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Abstract

As malware continues to evolve, infection mechanisms that can only be seen in mem-

ory are increasingly commonplace. These techniques evade traditional forensic analysis,

requiring the use of memory forensics. Memory forensics allows for the recovery of histori-

cal data created by running malware, including information that it tries to hide. Memory

analysis capabilities have lagged behind on Apple’s new M1 architecture while the number

of malicious programs only grows. To make matters worse, Apple has developed Rosetta

2, the translation layer for running x86 64 binaries on an M1 Mac. As a result, all mal-

ware compiled for Intel Macs is theoretically functional on M1 machines. In this paper,

malware will be executed through the Rosetta 2 translation environment in an effort to

document the functionality of malware run through it. Afterwards, memory forensics will

be performed on select samples to confirm functionality. Finally, the research efforts to

bring memory forensics to the M1 will be discussed, along with new artifacts from Rosetta

2 that can be analyzed as a result of these research efforts.
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Chapter 1. Introduction

1.1. Memory Forensics

Memory forensics is the examination of a host through the acquisition and analysis of

volatile memory. Acquisition of memory samples is possible through a number of tools,

many of which are freely available [11] [48] [68]. These tools often work similarly, by loading

the kernel driver and determining the ranges of the RAM’s physical address space, then

translating physical memory to virtual memory through the use of page tables and copying

the result to storage. It is also possible to acquire samples through virtual machines, either

by suspending the state of the machine or by taking a snapshot in a virtual machine.

After acquisition, parsing is performed by frameworks that present the acquired mem-

ory sample from the host in a meaningful state for analysis. To parse memory samples,

these frameworks implement strategies like enumerating linked lists and carving, which

is the process of searching for objects that look like files, processes, threads, and more.

These strategies result in useful structures and objects being exposed from the OS and

applications, often even if they were deallocated or terminated prior to acquisition. These

structures are used by analysts, who then examine the state of the host through various

plugins and tools to look for evidence from an incident.

Memory forensics is an increasingly important part of an incident response team’s

efforts to understand an incident forensically. It is a necessary addition to traditional

storage forensics, as it allows for the recovery and study of information only available in

RAM, such as running and hidden processes, open files, encryption keys, private browsing

data, network connections, clipboard data, and kernel and application structures. The

ability to get information about deallocated objects and terminated processes is extremely

useful. It makes it possible to build timelines that would otherwise be incomplete and find

indicators of compromise that would otherwise not be seen.

Memory forensics is also important for malware analysis. Through memory forensics,
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an analyst can not only see all of the previously mentioned indicators as they relate to

the malware, but also defeat many attempts the malware can use to hide itself from tradi-

tional analysis and live forensics tools. An example is Direct Kernel Object Manipulation

(DKOM), where a rootkit modifies process lists in kernel memory. This modification will

allow a process to hide not only from live analysis and OS subsystems, but also from

some memory forensics tools. This technique can be seen in action in Figure 1.1, where

a malicious application has removed itself from the process list via manipulation of the

EPROCESS kernel structure, which is used by the pslist plugin and column in that figure.

However, it is still detected as active (TRUE in the figure) through the Volatility psscan

plugin. That plugin scans the memory dump for EPROCESS objects using an associated

tag, rather than relying on the process list; this method is slower than walking a list, but

more thorough.

Figure 1.1. psscan and other plugins finding a malicious process attempting to hide
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Plugins that use alternative methods to find processes are also shown, many of which

also find the hidden process. Other malicious techniques like DKOM are increasingly

commonplace, including memory-only loading, dropping, and execution. Memory forensics

is therefore a crucial component, and sometimes the only solution, for a digital forensics

investigation.

1.2. Rosetta 2

1.2.1. Background and Translation Pipelines

Rosetta 2 bridges previous-generation x86 Intel apps with M1 Macs. It is translation

software that automatically converts an executable with only x86 64 instructions to arm64,

then runs the translated binary [1]. As a result, it is usually the case that the first launch will

be slower while translation occurs, but subsequent launches will have only slight reduction

in performance compared to running the same binary on an Intel Mac. This method,

called ahead-of-time (AOT) translation by Apple, is better than acting simply as a full

emulator for x86 when a program is run, as that would noticeably hinder speed and the

user experience every time. It is accomplished by generating a Mach-O file with the file

extension .aot. It is based on the original x86 64 executable, and only generated once.

Whenever the x86 64 binary needs to be run, this translated AOT file is mapped into

the memory of the executing process. There are security mechanisms in place to ensure

the translation artifact has not been tampered with, such as code directory hashes and

protection through Security Integrity Protection (SIP) [24].

The other translation pipeline for Rosetta 2 is called just-in-time (JIT). JIT is necessary

because some applications generate code at runtime. In the case of an x86 64 application

that does this, Rosetta 2 will encounter code that cannot be translated ahead of time. The

JIT translation pipeline takes care of these instances entirely within the process after being

transferred control by the kernel.

The typical flow for an x86 64 binary is that the AOT pipeline will first create an
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AOT artifact derived from the binary. That artifact is then located when running the app

and mapped onto the executing process’s memory. JIT is then used for any x86 64 Mach

objects encountered throughout the execution. Constants are referenced in the original

binary, not copied into the translated one. Thus, the original binaries are still required;

the AOT artifact is not a standalone that can be moved and executed by itself [44].

1.2.2. Constraints

Rosetta 2 cannot translate kernel extensions or virtual machine apps that virtualize

x86 64 platforms, but it can translate almost anything else compiled for x86 64 Macs. It

does not come pre-installed on M1 Macs, so the first time Rosetta 2 is required, a prompt

to download it appears. It can also be installed through the command line at any time [9].

A final constraint is that Rosetta translation covers the entire process, meaning all code or

dependencies loaded by the process must also be x86 64 if the process was started as such

[1].

1.2.3. Handling of Mach-O Universal Binaries

The Mach object file format is used as the native format for binaries in macOS, in-

cluding executables, libraries, and dynamically-loaded code [20]. Mach-O binaries have

multiple formats, one of which is universal. Universal binaries support multiple architec-

tures within one Mach-O file, including 32-bit PowerPC, 64-bit PowerPC, i386, x86 64,

and arm64 [14]. For universal executables with both x86 64 and arm64 code, Rosetta 2 is

by default not used at all. The code slice that most closely resembles the architecture of

the host will be run, so the arm64 binary will execute. An exception to this behavior is

that script-only apps are run under Rosetta 2 translation by default [3]. The user can also

decide to execute the x86 64 slice through Rosetta 2 if, for example, it is expected to load

x86 64 code modules rather than arm64 versions of them. It is additionally possible to

specify that an app be run under x86 64 by default using the LSArchitecturePriority key

[12]. Another consideration is that running an unsigned universal binary from an arm64
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shell will result in the process being killed, due to arm64 executables needing to be signed

to run [40]. This constraint does not apply to x86 64 binaries, which are allowed to run

completely unsigned [23].

1.3. Research Importance

It may initially seem like an obvious decision for malicious programmers to want to build

universal binaries, so that their malware immediately natively runs as arm64 on M1 Macs.

However, there are significant factors discussed in the previous section, such as needing

to build all dependencies universally, needing to sign validly to run arm64 binaries at all,

and not being able to debug arm64 slices without an M1 Mac themselves. As a result of

these constraints, malware authors may prefer building only for x86 64 and letting Rosetta

handle the rest. This possibility makes it even more important to examine the Rosetta 2

translation software and the artifacts it generates.

Last year, data breaches cost companies an average of over $4 million [6]. Ransomware

attacks exceeded $600 million in 2021, over double the amount in 2020 [61]. As many

businesses and livelihoods have shifted online as a result Covid-19, it is more important

than ever that digital forensics analysts have the tools they need to fully investigate and

remediate incidents. They currently do not on Apple M1 Macs.

In addition, malware is already being compiled with code for M1. Some of these

strains are highly infectious, with one sample affecting 30,000 macOS machines [65]. Also,

modern malware with memory-only capabilities are known to run on M1 through Rosetta

2. EvilQuest is an example of malware that is tested in this research that attempts in-

memory execution of a payload [56]. This example alone shows that there are aspects of

malicious attacks that cannot currently be detected on M1 Macs.

1.4. Outline

Chapter 2 will introduce prior works that are related to my research. Chapter 3 will

go into detail regarding how the testing environment was set up, how malware samples
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were chosen and obtained, the methodology for performing analysis on those samples in

Chapter 4, and how memory samples were acquired for the analysis performed in Chapter 5.

Chapter 4 will present and discuss the results of executing and observing malware samples

in the M1 virtual machine environments. Chapter 5 will discuss the malware selected for

further analysis, examine those samples through memory forensics, and finally discuss the

results. Chapter 6 will present further research that was performed to enable and enhance

memory forensics on Apple M1 Macs. Chapter 7 will provide concluding thoughts on the

research presented, and also discusses future work that could be done to build upon this

work and M1 memory forensics.
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Chapter 2. Related Work

2.1. M1 Forensic Analysis

The research regarding M1 Mac analysis is currently quite sparse. Koh M. Nakagawa

has examined M1 Macs, specifically looking at reversing Rosetta 2 [44]. His motivation

was to investigate it as an attack surface and potentially exploit it. In the course of

his research, he patched Ghidra to correctly disassemble AOT files, reverse engineered

the Rosetta 2 runtime binary, detailed how to debug the emulation process at the arm64

instruction level, and more.

The Corellium team have analyzed M1 devices at the hardware level. They did this

in an effort to gain knowledge regarding Apple Silicon and get Linux running on it. They

have presented their reverse engineering research at BlackHat 2021, where they succeeded

in running Linux on M1 hardware [62]. This effort involved the understanding and pro-

gramming of many Apple hardware tricks, such as adding Apple’s custom interrupt routing

support to the Linux kernel [30].

Joshua Duke has also performed relevant research [42], where the full Volatility suite

of plugins was run and the output compared between Intel Macs and M1 Macs. Technical

explanations for differences were given, and the future necessary fixes for plugins that broke

were documented. Results from this work were used to direct the efforts necessary to bring

memory forensics to the M1.

2.2. Memory Analysis on Intel Macs

Modern macOS Userland Runtime Analysis [51] and Memory Analysis of macOS Page

Queues [33] are two examples of recent research that performed memory analysis on macOS

to better understand internals and find forensically significant artifacts. The former focused

on macOS subsystem and runtime memory analysis capabilities in userland, and it also

tested malware samples and their ability to be detected in memory using this analysis. The
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latter studied physical page management in an effort to increase the number of artifacts

found in macOS memory.

The Art of Memory Forensics [45] is the flagship book on memory forensics. It has

over 100 pages dedicated solely to Mac memory forensics, ranging from foundational skills

to advanced threat detection.

The Volatility Foundation [63] and Volexity [27] have been a part of advancing memory

forensics capabilities through memory analysis for many years, including on Macs [32].

2.3. Malware Analysis on Intel Macs

Objective by the Sea is a Mac-focused cybersecurity conference where presentations,

often about malware, are given yearly [18]. Objective-See is a blog maintained by Patrick

Wardle, where technical analyses of macOS malware are regularly posted [19]. Patrick

Wardle also has a work-in-progress book titled The Art of Mac Malware that covers all

aspects of macOS malware and the tools needed to perform analysis [69].

Trendmicro has compiled a detailed technical report on the XCSSET macOS malware,

including analysis of the binaries and infection mechanisms, as well as reverse-engineering

[29]. Many other threat intelligence blogs perform similar analyses regularly [13] [22] [16]

[28] [25].

2.4. Malware on M1

As the number of samples grows, there are increasingly many reports on specific samples

of malware with native arm64 code.

Of note is Red Canary’s Silver Sparrow writeup, which exposed and detailed the most

infectious strand of M1 malware currently known [66]. Google’s Threat Analysis Group

discovered a watering hole campaign that included a binary for M1 and targeted visitors to

pro-democracy Hong Kong websites [37]. Patrick Wardle also has given a talk at Objective

by the Sea v4.0, where he reverse engineered the anti-analysis arm logic of M1 malware

found in the wild [58].
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Chapter 3. Experimental Setup

This section will discuss the steps taken to create an environment for safe and thorough

testing of malware. It will also discuss how the malware samples were chosen and obtained,

as well as how samples were analyzed to determine functionality through Rosetta 2 trans-

lation. Finally, it will detail the process to acquire a memory image for examination, as

this process on M1 Macs is currently more difficult than with other systems.

3.1. Environment Setup

Excluding EvilQuest, the malware samples tested for Chapter 4 were executed on virtual

machines (VMs) running on Parallels Desktop Pro 17.1.1-51537. The operating system of

the M1 Mac VMs was macOS Monterey 12.2, build 21D49, and the operating system of

the host M1 Mac was macOS Monterey 12.2.1, build 21D62. The host that the memory

was acquired from was running macOS Monterey 12.1.0, build 21C52, in order for the

memory sample to be compatible with an already created Volatility profile. Rosetta 2

had to be installed on each VM prior to execution of malware. Command Line Developer

Tools were installed as well, as some malware utilized functionality from tools in this suite.

On the VMs, Wireshark and various built-in Terminal tools such as ps aux were used to

monitor high-level functionality of the malware. Each VM was within what Parallels calls

a Host-Only Network [55], where the VM is in a separate subnet that can only connect

to a gateway and other VMs in the subnet. Each VM was also set up such that it was

the DNS Server under its networking configuration. This setup allowed the observation of

DNS queries made during dynamic analysis of the malware. Because there is currently no

snapshot functionality on M1 images for Parallels, multiple samples were run on one VM

before preparing and using another VM for more samples. For all VMs, System Integrity

Protection (SIP) remained enabled. As a result, a few samples identified by macOS as

malware were unable to run on the VMs. SIP would need to be disabled because the ability
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to disable those protection measures is restricted under it. Samples that were applications

could still be run by overriding malware protection, but executables, disk images, and

package installers could not. It was not possible to disable SIP on a VM as Recovery Mode

was not accessible. The reason Recovery Mode was inaccessible is discussed in Section 3.4.

Three malware samples were also run on the host machine while it was isolated from the

internet, so that a memory image could be collected for analysis. Section 3.4 also discusses

why this was necessary. The host machine was wiped and rebuilt after the memory dump

was acquired and moved off disk to a flash drive.

3.2. Malware Selection

Malware was chosen based on a number of factors, such as impact level, viability of

attack vector, and indicators of compromise. Newer malware was also generally given pref-

erence to similar malware that was older. For example, CDDS / MacMa had both a 2019

and 2021 installer; the 2021 version was the version tested. A majority of samples are thus

modern, higher impact malware like backdoors or spyware with persistence mechanisms.

In total, roughly 150 malware samples were considered for testing. Those chosen were

obtained from the Objective-See blog [15], where many malicious macOS samples dating

as far back as the early 2000’s are freely available.

3.3. Forensic Analysis of Malware

A high-level analysis was performed for each of the selected 16 malware samples to

determine which of them functioned through Rosetta 2 translation and which did not.

Samples for this portion were run in the VMs, and clear indicators of compromise, such as

Command and Control (C&C) pings or running Launch Agents, were used to determine

functionality. For those samples that did not have expected behavior, more analysis was

done to determine the cause and whether Rosetta 2 was responsible.
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3.4. Acquisition of Memory Image

For the malware samples that were chosen for further analysis, a memory sample needed

to be obtained. Version 17.1.1-51537 of Parallels Desktop Pro does not support snapshots

or suspension of an M1 VM [54], so the virtualization methods of obtaining a memory

sample were not possible. In that version of Parallels, boot order configuration options are

also not supported. It would be necessary to be able to change the boot order in order to

get to Recovery Mode on an M1 VM. If SIP were disabled, it would still be possible via

setting Recovery Boot Mode in the terminal. However, in order to disable SIP a user needs

to boot into Recovery Mode. Fig 3.1 shows this catch-22.

Figure 3.1. Setting Recovery Boot Mode requires SIP to be disabled

Once in Recovery Mode, it would be possible to allow third-party kernel extensions.

This allowance is necessary because memory acquisition tools, such as Volexity’s Surge

Collect Pro software, require the use of their signed kernel extension to function. With
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both the virtualization and Recovery Mode routes not possible for acquiring the memory

of a VM, the decision was made to run the malware samples on the host M1 with networking

disabled. The host was prepared with Surge and the password-protected zip of malware

samples prior to disabling networking. With the host prepared, the samples were run and

the memory dump was captured. The dump was moved to a USB and the host was restored

to a known good state.
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Chapter 4. Malware Functionality

4.1. macOS Security Mechanisms

The malware tested in this research encountered multiple built-in macOS security

mechanisms. The below results report, in part, which samples were stopped by which

mechanisms. Thus, it is useful to introduce them here.

4.1.1. File Quarantine

File quarantine is a security feature where files downloaded from the internet are marked

as quarantined. When quarantined files are first run, a user needs to give permission via

an opened dialog box before the file executes. Files downloaded via curl and some other

methods, however, are not marked as quarantined [35], so this method of protecting users

is capable of being bypassed.

4.1.2. Gatekeeper

Gatekeeper is a security feature that is intended to prevent apps developed by an

unknown or invalid developer from running without additional user consent. This method

has been more effective, but is ultimately still susceptible to users ignoring the warning and

deciding to run the program anyway. Also, if they decide to, malware authors are often

easily able to bypass this mechanism by signing their apps with illegitimately obtained but

valid developer IDs [57].

4.1.3. Notarization

Notarization is a security feature that automatically scans quarantined apps for issues

related to code-signing or malicious content [17]. Once an app, package installer, or disk

image passes the checks, that information is published online for Gatekeeper to check when

users download and run it. If a user’s system encounters a previously unnotarized program,

it will inform the user and then let them bypass and run it if they choose [39].
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4.1.4. Malware Protection

As a final security measure, Apple also develops an antivirus called XProtect. XProtect

is built-in to macOS and uses YARA signatures to detect malware and prevent it from

running [21]. When a sample was flagged as malware, it either requires overriding mal-

ware protection for that app, or disabling of SIP in order to run executables. EvilQuest

is an executable that did not have the “Override Malware Protection” option, while the

MacDownloader, XCSSET, and ZuRu applications did. Therefore, it seems the ability to

override malware protections exists for applications but not for executables. This observa-

tion was not able to be confirmed through documentation, however.

4.2. Malware That Was Functional

4.2.1. CDDS / MacMa

Background

CDDS / MacMa was discovered in November 2021 and targeted visitors to a few

pro-democracy websites in Hong Kong. It has abilities including execution of terminal

commands given remotely, file transfer, audio recording, and more [37].

Execution

After running the 2021 version of the installer, a payload is dropped that triggers warn-

ings such as attempting to control the computer using accessibility features and accessing

the microphone. UserAgent is the executable that is dropped and persists via a Launch

Agent. Launch Agents are perhaps the most common method for malware to persist on

macOS. Launch Agents can be used to take actions whenever directories change, start jobs

at set intervals, and even run scripts every time a user logs in [5]. Launch Daemons are

largely equivalent, except they run on behalf of the root user or another specified user [10].

As an example of a Launch Agent, CDDS ’s can be seen in Figure 6.1. UserAgent

running accordingly is shown in Figure 4.2
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Figure 4.1. CDDS ensuring persistence through a Launch Agent

Figure 4.2. UserAgent running via a Launch Agent with arguments specified
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4.2.2. DazzleSpy

Background

DazzleSpy was discovered in January 2022 and was distributed via a compromised

Hong Kong pro-democracy website. It supports fully interactive RDP sessions, the ability

to dump the Keychain on vulnerable systems, and self-deletion [49]. This sample comes

from a similar campaign to CDDS, with the main difference being the payloads (CDDS

and DazzleSpy) that are delivered.

Execution

After running DazzleSpy, connection attempts to its probable C&C were observed. In

addition, a Launch Agent was loaded that will launch the executable each time the user

logs in.

4.2.3. EvilQuest

Background

EvilQuest was discovered in June 2020 and was distributed predominately through

pirated programs. It has the ability to ransom a host, infect files to run its payload, search

for and kill processes, and harvest data [56].

Execution

The malware bundled with the pirated program was identified as such by macOS, so it

was prevented from running. As discussed in prior sections, it is not possible to fully disable

malware protections for executables with the current version of Parallels for M1 Mac VMs.

As this sample was of particular interest due to its distribution vector, capabilities, and

relative recency, it was selected for further analysis and run on the host machine before

a memory image was collected. Just from initial observation, persistence was set, test

binaries were infected, and a fake process named Avast was killed. The file infection was

marked by the ending hex 0xdeadface and still maintained functionality of the initial binary.

Networking could not be tested because it was disabled on the host, but based on other
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functionality it is likely to have attempted to connect to C&C.

Figure 4.3 shows both a running Launch Agent and file infected from EvilQuest.

Figure 4.3. EvilQuest file infection and persistence

4.2.4. FinSpy

Background

The macOS version of FinSpy was discovered by Amnesty International in Fall 2019.

The original Windows version was distributed through a backdoored version of Adobe

update [31] and the macOS version was distributed as a trojaned application with a Turkish

name [53]. It is used as spyware.

Execution

After the disk image was mounted and the installer app was run, a malicious installer

was dropped and executed at the same time a network request to download a legitimate

version of Adobe AIR was made. The malicious installer then detected it was running inside

virtualization software and stopped running. As the focus of this portion of the research

was confirming high-level functionality through Rosetta 2 translation, using a debugger to

get around this check was outside of scope.
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4.2.5. Hydromac

Background

Hydromac was discovered in the middle of 2021 and was distributed via the Tarmac

and Bundlore malwares [46]. It is thought to be a downloader/stager, as it has the ability

to check for installed anti-virus programs and can download and execute programs.

Execution

After giving execution permissions, it runs and attempts to connect out to C&C. No

other functionality was observed.

4.2.6. Komplex

Background

Komplex was discovered in late 2016 and was associated with APT28 Sofacy. It likely

targeted individuals working in aerospace and was distributed as an attachment in an email.

It has functionality including remote execution and information collection about the host

it runs on [36].

Execution

Upon running Komplex, a PDF in Russian opened that appeared to relate to a space

program. It also dropped and ran an executable that checked for connectivity, as well

as creating a Launch Agent that launches that script at startup. It also deleted itself

after dropping the other executable. However, an additional script that was supposed to

be responsible for loading the Launch Agent did not get created or run, so persistence

was ultimately not set. This was confirmed by rebooting the system and noting that the

payload did not start running. The VM this malware ran on was isolated from the internet,

so the connectivity check failed. Parallels Host-Only mode did not seem to allow a VM

to see other VMs on the same subnet, though the documentation implies it should. As a

result, using a program like INetSim [8] on another VM to return 200’s to the malware did

not seem possible and was out of scope since functionality was already observed.
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4.2.7. MacDownloader

Background

MacDownloader was discovered in early 2017 and was associated with Iranian APTs

Charming Kitten and Flying Kitten. It was distributed as both an Adobe Flash installer

and BitDefender adware remover, and has the ability to harvest and upload sensitive in-

formation [7].

Execution

After running it, it completes a fake installation while asking the user for their creden-

tials. A file is created in the temp directory that is populated with sensitive information,

including username and password, Keychain files, running processes, and more. However,

traffic was not seen to its known domain.

In Figure 4.4, the harvested info from a MacDownloader execution can be seen.

Figure 4.4. MacDownloader ’s harvested info

4.2.8. Realtime-Spy

Background

This Realtime-Spy sample is from early 2018, was distributed via the realtime-spy-
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mac[.]com website, and has the ability to upload screen recordings, keystrokes, and other

user activity it has collected [52].

Execution

While the sample runs, it can be seen reaching out to its namesake domain and at-

tempting to screen record.

Figure 4.5. Realtime-Spy attempting to screen record

4.2.9. Ventir

Background

Ventir was discovered back in 2014 and has the ability to execute commands, exfiltrate

files, and keylog on a fully infected system [50].

Execution

It drops 5 binaries and removes itself, creates and loads a launch agent for persistence,

and runs one of the dropped binaries. However, the keylogging functionality fails as the
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binary responsible is a universal binary compiled for i386 and PowerPC.

4.2.10. XCSSET

Background

XCSSET was discovered in early or mid 2020, spreads through infected XCode projects,

and attempts to steal credentials and data through trojanized browsers [43].

Execution

Running either of the associated scripts fails, as they are fingerprinted as malware

and prevented from executing. Running the infected XCode application after overriding

malware protection, however, results in a connection attempt to C&C infrastructure. None

of the other infection markers, such as processes being killed or fake apps being created,

are observed due to the failed connection attempt.

4.2.11. ZuRu

Background

ZuRu was discovered in September 2021. It spread through the search engine Baidu,

where the authors paid to show at the top of the search results for “iTerm2” via a sponsored

link. As a result, it appeared above even the legitimate iTerm2, likely tricking many

users. Its functionality includes downloading and executing additional files that exfiltrate

information and leverage remote access [59].

Execution

An initial run was terminated at launch because it was not able to load in a custom

malicious dynamically linked library. After investigation, it was determined that the library

wasn’t loaded in due to macOS expecting it to be arm64 rather than the x86 64 library

it found. The library was expected to be arm64 because this application was a universal

binary, so by default it ran as arm64 on an M1 Mac. After selecting “Open using Rosetta”,

it did not crash. It attempted to connect out to C&C but stopped running because it did

not receive a response.
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Using a Terminal, it is also possible to run the app without the “Open using Rosetta”

checkbox selected. After navigating the application’s directory to the actual program, it can

be executed through the arch command, which allows for specification of the architecture

with which to execute a universal binary. Both methods are equivalent and successfully run

the application. This successful execution means that Rosetta 2 handles both translation

of x86 64 code and also any x86 64 dependencies. However, when an app is started as

arm64, even if a translatable x86 64 dependency is found, the app will fail to run. The

implication then is that if a malware author is going to build malware as a universal

binary, any dependencies within the app will need to be universal as well. This implication

is confirmed through Apple documentation. Otherwise, their app will fail on M1 Macs,

since arm64 is the default architecture that will run in a universal binary on M1 Macs [2].

Figure 4.6. ZuRu crashing due to an incompatible dependency

As a result, macOS will expect dependencies that a binary loads in to be arm64 as well.

The other way to prevent a crash would be for the author to force execution as x86 64 on

an infected host, but at that point there would be no reason to have also built as arm64 in
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the first place.

In Figure 4.6, ZuRu’s crash report when run as arm64 can be seen. It includes errors

regarding incompatible architecture due to finding an x86 64 dependency it expected to be

arm64.

4.3. Malware That Was Not Functional

Malware was determined to be nonfunctional if it needed significant modification or

to be handheld through bypassing multiple security mechanisms for different stages of its

payloads. As an example, Applejeus was caught by Gatekeeper, then had a second and

third stage get immediately caught by malware protection. Another example, SysJoker,

needed to have its file extension modified on top of being provided executable permissions

to run correctly. This modification changed the entire attack vector of SysJoker, as its file

extension is thought to play an important part of the initial infection vector, either as a

malicious media player attachment or as a TypeScript file inside of an infected package.

4.3.1. Applejeus / MacLoader

Background

Applejeus was discovered around the middle of 2018, is associated with a North Ko-

rean APT, was distributed through phishing emails and trojanized programs [38], and has

functionality including execution of memory-only payloads.

Execution

The initial package installer ran, but did not function as intended. It gave root permis-

sions to the malicious executable unioncryptoupdater and moved it to a separate location,

but that executable was not launched. This failure seems to be due to unioncryptoupdater

being identified as malware (MACOS.8d038b3) and prevented from running. The same

occurs with the CrashReporter malware that another Applejeus package installer tries to

drop and run as a Launch Daemon.
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4.3.2. Crisis

Background

Crisis was discovered in 2016, appeared to be sold as a part of government surveillance

tools, and used Adobe-related phishing as an infection method. It spies on users via audio

recording, stealing browser data, and more [47].

Execution

It failed to run due to being a 32-bit (i386) executable, which is incompatible on an

M1 even with Rosetta 2 installed.

In Figure 4.7, Rosetta being unable to translate the Crisis i386 executable can be seen.

Figure 4.7. Crisis incompatiblity
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4.3.3. Shlayer

Background

Shlayer was originally discovered in 2018, with new variants found through 2021. It

is distributed through malicious sites intended to be discovered through search engine

optimization, that then redirect to fake Adobe Flash installation pages. A recent variant

from last year had the ability to run only with a user double-click, as it utilized 0-days

to bypass most Apple security measures described in section 4.1. After infection, it only

attempts to download adware [41].

Execution

The disk image that contains the installer, AdobeFlashPlayer.dmg, was flagged as mali-

cious and unable to be mounted. The installer package within, Player.pkg, was not flagged

as malware and ran, but didn’t appear functional at all. This lack of functionality is un-

surprising because the malware relied on 0-days that were patched on the OS build it was

run on. The ways that the macOS security mechanisms were bypassed were not highly

technical, however. They essentially were the result of leaving out an Info.plist file of an

app bundle that was script-based. These exploits serve as a good reminder that, while M1

Macs seem hardened against malware executing without user permission, it is difficult for

a system to be truly secure.

4.3.4. Silver Sparrow

Background

Silver Sparrow was discovered in February 2021, is distributed in installer packages,

is a universal binary, and has an unknown final payload. The widest held opinion is that

the second stage installs adware, based on similarities between data from the C&C that

includes the arg upbuchupsf, and an affiliate code often used by adware. It also has roughly

30,000 detections on macOS [66].
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Execution

Shortly after running, the executable encounters an error evaluating JavaScript. Two

expected files, version.json and version.plist, are created but they are empty. Two expected

shell scripts, agent.sh and very.sh, are not created. It thus appears to fail. The same

JavaScript error occurs when running as both arm64 and through Rosetta 2 on x86 64, so

the failure is not thought to be due to a translation error.

In Figure 4.8, the UDP stream of Silver Sparrow ’s installer package can be seen.

Figure 4.8. UDP stream for Silver Sparrow ’s installer package
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4.3.5. SysJoker

Background

SysJoker was discovered in December 2021. Examining C&C behavior has led to the

thought that it’s used only in targeted attacks. However, it is also possible its extension

implies it is TypeScript to be used as a part of infected software packages. It is a universal

binary, and has the ability to execute commands and files based on remote C&C instructions

[34].

Execution

When double clicked normally, the file opens as a playable media file and no infection

markers are seen. Persistence is not set, the second binary is not dropped and run, and

there is no attempt to connect to its command and control infrastructure. However, after

converting it from its extension .ts and giving it execution permissions, it is immediately

recognized by finder as a universal Mach-O binary. Running that binary then leads to

it functioning correctly. The modified binary was also run through Terminal to force

launching as x86 64, and the same functionality was observed. Persistence was set via a

launch agent that runs the dropped binary textitupdateMacOs at startup. Attempts to

connect to a Google drive to generate its c2 were also observed. Because a signed universal

binary is being run on an M1 Mac, the .ts version will default to running the arm64 slice

if it runs at all. Therefore, despite not knowing the root cause of the inability to function

as .ts, it can be said it is not an error or lack of functionality with Rosetta 2 translation.
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4.4. Summary

The below tables show the macOS security mechanisms that were encountered for both

the functional and nonfunctional malware. Their columns differ slightly as a result of the

functional malware not encountering Notarization, and the non-functional malware not

encountering File Quarantine.

Table 4.1. The functional malware and the protections that were overridden

Malware Sample File Quarantine Gatekeeper Malware Protection
CDDS / MacMa X
DazzleSpy X
EvilQuest X X
FinSpy X
Hydromac X
Komplex X
MacDownloader X
Realtime-Spy X
Ventir X
XCSSET X
ZuRu X

Table 4.2. The non-functional malware and the protections that were overridden

Malware Sample Gatekeeper Notarization Malware Protection
AppleJeus / MacLoader X X
Crisis X
Shlayer X X
Silver Sparrow X
SysJoker X

Table 4.3 covers the functionality that was observed to determine a successful run.

The functionality was grouped into 3 columns: Persistence, Networking, and Harvesting.

These correspond to the malware ensuring long-term existence on a system, attempting to

connect out from a system, or harvesting information from the system, respectively.
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Table 4.3. The functional malware and observed high-level behavior

Malware Sample Persistence Networking Harvesting
CDDS / MacMa X X
DazzleSpy X
EvilQuest X ?
FinSpy X
Hydromac X
Komplex X
MacDownloader X
Realtime-Spy X X
Ventir X
XCSSET X
ZuRu X

4.5. Discussion

4.5.1. Rosetta 2 Translation

From the above results, it is clear that Rosetta 2 is willing to translate x86 64 malware,

even in cases where the sample is unsigned, not notarized, and fingerprinted as malware.

It does this translation well, as none of the compatible samples malfunctioned as a result

of Rosetta 2 failing to translate properly. However, given that the user consistently had

to give permissions, and occasionally override malware protections, it is reasonable that

it translated the executables. Rosetta 2 is translating what it is told to translate, so it is

functioning correctly. That said, because x86 64 malware translated through Rosetta 2 does

not have to be signed, while arm64 malware does and also requires that all dependencies

are ported to arm64, it may be preferable to malware authors to avoid preparing arm64

versions of their programs at all. In most cases with new malware tested, and even with

much of the older malware tested, overriding malware protection was not necessary because

the binaries were not fingerprinted as malware by XProtect, despite some being around for

over 5 years. As a result, users usually would only need to be socially engineered into

overriding a warning from Gatekeeper, at which point they would be infected. Running

unsigned code is a vector that would not be possible without Rosetta 2, since arm64 code
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requires a signature to run at all.

4.5.2. Viability of Infection

Most Macs are infected by applications or executables that require user interaction [57].

Malware authors employ a large number of methods to convince users to infect themselves.

These methods include but are not limited to: packaging malware with shareware, bundling

malware with pirated applications, masquerading as fake applications, spreading through

malicious attachments, and using search engine optimization or sponsored links to have

malicious web results show highly.

The impact and viability of these samples seems to be lowered due to the general lack

of signing and requiring of Rosetta 2 to be installed. However, many users will happily

run something anyway when presented with a Gatekeeper warning, especially if any of the

above methods are used. Indeed, almost all of the tested malware samples utilized one or

more of those techniques for initial infection, many to great success.

4.5.3. Conclusions

Four malware samples were tested that were simply applications. XCSSET, MacDown-

loader, and Realtime-Spy were the three that were functional. All of them were x86 64, and

completely unsigned. The one that did not work by default on M1, ZuRu, was a universal

binary and signed. It is not surprising it was signed, since a universal binary would be

expected to default to arm64 on an M1. ZuRu crashed, however, when run as arm64 be-

cause the malicious dynamically linked library it loads in, libcrypto.2.dylib, was only built

targeting x86 64. When an app is run as arm64, arm64 is expected to be the architecture

for everything else the app needs. If ZuRu is executed as x86 64 instead by manually going

into the information for the app and checking “Run with Rosetta”, it runs without crash-

ing. The same Gatekeeper warning occurs whether run as x86 64 or arm64. The difference

is that as just x86 64, it would have worked without user intervention required to manually

specify the proper architecture. This has an interesting implication: life might be easier
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for malware staying with x86 64, rather than building as universal or arm64. Malware

authors porting to a universal binary have many considerations to port, including apps,

plugins, custom frameworks, static and dynamic libraries, build and command-line tools,

launch agents and daemons [3]. In addition, it’s not possible to debug the arm64 slice of

a universal binary on an Intel Mac. Therefore, if authors do not have an M1, they are

essentially building on good faith. Finally, to run the arm64 slice, the program would need

to be signed. The downside to x86 64 only, however, is that it assumes users with M1 Macs

will have Rosetta 2 installed or be willing to install it when prompted. When comparing

downsides for both, it is reasonable to think that some malware authors will keep building

solely for x86 64 as long as Rosetta 2 lets them.
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Chapter 5. Memory Forensics

5.1. Background

Samples were run on a host running macOS Monterey 12.1.0 with networking disabled.

Command Line Developer Tools and Rosetta 2 were installed for malware functionality, and

Surge 21.12.14 was installed to acquire memory from the host. Analysis was performed with

an unreleased version of Volatility 2 with M1 Mac support. Volatility, the new version of

it, and efforts to get it functional are discussed in Chapter 6.

5.2. Malware chosen

Three samples were chosen for further analysis, all due to observed or purported func-

tionality. CDDS was chosen because it was found recently and its harvesting functionality

was of interest. EvilQuest was chosen because it is also relatively modern, and the in-

fection of other files, killing of processes, and attempted memory-only execution seemed

likely to provide good analysis opportunities. It was fingerprinted as malware by XProtect,

so SIP was disabled on the host so that malware protection could be overridden and the

executable run. Realtime-Spy was chosen because it is an example of commercial spyware

and displayed significant functionality during execution that could be investigated further.

5.3. Memory Analysis

The first step was to enumerate the processes in the memory sample and identify

any suspicious ones. This step was accomplished through the mac pstree and mac tasks

Volatility plugins. The mac pstree plugin not only identifies processes, but also constructs

a process tree that shows parent/child relationships between them. The mac tasks plugin

was used to line up processes with metadata like execution time to determine suspicious

processes.
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Figure 5.1. mac pstree output identifying relationship between relaunch and rtcfg

With this knowledge, the process tree was used to identify another previously unknown

process named relaunch that was a child of a suspected malicious process named rtcfg.

Based on its name, relaunch is suspected to be used for persistence. Another process,

com.apple.questd, was also found and was the Launch Agent that EvilQuest loaded in.

Using the process identifiers (PIDs) gathered from the previous plugin output, mac lsof was

run next. The mac lsof plugin lists the open file descriptors of a process. Using this plugin

with the malicious PIDs, another clear indicator of compromise was discovered. As shown in

Figure 5.2, the system.rtcfg folder was discovered. Looking up this directory yields results

regarding the Realtime-Spy malware and its keylogging capabilities [60]. Such reports also

confirm the hypothesis that the relaunch process is used for persistence throughout the

current session.

Figure 5.2. mac lsof output for known malicious PIDs

An indicator of compromise was found for the CDDS malware in a slightly different

way. The mac list files plugin, which lists all files in a memory dump, was run against the

memory sample and had its output redirected to a file. The list of files was then searched for
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Rosetta 2 artifacts that would be generated by the CDDS malware, with the understanding

that if any hits were found then it would be proven that the malware had been translated

and run on the host. Figure 5.3 shows the output of the search, where multiple AOT files

were found for malicious binaries associated with CDDS. These binaries could be dumped

using an updated version of mac procdump for further analysis. The updates to that plugin

and mac procdump are discussed in detail in Chapter 6.

Figure 5.3. Artifacts from Rosetta 2 translation for the CDDS malware sample

The process CarbonComponentScannerXPC was investigated but had no official doc-

umentation online, and only a few posts on forums asking what it was. Those forums

speculated it was related to Rosetta 2, but none confirmed it. Interest was piqued, how-

ever, in determining if this process was a part of Rosetta 2, as it potentially relates to the

research in this paper. The process was dumped using mac procdump, then the strings [26]

util was run on that dumped executable. Figure 5.4 shows some of the many hits for strings

related to the Rosetta 2 runtime. This output appears to confirm relation to Rosetta 2.
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Figure 5.4. mac procdump output for the CarbonComponentScannerXPC process

5.4. Analysis Discussion

As proven by the above analysis, the chosen samples are indeed functioning and run-

ning. Indicators of compromise were found for each of the three samples analyzed. There-

fore, memory forensics has provided an avenue for confirmation that Rosetta 2 translates

malicious x86 64 programs. Using Volatility, indicators of compromise such as running pro-

cesses, open file descriptors, Rosetta 2 artifacts, and strings from dumped processes were

plainly seen. Memory forensics was extremely useful in finding indication these samples

ran, and even information about a process unrelated to malware, allowing for insights that

would often not otherwise be possible. These analysis capabilities would not exist without

the prior contributions made to get Volatility working on M1 Macs.
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Chapter 6. Other Contributions

6.1. Volatility

Volatility is the defacto open-source framework that analysts utilize to perform memory

forensics [64]. Through the use of plugins and OS-specific profiles that contain symbol and

type information for the kernel version, data from a memory sample is parsed and extracted

before being presented to the user. Volatility offers fairly robust support for Windows,

macOS, and Linux. However, when Apple released M1 Macs, Volatility had no immediate

way to support analysis of them, as there was more work to be done than just using Apple’s

kernel debug kits to create a new profile [42].

6.2. Volatility on M1 Macs

An address space, which is used by Volatility for address translation and mimics the

memory management unit of the CPU, for arm64 did not exist prior to M1. One would

be necessary for Volatility to support M1 memory forensics, however. An arm64 address

space was made by Tsahi Zidenberg and pushed to Github [67], and this was used as the

basis for M1 address translation.

Next, Volatility requires knowledge of the location of the kernel page tables and the

value of the kernel address space layout randomization. The former is used for address

translation and the latter is necessary because the offset provided in the Volatility profile

will not be the same as the actual offset in memory. These values could be automatically

obtained on Intel Macs, but are currently necessary for an analyst to find themselves via

the metadata of a memory acquisition tool such as Surge.

With the above fixes and one more fix for userland virtual address translation, plugins

could now be tested. Plugins were tested in bulk and output of each plugin was studied.

There were many plugins that required modifications to become functional on M1. Some

fixes were as simple as adding arm64 architecture to the list of valid architectures for the
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plugins to check. There were also multiple plugins that relied on an Intel-specific data

structure to determine information about a process. These plugins now use a new API

that is functional on both architectures. A final breaking change was kernel symbols and

types that were moved or were missing from M1 Macs. Multiple plugins had equivalent

symbols or work-arounds that led to the same functionality. Some, however, currently have

not been able to be updated for M1 as a result of missing symbols. Overall, almost all

Volatility plugins are now fully functional on M1.

6.3. Rosetta 2 Analysis and Plugins

Rosetta 2 technical analysis began by writing a test program that generated artifacts in

memory and had a dependency for a test library. The program was then run, and the mem-

ory mappings of the running processes were viewed through the vmmap macOS command.

Through the memory mappings it could be seen that there were two mappings associated

with each process, including the test library. The mac procdump and mac librarydump

plugins were tested and only grabbed the Intel executables, not the second mapping for

the AOT artifacts for each. Both plugins were updated to be aware of and extract the

AOT artifacts, adding valuable artifacts that investigators would now be aware of. These

artifacts are particularly helpful, as they are proof of Intel binaries being executed on an

M1. It is also significant in that these artifacts persist through reboots, even if the original

executables are deleted.

Figure 6.1. vmmap showing dual mappings for the test program and library
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A new plugin, mac rosetta, was also developed which automatically extracts and lists

all AOT files. Figure 6.2 shows the output of this plugin against the sample program and

library. The extraction of AOT files could theoretically be done on a live machine, but the

folder that contains them is protected by SIP. On a live machine, therefore, the only way to

access that folder is by disabling SIP, which involves rebooting the machine and loosening

restrictions. After disabling SIP, a user would then manually navigate into that folder to

grab AOT files for analysis. While reasonable to do on an individual level, that approach

quickly becomes infeasible as a part of live incident response with many potential machines

involved. These enhanced and new plugins, as well as all plugins updated to be functional

for M1 Macs, represent a significant leap in the ability to fully forensically analyze an M1

Mac.

Figure 6.2. mac rosetta extracting AOT artifacts
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Chapter 7. Conclusion and Future Work

7.1. Conclusion

Apple made the decision to develop Rosetta 2 to ease the transition from Intel architec-

ture to M1 architecture. A side effect of this decision was that all previous x86 64 malware

would run on their new machines. This research explored the consequences of this reality

by determining the functionality of malicious x86 64 binaries on M1 Macs and the viability

of continuing to run them over arm64 versions. Functionality was explored through two

angles: high-level dynamic malware analysis and memory forensics. Both angles had their

results thoroughly analyzed and discussed. Finally, the research effort to bring memory

forensics to M1 was detailed, as that made the memory forensics in Chapter 5 possible.

7.2. Future Work

One constraint to the analysis performed in Chapter 4 was that connectivity checks

were not bypassed. Getting around these checks would be possible either by debugging the

process at the instruction level and skipping over the checks, or by using a program like

INetSim [8] that will return 200’s for any connection attempt. Either method would have

allowed further functionality to be observed for multiple of the samples tested.

Another contribution would be to investigate more samples on M1 using memory foren-

sics. As there were only three samples on which memory forensics was performed, there

is potentially much more to be learned through continued analysis of a wider variety of

samples.

A research effort that is happening concurrently is documenting APIs commonly used

by malware on Intel, and determining whether or not the same functionality exists on M1.

This effort is taking a deeper dive into the exposed macOS functionality and is resulting

in a better understanding of how malware will need to function to achieve its goals on M1

devices. As a result, these APIs will be better understood, defended against, and identified
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in digital forensics investigations.

The research in this paper was also performed using Volatility 2 because of its wider

adoption. Porting the efforts detailed in Chapter 6 to Volatility 3 [4] will be necessary as

it starts to become more used over Volatility 2.
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