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Abstract

This dissertation explores questions regarding the Weil sum of binomials, a �nite

�eld character sum originated from information theory. The Weil spectrum counts distinct

values of the Weil sum through invertible elements in the �nite �eld. The value of these

sums and the size of the Weil spectrum are of particular interest, as they link problems in

information theory, coding theory, and cryptography to other areas of math such as num-

ber theory and arithmetic geometry. In the setting of Niho exponents, we prove the Van-

ishing Conjecture of Helleseth (1971) on the presence of zero values in the Weil spectrum

and deduce bounds on the Weil sum. At certain roots of unity, we derive an exact formula

for the Weil sum. Finally, we state a conjecture on when the Weil spectrum contains at

least �ve elements, and prove it for a certain class of Niho exponents.

v



Chapter 1. Introduction

1.1. The Weil Sum and Motivation

Let F be a �nite �eld of characteristic p and size q = pn. Let µ : F → C be the

canonical additive character, i.e µ(x) = ζ
TrF/Fp (x)
p , where ζp = e2πi/p is a pth root of unity

and TrF/Fp(x) is the absolute trace function from F → Fp. If L is an extension of F , i.e

|L|= qm for some positive integer m, then µ extends to L by µ(x) = ζ
TrF/Fp (TrL/F (x))
p where

TrL/F (x) is the trace function from L→ F .

We are interested in a character sum of binomials over a �nite �eld F of the form:

∑
y∈F

µ(ayd + bye), (1.1.1)

where a, b ∈ F× and d 6= e. We say d is an invertible exponent over F if gcd(d, q − 1) =

1. In such case the power mapping x 7→ xd permutes the elements of F .

If d and e are invertible over F then we can reparameterize the character sum

above by setting y = a−1/dx1/e to obtain

∑
x∈F

µ(xd/e + ba−e/dx). (1.1.2)

So it is natural to de�ne the Weil sum for each a ∈ F as follows:

WF,s(a) =
∑
x∈F

µ(xs − ax).

where gcd(s, q − 1) = 1.

One observes that

WF,s(0) =
∑
x∈F

µ(xs) =
∑
x∈F

µ(x) = 0, (1.1.3)

since the map x 7→ xs permutes the elements of F .
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The Weil sum relates many problems from number theory to discreet mathematics.

Properties of the Weil sum including its values, number of values over the �nite �eld, and

its bounds are still not well understood. We note that in Eq. (1.1.1) and Eq. (1.1.2), if d =

1 and e = q − 2, then we obtain the Kloosterman sum
∑
x∈F×

µ(ax+ bx−1) = WF,q−2(ab)− 1.

The Kloosterman sum has many important applications in analytic number theory; see

[15]. Moreover, questions associated to these aspects can also be translated to equivalent

open problems in current research in information theory and cryptography. For instance,

determining the values of WF,s(a) for a ∈ F× is equivalent to the study of cross-correlation

functions between maximal linear sequences in information theory.

A maximal linear sequence, or an m-sequence has been used to generate pseudo-

random sequences in communication networks. One important criterion that makes such

sequences useful in remote sensing and communications is that they should have low cross-

correlation (See [7, 19, 6, 20, 5, 17, 1, 2, 9]). An m-sequence over the �nite �eld F always

has the trace representation (Tr(αsj+d))j∈Z/(pn−1)Z, where α is a primitive element of the

�eld, d is an integer called the shift, and gcd(s, pn − 1) = 1. We usually take d = 0 and

s = 1 as our reference sequence.

To measure how similar a pair of m-sequences is in a network, we de�ne the con-

cept of a cross correlation function between them.

De�nition 1.1.1. Let m be a positive integer, and let f = (fj)j∈Z/mZ and g = (gj)j∈Z/mZ

be m-sequences, where j ∈ Z/(pn − 1)Z. The cross correlation of f with g at shift d is

de�ned as

Cf,g(s) =
∑

j∈Z/mZ

e2πi(fj+d−gj)/p.

2



Consider the cross-correlation function between the sequence f = (fj) =

(TrF/Fp(αsj)) and the reference sequence g = (gj) = (TrF/Fp(αsj)) at a shift d. These

cross correlation functions turn out to be Weil sums:

Cf,g(d) =
∑

j∈Z/(q−1)Z

µ(αs(j+d) − αj)

=
∑

j∈Z/(q−1)Z

µ(αsj − αj−d)

=
∑
x∈F×

µ(xs − α−dx)

= −1 +WF,s(α
−d).

1.2. Properties and Conjectures

Since the Weil sum is a sum of roots of unity, it is an algebraic integer. In fact, the

Weil sum is a real number. This is clear when p = 2 since ζ2 = −1. When p is odd, note

that s is odd since gcd(s, q − 1) = 1. Then taking the conjugate of WF,s(a) yields

WF,s(a) =
∑
x∈F

µ(xs − ax)

=
∑
x∈F

µ(xs − ax)

=
∑
x∈F

µ(−(xs − ax))

=
∑
x∈F

µ((−x)s − a(−x))

= WF,s(a).

So when does the Weil sum become a rational integer? This was answered in a pa-

per of Tor Helleseth [7].
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Theorem 1.2.1 (Helleseth [7]). WF,s(a) ∈ Z for all a ∈ F× if and only if s ≡ 1 (mod p−

1).

Next, it is natural to wonder what kind of value one would get from the Weil sum.

We have seen that the WF,s(a) is always 0 at a = 0, and interestingly, this presence of

zero value is not known for nonzero elements a. We de�ne s to be singular if there is an

a ∈ F× such that WF,s(a) = 0. In 1971 Tor Helleseth proposed the following conjecture

[6, 7] on the presence of zero value.

Conjecture 1.2.2 (Helleseth Vanishing Conjecture). If q = |F |> 2 and s is an invertible

exponent over F such that s ≡ 1 (mod p− 1), then s is singular.

Now, if we put some restrictions on the exponent s, some partial results on the

Vanishing Conjecture can be obtained. For the �nite �eld L of order q = p2n, an expo-

nent s is called a Niho exponent if s is not a power of p (mod p2n − 1) and s ≡ pj

(mod pn − 1). If j = 0, then such exponent is called a normalized Niho exponent.

Niho exponents were �rst introduced by Yoji Niho in 1972 in his PhD thesis on the cross-

correlation function between an m-sequence and its d-decimation [19]. Since then further

research has been done using Niho exponents, and it has resulted in various applications in

coding theory, sequence design and cryptography [16]. Moreover, the Helleseth Vanishing

Conjecture was proved for Niho exponents for a �eld of characteristic 2 [3].

One useful fact about Weil sums with Niho exponents is that we can replace them

with normalized Niho exponents due to a result discussed in Aubry, Katz and Langevin

paper [22] (also see Lemma 4.2.2).

In this thesis, we prove the Helleseth Vanishing Conjecture holds true for the case

of Niho exponents, i.e extending the result in [3] for all characteristics p.
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Theorem 1.2.3. Let L be a �nite �eld where |L|= q = p2n for some odd prime p and posi-

tive integer n. Suppose that s is an invertible Niho exponent over L. Then s is singular.

The next questions of interest would be how many distinct values WF,s(a) takes as

a ranges over F , and what they are. We de�ne the Weil spectrum for some �xed s to be

the set {WF,s(a) | a ∈ F×}, and say that it is r-valued if |{WF,s(a) | a ∈ F×}|= r.

If s is a power of p modulo (q − 1), s is said to be degenerate. In fact, if s ≡ pj

(mod q − 1) for some nonnegative integer j, then

WF,s(a) =
∑
a∈F

µ(xs − ax)

=
∑
a∈F

µ(xp
j − ax)

=
∑
a∈F

ζ
TrF/Fp (xp

j−ax)
p

=
∑
a∈F

ζ
TrF/Fp (xp

j
)−TrF/Fp (ax)

p

=
∑
a∈F

ζ
TrF/Fp (x(1−a))
p ,

since Trace is an additive function (see Proposition 2.2.2) and TrF/Fp(xp
j
) = TrF/Fp(x).

From here we can easily see that for a degenerate power s, WF,s(a) takes only two

values as follows.

Theorem 1.2.4 (Helleseth [7]). If s is degenerate, then the Weil spectrum of WF,s(a) is

two-valued over F , where

WF,s(a) =


q if a = 1,

0 otherwise

If s is nondegenerate, then WF,s(a) takes at least three values over F×.
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The natural question from here is: When exactly is the Weil spectrum three-

valued? In fact, this does not seem to occur often. Currently, only eleven families of

three-valued Weil spectra are known [22, Table 1] and [13]. These are also conjectured to

be the only ones that occur. The numerical data of the rare occurrence of three-valued

spectra prompted Tor Helleseth in 1971 to give the following criteria for when this three-

valued property is never met [6, 7].

Conjecture 1.2.5 (Helleseth Three-valued Conjecture, 1971). Let F be a �nite �eld of

characteristic p. If [F : Fp] is a power of 2, then for any invertible exponent s, the spec-

trum of the Weil sum WF,s(a) is not three-valued.

More progress has been made towards the Three-valued Conjecture in comparison

to the Vanishing Conjecture, using various approaches from coding theory, cryptography

and number theory [1, 2, 3, 4, 9, 11, 12, 13, 14, 18, 22]. The cases for characteristic p = 2

and p = 3 in the Three-Valued Conjecture were proven by Daniel Katz in [11] and in [12],

respectively. Special families of the three-valued Weil sum for all characteristics p are also

addressed via the Welch Conjecture and the Niho Conjecture. Canteaut, Charpin, and

Dobbertin gave a proof to the Welch Conjecture in [2] and Hollmann and Xiang proved

both the Welch and Niho Conjectures in [9].

Notice that The Helleseth Three-valued Conjecture gives a criteria for the Weil

spectrum of a nondegenerate exponent to be at least four values. We propose a similar

conjecture for the �ve-valued behavior.

Conjecture 1.2.6. Let L be a quadratic extension of a �nite �eld F of order pn, where

p is an odd prime. Let s = 1 + k(pn − 1) be an invertible Niho exponent over L, d1 =

gcd(k, pn + 1), and d2 = gcd(k − 1, pn + 1).

6



If either

(i) d1 + d2 ≥ 5, or

(ii) d1 + d2 = 3 and pn ≡ 11 (mod 12),

satis�es, then the Weil spectrum over L is at least �ve-valued. Moreover, in case (i), the

�ve values are {0,−pn, pn, 2αpn, (2β + 1)pn} where α, β ≥ 1 are integers. In case (ii), at

least four values are {0,−pn, pn, 2pn}.

A special case of the condition d1 + d2 ≥ 5 in Conjecture 1.2.6 is pn ≡ 2 (mod 3).

Hence, we can restate the conjecture with simpler assumptions as follows.

Conjecture 1.2.7. Let p be an odd prime and L be a quadratic extension of a �nite �eld

F of order pn. Suppose s = 1 + k(pn − 1) is an invertible Niho exponent over L. If pn ≡ 2

(mod 3), then the Weil spectrum has at least �ve values of the form {0,−pn, pn, 2αpn, (2β+

1)pn} for integers α, β ≥ 1.

Remark 1.2.8. Since s is an invertible exponent over L, gcd(s, p2n − 1) = 1. Hence, if

pn ≡ 2 (mod 3), then s ≡ 1 or 2 (mod 3). Thus, k ≡ 0 (mod 3) and (k − 1) ≡ 2 (mod 3),

or k ≡ 1 (mod 3) and (k − 1) ≡ 0 (mod 3). Moreover, pn + 1 is divisible by 2 and 3.

Therefore either d1 or d2 in Conjecture 1.2.6 is divisible by 3. The same conclusion can be

made for the divisibility of either d1 or d2 by 2. Hence, d1 + d2 ≥ 5.

As partial progress to our above conjectures, we show case (i) of Conjecture 1.2.6

holds true for su�ciently large primes. Finally, we obtain the proof for case (ii). We have

the following theorems.

Theorem 1.2.9. Let L be a quadratic extension of a �nite �eld F of order pn, where p is

an odd prime and n ≥ 2 is an integer. Let k ≥ 2 be an integer such that k <
p

2
+ 1, and

s = 1 + k(pn − 1) be an invertible Niho exponent over L. Let d1 = gcd(k, pn + 1), and

7



d2 = gcd(k−1, pn+ 1). If d1 +d2 ≥ 5, then the Weil spectrum over L is at least �ve-valued.

Moreover, four of those �ve values are {0,−pn, 2αpn, (2β + 1)pn}, where α, β ≥ 1.

Remark 1.2.10. If k = 0 or 1 then s is degenerate. So in general, we can take 2 ≤ k ≤

pn, since k + pn + 1 gives the same exponent s (mod p2n − 1) as k over L.

For the case of n = 1 in Theorem 1.2.9, taking integer k such that p1/2 > 2(k − 1)

would yield the same conclusion.

Theorem 1.2.11. Let L be a quadratic extension of a �nite �eld F of order pn, where

p is an odd prime. Let s = 1 + k(pn − 1) be an invertible Niho exponent over L, d1 =

gcd(k, pn + 1), and d2 = gcd(k − 1, pn + 1). If d1 + d2 = 3 and pn ≡ 11 (mod 12),

then the Weil spectrum over L is at least �ve-valued. Moreover, four of those �ve values

are {0,−pn, pn, 2pn}.

1.3. Outline of Thesis

The organization of our thesis is as follows. In Chapter 2, we review some back-

grounds on �nite �elds, character sums from additive characters and multiplicative

characters. We link the discussion of additive character sum to the Weil sum of binomials

and show an interpretation of the Weil sum as a projection coe�cient. The chapter ends

with a discussion of how Gauss sum relates to the Weil sum. Chapter 3 discusses the

power moment property of the Weil sum and show how this plays a role in our proof of

the Helleseth Vanishing Conjecture in the case of Niho exponents. From here, we deduce

some bounds on the Weil sum in the setting of Niho exponents. Chapter 4 �rst proves a

formula for the Weil sum at certain roots of unity. We then move on to the discussion of

Galois action over the �nite �eld on the Weil sum values. The �nal section of this chapter

8



gives the proofs of Theorem 1.2.9 and Theorem 1.2.11. Finally, we give some concluding

remarks and future directions.
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Chapter 2. Preliminaries

In this chapter, we review some background on �nite �elds and character sums over

�nite �elds. We will discuss character sums formed by additive characters then multiplica-

tive characters.

2.1. Finite Fields

Throughout this discussion, we let F be a �nite �eld of order q. The prime �eld of

F must be of the form Fp for some prime p. Moreover, q = pn, where [F : Fp] = n. We

recall some properties about �nite �elds and direct the readers to the discussion of �nite

�elds in [8].

Theorem 2.1.1. [8, Lemma 5.3.2] A polynomial of degree d over a �eld can have at most

d roots in any extension �eld.

Theorem 2.1.2. [8, Theorem 7.1.2] The multiplicative group F× has q − 1 elements and

is cyclic.

Lemma 2.1.3. F is a �nite �eld with q = pn elements if and only if F is the splitting �eld

of the polynomial f(x) = xp
n − x over Fp.

Proof. Suppose F is a �nite �eld of order q = pn. Then every element of F satisfy xp
n

=

x. Since xp
n − x has at most pn roots over F , F contains all the roots of xp

n − x. Hence, F

is the splitting �eld of the polynomial f(x) = xp
n − x over Fp.

Now, suppose F is the splitting �eld of the polynomial f(x) = xp
n − x over Fp. Let

F ′ ⊂ F be the sub�eld containing all roots of xp
n − x. Thus, F ′ is a splitting �eld, and

F ′ = F . So |F |= |F ′|≤ pn. Since xp
n − x has a formal derivative of −1, it is separable.

Therefore, |F |= pn.

10



De�nition 2.1.4. Let σ : F → Fp be de�ned by σ(x) = xp, for every x ∈ F . Then σ is a

�eld automorphism called the Frobenius automorphism.

Theorem 2.1.5. F/Fp is Galois and Gal(F/Fp) = 〈σ〉.

Proof. By Lemma 2.1.3, F is the splitting �eld of the separable polynomial xp
n − x over

Fp, so F/Fp is Galois.

Let Fix(〈σ〉) be the �xed �eld of 〈σ〉. For x ∈ Fp, σ(x) = xp = x. Hence, Fp ⊂

Fix(〈σ〉). On the other hand, every element �xed by σ is a root of the polynomial xp − x

so Fix(〈σ〉) has at most p elements. Since 〈σ〉 is a subgroup of Gal(F/Fp) and the �xed

�eld of 〈σ〉 is precisely Fp, Gal(F/Fp) = 〈σ〉.

The above theorem has the following consequence for an extension �eld of F .

Corollary 2.1.6. Let L be a �nite extension of a �nite �eld F , with |L|= qm, |F |= q =

pn. Then L/F is a Galois extension. Moreover, Gal(L/F ) is cyclic and is generated by the

general Frobenius automorphism τ(x) = xp
n
, for every x ∈ L.

Proof. The proof is the same as that of Theorem 2.1.5 when we replace Fp by F , σ by τ ,

and xp by xp
n
.

2.2. Additive Characters

Let ψ : Fp → C× be the homomorphism de�ned by ψ(x) = ζxp = e2πix/p for all

x ∈ Fp (we consider as x ∈ Zp ∼= Fp). This is the canonical additive character on the prime

�eld Fp.

Now, to de�ne such a character for a general �eld F , we need to construct an addi-

tive homomorphism from this �eld to the prime �eld Fp. We will do this generally for an

extension L of degree m of a �nite �eld F .

11



De�nition 2.2.1. The trace map is de�ned by TrL/F (x) = x+ xq + xq
2

+ · · ·+ xq
m−1

.

Proposition 2.2.2. [10] Let L be an extension of degree m of a �eld F , where |F |= q =

pn. If α, β ∈ L and a ∈ F , then

(1) Tr(α) ∈ F .

(2) Tr(α + β) = Tr(α) + Tr(β).

(3) Tr(aα) = aTr(α).

(4) Tr is surjective.

(5) TrF/Fp(TrL/F (α)) = TrL/Fp(α).

Proof. (1) Note that

(TrL/F (α))q = (α + αq + αq
2

+ · · ·+ αq
m−1

)q

= αq + αq
2

+ · · ·+ αq
m−1

+ αq
m

= αq + αq
2

+ · · ·+ αq
m−1

+ α

= TrL/F (α).

Hence, Tr(α) ∈ F .

(2) We have that

Tr(α + β) = (α + β) + (α + β)q + (α + β)q
2

+ · · ·+ (α + β)q
m−1

)

= (α + β) + (αq + βq) + (αq
2

+ βq
2

) + · · ·+ (αq
m−1

+ βq
m−1

)

= (α + αq + αq
2

+ · · ·+ αq
m−1

) + (β + βq + βq
2

+ · · ·+ βq
m−1

)

= Tr(α) + Tr(β).

(3) We have that

Tr(aα) = aα + aqαq + aq
2

αq
2

+ · · ·+ aq
m−1

αq
m−1

= a(α + αq + αq
2

+ · · ·+ αq
m−1

)

= aTr(α).

(4) Consider the polynomial

TrL/F (x) = x+ xq + xq
2

+ · · ·+ xq
m−1

,
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which has at most qm−1 roots in L.

Since L has qm elements, TrL/F (α) = γ 6= 0, for some α ∈ L.

Now, for every c ∈ F , by part (3), Tr((c/γ)α) = c/γ Tr(α) = c.

(5) We have that

TrF/Fp(TrL/F (α)) = TrF/Fp(α + αq + · · ·+ αq
m−1

)

= TrF/Fp(α) + TrF/Fp(αq) + · · ·+ TrF/Fp(αq
m−1

)

= TrF/Fp(α) + TrF/Fp(αp
n

) + · · ·+ TrF/Fp(αp
n(m−1)

)

= (α + αp + · · ·+ αp
n−1

) + (αp
n

+ αp
n+1

+ · · ·+ αp
n+n−1

)+

· · ·+ (αp
n(m−1)

+ αp
n(m−1)+1

+ · · ·+ αp
n(m−1)+n−1

)

= α + αp + · · ·+ αp
nm−1

= TrL/Fp(α).

Remark 2.2.3. TrF/Fp(x) = x+ xp + · · ·+ xp
n−1

is called the absolute trace function.

To de�ne a canonical additive character µ : F → C×, we compose the

trace map with ψ, i.e µ(x) = ζ
TrF/Fp (x)
p . Over the extension �eld L, µ extends to

µ(x) = ζ
TrF/Fp (TrL/F (x))
p .

Proposition 2.2.4. [10] The additive character sum µ has the following properties:

(1) µ(α + β) = µ(α)µ(β).

(2) There is an α ∈ F such that µ(α) 6= 1.

(3) (Orthogonal property)
∑
α∈F

µ(α) = 0.

Proof. (1) Since Trace is additive we have that

µ(α + β) = ζTr(α+β)
p = ζTr(α)+Tr(β)

p = µ(α)µ(β).

(2) Since Trace map is onto, Tr(α) = 1 for some α ∈ F . Then µ(α) = ζp 6= 1.
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(3) Let β ∈ F such that µ(β) 6= 1. Then

µ(β)
∑
α∈F

µ(α) =
∑
α∈F

µ(b)µ(α)

=
∑
α∈F

µ(α + β)

=
∑
α∈F

µ(α),

since the map α 7→ β + α for all α ∈ F gives a bijection on F .

Hence,
∑
α∈F

µ(α) = 0.

De�nition 2.2.5. For all functions f, g : F → C, we de�ne the inner product

〈f, g〉 =
1

q

∑
x∈F

f(x)g(x),

where · stands for complex conjugation.

For a ∈ F , let µa(x) = µ(ax). Then the set of additive characters {µa : a ∈ F} form

an orthonormal basis, with respect to the above inner product, for the space of functions

from F to C. In fact, for a, b ∈ F ,

〈µa, µb〉 =
1

q

∑
x∈F

µa(x)µb(x)

=
1

q

∑
x∈F

ζ
TrF/Fp ((a−b)x)
p

=


1 if b = a,

0 if b 6= a

,

by the orthogonal property of additive characters in Proposition 2.2.4.

We also note that µ0(x) = 1 for all x ∈ F . One observes that the additive character

µ(x) in our introduction is µ1(x).
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If we let fs be the function fs(x) := µ(xs), our Weil sum is the coordinates (or

the Fourier coe�cients) up to a factor of 1/q of fs with respect to the orthonormal basis

{µa : a ∈ F}. More precisely, the Weil sum becomes

WF,s(a) =
∑
x∈F

µ(xs − ax)

=
∑
x∈F

µ(xs)µa(x)

= q · 〈fs, µa〉,

and

fs =
1

q

∑
a∈F

WF,s(a) · µa.

On the other hand,

〈fs, fs〉 = 1,

and hence,

1 =

〈∑
a∈F

1

q
WF,s(a) · µa,

∑
b∈F

1

q
WF,s(b) · µb

〉
=

1

q2

∑
a∈F

|WF,s(a)|2.

The Weil sum is shown to only take real values [11, Theorem 2.1(c)], so the relation

above becomes

1 =
1

q2

∑
a∈F

WF,s(a)2. (2.2.1)

This relation is also called the second power moment of the Weil sum (see Sec-

tion 3.1).

2.3. Multiplicative Characters

A multiplicative character on Fp is a homomorphism χ : F×p → C×. The trivial

multiplicative character is de�ned by ε(a) = 1 for all a ∈ Fp. We can extend the domain to

15



Fp by letting ε(0) = 1 and χ(0) = 0 if χ 6= ε.

Proposition 2.3.1. [10] Let χ be a multiplicative character and a ∈ F×p . Then

(a) χ(1) = 1.

(b) χ(a) is a (p− 1)st root of unity.

(c) χ(a−1) = χ(a)−1 = χ(a).

Proof. (a) χ(1) = χ(1 · 1) = χ(1)χ(1). Since χ(1) 6= 0, χ(1) = 1.

(b) We have that

1 = χ(1) = χ(ap−1) = χ(a)p−1.

Thus, χ(a) is a (p− 1)st root of unity.

(c) We have that

χ(a)χ(a) = χ(1) = χ(a−1a) = χ(a−1)χ(a).

This means that χ(a−1) = χ(a)−1 = χ(a).

A multiplicative character sum on Fp is de�ned as
∑
a∈Fp

χ(a).

Proposition 2.3.2. [10] Let χ be a multiplicative character. If χ 6= ε, then
∑
a∈Fp

χ(a) = 0.

This is called the orthogonal property of multiplicative characters. If χ = ε, then∑
a∈Fp

χ(a) = p

Proof. Suppose χ 6= ε. Let b ∈ Fp be such that χ(b) 6= 1. Now

χ(b)
∑
a∈Fp

χ(a) =
∑
a∈Fp

χ(b)χ(a)

=
∑
a∈Fp

χ(ba)

=
∑
a∈Fp

χ(a),
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since a 7→ ba gives a bijection on Fp. Since χ(b) 6= 1,
∑
a∈Fp

χ(a) = 0. If χ = ε, then

∑
a∈Fp

ε(a) =
∑
a∈Fp

1 = p.

The multiplicative characters over F×p form a group under multiplication, i.e

χγ(x) = χ(x)γ(x) for characters χ, γ over F×p , with the trivial character ε as the identity

element, and the inverse of χ as χ in Proposition 2.3.1. We denote this group by F̂p.

Proposition 2.3.3. [10] F̂p is cyclic of order p − 1. If a ∈ F×p and a 6= 1, then there is a

character χ such that χ(a) 6= 1.

Proof. Since F×p is cyclic, let g be a generator for F×p .

For every a ∈ F×p , a = gl. Then χ(a) = χ(g)l. So we only need to determine χ(g) to

�nd the values of χ at each element in the �eld.

Recall that χ(g) is a (p − 1)st root of unity, and there are exactly p − 1 of these.

Hence, |F̂p|≤ p− 1.

Let γ be such that

γ(gk) = e2πi k
p−1 .

One can easily check that γ is a character.

Claim: p− 1 is the smallest integer such that γn = ε.

To see this , if γn = ε for some integer n, then

1 = ε(g) = γn(g) = e2πi n
p−1 .
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Hence, p− 1 divides n. Since

γp−1(a) = γ(a)p−1 = γ(ap−1) = γ(1) = 1,

we have γp−1 = ε. Therefore, p − 1 is the smallest integer such that γn = ε. Combine this

fact with |F̂p|≤ p − 1, we see that F̂p has exactly p − 1 characters. Moreover, it is cyclic

with γ as its generator.

Let a ∈ F×p and a 6= 1. Then a = gl where p− 1 - l. We have that

γ(a) = γ(g)l = e2πi l
p−1 6= 1.

Corollary 2.3.4. [10] If a ∈ F×p and a 6= 1, then
∑
χ

χ(a) = 0, where the summation is

over the group of characters on Fp.

Proof. Since a 6= 1, there is a character λ such that λ(a) 6= 1. We have

λ(a)
∑
χ

χ(a) =
∑
χ

λ(a)χ(a) =
∑
χ

λχ(a) =
∑
χ

χ(a),

since λχ runs over the group of characters. Therefore,
∑
χ

χ(a) = 0.

To extend the concept of a multiplicative character over a general �eld of order q =

pn, we need to construct a multiplicative homomorphism this �eld back to the prime �eld

Fp, similar to our construction of the additive character over a general �eld. This is called

the norm map. We will do this generally for an extension L of a �nite �eld F of degree m.

De�nition 2.3.5. Let α ∈ L. The norm of α from L to F is de�ned by

NL/F (α) = α · αq . . . αqm−1

.
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For the norm map, we have the following properties.

Proposition 2.3.6. [10] Let L be an extension of degree m of a �eld F , where |F |= q =

pn. If α, β ∈ L and a ∈ F , then

(a) NL/F (α) ∈ F .

(b) NL/F (αβ) = NL/F (α)NL/F (β).

(c) NL/F (aα) = amNL/F (α).

(d) NL/F maps L× onto F×.

(e) NF/Fp(NL/F (α)) = NL/Fp(α).

Proof. (a) We have that

NL/F (α)q = (α · αq . . . αqm−1

)q

= αq · αq2 . . . αqm

= αq · αq2 . . . α
= NL/F (α).

(b) We have that

NL/F (αβ) = (αβ) · (αβ)q . . . (αβ)q
m−1

= (α · αq . . . αqm−1

) · (β · βq . . . βqm−1

)

= NL/F (α)NL/F (β).

(c) Since aq = a, NL/F (a) = a · aq . . . aqm−1
= am.

(d) We compute the kernel of NL/F . An element α ∈ Ker(NL/F ) if and only if

1 = α · αq . . . αqm−1

= α1+q+···+qm−1

= α
qs−1
q−1 .

Since L× is cyclic and
qs − 1

q − 1
| qs − 1, the equation x

qs−1
q−1 = 1 has

qs − 1

q − 1
solutions.

By part (b), NL/F : L× → F× is a group homomorphism and

Ker(NL/F ) = {α ∈ L | α
qs−1
q−1 }.
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By the First Isomorphism Theorem, the image of NL/F has q − 1 elements.

Therefore, NL/F is onto.

(e) We have that

NF/Fp(NL/F (α)) = NF/Fp(α · αq . . . αqm−1

)

= NF/Fp(α)NF/Fp(αq) . . . NF/Fp(αq
m−1

)

= NF/Fp(α)NF/Fp(αp
n

) . . . NF/Fp(αp
n(m−1)

)

= (α · αp . . . αpn−1

)(αp
n · αpn+1

. . . αp
n+n−1

)

. . . (αp
n(m−1) · αpn(m−1)+1

. . . αp
n(m−1)+n−1

)

= α · αp . . . αpnm−1

= NL/Fp(α).

To de�ne a multiplicative character χ′ : F → C×, we compose the norm

map with χ, i.e χ′(α) = χ(NF/Fp(α)). Over the extension �eld L, χ′ extends to

µ(α) = χ(NF/Fp(NL/F (α))). For simplicity, from now on, we will just relabel a multi-

plicative character over a given �eld χ.

2.4. Gauss Sums

In this section we review Gauss sum at a character and show how it relates to the

Weil sum.

De�nition 2.4.1. Let χ be a multiplicative character on F of order q = pn and r ∈ F .

The Gauss sum on F at χ is de�ned as

gr(χ) =
∑
a∈F

χ(a)µ(ra).
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Proposition 2.4.2. [10] We have the following

gr(χ) =



q if r = 0 and χ = ε,

0 if r = 0 and χ 6= ε,

0 if r 6= 0 and χ = ε,

χ(r−1)g1(χ) otherwise.

Proof. We have that

g0(ε) =
∑
a∈F

ε(a) = q.

If χ 6= ε, then

g0(χ) =
∑
a∈F

χ(t) = 0,

by the orthogonal property of multiplicative characters. If r 6= 0, then

gr(ε) =
∑
a∈F

µ(ra) = 0,

by the orthogonal property of additive characters.

If r 6= 0 and χ 6= ε, then

χ(r)gr(χ) = χ(r)
∑
a∈F

χ(a)µ(ra) =
∑
a∈F×

χ(ra)µ(ra) = g1(χ)

Hence, gr(χ) = χ(r−1)g1(χ).

One sees that the Gauss sum can be viewed as the discrete Fourier transform of

the character χ at m. This realization can be further generalized in other exponential or

character sums to give a useful perspective to study an exponential function of interest by

understanding its Fourier transform with a character. This is one of the main reasons why

21



exponential and character sums would naturally arise in various settings. For instance,

in the �nite �eld setting, functions including the exponential functions can be expressed

using the set of additive characters, whose coe�cients can be computed using discrete

Fourier transforms. This proves to be extremely useful in working with functions over �-

nite �elds.

Consider g1(χ) =
∑
a∈F

χ(a)µ(a) =
∑
a∈F×

χ(a)µ(a). Note that

g1(χ) =
∑
a∈F

χ(a)µ(a)

=
∑
a∈F

χ(a)µ(−a)

= χ(−1)
∑
a∈F

χ(−a)µ(−a)

= χ(−1)g1(χ).

Now, we consider the absolute value of g1(χ).

Proposition 2.4.3. If χ 6= ε, then |g1(χ)|= √q.

Proof. Let r 6= 0. By Proposition 2.4.2,

gr(χ) = χ(r−1)g1(χ) = χ(r)g1(χ),

and

gr(χ) = χ(r−1)g(χ).

Hence,

gr(χ)gr(χ) = χ(r−1)χ(r)g1(χ)g1(χ) = |g1(χ)|2. (2.4.1)
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Summing the right hand side of Eq. (2.4.1) over all r ∈ F we have

∑
r∈F

|g1(χ)|2= (q − 1)|g1(χ)|2,

because g0(χ) = 0.

We also have that

∑
r∈F

gr(χ)gr(χ) =
∑
r∈F

(∑
a∈F

χ(a)µ(ra)

)(∑
b∈F

χ(b)µ(rb)

)

=
∑
r∈F

∑
a∈F

∑
b∈F

χ(a)χ(b)µ(ra− rb)

=
∑
a∈F

∑
b∈F

χ(a)χ(b)

(∑
r∈F

µ(r(a− b))

)
.

If a = b then the inner sum becomes q. If a 6= b, then it is 0.

We can rewrite the above sum

∑
r∈F

gr(χ)gr(χ) =
∑
a∈F

χ(a)χ(a)q = (q − 1)q.

It now follows that

(q − 1)|g1(χ)|2= (q − 1)q,

or |g1(χ)|= √q.

Finally, we are interested to relate the Weil sum to the Gauss sum. This is dis-

cussed extensively in [22].

By Fourier inversion, if a ∈ F×, we have that

µ(a) =
1

q − 1

∑
χ∈F̂×

g1(χ)χ(a).
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Hence, for a ∈ F×,

WF,s(a) =
∑
x∈F

µ(xs − ax)

= 1 +
∑
x∈F×

µ(xs)µ(ax)

= 1 +
1

(q − 1)2

∑
x∈F×

∑
χ∈F̂×

g1(χ)χ(xs)

∑
ϕ∈F̂×

g1(ϕ)ϕ(−ax)


= 1 +

1

(q − 1)2

∑
x∈F×

∑
χ,ϕ∈F̂×

g1(χ)g1(ϕ)χs(x)ϕ(−a)ϕ(x)

= 1 +
1

(q − 1)2

∑
χ,ϕ∈F̂×

g1(χ)g1(ϕ)ϕ(−a)

(∑
x∈F×

χsϕ(x)

)

= 1 +
1

(q − 1)2

∑
χ,ϕ∈F̂×
ϕ=χs

g1(χ)g1(ϕ)ϕ(−a)

(∑
x∈F×

χsϕ(x)

)

= 1 +
1

(q − 1)

∑
χ∈F̂×

g1(χ)g1(χs)χs(−a)

=
q

q − 1
+

1

(q − 1)

∑
χ∈F̂×
χ 6=ε

g1(χ)g1(χs)χs(−a).
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Chapter 3. Weil Sums of Binomials

3.1. Power Moments

Relation (2.2.1) can also be proved using the cross-correlation function in [11]. In

fact, it is called the second power moment of the Weil sum. In general we can consider the

summation of all Weil sums in the �nite �eld raised to a positive integer m. This is called

the mth power moment. For the �rst few moments we have the following result which was

proved in [11].

Lemma 3.1.1. [11] Let F be a �nite �eld of order pn and s be a �xed invertible exponent.
Then

(i)
∑
a∈F

WF,s(a) = pn,

(ii)
∑
a∈F

WF,s(a)2 = p2n, and

(iii)
∑
a∈F

WF,s(a)3 = p2n · |R|, where R = {x ∈ F | (1− x)s + xs − 1 = 0}.

As for the settings of a quadratic extension L over F , we have the following mo-

ment property of the Weil sum in di�erent orbits under the multiplication action of F× on

L×.

Lemma 3.1.2. Let F be a �nite �eld of order pn and L be a quadratic extension of F .

Suppose that s is an invertible exponent over L and s ≡ 1 (mod pn − 1). Then for a �xed

b ∈ L×,

∑
a∈F

WL,s(ab) =


p2n if b ∈ F×,

0 otherwise.

Proof. The �rst case for b ∈ F was proved in [22, lemma 2.5]. We restate that proof here,

then prove the second equality afterwards.
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Case 1: Suppose b ∈ F×.

We have that

∑
a∈F

WL,s(ab) =
∑
a∈F

WL,s(a)

=
∑
a∈F

∑
x∈L

µ(xs − ax)

=
∑
x∈L

µ(xs)
∑
a∈F

ζ
TrF/Fp (−a(TrL/F (x)))
p .

For each x ∈ L such that u = TrL/F (x) 6= 0, then the inner sum becomes

∑
a∈F

ζ
TrF/Fp (−au)
p = 0.

Hence the above sum becomes

∑
a∈F

WL,s(a) = pn ·
∑
x∈L

TrL/F (x)=0

µ(xs).

Notice that if TrL/F (x) = 0, then 0 = TrL/F (x) = xp
n

+ x, or xp
n

= −x. Hence,

TrL/F (xs) = xsp
n

+ xs = (−x)s + xs. If s is odd then this makes TrL/F (xs) = 0. Now,

suppose s is even. Since gcd(s, q − 1) = 1, this case is only possible if p = 2. Then

TrL/F (xs) = 2xs = 0. Thus,

∑
a∈F

WL,s(a) = pn ·
∑
x∈L

TrL/F (x)=0

1 = p2n.

For odd p, the last equality follows since the elements in L such that 0 = TrL/F (x) =

xp
n

+ x (or xp
n

= −x) are precisely 0 or in H \ F×, where H is the unique subgroup of L×

with [H : F×] = 2. For p = 2, the equality follows since 0 = TrL/F (x) = x2n + x = x2n − x

means x ∈ F .
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Case 2: Suppose b /∈ F×.

Observe that

∑
a∈F

WL,s(ab) =
∑
a∈F

∑
x∈L

µ(xs − abx)

=
∑
x∈L

µ(xs)
∑
a∈F

ζ
TrF/Fp (−a(TrL/F (bx)))
p .

For each x ∈ L such that u = TrL/F (bx) 6= 0, then the inner sum becomes

∑
a∈F

ζ
TrF/Fp (−au)
p = 0.

Hence,

∑
a∈F

WL,s(ab) = pn ·
∑
x∈L

TrL/F (bx)=0

µ(xs).

Now we consider the equation 0 = TrL/F (y) = yp
n

+ y = y(yp
n−1 + 1) over

L. Note that the polynomial yp
n

+ y has formal derivative of 1 so it is separable over L

with pn distinct roots. Let x0 be a non-zero element such that bx0 is a nonzero solution to

TrL/F (y) = 0. Then all the roots of the polynomial are of the form cbx0, where c ∈ F .

Note that TrL/F (x0) 6= 0 because b 6∈ F .

Now, suppose that 0 = TrL/F (xs0) = xs0(1 + x
s(pn−1)
0 ). This means x

s(pn−1)
0 = −1

since x0 is nonzero. Then xp
n−1

0 = (−1)1/s, where 1/s is the inverse of s modulo p2n − 1. If

p is odd, then 1/s is odd and xp
n−1

0 = −1, which contradicts TrL/F (x0) 6= 0. If p = 2, then

xp
n−1

0 = 1. This also contradicts TrL/F (x0) 6= 0 in L = F22n . Therefore, TrL/F (xs0) 6= 0.
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Hence,

∑
a∈F

WL,s(ab) = pn ·
∑
c∈F

µ((cx0)s)

= pn ·
∑
c∈F

ζ
TrF/Fp (cTrL/F (xs0))
p

= 0.

Note that the second-to-last equality follows from s ≡ 1 (mod pn − 1) and cs = c in

F .

The conclusion of Lemma 3.1.2 also implies the �rst moment property of the Weil

sum.

3.2. The Helleseth Vanishing Conjecture in the Case of Niho Exponents

Our goal in this section is to prove the Vanishing Conjecture for the case of Niho

exponent s:

Theorem 3.2.1. Let L be a �nite �eld where q = p2n for some odd prime p and positive

integer n. Suppose that s is an invertible Niho exponent over L. Then s is singular.

We �rst start with a lemma that gives a formula for Weil sum WL,s(a) based on the

cardinality of a relevant set.

Lemma 3.2.2. Let L be the quadratic extension of the �nite �eld F . Assume that s is an

invertible Niho exponent over L. Let Ka,s = {x ∈ L× | TrL/F (xs − ax) = 0}.

Then |Ka,s| is a multiple of (pn − 1) and

WL,s(a) = pn · |Ka,s|
pn − 1

− pn.

Furthermore, WL,s(a) is divisible by pn.
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Remark 3.2.3. The �rst statement of the theorem was also proved in [22].

Proof. By Lemma 4.2.2, we can replace the condition s ≡ pj (mod pn − 1) by s ≡ 1

(mod pn − 1).

As seen in the proof of Lemma 3.1.2, the equation yp
n

+ y = 0 has pn distinct roots

over L. Hence,

|K0,s|= |{x ∈ L× | (xs)p
n

+ xs = 0}|= pn − 1.

So the identity 0 = WL,s(0) = pn · |K0,s|
pn − 1

− pn holds. We now assume a 6= 0.

We have

WL,s(a) =
∑
x∈L×

µ(xs − ax) + µ(0) =
∑
x∈L×

µ(xs − ax) + 1.

For any y ∈ L×, we can write y = bx for some b ∈ F×, and

TrL/F ((bx)s − a(bx)) = TrL/F (bxs − abx) = bTrL/F (xs − ax).

Therefore, each element y in the coset x̄ := xF× either lies in Ka,s or not depending

on whether x lies in Ka,s or not. This implies that |Ka,s| is a multiple of |F×|= pn − 1. We

then rewrite
∑
x∈L×

µ(xs − ax) as follows.

∑
x∈L×

µ(xs − ax) =
∑
x∈{x̄}

∑
b∈F×

ζ
TrF/Fp (TrL/F ((bx)s−a(bx)))
p

=
∑
x∈{x̄}

∑
b∈F×

ζ
TrF/Fp (b(TrL/F (xs−ax)))
p

=
∑
x∈{x̄}

∑
b∈F

ζ
TrF/Fp (b(TrL/F (xs−ax)))
p − (pn + 1).
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If x /∈ Ka,s, then for a �xed equivalence class x̄ the inner sum

∑
b∈F

ζ
TrF/Fp (b(TrL/F (xs−ax))
p =

∑
u∈F

ζ
TrF/Fp (u)
p

is 0; otherwise it is pn.

Thus,

WL,s(a) =
pn|Ka,s|
pn − 1

− (pn + 1) + 1

= pn · |Ka,s|
pn − 1

− pn.

This completes the proof.

Now we are ready to give a proof of Theorem 3.2.1.

Proof of Theorem 3.2.1. By Lemma 3.2.2, WL,s(a) = pn · ha for some ha ∈ Z. Speci�cally,

h0 = 0 since WL,s(0) = 0. Applying this and relation (2.2.1) to the setting of a �eld L of

order q = p2n, we have

q = p2n =
∑
a∈L×

h2
a. (3.2.1)

If ha = 0 for some a ∈ L×, then the Vanishing conjecture holds. To prove this,

we use proof by contradiction and assume that ha 6= 0 for all a ∈ L×. If |ha|= 1 for all

a ∈ L×, then from (3.2.1), we have that q − 1 = q, which is not possible. So |ha′ |≥ 2 for

some a′ ∈ L, then

∑
a∈L×

h2
a ≥

∑
a∈L×
a6=a′

h2
a + 22 = (q − 2) + 4 = q + 2 > q,

which also contradicts (3.2.1).

So at least WL,s(a) = 0 for some a ∈ L×.
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As a consequence to Theorem 3.2.1, the Helleseth Vanishing Conjecture holds true

for Fp2 .

Corollary 3.2.4. Suppose s is an invertible exponent over Fp2 and s ≡ 1 (mod (p − 1)),

then the Helleseth Vanishing Conjecture holds for the �eld Fp2.

3.3. Bounds on the Weil Sum

Recall that F is a �nite �eld of order q = pn. First, we consider the Weil sum

WF,s(a). Since the Weil sum is a sum of roots of unity and by triangle inequality, we al-

ways have |WF,s(a)|≤ q. In fact, WF,s(a) is only equal to q if the exponent s is degenerate.

Lemma 3.3.1. [11] If s is nondegenerate, |WF,s(a)|< q.

Proof. Since each pth root of unity has length ≤ 1, |WF,s(a)|= q if and only if all the roots

of unity equal 1. That means, for all x ∈ F , Tr(xs − ax) = Tr(xs) − Tr(ax) = 0. In other

words, the polynomial

xs + xsp + · · ·+ xsp
n−1 − (ax+ apxp + · · ·+ ap

n−1

xp
n−1

) = 0 (mod xq − x).

If s is nondegenerate then s 6≡ 1, p, . . . , pn−1 (mod q − 1). Hence all the exponents of x

in the above polynomial are distinct modulo q − 1 and cannot be reduced to zero modulo

xq − x.

The above bound is considered a "naive" bound on the Weil sum. Using the Weil-

Carlitz-Uchiyama bound on character sums in [21], we can obtain a better bound as fol-

lows.

Theorem 3.3.2. Let F be a �nite �eld and d a nondegenerate invertible exponent over F.

Then |WF,s(a)|≤ (s− 1)
√
|F | for every a ∈ F .
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Now we revisit our setting with a Niho exponent over a quadratic extension L over

F . We utilize results in Section 3.2 to obtain bounds for WL,s(a).

Lemma 3.2.2 gives a formula for WL,s(a) based on the cardinality of the set Ka,s.

By identifying �eld elements in Ka,s, we can bound |Ka,s| in order to deduce bounds on

WL,s(a).

Proposition 3.3.3. Let a ∈ F and p be an odd prime. Suppose x2(pn−1) = 1 and x /∈ F ,

then TrL/F (xs − ax) = 0.

Proof. Since x2(pn−1) = 1 and x /∈ F , xpn−1 = −1.

We have that x(pn−1)2 = xp
2n−1−2(pn−1) = (x2(pn−1))−1 = 1. Now,

TrL/F (xs − ax) = TrL/F (xs)− aTrL/F (x)

= xs + xsp
n − a(x+ xp

n

)

= xs(1 + x(k(pn−1)+1)(pn−1))− ax(1 + xp
n−1)

= xs(1 + xp
n−1)− ax(1 + xp

n−1)

= 0.

Note that there are 2(pn − 1) solutions for the equation x2(pn−1) = 1 in L, since

gcd(2(pn − 1), p2n − 1) = 2(pn − 1). This gives a bound on the size of Ka,s, hence a bound

on the Weil sum.

Proposition 3.3.4. Let pn ≡ 2 (mod 3). If x3(pn−1) = 1, then TrL/F (xs − x) = 0.
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Proof. We have that

TrL/F (xs − x) = TrL/F (xs)− TrL/F (x)

= xs + xsp
n − (x+ xp

n

)

= xk(pn−1)+1(1 + x(k(pn−1)+1)(pn−1))− x(1 + xp
n−1)

= x(xk(pn−1) + x(pn−1)(2k+1) − 1− x(pn−1)), (3.3.1)

using the relation

x(pn−1)2 = xp
2n−1−2(pn−1) = x−2(pn−1) = x(pn−1).

If k ≡ 0 (mod 3) or k ≡ 1 (mod 3), then the expression (3.3.1) becomes 0.

If k ≡ 2 (mod 3), then s ≡ 0 (mod 3), but q − 1 = p2n − 1 ≡ 0 (mod 3). So

gcd(s, q − 1) ≥ 3, which is a contradiction.

Theorem 3.3.5. For an odd prime p, we have the following bounds on WL,s(a):

(1) If a ∈ L, then WL,s(a) ≥ −pn.

(2) If a ∈ F , then WL,s(a) ≥ 0.

(3) In particular, WL,s(1) ≥ pn. If pn ≡ 2 (mod 3), then WL,s(1) ≥ 3pn.

Proof. Since |Ka,s|≥ 0, |WL,s(a)|≥ −q for a ∈ L.

If a ∈ F , then by Proposition 3.3.3 there are at least 2(pn − 1) − (pn − 1) = pn − 1

points in Ka,s. So WL,s(a) ≥ 0 by Lemma 3.2.2.

For part (3), if x ∈ F , then xs = x and TrL/F (xs − x) = 0. So such x lies in

K1,s. Combining this fact and Proposition 3.3.3, there are at least 2(pn − 1) points in K1,s.

33



Therefore, WL,s(1) ≥ pn. Moreover, if pn ≡ 2 (mod 3), then there are 3(pn−1) solutions to

the equation x3(pn−1) = 1, and by Proposition 3.3.4 and Lemma 3.2.2, WL,s(1) ≥ 3pn.
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Chapter 4. Weil Spectrum

4.1. A Formula for the Weil Sum at Roots of Unity

In this section, we begins by considering the value of the Weil sum at a root of

unity in the �eld for certain primes p. The formula is obtained by realizing the relation

between the elements in the set Ka,s = {x ∈ L× | TrL/F (xs − ax) = 0} in Lemma 3.2.2 and

the roots of unity.

Proposition 4.1.1. Let s = 1 + k(pn − 1) be an invertible Niho exponent over L, where

2 ≤ k ≤ pn. Let d1 = gcd(k, pn + 1), d2 = gcd(k− 1, pn + 1), and t be a positive integer with

t | pn + 1. Let ζt be a primitive t-th root of unity in L. For i = 1 or 2, let

δi,t =


1 if t | p

n + 1

di
,

0 otherwise.

Then

WL,s(ζt) =


pn(d1 + d2 − 2) if t = 1,

pn(d1δ1,t + d2δ2,t − 1) otherwise.

Proof. We compute |Kζt,s| in Lemma 3.2.2. Let x ∈ Kζt,s then TrL/F (xs) = TrL/F (ζtx).

We also have that NL/F (xs) = NL/F (ζtx), since ζp
n+1
t = 1. Hence, ζtx and xs satisfy the

same degree two minimal polynomial over F . So we can consider two cases xs = ζtx or

xs = (ζtx)p
n
. Let

L× = 〈g〉

for some generator g in the �eld. Then x = gi for some i ∈ Zp2n−1. We can pick ζt =

g(p2n−1)j/t where gcd(j, t) = gcd(j, p2n − 1) = 1. For the case xs = ζtx, we have that
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xk(pn−1) = ζt. Then g
ik(pn−1) = g(p2n−1)j/t, so

(pn − 1)ik ≡ (p2n − 1)j

t
(mod p2n − 1), (4.1.1)

which implies that

ik ≡ (pn + 1)j

t
(mod pn + 1). (4.1.2)

Let d1 = gcd(k, pn + 1). Then (4.1.2) is solvable if pn+1
t
≡ 0 (mod d1). If it is solvable then

there are d1 solutions. When t = 1, (4.1.2) is always solvable. Hence (4.1.1) has d1(pn − 1)

solutions if t = 1, and d1δ1,t(p
n − 1) solutions otherwise.

Similarly, for the case xs = (ζtx)p
n

= ζ−1
t xp

n
, we have that

x(k−1)(pn−1) = ζ−1
t = g−(p2n−1)j/t.

Let d2 = gcd(k − 1, pn + 1), then there are d2(pn − 1) solutions to this case if t = 1 and

d2δ2,t(p
n − 1) for other values of t. For both cases to have simultaneous solutions, we have

that ζtx = xs = (ζtx)p
n
. This means xs = ζtx ∈ F× and xs(p

n−1) = 1. Since the power map

x 7→ xs permutes both L and the sub�eld F , xs ∈ F if and only if x ∈ F . Therefore, we

have x ∈ F×. We also note that ζt = xs−1 = xk(pn−1) = 1.

Hence, when t = 1 the solutions for both cases were counted twice for x ∈ F×.

Therefore,

|Kζt,s|=


(pn − 1)(d1 + d2 − 1) if t = 1,

(pn − 1)(d1δ1,t + d2δ2,t) otherwise.

Apply this to the formula for WL,s(ζt) in Lemma 3.2.2, we have

WL,s(ζt) =


pn(d1 + d2 − 2) if t = 1,

pn(d1δ1,t + d2δ2,t − 1) otherwise.
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Remark 4.1.2. Theorem 3.3.5(3), can be obtained by Proposition 4.1.1. As noted in Re-

mark 1.2.8, for an odd prime p, either d1 or d2 must be divisible by 2, so d1 + d2 ≥ 3.

Moreover, if pn ≡ 2 (mod 3), then d1 + d2 ≥ 5, and thus, WL,s(1) = pn(d1 + d2 − 2) ≥ 3pn.

From Proposition 4.1.1, we deduce the following corollary for the Weil sum at a =

−1.

Corollary 4.1.3. Let p be an odd prime, L be a quadratic extension of order p2n over the

�nite �eld F , s be an Niho exponent over L, and d1, d2 be de�ned as in Proposition 4.1.1.

Then

WL,s(−1) = pn
(
d1 ·

1 + (−1)(pn+1)/d1

2
+ d2 ·

1 + (−1)(pn+1)/d2

2
− 1

)
.

If pn ≡ 3 (mod 4) and d1 + d2 = 3, then WL,s(−1) = 2pn.

Proof. Applying the formula of 4.1.1 for t = 2, and notice that δ1,2 and δ2,2 are precisely

given by
1 + (−1)(pn+1)/d1

2
and

1 + (−1)(pn+1)/d2

2
, respectively.

4.2. Galois Action and Weil Spectrum

In this section we consider the Galois action on elements of the �nite �eld and the

in�uence on the Weil sum values. These discussion are from [22].

Lemma 4.2.1. [22] Let F be a �nite �eld of characteristic p. If σ ∈ Gal(F/Fp), then

WF,s(σ(a)) = WF,s(a).
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Proof. Let σ ∈ Gal(F/Fp). Galois conjugates have the same trace, so

WF,s(a) =
∑
x∈F

µ(xs − ax)

=
∑
x∈F

µ(σ(xs − ax))

=
∑
y∈F

µ(ys − σ(a)y)

= WF,s(σ(a)),

where y = σ(x).

Lemma 4.2.2. [22] Let F be a �nite �eld of characteristic p and s be an invertible expo-

nent over F . Then WF,s(a) = WF,pjs(a) for any a ∈ F and j ∈ Z.

Proof. Since xp
js and xs are Galois conjugates, they have the same trace and hence,

WF,s(a) = WF,pjs(a).

Lemma 4.2.1 implies that we can replace Niho exponents with normalized Niho ex-

ponents in the Weil sum.

The next two results [22] show congruences between Weil sums in the �nite �eld,

which are useful in our proof of the values in the Weil spectrum in Conjecture 1.2.6.

Lemma 4.2.3. [22] Let L be an extension of a �nite �eld F of characteristic p. Suppose

that [L : F ] is a power of a prime ` distinct from p. Then for any a ∈ F , we have

WL,s(a) ≡ WF,s([L : F ]1−1/sa) (mod `),

where 1/s indicates the multiplicative inverse of s (mod p− 1).
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Proof. We have that

WL,s(a) =
∑
x∈L

µ(xs − ax) (4.2.1)

=
∑
x∈F

µ(xs − ax) +
∑
x∈L\F

µ(xs − ax)

(4.2.2)

The �rst sum becomes

∑
x∈F

µ(xs − ax) =
∑
x∈F

ζ
TrF/Fp (TrL/F (xs−ax))
p

=
∑
x∈F

ζ
TrF/Fp ((xs−ax) TrL/F (1))
p

=
∑
x∈F

ζ
TrF/Fp ([L:F ](xs−ax))
p

=
∑
x∈F

ζ
TrF/Fp (([L:F ]1/sx)s−[L:F ]1−1/sa([L:F ]1/sx))
p

=
∑
x∈F

ζ
TrF/Fp (ys−[L:F ]1−1/say)
p

= WF,s([L : F ]1−1/sa),

where y = [L : F ]1/sx.

Now, consider the second sum in Eq. (4.2.2). The action of Gal(L/F ) partitions

the set L \ F into orbits of Galois conjugates. The size of each orbit is a power of `. Let

σ ∈ Gal(L/F ). By Lemma 4.2.1,

µ(xs − ax) = µ(σ(xs − ax)) = µ(σ(x)s − aσ(x)).

Hence, in each orbit, the values are constant. Therefore, the second sum in

Eq. (4.2.2) is a multiple of `.
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Thus,

WL,s(a) ≡ WF,s([L : F ]1−1/sa) (mod `).

For Niho exponent s over L, we have the following corollary to the above lemma.

Corollary 4.2.4. [22] Let F be a �nite �eld of characteristic p, and let L be an extension

of F with [L : F ] a power of a prime ` distinct from p. Let s be degenerate over F but not

over L. Then WL,s(1) ≡ |F | (mod `) and WL,s(a) ≡ 0 (mod `) for every a ∈ F \ {1}.

Proof. Since s is a Niho exponent, s ≡ 1 (mod pn−1) ≡ 1 (mod p−1). So [L : F ]1−1/s = 1.

Hence by Eq. (4.2.2),

WL,s(1) ≡ WF,s(1) =
∑
x∈F

µ(xs − x)

=
∑
x∈F

µ(0)

= |F | (mod `).

Moreover, for every a ∈ F \ {1},

WL,s(a) ≡ WF,s(a) =
∑
x∈F

µ(xs − ax)

=
∑
x∈F

µ(x− ax)

=
∑
x∈F

µ(x(1− a))

= 0 (mod `).
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Combining this corollary with our previous results, we can deduce the following

four values in the Weil spectrum in the cases of Conjecture 1.2.6.

Corollary 4.2.5. Let L be a quadratic extension of a �nite �eld F of order pn, where p is

an odd prime. Let s = 1+k(pn−1) be an invertible Niho exponent over L, d1 = gcd(k, pn+

1), and d2 = gcd(k − 1, pn + 1).

(i) If d1 + d2 ≥ 5, then the spectrum of WL,s(a) contains at least 4 values of the form

{0,−pn, 2αpn, (2β + 1)pn},

where α, β ≥ 1 are integers.

(ii) If d1 + d2 = 3 and pn ≡ 11 (mod 12), then the spectrum of WL,s(a) contains

{0,−pn, 2pn, pn}.

Proof. In both cases: By Theorem 1.2.4, the Weil spectrum contains at least three values,

and one of which is 0 by Theorem 3.2.1. If all the nonzero values were positive, we would

have (∑
a∈L

WL,s(a)

)2

>
∑
a∈L

W 2
L,s(a).

This would contradicts the �rst and second moments in Lemma 3.1.1. Hence, the spec-

trum must contain at least a negative value. From Lemma 3.2.2 and Theorem 3.3.5 (part

1), this negative value must be −pn.

Case (i): Apply Corollary 4.2.4 to our setting of the quadratic extension L over F ,

the prime ` = [L : F ] = 2. Then the Weil sum WL,s(a) admits an odd value for a = 1 and

even values for all a ∈ F \ {1}. By Proposition 4.1.1, WL,s(1) = (d1 + d2 − 2)pn ≥ 3pn. If

WL,s(a) = 0 for all a ∈ F \ {1}, then taking b = 1 in Lemma 3.1.2 yields

p2n =
∑
a∈F

WL,s(a) = WL,s(1).
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Together with the value −pn, this would mean

∑
a∈L

W 2
L,s(a) > p4n,

contradicting to the second power moment relation 2.2.1. Hence, there is a nonzero even

value for some a ∈ F \ {1}. Therefore, the Weil spectrum consists of −pn, 0, 2αpn, and

(2β + 1)pn, where α, β ≥ 1.

Case (ii): By Proposition 4.1.1, WL,s(1) = (d1 +d2−2)pn = pn. By Corollary 4.1.3,

WL,s(−1) = 2pn. Hence the Weil spectrum in this case consists of −pn, 0, pn, and 2pn.

Our numerical evidence suggests a stronger conclusion than Corollary 4.2.5 implies.

This leads to Conjecture 1.2.6 and Conjecture 1.2.7 in the introduction.

4.3. A New Conjecture

In this section we give some partial results towards Conjecture 1.2.6. The

idea behind the proofs of 1.2.9 and Theorem 1.2.11 is to apply the power moments in

Lemma 3.1.1 to the four Weil sum values to derive a contradiction.

We �rst need to count the set R = {x ∈ L | (1−x)s+xs−1 = 0} in the third power

momment of Lemma 3.1.1 for the case of Niho exponent s over a quadratic extension of F .

We have the following lemma.

Lemma 4.3.1. Let L be a quadratic extension of F , and |F |= pn and k ≥ 2. Let d1 =

gcd(k, pn + 1) and d2 = gcd(k − 1, pn + 1). Then

|R|= pn + (d1 − 1)(d1 − 2) + (d2 − 1)(d2 − 2).

Proof. Clearly, all elements in F are in R. So |R|≥ pn. Now suppose x ∈ R \ F .
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We have that (1− x)s = 1− xs. Computing the norm NL/F of both sides, we get

NL/F (1− xs) = 1− xspn − xs + xs(p
n+1)

= 1− TrL/F (xs) +NL/F (xs)

and

NL/F ((1− x)s) = 1− xpn − x+ xp
n+1

= 1− TrL/F (x) +NL/F (x).

As s = 1 + k(pn − 1), we know NL/F (x) = NL/F (xs). Equating the norm of 1 − xs

gives us TrL/F (x) = TrL/F (xs).

Since the norm and trace of x and xs are the same, they must satisfy the same

degree-two minimal polynomial over F . Hence xs = x or xs = xp
n
.

Case 1: xs = x.

This implies xk(pn−1) = 1. Since x /∈ F , xpn−1 6= 1. Now, 1 = xp
2n−1 = x(pn−1)(pn+1).

So a solution in this case must satisfy xd1(pn−1) = 1, where d1 = gcd(k, pn + 1). Let

L× = 〈g〉 and h = g(p2n−1)/d1 be an element of order d1 in L×. Then xp
n−1 must be in

〈h〉. Without loss of generality, let xp
n−1 = ht1 , where 1 ≤ t1 ≤ d1 − 1.

On the other hand, 1 = xs + (1− x)s = x+ (1− x)s. This implies (1− x)s−1 = 1 or

(1 − x)k(pn−1) = 1. Using the similar argument from above, we can say (1 − x)p
n−1 = ht2 ,

where 1 ≤ t2 ≤ d1 − 1. Since x /∈ F , t1 6= t2.
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Now,

(1− x)p
n−1 = ht2 =⇒ 1− xpn = ht2(1− x)

=⇒ 1− ht1x = ht2 − ht2x

=⇒ x =
1− ht2
ht1 − ht2

. (4.3.1)

With 1 ≤ t1, t2 ≤ d1 − 1 and t1 6= t2, there are (d1 − 1)(d1 − 2) choices for solution x.

Claim: These (d1 − 1)(d1 − 2) choices are all distinct.

To see this, suppose there are pairs (t1, t2) 6= (u1, u2), where 1 ≤ t1, u1 ≤ d1 − 1,

satisfying

x =
1− ht2
ht1 − ht2

=
1− hu2
hu1 − hu2

.

Since h has order d1 = gcd(k, pn + 1), hk = hp
n+1 = 1. Thus, hp

n
= h−1. Using this

fact we compute

xp
n

=

(
1− ht2
ht1 − ht2

)pn
=

1− ht2pn

ht1pn − ht2pn

=
1− h−t2
h−t1 − h−t2

= ht1
1− ht2
ht1 − ht2

= ht1x.

So xp
n−1 = ht1 . Similarly we �nd xp

n−1 = hu1 .

This means t1 = u1, since h has order d1 and 1 ≤ t1, t2, u1, u2 ≤ d1 − 1. From here,

we can reverse the implications of Eq. (4.3.1) to show ht2 = (1−x)p
n−1 = hu2 , which means

t2 = u2.
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Therefore, the (d1 − 1)(d1 − 2) choices for x in this case are all distinct.

In the reverse direction, to show such (d1 − 1)(d1 − 2) choices are in R, consider

x =
1− ht2
ht1 − ht2

, where h is de�ned as above, and 1 ≤ t1, t2 ≤ d1 − 1.

We have that

(ht1 − ht2)s = (ht1 − ht2)(1+k(pn−1)) (4.3.2)

= (ht1 − ht2)(1−k)(ht1p
n − ht2pn)k (4.3.3)

= (ht1 − ht2)(1−k)(h−t1 − h−t2)k

= h−t1kh−t2k(ht1 − ht2)(1−k)(ht2 − ht1)k

= (hk)−t1(hk)−t2(−1)k(ht1 − ht2)

= (−1)k(ht1 − ht2)

Similarly, we can show that

(ht1 − 1)s = (−1)k(ht1 − 1), (4.3.4)

and

(1− ht2)s = (−1)k(1− ht2). (4.3.5)

Now,

(1− x)s + xs − 1 =

(
1− 1− ht2

ht1 − ht2

)s
+

(
1− ht2
ht1 − ht2

)s
− 1

=

(
(ht1 − 1)s + (1− ht2)s

(ht1 − ht2)s

)
− 1

= 0,

with the last equality following from relations (4.3.2), (4.3.4), and (4.3.5). Hence, such

choice x is in R.
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Case 2: xp
n

= xs = x1+k(pn−1).

This implies x(k−1)(pn−1) = 1. Suppose x /∈ F . Similar to the argument in case

1 we let d2 = gcd(k − 1, pn + 1) and �nd solutions to the equation xd2(pn−1) = 1. Let

` = g(p2n−1)/d2 be an element of order d2, where g is the generator of L× as in case 1. A

quick check also yields us the relation (1 − x)(k−1)(pn−1) = 1. Then xp
n−1 and (1 − x)p

n−1

must be in 〈`〉. Using the similar argument from above, we obtain x =
1− `r2
`r1 − `r2

, where

1 ≤ r1, r2 ≤ d2 − 1. There are (d2 − 1)(d2 − 2) choices for such x. Using similar arguments

as Case 1, we can show that all these choices are distinct.

In the reverse direction, we �rst note that `k = ` and `p
n

= `−1, since ` has order

d2 = gcd(k − 1, pn + 1).

Using a similar argument as in case 1, we have that

(`r1 − `r2)s = (`r1 − `r2)(1−k)(`r1p
n − `r2pn)k (4.3.6)

= (`r1 − `r2)(1−k)(`−r1 − `−r2)k

= `−r1k`−r2k(`r1 − `r2)(1−k)(`r2 − `r1)k

= (−1)k`−r1`−r2(`r1 − `r2)

= (−1)k(`−r2 − `−r1).

Similarly, we can show that

(`r1 − 1)s = (−1)k(1− `−r1), (4.3.7)

and

(1− `r2)s = (−1)k(`−r2 − 1). (4.3.8)
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By relations (4.3.6), (4.3.7), and (4.3.8), we can show that (1 − x)s + xs − 1 = 0.

Thus, such choice x is in R.

Hence there are (d2 − 1)(d2 − 2) solutions of x in this case.

Note that since k and k − 1 are coprime, d1 and d2 are coprime as well. Therefore,

the solutions in case 1 and case 2 for x /∈ F are distinct.

Accounting for the solutions x ∈ F we have |R|= pn+(d1−1)(d1−2)+(d2−1)(d2−

2).

Corollary 4.3.2. Let s = 1 + k(pn − 1) for some integer k, 0 ≤ k ≤ pn. Then k and

2 − k + pn gives the same number of solutions to the equation (1 − x)s + xs − 1 = 0 for

x ∈ L.

Proof. From the proof of Lemma 4.3.1, the exponents s and spn give the same number of

solutions to the equation (1 − x)s + xs − 1 = 0 for x ∈ L. Now, spn ≡ 1 + (1 − k)(pn − 1)

(mod p2n− 1) , and 0 ≤ 2− k+ pn ≤ pn gives the same exponent modulo (p2n− 1) as 1− k

over L.

Now we are ready to prove Theorem 1.2.9.

Proof of Theorem 1.2.9. According to Corollary 4.2.5, there are four values in the Weil

spectrum. Suppose that these are the only ones in the spectrum. Let m1,m2,m3 and m4

be the number of elements whose Weil sum value is −pn, 0, 2αpn and (2β + 1)pn, respec-

tively, for integers α, β ≥ 1. In here 2β + 1 = d1 + d2 − 2 from Proposition 4.1.1.

By Lemma 3.1.1 we have the following system of equations:
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m1 +m2 +m3 +m4 = p2n (4.3.9)

−m1 + 2αm3 + (d1 + d2 − 2)m4 = pn (4.3.10)

m1 + 4α2m3 + (d1 + d2 − 2)2m4 = p2n (4.3.11)

−m1 + 8α3m3 + (d1 + d2 − 2)3m4 = pn|R|, (4.3.12)

where |R|= pn + (d1 − 1)(d1 − 2) + (d2 − 1)(d2 − 2) from Lemma 4.3.1.

The above system has a unique solution over Q, which is

m1 = −p
n(d2

1 + d2
2 + (2α− pn − 3)(d1 + d2)− pn(2α− 3) + 4(1− α))

(2α + 1)(d1 + d2 − 1)

m2 =
1

2
· p

n((d1 + d2)(2α(pn + 1)− pn − 4) + d2
1 + d2

2 − 6α(pn + 1) + 2(2pn + 3))

α(d1 + d2 − 2)

m3 =
1

2
· p

n(d2
1 + d2

2 − (pn + 4)(d1 + d2) + 2(2pn + 3))

(2α− d1 − d2 + 2)(2α + 1)α

m4 = −p
n(d2

1 + d2
2 − 2pn(α− 1)− 3(d1 + d2) + 4− 2α)

(2α− d1 − d2 + 2)(d1 + d2 − 1)(d1 + d2 − 2)
.

From the numerator of m3, we have that

d2
1 + d2

2 − (pn + 4)(d1 + d2) + 2(2pn + 3) = (d1 − 2)2 + (d2 − 2)2 − (d1 + d2 − 4)pn − 2

≤ (d1 − 2)2 + (d2 − 2)2 − pn − 2, (4.3.13)

since d1 + d2 − 4 ≥ 1.

Note that since k <
p

2
+ 1, d1 <

p

2
+ 1 and d2 <

p

2
. Hence, we can bound (4.3.13) by

(p
2
− 1
)2

+
(p

2
− 2
)2

− pn − 2 =
1

2
p2 − 3p− pn + 3

≤ −1

2
p2 − 3p+ 3

< 0,
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since n ≥ 2.

So the numerator of m3 is negative. Thus, the denominator of m3, i.e 2(2α − d1 −

d2 + 2)(2α + 1)α is negative, which implies the factor (2α− d1 − d2 + 2) < 0.

Now, this forces the denominator of m4 to be negative, which implies that the ex-

pression (d2
1 +d2

2−2pn(α−1)−3(d1 +d2)+4−2α) in the numerator of m4 must be positive.

If α ≥ 2, using the bounds for d1 and d2, we can bound the numerator of m4 by

(d2
1 + d2

2 − 2pn(α− 1)− 3(d1 + d2) + 4− 2α) ≤ d2
1 + d2

2 − 2pn − 3(d1 + d2)

=

(
d1 −

3

2

)2

+

(
d2 −

3

2

)2

− 9

2
− 2pn

<

(
p+ 2

2
− 3

2

)2

+

(
p

2
− 3

2

)2

− 9

2
− 2pn

=
1

2
p2 − 2p− 2pn − 2

≤ −1

2
p2 − 2p− 2

< 0,

which is a contradiction. Hence, α must be 1.

Replacing this for m4, we have

m4 =
1

2

pn(d2
1 + d2

2 − 3(d1 + d2) + 2)

(d1 + d2 − 4)(d1 + d2 − 2)(d1 + d2 − 1)
.

Observe that the factors in the denominator

(d1 + d2 − 4) < (d1 + d2 − 2) < (d1 + d2 − 1) <
p+ 2

2
+
p

2
− 1 = p.

Moreover, (d1 + d2 − 2), (d1 + d2 − 1) ≥ 3, so these two factors do not divide p. Hence, for

m4 to be an integer, they must divide d2
1 + d2

2 − 3(d1 + d2) + 2.
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However,

d2
1 + d2

2 − 3(d1 + d2) + 2 = (d1 + d2 − 4)(d1 + d2 − 1)− 2(d1 − 1)(d2 − 1)

< (d1 + d2 − 2)(d1 + d2 − 1).

This is a contradiction. Therefore, there must be a �fth value in this Weil spectrum.

Remark 4.3.3. For the case n = 1 in Theorem 1.2.9, taking odd prime p such that p1/2 >

2(k − 1), and following the argument in the proof of Theorem 1.2.9 with this bound would

yield the same conclusion (i.e the Weil spectrum has at least �ve values).

Finally, we show Theorem 1.2.11, which proves case (ii) of Conjecture 1.2.6.

Proof of Theorem 1.2.11. This proof is in a similar �avor to the proof of Theorem 1.2.9.

Since pn ≡ 11 (mod 12), pn ≡ 3 (mod 4). By Corollary 4.1.3, WL,s(−1) = 2pn. Since

d1 + d2 = 3, WL,s(1) = pn by Proposition 4.1.1. As in the last proof, let m1,m2,m3 and m4

be the number of elements whose Weil sum value is −pn, 0, 2αpn and (2β + 1)pn, but here

we take α = 1, β = 0, speci�cally. Now, d1 + d2 = 3, where d1, d2 ≥ 1 (since k ≥ 2) implies

that one of them is 1 and the other one is 2. Hence, d2
1 + d2

2 = 5.

Replacing these values of α, β, d1 + d2 = 3, and d2
1 + d2

2 = 5 in the solutions of

m1,m2,m3, and m4 in the proof of Theorem 1.2.9, we obtain

m1 =
pn(pn − 1)

3

m2 =
pn(pn − 1)

2

m3 =
pn(pn − 1)

6

m4 = pn.
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Since pn ≡ 11 (mod 12), p 6= 3. Since m1 must be an integer, pn ≡ 1 (mod 3), but

this is a contradiction. Therefore, there exists a �fth value in this Weil spectrum.
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Chapter 5. Concluding Remarks and Future Directions

The study of Weil sum has many important applications in information theory. In

this thesis, we prove the Helleseth Vanishing Conjecture for the case of Niho exponents,

propose, and prove a criterion for when the Weil spectrum is at least �ve-valued, while

giving some intermediate results on the bounds and behavior of the Weil sum values at

roots of unity. There are some next-step projects naturally arise from this work:

(1) The general case of the Helleseth Vanishing Conjecture for non-Niho exponents

remains open.

(2) Case (i) of Conjecture 1.2.6 for other invertible exponents s is still open. Also,

the �fth value pn in case (i) is conjectured to be in the spectrum, based on our computa-

tion data.

(3) A probabilistic approach to study the likelihood that the Weil spectrum takes

a certain value is of interest. This maybe helpful in proving the �fth value pn in case (i)

of Conjecture 1.2.6. Some directions for this approach can start looking the averaging

properties of the Weil sum using the m-th power moments in [11, Proposition 3.1] and

Lemma 3.1.2.

(4) A di�erent perspective for the Helleseth Vanishing Conjecture is to look at it as

a counting point problem over hypersurfaces. In fact, [14] establishes that the conjecture is

equivalent to the following problem:

Conjecture 5.0.1. Let F be a �nite �eld of characteristic p and order q > 2, and let S be
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an invertible exponent over F with s ≡ 1 (mod p− 1). Consider the system of equations
xs1 + xs2 + · · ·+ xsq−1 = 0

b1x1 + b2x2 + · · ·+ bq−1xq−1 = 0,

where (x1, . . . , xq−1) ∈ F q−1 and {b1, . . . , bq−1} = F×.

The Helleseth Vanishing Conjecture is equivalent to saying that the number of solu-

tions of the above system is equal to qq−3.
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