

(φniceξ )∗[z] = [(z,xnice0 )].

By construction, (φniceξ )∗ has the desired form and is equal to the HKM map Φξ up to

graded isomorphism.
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[LOSS09] Paolo Lisca, Peter Ozsváth, András I. Stipsicz, and Zoltán Szabó, Heegaard
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tures with vanishing Ozsváth-Szabó contact invariants, Math. Ann. 353
(2012), no. 4, 1351–1376. MR 2944032

83



[Mat19] Daniel V. Mathews, Strand algebras and contact categories, Geom. Topol. 23
(2019), no. 2, 637–683. MR 3939043
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