
Louisiana State University Louisiana State University

LSU Scholarly Repository LSU Scholarly Repository

LSU Historical Dissertations and Theses Graduate School

1993

Squared Law Algorithms: Theory and Applications. Squared Law Algorithms: Theory and Applications.

Poornachandra Bellamkonda Rao
Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://repository.lsu.edu/gradschool_disstheses

Recommended Citation Recommended Citation
Rao, Poornachandra Bellamkonda, "Squared Law Algorithms: Theory and Applications." (1993). LSU
Historical Dissertations and Theses. 5591.
https://repository.lsu.edu/gradschool_disstheses/5591

This Dissertation is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It
has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU
Scholarly Repository. For more information, please contact gradetd@lsu.edu.

https://repository.lsu.edu/
https://repository.lsu.edu/gradschool_disstheses
https://repository.lsu.edu/gradschool
https://repository.lsu.edu/gradschool_disstheses?utm_source=repository.lsu.edu%2Fgradschool_disstheses%2F5591&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/gradschool_disstheses/5591?utm_source=repository.lsu.edu%2Fgradschool_disstheses%2F5591&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA
313/761-4700 800/521-0600

Order Num ber 9405417

Squared law algorithm s: Theory and applications

Rao, Poornachandra Bellamkonda, Ph.D.

The Louisiana State University and Agricultural and Mechanical Col., 1993

U M I
300 N. ZeebRd.
Ann Arbor, MI 48106

SQUARED LAW ALGORITHMS: THEORY AND APPLICATIONS

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in

The Department of Electrical and Computer Engineering

by
Poornachandra B. Rao

B. E., Osmania University, 1984
M.S. in E.E., Louisiana State University, 1989

August 1993

Acknowledgments

I would like to thank my major professor, Dr. Alexander Skavantzos, for his

advice and guidance throughout this research effort.

I would also like to thank Drs. Ahmed El-Amawy, Bush Jones, Subhash Kak,

Charles Monlezun, and Suresh Rai for willing to serve as members of my doctoral

committee. In particular, I would like to thank Professor Subhash Kak who through

many conversations not only provided encouragement but also helped me see the

broader picture.

Most of all, I would like to thank my parents, sister, and brother whose

patience, faith, and moral support made this dissertation possible.

Table of Contents

Acknowledgments ... ii

List of Tables... vi

List of Figures..vii

Abstract... ix

Chapter 1 Introduction 1

1.1 Overview of existing methods 2
1.2 Our approach .. 6

Chapter 2 Mathematical Foundations ... 9

2.1 Background... 9
2.2 Algorithm for convolution using an exponential

number of squares... 11
2.3 Direct extension of the one over eight squared

algorithm.. 16
2.4 Squared law theorems for cyclic convolutions...................................18
2.5 Analysis of part 1..29
2.5.1 Comparison of methods 1 - 3... 33
2.6 Number of squares...34
2.7 Number of additions.. 37
2.8 Example...39
2.9 Summary ...49

Chapter 3 Implementation Issues 51

3.1 CSA implementation of the multiplication operation.......................51
3.2 CSA implementation of the squaring operation................................ 56
3.3 Alternate CSA implementation of the squaring operation...............61
3.4 CSA implementation of the cyclic convolution.................................66
3.4.1 4-point cyclic convolution-traditional... 67
3.4.2 4-point cyclic convolution-modular...69
3.4.3 4-point cyclic convolution-squares... 71
3.4.4 8-point cyclic convolution-traditional...76
3.4.5 8-point cyclic convolution-modular.. 78
3.4.6 8-point cyclic convolution-squares ...80
3.4.7 16-point cyclic convolution-traditional... 90

3.4.8 16-point cyclic convolution-modular..90
3.4.9 16-point cyclic convolution-squares...90
3.4.10 Discussion.. 91
3.5 Hybrid implementation of cyclic convolution.................................. 96
3.5.1 8-point cyclic convolution-hybrid, modular................... 98
3.5.2 8-point cyclic convolution-hybrid, squares....................................... 98
3.6 Applications to computer arithmetic.. 99
3.6.1 Modulo 2N -1 multiplication..99
3.6.2 Extending the modulo 2N -1 multiplier..100
3.6.3 Example.. 102
3.6.3.1 Modulo 2n -1 product... 102
3.6.3.2 Modulo 2N + 1 product...102
3.6.3.3 Modulo 2N product... 103
3.6.3.4 Full precision product... 103
3.6.4 Hardware and speed Analysis..103
3.7 Summary...109

Chapter 4 ROM Based Methods for Computing the Squaring
Operation in Modular Rings ..113

4.1 Memory compression schemes for arithmetic in
modulo 2n...114

4.1.1 Analysis when the high word is one bit long...................................114
4.1.2 Analysis when the high word is two bits long.................................116
4.1.3 Analysis when the high word is three bits long............................. 119
4.2 Optimized memory compression schemes for

arithmetic in modulo 2n 123
4.2.1 Analysis when n is even... 127
4.3 Numerical example... 129
4.3.1 Illustrating techniques of section 4.1.1............................ 129
4.3.2 Illustrating techniques of section 4.1.2... 129
4.3.3 Illustrating techniques of section 4.1.3...129
4.3.4 Illustrating techniques of section 4.2.1..130
4.4 Comparing techniques of section 4.1 with 4.2................................ 130
4.4.1 Cost and speed analysis for section 4.1.. 130
4.4.2 Cost and speed analysis for section 4.2.. 138
4.5 Memory compression schemes for arithmetic in

modulo 2n -1.. 141
4.5.1 Analysis when the high word is one bit long............................ 142
4.5.2 Analysis when the high word is two bits long.................................142
4.6 Optimized memory compression schemes for

arithmetic in modulo 2n -1...145
4.7 Memory compression schemes for arithmetic in

modulo 2n +1... 146
4.8 Optimized memory compression schemes for

arithmetic in modulo 2n +1.. 146
4.9 Conclusions.. 147

iv

Chapter 5 Conclusions ... 149

5.1 Summary.. 149
5.2 Future research em phasis..150

References ..151

Appendix Implementations in Mathematica................................. 156

V ita..165

v

List of Tables

Table 2.1 Comparison of the number of multiplications
versus squaring operations... 36

Table 3.1 Hardware cost in 2-input gates for cyclic convolution
of 4, 8, and 16 points.. 92

Table 3.2 Time delay of cyclic convolution of 4, 8, and 16 points 95

Table 3.3 Hardware and speed comparison of various
look-up table techniques.. 105

Table 3.4 Cost comparison in ROM bits of the various techniques
for computing <A x B>2n . \ 110

Table 3.5 Cost comparison in ROM bits for integrated multiplier,
based on techniques of this section........................... I l l

Table 4.1 Values of <AH2AL22n^>211... H8

Table 4.2 Values of <AH3AL32n"2>2n.. 121

Table 4.3 Results when n is even. AH = an.jan.2 ... an/2,
A L = a(n/2)-la(n/2)-2 - and
QS = 2n/2-1{(AH + Al)2 -(Ah - Al 2)) 125

Table 4.4 Results when n is odd. AH = an l an 2 ... â n+1y2,
A L = a(n-l)/2 - a l a0’ and
QS = 2(n-1)/2{(AH + Al)2 -(Ah - Al 2)}.................... 126

Table 4.5 Cost comparison in 2-input gates of techniques
of section 4.1 with 4.2... 137

Table 4.6 Speed comparison in 2-input gate delays of techniques
of section 4.1 with 4.2... 139

Table 4.7 Values of <2n'4 A ^2 + a 144

List of Figures

Figure 3.1 CSA implementation of an 8 x 8 multiplier........................... 53

Figure 3.2 Array of summands for an 8 bit squarer.................................. 57

Figure 3.3 CSA implementation of an 8 bit squarer................................. 59

Figure 3.4 Intuitive CSA implementation of an 8 bit squarer.................. 60

Figure 3.5 Reduced and regular array of summands for an 8
bit squarer.. 62

Figure 3.6 CSA implementation of reduced 8 bit squarer...................... 63

Figure 3.7 Pictorial representation of a 4-point cyclic convolution..........68

Figure 3.8 8-point cyclic convolution-module 1... 81

Figure 3.9 8-point cyclic convoiutiori-module 2... 82

Figure 3.10 8-point cyclic convolution-module 3... 83

Figure 3.11 Hardware architecture to implement equation (3.2) using
traditional techniques... 106

Figure 3.12 Hardware architecture for implementing equation (3.2)
using the quarter squared algorithm 107

Figure 3.13 Hardware architecture to realize equations
(3.26) and (3.28)...108

/■»
Figure 4.1 The direct computation of <A >2n, ROM size 2n x n 115

Figure 4.2 The computation of <A >2n based on equation (4.3),
ROM size 2n_1 x n.. 117

2
Figure 4.3 The computation of <A >2n based on equation (4.9),

ROM size 2n"2 x n.. 120

Figure 4.4 The computation of <A2>2n based on equation (4.16),
ROM size 2n' 3 x n..124

2
Figure 4.5 The computation of <A >2n based on equations

(4.23)-(4.24), total ROM bits = 5 x 2072 x n................. 128

Figure 4.6 Basic scheme for techniques of section 4.1.......................... 132

viii

Abstract

This dissertation focuses on a new approach for a hardware implementation of

the cyclic convolution operation. The cyclic convolution operation is the core of

several functions used in applications related to digital signal processing and error

control. Since the operation is multiplication intensive and the cost of a multiplication

operation is very high, most of the present research effort attempts to reduce the

number of multiplications.

Our approach, however, aims at obtaining an efficient implementation by

relying on the properties of the special case of multiplication, namely, the squaring

operation. Due to the properties exhibited by the squaring operation the hardware cost

and time delay of a squarer unit is both cheaper and faster than that of a multiplication

unit. This is true for both memory and non-memory based implementations.

In this dissertation we have developed all the necessary theory required to

express the cyclic convolution of two n-point sequences, where n is a power of 2, in

terms of the elementary arithmetic operations add, square, and subtract. Our

algorithms require fewer squaring operations than multiplication operations required

by a traditional implementation of the cyclic convolution operation, do not introduce

any round-off errors, place no restriction on word length, and are valid when the

number of points to be convolved is a power of two. We then clearly demonstrate that

our algorithms are also more hardware efficient for both memory and non-memory

based implementations. Further, schemes to multiply two numbers based on the cyclic

convolution operation are presented. Finally, efficient ways of computing the squaring

operation when arithmetic is performed in modular rings are developed.

Chapter 1

Introduction

Applications in the fields of digital signal processing (DSP) and error control are

a few of the many interests of a hardware design engineer. Hardware design for these

applications are challenging because of their high computational complexity. The main

computational tasks in these applications are convolutions, Fourier transforms, and the

inversion of Toeplitz systems of equations for spectral estimation [1]. A wealth of

literature already exists in these areas [2]-[6], to name a few. Apart from these books

there are several journals dedicated to research and development in these areas. Much of

the material in these fields is centered around the discrete Fourier transform (DFT). The

DFT has many powerful algebraic properties that are valid in numerous number

systems. Researchers have exploited these properties by exploring several different

alternatives for the field of operations [6]-[ll]. An appropriate selection provides the

designer with a number of tricks that can speed up algorithms and simplify hardware

implementations, for instance, selecting a Galois field of the form GF(2n -1) or GF(2n

+1) simplifies significantly the arithmetic processing. We observe that arithmetic

performed modulo (2n -1) is similar to one's complement arithmetic.

Much of the field of digital signal processing and error control coding is devoted

to the task of removing noise by passing a known signal through a suitable filter [1].

The main computational problem involved in this is the convolution operation. The

convolution operation is used in implementations of finite impulse response filters [12],

infinite impulse response filters [13], auto and cross correlations [14], and polynomial

multiplication and multiplication of very large integers [15],[16]. The large sized

1

2

problems in filtering are broken into smaller linear convolutions or cyclic convolutions

using well known overlap techniques [17],[18]. This dissertation focuses on computing

the convolution operation using a new approach that does not rely on any transforms.

Instead, we focus on this operation from the computer arithmetic point of view by

examining the applicability of other elementary functions in evaluating the convolution

operation.

The rest of the introductory chapter is organized into two sections. The first is a

brief overview of existing approaches for computing convolutions and the second is an

introduction to our approach. The intent of the first section is to impress upon the

reader, some of the difficulties and complexities associated with existing methods and

further, to motivate the need for approaching the problem from a fundamentally different

angle.

1.1 Overview of existing methods

Signals are typically generated whenever things vibrate, pump, pulse, or in any

other way change with time [19]. While such signals or waveforms in real life are

continuous in nature they can, for pragmatic purposes, only be represented with a finite

amount of precision. Further, while the data may be a real or complex number, it can be

temporarily rescaled by shifting the decimal point to the right and treating the number as

an integer. This practice of treating data as integer sequences is common [1], [8] and

does not in any way detract from the quality of the analysis. Based on the application the

designer may choose an appropriate word length to prevent overflow after data

manipulation. We assume without loss of generality that data, also referred to as points

of input and output sequences, are integers. The linear and cyclic convolution operations

are defined as computations on two sets of integers that yields a third set of integers.

More precisely, the linear convolution is defined as

3

n-1
ci = 2 ai-k bk for i = 0, 1. n-1 (1.1)

k=0

and the cyclic convolution as

n-1
Cj = 2 a<i_k>nbk for i = 0, 1, n-1 (1.2)

k=0

where the a4 and bj are the input sets of data and the Ci are the data of the convolved

sequence. The notation <x>m denotes the operation x modulo m. The number of points

in the sequence, 'n', is also known as the block length. We note that the above

computation requires n2 multiplications. Performing the arithmetic in the above two

equations, (1.1) and (1.2), modulo p, where p is prime, changes the entire picture. This

is because, now the computations are being carried out in the Galois field GF(p). This is

very attractive due to the fact that the properties of the convolution theorem can be used

[20],[21], Before we discuss the usefulness of the convolution theorem one must note

that if the choice of p in the above is such that the input data and the computed results

are smaller than p then the modulo p operation is redundant.

The convolution theorem [1] enables the computation of the cyclic convolution

of two vectors A and B by first computing the Fourier transforms of the vectors, then

obtaining a new vector by performing a point by point multiplication of the transformed

vectors, and then finally applying the inverse Fourier transform on the new vector, i.e.

on the vector obtained in the transform domain. If we assume that there are n elements

in each of the input vectors then it is easy to see from the above that only n

multiplications are needed, the multiplications being in the transformed domain. Clearly

the convolution theorem is useful if and only if their exist efficient ways of computing

the Fourier and inverse Fourier transforms. The existence of such transforms is

discussed in [20],[21].

4

The discrete Fourier transform can be applied on a discrete set of points. The

DFT maps a discrete time domain waveform x(n) into a frequency domain X(k) and an

inverse discrete time Fourier transform (IDFT) maps it back into the time domain. The

transforms are symbolically represented as

x(t) - F(lt >X(k) and X(k) —5>x(t)

and defined by

n-1 - j2 n
X (k)= 2 x(t)e— * k = 0, 1, ..., n - 1 (1.3)

t=0

and
i n-1 j2?r

x(t) = - Y X (k) e V t = 0, 1, ..., n - 1 (1.4)
n kT0

From equations (1.3) and (1.4) it can be seen that to obtain c(t) which is the

cyclic convolution of a(t) and b(t), a(t) and b(t) are mapped into the frequency domain,

represented by parameters A(k) and B(k), using n multiplications for each point for a

total of 2n2 multiplications and 2n2 additions. Multiplication of A(k) and B(k) requires

another n multiplications while the inverse mapping requires another n2 multiplications

and n2 additions. We thus have a total of (3n2 + n) multiplications and 3n2 additions.

Thus, when the DFTs are computed directly this approach is not of much practical value

as the direct computation of the cyclic convolution itself requires only n2 multiplications.

However, Cooley and Tukey [6] introduced the fast Fourier transform (FFT)

which is an efficient algorithm to compute the DFT. Other efficient FFT algorithms can

be found in [22]-[24], While these algorithms require only n log2 n multiplications to

map an input sequence of length n into the frequency domain, they have two primary

disadvantages. One is that they produce significant round off errors [25],[26] and the

other is that they are not very well suited for VLSI implementations [27]. Although the

5

FFT reduces the number of multiplications required for evaluating the DFT, the count of

multiplications in itself does not determine the computational efficiency of the algorithm.

With the widespread use of VLSI to build application specific integrated circuits (ASIC)

the architectural details of implementation have gained significant importance. Reference

[28] discusses Fourier transforms in VLSI, [29] discusses architectural issues in DSP

applications, and [30] discusses multiplier policies in DSP applications. Many

researchers have also explored the applicability of systolic array architectures to compute

the DFT [31]-[33]. Some of the other irritants are block lengths and wordlengths [1].

While none of these are insurmountable they do require certain awkward design

choices. The DFT can also be evaluated using number theoretic transforms (NTT)

which are defined over finite fields and rings of integers with all the arithmetic

performed modulo an integer. An evaluation of the various NTT algorithms as applied

to digital filtering applications can be found in [34],[35].

The main focus of the various FFT and NTT algorithms [36] has been on

reducing the number of multiplications. However, in real time applications large

amounts of data have to be processed in relatively small periods of time and thus apart

from reducing the number of computations, it has also become necessary to parallelize

the computations. With the cost of hardware reducing and the acceptance of application

specific integrated circuits (ASICs) increasing, it has become possible to build dedicated

systems in an economical fashion. The inherent properties of the residue number system

(RNS) lends itself as a viable candidate for parallel computations [37]. Implementations

using the RNS and the quadratic residue number system (QRNS) can be found in [38]-

[41]. More recently, the polynomial residue number system (PRNS) has been

developed [42],[43] which combines both features, i.e. reducing the number of

computations while simultaneously increasing the level of parallelism.

6

We have so far described the importance of the cyclic convolution operation in

digital signal processing applications. In our research we propose to develop new

algorithms for computing the cyclic convolution of two n-point sequences by

performing all required operations in a single domain, i.e. we will not map the points

into a frequency domain or for that matter into any other domain. To do this

successfully we will have to use fewer than n2 multiplications. To achieve this reduction

in the multiplication count all existing research has focused on mapping strategies that

result in reduced number of multiplications in the mapped domain. However, our

research effort focuses on using squaring operations instead of multiplication

operations. The next section provides an introduction to our approach.

1.2 Our approach

The vast amount of literature in the DSP area focuses on the convolution

operation by exploiting the properties of the DFT and the algebraic field in which it is

applied. Most of the algorithms therefore have specific properties and perform well in

the environments that they were designed to function in. We have looked at the problem

from a more broader perspective and our approach therefore does not rely on the DFT at

all. Instead we have focused on the definition of cyclic convolution and have attempted

to develop efficient algorithms centered around the elementary arithmetic function, the

squaring operation, and hence the title of the dissertation "Squared Law Algorithms:

Theory and Applications." Our motivation is based on the general underlying theme of

the DFT and FFT algorithms, which has been primarily, to reduce the amount of

hardware required to perform the convolution operation. Since the operation is

multiplication intensive, the emphasis was first to reduce the count on the number of

multiplications and then with the development of integrated circuit technology the

emphasis was to improve the implementation architecture. Similarly, we attempt to

reduce the amount of hardware by zeroing in on the fact that the squaring operation

requires lesser amount of hardware than the multiplication operation. One must also

keep in mind that this reduction in hardware is not at the expense of speed, contrary to

this it is also faster to evaluate the squaring as opposed to the multiplication operation.

Table look-up techniques for performing the multiplication operation using

ROMs have been researched in [44]-[50]. Of these [46] is based on the index calculus

technique which can only be used with prime moduli and [47]-[50] are based on the

quarter squared algorithm technique. These designs offer attractive speed-complexity

trade offs for small word lengths while for large word lengths the ROM size increases to

the point where it becomes unrealistic.

Consider a simple ROM based direct implementation of the multiplication

operation. The two input operands of length, say L bits each, serve as the address to the

ROM. The data stored at this location is the result of the multiplication. Such a ROM

implementation of the multiplication operation would require a ROM of size 22L x 2L.

On the other hand the squaring operation would have only one input operand and a

ROM implementing this would be of size 2L x 2L. The immediate savings in ROM bits

is apparent. The motivation is now clear. The more important question is now therefore:

how does one replace all the multiplication operations in a given application with the

squaring operations? We researched this problem with the convolution operation as our

application and have developed algorithms to compute the convolution operation using

squaring operations as opposed to multiplication operations. While we reduce the

number of squaring operations compared to the number of multiplication operations we

do increase the number of additions. Initial results of our research were published in

[51]. The next natural question is: the squaring operation is a special case of the

multiplication operation which in turn is repetitive additions, thus how does the increase

in the number of additions compare with the decrease in the number of the squarings.

These two issues are addressed in detail in this dissertation.

The rest of the dissertation is organized as follows. Chapter 2 lays the

mathematical foundations for the algorithms to compute the cyclic convolution using

squaring operations. It also provides formulae for the count on the number of squares

and the number of two-operand additions. Chapter 3 discusses various implementation

issues including both non-ROM based and ROM based implementations. In this chapter

the addition-squaring trade-off is also analyzed in detail. Some initial results on this

were published in [52], Since the focus of the research was on the usefulness of the

squaring operation, the behavior with respect to hardware costs of the computation of

this operation in modular rings was also studied. Initial results on this were published in

brief in [53]. Details of these results are presented in chapter 4. Finally, chapter 5

concludes the research effort of this dissertation with some suggestions for future

research.

Chapter 2

Mathematical Foundations

In this chapter we present the mathematical basis to prove the validity of our

algorithms. The material in this chapter has a natural flow in the sense that it is presented

in the order in which it was developed. This chapter also defines the extensive notations

that are used throughout this dissertation.

2.1 Background

The starting point for this research has been reference [50], which described a

novel approach for implementing convolutions with small tables. The algorithm

developed in that paper, titled the one over eight squared algorithm applies the idea of

the quarter squared algorithm to compute a two-point cyclic convolution. The method is

briefly described.

The quarter squared algorithm technique [47]-[50] is based on the fact that the

product of two n-bit numbers x and y can be given as

xy = l/4{(x + y)2 - (x - y)2} (2.1)

Here look up tables can be used to compute the values of (x + y)2 and (x - y)2. If the

result of the operation xy is computed directly by using a ROM then the size of the ROM

required would be 22nx 2n, however, if (2.1) is used then two ROMs each of size 2n+1

x 2(n+l) would be required. Thus the use of (2.1) yields a total ROM bit requirement

of 2n+2 x 2(n+l) bits. Clearly for n > 2 the use of (2.1) requires fewer ROM bits,

however, there is an overhead in terms of adders. In general, it can be said that the use

of the quarter squared technique reduces the ROM bits from the order of 22n to 2n.

9

10

Now consider the problem of obtaining the cyclic convolution of two two-point

sequences. The cyclic convolution of two sequences A = [a0, } and B = [b0, bj} is

by definition given as C = [c0, Cj} where cQ = agb0 + a jb j and Cj = agbj + ajbg.

Define[50]

u = aQ + aj + b0 + bj (2.2)

v = -aQ + aj - b0 + bj (2.3)

w = -&q - aj + b0 + bj (2.4)

x = -ag + aj + b0 - bj (2.5)

Then the two points of the cyclic convolution can be given as

c0 = l/8(u2 + v2 - w2 - x2) (2.6)

Cj = l/8(u2 + x2 - v2 - w2) (2.7)

Equations (2.6) and (2.7) constitute the one-over eight squared algorithm of [50]

and they clearly demonstrate that the cyclic convolution of two two-point sequences can

be obtained solely by the use of additions, subtractions, and squaring operations. A

subtraction can be simply thought of as an addition as the hardware units that perform

subtraction and addition are approximately equal in cost. Thus hereinafter the number of

additions will include the number of subtractions. Also (2.6) and (2.7) show that the

term w2 always appears in the negative and hence the ROM that generates w2 can be

designed to directly generate -w2.

The one over eight squared algorithm can also be applied in modular rings,

provided the multiplicative inverse of 8 exists in the chosen ring. In the case when the

chosen modulus m is odd <8‘1>m always exists, where <x>m is read as x modulo m.

This can easily be shown as follows: when m is odd, m + 1 is even which implies that

(m + l)/2 is an integer. Therefore the multiplicative inverse of 2 modulus m can be

given as < 2 '1>m = (m + l)/2 as 2(m + l)/2 = m + 1 = < l> m [50]. Thus since <2_1>m

11

always exists, <8_1>m also always exists as <8_1>m = <(2_1)3>m. Similarly, the

multiplicative inverses of all numbers that are powers of 2 exist when m is odd.

However, when m is even <2_1>m does not exist. To see this let us assume that it did

exist and its value is k. We then have <2k>m = 1, which implies that 2k = mx + 1 (x is

some integer). But this is impossible as 2k and mx are even (m is even) and the

difference of two even numbers can never be equal to 1. We thus have a problem and

[50] provides some theorems to account for the round-off errors caused by this non­

existence of <2_1>m (m even).

2.2 Algorithm for convolution using an exponential
number of squares

The first effort in generalizing the one over eight squared algorithm resulted in

an algorithm for doing convolution using an exponential number of squares. Since the

algorithm used an exponential number of squares, it is impractical from the view point

of the cost of its hardware implementation. However, the insight gained from this

algorithm was that it might be impossible to obtain in an efficient manner each point of

the cyclic convolution directly as a function of a summation of squares. We next present

the algorithm along with an example.

Algorithm 2.1

Input: The points of two n-point sequences {aQ, a j , ..., a ^ } and {bQ, b j , ..., bn_j}.

Output: The cyclic convolution {c0, Cj, ..., cn. j } of the two given input sequences.

Method: The procedure uses only addition and squaring operations.

Procedure: Each term of the cyclic convolution is given by

j 2n- l
CP = 0n+l ULi zpk(~l) » p = 0, 1, ..., n —1

2 k=0

where the z ^ 's are terms of the matrix Zp. Matrix Zp is of size 2n x 1 and is formed as

follows:

1) Zp = Xp x Y where X is a 2n x 2n matrix whose terms are +1 or -1 and Y is a

2n x 1 transpose matrix of {a0, a j , a ^ j , b0, b j , b n_j}.

2) The rows and columns of matrix Xp are represented by subscripts i and j

respectively. Subscript i is in the range 0 to 2n -1 and subscript j is in the range 1

to 2n.

3) The terms of matrix Xq are defined by the following set of rules.

a) Xy = 1 if either i = 0 or j = 1.

b) For i > 0 and 1 < j <= n+1, let rj = 2n/2H

Then

*ij =

1 ifi<r=

i-1
-xi-l j if X X

i=i-ij

xi - l j ot terwise

= ± r j

c) For i > 0 and n+1 < j <= 2n, let rj = 2i'n_1

Then

X jj = x i-lj
- X :li - l j

if i<rj
if i is an integer multiple of rj
otherwise

4) The matrices Xp for p = 1, 2 ,..., n-1 are obtained from matrix Xq by retaining

its columns 1 through n as it is and by rotating right the columns n+1 through 2n

by (p) positions.

13

Example: Suppose we wish to compute the cyclic convolution of two 3-point

sequences {ag, aj, a2} and {b0, bj, b2}.

From the above algorithm matrix Y is the transpose of [a^, aj, a2, b0, bj, b2].

From step 3 we have

X 0=

Thus

Multiplying the above matrix Xq with matrix Y results in ZQ which is a 8 x 1

matrix with terms zQ0, z01, z 07.

ao + at + a2 + bQ + b̂ + b2

+ aj + a2 ~ bg — bj — b2

a0 + ai - a2 + b0 - bi + b2

z _ -uj a0 + a1 - a 2 - b 0 + b1 - b 2

a0 - ai + a2 + bg + bi - b2

a0 - ai + a2 - b0 - bj + b2

a0 - ai - a2 + bp - bi - b2

1 T 2 2 2 2 2 2 2 2 1
c 0 ~ y ^ [z00 “ Z01 + z02 “ z03 + z04 ~ z05 + z06 “ z07j

= aobo + a2bi +ajb2

z00

Z01

z02

z03

z04

z 05

z06

z07

Similarly we have,

Multiplying matrix Zjwith matrix B gives us Zj which is a 8 x 1 matrix whose

terms are z10, Zj j , z 17.

3q + b0 + bj + b2
a0 + ai + a2 - b0 - bi - b2

ao + ai - a2 + bo + bj - b2

a0 + a l “ a2 - bo ~ bi + b2

a0 _ al + a2 “ b0 + bi + b2
a0 - ai + a2 + b0 - bi - b2

ao - ai - a2 ~ b0 + bi - b2

a0 “ al - a2 + bo ~ bi + b2

Thus giving

Z, =

z10

Z11

z12

z 13

z14

z 15

z 16

. z 17.

1 r 2 2 , 2 2 , 2 2 , 2 2 1
c ! = TT[Z10 “ Z11 + z12 “ z 13 + z 14 “ z 15 + z 16 “ z17j16

= albo + aobi + a2b2

and finally,

Multiplying matrix X2 with matrix Y gives us Z2 which is a 8 x 1 matrix whose

terms are z20, z21, z 2?.

z20 a0 + ai + a2 + bo + bi + b2

Z21 ao + ai + a2 - bo - bj - b2

z22 a0 + ai - a2 - bo + bj + b2

z23 a0 + aj - a2 + bo - bi - b2

z24 ao - a i + a 2 + bo - bj + b2

z25 a0 - a 1 + a2 - b 0 + b1- b 2

z26 ao - ai - a2 ~ bo - bj + b2

z27 ao - aj - a2 + bo + bj - b2

Thus giving
1 f 2 2 , 2 2 , 2 2 , 2 2 1

c 2 = ^ [z20 “ Z21 + z 22 “ z 23 + z 24 “ z25 + z 26 “ Z27J

= a2b0 + a1b1 + a0b2

It appears that we are multiplying two matrices for each point. However, this is

not the case as the matrix notation is only a convenient form to represent the several

equations that are developed for each point. Also there is no actual division involved as

the last four bits are zero and by simply ignoring them we achieve the division by 16.

Although this algorithm is well structured from the implementation point of

view, it relies on squaring operations in the order of n2n, plus additions and

subtractions, and thus the cost is prohibitive. Clearly this is far greater than even the n2

multiplications required by the definition of the problem and thus no further work was

done on this algorithm. However this motivated us to look in other directions and our

results are presented in the next section.

16

2.3 Direct extension of the one over eight squared

algorithm

We now try to extend the one over eight squared algorithm to obtain the cyclic

convolution of two 4-point sequences. We first re-write the equations of section 2.1 in a

more nicer form as follows. Equations (2.2) - (2.5) can be re-written as

u = ag + aj + b0 + bj (2.8)

v = ag + aj - b g - b j (2.9)

w = ag - aj + bg - bj (2.10)

x = a g - a j - b g + bj (2.11)

Then the two points of the cyclic convolution can be given as

Now, our objective is to extend this method to obtain the cyclic convolution of

two 4-point sequences. Let the sequences be A = {ag, aj, a2, a3} and B = {bg, bj, b2,

b3} and by definition, the cyclic convolution of the two sequences is given as C = {cQ,

c l ’ c2> c3 ̂ w^ere

Now, re-defining equations u through x based on the pattern of terms and signs

in equations (2.8) - (2.11), we have

Cg = l/8(u2 - v2 + w2 - x2)

Cj = l/8(u2 - v2 - w2 + x2)

(2 .12)

(2.13)

co ~ a0b0 + a3bl + a2b2 + al b3

Cj = a j bg + agbj + a3b2 + a2b3

C2 = a2b0 + al bl + a0b2 + a3b3

c3 = a3bg + a2bj 3- &jb2 3- agb3

(2.14)

(2.15)

(2.16)

(2.17)

u — ag 3- a ̂ 3- a2 3- a3 3- bg 3- b j 3- b2 3- b3

v — ag 3* aj 3- a2 3- a3 - bg - b j - b2 - b 3

(2.18)

(2.19)

17

w — Sq - Ei| + a2 ~ ^3 t*Q - b j+ b2 - b3

x = aQ - aj + a2 - a3 - b0 + bj- b2 + b3

(2 .20)

(2 .21)

Then we find that l/8(u2 - v2 + w2 - x2) = Cq + c2 and l/8(u2 - v2 - w2 + x2) =

Cj + c3. This gives us the notion that for any two n-point sequences if equations are

built on lines similar to that of equations (2.8) - (2.11) and then plugged into equations

of type (2.12) and (2.13) we can obtain 8 X c2i and 8 X c2i + j. In the next section we

reinforce this notion by providing four theorems on the summation of the even Cj and

odd Cj taken separately. Going back to the cyclic convolution of the two 4-point

sequences we observe that if we have the quantities cQ - c2 and Cj - c3 then they can be

added, subtracted with c0 + c2 and Cj + c3 to obtain the individual points of the cyclic

convolution. This gives us the indication that we have to have formulae like equations

(2.8) - (2.11) that will generate the difference of c0 and c2 , and Cj and c3. In general,

we would need formulae to generate die sum of the even Cj with alternating terms having

negative signs and similarly the sum of the odd Cj with the alternating terms having

negative signs. In the next section we provide two theorems that can be applied in

general to n-point sequences.

It is easy to see that if this method is extended further, say for two 8-point

sequences then the above promised extensions will yield X c2i and X c2i (-1)1, however,

this would be inadequate. This is because the sum of £ c 2i and X c2i (-1)1 would give us

Cq + c4 and the difference c2 + c6. (Similarly, for the odd points we would obtain cj +

c5 and c3 + c7.) Thus we would need to obtain cQ - c4, c2 - c6, Cj - c5, and c3 - c7. In

other words we would need to obtain the alternating sum and difference of Cj where the

difference of the indices of two consecutive Cj differ by 2, 4, ..., n/2. In later

discussions we let j denote this difference between consecutive Cj. Also, we observe that

such a methodology of adding and subtracting different combinations of Cj will be valid

only when n is a power of 2.

We divide the methodology of computing the cyclic convolution of two n-point

sequences based on squaring and addition operations into two parts: part 1 comprises

the computation of X c2i and X c2i + j while part 2 that of Xcj + kj (-l)k for all 0 <= i,

j < n/2, k = 0, 1, 2 , (n/j -1). (We note that j is a power of 2, >= 2). In section 2.4

we present eight theorems and proofs that are required for our complete methodology of

computing the cyclic convolution of two n-point sequences. Following that, in section

2.5 we compare and contrast three methods by which we can compute part 1 of the

methodology. In section 2.6 we present a formula for the number of squares required

for any given n while in section 2.7 we present a formula for the total number of

additions required by our methodology. We conclude the chapter by presenting a full

blown example of computing the cyclic convolution of two 16-point sequences.

2.4 Squared law theorems for cyclic convolutions

In section 2.2 we have shown that trying to obtain each point of the cyclic

convolution directly as a function of a summation of squares required a total of n2n

squaring operations and thus was not of any practical use. In this section we present

eight theorems that we have developed for computing the sum and difference of the even

points taken together and the odd points taken together. Theorems 2.1 and 2.2 are taken

from our paper titled "New Multipliers Modulo 2N -1 "[51]. They are presented here for

both, the sake of completeness and consistent notation.

Consider two sequences each of length n-points given as A = {ao, a i , ..., an- i }

and B = {bo, b i , ..., bn_]}. Then the cyclic convolution between these two sequences

can be given as a n-point sequence C = {cq, c i , ..., cn- i } with each cj defined by

19

n-1
ci = X a<i-k>nbk for i = 0, 1, n-1 (2.22)

k=0

In the above and in the rest of the dissertation <x>m denotes the operation x modulo m

between integers. With reference to the above computation the following theorems

apply.

Theorem 2.1: Assume that n is even and define

wnl = ao + ai + ... + an-i + bo + bi + ... + bn-i (2.23)

wn2 = ao + ai + ... + an-i - bo - bi - ... - bn-i (2.24)

wn3 = ao - ai + ... - an-i + bo - bi + ... - bn-i (2.25)

Wn4 = ao - ai + ... - an-i - bo + bi - ... + bn-i (2.26)

Then

f_1
w nl _ w n 2 + w n 3- w n4 = 8 X C2i = 8(c0 + c 2+ —+ c n -2) (2.27)

i=0

Proof:

wSl “ wS2 + w?3 ~ = (wnl + wn2)(wnl - wn2) + (wn3 + wn4)(wn3 - wn4)

- - 1 - - 1 - - 1 - - 1
n-1 n-1 2 2 2 2

= 4 X a2 i X b2 i+ 4 (X a2 i~ X a2i+l)x (X b2 i“ X b2i+1>
i=0 i=0 i=0 i=0 i=0 i=0

£_1 £_i £_i £_i £_ j £_j £_ j £_j
2 2 2 2 2 2 2 2

= 4 [(2 a2i + 2 a2i+l) (Z b2 i + X b2i+l) + (Z a2i “ X a2i+lX X b2i “ X b2i+l)]
i=0 i=0 i=0 i=0 i=0 i=0 i=0 i=0

f_1 f_1 f_1 f_1
= 8 X a2i X b2i + 8 X a2i+l X b2i+l

i=0 i=0 i=0 i=0

20

— 8[2w a even^even + ^ a odd^odd3
all possible products all possible products

= 8 5 > 2i
i=0

and the proof of (2.27) is completed.

Note from equation (2.22) that c2j = ^ a . vhw such that <v+w>n =2i or v+w =

nx + 2i. But since n=even it implies that v+w = even and therefore v and w are either

both even or both odd. This justifies the last step of the proof.

Theorem 2.2: Assume that n is even and define wnl, wn2, wn3, and wn4 as

given in theorem 2.1.

Then

2_1
w2l - wii2 - wn3 + w„4 = 8 X c2i+1 = 8(cj + c3+ ...+cn_1) (2.28)

i=0

Proof: The proof is similar to that of (2.27) and is thus omitted.

Theorem 2.3: Assume that n is even and define

xni = ao + a2 + ... + an.2 + bo + b2 + ... + bn-2 (2.29)

xn2 = 30 + a2 + - + an-2 - bo - b2 - ... - bn-2 (2.30)

x„3 = a i + a3 + ... + an_i + bi + b3 + ... + bn-i (2.31)

Xn4 = ai + a3 + ... + an_i - bi - b3 - . . . - bn-i (2.32)

Then

H-i

- x n2 + x n3 “ x n4 = 4 J c 2i = 4(c0 + C2+...+cn_2)
i=0

(2.33)

21

Proof:

xnl — xn2 "*"xn3 ~ xn4 = (xnl + xn2)(xnl — xn2) + (xn3 + xn4)(xn3 — xn4)

- -1 - -1 - -1 - -1
2 2 2 2

= 4 X a2i £ b2i + 4 2 a2i+l X b2i+l
i=0 i=0 i=0 i=0

= 4t yaevenbeven ^ aoddbodd]
all possible products all possible products

= 4 I c 2i
i=0

and the proof of (2.33) is completed.

Note again from the definition of cyclic convolution that C2j = ^ a vbw such that

<v+w >n =2i or v+w = nx + 21. But since n=even it implies that v+w = even and

therefore v and w are either both even or both odd. This justifies the last step of the

proof.

Theorem 2.4: Assume that n is even and define

ynl = ao + a2 + ... + an-2 + bi + b3 + ... + bn-i (2.34)

yn2 = ao + a2 + ... + an-2 - bi - b3 - ... - bn-i (2.35)

Yn3 = a l + a3 + ... + an-i + bo + b2 + ... + bn-2 (2.36)

yn4 = ai + a3 + ... + an-i - bo - b2 - ... - bn-2 (2.37)

Then

f_1
y n l- yn2 + yn3- yn4 = 4 X C2i+l = 4(cl + c 3+- - +cn-l) (2.38)

i=0

Proof: The proof is similar to that of (2.33) and is thus omitted.

Theorem 2.1 and 2.3 both compute c2i, however theorem 2.1 is more useful for

computing the cyclic convolution in modular rings while theorem 2.3 is more hardware

efficient for computing the full precision cyclic convolution. The same can be said of

theorems 2.2 and 2.4. The advantages are described in detail in section 2.5.

Theorem 2.5: Assume that n > 2, n = 2P (=> n=4m), and define

znl = ao - a2 + M - a6+ ... - an-2 + bo - b2 + b4 - b6 + ... - bn-2 (2.39)

zn2 = ao - a2 + aa - a6+ ... - an_2 - b0 + b2 - b4 + b6 -... + bn-2 (2.40)

zn3 = ai - a3 + a5 - a7+ ... - an-i + bi - b3 + b5 - b7 + ... - bn_i (2.41)

zn4 = ai - a3 + a5 - a7+ ... - an.i - bi + b3 - b5 + b7 - ... + bn_i (2.42)

Then

z2l - zn2 ~ zn3 + zn4 = 4(^0 ~ C2 + C4 - c6+ ...-c n_2) (2.43)

Proof:

znl — zn2 — zn3 zn4 = (znl zn2)(znl ~ zn2) — (zn3 4 zn4)(zn3 — zn4)

= 4[(a0 -...- aj,.2)(b0 -...- bn_2) - (a! -...- an_1)(b1 -...- bn_j)]

= 4[(ao + a4 + ag +... + an_4) - (a2 + a6 + ajo + — + an_2)]x

[(bo + b4 + bg +... + bn_4) - (b2 + b6 + bjo + — + bn_2)l

-4[(aj + a5 + a9 +... + an_3) - (a3 + a7 + an + ... + an_!)]x

[(bi + b5 + b 9 + ... + bn_3) - (b 3 + b7 + b n + ... + bn_j)]
m -l m-1 m-1 m-1

= 4[(2 a4k X S b41) + < S a4k+2 X S b41+2)1
k=0 A=0 k=0 X= 0

m-1 m-1 m-1 m-1
+4[(X a 4k+1)(2 b 4A+3) + (S a 4k+3)(2 b 4A+l)1

k=0 X= 0 k=0 X= 0

m-1 m-1 m-1 m-1
-4K 2 > 4 t)(S b4A+2) + (X a4k+2>(X b4l)]

k=0 A=0 k=0 X= 0

m-1 m-1 m-1 m-1
-4 [(X a 4k+1 X S b 4A+l)+ (Z ,a 4k+3)(X b 4A+3)]

k=0 A=0 k=0 A=0

= 4(c0 - c2 + c4 - c6 +... - cn_2)

and the proof of (2.43) is completed.

23

Note that for the positive terms in the above expression the sum of the indices

modulo n of the a terms and b terms is always a multiple of four, thus the sum of all

positive terms will be 4(co + C4 + cs +...+ cn_4). Similarly for the negative terms, the

sum of the indices is a ((multiple of 4) + 2), thus the sum of all negative terms will be

4 (c2 + C6 + cio +••■+ cn-2)- This justifies the last step of the proof. Also observe that the

theorem holds good for any n that is a multiple of 4, i.e. not necessarily a power of 2.

However, since our main algorithm that describes our methodology requires n to be a

power of 2 , we focus only on such cases.

Theorem 2.6: Assume that n > 2, n = 2P (=> n=4m), and define

Zn5 = ao - &2 + aq - a6+ ... - an-2 + bi - b 3 + b5 - b 7 + ... - bn-i (2.44)

Zn6 = ao - a2 + 34 - a6+ ... - an-2 - bi + b3 - 6 5 + b7 -... + bn-i (2.45)

zn7 = ai - a3 + a5 - a7+ ... - an_i + bo - b2 + b4 - b6 + ... - bn.2 (2.46)

zn8 = at - a3 + a5 - a7+ ... - an_i - bo + b2 - b4 + b6 -... + bn.2 (2.47)

Then

i s ~ zn6 + z„ 7 - zjg = 4(Cl - c3 + c5 - c7+...■- c n_!) (2.48)

Proof: The proof is similar to that of (2.43) and is thus omitted.

Theorem 2.7: Assume that n is even and define

Wn5 = ao - ai + a2 - a3+ ... - an-i + bo - bj + b2 - b3 + ... + b„-i (2.49)

wn6 = _ao + ai - a2 + a3+ ... + an_i + bo - bi + b2 - b3 + ... - bn.i (2.50)

Then
n-1

W n 5 -W n 6 = '« Z c i (- 1)i <2 -51>
i=0

Proof:
w n5 “ w n6 = (w n5 + w n6)(w n5 - w n6)

n-1 n-1 n-1 n-1
= 2 (J b2i “ 2 b2 i+ l)2 (2 a2i “ X a2i+ l)

i=0 i=0 i=0 i=0
n-1 n-1 n-1 n-1

= 4K 2 a2i 2 b2i + 2 a2i+l 2 b2 i+ l)
i=0 i=0 i=0 i=0

n-1 n-1 n-1 n-1

“ (2 a2i 2 b2i+l + 2 a2i+l 2 b2 i)]
i=0 i=0 i=0 i=0

= 4[(2 aeven beven ^ 2 aoddbodd)
all possible products all possible products

2 aevenbodd+ 2 aoddb even)]
all possible products all possible products

n-1 n-1
= 4 (2 C2i - 2 C2i+l>

i=0 i=0
n-1

= 4 X c i(- l) i
i=0

and the proof of (2.51) is completed.

Theorem 2.5 generates the sum (or difference) of the even points of the cyclic

convolution with the alternating points having negative signs. We need to generalize this

theorem so that it is possible for us to automate the generation of the sum (or difference)

of the even points where the indices of the even points differ by powers of two. i.e. we

need a generalized theorem to generate (c0 - c2 + c4 - ... cn_2), (c0 - c4 + c8 - ... cn_4)

and (c2 - c6 + c 10 -... cn_2), (c0 - c8 + c16 -... cn_8), (c2 - c10 + c 18 - ... cn_6), (c4 - c12

+ c2q - ... cn_4), and (c6 - c 14 + c22 - ... cn_2), and so on. We would also need a

generalized theorem corresponding to theorem 2.6, i.e. for the automatic generation of

the odd points. We first present an algorithm to generate the equations that the

generalized theorem will use. We then present the generalized theorem and its associated

proof. We show that the same theorem can also be used for odd points.

25

Algorithm 2.2

Input: The points of two n-point sequences {a0, a j , a n_1} and {b0, b1 ? bn-1}

and j, where j is the difference of the indices of two consecutive Cj with

j = 2*2k ; k = 0, 1,... (log2 (n/2) -1).

n/j -1
Output: 4 jT Ci+kj (- l) k

k=0

Procedure:

Step 1: Initialization step.

k = 1, q = 0, p = i.

(Obtain equations of type V„k)

Step 2: Vnk= ap - a<p + j>n + a<p + 2j>n - - a<p. j>n +

bq ' b<q+j>n + b<p + 2j>n - " b<q-j>n’

Obtain V„(k+i) by reversing signs of b terms in V,1̂ ;

k <— k + 2;

p <— <p - l>n ;

q <— q + 1;

If k <= 2j -1, go to step 2.

(Note that <p + q>n = i)

2j n/j -1
Slep3: (->) = 4 £ c» k i

k=l k=0

Step 4: i <— i + 2;

If i <= j - 1, then k = 1; q = 0; p = i; and go to step 2

else STOP.

Theorem 2.8: Assume that n is greater than 2, a power of 2, and for a given value

of i, j, and n define based on steps 1 and 2 of algorithm 2.2.

2j • o n/j_1
Then £ (V ; k)2 (- l) k+l = 4 £ ci+kj (- l) k (2.52)

k=l k=0

Proof:

i (v * k >2 (-D k+'
k=l

= 2 (Vnk +V n(k+1)XVnk “ V^k+t)) V k odd and < 2 j

= 4 â<p>n " a<P + j>n "• ' a<P - j>n^ b<q>n " b<q+j>n ’ b<q - J>n̂ +

4 (a<p - l>n‘ a<p - 1 + j>n- ' a<p - 1 - j>n)

(b<q+l>n' b<q+l + j>n- ' b<q+l - j>„) +

. . .+

...+

4 (a<p - j + l>n ' a<p + 1 >n + - ' a<p + 1 - 2j>„)

(b<q + j - l>n ' b<q + 2j - l>n + - ‘ b<q - 1>„)

n/2j -1 n/2j -1 n/2j -1 n/2j -1

= 4 (S aP + 21j - X aP + (21+1)j)(2 bq+21j “ 2 bq+(21+l)j) +
1=0 1=0 1=0 1=0

... +

.. . +

n/2j -1 n/2j -1 n/2j -1 n/2j -1

4(S ap-j+l+21j“ X ap-j+l+ (21+1)jX X bq+j-l+21j“ X bq+j-l+(21+l)j)
1=0 1=0 1=0 1=0

n/2j -1 n/2j -1 n/2j -1 n/2j -1

= 4 (S aP+21j X bq+21j+ S aP + (21+l)j S bq+(21+l)j)
1=0 1=0 1=0 1=0

+ • • •

n/2j -1 n/2j -1 n/2j -1 n/2j -1

+ 4< Z ap-j+l+21j S bq+j-l+21j+ X ap-j+l+ (21+1)j Z bq+j-l+(21+l)j)
1=0 1=0 1=0 1=0

n/2j -1 n/2j -1 n/2j -1 n/2j -1

-4 (X aP+(21+l)j] £ bq+21j + X aP+21j X bq+(21+l)j)
1=0 1=0 1=0 1=0

n/2j -1 n/2j -1 n/2j -1 n/2j -1

‘ 4 (S ap-j+l+ (21+l)j X bq+j-l+21j+ Z ap-j+l+21j Z bq+j-l+(21+l)j)
1=0 1=0 1=0 1=0

n/2j -1 n/2j -1
= 4 (^ c i+21j- ^ ci+(21+l)j)

1=0 1=0
n/j -1

= 4 S c i+kj (- !) k
k=0

and the proof of (2.52) is completed.

Notice, from the last but third step, that in all the positive terms the sum of the

indices of a and b is of the form p+q+21j and since <p+q>n = i (from step 2 of algorithm
n/2j -1

2.2), the sum of all positive terms reduces to 4(X ci+2lj)• A similar argument can be
1=0

made for the negative terms. Aiso, note that in the initialization step of algorithm 2.2, i

takes a value passed by theorem 2.8 as opposed to being equal to zero. Other parts of

the initialization step remain unchanged. Thus the theorem can be used for odd and even

points alike.

Algorithm 2.3

Input: The points of two n-point sequences {a^, a j , a , , ^ } and {b0, b j , b n-1}.

Output: The cyclic convolution {c0, Cj, cn. j } of the two given input sequences.

Method: The procedure uses only addition and squaring operations.

Procedure:

Step 1: r = 1, i = 0.

Do theorem 2.3. Set result to Xi-
n/2 -1

We thus obtain X1 = 4 X c2k
k=0

Step 2: j = 2r.

Do theorem 2.8. Set result to Z.
n/j -1

We thus obtain Z = 4 X c i + k j (-l)k
k=0

Step 3: X‘ <— X1 + Z 2r_1; Xi+J <— X1 - Z 2r’1

If j = n/2, then set Cj = X* / (4*2r), ci+j = Xi+j / (4*2r), and go to step 5.

Step 4: If j <= n/2, then r <— r + 1 and go to step 2.

Step 5: i < — i + 2; If i <= (n /2 -1), then r = [log2 i j + 1 and go to step 2

else STOP. (All c2j have been computed).

In order to compute c2j+j algorithm 2.3 with a few changes can be employed.

The changes are in step 1. Step 1 will read,

Step l(o d d Cj): r = l , i = l .

Do theorem 2.4. Set result to X1-
n/2 -1

We thus obtain X1 = X c 2k+i
k=0

29

Steps 2 through 5 will remain unchanged with the obvious exception in step 5 wherein

when the algorithm stops, all c2i + j would have been computed. An implementation of

the above algorithm in Mathematica for n = 32, along with the results can be found in

the appendix.

2.5 Analysis of part 8

As explained in section 2.3, part I of the overall methodology for determining

the cyclic convolution of the two n-point sequences, is comprised of the computations:

I c 2i and S c 2i + j. These can be obtained by using one of the following three methods.

The advantages and disadvantages of the three methods are compared and contrasted

below.

Method 1:

We can use theorem 2.1 to obtain the sum of the cyclic convolution of all the

even points and theorem 2.2 to obtain the sum of the cyclic convolution of all the odd

points. Let us assume that each of the n points has k bits. Looking at equations (2.23)-

(2.26) we notice that each of the equations is a function of all 2n points. In equation

(2.23) all terms have positive signs and therefore the length of the result is k + log2 2n.

In the other three equations, namely equations (2.24)-(2.26), half have positive signs

and the other half have negative signs. In order to determine the length of the result, the

worst case assumption would be when all the points with positive signs have a value of

zero and all the points with negative signs have a value of 2k -1, i.e. a maximum value.

Such a situation will yield the smallest negative number of size k + log2 n. But since this

number is negative, in an actual hardware implementation it will be represented in its

two's complement form and will therefore require an additional bit. Thus the number of

bits required for each of equations (2.24)-(2.26) will be k + 1 + log2 n which is equal to

k + log2 2n. Thus we see that the number of bits required to represent a number is the

same in all of the equations (2.23)-(2.26) and in general we can say that the number of

bits required for any equation will be the same if either all terms have positive signs or

half have positive and the other half have negative signs. Thus the ROMs required to

generate the squares of each of these equations will be of the same size.

Each of the squares required by equation (2.27) can be generated by a ROM of

size 2k + log2 2n x 2(k + log2 2n). Since there are four squares the total number of

ROM bits required is given by

ROM bits - 4 squares = 8 x 2k + ,og2 2n x (k + log2 2n) (2.53)

The number of additions required for adding 2n terms is equal to 2n -1. In order

to get wnl we would need 2n -1 additions. wn2 can be written as (ao.+ ai + ... + an_i) -

(bo + bi + ... + bn_i) thus needing only one more addition. (We assume that the cost

of an adder is the same as that of a negator). wn3 can be written as (ao + & 2 + —+ an_2)

- (ai + a3 +... + an_i) + (bo + b2 + ... + bn_2) - (bj + b3 + ... + bn-i) thus requiring

only three additional additions while wn4 can be written as (ao + &2 + •••+ an_2) - (ai +

a3 +... + an_i) - ((bo + b2 + ... + bn_2) - (bi + b3 + ... + bn.i)) thus requiring only one

more addition as the rest is generated while generating wn3. To do the additions and

subtractions required by equations (2.27) and (2.28) we need a total of four more

additions. Thus the total number of additions can be given by

Additions - 4 squares = 2n + 8 (2.54)

The time delay for performing all the additions required by equations (2.23) -

(2.26) can be given by log2 2n A as each equation has 2n terms. Equations (2.27) and

(2.28) will require an additional 2 A. Here we assume that A is the time required for

adding two / bit numbers where I is in the range k < / < 2(k + log2 2n). Thus the total

time delay can be given as

Time delay - 4 squares = (3 + log2 n) A (2.55)

Method 2:

In method 1 we used theorems 2.1 and 2.2 while the same results can be

obtained by using theorems 2.3 and 2.4. Here since each of equations (2.29)-(2.32) and

(2.34)-(2.37) have only half the number of total points, the length of the result of each

of these equations will be k + log2 n. Thus the square of each these equations can be

implemented by using a ROM of size 2k + 1082 n x 2(k + log2 n) and for 8 squares the

total ROM bits can be given as

ROM bits - 8 squares = 16 x 2k + log2 n x (k + log2 n) (2.56)

The number of additions required for adding n terms is equal to n -1. In order to

obtain xnl and xn3 as given by equations (2.29) and (2.31) we would need 2(n-l)

additions. xn2 and xn4 as given by equations (2.30) and (2.32) can then be obtained by

just performing two more additions while ynl - yn4 as given by equations (2.34) -

(2.37) can be obtained by performing four more additions. Thus the total number of

additions including those required by equations (2.33) and (2.38) can be given by

Additions - 8 squares = 2n + 10 (2.57)

The time delay for performing all the additions required by equations (2.29) -

(2.32) and (2.34) - (2.37) can be given by log2 n A as each equation has n terms.

Further, equations (2.33) and (2.38) will require another 2 A thus giving the total time

delay as

Time delay - 8 squares = (2 + log2 n)A (2.58)

Method 3:

Another way of obtaining the sum of the cyclic convolution of all the even points

and all the odd points separately would be by using theorems 2.3 and 2.7. Theorem 2.3

gives us the sum of the even points of the cyclic convolution while theorem 2.7 gives us

the difference of the sum of the even points and the sum of the odd points. Therefore the

sum of the odd points of the cyclic convolution can be obtained by taking the difference

of the results of theorems 2.3 and 2.7.

In method 2 we have shown that the length of the result of each of the equations

required by theorem 2.3 is equal to k + log2 n while their squares can be implemented

by ROMs of size 2k + ,og2 n x 2(k + log2 n). We note that there are four such ROMs. In

theorem 2.7, both equations are a function of all 2n points and in method 1 we have

shown that the result of such an equation is of length k + log2 2n. Each of the two

squares can be implemented by using a ROM of size 2k + ,og2 2n x 2(k + log2 2n).

Thus the total number of ROM bits required can be given as

ROM bits - 6 squares = [8 x 2k + ,og2 n x (k + log2 n)] +

[4 x 2k + l0S2 2n x (k + log2 2n)]

= 2k + 3 + log2 n x [2(k + log2 n) + 1] (2.59)

We have already shown in method 2 that the number of additions required by

equations (2.29)-(2.32) is equal to (2(n-l) + 2). Equation (2.49) that generates wn5, can

also be written as xnl - xn3 thus requiring only one more addition. Equation (2.50) that

generates wn6, can also be written as xn4 - xn2 thus again requiring only one more

addition. Equations (2.33) and (2.51) require four additions while to subtract equation

(2.51) from (2.33) we would need one more addition. Thus the total number of

additions can be given by

Additions - 6 squares = 2n + 7 (2.60)

To compute the time delay for performing all the additions required by this

method it is easy for one to see that since equations (2.49) and (2.50) are the longest it

will be sufficient to determine the time delay to compute these equations. It was shown

in the analysis for method 1 that this is equal to log2 2n A. To obtain equation (2.51)

we will need one additional time unit or the total time can be given as (log2 n + 2) A .

The computation of equation (2.33) will also take (log2 n + 2) Awhile to obtain the

difference of equation (2.33) and (2.51) we will need one more time unit, thus giving

the total time delay as

Time delay - 6 squares = (3 + log2 n) A (2.61)

2.5.1 Comparison of methods 1 - 3

Comparing equations (2.53), (2.56), and (2.59) we can see that the number of

ROM bits required by method 2 is the least. With respect to time delay for performing

the additions, comparing equations (2.55), (2.58), and (2.61) we once again find that

method 2 is the best although it is only marginally faster than the other two methods.

With respect to the number of additions, comparing equations (2.54), (2.57), and

(2.60) we find that method 3 is the best although again by only a marginal amount.

However, we should note that if computations are being performed in some

modular ring then method 1 would be the best as the size of the equations does not grow

and therefore the number of squares is of prime importance. Clearly, method 1 would

be the best as it requires only four squares.

For the sake of clarity we have in the remainder of the chapter assumed that part

1 is computed based on method 2 while keeping in mind that method 1 is to be used in

the event arithmetic is done in some modular ring.

2.6 Number of squares

In section 2.5 we have shown that part 1 would need eight squares if method 2

was used. Irrespective of the methods used for computing part 1 the methodology for

part 2 remains the same. In this section we present a formula to compute the number of

squares required to compute part 2.

There are two ways of computing the number of squares required for part 2 of

the overall methodology. One is by examining algorithm 2.3 and determining how many

times step 2 is executed. This is because in step 2, theorem 2.8 is evaluated and theorem

2.8 in turn requires 2j squares to be computed. Thus by knowing the number of times

step 2 is executed for different values of j, one can estimate the number of squares

required. On the other hand, we can estimate the number of squares in a more intuitive

fashion by looking more closely at the methodology of part 2. We recall that in

algorithm 2.2 the following notations are used. The number of points being convolved

is represented by the variable n while variable i is used to represent the index of the

points of the cyclic convolution. The variable j is used to denote the difference between

two consecutive indices of the points of the cyclic convolution while k is a local variable

used to indicate the relationship between j and n. We now make the following

observations:

1) Part 2 of the methodology treats the even points separately from the odd

points, however either computation uses exactly the same concept. Therefore if we

compute the number of squares required by the even points all we need to do is double

that number to get the total number of squares.

2) For any given n the values of j are of the form 2k with k = 1,2, ...,

log2(n/2). The maximum value of j is equal to n/2 and we can say there are log2(n/2)

stages.

3) For any given value of n, i lies in the range 0 through (n/2 -1). Since we

are computing the even points and odd points separately i is incremented by 2 every

time. Thus the number of distinct i for a given n at every stage is equal to j/2.

4) The number of squares is a recursive formula, i.e., the number of

squares required for any value of n is equal to the number of squares required when j =

n/2 plus all the squares required for half the number of points i.e. when n := n/2. Thus

at every stage we only need to determine the number of squares required for the

maximum allowable value of j.

5) For every i there are 2j squares. Thus at every stage the number of

squares is equal to the number of distinct i times 2j, thus giving j/2 x 2j = j2.

Let lk represent the number of squares required at stage k. Then from the above

observations it follows that lk = j2 = 4k, k = 1,2, 3, ..., log2 (n/2). Thus the total

number of squares required is given by

log2 n/2
number of squares = ^ 4k

k=l

= 4/3 x (4log2 n/2- 1) (2.62)

Thus the total number of squares, for computing both odd and even points, can

be given as

Total number of squares = 2 x 4/3 x (4,og2 n/2 - 1)

= 2/3 x (n2 - 4) (2.63)

Table 2.1 compares the number of multiplication versus squaring operations required

for cyclically convolving two n-point sequences. This table assumes that part 1 of our

Table 2.1: Comparison o f the number of multiplication versus squaring operations

n Number of

multiplications

n2

Number of

squares

2/3 x (n2 + 8)

%

savings

4 16 16 0

8 64 48 25

16 256 176 31.25

32 1024 688 32.81

64 4096 2736 33.20

overall methodology is evaluated based on method 2. Thus the number of squares in

this table is computed based on equation (2.63) + 8 = 2/3 x (n2 + 8).

2.7 Number of additions

We have already estimated the number of additions required for part 1 of the

methodology. In this section we obtain a formula for determining the number of

additions required for part 2 of the methodology. A brief description of the meaning of

each of the variables can be found in the previous section.

For a given n, j has a maximum value of n/2. Also j = 2 x 2k ; k = 0, 1 , 2 , . . . ,

log2 n/4. For every value of j we have 2j equations consisting of a4 and bj. From

theorem 2.8 we see that each equation contains (n/j - 1) aj terms and (n/j - 1) bj terms.

Also from algorithm 2.2, which shows how to construct these equations, we find that

the aj and bj terms appear only j distinct times. The aj and bj terms appear in the same

combinations for both odd and even points. The difference, however, is that the a4 and

bj terms are combined differently for even and odd points. Thus the number of additions

for computing these equations can be given as

Term 1 - additions = 2 ^ j(n / j — 1) + 2j x j (2.64)
Vj Vj

or

Term 1 - additions = 2n log2 (n/2) - j 2 (2.65)
Vj Vj

We note that the first term of equation (2.64) represents the number of additions

required for obtaining the sum of the aj terms and bj terms separately. For every j there

are n/j aj terms and therefore we have (n/j -1) additions. Also, for every j there are j sets

of such equations. This explains the product under the summation. The 2 outside the

summation accounts for the additions required by the bj terms. The second term

represents the number of additions required for combining the aj and bj terms. For every

j there are 2j equations and j sets of such equations. This explains the product under the

second summation in equation (2.64). (Note that this includes both the odd and even

points).

Since for every value of j there are 2j squares to add-subtract these squares we

would need 2j - 1 additions. Thus, we have

Term 2 - additions = ^ j (2 j -1) (2.66)
Vj

The addition/subtraction of squares, which are accounted for by equation (2.66),
n/j -1

generate for every j, ^ q + ^ (-1) . These are in turn added with X1 as shown in step
k=0

3 of algorithm 2.3. Initially, X 1 is the sum of all even q , or in other words it consists of

n/2 points. An individual q is obtained by adding to this quantity the alternating

difference of q with varying distances between consecutive q . This process thus

requires (n/2 - 1) additions and subtractions, before individual q are computed. Thus

the number of additions is 2 (n/2 - 1) or (n - 2) additions and a similar amount would be

needed for the odd q . Thus we have the total number of additions for this process as

Term 3 - additions = 2(n - 2) (2.67)

Therefore the total number of additions for part 2 of the methodology can be

given by the sum of equations (2.65) - (2.67), thus giving

Part 2 - additions = 2n log2 (n/2) - 2X j + 2£ j 2+ S j(2 j - !) + 2 (n - 2)
Vj Vj Vj

39

= 2 (n + n log2 (n/2)- 2) + 4 ^ j2 - 3 J j
Vj Vj

log(n/4) log(n/4)
= 2(n + n log2 (n/2)- 2) + 16]T 4k - 6 2k

k=0 k=0

= (l/3)[4n2 + 6n log2 (n/2) - 3n - 10] (2.68)

Assuming that we use method 2 for part 1, we have

Total number of additions = (l/3)[4n2 + 6n log2 (n/2) + 3n + 20] (2.69)

2.8 Example

In this section we present in detail all the necessary computations required to

compute the cyclic convolution of two 16-point sequences. The purpose of this example

is to illustrate the methodology, theorems, algorithms, and notations developed earlier in

this chapter. We consider two sequences A and B whose points are given as

A = {4o’ a i> a2’ a3’ a4’ a5’ a6’ a7’ a8’ ‘H)’ a10’ a l l ’ a12’ a13’ a14’ a15 ̂ an^

® = { bl ’ b2’ b3 ’ b4 ’ b5’ b6’ b7’ b8’ b9’ b10’ bl l ’ b 12’ b 13’ b14’ b15 ̂ while their

cyclic convolution is given by

C = {c0, Cj, c2, c3, c4, c5, c6, c7, c8, c9, c10, c n , c12, c13, c14, c15] where each point

is defined by equation (2 .22) or
15

ci = X a<i-k>16bk for i = 0, 1, 2, ..., 15
k=0

In order to use our methodology, we have to run through the steps of algorithm 2.3.

Procedure:

Step 1: r = 1, i = 0

Do theorem 2.3

This will, based on equations (2.29) - (2.32), yield:

40

xnl = a0+a2+a4+a6+a8+a10+a12+a14+b0+b2+b4+b6+b8+b10+b12+b14

xn2 = a0+a2+a4+a6+a8+a10+a12+a14"b0'b2"b4'b6'b8‘b10'b12'b14

xn3 = a1+a3+a5+a7+a9+a11+a13 +a15+b1+b3+b5+b7+b9+b11+b13 +b 1 5

xn4 = al +a3+a5+a7+a9+ al l + a13+ a 15'b r b3"b5‘b7'b9'b i r b13'b15

and from equation (2.33) we get

7
x nl “ x n2 + x n3 “ xn4 = 4 X c2i = 4 (c0 + c 2 + - + c 14)

i=0

Set result to X1

Thus,

X° = 4(c0+c2+c4+c6+c8+c i Q+c 12+c 14)

Step 2: j = 2r = 2

Do theorem 2.8

This will call step 2 of algorithm 2.2 with i = 0, j = 2, k = 1, q = 0, p = i, and n = 16,

thus yielding:

V161 = a0'a2+a4"a6+a8'a10+a12'a14+b0'b2+b4'b6+b8'b10+b12'b14

V162 = a0_a2+a4"a6+a8'a10+a12‘a14"b0+b2'b4+b6'b8+b10"b12'b14

V163= -a1+a3-a5+a7-a9 +a11-a13+a15+b1-b3+b5-b7+b9-b11+b13-b15

= -a1+a3-a5+a7-a9+a1 j_a j 3+ a |3-b2+b3-b3+b7_b9+b2 j -b |34-b|^

and based on equation (2.52) we get

4 7
X (V16k)2(~ l)k+1 = 4 X C2k(_ l)k= 4 (c0'c2+c4"c6+c8'c10+c12"c14)
k=l k=0

Set result to Z

Z = 4(c0-C2+C4-C6+C8-C1o+C12-C14)

41

Step 3:

X°<— X° + Z

= 8(c0+c4+cg+c12)

and X2 <— X2 - Z

= 8(c2+c6+c 10+c 14)

Also, j 9* 8, and therefore we got to step 4.

Step 4: j <= 8 is true and therefore r <— r + 1 = 2 and we go to step 2.

Step 2: j = 2r = 4

Do theorem 2.8

This will call step 2 of algorithm 2.2 with i = 0, j = 4, k = 1, q = 0, p = i, and n = 16,

thus yielding:

V161 = ^ ‘ a4 + a8 " a12 + b0 ‘ b4 + b8 ‘ b12.

Vl°62 = a0 ' a4 + a8 ' a12 ‘ b0 + b4 ' b8 + b12

^163 = "a3 + a7 ' a l l + a15 + bj - b5 + b9 - b13

Vl64 = -a3 + a2 - a^j + a ^ - bj + b ̂- b9 + bj^

v l°65 = _a2 + a6 ' a10 + a14 + b2 ' b6 + b 10 " b 14

Vl°66 = "a2 + a6 " a10 + a14 * b2 + b6 ' b10 + b14

Vf6 7 = -al + a5 - a9 + al3 + b3 - b7 + b l l - bl5

= -al + a5 - a9 + al3 - b3 + b7 - b l l + b l5

and based on equation (2.52) we get

8 3
S(Vi°6k)2(- l) k+1 = 4 i > 4 k(- l) k = 4(c0 - c4 + c8 - C|2>
k=l k=0

Set result to Z

Z = 4(cq - c4 + Cg- c j2)

Step 3:

42

X° <— X° + Z x 2

= 16(c0 + c 8)

and X4 <— X2 - Z x 2

= 16(C4 + Cj2)

Also, j * 8, and therefore we got to step 4.

Step 4: j <= 8 is true and therefore r <— r + 1 = 3 and we go to step 2.

Step 2: j = 2r = 8

Do theorem 2.8

This will call step 2 of algorithm 2.2 with i = 0, j = 8, k = 1, q = 0, p = i, and n = 16,

thus yielding:

v 161 = % " a8 + b0 * b8

Vl°62 = ao ‘ a8 ' b0 + b8

V163 = ~a7 + a15 + bj - b9

V164 = _a7 + a15 - bj + b9

V165 = "a6 + a14 + b2 ‘ b10

Vl°66 = _a6 + a14 * b2 + b10

V167 = _a5 + a13 + b3 ' b l l

V168 = -a5 + a13 " b3 + bl l

V169 = "a4 + a12 + b4 ' b12

V1610 = 'a4 + a12 ' b4 + b12

v l°611 = -a3 + an + b5 - b13

Vl°612 = "a3 + al l ' b5 + b13

V1613 = _a2 + a10 + b6 ' b14

V1614 = -a2 + a10 ' b6 + b14

v 1615 = -a! + ag + b7 - b15

V1616 = _al + >d9 ' b7 + b15

43

and based on equation (2.52) we get

S (v l°6k)2(-D k+1 = 4 £ c , l (- l) l = 4(c0 - c ,)
k=l k=0

Set result to Z

Z = 4(cq - c8)

Step 3:

X °< — X° + Z x 4

= 32c0

and X8 <— X° - Z x 4

= 32cg

Also, j = 8, and we note that c0 and c8 are indeed equal to X°/32 and X8/32, and we go

to step 5.

Step 5: i <— i + 2 = 2 and i <= 7 is true, therefore r = 2 and we go to step 2.

Step 2 : j = 2r = 4

Do theorem 2.8

This will call step 2 of algorithm 2.2 with i = 2, j = 4, k = 1, q = 0, p = i, and n = 16,

thus yielding:

V\6 \ = a2 ' a6 + a10' a14 + b0 - b4 + b8 - b12

v ?62 = a2 " a6 + a10" al4 - b0 + b4 - b8 + b12

V 263 = ai " a5 + a9 - ai3 + bj - b5 + b9 - b13

^164 = a i ■ a 5 + 49 ■ a i3 - b j + bg - bg + b j 3

V165 = 2*0 ' a4 + a8 ' a12 + b2 ‘ b6 + ^10 " b14

44

V166 = a0 " a4 + a8 ‘ a12 ' b2 + b6 ' b10 + b14

v l267 = -a3 + a7 - an + a15 + b3 - b7 + bn - b15

Vl268 = _a3 + a7 ■ al l + a15 ■ b3 + b7 ■ bl l + b15

and based on equation (2.52) we get

8 3
X < v l26k)2(- 1)k+1 = 4 X c 2 + 4 k (-l)k = 4(c2 - C6 + C10 - C14)
k=l k=0

Set result to Z

Z = 4 (c2 - c 6 + c 10 - c 14)

Step 3:

X2 <— X2 + Z x 2

= 16(c2 + c 10)

and X6 <— X2 - Z x 2

= 16(c6 + c 1 4)

Also, j ^ 8, and therefore we got to step 4.

Step 4: j <= 8 is true and therefore r <— r + 1 = 3 and we go to step 2.

Step 2 : j = 2r = 8

Do theorem 2.8

This will call step 2 of algorithm 2.2 with i = 2, j = 8, k = 1, q = 0, p = i, and n = 16,

thus yielding:

Yu>l = a2 ' a10 + b0 ' b8

V162 = a2 ' a10 - bo + b8

^1263 = a i - a<7 + bj - b9

V&4 = aj - a<) - bj + b(j

V165 = ^ ' a8 + b2 ' b10

V l266 = a 0 ' a 8 ' b 2 + b 10

45

V167 = “a7 + a15 + b3 ' b l l

Vl268 = ' a7 + a15 " b3 + bl l

V169 = “a6 + a14 + b4 " b12

Vl2610 = "a6 + a14 ' b4 + b 12

V1611 = "a5 + a13 + b5 ' b13

V1612 = "a5 + a13 ‘ b5 + b13

V1613 = "a4 + a12 + b6 _ b14

Vl2614 = 'a4 + a12 ' b6 + b14

v l2615 = -a3 + an + b7 - b15

Vl616 = -a3 + all - b7 + b15

and based on equation (2.52) w e get

16 1
£ (v ?6k)2 (- l) k+1 = 4 X c 2+8fc(-l)'k= 4(c2 - c 10)
k=l k=0

Set result to Z

Z = 4(c2 - c10)

Step 3:

X2 <— X2 + Z x 4

= 32c2

and X 10 <— X2 - Z x 4

= 32c 10

9 10Also, j = 8, and we note that c2 and c10 ate indeed equal to X /32 and X /32, and we

go to step 5.

Step 5: i <— i + 2 = 4 and i <= 7 is true, therefore r = 3 and go to step 2.

46

Step 2: j = 2r = 8

Do theorem 2.8

This w ill call step 2 o f algorithm 2.2 with i = 4, j = 8 , k = 1, q = 0, p = i, and n = 16,

thus yielding:

v 161= a4 ' a l2 + b0 - b8

V162 = a4 " a12 ‘ ^0 + ^8

Vl463 = a3 ' al l + - b9

V164 = a3 ' al l " bi + b9

V165 = a2 ' a10 + b2 - bio

V166 = a2 ' a10 ' b2 + bio

Vl467 = aj - 39 + b3 - bn

V168 = a l ' % " b3 + bn

V169 = ao - a8 + b4 - b12

V1610 = ^ ' a8 ' b4 + bi2

V1611 = _a7 + a15 + b5 - bi3

V1612 = -a7 + a15 ' b5 + bi3

V1613 = -a6 + a14 + b6 - bi4

V1614 = "a6 + a14 " be + bi4

V1615 = "a5 + a13 + b7 - bi5

V1616 = 'a5 + a13 " b7 + b15

and based on equation (2.52) we get

16 1
I (V i 46k)2 (- l) k+1 = 4 X c 4+8 k (- l)k = 4 (c 4 - c 12)
k=l k=0

Set result to Z

Z = 4(c4 - Cj2)

Step 3:

X 4 <--- X4 + Z x 4

= 32c4

and X 12 <— X4 - Z x 4

= 3 2 c12

Also, j = 8, and we note that c4 and c12 are indeed equal to X4/32 and X 12/32, and we

go to step 5.

Step 5: i <— i + 2 = 6 and i <= 7 is true, therefore r = 3 and go to step 2.

Step 2: j = 2r = 8

Do theorem 2.8

This will call step 2 of algorithm 2.2 with i = 6, j = 8, k = 1, q = 0, p = i, and n = 16,

thus yielding:

IIT"H

1
?

a6 " a14 + b0 " b8

Vl662 = a6 ' a14 " b0 + b8

v ?63 = a5 " a13 + bl " b9

II

*
1

a5 " a13 " bl + b9

V f e = a4 ’ a12 + b2 ' b10

II

$
a4 " a12 ' b2 + b10

< II a3 " al l + b 3 ' bl l
y 6 _
V168 “ a3 " al l _ b3 + bll

< VO II a2 ’ a10 + b4 " b12

V1610 ‘= a2 - a10 - b4 + b12

IIr-N

>

: a l ' a9 + b5 ' b13

v 1612 '= al - tk) - b5 + b13
\/6
v 1613 “:a 0 - a8 + b6 - b14

Vl6614 - ^ - ag - b6 + bi4

Vl615 = _a7 + a15 + b7 " b15

Vl6616 = -a7 + a15 ' b7 + b15

and based on equation (2.52) we get

16 1
S(Vl66k)2(- « k+l = 4 2 c 6+8k(-l)k = 4(c6 - c,4)
k=l k=0

Set result to Z

Z = 4(cg - Cj4)

Step 3:

X6 <— X6 + Z x 4

= 32c6

and X 14 <— X6 - Z x 4

= 32c 14

Also, j = 8, and we note that c6 and c14 are indeed equal to X6/32 and X 14/32, and we

go to step 5.

Step 5: i <— i + 2 = 8 and i <= 7 is false and so we stop. We observe that all c2i

have been computed.

The c2i + 1 can be computed in a similar fashion and therefore it is not presented

here.

2.9 Summary

All the necessary theory required to compute the cyclic convolution of two n-

point sequences where n is a power of 2 has been developed in this chapter. We have

presented a new methodology for a hardware based implementation of the cyclic

convolution operation. Eight theorems that were developed as a part of this dissertation

form the mathematical basis for our methodology. Our methodology consists of two

parts, part 1 and part 2. By selective utilization of the theorems, part 1 can be evaluated

in three different ways, referred to as methods 1, 2, and 3. A comparative analysis of

the three methods was provided in section 2.5. Part 2 can only be evaluated in a unique

manner and the required equations are provided by algorithm 2.2. The overall

methodology was described by algorithm 2.3. The algorithms did not use

approximations of any kind and are therefore inherently free of any round-off errors,

thus eliminating the need for error correcting hardware. To complete the theory we have

also derived non-recursive formulae to obtain the number of squares and additions

required by our methodology.

We have shown that while our algorithms require fewer squares than

multiplications required by a traditional computation, we require more two-operand

additions. Further, the number of squares has been approximately reduced by one-third

while the number of additions have been increased by about a third. However, we

observe that this is not a zero gain, for we have decreased the number of expensive

operations, namely, the multiplication operations, at the cost of increasing the

inexpensive operations, namely, the addition operations. One must note that this is a fact

independent of the technology of implementation. Also, we note that the formula on the

number of additions is not an accurate reflection of the increase in hardware cost. This is

because our implementations rely primarily on multi-operand additions and by selecting

a suitable implementation, one can not only reduce the amount of hardware but can also

decrease the time delay associated with the computation. In the next chapter

implementation issues of the convolution operation based on the definition and our

method are discussed in detail.

Chapter 3

Implementation Issues

In the previous chapter we have developed algorithms for performing the cyclic

convolution of two n-point sequences. In place of the multiplication operation, we used

the squaring operation. While our algorithms require fewer squaring operations when

compared to the number of multiplication operations required by the traditional

technique, we require more addition operations. However, since our equations require

multi-operand adders the count of two-operand addition operations may be somewhat

misleading. In this chapter we present carry-save adder (CSA) and read only memory

(ROM) based implementations and discuss hardware cost and speed trade-offs. The

purpose of these implementations are not to provide the DSP engineer with an off the

shelf design but more for the purpose of precisely analyzing the effect of the increase in

the number of additions caused by our methodology. We then also show how the

convolution operation can be applied to the problem of multiplying two numbers.

3.1 CSA implementation of the multiplication operation

Since our goal is to compare hardware requirements of algorithms based on the

multiplication operation with that of algorithms based on the squaring operation, we first

consider the implementation of the elementary functions. We illustrate this comparison

by calculating the hardware required for a CSA implementation of an eight-by-eight

multiplier and in the following section we calculate the hardware required for a CSA

implementation of an eight bit squarer. These implementations are based on schemes

for parallel multipliers offered by Dadda [54], Dadda's method is based on successively

51

adding the corresponding significant columns of the partial products until only two

numbers are left. The sum of these two numbers yields the product of the original two

numbers. In [54], Dadda has shown that there exists a sequence of numbers which

should be used to determine the appropriate height of the partial product matrix at each

level. For the case when a full adder is used the sequence of numbers is: 2, 3, 4, 6, 9,

13, 19, 28, e.t.c. Each term in the sequence is obtained by multiplying the preceding

term by 3/2 and taking the integral part. The use of such a sequence of numbers

generally yields the fastest implementation with the least amount of hardware required.

Figure 3.1 shows the multiplier scheme for obtaining the product of two eight

bit numbers. The multiplication of two eight bit numbers requires the summation of

eight partial products each of length eight bits. Each 'x' in the figure represents a single

bit of the partial product, with the least significant bit on the right most side.

The CSA tree implementation requires four levels, labeled 1 through 4 on the left

side of figure 3.1, to obtain two numbers whose sum yields the product. Each of the

level requires a delay equal to the delay through one full adder, in this context also

known as a carry-save adder, and is denoted as 1 xD CSA while the final two numbers

can be added using a fast adder such as the carry look ahead adder. For the purpose of

providing a fair comparison between all methods we assume a simple ripple carry

propagate adder(CPA). We denote the delay of such an adder as 1 xD CPA . The number

of full adders and half adders required in each of the levels is indicated on the right side

of figure 3.1. (The notation of indicating the level numbers and the number of full and

half adders will be used in all figures depicting CSA tree implementations.) The

maximum height of a column in level 1 is 8. From the sequence given earlier, we find

that the largest number less than 8 is 6. Therefore, the objective at this level is to ensure

that the height of every column is not greater than 6 at the next level. Also, this is to be

14 0 FA HA
X X X X X X X X 3 3

X X X X X X X X
X X X X X X X X

X X X X X X X X
X X X X X X X X

X X X X X X X X
X X X X X X X X

X X X X X X X X

X X X X X X X X X X X 12 2
X X X X X X X X X X

x x x x x x x x x x
X X X X X X X X X X

x x x x x x x x x x
x x x x x x x x x x

X X X X X X X X X X X X X 9 1
X X X X X X X X X X X X

x x x x x x x x x x x x
X X X X X X X X X X X X

X X X X X X X X X X X X X X 11 1
x x x x x x x x x x x x x

x x x x x x x x x x x x x

x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x

Figure 3.1: CSA implementation of an 8 x 8 multiplier

54

achieved by using a minimum number of half and full adders. Note that the use of a full

adder reduces the height of the column by 2 while a half adder reduces the height of the

column by 1. For instance, at level 1, columns 0 through 5 need no manipulations, for

they all have a height less than or equal to 6. Column 6 uses one half adder to reduce its

height from 7 to 6, while column 7 uses one half adder and one full adder to reduce its

height from 8 to 6. The use of one half adder and one full adder actually reduces the

height of column 7 by three but since there is a carry-in from column 6, the final height

of column 7 in level 2 is 6. In a similar fashion the others columns are reduced.

Eventually after level 4 we are left with two numbers that are added using a CPA to

produce the final result. From figure 3.1 we see that the hardware required by an 8 x 8

multiplier requires 35 full adders, 7 half adders, and one 15 bit CPA. If the CPA is

based on a simple ripple carry adder then the CPA would require 14 full adders and 1

half adder. Thus the total number of full adders required is 49 and the total number of

half adders required is 8. The time delay for the entire computation can be given as

4 x D CSA + 1 x D CPA-

In order to mechanize the computation of the amount of hardware required for a

CSA based implementation of multi-operand addition, the above procedure is written as

an algorithm and then coded in Mathematica. The Mathematica version can be found in

the appendix.

Algorithm 3.1

Input: A list, L, whose elements are the heights of the columns of the array of

numbers to be added, with the elements listed in the order of least to most

significant. Let the elements of this set be Lj, L2, ..., Lj.

Output: The amount of hardware required to add the array of numbers in terms of

full adders, half adders, and two-input gates and the time delay required to

perform this computation in terms of number of CSA and CPA levels.

Procedure:

Step 1: Denote the largest element in L as max[L], Obtain a set, T, of the numbers

Step 2: The cardinality of set T is the number of CSA levels required to add the array

of numbers. The number of CPA levels is always one.

Step 3: Set j = 1.

Step 5: Set Lj = Ti? and increase the height of the next column by the carries

generated by the current column, i.e. the height will be increased by an

amount equal to the sum of fa-temp and ha-temp.

Step 6: fa = fa + fa-temp and ha = ha + ha-temp.

Step 7: j = j + 1; repeat steps 4, 5, 6. (i.e these steps are performed on all columns

of set L.)

Step 8: When there are no more columns to update, repeat steps 3 through 6 for the

next smaller element in T, i.e., Tj_j .

Step 9: When there are no more elements in set T, the number of full and half adders

required by the CSA tree has been computed.

of the sequence based on [54], with the last element of T being the largest

number smaller than max[L]. Let the elements of this set be T j, T2, ..., Tj.

Use variables fa and ha to keep track of the number of full adders and half

adders respectively. Initially these variables are set to zero.

Step 4: If Lj > Ti? then

Step 10: Add to the number o f full and half adders the size o f the carry propagate

adder in terms of full and half adders.

Step 11: Compute the number of two-input gates by treating a full adder as 5 two-

input gates and a half adder as 2 two-input gates.

The justification for step 4 is given as follows: Each full adder reduces the column size

by 2 bits. Therefore, if the number of bits to be reduced is odd, say e = 2k + 1, then k

full adders and 1 half adder will be required to reduce the height by e bits. Since 1 half

adder reduces the height by 1 bit, one can also say that 1/2 a full adder reduces the

column size by 1 bit. Thus each non-zero fractional part of the computation of the

number of full adders contributes a single half adder.

3.2 CSA implementation of the squaring operation

Now we consider the squaring of an eight bit number. Let the number be

represented as A = a7a6a5a4a3a2a1a0. The square of A can be given as

A2 = a7 214 + a7a6 214 + a?a5 213 + a6 212 + a7a4 212 + a6a5 212 + a7a3 211 + a6a4 211

+ a5 210 + a7a2 210 + a6a3 210 + a5a4 210 + a7a} 29 + a6a2 29 + a5a3 29 + a4 28

+ a7aQ 2 + a6aj 2 + a2 2 + a4n3 2 + 22 + j 22 4* n4u2 22 + a3 2^

4- a5aQ 2 "f a4aj 2 4- a3a2 2 -i- a4a^ 2 4* a3a ̂2 4* a2 2 4* u3aQ 2 4- a2a ̂2

4- a2aQ 2 4- aj 2 4- a^a^ 2 4- 3q (3.1)

Each of the product terms a^j, also called summands, can be obtained by a 2-input

AND gate since a4 and aj are each one bit long. The addition of the various terms of

equation 3.1 can be obtained by re-arranging them as an array of summands as shown

in figure 3.2. Here the terms of each column have the same weight. In a sense, we can

say that we are adding five 15-bit numbers many of whose individual bits are zero.

These zero bits are not shown in the figure.

57

14 13 12 11

a7 a7a5 a6 ^ 4

a7a6 a6a5 a7a3

a7a4

10 9 8 7 6 5 4 3 2 1 0

a5 a5a3 a4 *4*2 a3 a3al a2 *2*0 al ^

a5a4 *6*2 a4a3 a5al a3a2 *4*0 a2al al a0

a6a3 a7al a5a2 *6*0 a4al *3*0

*1*2 *6*\ *5*0

*1*0

Figure 3.2: Array of summands for an 8 bit squarer

Figure 3.3 shows the CSA implementation of the eight bit squarer. Here each term of

figure 3.2 is represented by a x. The figure relies again on the sequence of numbers

given in section 3.1, namely 2, 3 ,4. Since the height of the tallest column is 5, in level

1 the objective is to group the x's such that the height of no column is greater than 4. In

level 2 the objective is to limit the height to 3 and in level 3 to 2.

From the figure we see that the amount of hardware required is 10 full adders, 5

half adders, and one 15 bit CPA and the time delay is 3 x D CSA. Comparing this with

the hardware required by an 8 x 8 multiplier we find that the squarer requires around a

third of that required by a multiplier and is faster by I x Dc s a - Clearly, there is an

advantage to designing algorithms around the squaring operation. While designing CSA

based implementations, one is generally guided by [54]-[56]. However, a closer look at

the array of summands to be added for the squaring operations yields the configuration

shown in figure 3.4. Here although the total amount of hardware is the same as that of

figure 3.3, we find that there are fewer levels , i.e. it is faster by 1 xD CSA. We observe

that by treating the cost of a full adder as 5 two-input gates and the cost of a half adder

as 2 two-input gates the total cost including the cost of a^j terms is 88 two-input gates

plus one CPA.

In summary, it appears that the number of levels required to add a set of

summands in a parallel fashion is not only a function of the height of the tallest column

but is also a function of the heights of the other columns and their relative placements.

One must note that such a situation does not arise in the multiplication of two distinct

numbers as the height of the columns then monotonically increases, reaches a maximum

value, and then monotonically decreases.

59

1

14

X X X X X X X X X X X X X
X X X X X X X X X X X

X X X X X X X
X X X

X

0

X
FA
0

2

x x x x x x x x x x x x x
X X X X X X X X X X X

X X X X X X X
X X X X

X 3

3

x x x x x x x x x x x x x
X X X X X X X X X X X

X X X X X X X X

X 7

x x x x x x x x x x x x x
X X X X X X X X X X X X

X

Figure 3.3: CSA implementation of an 8 bit squarer.

1

14

X X X X X X X X X X X X X
X X X X X X X X X X X

X X X X X X X
X X X

X

0

X
F A

3

x x x x x x x x x x x x x X 7

X X X X X X X X X X X

2 X X X X X X X X

x x x x x x x x x x x x x X
X X X X X X X X X X X X

Figure 3.4: Intuitive CSA implementation o f an 8 bit squarer.

3.3 Alternate CSA implementation of the squaring
operation

Other parallel implementations of the squaring operation can be found in [57],

[58] while serial implementations can be found in [59]. Jayashree and Basu in [58]

show that their method is both faster and cheaper than that of [57]. In this section we

propose yet another parallel implementation that not only compares very well with [58]

with respect to both cost and speed but is also regular, more modular, and easier to

design.

We first present our alternate method and then compare it with reference [58].

Looking at figure 3.2 we notice that in each of the columns 2, 4, 6, 8, 10, 12, and 14

there exist terms of the nature aj and a ^ j . For instance, in column 6 we have the terms

a3 and a3a2. We can therefore substitute in place of these two terms their sum, a ja^ i,

and carry, ajaj.j. In the case of column 6 the sum a3a2 replaces the terms a3 and a3a2

and the carry a3a2 is placed in column 7. Thus we have reduced the height of column 6

by one and at the same time increased the height of column 7 by one. Performing this

simple manipulation on every such pair of terms yields the array as shown in figure 3.5.

We observe from this figure:

i) the height of the tallest column is less than that of figure 3.2 by one, and

ii) the array of summands to be added now exhibits a very regular structure.

Method of [54] is then applied to this reduced regular array of summands to

yield the final result. Figure 3.6 details the implementation and from this we see that the

amount of hardware required is 9 full adders, 5 half adders, and one 15 bit CPA and the

time delay is 2 x D CSA + 1 xD cpA. Thus, compared with the implementation in section

3.2, with no loss in speed we have reduced the number of full adders by 1 and have

62

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

a7a6 a7 a6 a7a5 a7a4 a7a3 a7a2 a7al *5^0 ^ ^0 ^**0 a l a0 ^

^ 5 a6 a 5 ^ 4 a6a3 a6al a5al a4al ^ 1 a2 a l al a0

a5a4 a5 a4 a5a3 a5a2 a3 a2 a3al

a4a3 a4 a 3 a4**2

Figure 3.5: Reduced and regular array o f summands for an 8 bit squarer

15 0 FA
x x x x x x x x x x x x x x X 2

x x x x x x x x x x x
X X X X X X X

1 X X X

X X X X X X X X X X X X X X X 7
x x x x x x x x x x x

2 x x x x x x x x

x x x x x x x x x x x x x x X

x x x x x x x x x x x x

Figure 3.6: CSA implementation o f reduced 8 bit squarer.

also produced a regular structure. However, our manipulations will require 7 additional

two-input gates which compares with the cost of a full adder. Treating the cost of a full

adder as 5 two-input gates and the cost of the half adder as 2 two-input gates the total

cost including the cost of a^j terms is 90 two-input gates plus one CPA. In summary

our manipulations have not resulted in either hardware or speed improvement but has

achieved regularity.

Our method and that of [58] rely on the same basic principle, i.e. first reduce the

squaring matrix and then apply Dadda's scheme to obtain the final result. In the process

of using Dadda's scheme both methods rely on a CPA to compute the final sum. Since

this step requires the maximum amount of time the CPA is generally implemented using

some fast carry lookahead adder. However, since both methods require this CPA, the

cost and delay of this unit can be ignored without affecting the quality of the analysis.

One might argue that the CPA in [58] is smaller than ours by 2 bits, but needless to say,

this is marginal. Thus the comparison process reduces to estimating the hardware and

time delay required for the data stream to reach the CPA. In [58] the authors rely on the

properties of the squaring matrix which has the shape of a parallelogram while we rely

on equation 3.1 and some simple manipulations.

We now estimate the amount of hardware and time delay required by [58] and

for the sake of clarity we use their notation. In [58], in order to reduce the height of the

columns, the authors define equations Lj through L16. The authors of [58] state that the

generation of these equations requires no full adders. While this is true, the hardware

and time delay required by these equations is the same as that of a full adder. The cost of

hardware required by the terms Lj where i = 1 through 16 is estimated as follows.

Terms Lj and L2 require no hardware. Terms Lj, where i = 5, 7, 9, 11, 13, are of the

form ^ 1+\)I2^^.\)I2 (a (i-3)/2 + a (i+3)/2 ̂+ a(i-3)/2(a(i+l)/2® a(i+3)/2^ Clearly this is a 3-

level circuit with 6 two-input gates. A full adder can also be realized with 3 levels while

requiring only 5 two-input gates. Terms Lj, where i = 6, 8, 10, 12, 14, are of the form

a(i-2)/2 (ai/2 ® a(i+2)/2) + a(i-4)/2ai/2a(i+2)/2^■ Each of these terms require 5 two-input

gates and 3 levels. Each of terms and L16 require one gate while each of the terms L4

and L15 require two gates. From the above analysis it is clear that the generation of all Lj

terms requires the same delay as that of a full adder, i.e., 1xD c s a while the total

hardware is 61 gates. The remaining a^j terms require 10 two-input gates and to reduce

the Lj and a^j terms to two numbers that can serve as inputs to the CPA requires 2 full

adders and 3 half adders. These adders contribute another 1 x D CSA. Thus the hardware

required is 87 two-input gates and the time delay is 2 x D CSA. Once again, there is no

improvement in speed while the hardware cost is only marginally better. However, this

method requires four additional types of hardware units, over and above the full adder

and half adder. Two distinct types of units are needed to realize L4 and L15 while two

more distinct types of units are required to realize the other odd and even Lj terms.

In summary, we have presented an alternate parallel implementation for the

squaring operation and have shown that while its performance and hardware cost is

approximately the same as that of [58], our implementation is not only regular but also

simpler to design and more modular in the sense of requiring fewer types of hardware

units. Further analysis shows that the technique of [58] for higher word lengths

produces hardware savings, but is slower. It appears that for small word lengths

different designs yield similar hardware cost and speed functions. Thus for VLSI

implementations it may be more important to focus on designs that are both regular and

modular.

3.4 CSA implementation of the cyclic convolution

In the previous section we have discussed CSA implementations of the squaring

operation in detail. We had clearly demonstrated that the computation of the squaring

operation is both faster and cheaper than that of a multiplication operation. We observe

that this is primarily due to the fact that the multiplication operation has n summands
(Mwhile the squaring operation has I I + n summands. While both operations require

summands in the order of n , the squaring operation in terms of absolute values

contains approximately half the summands. Thus, if a particular function can be

evaluated by using either squaring or multiplication operations and the number of

operations in either case are of the same order, then it is reasonable to expect to have

hardware savings in the magnitude of a factor as opposed to an order.

Before we discuss implementations of the cyclic convolution operation, we

would once again like to emphasize that the purpose of these implementations are not to

provide the DSP engineer with an off the shelf design but more for the purpose of

analyzing the effect of the increase in the number of additions by our methodology.

Referring to equations (2.63) and (2.69) we find that we have reduced the number of

squaring operations by one-third and at the same time we have increased the number of

addition operations by a third. At this point we hypothesize that this is not a zero gain.

In the ensuing sections we demonstrate the validity of this hypothesis by deriving the

cost and speed functions of the cyclic convolution of 4, 8, and 16 points. We present

three CSA based implementations, the first two are based on the definition and the third

is based on our methodology. We call the first implementation, traditional, the second,

modular, and the third, squares. We conclude our section by presenting a detailed

discussion that analyzes all the results obtained.

3.4.1 4-point cyclic convolution-traditional

The cyclic convolution of two four point sequences is considered. Let the two

sequences be A and B with A = {a3, a2, a1? ag} and B = {b3, b2, b l5 b0 }. Let each of

these points be of length 8 bits and represented in two's complement form. An

implementation by definition would require the computation of 16 products, i.e. every

point of a sequence is multiplied with every point of the other sequence. The cyclic

convolution C is given by C = {c3, c2, Cj, c0} with co, cj, C2, and C3 defined as

co = aobo + a3bi + a2b2 + ajb3 (3.2)

ci = aibo + aobi + a3b2 + a2b3 (3.3)

C2 = a2bo + aibi + aob2 + a3b3 (3.4)

C3 = a3bo + a2bi + aib2 + aob3 (3.5)

A pictorial representation of the cyclic convolution operation of two 4-point sequences,

each point consisting of 8 bits is shown in figure 3.7. In this figure each point is

represented by +, the individual bits of each point by x, the product of two points by

® , and each point of the cyclic convolution by 0 . Note that the product of two x's

gives another x and this operation is achieved by a two-input AND gate. Now, instead

of computing each product, i.e. evaluating ®, and then adding the four products to

obtain a point of the cyclic convolution, we can line up all the partial products of the

four points and then add them simultaneously using a CSA tree implementation. This

way, we would need only one CPA for each point of the cyclic convolution. We refer to

such a method of computation as traditional. The CSA tree is reduced based on the rules

given in [54], The list L for ®, a 8 by 8 multiplication is given as {1, 2, 3, 4, 5, 6 , 7,

8 , 7, 6 , 5, 4, 3, 2, 1}. Since we are trying to add the partial products of four

multiplications, each element of this list has to be multiplied by 4. Applying this list to

algorithm 3.1, the following results are obtained:

+ = x x x x x x x x

<S>= + times +

= x x x x x x x x
x x x x x x x x

x x x x x x x x
x x x x x x x x

x x x x x x x x
x x x x x x x x

x x x x x x x x
x x x x x x x x

+ + + +

+ + + +

<g> 0 ® <g>
0 0 0 ®
0 0 0 0

® ® ® ®

0000

Figure 3.7: Pictorial representation of a 4-point cyclic convolution

69

L = {4, 8, 12, 16, 20, 24, 28, 32, 28, 24, 20, 16, 12, 8, 4}

of Full Adders = 222

of Half Adders =13

of Full Adders including CPA = 238

of Half Adders including CPA = 14

of CSA Levels = 8

of CPA Levels = 1

Size of CPA = 17

Number of 2-input gates including CPA =1218

Since there are four points the total number of two input gates is given as 4872 while the

time delay remains as 8 x D CSA + 1 xD cpA. This is because we are performing the

computation of all four points in parallel. Also, each bit of the partial products requires a

two input gate. Since each multiplication operation consists of 8 partial products each

with 8 bits, the number of two input gates required to obtain these bits is equal to 64.

Since there are 16 multiplications the total number of two input gates required to

compute these bits is equal to 1024. The time delay to compute these bits is the delay of

one two input AND gate, however, this delay is ignored as no matter which method is

used it always exists. The results are summarized in the following two equations:

Hardware, 4T8 = 5896 (3.6)

Time Delay, 4T8 = 8 xD CSA + 1 xD cpA (3.7)

3.4.2 4-point cyclic convolution-modular

As the problem size becomes larger, i.e. both the number of points and the size

of each point increases, it may not be possible to add the partial products of all the

multiplication operations simultaneously as done in the previous section. Therefore in

70

equations (3.2)-(3.5) each of the 16 products are first computed or in other words,

referring to figure 3.7 each of the ® 's is evaluated. Then each point of the cyclic

convolution is obtained by adding its four associated <8>'s. We refer to computation

based on such a method as modular. This addition is again done using a CSA tree

implementation. Thus, clearly there are two CPA delays, one for evaluating ® and the

other for evaluating 0 . Also there are some CSA delays that are associated with the

computation of ® and 0 . To compute hardware and delays associated with the

computation of each of the 16 multiplication operations, ® , the list L = {1, 2, 3, 4, 5,

6, 7, 8, 7, 6, 5, 4, 3, 2, 1} is applied to algorithm 3.1. The following results are

obtained:

L = {1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1}

of Full Adders = 35

of Half Adders = 7

of Full Adders including CPA = 49

of Half Adders including CPA = 8

of CSA Levels = 4

of CPA Levels = 1

Size of CPA =15

Number of 2-input gates including CPA =261

Since there are 16 such multiplications, the number of gates is 4176. Each one of these

multiplication operations produces a result that can be at most 16 bits long. Four such

results are added to obtain one point of the cyclic convolution. The hardware and delay

associated with such a computation can be obtained by applying the list L = { 4 ,4 ,4 ,4 ,

4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4} to algorithm 3.1. The following results are obtained:

L = {4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4}

of Full Adders = 30

71

of Half Adders = 2

of Full Adders including CPA = 46

of Half Adders including CPA = 3

of CSA Levels = 2

of CPA Levels = 1

Size of CPA =17

Number of 2-input gates including CPA = 236

Since there are four points the total number of two input gates is 944. Also, as explained

before we need an additional number of two input gates to generate the bits of the partial

products. Thus the total hardware and speed delays associated with the modular

approach can be summarized as

Hardware, 4M8 = 6144 (3.8)

Time Delay, 4M8 = 6 x D CSA + 2 x D CpA (3.9)

3.4.3 4-point cyclic convolution-squares

In this section we estimate the hardware cost and speed required based on our

method. Since the points are expressed in the two's complement form the CSA tree

implementation can be designed with minor modifications [60]. These modifications

will require no additional cost and thus the negative sign in the equations can be treated

as a positive sign and the design is carried out as usual. Our method outlined in chapter

2, is by nature modular, i.e. the design is broken into several small parts. Essentially the

following computations have to be performed: c0 + c2, Cj + c3, c0 - c2, Cj - c3. As

explained in chapter 2, the first two computations constitute part 1 of our methodology

while the later two constitute part 2. Part 1 can be evaluated in three different ways

while there is only a singular way for part 2. In chapter 2 we compared the three

methods of part 1 based on ROM implementations. However, here we are interested in

CSA based implementations. For now assuming we use method 2 for part 1, then based

on theorems (2.3)-(2.6) developed in Chapter 2, the following equations are defined.

X4 i = ao + a2 + bo + b2 (3.10)

X42 = ao + a2 - bo - b2 (3.11)

X43 = ai + a3 + bj + b3 (3.12)

X44 = ai + a3 - bi - b3 (3.13)

y41 = ao + a2 + bi + b3 (3.14)

y42 = ao + a2 - bi - b3 (3.15)

y43 = ai + a3 + bo + b2 (3.16)

y44 = ai + a3 - bo - b2 (3.17)

Z4i = ao - a2 + bo - b2 (3.18)

Z42 = ao - a2 - bo + b2 (3.19)

Z43 = ai - a3 + bi - b3 (3.20)

Z44 = ai - a3 - bi + b3 (3.21)

Z45 = ao - a2 + bi - b3 (3.22)

Z46 = ao - a2 - bi + b3 (3.23)

Z47 = ai - a3 + bo - b2 (3.24)

z4 8 = ai - a3 - bo + b2 (3.25)

The amount of hardware required for each of these equations can be obtained by

applying the list L = {4, 4, 4, 4, 4, 4, 4, 4} to algorithm 3.1. Note that we are adding

four operands each of length eight bits. Thus the height of each column is equal to 4.

The following results are obtained:

L = {4, 4, 4, 4, 4, 4, 4 ,4}

of Full Adders = 14

of Half Adders = 2

73

of Full Adders including CPA = 22

of Half Adders including CPA = 3

of CSA Levels = 2

of CPA Levels = 1

Size of CPA = 9

Number of 2-input gates including CPA =116

Since there are 16 such equations, we have a total of 1856 two-input gates. Now

suppose we were to use theorems 2.1 and 2.2 for evaluating part 1. Then instead of the

8 equations given by (3.10)-(3.17) we would have four equations defined by (2.23)-

(2.26). The amount of hardware required for each of these equations can be obtained by

applying the list L = {8, 8, 8, 8, 8, 8, 8, 8} to algorithm 3.1, which gives the total

number of 2-input gates including the CPA as 275. Thus for four equations we would

need 1100 2-input gates. Since 1100 (required by method 1) is greater than 928

(required by method 2), we can conclude that method 2 is better. A similar argument can

be constructed for method 3. We must also note that the terms of methods 1 and 3

contain more bits than method 2 which in turn implies that computation of their squares

will also require more hardware. Therefore from now on we will confine ourselves to

evaluating part 1 of our methodology based on method 2.

The points of the cyclic convolution are given, based on theorems (2.3)-(2.6) by

c0 = 7"(x 41 " x 42 + x 43 “ x44 + Z41 ~ z42 ~ z 43 + z 44) (3.26)O

C1 = g(y41 - Y42 + y43 - y£f + z45 - z46 + z47 “ z48) (3.27)

c 2 = “ (x 41 “ x 42 + x43 “ x 44 “ Z41 + z42 + z 43 “ z44) (3.28)8

c3 = g (y il “ y42 + y43 ~ y44 - z45 + z46 - z47 + z48) (3.29)

Each of the terms to be squared in equations (3.26)-(3.29) is of length 10 bits. Thus we

first compute the cost and delay of a 10 bit squarer. Let A be a 10 bit number with A =

a^ag... aQ. Then the square of A is given as

A2 = ap 218 + a^g 218 + aga7 217 + a8 216 + a ^ 216 + a8a7 216 + 215 + a8a6 215

+ a7 2 + 2 + <t8a3 2 + u7Ug 2 + 9̂̂ 3 2 ̂+ <t8a4 2^ + u7â 2^ + â 2̂ 2

+ a<jU2 2 + a8a3 2 + n7a4 2 + â a<j 2 + â Uj 2 + a8a2 2 + a7a3 2^

+ a6a4 211 + a5 210 + a^Q 210 + a8aj 210 + a7a2 210 + a6a3 210 + a5a4 210 + a8aQ 29

+ a7aj 2 + a6a2 2 + a^a3 2 + a4 2 + a7aQ 2 + UgUj 2 + a^u2 2 8 + u4a3 2 8

+ a6aQ 2 + a^aj 2 + a4a2 2 + a3 2 + û Uq 2 + a4â 2^ + a3a2 2^ + &4<tQ 2^

+ a3aj 2 + a2 2 + u33q 2 + a2aj 2 + a2aQ 2* + a^ 2 + UjUq 2 + a^

(3.30)

Each of the product terms a^j can be obtained using a two-input AND gate. Since there
r m

are 10 bits, the number of gates required is ^ ^ or 45. We apply the manipulation

outlined in section 3.3 before we square the number. Such a manipulation does not yield

hardware savings, however, it results in a compact array of summands thus allowing

the application of the rules of [54] more effectively. Also, this manipulation adds a small

cost by increasing the number of summands, in this case by 9. Thus each term to be

squared requires 54 two-input gates and the total for all 16 squares is 864. The cost and

delay associated with the computation of such a square can be obtained by applying the

list L = {1, 0, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1} to algorithm 3.1. The

results are:

L = {1,0, 1 ,2, 2, 3, 3, 4 ,4 , 5, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1}

of Full Adders = 20

of Half Adders = 7

of Full Adders including CPA = 39

75

of Half Adders including CPA = 8

of CSA Levels = 3

of CPA Levels = 1

Size of CPA = 20

Number of 2-input gates including CPA = 211

Since there are 16 such squares, the total number of 2-input gates can be given as 3376.

Finally, equations (3.26)-(3.29) have to be evaluated. From these equations we find that

there are basically only four terms that have to be computed. These terms are

P = - X4 2 + X4 3 - X4 4 (3.31)

Q = Y4 1 - y42 + y4 3 ~ y 2u (3.32)

R = Z4 1 - Z4 2 - Z4 3 + Z4 4 (3.33)

S = z45 “ z46 + z47 “ z48 (3.34)

Then equations (3.26) - (3.29) can be rewritten as

c0 = 1/8(P + R) (3.35)

cj = 1/8(Q + S) (3.36)

c2 = 1/8(P - R) (3.37)

c3 = 1/8(Q - S) (3.38)

The cost and delay required to compute each of equations (3.31)-(3.34) can be obtained

by applying the list L = (4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4} to

algorithm 3.1. Note that although the size of the CPA required in the previous

computation was 20 bits, we know that there will be no carry-out as the square of a 10

bit number can be no more than 20 bits. Thus we are adding four 20-bit numbers and

therefore the height of each column is 4. The results are:

L = {4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4}

of Full Adders = 38

76

of Half Adders = 2

of Full Adders including CPA = 58

of Half Adders including CPA = 3

of CSA Levels = 2

of CPA Levels = 1

Size of CPA = 21

Number of 2-input gates including CPA = 296

Since there are four such equations, the total number of gates required is 1184. Finally

equations (3.35)-(3.38) have to be evaluated. Each one of these equations requires a

CPA of size 22 bits, or 21 full adders and 1 half adder, giving a total of 107 gates. Four

CPAs would therefore require 428 two-input gates. In summary

Hardware, 4S8 = 7708 (3.39)

Time Delay, 4 S 8 = 7 x Dcsa + 4 x Dcpa (3.40)

To summarize briefly, we observe that our method based on squaring operations, in the

case of 4-point cyclic convolution neither achieves hardware savings nor gain in speed

of computation. However, we note that there was no savings in the number of

operations to begin with.

3.4.4 8-point cyclic convolution-traditional

The cyclic convolution of two eight point sequences is now considered. Let the

two sequences be A and B with A = {a7, a6, a5, a4, a3, a2, ap aQ} and B = {b7, b6, b5,

b4, b3, b2, bj, b0}. Let each of these points be of length 8 bits and represented in two's

complement form. A traditional implementation would require the computation of 64

products, i.e. every point of a sequence is multiplied with every point of the other

sequence. The cyclic convolution C is given by C = {c7, c6, c5, c4, c3, c2, Cj, c0} with

c o , C7 defined as

co = aobo + a7bi + a6 b2 + asb3 + a4b4 + a3 bs + a2b6 + aib7 (3.41)

ci = aibo + aobi + a7 b2 + a6 b3 + asb4 + a4 bs + a3b6 + a2 b7 (3.42)

C2 = a2 bo + ajbi + aob2 + a7b3 + agb4 + asbs + a4b6 + a3b7 (3.43)

C3 = a3bo + a2 bj + aib2 + aob3 + a7 b4 + a^bs + asb6 + a4 b7 (3.44)

C4 = a4bo + a3 bi + a2 b2 + aib3 + aob4 + a?b5 + a^be + asb7 (3.45)

C5 = asbo + a4 bi + a3b2 + a2b3 + aib4 + aobs + a?b6 + a^o-j (3.46)

C6 = a6 bo + a5bi + a4b2 + a3b3 + a2b4 + aibs + aobg + a7b7 (3.47)

C7 = a7bo + a6 bi + asb2 + a4b3 + a3b4 + a2 bs + aib6 + aob7 (3.48)

Now, as outlined in section 3.4.1, instead of computing each product and then adding

the eight products to obtain a point of the cyclic convolution, we can line up all the

partial products of the eight points and then add them simultaneously using a CSA tree

implementation. This way, we would need only one CPA for each point of the cyclic

convolution. The list L for a 8 by 8 multiplication is given as {1, 2, 3, 4, 5, 6, 7, 8, 7,

6, 5, 4, 3, 2, 1}. Since we are trying to add the partial products of eight multiplications,

each element of this list has to be multiplied by 8. Applying this list to algorithm 3.1, the

following results are obtained:

L = {8, 16, 24, 32, 40, 48, 56, 64, 56, 48, 40, 32, 24, 16, 8}

of Full Adders = 476

of Half Adders =18

of Full Adders including CPA = 493

of Half Adders including CPA = 19

of CSA Levels =10

of CPA Levels = 1

Size of CPA =18

Number o f 2-input gates including CPA = 2503

Since there are eight points the total number of two input gates is given as 20,024 while

the time delay remains as 10xDCSA + 1 xD CpA. This is because we are performing the

computation of all eight points in parallel. Also, each bit of the partial products requires

a two input gate. Since each multiplication operation consists of 8 partial products each

with 8 bits, the number of two input gates required to obtain these bits is equal to 64.

Since there are 64 multiplications the total number of two input gates required to

represent these bits is equal to 4096. The time delay to compute these bits is the delay of

one two-input AND gate, however, again this delay is ignored as no matter which

method is used it always exists. The results are summarized in the following two

equations:

As the problem size becomes larger, i.e. both the number of points and the size

of each point increases, it may not be possible to add the partial products of all the

multiplication operations simultaneously. Therefore in equations (3.41)-(3.48) each of

the 64 products are first computed. Then each point is evaluated by adding its eight

associated operands. This addition is again done using a CSA tree implementation.

Thus, clearly there are two CPA delays and some CSA delays which are determined as

follows. Since each of the 64 multiplications are of the same size as that in section

3.4.2, hardware and delays associated with the computation are the same as that

estimated earlier. This cost is therefore 261 two-input gates for each multiplication for a

total of 16704 and a time delay of 4 x D CSA + 1 xD CpA with a CPA size of 15. Each

Hardware, 8T8 = 24120

Time Delay, 8T8 = 10xD CSA + 1 xD CpA

(3.49)

(3.50)

3.4.5 8-point cyclic convolution-modular

79

one of these multiplication operations produces a result that can be at most 16 bits long.

Eight such results are added to obtain one point of the cyclic convolution. The hardware

and delay associated with such a computation can be obtained by applying the list L =

{8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8} to algorithm 3.1. The following results are

obtained:

L = {8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8}

of Full Adders = 92

of Half Adders = 4

of Full Adders including CPA = 109

of Half Adders including CPA = 5

of CSA Levels = 4

of CPA Levels = 1

Size of CPA =18

Number of 2-input gates including CPA = 555

Since there are eight points the number of two-input gates is 4440. Also, as explained

before we need an additional 4096 two-input gates to generate the bits of the partial

products. Thus the total hardware and speed delays associated with the modular

approach can be summarized as

Hardware, 8M8 = 25240 (3.51)

Time Delay, 8M8 = 8 x D CSA + 2 x D CPA (3.52)

We must note that such a modular approach has, in all the steps limited the

height of the tallest column in any CSA tree to a maximum of 8. Thus in order to ensure

a fair comparison we must make sure that our new proposed methods do not involve

steps that require CSA trees whose columns are much taller.

3.4.6 8-point cyclic convolution-squares

In this section we estimate the hardware cost and speed required based on our

method, using a total of 48 squares. Our method can be divided into three distinct

modules as shown in figures 3.8, 3.9, and 3.10. We do not develop all the equations as

the intent in this section is primarily to estimate the hardware cost and speed. However,

we list all the steps in each module and their associated costs and delays.

M odule 1: Computes (c0 + c4), (c2 + c6), (cj + c$), (c3 + Cj)

Step 1:

a) Use theorem 2.3 to generate terms x81 through x84.

b) Use theorem 2.4 to generate terms y81 through y84.

c) Use theorem 2.5 to generate terms z8J through z84.

d) Use theorem 2.6 to generate terms z85 through z88.

Each of the above 16 terms are of the same size and also have an identical

structure, i.e. they are formed by adding/subtracting 8 points of the input sequences.

The hardware and delay associated with the computation of these terms can be estimated

by applying the list L = {8, 8, 8, 8, 8, 8, 8, 8} to algorithm 3.1. Note that we are

adding eight 8-bit numbers. Thus the height of each column is equal to 8. The results

are:

L = {8, 8, 8, 8, 8, 8, 8, 8}

of Full Adders = 44

of Half Adders = 4

of Full Adders including CPA = 53

of Half Adders including CPA = 5

of CSA Levels = 4

81

Step 1:

Step 2:

Step 3:

Generate
X81" x84

Generate
Z8 t ' Z84

Generate
y8r y84

Generate
Z85‘ Z88

i f*
Square Square Square Square

i jf22
Add/Subtract Add/Subtract Add/Subtract Add/Subtract

▼ r r 24

adjust r e s u l t* ^ ^ adjust result d adjust result d adjust result

I I ▼ I I j zTj I
Step 4: +

T T I22

adjust result" :> d adjust result CZ adjust result d adjust result

d i r it <r
C0+ C4 C2 + C 6 Cl +C5 C3+S

Figure 3.8: 8-point cyclic convolution-module 1

Step 1:

Step 2:

Generate Generate Generate Generate
yO . yO
81 88 oc

>W y i . y l
81 88

y3 . y 3
81 88

I
Square

Step 3:

i
Add/Subtract

C adjust result

T

I
Square

i .

£

Add/Subtract

i

Square

T ~

Add/Subtract

T

1 10

Square

J 20

Add/Subtract

~ { 2 3 “
adjust result ^ adjust result’ ^ adjust r e s u l t ' ^

T T “
C 2* C 6

c - c1 5 C - C

Figure 3.9: 8-point cyclic convolution-module 2

83

< V 9 C -o - q CL+' C2’ C6

i t
+ - + -

I i i i"âdjust result̂
1

âdjust result̂
I

âdjust result̂
1

âdjust result̂)
i ig▼C0 Vc4 Tc2 ▼C6

Ci+S 1 >--------
c r S

----------------1 c3+qI ,---------
C3 - S

▼ 1 ^ i 1 — *
+ - + -

I T
(^adjust result^) ^adjust resu lt^

T J

I

21

^adjust result^ ^adjust result^

Figure 3.10: 8-point cyclic convolution-module 3

of CPA Levels = 1

Size of CPA =10

Number of 2-input gates including CPA = 275

Since there are 16 such equations, we have a total of 4400 two-input gates. Results of

step 1 can be summarized as

Step 1, hardware = 4400 (3.52)

Step 1, time delay = 4 xD CSA + 1 x DcpA (3.53)

We note that the height of the tallest column in this step is 8.

Step 2:

Each of the terms obtained in step 1 is of length 11 bits and needs to be squared,

resulting in a term that can have at most 22 bits. The cost and delay associated with the

computation of the square can be obtained by applying the list L = {1, 0, 1, 2, 2, 3, 3,

4, 4, 5, 5, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1}, to algorithm 3.1. The results are:

{1, 0, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1}

of Full Adders = 27

of Half Adders = 9

of Full Adders including CPA = 48

of Half Adders including CPA = 10

of CSA Levels = 3

of CPA Levels = 1

Size of CPA = 22

Number of 2-input gates including CPA = 260

Since there are 16 such squares, the total number of 2-input gates can be given as 4160.
n o

Also, each ol the 16 terms that need to be squared have
v 2 y

+ 10 = 65 input bits of the

85

form a^j, thus requiring a total of 1040 two-input AND gates. Results of step 2 can be

summarized as

Step 2, hardware = 5200 (3.54)

Step 2, time delay = 3 xD CSA + 1 x DCpA (3.55)

We note that the height of the tallest column in this step is 6.

Step 3:

The results of step 2 are used to generate 4 ̂ c2j , 4 ^ c 2 i+i » c2i ("I)1

, 4^T c2i+1 (-1)‘ based on equations (2.33), (2.38), (2.43), and (2.48). This is

achieved by grouping the 16 squares into sets of four and adding/subtracting the terms.

The hardware and delay associated with this computation is obtained by applying the list

L = {4, 4}. Note that we are

adding four 22-bit numbers. The results are:

L = {4, 4}

of Full Adders = 42

of Half Adders = 2

of Full Adders including CPA = 64

of Half Adders including CPA = 3

of CSA Levels = 2

of CPA Levels = 1

Size of CPA = 23

Number of 2-input gates including CPA = 326

Since there are four such groups, the total is 1304. Results of step 3 can be summarized

as

Step 3, hardware = 1304 (3.56)

Step 3, time delay = 2 x D CSA + 1 xD CpA (3.57)

86

We note that the height of the tallest column in this step is 4. The output of the CPAs at

this step have a length of 24 bits. However, since we know that the result is four times

the desired value, the last two bits of this computation are zero and can hence be ignored

to divide by four. Also, since each of ^ c2i, X c2i+l’ X c2i t-1)1’ X c2i+l ('1)!

is the sum of four points of the cyclic convolution, their length cannot be greater than 16

+ log2 32 = 21. Thus the most significant bit (MSB) is also stripped.

Step 4:

The following computations now need to be performed:

X C2i+ X c2i (-1)1 = 2(C 0 + C4)

X C2i- X C2i H) 1 = 2(C 2 + C6)

X C2i+1 + X C2i+1 (-D 1 = 2 (C 1 + C 5)

X c2i+l “ X c2i+l C-1)1 =2(c3 + c7)

Each of these computations requires a CPA of size 21 bits. The cost of such a CPA is

equal to 102 two-input gates. Since we have four CPAs the total cost is 408 gates.

Results of step 4 can be summarized as

Step 4, hardware = 408 (3.58)

Step 4, time delay = lx D cpA (3.59)

Again, since we know that the result is twice the desired value, the last bit of this

computation is zero and can hence be ignored to divide by two. Also, since each of

X C4i’ X c4i+l> X c4i+2’ X C4i+3 is the sum ° f tw0 Points of the Cyclic

convolution, their length cannot be greater than 16 + log2 16 = 20. Therefore the MSB

is also stripped. Thus these results are of length 20 bits.

87

M odule 2: Computes (c0 - c4), (c2 ~ c6), (cj - c5), (c3 - c7)

Step 1:

a) Use theorem 2.8 to generate terms Vg\ through Vgg.

b) Use theorem 2.8 to generate terms Vgj through Vgg.
2 2c) Use theorem 2.8 to generate terms Vgj through Vgg.

a
d) Use theorem 2.8 to generate terms Vgj through Vgg.

Each of the above 32 terms are of the same size and also have an identical

structure, i.e. they are formed by adding/subtracting 4 points of the input sequences.

The hardware and delay associated with the computation of these terms can be estimated

by applying the list L = {4, 4, 4, 4, 4, 4, 4, 4} to algorithm 3.1. Note that we are

adding four 8-bit numbers. Thus the height of each column is equal to 4. Previously,

the hardware cost for such a computation was calculated as 116 two-input gates and the

time delay as 2 x D CSA + 1 x DCPA with a CPA of size 9 bits. Since there are 32 such

terms, we have a total of 3712 two-input gates. Results of step 1 can be summarized as

Each of the terms obtained in step 1 is of length 10 bits and needs to be squared,

resulting in a term that can have at most 20 bits. The cost and delay associated with the

computation of a 10 bit square was previously estimated at 211 two-input gates and a

time delay of 3 x D CSA + 1 xD CPA with a 20-bit CPA. Since there are 32 such squares,

the total number of 2-input gates can be given as 6752. Also, each of the 32 terms that

Step 1, hardware = 3712

Step 1, time delay = 2 x DcsA + 1 x DCPA

We note that the height of the tallest column in this step is 4.

(3.60)

(3.61)

Step 2:

88

need to be squared have 54 input bits of the form a^j, thus requiring a total of 1728

two-input AND gates. Results of step 2 can be summarized as

Step 2, hardware = 8480 (3.62)

Step 2, time delay = 3 xD CSA + 1 x DCpA (3.63)

We note that the height of the tallest column in this step is 6.

Step 3:

The results of step 2 are used to generate 4 X c 4i • 4 2 c 4 i+ l ’ 4 X c 4i (-1)1

, 4 ^ c4i+j (-1)1 based on equation (2.38). This is achieved by grouping the 32

squares into sets of four and adding/subtracting the 8 terms within each set. The

hardware and delay associated with this computation is obtained by applying the list L

={8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8} to algorithm 3.1. Note that

we are adding eight 20-bit numbers. The results are:

L = {8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8}

of Full Adders =116

of Half Adders = 4

of Full Adders including CPA = 137

of Half Adders including CPA = 5

of CSA Levels = 4

of CPA Levels =1

Size of CPA = 22

Number of 2-input gates including CPA = 695

Since there are four such groups, the total is 2780. Results of step 3 can be summarized

as

Step 3, hardware = 2780 (3.64)

Step 3, time delay = 4 x D CSA + 1 xD CPA (3.65)

89

We note that the height of the tallest column in this step is 8. Also since we know that

the result is four times the desired value, the last two bits of this computation are zero

and can hence be ignored to divide by four. However, since each of ^ c4i (-1)1,

c4i+l ('!)*’ X c4i+2 ("I)1 * X c4i+3 (“I)1, is the sum of two points of the cyclic

convolution, their length cannot be greater than 16 + log2 16 = 20. Therefore the MSB

is also stripped. Thus the length of each of these results is 20 bits.

M odule 3: Computes Cq, c 4, c 2, c 6, c }) C j , c 3, c 7

This module adds/subtracts the results of modules 1 and 2 to obtain the points of

the cyclic convolution. All the computations are done in a single step with the help of 8

CPAs of size 20 bits. The cost of such a CPA is 97 gates thereby giving a total of 776

gates. Results of this module can be summarized as

Step 1, hardware = 776 (3.66)

Step 1, time delay = 1x Dcpa (3.67)

Again, since we know that the result is twice the desired value, the last bit of this

computation is zero and can hence be ignored to divide by two. Also, since each point

of the cyclic convolution cannot be of length greater than 19 bits, the MSB is also

stripped.

In summary, adding the results of equations (3.52), (3.54), (3.56), (3.58), (3.60),

(3.62), (3.64), and (3.66) we obtain the hardware cost of all modules as

Hardware, 8S8 = 27060 (3.68)

Looking at figures (3.8) and (3.9) we observe that these two modules operate in

parallel and therefore the module with the higher delay and the delay of module 3

account for the total delay. Thus adding the results of equations (3.53), (3.55), (3.57),

(3.59), and (3.67) we obtain the total delay for the computation as

Time Delay, 8S8 = 9 x DcsA + 5 x DCPA (3.69)

3.4.7 16-point cyclic convolution-traditional

Since we have already presented the cyclic convolution of 4 and 8 points in

detail, we keep the presentation over here very brief. Each point of the cyclic

convolution is obtained by adding simultaneously the summands of 16, 8x8 products.

The cost of such a computation is 5066 gates for a total of 81056 gates. The number of

gates required for the summands is 256 times 64, or 16384. In summary,

Hardware, 16T8 = 97440 (3.70)

Time Delay, 16T8 = 11 xD CSA + 1 xD CpA (3.71)

We note that the height of the tallest column is 128.

3.4.8 16-point cyclic convolution-modular

Each of the 16 products that constitute a single point of the cyclic convolution

are first evaluated and then the 16 results are added. The cost of an 8x8 product is 261

gates and since in all there are 256 such products we have a total of 66816 gates. The

cost of adding 16 products is 1198 gates and for 16 such computations we have a total

of 19168 gates. The number of gates required by the summands is as before, 16384. In

summary,

Hardware, 16M8 = 102368 (3.72)

Time Delay, 16M8 = 10xD CSA + 2 x D CPA (3.73)

We note that the height of the tallest column is 16.

3.4.9 16-point cyclic convolution-squares

Module 1 computes (c0 + c4 + c8 + c12), (c2 + c6 + c 10 + c14), (cj + c5 + c9 + c 13), and

(c3 + c7 + cn + c 15). The cost and time delay associated with such a computation can

be summarized as

91

Hardware, module 1, 16S8 = 17552 (3.74)

Time Delay, module 1 ,16S8 = 11 x Dcsa + 4 x DcpA (3.75)

Module 2 computes (c0 - c4 + cg - c 12)> (c2 " c6 + c10' c14̂ ’ (C1 ' c5 + c9 " c 13^ ant* (c3

- c? + c lj - c 15). The cost and time delay associated with such a computation can be

summarized as

Hardware, 16S8, module 2 =23116 (3.76)

Time Delay, 16S8, module 2 =11 xD CSA + 4 x D cpA (3.77)

Module 3 computes (c0 - cg), (c2 - c10), (c4 - c12), (c6 - c 14), (^ - c9), (c3 - cn), (c5 -

c i 3), (c7 - c15). The cost and time delay associated with such a computation can be

summarized as

Hardware, 16S8, module 3 = 61352 (3.78)

Time Delay, 16S8, module 3 =11 xD ^SA + 3 xD CPA (3.79)

Module 4 computes c0, Cj, c2, c3, c4, c5, c6, c7, cg, c9, c10, cn , c12, c13, c14, and c15.

The cost and time delay associated with such a computation can be summarized as

Hardware, 16S8, module 4 = 1632 (3.80)

Time Delay, 16S8, module 4 = 1x Dcpa (3.81)

In summary,

Hardware, 16S8

Time Delay, 16S8

3.4.10 Discussion

Table 3.1 summarizes the hardware cost in 2-input gates for computing the

cyclic convolution of 4, 8, and 16 points based on all three methods. At first glance it

= 103652 (3.82)

= 11x Dcsa + 6 x Dcpa (3.83)

3.1: Hardware cost in 2-input gates for cyclic convolution of 4, 8, and 16
points

Method 4 points 8 points 16 points

Traditional 5896 24120 97440

Modular 6144 25240 102368

Squares 7708 27060 103652

93

appears that our method is at best competitive. But this is not the case for several

reasons.

1) In the traditional implementation there are basically no modules. Therefore the

silicon area of the chip is directly a function of the height of the tallest column in the

CSA tree. The height of the tallest column is the product of the number of points in the

sequences to be convolved and the word length of each point. For instance, with a word

length of 8 bits per point, in the case of four points the height is 4 times 8 or 32, for 8

points it is 8 times 8 or 64, and for 16 points it is 16 times 8 or 128. Clearly as the

number of points increases the height increases. If in a given technology, this height can

be managed then the traditional method is the best method of implementation. On the

other hand if the problem has to be broken into smaller components then one must have

a systematic way of doing so. The modular approach is one method and our approach

based on squares is the other. Thus in the event the traditional implementation is not

feasible one might consider implementations based on these methods and thus the

comparison is restricted to these two methods, modular and squares.

2) Looking at table 3.1 again, we find that in the case of 4 points our method based

on squares is worse than the modular by 25%, in the case of 8 points by 7%, and in the

case of 16 points by 1%. However, from table 2.1, we see that the savings in squaring

operations in the three cases is 0%, 25%, and 31.25%. Thus it is only reasonable for us

to speculate that with an increase in the number of points being convolved the hardware

savings will increase.

3) Our main purpose of all the preceding analysis was to show that in spite of the

increase in the number of additions caused by the use of our methodology, the decrease

in squaring operations will be more beneficial. Now, here is the surprise. All the

preceding implementations were 100% parallel. In other words they used many more

addition operations than that given by equation (2.69). This is because, in the

construction of our equations, that need to be squared, there are several common terms.

But for a parallel implementation these common terms are evaluated as many times as

they are needed, thus increasing the hardware. By the same token, for the modular

approach, there are no common terms in the first place and therefore there is no question

of redundant computation. Thus our implementation model is very kind to the modular

approach, in the sense that it is ideally suited to that approach. Thus it is only fair for us

to conclude that if an implementation structure that is capable of exploiting the properties

of our method is selected, then the savings in squaring operations will pay off.

4) One might argue as to why another model that would be more suitable to our

approach was not selected. However, if one has to be fair to all methods, then the

selection of such a model would be difficult if not impossible. Therefore we chose the

worst case scenario for our method which at the same time is best case scenario for the

modular method and have shown that in spite of being against all odds, we are at the

least competitive.

5) With regard to the speed of computation, for the 100% parallel implementation,

referring to table 3.2 we can see that our method is the slowest. However, our approach

has a lot of other properties that can be exploited by a clever architecture. To illustrate,

looking at figure 3.8 one can see that the four CPAs used in step 3 can also be used for

step 4 with minor modifications. These minor modifications require negligible additional

hardware and at the same time do not slow down the operations. Similarly we observe

that the hardware required by module 3 is redundant as the same can be achieved by

CPAs in step 3 of modules 1 and 2. Thus by simple modifications to the architecture we

can reduce the hardware costs. Our method thus also provides for alternate

Table 3.2: Time delay o f cyclic convolution o f 4, 8, and 16 points

Method 4 points 8 points 16 points

Traditional 8D CSA + 1d c pa 10DCSA + 1DCPA 11d c s a + 1d c pa

Modular 6D c s a + 2D CPA 8d c s a + 2d c p a 10d c s a + 2d c pa

Squares 7D c s a + 4 D CPA 9 d c s a + 5D c p a 1 1d c s a + 6 d c p a

implementations while such is not the case with either the traditional or modular

approach. Further, the fine granularity of our approach makes it an ideal candidate for

incorporating several sophisticated methods, for example, pipe-lining and systolic

arrays, to improve the speed of the computation. However, while employing these and

other techniques one must also account for the interconnection delays. Analysis in this

area is highly application dependent. For instance since the convolution operation is

quite often required to be performed in real time, several different sequences have to be

processed one after the other. Thus, the throughput of the model should not only

include the number of points processed per cycle but also include the number of

sequences processed per cycle.

In summary, while we have not provided an actual factor for the amount of

savings in CSA based implementations, we have, however, convincingly demonstrated

with the help of the preceding sections that in spite of an increase in the number of two-

operand additions our method produces efficient designs. In the next section we

consider hybrid implementations, i.e. we implement the squaring and multiplication

operations using ROMs and show that in such a case our method yields phenomenal

hardware savings in spite of using an unkind model.

3.5 Hybrid implementation of cyclic convolution

In a hybrid implementation of the cyclic convolution operation, we substitute the

CSA implementation of the squaring or multiplication operation by a ROM

implementation. The rest of the implementation is left unchanged. We first present a

ROM model and derive its cost and speed functions. We then use these functions to

estimate the cost and speed of the hybrid implementations of the cyclic convolution

operation. Since the traditional approach involves no multiplication operation (the partial

products were simply added) there exists no hybrid implementation for that approach.

ROM Hardware Cost: The ROM can be designed based on the model given in

[55]. In such a model the address lines are split into two halves called the X and Y

sections. The address lines in X and Y can then be decoded simultaneously. Let the

ROM be of size 2L x n, where L is the number of address lines and n is the number of

outputs. If there are L address lines then each half has L/2 address lines with 2L/2

minterms. In each of these decoders every minterm requires (2°+ 21 + ... + 2 l̂og2

) 2-input gates. The outputs of the diode matrix are logically ANDed with the outputs

of the Y decoder before being multiplexed to form the final output. The number of gates

required for this purpose is (2° + 21 + ... + 2^og2 2**(L/2) ̂ 2-input gates. Adding and

simplifying we have,

ROM, Hardware = 2L/2 (2n + L - 2) - n (3.84)

In the above we note that each of the 2L 2̂ minterms are realized independently.

However, we assume that each of these minterms is realized only once for every output

of the ROM. Also we ignore the cost and delay of the diode matrix.

ROM Time delay: The delay of the such a model is given by [55] in gate delays as

ROM, Delay =2 + log2 (L/2) + log2 2(L/2) (3.85)

The above computation assumes that the X and Y decoders operate in parallel and the

input line from the diode-matrix is multiplexed at the outputs of the Y decoder. We note

that this model does not account for several unique characteristics of ROM

implementations [55], However, the purpose of using this model is to provide a more

meaningful hardware cost in terms of gates as opposed to ROM bits and also to estimate

the time delay of the overall implementation.

98

3.5.1 8-point cyclic convolution-hybrid, modular

In section 3.4.2, the results of the 64 multiplications were obtained by using

CSA tree implementations. Instead if we were to use ROMs for the multiplication

operations then we would need 64 ROMs, each of size 216x 16 or a total of 67,108,864

ROM bits. In terms of gates, from equation (3.84) we get the number of 2-input gates

as 752640. The time delay of this ROM is computed from equation (3.85) as 13 gate

delays. Over and above this we would need 4440 two-input gates for adding the results

of the ROMs with a time delay of 4 x D CSA + 1 x DCPA. In summary,

Hardware, 8HM8 = 757080 (3.86)

Time Delay, 8HM8 = 13 + 4 x D CSA + 1 x DCPA (3.87)

3.5.2 8-point cyclic convolution-hybrid, squares

In section 3.4.6, the results of the 48 squares were obtained by using CSA tree

implementations. Instead if we were to use ROMs for the squaring operations then we

would need 16 ROMs, each of size 211 x 22 and 32 ROMs, each of size 210 x 20 or a

total of 1,376,256 ROM bits. In terms of gates the count is 86544 2-input gates with a

time delay of 10 gates. Over and above this we would need 13380 two-input gates for

adding the results of the ROMs with a time delay of 4 x D CSA + 3 x Dc p A . In

summary,

Hardware, 8HS8 = 99924 (3.88)

Time Delay, 8HS8 = 1 0 + 6 x D CSA + 4 x DCpA (3.89)

Clearly, from equations (3.86)-(3.89), one can see that our method is very

attractive. We require approximately one-eighth the gate count of the hybrid-modular

method while being slower by about only 3 x DCPA.

3.6 Applications to computer arithmetic

The multiplication operation is one of the four basic operations and is used

extensively, both in general purpose and special purpose computing. As such there

exists a vast amount of literature on the variety of multiplication algorithms, references

[47]-[49],[56] to name a few. Recently new multipliers modulo (2N -1), [51] and

modulo (2N +1), [61] have been developed. Apart from the requirements of computer

arithmetic, the fields of digital signal processing and cryptography have several

algorithms that perform arithmetic in modular rings [17],[62]. Multipliers designed

using look-up tables [46],[47],[51] offer attractive speed-complexity trade offs [61],

however their main draw back has been excessive ROM sizes and thus the inability to

integrate the entire design on a single chip.

3.6.1 Modulo 2n -1 multiplication

Consider the multiplication of two N-bit binary numbers A and B. Let each of

the numbers be decomposed into four parts given as [a3, a2, ai, ao] and [b3, b2, bi,

bo}. The number A is then given as a323N/4 + a222N/4 + ai2N/4 + ao, and number B can

be evaluated in a similar fashion. Then their product modulo 2N -1 can be given as

<A x B > 2n _j = < co + c i2 n/4 + c22n/2 + c‘323n/4 > 2n (3.90)

with co, c i, C2, and C3 given by equations (3.2)-(3.5). Note that the Cj in equations

(3.2)-(3.5) are the terms of cyclic convolution of two four point sequences with the

points being aj and bj. Thus we can apply the theorems developed in chapter 2 to obtain

co> c i, C2 , and C3. However, over here since our objective is to minimize the total

number of ROM bits and not the total number of squaring operations we use theorems

(2.3)-(2.6). We then define equations Xy, yy, and Zy as given by equations (3.10)-

100

(3.25). Then theorems (2.3)-(2.6) give us 4(c0 + c2), 4(cj + c3), 4(c0 - c2), 4(cj - c3).

Finally equations (3.26)-(3.29) give the values of co, ci, C2, and C3.

Each square required by equations (3.26)-(3.29) is realized using a ROM. The

advantages of such techniques are detailed in references [47]-[51]. Although the number

of squares required is more than that of [51] the total number of ROM bits required is

less than that required by [51]. Hardware in terms of adders and subtracters is

comparable with that required by [51]. Section 3.6.4 offers a detailed comparative

analysis.

3.6.2 Extending the modulo 2N -1 multiplier

Continuing with the same notation as before, the modulo 2N +1 product of two

numbers A and B can be given as

<A x B> 2n +1 = < d0 + di2N/4 + d22N/2 + d323N/4 > 2n +1 (3.91)

with do, di, d2, and d3 defined as

do = aobo - a3bi - a2b2 - aib3 (3.92)

di = aibo + aobi - a3b2 - a2b3 (3.93)

d2 = a2bo + aibi + aob2 - a3b3 (3.94)

d3 = a3bo + a2bi + aib2 + aob3 (3.95)

Note that term d3 of equation (3.95) is the same as term c3 of equation (3.5) and

so no extra ROM bits are required for computing d3. To compute do, di, and d2 define

go = a3bi + a2b2 + aib3 (3.96)

gl = a3b2 + a2b3 (3.97)

g2 = a3b3 (3.98)

Then

do = co -2go (3.99)

101

di = ci -2gi (3.100)

d2 = C2 -2g2 (3.101)

The terms go, g i, and g2 can be computed by directly applying the quarter

squared algorithm [47]-[51] while these equations are not presented here. Doubling

these terms can be obtained by simply shifting the numbers to the left by one position

and thus this needs no extra ROM bits.

The product of two numbers A and B modulo 2N can be given as

<A x B> 2n = < e0 + ei2N/4 + e22N/2 + e323N/4 > 2n (3.102)

with eo, e i, e2, and e3 defined as

eo = aobo (3.103)

e i= a jb o + aobi (3.104)

e2 = a2bo + aibi + aob2 (3.105)

e3 = a3bo + a2bi + aib2 + aob3 (3.106)

Again, term e3 of equation (3.106) is the same as term c3 of equation (3.5) and so no

extra ROM bits are needed for this computation. The other terms can also be obtained

without the expense of any more ROM bits by using the following equations:

e0 = (c0 + d0) x 1/2 (3.107)

ei = (c i + d i)x 1/2 (3.108)

e2 = (c2 + d2) x 1/2 (3.109)

The full precision product of two integer numbers A and B can be given as

A X B = f0 + fi2N/4 + f22N/2 + f323N/4 + f42N + f525N/4 + f626N/4 (3. i io)

with

fo = aobo = eo (3.111)

fl =aibo + aobi = ei (3.112)

f2 = a2bo + aib] +aob2 = e2 (3.113)

102

f3 = a3bo+ a2 bi + a ib 2 +aob3 = e3 (3.114)

f4=a3bi + a2 b2 + aib3 = go (3.115)

f5 = a3b2+ a2 b3 = gi (3.116)

f6 = a3b3 = g2 (3.117)

Again, all of these computations need no extra ROM bits.

3.6.3 Example

In this section we present a numerical example to illustrate the various

techniques described earlier in this section. Consider two 16-bit numbers A and B with

A = 54682 = (1101010110011010)2 and B = 57811 = (1110000111010011)2 . We

decompose each number into four parts, each with four bits. Thus we have A = {a3, a2,

a i , ao) and B = {b3 , b2 , b j, bo} with a3 = (1101)2 = 13, a2 = (0101)2 = 5, ai =

(1001)2 = 9, ao = (1010)2 = 10 and b3 = (1110)2 = 14, b2 = (0001)2 = 1, bi = (1101)2

= 13, b0 = (0011)2 = 3. Here N = 16 and n = 4.

3.6.3.1 Modulo 2N -1 product

Equations (3.10)-(3.25) give:

X41 = 19, X42 = 11, X43 = 49, X4 4 = -5, y4 i = 42, y42 = -12, y4 3 = 26, y4 4 = 18,

Z4 i =1,742 = 3, Z4 3 = -5, Z4 4 = -3, 7 45 = 4, 7 4 $ = 6 , Z4 7 = -2, and 7 4 % = -6 .

Evaluating equations (3.26)-(3.29) we get co = 330, ci = 240, C2 = 324, C3 = 253.

Evaluating equation (3.90) we have <A x B> 2n _j = 9307 and the result checks correct.

3.6.3.2 Modulo 2N + 1 product

Equations (3.96)-(3.98) give go = 300, gi = 83, and g2 = 182.

Evaluating equations (3.99)-(3.101) we get do = -270, d] = 74, and d2 = -40.

Evaluating equation(3.91) we have <A x B>2n +1= 43907 and the result checks correct.

103

3.6.3.3 Modulo 2N product

Equations (3.107)-(3.109) give eo = 30, ei = 157, and e2 = 142.

Evaluating equation (3.102) we have <A x B> 2n = 26606 and the result checks correct.

3.6.3.4 Full precision product

Equations (3.111)-(3.117) give f0 = 30, fi = 157, f2 = 142, f3 =253, f4 = 300,

f5 = 8 3 ,an d f6 = 182.

Evaluating equation(3.110) we have A x B = 3161221102 and the result checks correct.

3.6.4 Hardware and speed analysis

All the analysis in this section is provided for the case when the product of two

numbers is obtained by decomposing each number into four equal parts, say each with k

bits. Four methods are compared:

i) traditional techniques,

ii) quarter squared algorithm,

iii) new multipliers modulo 2N -1 [51],

iv) techniques of this chapter.

The traditional way of computing co, ci, c2, and c3 would be by using equations (3.2)-

(3.5). Here each product term can be realized by a ROM of size 22k x 2k. Since sixteen

product terms have to be realized, we would need a total of k x 22k+5 ROM bits.

Direct application of the quarter squared algorithm to each term of equations

(3.2)-(3.5) would require for each term two ROMs, each of size 2k+1 x (2k + 2). Thus

sixteen product terms would require a total of (k + 1) x 2k+7 ROM bits.

104

New multipliers modulo 2N -1, [51] requires a total of (2k + 5) x 2k+6 ROM

bits.

Based on our techniques, equations (3.26)-(3.29) dictate that 16 ROMs, each of

size 2k+2 x (2k + 4) would be required, thus giving a total of (k + 2) x 2k+7 ROM

bits.

Table 3.3 summarizes these results and also presents data on the number of

adders required by each method. Here we have assumed that the operation (a - b)

requires only one adder. This is a reasonable assumption because our numbers are

integers, and therefore the operation (a - b) can be realized by (a + (-b)), where (-b) is

the two's complement representation of b. The hardware module for this adder can be

suitably wired to obtain this function. Figures 3.11, 3.12, and 3.13 show the hardware

structure needed to compute co for all methods except that of (iii) which can be found in

[51]. These hardware structures can be replicated appropriately for the other terms. The

number of levels through which the data has to flow is indicated on each figure,

however this might be irrelevant if data is being processed continuously. In such a case

the limiting factor will be the speed at which the ROM can deliver. Method (i) requires a

ROM whose size is in the order of 0 (2 2k) while all the other three methods require

ROMs with sizes of order 0 (2 k). Since method (i) requires the largest sized ROMs, it

will be the slowest. Also since the total number of ROM bits is very high, it will not be

possible to integrate the entire design on a single chip. With respect to speed and

number of ROM bits, methods (ii) through (iv) are comparable. With respect to the total

number of ROM bits required, method (ii), i.e. the direct application of the quarter

squared algorithm, appears to be the best but considering the fact that it requires 60

adders it will be the most complex one to build. Our techniques in this chapter yield the

best trade off for speed and hardware; while they require more ROM bits than the

Table 3.3: Hardware and speed comparison o f various look-up table techniques

Method Total number

of ROM bits

Number

of two

operand

adders

Size of

largest

ROM

Speed as

a function

of ROM

size

Integration

on a single

chip

Traditional

Techniques

k x 22k+5 12 22k x 2k 0(22k) NO,

for N>= 16

Quarter

Squared (k+1) x 2k+7 60 2k+l x (2k+2) 0(2k)

NO,

for N>= 16

Reference[51] (2k+5) x 2k+6 38 2k+3 x (2k+6) 0(2k) Possible

This section (k+2) x 2k+7 40 2k+2 x (2k+4) 0(2k) Possible

106

a 0 b0 a 3 b l

ROM

i

1) Number of levels = 3 (2 adders + 1 ROM)

2) Size of each ROM = 22k x 2k

Fig. 3.11. Hardware architecture to implement equation (3.2) using
traditional techniques

a0 b0 a0 b0

i i i i+ —

ROM ROM

a3 b l a3 bj

U U

4 “

a2 b2 a2 b2

U 1 1

+

ROM ROM

al b3

i i
a l b3

i i
■jfli —

ROM ROM

i_f
+

1) Number of levels = 5 (4 adder + 1 ROM)
k+1

2) Size of each ROM = 2 x (2k + 2)

Fig. 3.12: Hardware architecture for implementing equation (3.2) using the quarter squared algorithm.

a0 a2 b0 bz

ii li
+ +

f l V 1

+ -

f — — |

ROM ROM

- J

a l a3

U
bl hj
H

+
1---------

+
k-k t - J L .

“j- —

fX-
ROM

_t_i
D f \ M

—

R U M

■J
^ —

1) Number of levels: 6 (5 adder + 1ROM)
k+22) Size of ROM = 2 x (2k + 4) +

u

t s

Fig. 3.13: Hardware architecture to realize equations (3.26) and (3.28)

109

quarter squared algorithm, they require far fewer adders. Techniques of this chapter out

perform those of [51] in many respects viz. smaller maximum ROM size, a total of

fewer ROM bits, and higher speed. Also based on the techniques of this chapter, all the

ROMs are of the same size and hence identical. This again is a big advantage for VLSI

designs. The regularity of the hardware architecture is clearly seen in figure 3.13.

Table 3.4 summarizes the ROM requirements for different wordlengths(N) for

the case when the numbers are each decomposed into four parts. Table 3.5 summarizes

the overhead ROM requirements required for computing the product modulo 2N +1,

modulo 2N, and the full precision product. Again, each product is computed by

decomposing each of the numbers into four equal parts. Overhead is defined as the

number of ROM bits needed over and above those required for the computation of the

modulo 2N -1 product. The values are based on equations (3.96)-(3.98), are obtained in

a straightforward manner and are hence not detailed.

3.7 Summary

In this chapter we have discussed several implementation issues of the squaring

and convolution operations. In section 3.2 we presented an intuitive CSA based

implementation for the squaring operation that was faster than the schemes suggested by

[54], We showed, by counter example, that the number of levels required to add a set of

summands in a parallel fashion is not only a function of the height of the tallest column

but is also a function of the heights of the other columns and their relative placements.

In section 3.3 we presented an alternate implementation for the squaring operation and

compared its performance with existing schemes. We found that for VLSI

implementations of small wordlength squarers, the prime factors in the selection of a

design would be regularity and modularity. This was because different schemes for

Table 3.4: Cost Comparison in ROM bits of the various techniques for computing
<A x B> 2n -l

Word

Length

N

Decomposed

Part Length

k

Traditional

Techniques

cost

Quarter

Squared

Alg. cost

Reference

[51] cost

This

section

cost

% savings

(vs. trad,

tech.)

16 4 25 x 2 ™ 10 x 210 13 x 2!0 12x 210 62.50

32 8 210 x 214 18 x 214 21 x 214 20x 2 I4 98.04

64 16 219 x 222 34 x 222 37 x 222 36x 222 99.99

Table 3.5: Cost in ROM bits for integrated multiplier, based on techniques of this
section

Word Decomp­ Mod. (2N -1) Mod. (2N +1) Mod. (2N) Full precis­ %

Length osed Part product cost product product ion product over­

Length overhead cost overhead overhead head

N k (k+2) x 2k+7 6(k+l) x 2k+3 cost cost

16 4 6 x 211 30 x 27 None None 31.25

32 8 10 x 215 54 x 2 ll None None 33.75

64 16 18 x 223 102 x 219 None None 35.41

112

small wordlength squarers had similar hardware costs. In section 3.4 we presented in

detail CSA based implementations for 4, 8, and 16 point cyclic convolutions. The

analysis showed that the increase in the number of addition operations does not

significantly diminish the hardware savings obtained by the reduction in the number of

the squaring operations. We again emphasize that the purpose of the implementations

was solely to argue the case in point and not for the puipose of field implementations.

We also clearly demonstrated that our approach is an excellent candidate for smart

architectures. In section 3.5 hybrid implementations of the convolution operation are

presented. Here, we've shown that if the multiplication and squaring operation are

implemented by ROMs then our method while being a little slower, yields phenomenal

hardware savings. Finally, in section 3.6 we presented an application of the convolution

operation in the field of computer arithmetic, namely, the problem of integer

multiplication. We present the case of a modulo 2N -1 multiplier and show how our

techniques can be extended to multiplication in other rings, namely, modulo 2N +1 and

modulo 2n . We also present the case of full precision multiplication. We show that in all

cases our methods produce significant ROM bit savings when compared with traditional

implementations.

Chapter 4

ROM Based Methods for Computing the
Squaring Operation in Modular Rings

In the previous chapters we developed algorithms for modular multiplication and

cyclic convolution that relied primarily on squaring operations. The focal point of those

algorithms was to how best reduce the number of squaring operations to perform the

desired computation. Also, these algorithms were discussed in the context of full

precision computation. However, signal processing applications often rely on the

properties of the residue number system (RNS) [38] to perform efficient computations.

In such an environment computations are performed over modular rings, the popular

choices being 2n, 2n_1, and 2n+1 [38], [47]. Therefore, in this chapter we focus on

hardware efficient compression schemes for computing the square of a number modulo

2n, modulo 2n -1, and modulo 2n +1, using ROM look-up tables. In this process we

present several schemes and compare their relative merits and de-merits.

In section 4.1 we attempt to motivate the reader by showing how a few simple

arithmetic manipulations can reduce the size of the ROM required for the squaring

operation. These schemes were presented in brief in [63]. In section 4.2 we present our

newly proposed optimized schemes which were also presented very briefly in [53]. In

this chapter these schemes are presented in detail, for both the sake of completeness and

for comparison with the newly proposed schemes.

113

114

4.1 Memory compression schemes for arithmetic in
modulo 2n

Our objective here is to find efficient ways to compute the square of a number.

In this chapter we consider ROM based methods to perform this computation. Let us

consider a number A belonging to the modular ring Z211 = {0, 1 , ..., 2n -1}. Then A has

a n-bit binary representation as in A = a ^ a , ^ ... aja0; aj e {0,1}. Our task is to

compute <A2>2n. where <x>m denotes the operation x modulo m. Our method basically

consists of decomposing the number A into two words, a high word, say AHi, and a

low word, say ALi, and then performing certain arithmetic manipulations to yield

significant savings in ROM bits. We then show that by varying the lengths of AHi and

ALi we can obtain more savings in ROM bits at the expense of an overhead consisting

of a few gates and multiplexers. We present the analysis for three different

decompositions of the number A.

4.1.1 Analysis when the high word is one bit long

Let AH1 be a 1 bit word and AL1 be a n-1 bit word with AH1 = a ^ j and

Aj i = an.2 aja0. Then we have

A = Ajjj2n 1 + Al1 (4.1)

and

A2 = Afn 22"-2 + AH1AL12n + A j1 (4.2)

If n > 2, then 2n -2 > n, <22n'2>2n = 0, and we get

<A2>2n = <A2 !>2n (4.3)

For a table look-up approach, as shown in figure 4.1, the square of the number

A can be computed by simply using a ROM of size 2n x n. We shall refer to this as the

direct or traditional implementation as it involves no arithmetic manipulations. However,

115

> II
-is

3
?P r ‘' ao

/

R O M

n/

o

/

<

?>2"
Figure 4.1: The direct computation o f <A2>2n, ROM size = 2n x n

116

equation (4.3) shows us that the same task can be accomplished by using a ROM of size

2n_1 x n as shown in figure 4.2. Thus we have a savings of 50% in ROM bits with no

additional overhead. In the next section, by applying the same techniques, we analyze

the effects of increasing the length of AH1 and reducing the length of AL1 on the savings

in ROM bits.

4.1.2 Analysis when the high word is two bits long

Let AH2 be a 2 bit word and AL2 be a n-2 bit word with AH2 = ^ -1 ^-2 and

AL2 = an_3 ... aja0. Then we have

and

A = Am 2"'2 + AL2 (4.4)

A2 = A ^2 22n-4 + AH2AL2 2“-> + A l 2 (4.5)

If n > 4, then 2n -4 > n, < 2 2 n ' 4 > 2 n = 0, and we get

< A 2 > 2 n = < A H 2 A L 2 2n 1 + A 2 2 > 2 n (4.6)

The possible values of <AH2AL2 2n_1>2n are shown in Table 4.1. Further,

<AL2 ^ = <(an-3 •" a la0 ^ n ^>2n= ^ ^ - 3 ••• al)2” + *>2n = a()2n *

(4.7)

Combining equation (4.7) and Table 4.1 we can write

, 2 .

<A2>2n =
<AL2>2n ifa n-2= 0

<a02n- 1+ A j2>2n i f a n.2=l
(4.8)

9
If <AL2>2nis represented in binary as b ^ b ^ .- .b jb o , and letting cn.j = a0 ® bn.j

where © denotes the exclusive-or operation, equation (4.8) can then be rewritten as

< A 2> _ fb n - l^ n -2 -^ 1 ^ 0 ^ an-2= ® l (4 9)
<A >2n" k - i b „ - 2 -b ibo if an-2=l J (4-9)

117

\ r V 2 " ‘ 0

R O M

< A2> 2n - < Au ^ n

Figure 4.2: The computation of <A2>2n based on equation (4.3), ROM size = 2n_1x n

Table 4.1: Values of <AH2AL2 2n’1>2n

A H2

^ -1 ^ - 2

<A H2A L22" l>2n

0 0

0 1

1 0

1 1

0

<A L22" l>2n

0

<A L22” 1>2n

119

We note from Table 4.1 that the value of bit a ^ j is irrelevant and thus does not

appear in equation 4.9.

0 n O
To obtain < A l 2 >2ii a ROM of size 2 x n would be sufficient as the length of

ALi is only n-2 bits. Thus we have a savings of 75% in ROM bits when compared with

the direct implementation. However, to obtain <A >2n we need to realize equation (4.9)

and for this in addition to the ROM we would need an exclusive-or gate and a single

2x 1 multiplexer(mux) as shown in figure 4.3. Thus while equation (4.9) produces

more savings in ROM bits than equation (4.3) it also has a small overhead.

In the next section we increase further the length of the high word by one more

bit and simultaneously reduce the length of the low word by one bit. The objective of

the analysis here is to show that while more savings in ROM bits are obtained the

overhead increases in a disproportionate fashion.

4.1.3 Analysis when the high word is three bits long

Let Ah3 be a 3-bit word and AL3 be a (n-3)-bit word with AH3 = a ^ a ^ a , ^

and

AL3 = an_4 ... aja0. Then we have

A = ^H3^n 3 + ^L3 (4.10)

and

A2 = AH322n'6 + AH3Al3 2n"2 + A2 3 (4.11)

If n > 6, then 2n -6 > n, <22n"6>2n = 0, and we get

<A2>2„ = <AH3Al3 2n 2 + A2 3 >2n (4.12)

The possible values of <AH3AL3 2n' 2>2n are shown in Table 4.2. Further,

remembering that AL3 = an_4 ... a ^ , we have

120

k hT an-3 "• a0

/

^ ^ iu n-l

R O M

< A L 2 ^ n = bn - l V 2 - b0

2- to -1 Multiplexer

AT > - c , b
L 2n "" n' 1 " 2 u0

Figure 4.3: The computation of <A >2n based on equation (4.9), ROM size = 2n'2 x n

Table 4.2: Values o f <AH3AL3 2n‘2>2n

^-1

AH3

an-2 an-3

^ H S ^ 2" 2>2n

0 0 0 0

0 0 1 <AL32" 2>2n

0 1 0 <AL32" l > 2 n

0 1 1 <3AL32n 2>2n

1 0 0 0

1 0 1 <AL32" 2>2n

1 1 0 <AL32" 1;>2n

1 1 1 <3AL32n-2>2n

122

<AL3 2 n ^ > 2 n - < (a n -4 — a i a o) 2 n ^ > 2 n

= <(an-4 •" a2 ^ n + al a02n ^>2n

= a i a o 2 n -2 (4 . 1 3)

and similarly

<AL3 2 n ^ > 2 1 1 = < (a n -4 ••• a i a o) 2 n ^ > 2 0 = < (a n - 4 ••• a i) 2 n + a ^ 2 n * > 2 n = a ()2 n *

(4 . 1 4)

Adding (4 . 1 3) and (4 . 1 4) we get

< 3 A L 3 2 n 2 > 2 n = < a i a Q 2 n 2 + a Q 2 n * > 2 n := (a j © a o) a o 2 n ^ (4 . 1 5)

2If < a L3 >2n is represented in binary as d ^ d ^ - d ^ g , and letting hn_j = aj ©

aQ, equations (4 . 1 2) - (4 . 1 5) combined with table 4 . 2 can then be rewritten as

<A >2n =

dn -ld n -2d n -3—dldo

en - le n-2dn-3"-dldo

fn -ld n-2dn-3 -d ld o

g n - le n-2dn-3-"dldo

if an-2an-3 = 00

if an-2an-3 = 01

if an-2an-3 = 10

if an-2an-3 = H .

(4.16)

where the bits en_j, en_2, fn_j, and gn.j are given by

en-l = al ® dn-i ® (ao A dn.2)

en-2 = a0 ® dn-2

fn-l - aQ ® dn-!

g n - l = hn - l 0 d n - l ® (aOA d n-2)

(4.17)

(4.18)

(4.19)

(4.20)

with a denoting the AND operation. We once again see from Table 4.2 that the value of

< a H3 AL3 2n' 2>2n is not a function of bit a ^ j and this is accordingly reflected by

equation (4.16).

Now, to obtain <A23 >2n a ROM of size 2n' 3 x n would be adequate as the

length of Al3 is only n-3 bits. Thus we have a savings of 87.5% in ROM bits when

compared with the direct implementation. However, to compute <A2>2n we need to

123

implement equation (4.16) and for this in addition to the above ROM we would need 6

gates and a 4x 1 multiplexer of word length two. This implementation is shown in

figure 4.4.

The preceding analysis shows that a direct extension of the above method, i.e.

increasing the length of the high word while simultaneously reducing the length of the

lower word results in reducing the number of ROM bits but at the same time increases

the overhead both in terms of gate count and complexity of the design. In the next

section we show the optimal size for the high and low words to obtain not only the

maximum savings in ROM bits but also an overhead that is less than that required by the

above method and is also streamlined with respect to implementation. In a later section

we show that this overhead is also streamlined with respect to arithmetic modulo 2" -1

and modulo 2n +1.

4.2 Optimized memory compression schemes for
arithmetic in modulo 2n

The following proposed schemes were published very briefly in [53]. In this

section the schemes are presented in detail followed by a comparative analysis. We use

the same notation as before and our task remains the same, i.e. we wish to compute

<A2>2n’ where once again <x>m denotes the operation x modulo m.

Recognizing that the first bit that might produce an overflow when an n-bit (n
/A

even) number is squared, is located at the 2 position we decompose the number into

two parts each of length n/2 bits. The technique is explained in detail for the case when

the arithmetic is done modulo 2n and n even. All other cases are summarized in Tables

4.3 and 4.4.

124

L3“ n-4 ••

n-3 /
n-2n-1

R O M

"n-2 j

a 2 = d d _d . . . d
n-1 n-2.n-3 I

n-1 n-1

n-1

n-1 n-2i

n-2 4- to -1 Multiplexer
n-3

n-2

Figure 4.4: The computation of <A2>2n based on equation (4.16), ROM size = 2n'3 x n

125

Table 4.3: Results when n is even. AH = ... a„/2, AL = a(n/2Ha(n/2)_2 ...
a ^ , and QS = 2n 2̂ * Ka h + a l) - (Ajj - A j)2}

Operation Formula Cost in ROM

bits

Overhead %savings o ROM bits

n = 16 n = 32

<A2>2„ < A 2 + QS>2n 5 x 2n/2 x n 4 adders 98.04 99.99

<A2>2n .i <A ^ + A 2 + QS>2n _i 6 x 2n/2 x n 5 adders 97.65 99.99

<A2>2n +i <*A H + a L + QS>2n+i 6 x 2n/2 x n 5 adders 97.65 99.99

Table 4.4: Results when n is odd. AH = ... a(„+i)/2’ AL = a(n_i)/2 — a ia0’
and QS = 2(n-|)/2 |(A H + AL)2 - (AH - AL)2}

Operation Formula Cost in ROM

bits

Over­

head

%savings of ROM bits

n = 15 n = 31

<A2>2n <A 2 + QS>2n 5 x2 (n+1)/2 xn 4addeis 96.09 99.99

<A2>2n A <2 A +A l +QS>2n _j llx2^n"^/2 x n 5 adders 95.70 99.99

<A2>2n +i <-2A ^+A 2 +QS>2n +j l lx 2 (n' 1)/2x n 5 adders 95.70 99.99

127

4.2.1 Analysis when n is even

Consider a number A belonging in the modular ring Z2n with a n-bit

representation as given before. Let AH = an. 1an.2 ... an/2 and AL = \ ni2)-\\nl2)-2 —

sl̂ Oq. Then we have

A = AH2n/2 + AL (4.21)

and

A2 = A ii 2" + Ah Al 2n/2 +1 + A l (4.22)

while

<A2>2n = < AI + Ah Al 2n/2 +1>2n (4.23)

 ^ /a_____ _
The term Al can be computed using a ROM of size 2 x n. The product AHAL can be

realized by using the quarter squared algorithm [47], thus giving

<2n/2 AjjAj >2n = <2n/2 * { (Ah + Al)2 - (Ajj - Al)2}>2ii (4.24)

Each of the square terms in equation (4.24) can be realized using a ROM of size

2n/2 +1 x n. Thus the total number of ROM bits required to compute <A2>2n is 5 x

2n 2̂ x n. For the case when n=16, we have obtained a savings of 98% in ROM bits

while the overhead is two (n/2)-bit adders and two modulo 2n adders of size n. Note

that while n increases the savings in ROM bits increases whereas the overhead remains

the same with respect to the count of adders, i.e. the number of adders is not a function

of n. Also, when it is required to compute terms like -(A), a negator is not needed as

the ROM used for this purpose can be designed to directly generate the negative result.

The implementation of this technique is shown in figure 4.5.

128

n/2. n/2n /2 n/2

n/2 + 1n/2 + 1 n/2

L = b n-lb n-2 '' 'bn/2 -3bn/2 -2 * • -b l bi

n/2 + 1
n/2 + 1

n/2 - 1
n/2 + 1

ROM ROMROM

Scale by
_n/2 -1

A 2
< A >£11

n/2Note: 1) The scaler unit simply shifts it's input to the left by 2 -1
positions. Thus the lower (n/2) -1 bits are zeros and the upper
(n/2) -1 bits are = 0 modulo 2 and are hence ignored. The
remaining bits can be simply hardwired at the appropriate
locations in the next unit and thus the scaler unit requires no
additional hardware.

2) The modulo 2n adders are regular adders with only the
lower n significant bits, i.e. carry's are ignored.

Figure 4.5: The computation of <A2>2n based on equations (4.23)-(4.24), total ROM

bits = 5 x 2n/2 x n

129

4.3 Numerical example

We now present a numerical example to illustrate the techniques presented in
ry

sections 4.1 and 4.2. Our task is to compute <A > 2n with n = 10 and A =
2

a9a8a7a6a5a4a3a2aja0 = 1111011101 = (989)j0. We expect to obtain <989 >1024 = 201.

4.3.1 Illustrating techniques of section 4.1.1

Decomposing A into a 1-bit high word and a 9-bit low word, we get AH1 = a9 =

1 and AL1 = a8a7a6a5a4a3a2a 1ao = 111011101 = (477)10. Equation (4.3) gives

<A2> 1024 = < A li> 1024 = <4772>jq24 = 201 and this agrees with the expected result.

4.3.2 Illustrating techniques of section 4.1.2

Decomposing A into a 2-bit high word and a 8-bit low word, we get AH2 = a9a8

= 11 = (3)i0 tind Aj^2 “ a7a6a5a4a3a2a l a0 = 11011101 — (221) j q . Thus =

<2212> 1024 = (713)10 = b9b8b7b6b5b4b3b2b jb0 = 1011001001. Since an_2 = a8 = 1,

equation (4.9) gives <A > j024 = c9b8 ... b |b 0 with c9 = aQ © b9 = 0. Plugging the

values we have <A2>1024 = 0011001001 = (201)10 and this agrees with the expected

result.

4.3.3 Illustrating techniques of section 4.1.3

Decomposing A into a 3-bit high word and a 7-bit low word, we get AH3 =

” 111 — (7)io &nd A jj = a6a5a4a3a2ala0 ^ 1011101 — (93)jo* ^^L 3^2^ =

<932>j024 = (457) 10 = d9d8d7d6d5d4d3d2d2d0 = 0111001001. Since ^ ,2 an-3 = a8a7 =

11, equation (4.16) gives <A2> 1024 = g9egd7... d jdQ with equations (4.18) and (4.20)

130

giving g9 = aj © aQ ® d9 0 (aQ a d8) and e8 = aQ © d8. Plugging the values we have

<A2>1024 = 0011001001 = (201)10 and this agrees with the expected result.

4.3.4 Illustrating techniques of section 4.2.1

Decomposing A into a 5-bit high word and a 5-bit low word, we get AH5 =

= 11110 “ (30) jq and = 11101 — (29)jq. Thus ”

<292>io24 = (841)iq. Equation (4.24) gives <26AHAL>2n = <24{(AH + AL)2 - (AH -

AL)2}>2n = <24{592 - 12} >1024 ” 384. Plugging the values into equation (4.23) we

have <A2>1024 = <384 + 841>1024 = (201)10 and this agrees with the expected result.

4.4 Comparing techniques of section 4.1 with 4.2

In order to make a fair comparison of the techniques presented in section 4.1

with those of section 4.2 we decompose the number as given in section 4.2 and then

apply the techniques of section 4.1. We compare the two techniques with respect to

hardware cost and speed. The hardware cost is expressed as a function of 2-input gates

while the speed as a function of gate delays. Since both methods are implementing

equation (4.23) the cost for implementing the term Al does not need to be taken into

account as both methods implement this term in exactly the same fashion, viz. using a
n/ry

ROM of size 2 x n. The difference in cost and speed arises based on the manner in

which the other term, namely AHAL 2nl2 +1 is implemented and added to A2 .

4.4.1 Cost and speed analysis for section 4.1

In order to implement the term AHA L 2nl2 +1 we would need (n/2) -1

multiplexers of size 2^nl2 ̂4 x 1. We arrive at this figure based on the following:

Recall that in this method we make use of the fact that the lower (n/2) + 1 bits of

the end result is the same as the lower (n/2) + 1 bits of the term A2 . This is simply

131

because the term AHAL 2n/2 +1 is the quantity AHAL shifted to the left by (n/2) + 1

positions with zeroes filled in. Thus the remaining (n/2) - 1 bits of the end result are

determined by the summation of AHAL with the upper (n/2) -1 bits of the term A f . This

accounts for the number of multiplexers. This scheme is pictorially shown in figure 4.6.

Let AhAl be represented in binary as rh. |r h_2 ...r0 and the upper (n/2) -1 bits of the term
9

Aj^as S|1_1S|1_2 •••Sq where the subscript h also represents the number of bits in the high

word.

Since AH is n/2 bits long its value lies in the range 0 to 2̂ n/2 ̂-1. However, the

most significant bit of AH i.e an_1 has a weight of 211/2 and when multiplied by 2n/2 +1

it gives ajj.j x 2n which modulo 2n is equal to 0. Therefore the only bits of AH that are

of interest to us are an_2an_3 .~a(n/2). This gives us 2^n/2^ _1 different terms to be

multiplied with AL 211/2 +1 thus giving us the size of the multiplexer as 2̂ n/2-> -1 x 1.

2 2
Let Al be represented in binary as bn lbn_2 ...bjb0. Note that Af, is inherently

a n-bit number. The inputs to the multiplexer are terms, each one of which is the sum of

^n-l^n-2 — b(n/2) +1 anc* one ° f the Aj jAj terms. (There are 2^n/2^ s u c h terms).

The following assumptions are made for calculating the amount of hardware:

1) We assume that the design is based on 2-input gates. We do not count the cost

of inverters. We allow all types of 2-input gates including exclusive-or gates.

2) All gates have a fanout of 1. This assumption is necessary as the technique

employed here is essentially bit manipulation and we are trying to give a general formula

for any size n. While this estimate gives a conservative estimate on the number of gates

it is a fair assumption as the same criteria is applied to the techniques of section 4.2.

Also most units of section 4.2 have fanouts that are not a function of n and so to allow

an ar bitrary fanout will not be fair as the size of a gate is also a function of the fanout.

L

n/2 bi ts n/2 bits

.n/2 + 1

n/2 -1 bits

n/2 -1 '

^ — ►
n/2 -1

0

Mux

------------------► n/2 -1
2 -1

lower n/2 -1 bits of

n/2 +1' /

< A >2n

Figure 4.6: Basic scheme for techniques of section 4.1

133

The size o f the overall multiplexer is determined as follows:

Let p be the number of select lines and q be the number of bits in each input data word.

The number of 2-input gates for q multiplexers each of size 2P x 1 is calculated as

follows:

Since there are p select lines, there are 2P minterms each containing p-bits. Each

minterm will have log2p stages, thus giving the number of gates as (2° + 21 + ... +

2Iog2 p -1). Normally the select lines of all the multiplexers would be tied together

implying that each minterm needs to be realized only once. However, since we are

assuming a fanout of 1 we cannot use this fact and so these terms have to be realized q

times. In each multiplexer, each minterm is combined with one bit of the input word.

Since there are 2P minterms the number of stages required to transfer one bit of the q-bit

input to the output is equal to p, thus giving the number of gates as (2° + 21 + ... + 2P).

Thus the total number of 2-input gates for the multiplexer is given by,

mux hardware = q2p(2° + 2 1 + ... + 2log2 p -1) + q(2° + 21 + ... + 2P) (4.25)

In our case p = q = (n/2) -1. Plugging this into the above equation and simplifying we

get

Mux h/w = (n/2 -l)[2n/2 _1 (2log2<n/2 -D -1) + (2n/2 -1)] (4.26)

The computation for the number of gates required for obtaining each of the input

words is based on a recursive formula and is thus not as straight forward as the above

analysis. It is thus presented in detail. Let Gjj denote the number of gates required for

computing the input words to the multiplexer when the high word has h bits and let gj

denote the number of gates required for the modulo 2n addition of two i-bit words.

For the case when the high word is one bit long there is no additional hardware.

Thus Gj = 0.

134

For the case when the high word is two bits long we require a 2 x 1 mux and

one gate. Using the notation introduced in this section this gate performs the addition of

r0 and s0. Thus G2 = 1 and gj = 1.

For the case when the high word is three bits long we require a 4 x 1 mux and

10 gates. We explain below how the figure of 10 is obtained. The words of interest now

are r^Q and SjSq while the following summations need to be performed.

S1 s0 rl r0 S1 s0 S1 s0

+ rl r0 + r 0 + r 0

result ------------- > result

Gates © © © © © ©

req. © a ® a

4 gates 1 gate 4 gates 1 gate

Note that the summation of the last column is given by G2. Thus the number of gates

can be given as G3 = 4 + 1 + 4 + G2 = 10. This checks with equations (4.17) - (4.20).

Here the first term is g2 and is equal to 4.

For the case when the high word is four bits long we require an 8 x 1 mux and

60 gates. We explain below how the figure of 60 is obtained. The words of interest now

are r2rjr0 and s2SjS0 while the following summations need to be performed.

1) S 2 Sj s 0

+ r2 r l r0

© 6 ©

© A

10 gates

The number 6 appears because to add Sj and r t we need a full adder. (For a

fanout of one a full adder needs 6 gates.)

135

2) r2 rl r0

r l r0

s 2 S1 s 0

result -> result

Gates req. © © © 6 ©

© A © A

4 gates 10 gates

3) r 2 r l r0 s 2 S 1 S0

r0

result ----------— > result

Gates req. © © 6 ©

© A

1 gate 10 gates

4) r 2 r l r0 r0 s 2 S 1 s0

r l r0

result ---------- —> result — -> result

Gates req. © © © © 6 ©

© A © A

4 gates 1 gate 10 gates

5) In addition to the above we would need all the gates required for the case when

the high word had three bits.

Thus the number of gates can be given as G4 = 10 + 4 + 10 + 1 + 10 + 4 + 1 +

10 + G3 = 60. Here the first term is g3 and is equal to 10.

136

From the above discussion we see that for each decomposition the term g; also

represents the number of gates required for summing the two words of interest viz. rh_

jrh_2 ...r0 and Sj1_1Sj1_2 — s0- We let set G = {gj, g2, g j _ j } where i = h-1. Then the

general formula for the number of gates required for all the input words of the

multiplexer can be given for all h > 2, by

G h = Si + . 1
G h (\ G h (\ G

Si +
|G |

v 2 ya M i o gi

i-1
+ X ^ k + Sl) e 2, i-1 } + ... + —*gi-l)

k=l

+ Gh_, (4.27)

where Gj = 0, G2 = 1, gj = 1, g2 = 4, and gj = 4 + 6(i-2) for i > 2 and I G I is the

cardinality of set G.

Thus the total hardware is given by

Total Hardware -Section (4.1) = Equation (4.26) + Equation (4.27) (4.28)

Table 4.5 lists the costs of the hardware for various values of n and also gives a

cost comparison of the two sections. Here the hardware cost is based on equation (2.26)

and not on equation (4.28) merely to illustrate the fact that in spite of ignoring the cost

of equation (4.27), section 4.2 is far more cost efficient. Also, because of this we use

the term minimum % savings as opposed to simply % savings.

We now present the analysis to compute the time delay associated with the

computation of the squaring operation. The delay of the multiplexer is given by 1 + p +

log2 p while the delay to compute the input terms of the mux is given by the time to

obtain the mod 2n sum of rh_1rll_2 ...r0 and sh_jSh_2 ...s0. The worst case delay arises

when rh_|rh_2 ...r0 assumes its maximum value of 2h -1. In such a situation h-1

summations have to be performed in a sequential fashion while the delay of each

Table 4.5: Cost comparison in 2-input gates o f techniques o f section 4.1 with 4.2

Word Length n H/w cost of

section 4.1 based

on eqn (4.26)

H/w cost of

section 4.2 based

on eqn. (4.34)

Minimum %

savings.

16 7161 1411 80.30

32 7864305 40339 99.48

138

summation is given by the time to compute the corresponding gj's. The time delay for gi

is denoted by tgi, while tgl = 1, tg2 = 2, tgi = 2(i-l) for i > 2. Thus the total worst case

delay is given by

h-1
Th = 3 + £ tgi = (h-3)[(h-3)(h+2) -2] + 3 for h > 2 (4.29)

i=3

We have assumed that the full adders are connected in a ripple fashion. Thus the total

delay in gate delays is given by

1 + p + log2 p + (h-3)[(h-3)(h+2) -2] + 3 (4.30)

For the decomposition considered p = q = (n/2) -1 and h = n/2 and plugging

these into the above equation we get

Time Delay -Section (4.1) = n/2 + (l/8)(n-6)[(n-6)(n+4)-8] + log2(n/2 -1) + 3

(4.31)

Table 4.6 lists the time delays for various values of n and also gives a delay

comparison of the two sections. Once again, it is seen that techniques of section 4.2 are

better than those of section 4.1.

4.4.2 Cost and speed analysis for section 4.2

The hardware cost of a modulo 2n adder for n > 2 is given by 4 + 6(n-2).

Referring to figure 4.5 there are 2 adders of size n/2 + 1, one adder of size n, and one

adder of size n/2. (Note that the AH - AL unit produces the result in 2's complement

form.) Thus giving a total adder cost of 15n -13. The cost of a ROM with L address

lines can be given based on [55] as

ROM Cost = 2 x (2° + 2 1 + ... + 2(log2 L/2) -1) + (2° + 21 + ... + 2log2 2**(L/2))

(4.32)

Table 4.6: Speed comparison in 2-input gate delays o f techniques o f section 4.1
with 4.2

Word Length n Time delay of

section 4.1 based

on eqn. (4.31)

Time delay of

section 4.2 based

on eqn. (4.35)

Ratio of time

delays of sections

4.1 and 4.2

16 254 62 4.10

32 3039 126 24.12

140

However, since we assume that each minterm is realized independently the first term is
T /9to be multiplied by 2 . The second term has to be multiplied by n as the output of our

ROM has n-bits. Here L = n/2, thus giving

ROM Cost = 2n/4 4 x (5n - 4) - n (4.33)

Thus the total hardware cost can be given by

Total Hardware -Section (4.2) = 15n-13 + 2 x Equation (4.33) (4.34)

Referring to figure 4.5 again the delay can be given by three levels of adders

plus one level of ROMs. The total delay of the adders in gate delays is given by 4n-2

while the delay of the ROM in gate delays [55] is given by 2 + log2 (L/2) + log2 2̂ L/2\

However, referring to figure 4.6 we note that the same ROM delay is also associated

with techniques of section 4.1. Therefore for comparison purposes we do not need to

include the delay of the ROM unit. Thus we have

Time Delay -Section(4.2) = 4n -2 (4.35)

Tables 4.5 and 4.6 summarize the costs and delays for various values of n and

also compare them with the techniques of section 4.1.

We make the following observations:

1) From table 4.5 we see that techniques of section 4.2 result in considerable

savings in hardware, of up to 99.48% , when compared with those of section 4.1. Note

that in this table for section 4.1 we have only taken into account the cost of the

multiplexer. From table 4.6 we see that techniques of section 4.2 also yield a much

faster hardware, of up to approximately 20 times for a 32-bit word.

141

2) The bulk of the delay in equation (4.35) is due to the adder circuit. By using

better adders such as the carry-look ahead adder the timing can be drastically improved

for section (4.2) while it will make little difference for techniques of section (4.1) as,

referring to equation (4.31), the adder delay here is 0 (n 3). Also in section (4.1) the

number of summands is a function of n while for section (4.2) it is a constant.

3) The ROM delay models used for section (4.2) are very conservative [55] as they

do not take into account the density, regular implementation structure, e.t.c. while the

model used for section (4.1) is very generous as it does not take into effect the delays of

interconnection wiring.

4) A big advantage of section (4.2) is that it is very modular. Thus in a practical

implementation a design change from n = 16 to say n = 32 will require much lesser

design turn around time as only the blocks have to be changed while for techniques of

section (4.1) a complete new set of schematics will have to be created.

4.5 Memory compression schemes for arithmetic in
modulo 2n -1

In this section we present the arithmetic manipulations required to compute the

square of a number modulo 2n -1. Our objective here again is to find ROM based

efficient methods to compute the square of a number modulo 2n -1. Let us consider a

number A belonging to the modular ring Z2n_i = {0, 1,..., 2n -2}. Then A has a n-bit

binary representation as in A = ^ . 1 ^ .2 — ^i^q; e {0,1}. Our task is to compute

<A2>2n_i> where as usual <x>,n denotes the operation x modulo m. Our method is

essentially the same as that outlined in section 4.1. Here we present the analysis for two

different decompositions of the number A.

142

4.5.1 Analysis when the high word is one bit long

Let AH1 be a 1 bit word and Aj j be a n-1 bit word with AH1 = a ^ j and

ALi = an.2 — a ja0. Then the value of A is given by equation (4.1) and its square by

equation (4.2). Evaluating equation (4.2) modulo 2n -1 we get

<AV.=i^ L l) 2 n_i i f an - l —0

(2 n 2 + A l1 + A l i)2 i, _ 1 i f an- i = 1
(4.36)

In the computation of equation (4.36) we use the following: <2n>2n_i = 1, <22n"2>2n_i

= 2n'2, and AH1 = a ^ e {0,1}. Further, the summation of 2n‘2 and AL1, can be given

in binary as an-2an -2 an-3 — a l a0’ 1S êss ^ an 2n_l as b°th ^ - 2 anc* *ts complement

an_2 cannot be one at the same time.

We realize the term A li using a ROM thus needing a ROM of size 2n_1 x n.

Therefore we have a savings of 50% in ROM bits, however the overhead is one modulo

2n -1 adder and a single 2 x 1 multiplexer of word length n. As seen from equation

(4.36) the select line of the multiplexer is an. |. In the next section, by applying the same

techniques, we analyze the effects of increasing the length of AH1 and reducing the

length of AL1 on the savings in ROM bits.

4.5.2 Analysis when the high word is two bits long

Let AH2 be a 2 bit word and AL2 be a n-2 bit word with AH2 = an. 1an_2 and

AL2 = £4^3 ... a ja0. Then the value of A is given by equation (4.4) and its square by

equation (4.5). Evaluating equation (4.5) modulo 2n -1 we get

<A2>2n_i= <2n_4 A2|2 + AH2Al 2 2n_1 + A22>2n (4.37)

143

In the above we have used the simplification <22n'4>2n_i = 2n"4. The possible values of

<2n'4 A2j 2 + AH2AL2 2n"1>2n-i are shown in Table 4.7 while the following can be

observed:

Case 1: = 01*

In this case, according to Table 4.7, <2n’4 + AL22 n"1> 2I,-i needs to be

computed. Since AL2 = an-3 — a0> = ^ - 3 — aiao)2n l = (^ - 3 — a i)2n + ao2n’

1 and <AL22n' 1>2n.i = <(000an.3 ... aj) + (a^OO ... 0 0)>2n_i = ao00an.3 ... aj. One step

further we observe that

<2n' 4 + AL22n‘1> 2n. 1 = <(00010 ... 0) + (aoOOan_3 ... a1)>2n_i

= aO®an-3an -3an-4 — a l (4.38)

Case 2: ^ -1 ^ -2 = 10-

In this case the desired <2n' 2 + AL2>2n_i is given by

<2n' 2 + AL2>2n_i = < (010 ... 0) + (OOa^ ... a0)>2n.i

= 0 ^ . 3 ... ao (4.39)

Case 3: an_ian_2 =11-

Here we need to compute <2n_1 + 2n"4 + AL2 + AL22n_1>2n.i. It is easy to see

that summation of equations (4.38), (4.39), and the quantity 2n’2 yields the desired

result. We thus have

<2n 1 + 2n 4 + AL2 + AL22n 1>2n.i = <(aoOan_3an_3 an_4 ... aj) +

(10an_3 ••• a i ao)>2n-l (4.40)

Table 4.7: Values o f <2n'4A ^ 2+ AH2AL2 2n_1>2n.1

A H2

^ - l an-2

<2n"4 A n2+ AH2Al 2 2n 1>2n-i

0 0

0 1

1 0

1 1

0

<2n' 4 + AL22n‘1>2n. 1

<2n' 2 + AL2>2n. 1

<2n_1 + 2n'4 + AL2 + AL22n‘1>2n. 1

145

Finally, combining Table 4.7 and equations (4.38) - (4.40) w e get

<A2)2n_i -

<A L2>2“_ i

((aoOan -3an-3an -4 ” -a j) + A L 2) 2 n _j

((01an-3 an -4 ' * *al) + a l,2)2" _i

<(a0 0an -3an-3an -4 '" al) +

(l ° an -3-” alao) + A L 2)2n_!

if an_1an_ 2 = 00

if an_!an_ 2 = 01

if an - lan-2 = 10

if an - lan-2 = 11
(4.41)

We realize the term A2 2 using a ROM thus needing a ROM of size 2n' 2 x n.

Therefore we have an increase in savings to 75% in ROM bits, however the overhead is

two modulo 2n -1 adders and a single 4 x 1 multiplexer of word length n. As seen from

equation (4.41) the select lines of the multiplexer are a ^ a ^ . It is easy to see that if this

method is increased further the savings in ROM bits will increase but at the same time

the number of adders and the size of the multiplexer will also increase.

4.6 Optimized memory compression schemes for
arithmetic in modulo 2n -1

We present the analysis when n is even. Once again, we consider a number A

belonging to the modular ring = {0, 1, ..., 2n -2}. Then A has a n-bit binary

representation as in A = a ^ a , ,^ ... a j£io; aj € {0,1}. Let AH = a ^ a ^ ... a ^ and AL

= a(n/2)_ia(n/2)_2 — 3130- Then the value of A is given by equation (4.21) and its square

by equation (4.22). Evaluating equation (4.21) modulo 2n -1 we get

<A >2n _i — < A i4 + A 2 + AjjAj^ 2^ 2 +^>2n _i (4.42)

Comparing this with equation (4.23) we find that it is very similar except for the

fact that this has the additional term AH which in turn can be realized using a ROM of

size 2n/2 x n. The other terms can be realized as outlined in section 4.2.1. Also note that

146

the ROM for is identical to the ROM for A £ . The similarities between equation

(4.23) and (4.42) yields an overhead that is very streamlined with respect to

implementation and is thus suited for VLSI implementation. We should note that

Tables 4.3 and 4.4 summarize the results for the cases when n is even and n is odd.

4.7 Memory compression schemes for arithmetic in
modulo 2n +1

The number A that needs to be squared now belongs to the ring + j = {0,1,

..., 2n}. If A = 2n, then A has an (n+l)-bit representation as in A = 100 ...00 = < -l> 2n

+ 1 and <A >2n +i = 1 . For all the other cases A assumes an n-bit binary representation

as in A = a ^ a , ,^ ... a ^ ; aj e {0,1}. Considering the decomposition of A into AH1 =

a ^ j and AL1 = a ^ ...aQ, the following equation can be derived on lines similar to that

of equation (4.36).

4.8 Optimized memory compression schemes for
arithmetic in modulo 2n +1

We once again present the analysis when n is even. We consider a number A

belonging to the modular ring = {0, 1,..., 2n}. Again, if A = 2n, then A has an

the other cases A assumes an n-bit binary representation as in A = a ^ a ^ ... a ^ ; a4

e {0,l}.Then A has a n-bit binary representation as in A = an_ian_2 ... a ja0; aj e

{0,1}. Let Ah = anA-da _2 ... \ t2 and AL = a(n/2H a(n/2)_2 ... a ^ . Then the value of A is

arithmetic in this ring makes use of the following: <2n>2n _j = 1, <2n+1>2n = 2 .

(“ (an-2an-2an-3"'ao) + A L l) 2 n + 1

2 " + l
if an_! = 0

if an_x = 1
(4.43)

(n-t-l)-bit representation as in A = 100 ...00 = <-l>2n +1 and <A2>2n +1 = 1. For all

147

given by equation (4.21) and its square by equation (4.22). Evaluating equation (4.21)

modulo 2n +1 we get

n +1 = + +^>2n +1 (4.44)

Comparing this with equation (4.42) we find that it is very similar except for the

fact that the term A jj is negative. But this does not need any extra hardware as the ROM

used to realize this term can directly generate the negative result. Therefore, the amount

of hardware required for realizing this equation is the same as that required for realizing

equation (4.42) plus a 2 x 1 multiplexer. The select line of this multiplexer is bit aj, and

if this bit is equal to 1 then the output is set to one as explained before while if it is zero

the output is the result of equation (4.44). The similarities between equations (4.23),

(4.42), and (4.44) again suggests that the overhead very streamlined with respect to

implementation and is thus well suited for VLSI implementation. We should note that

arithmetic in this ring makes use of the following: <2n>2n +1 = - 1, and <2n+1>2n +1 =

-2. Tables 4.3 and 4.4 summarize the results for the cases when n is even and n is odd.

From these tables it is clearly seen that these techniques are also ideally suited for

building an integrated squarer, i.e. a unit that can compute either one of three operations

viz. <A2> 2n, <A2> 2n _ j , or <A2> 2n + 1 . Note that A^ is inherently a n-bit

representation and thus the same unit can be used in all three computations.

4.9 Conclusions

In this chapter we have presented in detail two ROM based methods that

compute the squaring operation in modular rings. When compared with traditional

techniques, both techniques reduce the number of ROM bits significantly. However, for

a fair comparison of the two techniques the cost of the overhead must be included and in

the ensuing analysis we show that techniques of section 4.2 are very optimal in all

148

respects viz. cost, speed, and regularity of the hardware structure. The techniques of

section 4.2 are very systematic and result in a modular design, i.e.,

i) a modulo 2n squarer unit can be easily extended to a modulo 2n -1 or modulo

2n +1 squarer and

ii) design changes for different values of n are minimal.

While we have not presented the comparative analysis for arithmetic in modulo

2n -1 and modulo 2n +1, one can see from equations (4.36)-(4.41) and (4.43) that the

techniques of section 4.2 will yield optimal results as the techniques of section 4.1

require the use of modulo adders and multiplexers whose input words have a length of n

bits. Also, the number of adders required is a function of the decomposition length. We

also note that the cost of computing the overhead in these rings is far simpler than when

the arithmetic is performed modulo 2n. This is because the size of the multiplexer data

words is always the same, i.e. it is not a function of the length of decomposition.

Chapter 5

Conclusions

In this chapter we first summarize the results of this dissertation and then

discuss avenues for further research initiated by this effort.

5.1 Summary

In this dissertation we have developed algorithms for obtaining the cyclic

convolution of two n-point sequences where n is a power of two, with no restriction on

the size of each point. These algorithms rely only on square, add, and subtract

operations. All the necessary theory for computing the cyclic convolution operation is

developed in chapter 2. The correctness of these algorithms is based on eight

theorems also developed in chapter 2. We have also derived non-recursive formulae

for the count on additions and squaring operations. These formulae show that while we

decrease the number of squaring operations we increase the number of addition

operations. Issues relating to CSA and ROM based implementations were discussed

in detail in chapter 3. The main purpose of this exercise was to demonstrate that the

increase in the number of addition operations does not negate the decrease in the

number of squaring operations. Results of the chapter prove convincingly the

usefulness of squared law algorithms. Further, we have shown that our methods are

far more superior than traditional methods when ROMs are used. Our methods also

result in modular implementations and exhibit properties that can be exploited by

clever architectural designs to obtain elegant and efficient implementations. Our

methods also do not introduce any round-off errors and thereby eliminate the need for

149

150

error correction hardware. Some interesting observations were found in CSA based

implementations of squarers and these along with schemes for multiplying two

numbers based on the cyclic convolution operation were also presented in chapter 3. In

chapter 4, the behavior of the squaring operation when computed in modular rings was

examined. Two methods of this computation were presented and we have clearly

shown that one is far better than the other, both in terms of speed and cost.

5.2 Future research emphasis

Since we have shown the usefulness of squared law algorithms in applications

of digital signal processing and error control coding, further work can be classified

under research and development.

Research: The research emphasis can be on finding other multiplication intensive

environments and deriving similar algorithms. For instance, some of the other useful

operations are linear convolutions, skew-cyclic convolutions [35], and higher order

correlations [64]. Since skew-cyclic convolutions are less symmetric than cyclic

convolutions, algorithms developed on lines similar to that of this dissertation are

likely to be less efficient. However, no such hypothesis can be made for triple

correlations. While triple-order correlations contain more information on the signal

they also require more computation. Thus, it might be useful to explore the

applicability of our methods in these computations.

Development: For some specific needs hardware units and software programs

can be developed around our algorithms and their performance can be compared with

existing products that have the same goals. Existing processors and routines do not

exploit the properties of the squaring operation and multi-operand additions. Thus, for

a fair comparison new units and routines have to be created.

References

[1] R. E. Blahut, "Algebraic fields, signal processing, and error control,"
Proceedings of the IEEE, vol. 73, no. 5, pp. 874-893, May 1985.

[2] A.V. Oppenheim and R.W. Schafer, Digital Signal Processing. Englewood
Cliffs, NJ: Prentice Hall, 1975.

[3] E. R. Berlekamp, Algebraic Coding Theory. New York: McGraw-Hill, 1968.

[4] J. H. McClellan and C. M. Rader, Number Theory in Digital Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1979.

[5] M.A. Soderstrand, W.K. Jenkins, G.A. Jullien and F.J. Taylor, Eds., Residue
Number System Arithmetic: Modern Applications in Digital Signal Processing.
New York: IEEE Press, 1986.

[6] J. W. Cooley and J. W. Tukey, "An algorithm for the machine computation of
complex Fourier series," Mathematics of Computation, vol. 19, pp. 297-301,
1965.

[7] R. C. Agarwal and C. S. Burrus, "Fast convolution using Fermat number
transforms with applications to digital filtering," IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. ASSP-22, pp. 87-97, April
1974.

[8] R. C. Agarwal and C. S. Burrus, "Number theoretic transforms to implement
fast digital convolution," Proceedings of the IEEE, vol. 63, no. 4, pp. 550-560,
April 1975.

[9] I. S. Reed and T. K. Truong, "The use of finite fields to compute
convolutions," IEEE Transactions on Information Theory, vol. IT-21, pp. 208-
213, 1975.

[10] H. J. Nussbaumer, "Digital filtering using polynomial transforms," Electronics
Letters, vol. 13, pp. 386-387, 1977.

[11] B. Rice, "Some good fields and rings for computing number theoretic
transforms," IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. ASSP-27, no. 4, pp. 432-433, August 1979.

[12] B. Gold and C. M. Rader, Digital Signal Processing of Signals. New York:
McGraw-Hill: 1969.

[13] C. S. Burrus, "Block realization of digital filters," IEEE Transactions on Audio
Electroacoustics, vol. AU-20, pp. 230-235, October 1972.

[14] T. G. Stockham, "High speed convolution and correlation," Proceedings of the
AFIPS Conference, 1966 Joint Computer Conference, vol. 28, pp. 229-233.

151

152

[15] D. H. Lehmer, "Large-scale digital calculating machinery," Proceedings of the
2nd Symposium, Cambridge, MA: Harvard University Press, 1951, pp. 141-
146.

[16] D. E. Knuth, The Art of Computer Programming, vol. 2, Semi-numerical
Algorithms. Reading, MA: Addison-Wesley, 1969.

[17] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1989.

[18] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal
Processing. Englewood Cliffs, NJ: Prentice Hall, 1975.

[19] R.W. Ramirez, The FFT Fundamentals and Concepts. Englewood Cliffs, NJ:
Prentice Hall, 1985.

[20] R. E. Blahut, Fast Algorithms for Digital Signal Processing. Reading, MA:
Addison-Wesley, 1985.

[21] J. M. Pollard, "The fast Fourier transform in a finite field," Mathematics of
Computation, vol. 25, pp. 365-374, April 1971.

[22] I. J. Good, "The interaction algorithm and practical Fourier analysis, "Journal of
the Royal Statistics Society, Section B-20, 361-375, 1958 and B-22, 372-375,
1960.

[23] L. H. Thomas, "Using a computer to solve problems in physics," in Application
of Digital Computers. Boston, MA: Ginn and Co., 1963.

[24] S. Winograd, "On computing the discrete Fourier transform," Proceedings of
the National Academy of Sciences, USA, vol. 73, pp. 1005-1006,1976.

[25] A. V. Oppenheim and C. Weinstein, "Effects of finite register length in digital
filtering and the fast Fourier transform," Proceedings of the IEEE, vol. 60, pp.
957-976, August 1972.

[26] A. Despain, "Very fast Fourier transform algorithm s hardware for
implementation," IEEE Transactions on Computers, vol. C-28, no. 5, May
1979.

[27] J. Guo, C. Liu, and C. Jen, "The efficient memory-based VLSI array designs
for DFT and DCT," IEEE Transactions on Circuits and Systems-II: Analog and
Digital Signal Processing, vol. 39, no. 10, pp. 723-733, October 1992.

[28] C. D. Thompson, "Fourier transforms in VLSI," IEEE Transactions on
Computers, vol. C-32, no. 11, pp. 1047-1057, November 1983.

[29] J. Allen, "Computer architecture for signal processing," Proceedings of the
IEEE, vol. 63, no. 4, pp. 624-632, April 1975.

153

[30] G. Ma and F. J. Taylor, "Multiplier policies for digital signal processing," IEEE
ASSP Magazine, pp. 6-20, January 1990.

[31] J. A. Beraldin, T. Aboulnasr, and W. Steenaart," Efficient one-dimensional
systolic array realization of discret Fourier transform," IEEE Transactions on
Circuits and Systems, vol. 36, pp. 95-100, January 1989.

[32] L. W. Chang and M. Y. Chen, "A new systolic array for discrete Fourier
transform, "IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. ASSP-36, pp. 1665-1667, October 1988.

[33] C. M. Liu and C. W. Jen, "A new systolic array algorithm for discrete Fourier
transform," Proceedings of ISC AS, pp. 2212-2215, 1991.

[34] H.J. Nussbaumer, "Relative evaluation of various number theoretic transforms
for digital filtering applications," IEEE Transactions on Acoustics, Speech and
Signal Processing, ASSP-26, pp. 88-93, February 1978.

[35] H.J. Nussbaumer, Fast Fourier Transform and Convolution Algorithms. Berlin,
FRG: Springer Verlag 1982.

[36] D.F. Elliot and K.R. Rao, Fast Transforms, Algorithms, Analyses,
Applications. New York: Academic Press, 1982.

[37] N.S. Szabo and R.I. Tanaka, Residue Arithmetic and its Applications to
Computer Technology. McGraw-Hill, NY: 1967.

[38] F.J. Taylor, "Residue arithmetic: A tutorial with examples," IEEE Computer,
vol. 17, no. 5, pp. 50-62, May 1984.

[39] S.H. Leung, "Application of residue number systems to complex digital filters,"
Proceedings of the Fifteenth Asilomar Conference on Circuits, Systems and
Computers, Pacific Grove, CA, November 1981, pp. 70-74.

[40] J.V. Krogmeier and W.K. Jenkins, "Error detection and correction in quadratic
residue number systems," Proceedings of the 26th Midwest Symposium on
Circuits and Systems, Puebla, MX, August 1983, pp. 408-411.

[41] F.J. Taylor, G. Papadourakis, A. Skavantzos and A. Stouraitis, "A radix-4 FFT
using complex RNS arithmetic," IEEE Transactions on Computers, vol. C-34,
no. 6 , pp. 573-576, June 1985.

[42] A. Skavantzos and F.J. Taylor, "On the polynomial residue number system,"
IEEE Transactions on Signal Processing, vol. 39, no. 2, pp. 376-382, February
1991.

[43] A. Skavantzos and N. Mitash, "Implementation issues of 2-dimensional
polynomial multipliers for signal processing using residue arithmetic," IEE
Proceedings-E, vol. 140, no. 1, pp. 45-53, January 1993.

[44] G.A. Jullien : "Residue number scaling and other operations using ROM
arrays," IEEE Transacations on Computers, pp. 325-336, April 1978.

154

[45] C.H. Huang and F J. Taylor, "A memory compression scheme for modular
arithmetic," IEEE Transactions on Acoustics Speech Signal Processing, ASSP-
27, vol. 6 , pp. 608-611, December 1979.

[46] G.A. Jullien : "Implementation of multiplication, modulo a prime number, with
applications to number theoretic transforms," IEEE Transacations on
Computers, vol. C-29, pp. 899-905, October 1980.

[47] F.J. Taylor, "Large moduli multipliers for signal processing," IEEE
Transactions on Circuits and Systems, vol. CAS-28, no. 7, pp. 731-736, July
1981.

[48] M.A. Soderstrand and E.L. Fields, "Multipliers for residue number arithmetic
digital filters," Electronics Letters, vol. 13, no. 6 , pp. 164-166, March 1977.

[49] M.A. Soderstrand and C. Vernia, "A high-speed low-cost modulo Pi multiplier
with RNS arithmetic applications," Proceedings of the IEEE, vol. 6 8 , no. 4, pp.
529-532, April 1980.

[50] A. Skavantzos, "Novel approach for implementing convolutions with small
tables," IEE Proceedings-E, vol. 138, no. 4, pp. 255-259, July 1991.

[51] A. Skavantzos and P. B. Rao, "New multipliers modulo 2N -1," IEEE
Transactions on Computers, vol. 41, no. 8 , pp. 957-961, August 1992.

[52] P. B. Rao and A. Skavantzos, "New multiplier designs based on squared law
algorithms and table look-ups," Proceedings of the 26th Annual Asilomar
Conference on Signals, Systems and Computers, Pacific Grove, CA, October
1992, pp. 686-690.

[53] P. B. Rao and A. Skavantzos, "Efficient computation of squaring operation in
modular rings," Electronics Letters, vol. 28, no. 17, pp. 1628-1630, August
1992.

[54] L. Dadda, "Some schemes for parallel multipliers," Alta Frequenza, vol. 34, pp.
349-356, 1965.

[55] S. Waser and M. J. Flynn, Introduction to Arithmetic for Digital Systems
Designers. Orlando, FL: Holt, Rinehart and Winston, 1982.

[56] K. Hwang, Computer Arithmetic. New York: John Wiley and Sons, 1979.

[57] T. C. Chen, "A binary multiplication scheme based on squaring," IEEE
Transactions on Computers, vol. C-20, pp. 678-680, June 1971.

[58] T. Jayashree and D. Basu, "On binary multiplication using the quarter squared
algorithm," IEEE Transactions on Computers, pp. 957-960, September 1976.

[59] L. Dadda, "Squarers for binary numbers in serial form," Proceedings of the 7th
Symposium on Computer Arithmetic, Urbana, IL, June 1985, pp. 173-180.

155

[60] H. Kobayashi, "A multioperand two's complement addition algorithm,"
Proceedings of the 7th Symposium on Computer Arithmetic, Urbana, IL, June
1985, pp. 16-17.

[61] A.V. Curiger, H. Bonnenberg, and H. Kaeslin, "Regular VLSI architectures for
multiplication modulo (2n +1)," IEEE Journal of Solid-State Circuits, vol. 26,
no. 7, pp. 990-994, July 1991.

[62] X. Lai and J.L. Massey, "A proposal for a new block encryption standard,"
presented at EUROCRYPT '90, Aarhus, Denmark, May 1990.

[63] A. Skavantzos, "ROM table reduction techniques for computing the squaring
operation using modular arithmetic," Proceedings of the 25th Asilomar
Conference on Circuits, Systems, and Computers, Pacific Grove, CA, October
1991, pp. 413-417.

[64] A. W. Lohmann and B. Wimitzer, "Triple corrleations," Proceedings of the
IEEE, vol. 72, no. 7, pp. 889-901, July 1984.

Appendix

Implementations in Mathematica

Algorithm 2.3:

Clear[x,z,q,j];

n:=32;

i:=0 ;

r:=0 ;

done = False;

x[i_,r_] := x[i,r] := 4 * Sum[c[2k],{k,0,(n/2)-l}];

x[0 ,0];

Print[x[0,0]];

r:=l;

j[r_] := 2Ar;

z [i_ ,r j := z[i,r] := 4 * Sum[(c[i+ k j[r]] * (-l)^k),{k,0,(n/j[r])-l}];

x [i_ ,r j := x[i,r] := Simplify[x[i,r-1] + z[i,r]*2A(r-l)];

q [L ,rJ := x[i+j[r],r] := Simplify[x[i,r-1] - z[i,r]*2A(r-l)];

While[!done,

Print[i,r];

z[i,r];

Print[z[i,r]];

x[i,r];

Print[x[i,r]];

156

157

q[i,r];

Print[x[i+j[r],r]];

If[0[r]==(n/2)),

cy[i] = x[i,r]/(4*2Ar);

cy[i+j[r]] = x[(i+j[r]),r]/(4*2Ar);

Print[cy[i]];

Print[cy[i+j[r]]];

i = i + 2;

If[i <= (n/2 -1),

r = Floor[N[Log[2, i]]] + 1;

y

done = True;

]

*

IfUEr] <= (n/2),

r = r+ 1;

y

]

]

]

Output when the program is run fo r n =32:

4 (c[0] + c[2] + c[4] + c[6] + c[8] + c[10] + c[12] + c[14] + c[16] +

c[18] + c[20] + c[22] + c[24] + c[26] + c[28] + c[30])

01

4 (c[0] - c[2] + c[4] - c[6] + c[8] - c[10] + c[12] - c[14] + c[16] -

c[18] + c[20] - c[22] + c[24] - c[26] + c[28] - c[30])

8 (c[0] + c[4] + c[8] + c[12] + c[16] + c[20] + c[24] + c[28])

8 (c[2] + c[6] + c[10] + c[14] + c[18] + c[22] + c[26] + c[30])

02

4 (c[0] - c[4] + c[8] - c[12] + c[16] - c[20] + c[24] - c[28])

16 (c[0] + c[8] + c[16] + c[24])

16 (c[4] + c[12] + c[20] + c[28])

03

4 (c[0]-c [8]+ c [1 6]-c [2 4])

32 (c[0] + c[16])

32 (c[8] + c[24])

04

4 (c[0] - c[16])

64 c[0]

64 c[16]

c[0]

c[16]

22

4 (c[2] - c[6] + c[10] - c[14] + c[18] - c[22] + c[26] - c[30])

16 (c[2] + c[10] + c[18] + c[26])

16 (c[6] + c[14] + c[22] + c[30])

159

23

4(c[2]-c [1 0]+ c[1 8]-c [2 6])

32 (c[2] + c[18])

32 (c[10] + c[26])

24

4(c[2]-c[18])

64 c[2]

64 c[18]

c[2]

c[18]

43

4 (c[4] - c[12] + c[20] - c[28])

32 (c[4] + c[20])

32 (c[12] + c[28])

44

4(c[4]-c[20])

64 c[4]

64 c[20]

c[4]

c[20]

63

4 (c[6] - c[14] + c[22] - c[30])

32 (c[6] + c[22])

32 (c[14] + c[30])

64

4 (c [6] -c [2 2])

160

64 c[6]

64 c[22]

c[6]

c[22]

84

4(c[8]-c[24])

64 c[8]

64 c[24]

c[8]

c[24]

104

4 (c[10] - c[26])

64 c[10]

64 c[26]

c[10]

c[26]

124

4 (c[12] - c[28])

64 c[12]

64 c[28]

c[12]

c[28]

144

4 (c[14] - c[30])

64 c[14]

64 c[30]

161

c[14]

c[30]

?cy

Global'cy

cy[0] = c[0]

cy[2] = c[2]

cy[4] = c[4]

cy[6] = c[6]

cy[8] = c[8]

cy[iO] = c[10]

cy[12] =c[12]

cy[14] =c[14]

cy[16] =c[16]

cy[18] = c[18]

cy[20] = c[20]

cy[22] = c[22]

cy[24] = c[24]

cy[26]=c[26]

cy[28] = c[28]

cy[30] = c[30]

162

Algorithm 3.1:

Clear[c,t];

c={ 1,2,3,4,5,6,7,8,7,6,5,4,3,2,1};

Print[c];

temp = Lengthjc];

ha = 0;

fa = 0;

hal = 0;

fa l = 0;

ex = Ceiling[Log[2, Max[c]]];

Do[c=AppendTo[c,0], {ex}];

jm = Lengthfc];

i = 1;

t[l] = 2;

While[t[i] < Max[c],

i = i+ l;

t [i j := t[i] = Floor[3/2 * t[i-l]]

]

i = i-l;

le = i;

j = i;
Whilefi > 0,

Whilefj < jm,

lf[(c[U31 > t[ij),

fal - Floor[(c[[j]] - t[i])/2];

163

hal = Ceiling[(c[[j]] - t[i])/2] - fal;

c[|j]] = t[i];
c[U+l]] = c[[j+l]] + fal + hal;

fa = fa + fal;

ha = ha + hal;

*

];

j = j + i;

];

j = i;

i = i - 1

]
zero = Take[c, {temp + 1, Length[c]}];

cpa = Length [c] - Count[zero,0];

facpa = cpa -1;

Printf"# of Full Adders = ”,fa];

Print["# of Half Adders = ",ha];

fa = fa + facpa;

ha = ha+ 1;

Print["# of Full Adders including CPA = ",fa];

Print["# of Half Adders including CPA = ",ha];

Print["# of CSA Levels = ”,le];

Printf"# of CPA Levels =1"];

Print["Size of CPA = ",cpa];

gates = 5*fa + 2*ha;

Print["Number of 2-input gates including CPA = ",gates]

Output when program is run:

{1,2, 3 ,4 , 5 ,6 ,7 ,8 ,7 ,6 , 5 ,4 , 3, 2,1}

of Full Adders = 35

of Half Adders = 7

of Full Adders including CPA = 49

of Half Adders including CPA = 8

of CSA Levels = 4

of CPA Levels =1

Size of CPA =15

Number of 2-input gates including CPA = 261

Note: In this example the input numbers to be added are the partial products obtained

when two eight bit numbers are multiplied. The results check with a conventional

calculation, as shown in figure 3.1.

Vita

Poomachandra B. Rao received the B.E. degree from Osmania University,

India, in 1984, and the M.S. degree from Louisiana State University in 1989, both in

Electrical Engineering. From 1984-1987, he worked with Larsen & Toubro Ltd., India

as an Electrical Systems Design Engineer. He has also held summer research positions

at Ruhr University, Germany, in 1989 and Circuit Technology Group, Hewlett-

Packard, in 1991. Currently, he is a candidate for the doctoral degree in the

Department of Electrical and Computer Engineering at Louisiana State University. His

research interests include application specific integrated circuit design, computer

arithmetic, and parallel processing. He is a member of IEEE Computer Society and

Eta Kappa Nu.

165

DOCTORAL EXAMINATION AND DISSERTATION REPORT

Candidate: Poornachandra B. Rao

Major Field: Electrical Engineering

Title of Dissertation: Squared Law Algorithms: Theory and Applications

Approved:

Major Professor and Chairman

Dpdn of the Gradual School

EXAMINING COMMITTEE:

Date of Examination:

June 9 , 1993

	Squared Law Algorithms: Theory and Applications.
	Recommended Citation

	00001.tif

