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Abstract

Let G be a complex, connected, reductive, algebraic group, and χ : C× → G be

a fixed cocharacter that defines a grading on g, the Lie Algebra of G. Let G0 be the cen-

tralizer of χ(C×). In this dissertation, we study G0-equivariant parity sheaves on gn, under

some assumptions on the field k and the group G. The assumption on G holds for GLn

and for any G, it recovers results of Lusztig[Lu] in characteristic 0. The main result is that

every parity sheaf occurs as a direct summand of the parabolic induction of some cuspidal

pair.
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Chapter 1. Introduction

Let G be a complex, connected, reductive, algebraic group and χ : C× → G be a

fixed cocharacter. Let G0 be the centralizer of χ(C×) and gn ⊂ g be the subspace such

that Ad(χ(t)) acts on it by tn times identity. We are particularly interested in studying

the derived category of G0-equivariant perverse sheaves on gn, denoted by Db
G0
(gn, k).

Here k is a field of positive characteristic. The simple perverse sheaves on gn are indexed

by (O,L), where O is a G0-orbit contained in gn and L is an irreducible G0-equivariant

k-local system on O. We denote this set of pairs by I (gn, k). We define in section ??, the

subset of all cuspidal pairs, I (gn, k)cusp ⊂ I (gn, k). We denote the simple perverse sheaf

associated to (O,L) by IC(O,L). Motivated by applications to affine Hecke Algebras,

Lusztig has worked in k = C and has proved in [Lu] that every simple perverse sheaf is

a direct summand of the parabolic induction of some cuspidal pair. But in positive charac-

teristics, this result is not true.

Following the pattern from other works in modular representation theory, often the

appropriate replacement for “semisimple complex” is “parity complex”. Parity sheaves

are classified as the class of constructible complexes on some stratified varieties, where the

strata satisfies some cohomology vanishing properties [JMW]. We denote the parity sheaf

associated to the pair (O,L) by E(O,L). So the most fundamental question that arises is

if they exist on gn. Before going into that question we make some assumptions on the field

coefficient. We assume that the characteristic l of k is “pretty good” and the field is “big-

enough” for G. Both the definitions are given in subsection 3.2. A pair (O,L) ∈ I (gn, k)

is said to be clean if IC(O,L) has vanishing stalks on Ō −O.

Under the above assumptions, we assume Mautner’s cleanness conjecture (conjec-
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ture 2.2.7) is true, this plays an important role in the proofs of the main theorems of this

paper. Mautner’s conjecture already holds when the characteristic l does not divide the

order of the Weyl group of the group G or if every irreducible factor of the root system

of G is either of type A,B4, C3, D5 or of exceptional types. We make another conjecture

(conjecture 3.2.9), at the end of section ?? that on the nilpotent cone, parabolic induction

preserves the parity of any cuspidal pair on a Levi subgroup. This conjecture is known

to be true for GLn and in characteristic 0 it is true for any group G. In section 8 we will

show that this conjecture is also true for Sp4 and SL4. The following are the main results

of this paper.

1. For any cuspidal pair, (O,L) ∈ I (gn, k)cusp, IC(O,L) is clean and so IC(O,L) =
E(O,L).

2. Parabolic induction takes parity complexes to parity complexes.

3. For any pair (O,L) ∈ I (gn, k), E(O,L) exists and is a direct summand of the
parabolic induction of some cuspidal pair.

The proof of the existence of parity sheaves for the space of quiver representation of

type A,D,E is given in [Ma], using some other methodology. For some of these cases the

space coming from the quiver representation is the same space that we study here. So for

these cases existence of parity sheaf has already been proved for gn.

Outline

In chapter 2 we build the necessary conception about grading. In chapter 3 we talk

about background, assumptions and notations needed for parity sheaves to make sense.

Chapter 4 contains the lemmas on the varieties having C× action on it. In Chapter 5, we

define Indg
p and Resgp in the graded setting and prove the existence of parity sheaves for

2



cuspidal pairs. In chapter 6, we redefine both Indg
p and IndG

P for cuspidal pairs and in the-

orem 6.2.1, we prove that the parity condition is preserved for cuspidal pairs. In chapter

7, we prove that the parity sheaf exists for a general pair (O,L) ∈ I (gn, k) and in 7.4.1,

we prove that the parabolic induction preserves parity for a general pair. In chapter 8, we

compute some examples.
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Chapter 2. Graded Lie Algebras

Graded setting

In section 2.1, we define the grading on the Lie Algebra g of a complex, connected,

algebraic group G and also a subspace G0 ⊂ G. G0 acts on gn by the adjoint action. Our

aim is to study Db
G0
(gn) in positive characteristic, which is the G0-equivariant derived cat-

egory on gn. There are finitely many G0-orbits in gn, so they provides the required strat-

ification to talk about constructible complexes on gn. We define I (G) and I (gn), where

both are collection of pairs containing a orbit and a local system on that orbit.

Cuspidal pairs and cleanness

In section 2.2, we define cuspidal pairs on nilpotent cone, which are the simple ob-

jects in the equivariant derived category not being induced from some smaller Levi. 0-

cuspidal is the one in I (G, k) which is in the image of the modular reduction map defined

in 2.2.1. We define cuspidal pair in graded setting. Cleanness is a vanishing property of

simple objects that we can define both for nilpotent cone and on gn. In characteristic 0 on

nilpotent cone, IC’s are clean. Lusztig [Lu2] has proved, in characteristic 0 a cuspidal pair

in I (gn) is clean. We assume that cleanness conjecture holds in our setting.

Study of perverse sheaves on graded Lie Algebras

In this section we talk about the work already done in characteristic 0 in graded

setting. The aim of this thesis is to extend the results proved by Lusztig in [Lu] and [Lu1]

in positive characteristics with some more restrictions on the field coefficients (Assumption

3.2.4).
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2.1. Grading

Let k be a field of characteristic l > 0. We consider sheaves with coefficients in k.

The varieties we work on will be over C. Let G be a connected, reductive, algebraic group

over C and g be the Lie Algebra of G. If H is an algebraic group acting on X, we de-

note by Db
H(X, k) or Db

H(X), the derived category of H-equivariant constructible sheaves,

which is defined in [BL], and PervH(X, k), its full subcategory of H-equivariant perverse

k-sheaves. The constant sheaf on X with value k is denoted by kX or more simply k.

We fix a cocharacter map, χ : C× → G and define,

G0 = {g ∈ G|gχ(t) = χ(t)g, ∀t ∈ C×}.

For n ∈ Z, define,

gn = {x ∈ g|Ad(χ(t))x = tnx, ∀t ∈ C×}.

This defines a grading on g,

g =
!

n∈Z

gn.

Clearly, g0 = Lie(G0) and G0 acts on gn. We have the following lemma from [Lu, pp.

158],

Lemma 2.1.1. For n ∕= 0, G0 acts on gn with only finitely many orbits.

Recall that sl2 is the Lie Algebra of SL2 generated by,

e =

"

##$
0 1

0 0

%

&&' , h =

"

##$
1 0

0 −1

%

&&' , f =

"

##$
0 0

1 0

%

&&' .

Let Jn = {φ : sl2 → g| φ(e) ∈ gn,φ(f) ∈ g−n,φ(h) ∈ g0}. We have a action of G0 on Jn by

(g,φ) → Ad(g) ◦ φ. It is easy to check that this action is well-defined.

5



Theorem 2.1.2. The map from the set of G0-orbits on Jn to the set of G0-orbits on gn

defined by φ → φ(e) is a bijection.

Proof. The proof follows from [Lu, Prop 3.3].

2.1.1. The set I (G, k) and I (gn, k)

Let NG be the nilpotent cone of G. Recall that G acts on NG and has finitely

many orbits.

The set I (G, k) is the set of pairs (C, E) satisfying the condition that C ⊂ NG is

a nilpotent G-orbit in g and E is an irreducible G-equivariant k-local system on C(up to

isomorphism). G-equivariant local systems on C are in one-to-one correspondence with the

irreducible representations of the component group AG(x) := Gx/G
o
x on k-vector spaces,

where x is in C. Hence, it follows that the set I (G, k) is finite. Sometimes when there is

no confusion about the field of coefficients then we will just use I (G).

Let I (gn, k) or I (gn) be the set of all pairs (O,L) where O is a G0-orbit in gn

and L is an irreducible, G0-equivariant k-local system on O(upto isomorphism). For

fixed O, G0-equivariant local systems on O are in one to one correspondence with the

irreducible representation of AG0(x) := (G0)x/(G0)
o
x for x ∈ O. Hence by Lemma 2.1.1,

I (gn) is finite.

Recall G0 acts on gn by the adjoint action. Now we have C× × G0 action on gn by

(t, g) → t−nAd(g).

Lemma 2.1.3. The C× × G0-orbits and G0-orbits coincide and each G0- equivariant local

system is also C× ×G0- equivariant and hence C×-equivariant.

Proof. Since there are finitely many G0-orbits in gn, we can choose a C×-line L in gn and

6



G0-orbit O so that O∩L is dense in L. Now we can choose x ∈ O∩L. Therefore L = C×·x.

Let y ∈ C× · x − O and let O′ be the G0-orbit of y. As y is in the closure of O ∩ C× · x,

which is a subset of Ō. Therefore, O′ ⊂ Ō. Hence dimO′ < dimO. Now as C× action

commutes with G0 action, so Gx
0 = Gy

0. Hence dimO′ = dimO, which is a contradiction.

So we can conclude that C× · x−O is empty.

For the second part, it is quite easy to show that

(C× ×G0)
x/(C× ×G0)

x,◦ ∼= Gx
0/(G

x
0)

◦.

Hence, Locf ,G0
(gn) ∼= Locf ,C××G0

(gn). As C× is sitting inside C× × G0 , any C× × G0-

equivariant sheaf is C×-equivariant. Hence we can conclude the G0-equivariant local sys-

tem is C× ×G0-equivariant and hence C×-equivariant.

2.2. Cuspidal pairs

The simple objects in PervG(NG, k) are of the form IC(C, E), where (C, E) ∈

I (G). Let P be a parabolic subgroup of G with unipotent radical UP and let L ⊂ P

be a Levi factor of P . One can identify L with P/UP through the natural morphism,

L ↩−→ P ↠ P/UP . We consider a diagram,

NL
πP←− NL + uP

eP−→ G×P (NL + uP )
µP−→ NG

where uP = Lie(UP ), πP , eP are the obvious maps and µP (g, x) = Ad(g)x. Let

iP = µP ◦ eP : NL + uP → NG

The parabolic restriction functor denoted by,

ResGP : Db
G(NG, k) → Db

L(NL, k)

7



is defined by ResGP (F) = πP !e
∗
Pµ

∗
P ForGL(F) = πP !i

∗
P ForGL(F). Here

ForGL : Db
G(NG, k) → Db

L(NG, k)

is the forgetful functor. The parabolic induction comes from the same diagram above.

IndG
P : Db

L(NL, k) → Db
G(NG, k)

and is defined by, IndG
P (F) := µP !(e

∗
P ForGP )

−1π∗
P (F). Here again ForGP denotes the forgetful

functor and, e∗P ForGP : Db
G(G ×P (NL + uP )) → Db

P (NL + uP ) is the induction equivalence

map.

Definition 2.2.1. 1. A simple object F in PervG(NG, k) is called cuspidal if
ResGP (F) = 0, for any proper parabolic P and Levi factor L ⊂ P .

2. A pair (C, E) ∈ I (G), is called cuspidal if the corresponding simple perverse sheaf
IC(C, E) is cuspidal.

Remark 2.2.2. Notice that the set of cuspidal pairs depends on the characteristic l of

the field of coefficients k; so we sometime call it l-cuspidal. We will denote the subset of

cuspidal pairs in I (G) or I (G, k) by I (G)cusp or I (G, k)cusp.

Remark 2.2.3. From [AJHR2, Remark 2.3(1)], if IC(C, E) is cuspidal then so is

DIC(C, E) = IC(C, E∨), where D is the Verdier duality functor and E∨ is the dual local

system of E .

2.2.1. Modular reduction

Let K be a finite extension of Ql with ring of integers O and residue field k. Then

(K,O, k) constitutes an l-modular system and we can talk about the modular reduction

map. Let E ∈ (K,O, k), and KG0(gn, E) be the Grothendieck group of Db
G0
(gn, E). Then

the modular reduction map,

d : KG0(gn,K) → KG0(gn, k)

8



is defined by d[IC(O,L)] = [k ⊗L
O IC(O,LO)], where LO is a torsion-free part O-local

system. In the same way we can define the modular reduction on the nilpotent cone,

KG(NG,K) → KG(NG, k).

If the characteristic l of k is rather good for G(see Definition 2.2.6), this modular reduc-

tion induces a bijection by [AJHR],

I (G,K)
∼=−→ I (G, k).

We will discuss the modular reduction in more detail in 7.3. The pair (C, E) ∈ I (G, k)

will be called 0-cuspidal if it is in the image of some cuspidal pair under d, and we will

denote the set of 0-cuspidal pairs by I (G, k)0−cusp or I (G)0−cusp.

Definition 2.2.4. (O,L) ∈ I (gn, k) will be called cuspidal if there exists a pair (C, E) ∈

I (G)0−cusp, such that C ∩ gn = O and L = E|O.We will denote the set of all cuspidal pairs

on gn by, I (gn)
cusp.

Remark 2.2.5. Notice that the definition of cuspidal on gn is not coming from the re-

striction functor as for the nilpotent cone and there is no l version in definition of cuspidal

pairs on gn.

2.2.2. Cleanness

A pair (C, E) ∈ I (G) is called l-clean if the corresponding IC(C, E) has vanishing

stalks on C̄ − C. Similarly, a pair (O,L) ∈ I (gn) is called l-clean if the corresponding

IC(O,L) has vanishing stalks on Ō −O.

Definition 2.2.6. A prime number l is said to be a rather good prime for a group G, if it

is a good prime for G and does not divide |Z(G)/Z(G)◦|.

9



By [AJHR, Lemma 2.1], a prime is rather good if and only if l does not divide

|AG(x)| for any x ∈ NG. The following is a part of a series of (unpublished) conjectures

by C. Mautner.

Conjecture 2.2.7. (Mautner’s cleanness conjecture) If the characteristic l of k is a rather

good prime for G, then every 0-cuspidal pair (C, E) ∈ I (G) is l-clean.

Remark 2.2.8. This conjecture has been already proved when the characteristic l does not

divide the order of the Weyl group of G, or if every irreducible factor of the root system of

G is either of type A,B4, C3, D5 , or of exceptional type [AJHR].

Remark 2.2.9. The cleanness conjecture is not true if we replace 0-cuspidal by l-cuspidal.

A counter example is when G = GL(2), and l = 2 then the unique 2-cuspidal pair (O(2), k)

is not 2-clean. The proof is explained in [AJHR2, Remark 2.5].

In this paper we assume this conjecture is true.

2.3. Lusztig’s work in characteristic 0.

Like induction and restriction on nilpotent cone, we can define these functors in the

graded setting. For this we use the following induction diagram,

ln
π←− pn

e
↩−→ G0 ×P0 pn

µ−→ gn.

Define, Indg
p : Db

L0
(ln) → Db

G0
(gn) and Resgp : Db

G0
(gn) → Db

L0
(ln). We will talk about

these functors in details in section 5. In his paper [Lu], Lusztig has studied semisimple

complexes on graded pieces in char 0, where the following theorems hold,

Theorem 2.3.1. For any cuspidal pair (O,L) ∈ I (gn), IC(O,L) is clean.

Theorem 2.3.2. For (O,L) ∈ I (gn), there exist a parabolic subgroup P with Levi L and

(O′,L′) ∈ I (ln)
cusp, so that IC(O,L) occurs as a direct summand of Indg

p IC(O′,L′).

10



Theorem 2.3.3. Indg
p sends semisimple complexes to semisimple complexes.

In proving Theorem 2.3.1, the cleanness of IC’s for cuspidal pairs on nilpotent cone

and the Lemma 2 from [Lu1] plays an important role. In this thesis we prove the clean-

ness of cuspidal pairs on the graded pieces in positive characteristic (Theorem 5.3.1). For

cleanness on nilpotent cone in positive characteristic we assume that Mautner’s clean-

ness conjecture (Conjecture 2.2.7) holds in our context. To prove a analogous Lemma for

Lemma 2, we made some effort in chapter 4. In characteristic 0, for any Levi L contained

in a parabolic P and for any cuspidal pair (C,F) ∈ I (L),

IndG
P IC(C,F) ∼= ⊕r

j=1Fj[2sj] , by [Lu, 2.6(b)], (3.1)

where sj’s are integers and Fj’s are G-equivariant local systems. This statement

plays an important role in the proof of Theorem 2.3.2. But this statement is not true in

positive characteristic. So in this thesis we replace the above statement by Conjecture

3.2.9. To prove Theorem 2.3.2, an intermediate step was to fix an element x ∈ O and

construct a parabolic P with Levi L associated to x with OL = O∩ ln and L′ = L|OL
. This

(L,χ) is n-rigid ( for definition see 7.1). The Lemma that helps to prove Theorem 2.3.2, is

the following [Lu, Lemma 6.8],
Lemma 2.3.4. Let (O,L) ∈ I (gn) and ln and L as constructed above. Then

• The support of Indg
p IC(OL,L) is O,

• and Indg
p IC(OL,L)|O = L[dimOL].

We prove a analogous Theorem in positive characteristic (Theorem 7.2.2) which

involves parity sheaves. This Lemma together with the above equation (3.1) helps to prove

[Lu, Prop. 7.3], whose direct consequence is Lemma 2.3.2. Equation (3.1) is not true in

positive characteristic, simply because decomposition theorem does not hold. So to prove
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a analogous result as [Lu, Prop. 7.3], we take the help of modular reduction map (section

7.3) and prove Prop. 7.3.4.

The theorems above helps to establish a connection between the affine hecke Al-

gebra and semisimple complexes. But all of them are false in positive characteristics. So

in this thesis we tried to prove some analogous result associating parity sheaves instead of

semi-simple complexes.
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Chapter 3. Parity Sheaves

Introduction to parity sheaves

Parity sheaves were first introduced by Juteau, Mautner and Williamson in their

paper ‘Parity sheaves’ [JMW]. They are constructible complexes with some cohomology

vanishing property. In characteristic 0 they coincide with intersection cohomology com-

plexes but in positive characteristic they are new objects. As we mentioned before, The-

orem 2.3.1, Theorem 2.3.2 and Theorem 2.3.3 are not true in positive characteristic. One

aim will be to replace these theorems by something similar associated to parity sheaves.

In section 3.1, we define parity sheaves in the general context, where an algebraic

group H acts on the algebraic variety X. To talk about parity sheaves we need some co-

homology vanishing condition that is mentioned in (1.1). Finally the definition of parity

comes from the Theorem 3.1.2. That cohomology vanishing condition to hold in our con-

text we need to pose more restriction on the field k that comes from section 3.2.

Restriction on the characteristic of k

The condition (1.1) in our context transforms in to the vanishing of H∗
G0
(L) in odd

degrees. In [JMW], they have introduced the notion of ‘rather good’ prime in terms of tor-

sion prime. Here we need the characteristic of the field coefficients to be ‘pretty good’.

Also we assume that the field k is big enough for G. This serves for the irreducibility after

applying the modular reduction map defined in 2.2.1. Theorem 3.2.7 sets up the proper

environment to talk about parity sheaves on nilpotent cone. At the end of this section we

make another conjecture (Conjecture 3.2.9).
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Existence on nilpotent cone

As parity sheaves do not exist automatically as intersection cohomology complexes

do, it needs some work to prove the existence. In their paper [JMW], Juteau-Mautner-

williamson has dealt with this question in the context of nilpotent cone. Construction

of even and semismall resolution serves the purpose in several cases as by [JMW, Prop.

2.34], the pushforward of such morphism takes parity to parity.

Existence on gn

The main goal of this thesis is to prove the existence of parity sheaves on gn in

characteristic positive. By Theorem 3.2.8, there exist atmost one parity sheaf for a pair

(O,L) ∈ I (gn). But still the existence is a question. In this section we have tried to ex-

plain the proof of Maksimao [Ma] that works for us in case of G = GLn.

3.1. Parity sheaves

Let H be a linear algebraic group and X be a H-variety. We fix a stratification

X =
(

λ∈Λ

Xλ

of X into smooth connected locally closed (H-stable) subsets. For each λ ∈ Λ, iλ : Xλ ↩→

X denotes the inclusion map and let dλ be the dimension of Xλ. For each λ ∈ Λ, let

Locf ,H(Xλ, k) or Locf ,H(Xλ) denote the category of H-equivariant k-local systems of finite

rank on Xλ.

According to [JMW], to talk about parity sheaves on X we need the condition be-

low,

H∗
H(L) = 0 for odd degrees, (1.1)

for any local system L ∈ Locf ,H(Xλ) and for any λ ∈ Λ.
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Definition 3.1.1. 1. A complex F ∈ Db
H(X) is called ∗-even if for each λ ∈ Λ and

n ∈ Z, Hn(i∗λF) belongs to Locf ,H(Xλ) and vanishes for n odd. A complex F ∈
Db

H(X) is called ∗-odd if for each λ ∈ Λ and n ∈ Z, Hn(i∗λF) belongs to Locf ,H(Xλ)
and vanishes for n even. Similarly, we can define !-even and !-odd complexes.

2. A complex F is called even if it is both ∗-even and !-even. A complex F is called
odd if it is both ∗-odd and !-odd.

3. A complex F is called parity if it splits as the direct sum of an even complex and an
odd complex.

Like IC sheaves, the definition of parity sheaves comes from a theorem. The follow-

ing theorem requires the assumption (1.1) on of Locf ,H(Xλ).
Theorem 3.1.2. Let F be an indecomposible parity complex. Then

1. The support of F is irreducible and hence of the form X̄λ, for some λ ∈ Λ.

2. F|Xλ
is isomorphic to L[m] for some indecomposible object L in Locf ,H(Xλ) and

some integer m.

3. Any indecomposable parity complex supported on X̄λ and extending L[m] is isomor-
phic to F .

The proof of the theorem is given in [JMW, 2.12].

Definition 3.1.3. A parity sheaf is an indecomposable parity complex with support X̄λ

and extending L[m] for some indecomposable L ∈ Locf ,H(Xλ) and for some m ∈ Z. When

such a complex exists we denote it by E(Xλ,L) or E(λ,L) and this has the property that

E(λ,L)|Xλ
= L[dimXλ]. This is the unique parity sheaf associated with (λ,L) up to shift.

Remark 3.1.4. 1. If L is not indecomposable then E(λ,L) denotes the direct sum of
parity complexes coming from the direct summand of L.

2. If L = kXλ
, then we may write E(λ,L) as E(λ).

3.2. Torsion primes and pretty good primes

Let G be a reductive group with the root datum (X,Φ,Y,Φ∨). A reductive sub-

group of G is called regular if it contains a maximal torus. If the group G is complex re-
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ductive then all the regular reductive subgroups are in bijection with Z-closed subsystems

of Φ, that is Φ1 ⊂ Φ.

Definition 3.2.1. A prime p is called a torsion prime for G if for some regular reductive

subgroup H of G, π1(H) has p-torsion.

Definition 3.2.2. A prime p is called pretty good for G if for all subsets Φ1 ⊂ Φ, X/ZΦ1

and Y/ZΦ∨
1 have no p-torsion.

The properties of reductive groups for which p is a pretty good prime have been

discussed in [Her, Remark 5.4]. From those properties and using the tables of centralisers

from [Car], we have the following lemma.

Lemma 3.2.3. A prime p is pretty good for G if and only if for all x ∈ N , p is not a

torsion prime for Cx, where Cx is the maximal reductive quotient of (Gx)◦, and the order

of AG(x) is invertible in k.

This is the right time to make some assumption on the characteristic of k.

Assumption 3.2.4. 1. The characteristic l of k is a pretty good prime for G.

2. The field k is big enough for G; i.e, for every Levi subgroup L of G and pair
(CL, EL) ∈ I (L), the irreducible L-equivariant k-local system EL is absolutely
irreducible.

Remark 3.2.5. Note that pretty good implies that |AG(x)| is invertible in k. Hence pretty

good implies rather good. So if conjecture 2.2.7 holds then it in particular holds for pretty

good primes.

Remark 3.2.6. From [AJHR, Lemma 2.2(1)], if a prime l is rather good for G then it

is rather good for all the Levi subgroups. Hence |AL(x)| is still invertible in k for any Levi

subgroup L ⊂ G.

Recall that nilpotent orbits are even dimensional[CM, 1.4]. As a direct conse-
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quence of the above lemma, we have the next theorem.

Theorem 3.2.7. Let C be a nilpotent orbit in g and L ∈ Locf ,G(C, k), then H∗
G(L) van-

ishes in odd degrees.

Proof. The proof is given in [JMW, Lemma 4.17]

Theorem 3.2.8. Let O be a G0-orbit in gn and L ∈ Locf ,G0
(O, k), then H∗

G0
(L) vanishes

in odd degrees.

The proof of this theorem will be given in section 6.

Now, talking about parity sheaves makes sense both in G- and G0-equivariant set-

tings as we know (1.1) is true for NG and gn.

Conjecture 3.2.9. Let P be a parabolic subgroup of G and L be its Levi subgroup. For a

pair (C, E) ∈ I (L)0−cusp, IndG
P IC(C, E) is a parity complex.

In characteristic 0, the proof follows from the decomposition theorem and [Lu2,

24.8]. In positive characteristic, the result is still unknown. Throughout this paper we will

assume this result is true. In the last section we will give some example where the conjec-

ture holds.

3.3. Existence of parity for nilpotent cone

It is known that in characteristic 0, intersection cohomology complexes on nilpotent

cone coincide with the parity sheaves, thus the existence of parity sheaves are assured.

However, in positive characteristic with the assumption 3.2.4 on the field coefficients, The-

orem 3.2.7 assures that there exists atmost one parity sheaf for each pair (O,L) ∈ I (G)

and here we will discuss this existence. By [JMW, prop. 2.34], a even morphism sends
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parity complexes to parity complexes. By [DCLP], the Springer resolution,

π : Ñ = G×P u → Ōreg = N

is semismall and even. Therefore E(Oreg, k) exists. Also π∗kÑ [dimN ] is perverse and par-

ity. So each pair (O,L) for which E(O,L) occurs as direct summand of π∗kÑ [dimN ] with

non-zero multiplicity, exists. With the condition that |W |, the order of the Weyl group, is

invertible in k, these pairs will be the same with those occurring in characteristic 0. For

proving the existence of E(O, k) for any nilpotent orbit O, we need a resolution like above.

In case of GLn, for each orbit O, it has been proved in [BO], that there exists an GLn-

equivariant semi-small resolution with each fiber obtaining a affine paving. Which provides

the requirement.

3.3.1. Classical groups

In case of classical groups we need some more works to do, to find the resolution

needed. We fix an orbit O and an element x ∈ O ∩ u. By Jacobson-Morozov theorem

[CM], we find a sl2-triple (x, h, y) in g. The element h induces a grading on g, which we

have discussed in details in the later sections. Under this grading x lies in g2 and y ∈ g−2.

P be the standard parabolic associated to the simple roots lying in g0. We consider the

natural map,

πO : G×P g≥2 → Ō.

This map is a proper morphism. The existence of E(O, k) boils down to proving the above

map is even. In [Fr], Fresse has proved the following theorem,

Theorem 3.3.1. For a classical group G with parabolic subgroup P and i a P -stable ideal
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in the Lie Algebra p, the following morphism is even,

πP,i : G×P i → g.

This theorem serves our purpose with i = g≥0, which is clearly a P -stable ideal. So

for each orbit O, the resolution πO provides the existence of parity for a larger collection

of pairs but still not for all.

3.4. Existence of parity on gn.

In [JMW], Juteau-Mautner-Williamson gave the following definition,

Definition 3.4.1. Let X =
)

λ∈Λ Xλ and Y =
)

µ∈∆ Yµ be two stratified H-spaces. A

morphism f : X → Y is called stratified if f−1(Yµ) is union of strata and the restriction

of f , f |Xλ
: Xλ → Yµ is a submersion with smooth fibers. The map f is called even if for

any y ∈ Y and L a local system on f−1(y), we have,

H∗
H(f

−1(y),L) = 0 for odd degrees.

The following theorem is proved in [JMW],

Theorem 3.4.2. f be a proper and even morphism and E be a parity complex then f∗F is

again a parity complex.

A direct consequence of the above theorem is that for Xλ, if we can show that there

exist a even and proper resolution

π : X̃λ → X̄λ

and a parity sheaf F̃ on X̃λ with the property F̃ |π−1(Xλ)∼=Xλ
∼= L[dλ], where L is a lo-

cal system on Xλ and dλ is the dimension of Xλ, then we can say E(Xλ,L) exists. So we

can reduce the question of existence of parity to the existence of a proper, even morphism.
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For G a complex algebraic group and X and Y , complex algebraic varieties and f be a G-

equivariant proper map, the fibers of f has a specific geometric description: they are the

flag versions of quiver Grassmannians. Let Γ = (I, J) be a quiver with I being the vertex

set and J being the arrows. Fix an increasing series of dimension vectors v = (v1, . . . , vd).

Let v = vd and V be a Γ-representation with dim v. A flag version of quiver Grassman-

nian is defined as,

Fv(V ) = {Vv1 ⊂ Vv2 ⊂ · · · ⊂ Vvd = V }.

The fiber f−1(y) as discussed above is always of the form Fv(V ). In his paper [Ma], Mak-

simau has proved,

Theorem 3.4.3. Γ be a Dynkin quiver of type A,D and E. Then,

H∗(Fv(V ),Z) = 0 for odd degrees

and is free.

3.4.1. Our setting

In our set-up, we want to study Db
G0
(gn, k), where G0 is the centralizer of a fixed

co-character χ and gn is the n-th graded piece of the action of G0 on g, coming from ad-

joint action. Here k is a field of characteristic > 0. For G = GLn, let the co-character is of

the following form, "

######$

ta1

. . .

tar

%

&&&&&&'

where a1 ≥ a2 · · · ≥ ak. We can rewrite the ai’s in blocks of equal entries like following,

b1 . . . b1* +, -
m1times

> · · · > bk, . . . , bk* +, -
mk times

,
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where, n = m1 + . . .mk. In this case the above defined G0 is GLm1 × · · · × GLmk
and gn

is the collection of matrices with nonzero entries in all (i, j)-th position if bi − bj = n. For

detailed example, see 8.3. We can split Cn in the collection of vector spaces V1, . . . , Vk of

dimension m1, . . . ,mk respectively. We can write gn as the collection of maps Cn → Cn

with Vj being sent to Vi if bi − bj = n. Let’s make a quiver with k-vertices as follows,

•v1 •v2 · · · •vk .

We will draw an edge between Vj → Vi if bi−bj = n. So what we will get is a union of type

A dynkin diagrams. gn is the collection of representations of the above quiver with dimen-

sion vectors (m1, . . . ,mk). Therefore we can apply Theorem 3.4.3 to show the existence of

parity for any pair (O,L) ∈ I (gn), with G = GLm.
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Chapter 4. Lemmas On Varieties With C×-Action

Let X be a variety defined over C and G be a connected linear algebraic group

which acts on X. In this section all the sheaf coefficients will be considered over k whose

characteristic satisfies Assumption 3.2.4.

4.1. C×-action on varieties

Lemma 4.1.1. If F ∈ Db
G(X) and F = For(F) ∈ Db

c(X), then H∗
c(F) = 0 implies

H∗
G,c(F) = 0. Equivalently, RΓc(F) = 0 implies RΓc(F) = 0

Proof. RΓc(F) = For(RΓcF). Now the argument follows from the following statement, for

X as defined above and M ∈ Db
G(X), if For(M) = 0 then M = 0. Suppose M ∕= 0. We

will proceed by induction on the i, such that Hi(M) ∕= 0. If there is unique i, then M ∼=

Hi(M), which up to a shift, belongs to PervG(X). But we know that For : PervG(X) →

Perv(X) is faithful. Hence For(M) ∕= 0.

If there are more than one i, then we use the distinguished triangle,

τ≤k(M) → M → τ≥k+1(M) → . (1.1)

So using the forgetful functor we get,

For(τ≤k(M)) → For(M) → For(τ≥k+1(M)) → . (1.2)

As M ∕= 0, either the first or the third term in the long exact sequence in (1.1) should

be nonzero. By induction in (1.2), either the first or the third term is nonzero. Hence

For(M) ∕= 0.

Lemma 4.1.2. Let V be a finite-dimensional vector space with a nontrivial linear C×-

action on it. Then there exists a nonzero vector with a stabilizer of minimum size and
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there exists a nonzero vector with a stabilizer of maximum size among those with finite

stabilizers.

Proof. As C× acts on a vector space V , we have a grading on V given by,

V =
!

λ∈Z

Vλ,

where Vλ’s are eigenspaces of the C×-action. Note that stabilizers are subgroups of C×.

If they are finite then they are cyclic and of the form Z/nZ. So it is obvious that there

exists an element of minimum-sized stabilizer. Now let v ∈ V and v /∈ V0. Then we can

write v as: v = ⊕vλ, where vλ ∈ Vλ. By definition t.vλ = tλvλ. Hence t ∈ Stab(vλ) if

and only if t is a λ-root of unity. In other words, | Stab(vλ)| = |λ| for λ ∕= 0. Now if t is

in Stab(v), then t must stabilize all the vλ’s. Hence t must be c-th root of unity where c

divides λ for all λ ∕= 0. Hence max | Stab(v)| = max{|λ||Vλ ∕= 0}.

Lemma 4.1.3. Let C× acts on Y , a variety over C, with finite stabilizers. Assume that

all the stabilizers have order not divisible by l, where l is the characteristic of k. Then for

any object F ∈ Db
C×(Y, k), dim(H∗

C×(Y,F)) < ∞.

Proof. For a general variety Y , as all the subgroups of C× are finite, there exists a stabi-

lizer of minimum size, say n. Let U = {y ∈ Y, | Stab(y)| = n}. By the Sumihiro embed-

ding theorem [Su], we can cover Y by C× invariant subvarieties, each of which is equiv-

ariantly isomorphic to a C×-invariant closed subvariety of AN for some N , on which C×

acts linearly. Now this action is not trivial as we have already assumed that C× acts non-

trivially on Y with finite stabilizers. Hence, by Lemma 4.1.2, these stabilizers will have

maximum size. Now the claim is that U is open. Let Z = U c = {y ∈ Y || Stab(y)| > n}. As
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the maximum sized stabilizer exists, we can choose a finite subgroup M of C× which con-

tains all the stabilizers. Let m ∈ M which is not in the minimum sized stabilizers. Then

Zm = {y ∈ Y |m ∈ Stab(y)} is closed. The collection {Zm} is finite as m is coming from

a finite subgroup M . Also Z = ∪mZm, finite union of closed sets, hence is closed. So U is

open.

So we have the open and closed embeddings,

Z
i
↩−→ Y

j
←−↪ U

which give us the distinguished triangle,

i∗i
!F → F → j∗j

∗F → . (1.3)

Now we are at a place to use Noetherian induction on Y . The theorem is true for

the empty set. So we can assume that it is true for all the proper closed subvarieties of Y ,

particularly for Z. Now for u ∈ U , let K = Stab(u) = Z/nZ. Let H = C×/K, then H acts

freely on U .

Let F ∈ Db
C×(U, k). The goal is to show dimH∗

C×(F) < ∞. According to [BL,

Sec 6], if G′ and G are two topological groups acting on two varieties X and Y respec-

tively, and φ : G′ → G be a homomorphism of topological groups with f : X → Y , a

φ-equivariant map, then there exist two functors,

Q∗
f : D+

G(Y ) → D+
G′(X)

and

Qf∗ : D
+
G′(X) → D+

G(Y ).
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Here Q∗
f and Qf∗ are adjoint to each other. In our case, we take both X and Y to be U

and G′ = C×, G = H and we take f to be the identity. So we have,

Qid∗ : D
+
C×(U) → D+

H(U).

Therefore if F ∈ Db
C×(U), then Hom∗

D+
H(U)

(k, Qid∗F) ∼= Hom∗
D+

C×
(U)

(k,F). Now if we can

show Qid∗F is in Db
H(U), then as we already know Db

H(U) ∼= Db
c(U/H)(non-equivariant) as

H acts freely on U , so dim(Hom∗
Db

c(U/H)(k, Qid∗F)) < ∞. The next following fact is from

[BL, 7.3]. For F ∈ Db
C×(U) ⊂ D+

C×(U), we have the commutative diagram below,

D+
C×(U) D+

C×/K(U)

D+
K(U) D+(U)

Qid∗

ForC
×

K ForC
×/K

Qid∗

Therefore we have ForC
×/K Qid∗F ∼= Qid∗ For

C×

K F . Let G = Qid∗F . So G is bounded if

and only if ForH G is bounded. As F is from bounded derived category then so is ForC
×

K F .

Therefore to show ForH G is bounded it is enough to show,

Qid∗ : D
b
K(U) → D+(U)

takes values in Db(U). As K is finite hence discrete, so by [BL, Cor 8.4.2], Db
K(U) ∼=

DbShK(U). But we know ShK(U, k) ∼= Sh(U, k[K]), where k[K] is a commutative

semisimple ring as l ∤ |K|. By the same corollary, Qid∗ corresponds to a exact functor. So

we can conclude Qid∗ takes Db
K(U) to Db(U). Now coming back to our actual proof, if we

apply aX∗ to (1.3), where aX : X → {pt}, we get,

H∗
C×(i!F) → H∗

C×(F) → H∗
C×(j∗F) →

As dim(H∗
C×(i!F) < ∞ by induction hypothesis and dim(H∗

C×(j∗F)) < ∞ by the above

result. Hence dim(H∗
C×(F)) < ∞.
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Lemma 4.1.4. Let X be a variety over C and H be a connected linear algebraic group

acting trivially on X. Then for F ∈ Db
H(X, k),

H∗
H,c(X,F) ∼= H∗

c(X,F)⊗ H∗
H(pt, k).

Proof. Let Un → {pt} be the n-acyclic resolution for {pt}. Then Un × X → X is the n-

acyclic resolution of X. By [BL, 2.1], if F ∈ Db
H(X, k) this implies F ⊠ kUn/H ∈ Db

c(X ×

Un/H, k) such that for i < n,

Hi
H,c(X,F) ∼= HomDb

H(pt,k)(kpt, aX !F [i])

∼= HomDb
c(Un/H×X)(k, k⊠ aX !F [i])

∼= Hi(RΓ(kUn/H ⊠ aX !F).

As for constructible sheaves all sheaf functors commute with ⊠. Therefore we have for i <

n,

Hi(RΓ(kUn/H ⊠ F)) ∼=
!

j+k=i

Hj(RΓ(kUn/H))⊗ Hk(RΓ(F))

∼=
!

j+k=i

Hj
H(pt, k)⊗ Hk(X,F).

So we are done.

Lemma 4.1.5. Let Y be an algebraic variety over C and Y0 be the fixed point set of this

action. Assume that C× acts on Y − Y0 with finite stabilizers and all the stabilizers of

Y − Y0 have order not divisible by l. Let F ∈ Db
C×(Y, k). If Hj

c(Y,F) = 0 for all j, then

Hj
c(Y0,F) = 0 for all j.
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Proof. Let F ∈ Db
C×(Y ) and Hj

c(Y,F) = 0. By Lemma 4.1.1, Hj
C×,c(Y,F) = 0. Let Y1 =

Y − Y0, then we have the open and closed embeddings,

Y0
i
↩−→ Y

j
←−↪ Y1.

This gives us the long exact sequence of C× equivariant cohomology

j!j
∗F → F → i∗i

∗F → .

From that we get, Hi
C×,c(Y0,F) = Hi+1

C×,c(Y1,F), for all i. By Lemma 4.1.3, dim(H∗
C×,c(Y1,F))

is finite. Therefore we can conclude that dim(H∗
C×,c(Y0,F)) is also finite. By Lemma 4.1.4,

H∗
C×,c(Y0,F) ∼= H∗

c(Y0,F)⊗ H∗
C×(pt, k). (1.4)

Recall, H∗
C×(pt, k) ∼= Sym(k), which is infinite dimensional. In equation (1.4), if

H∗
c(Y0,F) ∕= 0 then LHS is finite dimensional and RHS is infinite dimensional, a con-

tradiction. So H∗
c(Y0,F) = 0.

Lemma 4.1.6. Let G ∈ Db
C×(pt, k).

1. If Hi(ForC
×
(G)) = 0, for all i odd, Then Hom(kpt,G[i]) = 0, for all i odd.

2. If Hom∗(k,G) is free over H∗
C×(pt) and 0 for odd degrees, then H∗(ForC

×
(G)) = 0

for odd degrees.

Proof. 1. By Lemma 4.1.1, Hi(G) = 0 for i odd. If Hi(G) is nonzero for a unique
i, then G = kpt[i], and clearly the statement is true. If there is more than one
nonzero cohomology, then we will use induction on the number of nonzero cohomol-
ogy sheaves and we will use truncation on G to reduce to the case, G =

.
kpt[2m].

Hence,

Hom(kpt,G[i]) =
!

m

Hom(kpt, kpt[i+ 2m]) =
!

Hi+2m
C× (pt),

which is zero when i is odd.

2. Note H∗
C×(G) is free over H∗

C×(pt). So, using the fact that H∗
C×(G) is 0 in odd de-

grees, we can choose basis elements, γi ∈ H−2ni

C× (G) for i = 1, . . . , k. Therefore γi is a
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map from kpt[2ni] to G. Hence we can define

γ : kpt[2n1]⊕ · · ·⊕ kpt[2nk] → G.

This map induces an isomorphism in equivariant cohomology. Let F = Cone(γ).
Now the claim is that F ∼= 0. If F ∕= 0, then let k be the smallest integer
such that Hk(F) ∕= 0. As Hk(F) ∈ Locf ,C×(pt, k) which is again equivalent to
finite-dimensional k-vector spaces, so there is a nonzero map kpt → Hk(F). Now

Hk(F)[−k] ∼= τ≤kF . Hence we have a nonzero map,

kpt[−k] → τ≤kF → F .

In other words, Hk
C×(F) ∼= Hom(kpt[−k],F) ∕= 0, which is a contradiction. Hence

cone(γ) = 0 and γ is an isomorphism. Therefore,

Hj(For(G)) ∼=
k!

i=1

Hj+2ni(kpt),

which is 0 for j odd.

Theorem 4.1.7. Let X be a C-variety with a C×-action on it. Let XC×
be the fixed point

set and F ∈ Db
C×,c(X, k), a local system. If Ha

c(X,F) = 0 for a odd, then Ha
c(X

C×
,F) =

0 for a odd, provided characteristic l of k does not divide the order of the stabilizers on

X −XC×
.

Proof. Let Z = XC×
and U = X − Z. Let i, j be the inclusion maps of Z and U respec-

tively, and,

Z
i
↩−→ X

j
←−↪ U.

Also let a : X → {pt}. Let G = a!(F). We have the distinguished triangle below

j!F|U → F → i!i
∗F → .

We can apply a! to this, and get,

G → a!i
∗F → a!(F|U)[1] → .
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Now,

Hi(For(G)) = Hi
c(X,F) = 0 for i odd.

Hence by Lemma 4.1.6, H i
C×(G) = 0 for i odd. This implies that the map,

H i
C×(a!i

∗F) → H i+1
C× (F|U)

is injective for i odd. As the characteristic of k does not divide the order of the stabilizers

on X − XC×
, by lemma 4.1.3, dim(H∗

C×(F|U)) < ∞. The claim is that H∗
C×(a!i

∗F) is free

over H∗
C×(pt). i∗F ∈ Db

C×(Z). If F is a local system then i∗F is also a local system. Let

E = i∗F is a local system on Z, where C× acts on Z trivially.

Hence by Lemma 4.1.4,

H∗
C×(a!E) ∼= H∗

C×(pt)⊗ a!E

and this is free over H∗
C×(pt). So in our context Hodd

C× (a!E) is either is 0 or infinite-

dimensional. If infinite-dimensional, then it is a contradiction because it has an injec-

tive map to a finite dimensional cohomology. Hence it must be 0 for odd degrees, that

is H∗
C×(Z,F) = 0 for odd degrees. Now by Lemma 4.1.6(2), H∗

c(Z,F) = 0 for odd

degrees.

Theorem 4.1.8. Let M be an object in Db
C×(pt). Assume that H∗

C×(M) is finite-

dimensional, then the Euler characteristic of H∗(M) (nonequivariant cohomology) is

0.

Proof. From [BL, Th. 3.7.1],

ForC
×
: Db

C×(pt) → Db(pt)

29



has a left adjoint Ind!. Let a : C× × pt → pt be the projection on pt, which is the con-

stant map in this case and ν : pt → C× × pt, the inclusion map. Here ν∗ ForC
×
[−2] is the

induction equivalence map. Then the formula for Ind! is a!D(ν∗ ForC
×
[−2])−1 : Db(pt) →

Db
C×(pt), where D is the equivariant Verdier duality. Therefore Ind!(kpt) = RΓc(kC× [2]).

So,

Hi(Ind! kpt)

/
0001

0002

∼= k for i = 0,−1

∼= 0 otherwise.

(1.5)

We have the distinguished triangle,

τ≤−1 Ind!(kpt) → Ind!(kpt) → τ≥0 Ind!(kpt) → .

Using (1.5) this distinguished triangle reduces to

k[1] → Ind!(kpt) → k → .

Note that, Hom(Ind! kpt,M) ∼= Hom(kpt,For
C×

(M)) ∼= Hi(M) and Hom(kpt,M) ∼=

Hi
C×(M). Now we apply Hom(−,M) to the above distinguished triangle and get the long

exact sequence,

→ Hi−1
C× (M) → Hi(M) → Hi

C×(M) → . . . .

From the assumption on M , this LES have finitely many terms. Therefore,

χ(Hi−1
C× (M)) + χ(Hi

C×(M)) = χ(Hi(M)).

Here χ denotes the Euler characteristics. But χ(Hi−1
C× (M)) = −χ(Hi

C×(M)), so the left

hand side is 0. So χ(Hi(M)) = 0 and we are done.
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Chapter 5. Induction and Restriction

Induction and restriction in graded set-up

We have already talked about the induction diagram for nilpotent cone in 2.2. Sim-

ilarly we can define induction diagram in graded set-up. For that we need to choose a

parabolic subgroup P containing χ(C×) and a Levi, L ⊂ P . Using the diagram we can

define Indg
p and Resgp, these two functors. Indg

p is going to play an important role through

out this entire thesis, which commutes with the Verdier duality. Another major property

is that, like on nilpotent cone, restriction is left adjoint to induction. Transitivity of Indg
p

plays a key factor in the proof of Theorem 7.4.2, where we prove the existence of parity on

graded pieces.

Lusztig’s definition matches with us

In [Lu], Lusztig has defined the induction diagram and Indg
p for the first time for

graded set-up. The induction diagram and the functor Indg
p that we defined is slightly dif-

ferent in this thesis. It has much more similarity with the already defined induction func-

tor on nilpotent cone. So using several base change diagram we prove in Lemma 5.2.1 that

Lusztig’s Indg
p matches with our Indg

p, which is much more convenient to use in this partic-

ular thesis.

For cuspidal, IC is parity

In characteristic 0, it is an well-known fact that IC coincides with parity for any

pair on the nilpotent cone. Lusztig has proved that in characteristic 0, IC coincides with

parity on graded pieces. This result was still unknown in positive characteristic, both on

nilpotent cone and graded pieces. In this thesis we have already assumed that Mautner’s
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cleanness conjecture (Conjecture 2.2.7) holds in our set-up. using this assumption we im-

itate the proof of Lusztig [Lu3] for cleanness of cuspidal pair in characteristic 0 and show

that in positive characteristic, IC’s are clean for cuspidal pair on graded pieces. Which

eventually shows IC and parity coincide on gn. therefore parity exists for cuspidal pairs.

5.1. Induction and restriction

Let P be a parabolic subgroup of G containing χ(C×). Let L and U be a Levi sub-

group and the unipotent radical, respectively. We can choose L so that χ gets mapped

in to L. Let p, l, n be the Lie Algebras of P, L, U respectively. Then p, l, n inherit grading

from g:

p =
!

n∈Z

pn, l =
!

n∈Z

ln, n =
!

n∈Z

nn,

where pn = p∩gn, nn = n∩gn and ln = pn/nn. From now on the composition of χ : C× → P

and P ↠ P/U = L will also be denoted by χ : C× → L.

Let’s recall the induction diagram from 2.2

NL
πP←− NL + uP

eP−→ G×P (NL + uP )
µP−→ NG,

where uP = Lie(UP ), πP , eP are the obvious maps and µP (g, x) = Ad(g)x. A slight modifi-

cation of this diagram gives us the induction diagram in the graded setting.

ln pn G0 ×P0 pn gn
π e

i

µ

As before, π is projection, e, i are inclusions and µ(g, x) = Ad(g)x. The induction functor

is denoted by

Indg
p : D

b
L0
(ln) → Db

G0
(gn).

32



As P0 = L0 ⋉ U0 and U0 acts on ln trivially, we have equivalence of categories Db
P0
(ln) ∼=

Db
L0
(ln). So instead of starting from Db

L0
(ln) we can start from Db

P0
(ln). So we define

Indg
p(F) := µ!( e∗ ForG0

P0* +, -
Induction Equivalence

)−1π∗(F).

Here e∗ ForG0
P0

: Db
G0
(G0 ×P0 pn) → Db

P0
(pn) is the induction equivalence map, hence

its inverse makes sense. The definition of restriction also comes from the diagram above,

Resgp : D
b
G0
(gn) → Db

L0
(ln) is defined by,

Resgp(F) := π!i
∗ ForG0

L0
(F).

Theorem 5.1.1. The functor Indg
p commutes with D, the Verdier duality functor.

Proof. The map µ is proper, therefore it commutes with D. By [BL, prop. 7.6.2],

D(e∗ ForG0
P0
) = (e∗ ForG0

P0
)D[−2 dimG0/P0]. The map π is smooth and has relative di-

mension of dim pn − dim ln = 2dimG0/P0. Therefore Dπ∗ = π!D = π∗D[2 dimG0/P0].

Combining all these facts we can see, D Indg
p = Indg

p D.

5.1.1. Transitivity

Before going into the main result of this section we will talk about the transitivity

of induction. Let P be a parabolic subgroup of G containing the Levi subgroup L which

contains χ(C×). Let R be a parabolic contained in P with Levi M ⊂ L, which again con-

tains χ(C×). Then R ∩ L is a parabolic subgroup of L with the Levi factor M . Let r,m be

the Lie Algebras of R,M respectively.

Theorem 5.1.2. Let R ⊂ P and M ⊂ L as defined above. Then for F ∈ Db
M0

(mn),

Indg
p Ind

l
l∩r(F) ∼= Indg

r (F).
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Proof. The proof is clear from the diagram below.

rn pn gn

ln ∩ rn ln

mn

πR

iR

πP

πL∩R

iL∩R

5.2. Lusztig’s original definition

Lusztig’s original definition of the restriction is same as we defined above. But for

induction, he used a different diagram.

ln
p1←− E ′ p2−→ E ′′ p3−→ gn

where E ′ = G0 ×U0 pn and E ′′ = G0 ×P0 pn. Here p1(g, x) = π(x), p2

is the obvious map and p3(g, x) = Ad(g)x. Induction is defined by Indg
p(F) =

p3!( p∗2 For
G0
P0* +, -

Induction Equivalence

)−1p∗1(F).

Lemma 5.2.1. Lusztig’s original definition of induction matches with the definition given

here.

Proof. It follows from the diagram below.

ln pn G0 × pn G0 ×P0 pn gn

G0 ×U0 pn

π h qP

qU

p3=µ

p2

p1
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Clearly,

p3!(p2
∗ ForG0

P0
)−1p1

∗(F) = p3! For
G0
P0

−1
qP

∗−1qU
∗

* +, -
(p2∗ For

G0
P0

)−1

qU
∗−1h∗−1π∗

* +, -
p1∗

= p3!((qP ◦ h)∗ ForG0
P0
)−1π∗(F)

= µ!(e
∗ ForG0

P0
)−1π∗(F)

= Indg
p(F).

So from now we can use any of the induction diagrams defined above.

5.3. Cleanness for cuspidal pairs

Theorem 5.3.1. (O,L) ∈ I (gn)
cusp is clean.

Proof. Let (O,L) ∈ I (gn)
cusp and (C, E) ∈ I (G)0−cusp so that C ∩ gn = O and L = E|O.

Note that E ∨ is also cuspidal by Remark 2.2.3. Let X be another G0-orbit in gn other

than O. We will show that IC(O,L)|X = 0 and IC(O,L∨)|X = 0. For descending in-

duction, assume it is true for orbits X ′, where dim(X) < dim(X ′) < dim(gn). Let x ∈ X.

By Theorem 2.1.2, we can find

φ : sl2 → g such that φ(e) = x ∈ gn,φ(f) = x′ ∈ g−n,φ(h) ∈ g0

where e, f, h are defined in the background. Let φ̃ : SL2 → G be such that dφ̃ = φ. Define

χ′ : C× → G by

χ′(a) = φ̃

"

##$
a 0

0 a−1

%

&&' .
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Let gx
′
be the centralizer of x′ in g. Let Σ = x + gx

′
and Σ̃ = Σ ∩ gn. According to

Slodowy [Sw, pp. 109],

Σ is transversal to the G-orbit of x in g. (3.1)

Now C× acts on G by conjugation via χ and on g by a−nAd(χ(a)), call it ψ, which fixes

x and preserves Σ as x′ ∈ gn. The action of G on g is C×-equivariant. So we can restrict

the action to the fixed point sets of C×-actions and see that G0 acts on gn. Using (3.1) we

deduce that

Σ̃ is transverse to the G0-orbit of x in gn. (3.2)

Now we define another action ψ′, C× acts on Σ by a → a−2Ad(χ′(a)). This action

is well-defined; if x + y ∈ Σ, then [y, x′] = 0; so [Ad(χ′(a)y, Ad(χ′(a))x′] = 0. Let cχ′(a) de-

note the conjugation by χ′(a). Now Ad(χ′(a))x′ = d(cχ′(a))dφ̃|f = d(cχ′(a)φ̃)|f = a−2dφ̃|f =

a−2x′. So we have [Ad(χ′(a))y, x′] = 0. Also Ad(χ′(a))x = d(cχ′(a)) ◦ dφ̃|e = d(cχ′(a) ◦ φ̃)|e =

a2dφ̃|e = a2x. Hence a−2Ad(χ′(a))(x+ y) ∈ Σ. Now we will show that

this action ψ′ stabilizes Σ̃ and O ∩ Σ. (3.3)

To show the first part it is enough to show that if y ∈ gn, then Ad(χ′(a))y ∈ gn, because

we already have shown that Σ is stable under this action. Now φ(h) ∈ g0, so the Lie sub-

algebra generated by φ(h) is in g0. Thus by [Hum, Theorem 13.1], φ̃

"

##$
a 0

0 a−1

%

&&' ⊂ G0.

Therefore χ′ commutes with χ and we are done with the proof that Ad(χ′(a))y ∈ gn. If

y ∈ O, then Ad(χ′(a)y is also in O as Im(χ′) ⊂ G0 and O is a G0-orbit.

Now we can consider a sl2 action on g by (s, v) ∈ sl2 × g goes to [φ(s), v]. Via this

action the Lie Algebra generated by φ(h) acts on gx
′
. The unique lift of this action after
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multiplying by t−2, where t ∈ C×, gives rise to ψ′, that we talked already. Now in the

original action f acts on gx
′
gives 0. Therefore all the eigen values of the action of h on gx

′

will be negative.

Hence the action ψ′ is a repelling action on Σ to x. (3.4)

by Conjecture 2.2.7, IC(C, E)|C̄−C = 0. (3.5)

As E∨ is also cuspidal, the same result is true for E∨.

Using the transversal property of (3.1) and the definition of transversal slice, the

map µ : G× Σ → g is smooth of relative dimension dimG− dimG · x.

Hence by [BBD, pp. 110], pullback with a shift takes IC’s to IC’s.

G× Σ g

Σ

µ

h

where µ is smooth and h induces the induction equivalence, Db(Σ) ∼= Db
G(G × Σ). Hence

from the above diagram, we can say that

IC(C, E)|Σ = IC(C ∩ Σ, E|C∩Σ)[m] (3.6)

where m = dimC − dim(C ∩ Σ). Similarly, IC(C, E∨)|Σ = IC(C ∩ Σ, E∨|C∩Σ)[m]. By (3.5)

and (3.6),

IC(C ∩ Σ, E|C∩Σ)|(C̄−C)∩Σ = 0 and IC(C ∩ Σ, E∨|C∩Σ)|(C̄−C)∩Σ = 0. (3.7)

Using the repelling action from (3.4) and Lemma 2.1.3, [BR, Theorem 1], we get,
/
0001

0002

IC(C ∩ Σ, E|C∩Σ)x = RΓ(IC(C ∩ Σ, E|C∩Σ), and

IC(C ∩ Σ, E∨|C∩Σ)x = RΓ(IC(C ∩ Σ, E∨|C∩Σ).

(3.8)
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Now x ∈ (C̄ − C) ∩ Σ, so from (3.7),

IC(C ∩ Σ, E|C∩Σ)x = 0. So by (3.8), RΓ(IC(C ∩ Σ, E|C∩Σ)) = 0. (3.9)

This implies,

/
0001

0002

RΓc(IC(C ∩ Σ, E∨|C∩Σ)) = RΓc(DIC(C ∩ Σ, E|C∩Σ))

= DRΓ(IC(C ∩ Σ, E|C∩Σ)) = 0.

(3.10)

Similarly,

RΓ(IC(C ∩ Σ, E∨|C∩Σ) = 0 and RΓc(IC(C ∩ Σ, E|C∩Σ)) = 0. (3.11)

Now we claim that

RΓc(E∨|C∩Σ) = 0. (3.12)

From the open-closed embedding,

C ∩ Σ
j
↩−→ C̄ ∩ Σ

i←−↪ (C̄ − C) ∩ Σ

gives us the distinguished triangle,

j!j
∗IC(C ∩ Σ, E∨|C∩Σ) → IC(C ∩ Σ, E∨|C∩Σ) → i∗i

∗IC(C ∩ Σ, E∨|C∩Σ) → .

We can apply RΓc to get

RΓc(j!j
∗IC(C∩Σ, E∨|C∩Σ)) → RΓc(IC(C∩Σ, E∨|C∩Σ)) → RΓc(i∗i

∗IC(C∩Σ, E∨|C∩Σ)) → .

The first term in this distinguished triangle is RΓc(E∨|C∩Σ) with a shift. The second term

is 0 by (3.10) and third term is 0 by (3.7), hence (3.12) is proved.
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For the action ψ of C× on C ∩ Σ by a → a−nAd(χ(a)), the fixed point set is O ∩ Σ̃. So by

Lemma 4.1.5,

RΓc(L∨|O∩Σ̃) = 0. (3.13)

By the transversal property (3.2), we have,

IC(O,L)|Σ̃ = IC(O ∩ Σ̃,LO∩Σ̃)[n], (3.14)

and

IC(O,L∨)|Σ̃ = IC(O ∩ Σ̃,L∨
O∩Σ̃)[n], (3.15)

where n = dimO − dimO ∩ Σ̃.

By repelling property (3.4) we have,

IC(O ∩ Σ̃,L|O∩Σ̃)x = RΓ(IC(O ∩ Σ̃,L|O∩Σ̃)) (3.16)

and

IC(O ∩ Σ̃,L∨|O∩Σ̃)x = RΓ(IC(O ∩ Σ̃,L∨|O∩Σ̃)). (3.17)

Here O ∩ Σ̃ − {x} is the union of V ∩ Σ̃, where each V is a G0 orbit whose closure

contains x, hence also X. So dimV > dimX. Also O ∩ Σ̃ ∩ X = {x}. So we can use the

induction hypothesis on O ∩ Σ̃− (O ∩ Σ̃)− {x} and (3.15), therefore,

IC(O ∩ Σ̃,L∨|O∩Σ̃) is 0 on O ∩ Σ̃− (O ∩ Σ̃)− {x}. (3.18)

Now we use the open and closed embeddings below for IC(O ∩ Σ̃,L∨|O∩Σ̃)|O∩Σ̃−{x},

O ∩ Σ̃
j
↩−→ O ∩ Σ̃− {x} i←−↪ O ∩ Σ̃− (O ∩ Σ̃)− {x}.
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This gives us the distinguished triangle,

j!j
∗IC(O∩Σ̃,L∨|O∩Σ̃)|O∩Σ̃−{x} → IC(O∩Σ̃,L∨|O∩Σ̃)|O∩Σ̃−{x} → i∗i

∗IC(O∩Σ̃,L∨|O∩Σ̃)|O∩Σ̃−{x} → .

We have,

RΓc(IC(O ∩ Σ̃,L∨|O∩Σ̃))|O∩Σ̃−{x} = 0 (3.19)

as the first term in the distinguished triangle, RΓc(L∨|O∩Σ̃) vanishes by (3.13) and the

third term vanishes by (3.18).

Now from the open-closed embedding,

{x} i
↩−→ O ∩ Σ̃

j
←−↪ O ∩ Σ̃− {x}

we get,

j!j
∗IC(O ∩ Σ̃,L∨|O∩Σ̃) → IC(O ∩ Σ̃,L∨|O∩Σ̃) → i∗i

∗IC(O ∩ Σ̃,L∨|O∩Σ̃).

By (3.19),

IC(O ∩ Σ̃,L∨|O∩Σ̃)x = RΓcIC(O ∩ Σ̃,L∨|O∩Σ̃). (3.20)

From (3.16),

DIC(O ∩ Σ̃,L|O∩Σ̃)x
= DRΓ(IC(O ∩ Σ̃,L|O∩Σ̃)) = RΓcIC(O ∩ Σ̃,L∨|O∩Σ̃)

Hence from (3.20), we get,

DIC(O ∩ Σ̃,L|O∩Σ̃)x
= IC(O ∩ Σ̃,L∨|O∩Σ̃)x.

Since IC(O∩ Σ̃,L∨|O∩Σ̃)x lives in degrees < 0. Hence DIC(O∩ Σ̃,L∨|O∩Σ̃)x lives in degrees

> 0. But IC(O ∩ Σ̃,L∨|O∩Σ̃)x again lives in degrees < 0, which is a contradiction. So

IC(O ∩ Σ̃,L∨|O∩Σ̃)x = 0 and by (3.14), IC(O,L)x = 0. Hence we are done.
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Corollary 5.3.2. For (O,L) ∈ I (gn)
cusp, the parity sheaf E(O,L) exists and IC(O,L) =

E(O,L).

Proof. From the previous theorem (O,L) is clean, i.e IC(O,L) restricted to Ō−O is 0. So

IC(O,L) = j!L[dimO], where j : O ↩−→ gn, which obviously satisfies the parity condition.

Hence by uniqueness of an indecomposable parity complex, IC(O,L) = E(O,L).
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Chapter 6. Induction Diagram For Cuspidal Pairs

Special diagram for cuspidal pairs

Mautner’s conjecture asserts that IC’s are clean for cuspidal pairs on nilpotent

cone. We have proved in Theorem 5.3.1 that IC’s are clean, therefore they coincide with

parity sheaves and they are the push-forward of the corresponding local system(with a

shift) by the inclusion map of the corresponding orbit. Combining these facts and base

change diagrams we can redefine the induction diagram both for nilpotent cone and in

graded set-up.

Indg
p sends parity to parity for cuspidals

Here we prove that for a cuspidal pair, Indg
p takes parity to parity. We have tried

to imitate the same result proved by Lusztig [Lu] in characteristic 0. But because of the

failure of decomposition theorem in > 0 characteristic, [Lu, 2.6(b)] fails here, which plays

a key role in the proof there. Conjecture 3.2.9 serves as a replacement for the statement

2.6(c) here. Using the definition of cuspidal pair in graded setting, which asserts the ex-

istence of a cuspidal pair on nilpotent cone and also the redefined induction diagram in

previous section allows us to show that cohomology of the Indg
p applied to the parity sheaf

(for cuspidal) is the direct summand of the cohomology of the stalk of IndG
P of the corre-

sponding cuspidal pair on nilpotent cone. Then using the Conjecture 3.2.9 provides the

desired result.

6.1. Induction diagram for cuspidal pairs

In this chapter, we first redefine Lusztig’s induction diagram for cuspidal pairs. Let

P be a parabolic subgroup of G and L,U be its Levi subgroup and the unipotent radical,
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respectively. Let (O,L) ∈ I (ln)
cusp. We define the induction diagram to be,

O O + un G0 ×P0 (O + un) gn.
p′1 p′2 p′3 (1.1)

We define p′3 : G0 ×P0 (O + un) → gn to be p′3(g, z) = Ad(g)z,

p′2 : O + un → G0 ×P0 (O + un), p
′
2 to be the obvious map and,

p′1 : O + un → O to be p′1(z) = π(z), where π : pn → ln. We start with (O,L) ∈ I (ln)
cusp

and redefine the induction diagram. We define

Indg
p(IC(O,L)) = p′3!(p

′∗
2 ForG0

L0
)−1p′∗1 (L[dimO]).

Lemma 6.1.1. This definition of induction for cuspidal pairs coincides with Lusztig’s

original definition.

Proof. By Theorem 5.3.1, (O,L) is clean and it coincides with the Lusztig’s definition of

induction because of the following commutative diagram.

O O + un G0 ×P0 (O + un) gn

ln E ′ E ′′ gn

p′1 p′2 p′3

p1 p2 p3

6.2. Parity preserved for cuspidal pairs

Theorem 6.2.1. Let P be a parabolic subgroup of G and L be its Levi subgroup. If

(O,L) ∈ I (ln)
cusp, then Indg

p(E(O,L)) is parity.

Proof. By corollary 5.3.2, E(O,L) exists. Let (C, E) ∈ I (L)0−cusp be such that, C ∩ gn =

O and E|O = L. Let y ∈ gn and c : G ×P (C + uP ) → NG be the map introduced in the
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previous subsection. Let Yy = c−1(y). Then we have an isomorphism G/P × (C + up) →

G×P (C + uP ) given by,

(gP, x) 2→ (g, Ad(g−1)x).

It is easy to check that under this isomorphism the map c becomes,

(gP, x) 2→ x,

and Yy = {gP ∈ G/P |Ad(g−1)y ∈ π−1
P (C)}. Recall that nilpotent G-orbits in g are all even

dimensional. Then using the definition of induction from (??) and from the base change

diagram below, and Conjecture 3.2.9, we get,

Ha
c(Yy, (b

∗ ForGP )
−1a∗E [dimC]|Yy) = 0 for a odd.

G×P (C + uP ) NG

Yy y

c

c

We define an action of C× on Yy by, (t, gP ) → χ(t)gP . This is well defined as y ∈ gn. Let

(Yy)
C×

be the fixed point set. From Theorem 4.1.7,

Ha
c((Yy)

C×
, (b∗ ForGP )

−1a∗E [dimC]|(Yy)C
× ) = 0, for a odd. (2.2)

We will show that (Yy)
C×

= ⊔iZ
i, where P i, i ∈ [1, b], is defined to be a set of

representatives of G0-orbits of parabolic subgroups in G conjugate to P containing χ(C×).

Let Li and UP i be the Levi and the unipotent radical of P i respectively. An element of G

conjugates P to P i, conjugating C by the same element gives C i contained in li. Let

Zi = {g(P i)0 ∈ G0/(P
i)0|Ad(g−1)y ∈ (πi)−1(C i)},
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where πi : pi → li and (P i)0 = P i ∩ G0. We want to identify g(P i)0 ∈ Zi with gg′P

in (Yy)
C×

, where g′ ∈ G is fixed and g′Pg′−1 = P i. Note g(P i)0 ∈ Zi, so Ad(g−1)y ∈

(πi)−1(C i), hence

Ad(gg′)−1y = Ad(g′)−1Ad(g−1)y ∈ Ad(g′−1)(πi)−1(C i),

which is by definition π−1
P (C). Also,

(gg′)−1χ(t)gg′ = g′−1g−1χ(t)gg′ = g′−1χ(t)g′,

and χ(t) ∈ P i. Therefore by definition of g′, g′−1χ(t)g′ belongs to P . By definition,

(Yy)
C×

= {gP ∈ G/P |Ad(g−1)y ∈ π−1
P C, g−1χ(t)g ∈ P}.

Hence gg′P is in (Yy)
C×

. Conversely, if hP ∈ (Yy)
C×

, then h−1χ(t)h ∈ P We can define

P i = hPh−1 and g′ = h, g = e, then by definition gg′ = h and y = Ad(h)Ad(h−1)y ∈

Ad(h)π−1C = (πi)−1C i, hence e(P i)0 ∈ Zi by identifying this with hP ∈ (Yy)
C×

. In the

definition of Zi, the condition Ad(g−1)y ∈ (πi)−1(C i) can be redefined as below.

If y ∈ gn and g ∈ G0, then this implies Ad(g−1)y ∈ gn. Hence we can restate the

condition Ad(g−1)y ∈ (πi)−1(C i) as,

Zi = {g(P i)0 ∈ G0/(P
i)0|Ad(g−1)y ∈ pin, π

i(Ad(g−1)y) ∈ Oi},

where Oi = C i ∩ gn. In the redefined induction diagram above, if we use the isomorphism

G0/P0 × (O + un)
∼=−→ G0 ×P0 (O + un)

we can see Zi = (p′3)
i−1

(y), where (p′3)
i is the map associated to (P i, Li) similar to
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how we defined p′3. Hence from base change and the diagram below,
/
0001

0002

Ha
c(Z

i, (b∗ ForGP )
−1a∗E [dimC]|Zi) = Ha(p′3!(p

′
2
∗ ForG0

P0
)−1p′1

∗(i!E [dimC])|O)y

= Ha(Indg
pi
(IC(O,L)[dimC − dimO])y

(2.3)

Zi = (p′3)
i−1{y} {y}

Oi Oi + uin G0 ×(P i)0 (Oi + uin) gn ∩NG

C i l C i + uP i G×P i
(C i + uP i) NG

(p′1)
i (p′2)

i (p′3)
i

i a′ bi

ai

ci

we have,

Ha
c((Yy)

C×
, (b∗ ForGP )

−1a∗E [dimC]|(Yy)C
× ) =

!

i

Ha
c(Z

i, (b∗ ForGP )
−1a∗E [dimC]|Zi)

=
!

i

Ha(Indg
pi
(IC(O,L)[dimC − dimO])y.

So we finally get,

Ha
c((Yy)

C×
, (b∗ ForGP )

−1a∗E|(Yy)C
× [dimC]) =

!

i

Ha+dimC−dimO(Indg
pi
(IC(O,L)))y.

In the last sum one of these pi is our original p. Hence from (2.2), we can conclude

that

Ha+dimC−dimO(Indg
p(IC(O,L)))y = 0, for a odd. (2.4)

If dimC − dimO is odd then Indg
p IC(O,L) is ∗-odd and if dimC − dimO is even then

Indg
p IC(O,L) is ∗-even. As IC(O,L∨) is also cuspidal, so

Ha+dimC−dimO(Indg
p(IC(O,L∨)))y = 0, for a odd. (2.5)

But, Indg
p(IC(O,L∨)) = Indg

p(DIC(O,L))

= D Indg
p(IC(O,L)) (by Theorem 5.1.1).
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Therefore,

Ha+dimC−dimO(j! Indg
p(IC(O,L))) = Ha+dimC−dimO(j! Indg

p(DIC(O,L∨)))

= Ha+dimC−dimO(j!D Indg
p(IC(O,L∨)))

= Ha+dimC−dimO(Indg
p(IC(O,L∨)))y,

where j : {y} ↩→ gn ∩NG. So by (2.5),

Ha+dimC−dimO(j! Indg
p(IC(O,L∨))) = 0, for a odd.

Hence by the above fact, if dimC − dimO is odd then Indg
p IC(O,L) is !-odd and if

dimC − dimO is even then Indg
p IC(O,L) is !-even, finally we can say Indg

p IC(O,L)

satisfies the parity condition.
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Chapter 7. Existence Of Parity Sheaves

n-rigid

n-rigidity is introduced in [Lu]. Given a x ∈ gn, we can always define a co-character

χ and a parabolic subgroup P with a Levi subgroup L, so that (L,χ) is n-rigid, which im-

mediately ensures that the L0-orbit containing x in ln is open.

Existence

For any pair (O,L) ∈ I (gn), existence of parity is still a question. Before go-

ing into that it is important to ensure the uniqueness as mentioned in [JMW]. Theorem

7.2.1 provides the essential condition needed to talk about parity sheaves in graded set-

up, where n-rigidity plays an important role. Again using n-rigidity we prove Theorem

7.2.2 which is the key theorem used in proving the existence of parity for a general pair in

I (gn).

Modular reduction

In this section our aim is to prove a analogous Proposition like [Lu, Prop. 7.3].

But in positive characteristic the statement 2.6(c) from [Lu] does not hold. Also in charac-

teristic 0, cuspidal pairs are clean. In positive characteristic, with the assumption on field

characteristic (Assumption 3.2.4) we assume Matuner’s cleanness conjecture (Conjecture

2.2.7) is true. Modular reduction provides us a triple (K,O, k), with K being of character-

istic 0, that means whatever proved by Lustig in [Lu] holds if the sheaf coefficient is from

K. Modurlar reduction provides us a map from KG(NG,K) to KG(NG, k), where KG de-

notes the Grothendieck group with objects from PervG. Finally at the end of this section

we prove Proposition 7.3.4, which has the same version as [Lu, Prop. 7.3], but in positive
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characteristic.

Normal complexes

Normal complexes were defined in [Lu] but in terms of semisimple complexes. Here

we define it with parity sheaves. In Theorem 7.4.2 we prove that for any pair in I (gn),

the corresponding parity sheaf is a normal complex and therefore it exists. In Theorem

7.4.3, we prove that Indg
p sends parity to parity.

7.1. n-rigidity

Let n ∈ Z be fixed. Recall the cocharacter map χ : C× → G. Let φ : sl2 → g and

φ̃ : SL2 → G be such that dφ̃ = φ. Define χ′ : C× → G by,

χ′(t) = φ̃

"

##$
t 0

0 t−1

%

&&' .

Now we define for m ∈ Z,

mg = {x ∈ g|Adχ′(t)x = tmx}.

Hence g =
.

m∈Zmg.
Definition 7.1.1. (G,χ) is said to be n-rigid if there exists φ such that

1. φ ∈ Jn, which is defined in section 2.1.

2. mg = gnm/2 for m ∈ Z and nm/2 ∈ Z,

3. mg = 0 for m ∈ Z and nm/2 /∈ Z.
Proposition 7.1.2. If (G,χ) is n-rigid and φ(e) = x, then

1. x is in the unique open G0-orbit in gn,

2. the map Gx
0/(G

x
0)

◦ → Gx/(Gx)◦ is an isomorphism.

The proof of this proposition is given in [Lu, prop 4.2,5.8]. For the proof of Theo-

rem 3.2.8 n-rigidity plays a role.
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7.1.1. Construction of parabolic, nilpotent and Levi subgroups

In this section we first fix x ∈ gn and then we construct p, n, l associated to x.

From Theorem 5.3.1, recall φ and the construction of χ′. Recall χ commutes with χ′ and,

mg = {g ∈ g|Ad(χ′(t))g = tmg}.

Now we have the direct sum decomposition,

g =
!

m,m′∈Zm

gm′ .

Here m,m′ ∈ Z and mgm′ =m g ∩ gm′ . We define,

p =
!

m′,m,2m′/n≤m

(mgm′), n =
!

m′,m,2m′/n<m

(mgm′), l =
!

m′,m,2m′/n=m

(mgm′).

Here, p, n, l are parabolic, nilradical and Levi subalgebra of g [Lu, 5]. We give one exam-

ple in 8.3, how to construct p, n, l as defined here.

Theorem 7.1.3. With the set-up above, φ(sl2) ⊂ l and (L,χ) is n-rigid. Also x is in the

open L0-orbit in ln.

7.2. Existence of parity sheaves

Let (O,L) ∈ I (gn). Let x ∈ O and p, n, l be Lie subalgebras of g constructed as

above connected with x. Let P, U, L be the subgroups of G with Lie Algebras p, n, l respec-

tively. It follows that P contains the image χ(C×). By Theorem 7.1.3, x is contained in an

open L0-orbit in ln, call it OL. As x ∈ OL, OL ⊂ O. Now we can restrict L to OL. By

[Lu, prop 5.8], the inclusion induces isomorphisms on Gx
0/(G

x
0)

◦ and Lx
0/(L

x
0)

◦. Hence,

Locf ,G0
(O, k) = Locf ,L0

(OL, k).

So L|OL
is a local system on ln, let’s call it L′. Now we are ready to prove the parity van-

ishing theorem mentioned in section 3.1.
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Theorem 7.2.1. Let O be a nilpotent orbit in gn and L ∈ Locf ,G0
(O, k), then H∗

G0
(L)

vanishes in odd degrees.

Proof. Define Õ := G0/(G
x
0)

◦ and π : Õ → O by g(Gx
0)

◦ → g.x. This is a Galois covering

map with the Galois group AG0(x). Also we know that

Locf ,G0
(O, k) ∼= k[AG0(x)]−mod.

We can construct the Levi subgroup L as defined above. Then by Theorem 7.1.3, (L,χ) is

n-rigid. Hence by Proposition 7.1.2, Lx/(Lx)◦ ∼= Lx
0/(L

x
0)

◦. But in the above paragraph

we mentioned Gx
0/(G

x
0)

◦ ∼= Lx
0/(L

x
0)

◦. By Remark 3.2.6, |AL(x)| is invertible in k. Hence

by the above isomorphisms, |AG0(x)| is invertible in k. Therefore any k[AG0(x)]-module

is a summand of the direct sum of copies of the regular representation, which again corre-

sponds to π∗kÕ.

H∗
G0
(O, π∗kÕ)

∼= H∗
G0
(Õ)

∼= H∗
(Gx

0 )
◦(pt) (by quotient equivalence)

∼= H∗
(Gx

0 )
◦−red(pt).

Here (Gx
0)

◦−red is the reductive quotient of (Gx
0)

◦. By Lemma 3.2.3 and assumption 3.2.4,

l is not a torsion prime for (Gx)◦ − red. By [JMW, Theorem 2.44], H∗
(Gx

0 )
◦−red(pt) will

vanish in odd degrees if we can show that l is not a torsion prime for (Gx
0)

◦ − red. This

will follow from showing (Gx
0)

◦ − red is a regular subgroup of (Gx)◦ − red. Define a map

ψ : C× 2→ C× ×G by,

t 2→ (tn,χ(t)).

Then C× × G0 is the centralizer of ψ(C×). So (C× × G0)
x = (C× × G)x ∩ Cψ(C×), Cψ(C×)
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is the centralizer of ψ(C×). Therefore any maximal torus in (C× × G)x containing ψ(C×)

commutes with ψ(C×), hence in (C× × G0)
x. So (C× × G0)

x is regular subgroup of (C× ×

G)x. Let us define C× ⋉ Gx by the action of C× on Gx as (t, g) → χ(t)gχ(t−1). Now we

define a map (C× ×G)x → C× ⋉Gx by,

(t, g) → [(t,χ(t)gχ(t−1)].

It is easy to check this is an isomorphism and image of ψ(C×) under this isomorphism is

contained in 1⋉Gx ∼= Gx. Similarly we have another isomorphism (C× ×G0)
x ∼= C× ⋉Gx

0 .

Therefore from the previous deduction we can say any maximal torus in Gx ⊂ 1 ⋉ Gx ⊂

C× ⋉ Gx containing ψ(C×) that commute with ψ(C×) will be contained in C× ⋉ Gx
0 , so

in 1 ⋉ Gx
0
∼= Gx

0 . Now we can conclude from the previous deduction that Gx
0 is regular

subgroup of Gx. Hence (Gx
0)

◦−red is regular subgroup of (Gx)◦−red and we are done.

Theorem 7.2.2. Let (O,L) ∈ I (gn) and ln and L′ constructed above. Assume that

E(OL,L′) exists, then

(a) The support of Indg
p E(OL,L′) is Ō, and

(b) Indg
p E(OL,L′)|O = L[dimOL].

Proof.

(a) Let y ∈ gn be in the support of Indg
p E(OL,L′) . We need to show that y ∈ Ō. From

the definition of induction, there exists η ∈ pn and g ∈ G0, such that, Ad(g)η = y. Now

both the support of Indg
p E(OL,L′) and Ō are G0-invariant. Hence we can replace y by η ∈

pn. By [Lu, 5.9], pn coincides with the closure of the P0-orbit of x in pn which is again

contained in Ō. Hence y ∈ Ō and part (a) is proved.

52



(b) Recall the induction diagram

ln
π←− pn

e−→ G0 ×P0 pn
µ−→ gn.

Let EO = µ−1(O). We first show that µ is an isomorphism when restricted to EO. Actions

of G0 on EO and O are compatible with the map µ. Also action of G0 on O is transitive.

So to prove that µ is a bijection, it is enough to show that µ−1(x) is a single point. Let

(g, γ) ∈ G0 × pn be in the inverse image. So Ad(g)γ = x. Therefore x ∈ Ad(g)p and by

[Lu, 5.7], Ad(g)p = p. Hence g ∈ P0. Hence (g, γ) = (1, Ad(g)γ) = (1, x). Hence µ−1(x) is

a singleton and µ is a bijection of smooth varieties, thus isomorphism on EO.

Let

G = Indg
p E(OL,L′)|O = (µ)!(e

∗ ForG0
P0
)−1π∗(E(OL,L′))|O

= (µ|EO)!(e
∗ ForG0

P0
)−1π∗(E(OL,L′))|EO .

As µ|EO is an isomorphism, hence (µ|EO)! is an equivalence of categories. So in other

words, G satisfies,

(µ|EO)
∗(G) = (e∗ ForG0

P0
)−1π∗(E(OL,L′))|EO

In fact (µ|EO)
∗(G) is uniquely determined by,

((e|E′
O
)∗ ForG0

P0
)(µ|EO)

∗(G) = (π|E′
O
)∗(E(OL,L′)|OL

) = (π|E′
O
)∗L′[dimOL], (2.1)

where E ′
O = e−1(EO).

ŌL ŌL + un G0 ×P0 (ŌL + un) Ō

OL OL + un G0 ×P0 (OL + un)

π e µ

eπ
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As we already proved EO ∼=µ O and µ is G0 equivariant, EO is a single orbit. G0 ×P0

(OL + un) is stable under G0 action, therefore EO ⊂ G0 ×P0 (OL + un) and it follows that

E ′
O ⊂ OL + un. Now we have the diagram below,

OL E ′
O EO O

OL

π|E′
O

e|E′
O µ|EO

id
j

i

This diagram is commutative.

((e|E′
O
)∗ ForG0

P0
)(µ|EO)

∗L[dimOL] = j∗i
∗L[dimOL]

= (π|E′
O
)∗(L[dimOL]|OL

)

= (π|E′
O
)∗(L′[dimOL])

= π∗E(OL,L′)|E′
O
.

We already know e|E′
O
is closed embedding and µ|EO is smooth, so the pull back of these

maps induce faithful functor on the local systems. Hence from the above equation and

(2.1), we have G = L[dimOL].

7.3. Modular reduction

Recall from the background, we assumed that there exists a finite extension K

of Ql with ring of integers O and residue field k. Also assume for each x ∈ NG, all

the irreducible representations of AG(x) are defined over K. Let KG(NG, k) denote

the Grothendieck group generated by the isomorphism classes of simple objects in
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PervG(NG, k). Similarly define KG(NG,K). By [J2, 2.9], there exists a Z-linear map,

d : KG(NG,K) → KG(NG, k).

This map is called modular reduction map and is defined in the following way: If F ∈

PervG(NG,K) and FO, a torsion free object in PervG(NG,O) such that F ∼= K⊗OFO, then

d([F ]) = [k⊗L
O FO].

If F = IC(C, E), then there exists a G-equivariant local system EO on C such that E =

K⊗O EO, and

d[IC(C, E)] = [k⊗L
O IC(C, EO)].

By [JMW, prop 2.39], k⊗L
O E(C, EO) ∼= E(C, k⊗L

O EO). We can call k⊗L
O EO to be Ek.

Theorem 7.3.1. The modular reduction above gives a well-defined map with the following
properties:

1. Irr(K[Gx/(Gx)◦]−mod)
∼=−→ Irr(k[Gx/(Gx)◦]−mod).

2. If M is a torsion free module in O[Gx/(Gx)◦], then the direct summands of K⊗O M
are in bijection with the direct summands of k⊗O M .

The proof follows from [CR, Theorem 82.1].

Let P be a parabolic subgroup with L as the Levi factor.
Theorem 7.3.2. If (C,F) ∈ I (L)0−cusp and (C,G) ∈ I (L,K)0−cusp, whose modular
reduction is F , then,

1. IC(C,GO) is clean, and

2. IndG
P IC(C,GO) is parity.

Proof. 1. If there exists y ∈ C̄ − C such that IC(C,GO)y ∕= 0, then it must have
torsion part only; otherwise, K ⊗L IC(C,GO)y ∕= 0 but is same as IC(C,G)y which
is zero by Conjecture 2.2.7. Also by [J2, 2.6], k ⊗L

O IC(C,GO) is a perverse sheaf
with k⊗L

O IC(C,GO)|C = k⊗L
O GO[dimC]. We have the open and closed embeddings

below,

C C̄ C̄ − C
j i ,
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which gives rise to the distinguished triangle,

j!k⊗L
O GO[dimC] → k⊗L

O IC(C,GO) → i∗i
∗(k⊗L

O IC(C,GO)) → .

By conjecture 2.2.7, j!(k ⊗L
O GO[dimC]) = IC(C, k ⊗L

O GO). The third morphism in
the above distinguished triangle is 0, as i!(IC(C, k ⊗L

O GO)) = 0 by conjecture 2.2.7.
Therefore this distinguished triangle splits and we have,

k⊗L
O IC(C,GO) = IC(C, k⊗L

O GO)⊕ i∗i
∗(k⊗L

O IC(C,GO)).

As k⊗L
OIC(C,GO) and IC(C, k⊗L

OGO) are perverse, so i∗i
∗(k⊗L

OIC(C,GO)) must be

perverse. Now it will not be hard to check that for a torsion O-module M , Hi(k⊗L
O

M) is nonzero for i = 0,−1. So if we choose an open orbit O′ in the support of
i∗i

∗(k⊗ IC(C,GO)) such that y is in that orbit then by the above statement we will
have Hi(k⊗L

O IC(C,GO)y) ∕= 0 for i = − dimO′,− dimO′ − 1, which contradicts the
perversity of i∗i

∗(k⊗L
O IC(C,GO)).

2. Note that K ⊗L
O IndG

P IC(C,GO) = IndG
P IC(C,G) which is parity because it is in

characteristic 0. Also, k ⊗L
O IndG

P IC(C,GO) ∼= IndG
P E(C,F) is parity by Conjecture

3.2.9. Combining these two facts and using [JMW, Prop. 2.37], IndG
P IC(C,GO) is

parity.

Theorem 7.3.3. For (C,F) ∈ I (G), there exists a Levi subgroup L and a pair (C ′,F ′) ∈

I (L)0−cusp such that, H− dimC(IndG
P IC(C ′,F ′))|C contains F as a direct summand.

Proof. By [AJHR], if l is rather good, which is our assumption here, we have a bijection,

KG(NG,K)
∼=−→ KG(NG, k).

Let (C,G) ∈ I (G,K) be the pair whose modular reduction is F . By [Lu3], there exists a

parabolic subgroup P with Levi L and (C ′,G ′) ∈ I (L,K)0−cusp be such that IC(C,G) is a

direct summand of IndG
P IC(C ′,G ′) .

K⊗L H− dimC(IndG
P IC(C ′,G ′

O))|C ∼= H− dimC(IndG
P IC(C ′,G ′))|C

which contains G. Now, H− dimC(IndG
P IC(C ′,G ′

O))|C is torsion-free. If not, then k ⊗L
O

H− dimC(IndG
P IC(C ′,G ′

O))|C has cohomology concentrated in two consecutive de-

grees, which contradicts Theorem 7.3.2(2). By Theorem 7.3.1, direct summands
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appearing in H− dimC(IndG
P IC(C ′,G ′))|C are in bijection with direct summands ap-

pearing in H− dimC(IndG
P IC(C ′,G ′

k))|C . Set F ′ to be G ′
k. Hence F ′ ∈ I (L)0−cusp and

H− dimC(IndG
P IC(C ′,F ′))|C contains F as a direct summand.

Proposition 7.3.4. Let (O,L) ∈ I (gn). There exists an integer b and (O′,L′) ∈

I (ln)
cusp for some parabolic subgroup P with the Levi subgroup L, such that L is a direct

summand of Hb−dimO′
(Indg

p IC(O′,L′))|O.

Proof. Let (O,L) ∈ I (gn) and (C, E) ∈ I (G) such that C ∩ gn = O and E|O = L. By

Theorem 7.3.3, there exists Q, a parabolic subgroup containing χ(C×) with M , the Levi

subgroup such that (C ′, E ′) ∈ I (M)0−cusp and H− dimC(IndG
Q IC(C ′, E ′))|C contains E as

direct summand.

For this we will imitate the proof of Theorem 6.2.1. Let y ∈ O, we construct the

parabolic induction diagram corresponding to (Q,M,C ′). That is,

C ′ a←− C ′ + uQ
b−→ G×Q (C ′ + uQ)

c−→ NG

Let Yy = c−1(y) and recall that,

Ha
c(Yy, (b

∗ ForGQ)
−1a∗E ′[dimC ′]|Yy) = 0 for a odd.

Also recall the action of C× on Yy defined in the proof of Theorem 6.2.1. Let again

Y C×
y be the fixed point set of this action. It is not hard to see that the stabilizer of each

point in the complement of (Yy)
C×

is trivial. Hence by The Lemma 4.1.3, dimH∗
C×(Yy −

(Yy)
C×

) < ∞. Now using Lemma 4.1.8, the Euler characteristic of H∗
c(Yy − (Yy)

C×
) is 0, so

we have,
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3

a

(−1)a Ha
c(Yy, (b

∗ ForGQ)
−1a∗E ′[dimC ′]|Yy)

=
4

a (−1)a Ha
c((Yy)

C×
, (b∗ ForGQ)

−1a∗E ′[dimC ′]|Y C×
y

)(3.2)As the stabilizer of each

point in Yy − (Yy)
C×

is trivial, so from Theorem 4.1.7,

Ha
c(Y

C×

y , (b∗ ForGQ)
−1a∗E ′[dimC ′]|Y C×

y
) = 0 for a odd.

Combining both the result we have,

3

a even

Ha
c(Yy, (b

∗ForGQ)
−1a∗E ′[dimC ′]|Yy) =

3

a even

Ha
c(Yy)

C×
, (b∗ ForGQ)

−1a∗E ′[dimC ′]|(Yy)C
× )

(3.3)

Now let Qi’s denote the G0-orbits of Q in the set of all parabolic subgroups containing

χ(C×), for i = 1, ..., b. Define Zi as before but in terms of Qi and C ′i, where an element of

G conjugates Q to Qi, conjugating C ′ by the same element gives C ′i contained in mi.

Zi = {g(Qi)0 ∈ G0/(Q
i)0|Ad(g−1)y ∈ (πi)−1(C ′)i}.

Then as before we get,

Y C×

y = ⊔iZ
i,

and,

Ha
c(Z

i, (b∗ ForGQ)
−1a∗E ′[dimC ′]|Zi) = Ha(Indg

qi
(IC(Oi,Li)[dimC ′ − dimOi])y, (3.4)

where (Oi,Li) ∈ I (M i). These come from conjugating and restricting (C ′, E ′). Now com-

bining equation 3.3 and the above result we have,

3

a even

Ha
c(Yy, (b

∗ ForGQ)
−1a∗E ′[dimC ′]|Yy) =

3

i,a even

Ha(Indg
qi
(IC(Oi,Li)[dimC ′ − dimOi])y.
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Now Ha
c(Yy, (b

∗ ForGQ)
−1a∗E ′[dimC ′]|Yy) is the same as Ha(IndG

Q IC(C ′, E ′))y. By assump-

tion E occurs as direct summand of H− dimC(IndG
Q IC(C ′, E ′))|C . As L = E|O, therefore for

some i and a even, L should appear as a direct summand of Ha(Indg
qi
(IC(Oi,Li)[dimC ′ −

dimOi])y. We call this Qi to be P , M i to be L and (Oi,Li) to be (O′,L′). Hence we get

the desired result that L is a direct summand of Ha+dimC′−dimO′
(Indg

p IC(O′,L′)). we can

call a+ dimC ′ to be b.

7.4. Normal complexes

Definition 7.4.1. An A ∈ Db
G0
(gn) is called normal if there exists (O,L) ∈ I (ln)

cusp such

that some shift of A is a direct summand of Indg
p(E(O,L)).

Theorem 7.4.2. For (O,L) ∈ I (gn), E(O,L) exists and is a normal complex.

Proof. For (O,L) ∈ I (gn), we can construct the Levi subgroup L as in 7.1.1 and

(OL,L′) ∈ I (ln) as in 7.2 and by Theorem 7.2.2, Indg
p E(OL,L′)|O = L[dimOL]. Now by

Proposition 7.3.4, there exists a parabolic subgroup Q ⊂ L and a Levi subgroup M ⊂ Q

with (O′,L′′) ∈ I (mn)
0−cusp such that Hb−dimO′

(Indl
q IC(O′,L′′)|OL

contains L′ as a direct

summand. By Theorem 6.2.1, Indl
q IC(O′,L′′) is parity. By proposition 7.1.2, OL is open

in ln. Combining these two above facts, we can see that E(OL,L′) exists and is direct sum-

mand of Indl
q IC(O′,L′′). Using the fact that induction is transitive it follows, L[dimOL] is

direct summand of Indg
p IC(O′,L′′)|O. By Theorem 7.2.2, support of Indg

p E(OL,L′) is Ō.

Therefore E(O,L) exists and is direct summand of Indg
p E(O′,L′′).

7.4.1. Induction preserves parity

Theorem 7.4.3. Let P be a parabolic subgroup of G with a Levi factor L. For any pair

(O,L) ∈ I (ln), the induction functor sends parity complexes to parity complexes.
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Proof. By Theorem 7.4.2, there exist a cuspidal pair (C,F) ∈ I (mn)
0−cusp , where M is

the Levi subgroup of L such that

Indl
l∩p(E(C,F)) = E(O,L)[k]⊕ ..., for some k ∈ Z.

If we apply Indg
p on both sides and use the transitivity of induction, then we get,

Indg
p(E(C,F)) = Indg

p(E(O,L))[k]⊕ ...

Now the left-hand side is parity by Theorem 6.2.1. Hence so is the right-hand side. So in-

duction preserves the parity of E(O,L).
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Chapter 8. Examples

Several cases for conjecture 3.2.9

Recall Conjecture 3.2.9, which plays an analogous role as the statement 2.6(c) from

[Lu]. The result is still unknown in positive characteristic. Our next aim will be to prove

this conjecture in general. Here we give some specific examples where the conjecture is

true. More specifically, we calculate IndG
P for some classical algebraic groups (in 8.1 for

sp4 and in 8.2 for sl4) for cuspidal pairs on the Levis and show that IndG
P applied to the

cuspidal pair has vanishing stalks in odd degrees.

For x ∈ gn, construction of parabolic with Levi as described in 7.1.1

Recall from subsection 7.1.1, that for x ∈ gn, we first defined χ and then con-

structed p, l. The Levi L with χ was n-rigid, which played a key role in the proofs of sec-

tion 7.1. In section 8.3, we construct p, l for x being the representatives of various G0 or-

bits in g−1.

8.1. sp4-case:

Let G = Sp4. The symplectic form is defined by the matrix

B =

"

##########$

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

%

&&&&&&&&&&'

and the inner product is Q(v, w) = vtBw, where v, w ∈ C4. Sp4 is defined as the group of

automorphisms A from C4 to C4, such that Q(Av,Aw) = Q(v, w). Here a torus is of the

form diag(t1, t2, t
−1
1 , t−2

2 ). Let {e1, e2, e3, e4} be the standard basis of C4. Hence the root

system is Φ = {±e1 ± e2,±2e1,±2e2}. The orthogonal complement of a vector space V ,
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denoted by V ⊥, is the set of all vectors having inner product 0 with all the vectors in V .

Clearly the orthogonal complement of 〈e1〉 is 〈e1, e2, e4〉.

Levi subgroups

The Levi subgroups are T,GL(2), GL(1)×Sp(2), up-to conjugacy. According to our

assumption for the characteristic l, l ∕= 2. So from [Lu3], we can see that T and GL(1) ×

Sp(2) have cuspidal pairs. For T the parity condition has been checked in [JMW, 4.3].

In the case of GL(1)× Sp(2), the cuspidal pair is of the form (Oprin,L), where Oprin is the

Sp2-principal orbit in sp(2) = sl2 and L is the nontrivial SL(2)-equivariant local system

on Oprin. The Levi GL(1) × Sp(2) comes from the root α = 2e2. The Levi and nilpotent

subalgebras related to the root α = 2e2 are of the form

l = {

"

##########$

a 0 0 0

0 b 0 c

0 0 −a 0

0 d 0 −b

%

&&&&&&&&&&'

| a, b, c, d ∈ C} ∼= sl2 × C,

and

uP = {

"

##########$

0 x z y

0 0 y 0

0 0 0 0

0 0 −x 0

%

&&&&&&&&&&'

| x, y, z ∈ C}.
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Hence, p = {

"

##########$

a x z y

0 b y c

0 0 −a 0

0 d −x −b

%

&&&&&&&&&&'

| a, b, c, d, x, y, z ∈ C}. Now we want to calculate Ind with

respect to these parabolic and Levi. Recall the parabolic induction diagram,

NL
π←− NL + uP

e−→ G×P (NL + uP )
µ−→ NG.

The crucial step is to calculate the push forward of the map µ. We can interpret the space

G×P (NL + uP ) in a different way,

G×P (NL + uP ) ∼= {(gP, x) ∈ G/P ×NG|Ad(g−1)x ∈ NL + uP}, by (g, x) → (gP,Ad(g)x).

∼= {(gP, x) ∈ G/P ×NG|Ad(g−1)x ∈ Lie(P )}, as x ∈ NG, Ad(g
−1)x ∈ NG.

Ad(g−1)x ∈ p means it preserves the partial flag 〈e1〉 ⊂ 〈e1, e2, e4〉, call it E. This implies

that x preserves gE. Hence the definition becomes

G×P (NL + uP ) =

/
001

002
(V1 ⊂ V3, x)

55555555

V1 ⊂ V3 is a partial flag of dimension 1 and 3,

V ⊥
1 = V3, x ∈ NG preserves V3 and V1

6
007

008
. (1.1)

Now the map µ becomes projection on the second coordinate. By [CM, 5.2], we

can find the orbits in sp4, which are O[4],O[2, 12],O[22],O[14]. The representatives from

these orbits are,
"

##########$

0 1 0 0

0 0 0 1

0 0 0 0

0 0 −1 0

%

&&&&&&&&&&'

,

"

##########$

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

%

&&&&&&&&&&'

,

"

##########$

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

%

&&&&&&&&&&'

, {0},
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respectively. Now we are interested in the fibers of the representatives of each orbits. For

each orbit as above, we call x to be the representative.
Lemma 8.1.1. For x defined above, µ−1(x) has the following descriptions,

1. for x ∈ O[2, 12], µ−1(x) ∼= P2,

2. for x ∈ O[22], µ−1(x) ∼= P1,

3. for x ∈ O[4], µ−1(x) ∼= {pt},

4. for x ∈ O[14], µ−1(x) ∼= G/P .

Proof. 1. If x ∈ O[2, 12], then ker x = 〈e1, e2, e4〉. For a flag V1 ⊂ V3 in G×P (NL+uP ),
x stables both V3 and V1. So if 〈v〉 = V1, then v should either go to 0 or to some
scalar multiplication of v under the map x. Let v = ae1 + be2 + ce3 + de4, then
x.v = ce1. If c = 0, then x.v = 0 which means v ∈ kerx. If c ∕= 0 then x.v ∈ V1,
so b = c = d = 0, a contradiction. Hence V1 ⊂ ker x which is 3 dimensional. Once
we choose V1, V3 is automatically determined by the condition V ⊥

1 = V3. Hence
µ−1(x) ∼= P2.

2. Now for O[22], to find the fiber we will proceed as before. For O[22], ker x =
〈e1, e2〉. If v is the generator of V1 then x.v is either 0 or in 〈v〉. Now if v =
ae1 + be2 + ce3 + de4, then x.v = ce1 + de2. Hence either c = d = 0 implying
v ∈ ker x, otherwise, ce1 + de2 = λv implying c = d = 0, a contradiction. Therefore,
V1 ⊂ ker x which is two-dimensional. Hence in this case µ−1(x) ∼= P1.

3. For O[4], we can check that 〈e1〉 ⊂ 〈e2, e1, e4〉 is the only flag which satisfies all the
conditions to be in the inverse image, so the fiber is just a point.

4. For O[14] the fiber is the whole space G/P .

We can find the dimension and the fundamental groups of the orbits from [CM].

Now as L ∼= SL2 × C×, hence the orbits in L are Oprin and {0}. We want to calculate

µ−1(x) ∩G×P (O0 + uP ) and µ−1(x) ∩G×P (Oprin + uP ) for each representative x.
Lemma 8.1.2. Let x ∈ NL + uP . Then,

1. x ∈ Oprin + uP if and only if the action of x on 〈e1, e2, e4〉/〈e1〉 is nonzero,

2. x ∈ O0 + uP if and only if the action of x on 〈e1, e2, e4〉/〈e1〉 is zero.
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The proof follows from some simple matrix calculations.

Thus from the above lemma and the definition that we gave in the beginning,

G×P (O0 + uP ) =

/
001

002
(gP, x) ∈ G/P ×NG

55555555

Ad(g−1)x preserves the flag 〈e1〉 ⊂ 〈e1, e2, e3〉

and Ad(g−1)x is zero on 〈e1, e2, e3〉/〈e1〉

6
007

008
.

Which is same as,

G×P (O0 + uP ) =

/
001

002
(gP, x) ∈ G/P ×NG

55555555

x preserves the flag g.〈e1〉 ⊂ g.〈e1, e2, e3〉

and x is zero on g.〈e1, e2, e3〉/g.〈e1〉

6
007

008
.

Which is again same as,

/
001

002
(V1 ⊂ V3, x)

55555555

V1 ⊂ V3 is a partial flag of dimension 1 and 3,

V ⊥
1 = V3, x ∈ NG preserves V3 and V1 with x is 0 on V3/V1

6
007

008
.

Therefore for each representative x,

µ−1(x)∩G×P (O0+uP ) =

/
001

002
V1 ⊂ V3

55555555

V1 ⊂ V3 is a partial flag of dimension 1 and 3,

V ⊥
1 = V3, x preserves V3 and V1 with x is 0 on V3/V1

6
007

008
.

Lemma 8.1.3. For x being the representative of each orbit, µ−1(x) ∩ G ×P (O0 + uP )

satisfies the fifth column in the table given below.

Proof. 1. For O[14], it is not hard to see, µ−1(x) ∩G×P (O0 + uP ) = G/P .

2. For O[2, 12], we have already seen that if 〈v1〉 ⊂ 〈v1, v2, v3〉 is in µ−1(x), then
v1 ∈ ker x = 〈e1, e2, e4〉. As x is zero on 〈v1, v2, v3〉/〈v1〉 that means v2 and
v3 should either go to 0 or to 〈v1〉. If both go to 0, that is both are in the ker-
nel, then 〈v1, v2, v3〉 = 〈e1, e2, e4〉. Using the condition V ⊥

1 = V3, definitely
V1 = 〈e1〉. If one of them goes to v1, let’s say v2. But then x.v2 is some scalar
multiplication of e1 as Im(x) = 〈e1〉. This implies 〈v1〉 = 〈e1〉. Again using
the fact that 〈v1〉⊥ = 〈v1, v2, v3〉, we can see, 〈v1, v2, v3〉 = 〈e1, e2, e4〉. Hence
µ−1(x) ∩G×P (O0 + uP ) is a single point {〈e1〉 ⊂ 〈e1, e2, e4〉}.
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3. Now for O[22], again 〈v1〉 ⊂ ker x. But here ker x = {e1, e2}. This means v1 is
of the form ae1 + be2. If a = 0 that means 〈v1〉 = 〈e2〉 and v⊥1 = 〈e2, e1, e3〉.
But e3 goes to e1 under x, so the map does not induce a zero map on the quotient
〈v1, v2, v3〉/〈v1〉. Similarly if b = 0 then 〈v1〉 = 〈e1〉, therefore v⊥1 = 〈e2, e1, e4〉.
But e4 goes to e2 under x, so the map does not induce a 0 map on the quotient
〈v1, v2, v3〉/〈v1〉. Now we consider the case where both a and b are non-zero. We
have 〈v1〉⊥ = 〈e1, e2, be3 − ae4〉. Now under the map x, e1, e2 both goes to 0 but
be3 − ae4 goes to be1 − ae2. The action of x should be zero on the quotient, that
means be1 − ae2 must be a scalar multiplication of v1. This implies b2 + a2 = 0 or
a = ±ib. Therefore the flags that satisfy all the conditions to be in µ−1(x) ∩ G ×P

(O0 + uP ) are 〈ie1 + e2〉 ⊂ 〈e1, e2, e3 − ie4〉 and 〈−ie1 + e2〉 ⊂ 〈e1, e2, e3 + ie4〉.

4. For O[4], 〈e1〉 ⊂ 〈e2, e1, e4〉 is the only flag in the inverse image but it does not
satisfy this condition hence µ−1(x) ∩G×P (O0 + uP ) = ∅.

Table 8.1. Orbits in sp4
orbits: O[4] O[22] O[2, 12] O[14]
dim : 8 6 4 0
π1 : Z/2 Z/2 Z/2 0

µ−1(x) : {pt} P1 P2 G/P
µ−1(x) ∩G×P (O0 + uP ) : ∅ {pt} ⊔ {pt} {pt} G/P

µ−1(x) ∩G×P (Oprin + uP ) : {pt} A1 − {pt} P2 − {pt} ∅

We are now ready to calculate IndG
P for cuspidal pairs. The only cuspidal pair

on SL2 is (Oprin,L), where L is the nontrivial local system on Oprin. Now recall the

parabolic induction diagram for cuspidal pair defined in ??. As (Oprin,L) is cuspidal,

so IndG
P IC(Oprin,L) = c!(b

∗ ForGP )
−1a∗L[dimOprin] = c!(b

∗ ForGP )
−1a∗L[2]. As we know

pull-back of some local system is again a local system, thus (b∗ ForGP )
−1a∗L[2] is a local
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system on G×P (Oprin + uP ).

G×P (Oprin + uP ) NG

G×P (Oprin + uP ) ∩ µ−1(x) x

c

c

Using the above diagram, IndG
P IC(Oprin,L)x becomes the !-pushforward of a local system

on G×P (Oprin+uP )∩µ−1(x) by a constant map. From the table above, G×P (Oprin+uP )∩

µ−1(x) is simply connected for O[4], O[2, 12] and O[14]. A local system on a simply con-

nected space is constant sheaf. Therefore for these orbits, each stalk of IndG
P IC(Oprin,L)

is the cohomology of G×P (Oprin+uP )∩µ−1(x). But for O[22], G×P (Oprin+uP )∩µ−1(x) is

A1 − {pt}, which is not simply connected. Here we will abuse the notation little bit, both

the representative of O[22] and its image under the projection NP → NL will be called

x. Recall we started with a nontrivial L-equivariant local system on Oprin. The projection

π : Oprin + uP → Oprin is a trivial vector bundle, hence induces isomorphism of the equiv-

ariant fundamental groups. The inclusion Oprin + uP ↩→ G×P (Oprin + uP ) induces isomor-

phism on the equivariant fundamental groups via induction equivalence. So the pullback

of the local system we started with is still a nontrivial local system on G ×P (Oprin + uP ).

Let

S = {

"

##$
A 0

0 A

%

&&' | A =

"

##$
a b

−b a

%

&&' , a, b ∈ C, a2 + b2 = 1}.

It is not hard to check S ⊂ Gx. If we choose a flag in µ−1(x) ∩ G ×P (Oprin + uP ),

say F = 〈e1〉 ⊂ e1, e2, e4〉 then we can see the elements of S that fix the flag F are

{

"

##$
Id 0

0 Id

%

&&' ,

"

##$
−Id 0

0 −Id

%

&&'}. Therefore,
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SF/(SF )◦ = {

"

##$
Id 0

0 Id

%

&&' ,

"

##$
−Id 0

0 −Id

%

&&'} ∼= Z/2Z.

Now we aim to show SF/(SF )◦ ∼= Lx/(Lx)◦. It is not hard to see

Lx ∼= {

"

##########$

a

b

a−1

b

%

&&&&&&&&&&'

| a ∈ C, b = ±1} ∼= Gm × {±1}.

Hence Lx/(Lx)◦ ∼= Z/2Z and the map SF/(SF )◦ → Lx/(Lx)◦ is an isomorphism. Therefore

(b∗ ForGP )
−1a∗L[2]|µ−1(x)∩G×P (Oprin+uP ) is a nontrivial local system.

For a connected, locally contractible space X if the universal cover is contractible,

then the inclusion functor Loc(X, k) → Sh(X, k) induces an equivalence of categories,

Db Loc(X, k) → Db
loc(X, k).

It can be proved by a minor variation on the proof that the (co)homology of an

Eilenberg-MacLane space is isomorphic to group (co)homology [Bro, Prop II.4.1]. For

X = A1 − {pt}, Loc(X, k) ∼= k[π1(A1 − {pt})] − mod, which is same as k[Z] − mod ∼=

k[T, T−1] − mod. Therefore, for the local system (b∗ ForGP )
−1a∗L[2]|µ−1(x)∩G×P (Oprin+uP ),

there exists a k[T, T−1] module M on which T acts by (−1). To calculate the cohomology

of this local system is same as calculating RHom(k,M). Now,

−→ k[T, T−1]
×(T−1)−−−−→ k[T, T−1]

T→1−−−→ k

is a projective resolution of k. Applying Hom(,M) we get, M in degree 0 and 1.

→ 0 → M
×(−2)−−−→ M → 0 → .
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Multiplying by −2 induces isomorphism. Hence RHom(k,M) is 0 in every degree.

Table 8.2. Stalks of IndG
P IC(Oprin,L)

dim O[4] O[22] O[2, 12] O[14]
0
−1
−2 rank 1
−3
−4 rank 1
−5
−6
−7
−8
−9
−10 rank 1

Hence the parity condition of Conjecture 3.2.9 is satisfied.

8.2. sl4-case:

Let G = SL4. First we talk about the Levi subgroups of G and find out which of

them have cuspidal pairs. The conjugacy classes of proper Levis are of the form

S(GL3 ×GL1), S(GL2 ×GL2),

S(GL2 × GL1 × GL1), T.Here S(GLm × GLn) = {

"

##$
A 0

0 B

%

&&' | A ∈ GLm, B ∈

GLn, det(A) det(B) = 1}. According to the discussion in 6.2 and Theorem 6.3 in

[AJHR3], we can see cuspidal pair only appears for S(GL2 × GL2) and is of the form

(Oprin × Oprin,L ⊠ L). Here each L is a rank one SL(2)-equivariant local system on Oprin

and Oprin is the SL2-principle nilpotent orbit in sl2.

For sl4, the root system is Φ = {ei − ej|i ∕= j, 1 ≤ i, j ≤ 4}. The parabolic subgroup
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associated to {e1 − e2, e3 − e4} is of the form,

"

##########$

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗ ∗

%

&&&&&&&&&&'

. The Levi subgroup is then

S(GL2 × GL2) and the unipotent radical is of the form,

"

##########$

∗ ∗

∗ ∗

%

&&&&&&&&&&'

. Now the genera-

tors of the nilpotent orbits come from the Jordan block of size depending on the partition.

Hence the representatives of O[4],O[3, 1],O[22],O[2, 12],O[14] are respectively,

"

##########$

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

%

&&&&&&&&&&'

,

"

##########$

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

%

&&&&&&&&&&'

,

"

##########$

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

%

&&&&&&&&&&'

,

"

##########$

0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

%

&&&&&&&&&&'

, {0}.

Now we calculate µ−1(x) for each x as we did for sp4. Here again,

G×P (NL + uP ) = {(gP, x) ∈ G/P ×NG|Ad(g−1)x ∈ Lie(P )}.

But Ad(g−1)x ∈ p means it preserves the two dimensional subspace 〈e1, e2〉. Hence,

G×P (NL + uP ) = {(H, x)| x ∈ NG, H is a two dimensional subspace preserved by x},

Lemma 8.2.1. Let x ∈ NL + uP . Then, x ∈ Oprin ×Oprin + uP if and only if x|〈e1,e2〉 ∕= 0

and x|C4/〈e1,e2〉 ∕= 0.

The proof follows from some easy matrix calculations. Therefore following the same
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process as for sp4,

µ−1(x) ∩ (Oprin ×Oprin + uP ) = {(H, x)| x preserves the subspace H, x|H ∕= 0, x|C4/H ∕= 0}.

Lemma 8.2.2. Let x be the representative of each orbits in sl4.

1. For O[4], µ−1(x) is {〈e1, e2〉} and µ−1(x) ∩ (Oprin ×Oprin + uP ) = {〈e1, e2〉}.

2. For O[3, 1], µ−1(x) ∼= P1 and µ−1(x) ∩ (Oprin ×Oprin + uP ) ∼= P1 − {[0, 1], [1, 0]}.

3. For O[2, 12], if x preserves H, then either 〈e1〉 ⊂ H or H ⊂ ker(x). Also µ−1(x) ∼=
P2 ⊔P1 P2 and µ−1(x) ∩ (Oprin ×Oprin + uP ) ∼= ∅.

4. For x ∈ O[22], µ−1(x) ∩ (Oprin ×Oprin + uP ) ∼= A1 ⊔ A2.

Proof. 1. For O[4], the only choice for µ−1(x) is 〈e1, e2〉. Now x|〈e1,e2〉 ∕= 0 and
x|C4/〈e1,e2〉 ∕= 0, hence µ−1(x) ∩ (Oprin ×Oprin + uP ) = {〈e1, e2〉}.

2. The first claim is that if H ∈ µ−1(x), then H contains e1. Let H does not contains
e1. if H contains v = ae1 + be2 + ce3 + de4, then as x.v is in H, so be1 + ce2 ∈ H. If
both b = c = 0, then v ∈ ker(x) = 〈e1, e4〉. If v ∕= e1 then it is a linear combination
of e1 and e4. In this case the other basis element of H must be a linear combina-
tion of e2 and e3, which contradicts the fact that H x-invariant. So b and c both
can not be 0. If c = 0 we are done. If c ∕= 0 then x.(x.v) = ce1 ∈ H, therefore
e1 ∈ H.

Now as e1 is fixed, we have one choice left for the second generator. Now let the
second generator v = ae2 + be3 + de4, then x.v = ae1 + ce2. As H is stable under
x, so x.v must be a scalar multiple of e1 or v. In both cases c = 0, therefore v can
be linear combination of e2 and e4. So we have 〈e1〉 ⊂ H ⊂ 〈e1, e2, e4〉 and µ−1(x) ∼=
P1.

For µ−1(x) ∩ (Oprin ×Oprin + uP ), x|H ∕= 0. So again if we take the other generator
v in H, which is of the form ae2 + be4, then using the condition x|H ∕= 0 we can
say a ∕= 0. Now if b = 0, then H = 〈e1, e2〉, which implies x|C4/H = 0. Therefore
for H to be in µ−1(x) ∩ (Oprin × Oprin + uP ), a and b both must be nonzero. So
µ−1(x) ∩ (Oprin ×Oprin + uP ) ∼= P1 − {[0, 1], [1, 0]}.

3. Let H is not contained in ker(x) = 〈e1, e3, e4〉. Let v = ae1 + be2 + ce3 + de4 ∈
H with b ∕= 0, then x.v = be1 ∈ H. Hence H contains e1. Now if 〈e1〉 ⊂ H ⊂
C4, then the choice for H is P2. If H ⊂ ker(x) = 〈e1, e3, e4〉, then again choice is
P2. If 〈e1〉 ⊂ H ⊂ ker(x), then the choice is P1. Hence µ−1(x) ∼= P2 ⊔P1 P2. For
µ−1(x) ∩ (Oprin × Oprin + uP ), x|H ∕= 0, so H can not be contained in ker(x). But
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still whatever be the choice of the other generator we can see x|C4/H is always 0.
Therefore µ−1(x) ∩ (Oprin ×Oprin + uP ) = ∅.

4. If ae1 + be2 + ce3 + de4 ∈ H, then be1 + de3 ∈ H. If x|H ∕= 0, then H ∩ ker(x) is
one dimensional. Call the subspace ker(x) ∩H to be L which is definitely generated
by elements of the form be1 + de3. Now clearly L ⊂ H ⊂ x−1L = 〈e1, e3, be2 + de4〉.
If both b and d are 0, then H = 〈e1, e3〉. This implies x|H = 0. The converse is also
true. For H to be in µ−1(x) ∩ (Oprin ×Oprin + uP ) we need x|H ∕= 0 and x|C4/H ∕= 0,
which is not true for the above case. So one of them must be non-zero. Now if we
consider one of them is zero, say d = 0, then L = 〈e1〉. In this case we can consider
b = 1, hence H is generated by e1 and e2 + ce3, and in this case x|C4/H ∕= 0, so the
choice is A1. The remaining case is d ∕= 0. Here we can consider d = 1 and then
L = 〈be1 + e3〉. In this case, H is generated by be1 + e3 and ae1 + be2 + ce3 + e4,
which is the same as 〈be1 + e3, a

′e1 + be2 + e4〉, so the choice is A2. In this case also
x is nonzero on both H and the quotient.

Table 8.3. Orbits in sl4

orbits: O[4] O[3, 1] O[22] O[2, 12] O[14]
dim : 12 10 8 6 0
π1 : Z/4 {1} Z/2 {1} {1}

µ−1(x) : {〈e1, e2〉} P1 - P2 ⊔P1 P2 G/P
µ−1(x) ∩G×P (Oprin ×Oprin + uP ) : {〈e1, e2〉} P1 − {[0, 1], [1, 0]} A2 ⊔ A1 ∅ ∅

Now we are ready to find the IndG
P . The only cuspidal pair in L is (Oprin ×

Oprin,L ⊠ L) where L is the nontrivial local system on Oprin. We know IC(Oprin ×

Oprin,L ⊠ L) ∼= IC(Oprin,L) ⊠ IC(Oprin,L). We can use the parabolic induction diagram

introduced in ??, therefore IndG
P IC(Oprin × Oprin,L ⊠ L) = c!(b

∗ ForGP )
−1a∗(L[2] ⊠ L[2]).

Now we will follow the same steps as we did for sp4 and using the same diagram,

IndG
P IC(Oprin × Oprin,L ⊠ L)x becomes the !-pushforward of a local system on

G ×P (Oprin × Oprin + uP ) ∩ µ−1(x) by a constant map. From the table above,

G ×P (Oprin × Oprin + uP ) ∩ µ−1(x) is simply connected for O[4], O[2, 12], O[22]

and O[14]. A local system on a simply connected space is constant sheaf. Therefore
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for these orbits, the stalks of IndG
P IC(Oprin × Oprin,L ⊠ L) are the cohomologies of

G×P (Oprin ×Oprin + uP ) ∩ µ−1(x). But for O[3, 1], G×P (Oprin ×Oprin + uP ) ∩ µ−1(x) is

P1−{[1, 0], [0, 1]}, which is not simply connected. Here we will use the same abuse of nota-

tion, both the representative of O[3, 1] and its image under the projection NP → NL

will be called x. Recall we started with a nontrivial L-equivariant local system on

Oprin × Oprin. The projection π : Oprin × Oprin + uP → Oprin × Oprin is a trivial

vector bundle, hence induces isomorphism of the equivariant fundamental groups. The

inclusion Oprin × Oprin + uP ↩→ G ×P (Oprin × Oprin + uP ) induces isomorphism on the

equivariant fundamental groups via induction equivalence. So the pullback of the local

system we started with is still a nontrivial local system on G×P (Oprin ×Oprin + uP ). Let

S = {

"

##$
A 0

0 A

%

&&' | A =

"

##$
a

a−1

%

&&' , a ∈ C×}.

and surely S ⊂ Gx. If we choose a subspace in µ−1(x) ∩ G ×P (Oprin × Oprin + uP ), say

H = 〈e1, e2 + e4〉 then we can see S stabilizes H, so SH = S. Therefore, SH/(SH)◦ is

trivial. Now we aim to show SH/(SH)◦ ∼= Lx/(Lx)◦. It is not hard to see

Lx ∼= {

"

##########$

a

b

a−1

c b−1

%

&&&&&&&&&&'

| a, b ∈ C× and c ∈ C} ∼= C× × C× × C.

Hence Lx/(Lx)◦ is also trivial and the map SH/(SH)◦ → Lx/(Lx)◦ is an isomorphism.

Therefore (b∗ ForGP )
−1a∗(L[2] ⊠ L[2])|µ−1(x)∩G×P (Oprin×Oprin+uP ) is a nontrivial local system.

Now again using the same argument from [Bro, Prop. II.4.1],

Db Loc(X, k) → Db
loc(X, k).
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Here X = P1 − {[1, 0], [0, 1]}, Loc(X, k) ∼= k[π1(P1 − {[0, 1], [1, 0]})] − mod, which is same

as k[Z] − mod ∼= k[T, T−1] − mod. Therefore, for the local system (b∗ ForGP )
−1a∗L[2] ⊠

L[2]|µ−1(x)∩G×P (Oprin×Oprin+uP ), there exists a k[T, T−1] module M on which T acts by (−1).

Now we use the same calculation as we did for sp4 to conclude RHom(k,M) is 0 in every

degree.

Table 8.4. Stalks of IndG
P IC(Oprin ×Oprin,L⊠ L)

dim O[4] O[3, 1] O[22] O[2, 12] O[14]
−6
−7
−8 rank 1
−9
−10 rank 1
−11
−12
−13
−14 rank 1
−15
−16

Hence the parity condition is again satisfied.

8.3. Construction of p, n, and l described in 7.1.1

Let G = SL4 and χ : C× → G be defined as t → (t, 1, 1, t−1). Then the matrix that

gives gm′ for all m′ is "

##########$

0 1 1 2

−1 0 0 1

−1 0 0 1

−2 −1 −1 0

%

&&&&&&&&&&'

. (3.2)

Now gm′ comes from the above matrix by putting nonzero entries wherever we have m′ in

(3.2) and 0 elsewhere. For example,
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g2 =

"

######$

∗

%

&&&&&&'
, g1 =

"

##########$

∗ ∗

∗

∗

%

&&&&&&&&&&'

, and

g0 =

"

###########$

∗

∗ ∗

∗ ∗

∗

%

&&&&&&&&&&&'

.

Similarly we can find g−1, g−2.

Now choose a point x ∈ g−1. We can think of g−1 as Hom(C,C2) × Hom(C2,C),

which is a space of representations of quivers of finite type of dimension (1, 2, 1). By [DW,

Theorem 4.3.9], isomorphism classes of G0-orbits in g−1 are in bijection with the isomor-

phism classes of finite type quiver representations of dimension (1, 2, 1). This is again a

linear combinition of roots of A3 that add up-to α1 + 2α2 + α3, where α1,α2,α3 are all the

simple roots in A3 and α4 = α1 + α2,α5 = α1 + α2 + α3,α6 = α2 + α3. Let us pick one

such linear combination which gives a representative of that orbit and call it x. Note that

α4 + α6 adds up-to the desired sum. This gives the representative

x =

"

##########$

1

0

0 1

%

&&&&&&&&&&'
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Note that the Jordan canonical form of x is
"

##########$

0 1

0 0

0 1

0 0

%

&&&&&&&&&&'

This matrix is associated to the partition [2, 2], hence we can use [CM, Lemma 3.2.6] to

find a map sl2 → g which takes e to

"

##########$

0 1

0 0

0 1

0 0

%

&&&&&&&&&&'

and h to

"

##############$

1

−1

1

−1

%

&&&&&&&&&&&&&&'

∈ g0. We

can see the matrix

"

##########$

1

1

1

1

%

&&&&&&&&&&'

conjugates x to

"

##########$

0 1

0 0

0 1

0 0

%

&&&&&&&&&&'

, therefore conjugating

the above map by the same matrix we get a map φ : sl2 2→ g which sends e to x and h to

"

##############$

−1

1

−1

1

%

&&&&&&&&&&&&&&'

∈ g0
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Clearly, φ̃

"

##$
t

t−1

%

&&' =

"

##########$

t−1

t

t−1

t

%

&&&&&&&&&&'

. Hence we get the required χ′ : C× → G, as

χ′(t) = φ̃

"

##$
t

t−1

%

&&' =

"

##########$

t−1

t

t−1

t

%

&&&&&&&&&&'

. So the matrix mg for all m comes from the

matrix below by the same procedure as above.

"

##########$

0 −2 0 −2

2 0 2 0

0 −2 0 −2

2 0 2 0

%

&&&&&&&&&&'

. (3.3)

We can see what 1g,2 g,3 g are as before. In this example n = −1. So we need conditions

on m+ 2m′ to find p, n, l. The matrix mgm′ for m+ 2m′ is given below.

"

##########$

0 0 2 2

0 0 2 2

−2 −2 0 0

−2 −2 0 0

%

&&&&&&&&&&'

.
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Hence, with the conditions on m+ 2m′ we can say,

l =

"

##########$

∗ ∗

∗ ∗

∗ ∗

∗ ∗

%

&&&&&&&&&&'

.

Table 8.5. Table for the Levis
x Representative dim Associated Levi

α2 + α3 + α4

"

##$
0
1

0 0

%

&&' 2

"

##$

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗

%

&&'

α6 + α4

"

##$
1
0

0 1

%

&&' 3

"

##$

∗ ∗
∗ ∗

∗ ∗
∗ ∗

%

&&'

α2 + α5

"

##$
0
1

0 1

%

&&' 4

"

##$

∗ ∗
∗ ∗

∗
∗

%

&&'

α1 + α2 + α6

"

##$
0
0

0 1

%

&&' 2

"

##$

∗
∗

∗ ∗
∗ ∗

%

&&'

α1 + 2α2 + α3 {0} 0 G
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