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ABSTRACT  

Compositional modeling is essential when simulating processes involving significant changes in 

reservoir fluid composition. It is computationally expensive because we typically need to predict 

the states and properties of multicomponent fluid mixtures at several different points in space and 

time. To speed up this process, several researchers have used machine learning algorithms to train 

deep learning (DL) models on data from the rigorous phase-equilibrium (flash) calculations. 

However, one shortcoming of the DL models is that there is no explicit consideration for the 

governing physics. So, there is no guarantee that the model predictions will honor the 

thermodynamical constraints of phase equilibrium (Ihunde & Olorode, 2022).  

This work is the first attempt to incorporate thermodynamics constraints into the training of DL 

models to ensure that they yield two-phase flash predictions that honor the physical laws that 

govern phase equilibrium. A space-filling mixture design is used to generate one million different 

compositions at different pressures (Ihunde & Olorode, 2022). Stability analysis and flash 

calculations are performed on these compositions to obtain the corresponding phase compositions 

and vapor fraction (Ihunde & Olorode, 2022). Physics-informed neural network (PINN) and 

standard deep neural network (DNN) models were trained to predict two-phase flash results using 

the data from the actual phase-equilibrium calculations (Ihunde & Olorode, 2022).  

Considering the stochasticity of the deep learning optimization process, we used the seven-fold 

cross-validation to obtain reliable estimates of average model accuracy and variance (Ihunde & 

Olorode, 2022). Comparing the PINN and standard DNN models reveals that PINNs can 

incorporate physical constraints into DNNs without significantly lowering the model accuracy 

(Ihunde & Olorode, 2022). The evaluation of the model results with the test data shows that both 
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PINN and standard DNN models yield coefficients of determination of ~97% (Ihunde & Olorode, 

2022). However, the root-mean-square error of the physics-constraint errors in the PINN model is 

over 55% lower than that of the standard DNN model (Ihunde & Olorode, 2022). This indicates 

that PINNs significantly outperform DNNs in honoring the governing physics. Finally, we 

demonstrate the significance of honoring the governing physics by comparing the resulting phase 

envelopes obtained from overall compositions computed from the PINN, DNN, and linear 

regression model predictions (Ihunde & Olorode, 2022).  

 

 

 

 

 

 

 

 



1 

 

1. INTRODUCTION 

1.1. Background 

Compositional fluid models describe the complex phase behavior of reservoir fluids. Two-phase 

compositional modeling typically involves stability analysis to determine the preferred stable state 

for the fluid mixture, after which the Rachford-Rice equation is solved iteratively to obtain the 

vapor fraction (Rachford & Rice, 1952). Each component's mole fraction in each phase is also 

computed in this iterative two-phase flash procedure. To obtain the initial guess for these mole 

fractions, we typically estimate the vapor-liquid equilibrium factor (K-factor) using Wilson's 

correlation (Wilson, 1968). While simulating compositional fluid flow in porous media (Coats, 

1980; Young & Stephenson, 1983; Pal & Mandal, 2021) and pipes (Gould, 1979; Furukawa et al., 

1986), phase equilibrium calculations are required at every gridblock and time step. 

Modeling the fluid property changes in space and time is very computationally expensive. To 

speed up the computationally demanding phase equilibrium computations in compositional 

modeling, numerous researchers have developed iterative and non-iterative methodologies.. Some 

of the iterative techniques include the minimization of Gibbs free energy (Nichita et al., 2002), 

dimensionality reduction (Firoozabadi & Pan, 2000; Pan & Firoozabadi, 2001; Nichita & Graciaa, 

2011), and solving the Rachford-Rice (RR) equation by minimizing a non-monotonic convex 

function (Okuno et al., 2010). Non-iterative approaches include linear interpolation based on look-

up tables. (Voskov & Tchelepi, 2009; Belkadi et al., 2011; Wu et al., 2015).  

In recent years, researchers have done a lot of work to improve the speed of flash calculations 

involving approaches utilizing Machine Learning (ML). They have demonstrated that machine 

learning algorithms can improve the speed and stability (convergence) of compositional simulation 
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of unconventional reservoirs by at least 90% while maintaining very high accuracy (Gaganis & 

Varotsis, 2012, 2014; Kashinath et al., 2018;K. Wang et al., 2019; Wang et al., 2020; Li et al., 

2019; S. Wang et al., 2019; Wang et al., 2020).  

The application of ML to stability analysis and flash calculations is primarily through supervised 

learning. The ML algorithm learns a target function that best maps the training data input during 

this supervised learning process. Based on the curvature of fluid phase envelopes, this target 

function is expected to be highly non-linear to effectively capture the pressure, temperature, and 

composition relationship. The trained machine learning model is then used to make predictions on 

any new dataset. Since ML algorithms focus on minimizing the model error during training and 

not on the functional form, non-parametric supervised ML models have been mostly used for 

compositional modeling. These include Artificial Neural Networks (ANNs), Support Vector 

Machines (SVMs), and Relevance Vector Machines (RVMs). 

1.2. Motivation  

According to research, trained machine learning models can predict flash calculation outcomes 

two orders of magnitude faster than the traditional iterative flash method (Li et al., 2019). 

Furthermore, the flash calculation results from DL models yield an excellent match when 

implemented into compositional reservoir simulators in place of the standard flash procedure 

(Wang et al., 2020). However, DL models can yield predictions that minimize the loss function 

but do not honor the underlying physics of phase equilibrium. This is because, in the DL models, 

the loss function is simply the disparity between the training data and the model prediction of 

phase mole fractions (𝑥𝑖 and 𝑦𝑖) and vapor fractions (V) (Ihunde & Olorode, 2022). These standard 

DL models typically yield model predictions of 𝑥𝑖, 𝑦𝑖 , and V that closely match the training data, 
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but are unphysical because the combination of these predictions according to the interphase mass 

balance equation (given in Section 3.2) shows considerable errors.  

Numerous authors have built frameworks that enable the incorporation of physics into the training 

of DNN models to solve the challenge of honoring physics during the training of DL models. The 

most popular method to use involves adding initial and boundary conditions of governing partial 

differential equations (PDEs) as penalties in the loss function (Raissi & Karniadakis, 2018; Raissi 

et al., 2019; and Haghighat & Juanes, 2021). Other researchers have also demonstrated the 

potential of implementing PDE constraints as extensions to the computational graph for the deep 

neural network (Huang et al., 2020; Xu & Darve, 2020). However, no research has been published 

on honoring physics when training deep learning models on data from two-phase flash. An initial 

attempt to address this limitation is published in Ihunde & Olorode, 2022 

This work aims to evaluate the feasibility of using the penalty approach to impose thermodynamics 

constraints such as interphase mass balance and component balance during the training of deep 

neural network models. Throughout this work, I will refer to this approach as the Physics Informed 

Neural Network (PINN), but it could also be referred to as a physics-constrained deep learning 

(PCDL) model. This work also evaluates the use of classification accuracy as a performance 

measure for artificial neural networks trained on data for phase identification.  

This thesis is organized as follows—Chapter 2 reviews previously published work on machine 

learning approaches for compositional modeling, physics-informed neural networks, and 

experimental design for mixtures. Chapter 3 discusses the two-phase flash calculation process with 

particular emphasis on the thermodynamic constraints. Chapter 4 discusses deep neural networks 

and how standard deep neural networks are modified to incorporate physics constraints. It also 
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discusses the model evaluation metrics used to quantify the extent to which the predictions made 

by the standard DNN and PINN models honor thermodynamic constraints. Chapter 5 describes the 

methodology for the experimental design to create the compositions for the reservoir fluids that 

are employed in the data generation process to train the deep learning models. This chapter also 

discusses how the deep learning models are implemented. Chapter 6 presents the results of 

implementing the PINN model and compares its performance to those of the DNN and linear 

regression models. Finally, chapter 7 summarizes and concludes the work done.   
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2. LITERATURE REVIEW  

The process of compositional modeling involves performing flash calculations to obtain the mole 

fractions of each hydrocarbon component in each phase, given the pressure, temperature, and 

overall mole fraction. The standard approach for two-phase vapor-liquid equilibrium calculations 

requires that the chemical potential (or fugacity) of each component in the vapor phase is equal to 

that of the corresponding component in the liquid phase. It also requires that the phase mole 

fractions and overall mole fractions sum up to one and that the amount of each component is 

conserved across the phases. These two constraints are the component material balance and 

interphase mass balance constraints, respectively. 

Researchers have suggested several approaches to accelerate compositional modeling with 

machine learning. Some of these involve replacing the stability test and flash calculations with 

proxy models developed using ML algorithms (K. Wang et al., 2019;  S. Wang et al., 2019). In 

contrast, other methodologies use machine learning models to make vapor-liquid equilibrium 

coefficient (K- value) predictions that initialize the flash calculation instead of using Wilson's 

method (Gaganis & Varotsis, 2012; Kashinath et al., 2018).  

Gaganis & Varotsis, 2012 created proxy models, using two ML models—the Support Vector 

Classifier (SVC) in the form of a discriminating function for the phase stability identification and 

a single layer ANN to predict the output results from two-phase flash calculations. The overall 

mole fraction, pressure, and temperature are used as the ANN inputs for the phase equilibrium 

problem to obtain the mixture components' K-values. SVC and ANN models were then used to 

make the predictions for any given overall mole fraction, pressure, and temperature. The results 

from their work showed that CPU time per phase calculation for an eight-component mixture 
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reduced by 92% in a conventional simulation run compared to their boosted simulator. They also 

showed that the CPU time increases as the number of components in the reservoir fluid increases. 

Gaganis & Varotsis, 2014 demonstrated an integrated approach where stability analysis and flash 

calculations were directly predicted using classification and regression models.  The Support 

vector machines (SVM) were used for stability analysis/phase classification, and ANN regression 

models were used to determine the phase split reduced variables from which the equilibrium 

phases properties and molar fractions are determined. The simulation results for an eight-

component reservoir fluid showed the computation time per flash calculation improved by a speed-

up factor of 27 from conventional iterative methods for stability analysis and flash (Gaganis & 

Varotsis, 2014). 

Kashinath et al., 2018 extended the work of  Gaganis & Varotsis, 2014, by proposing relevance 

vector machines (RVMs) and a single layer ANN for isothermal two-phase flash. In their work, 

the results were compared with a computationally expensive and challenging negative flash 

algorithm that distinguishes between the subcritical and supercritical regions using a cubic 

equation of state (EOS). In the proposed method, the first RVM is used to classify supercritical 

phases. A second RVM classifier is used to identify the number of stable phases in the sub-critical 

region. Finally, an ANN is used to predict the K-values for the given pressure and overall 

composition. The results of three different reservoir fluid mixtures with varying components 

showed that their proposed method could speed up phase-equilibrium calculations by 25 - 75% 

with less than 0.01% error compared to the negative flash method. The speed-up from using their 

algorithm could be increased to over 90% if the error margin increases to 4 - 5% (Kashinath et al., 

2018). 
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Advancements in ANN algorithms and their handling of non-linear problems have made them the 

preferred ML model for researchers. K. Wang et al., 2019 used two ANN models to assist the 

traditional flash calculations in achieving faster and robust convergence. For a mixture with a 

known number of components, the mixture components' properties are used in ANNs to determine 

the upper and lower saturation pressures. The stability analysis is performed using the saturation 

pressures. If the system's pressure is between the maximum and minimum predicted pressure, the 

mixture is considered unstable; otherwise, it is considered stable in a single-phase state. The 

authors caution that the ANN model might give wrong stability results, but the wrong predictions 

have little effect on the simulation results. When the phase is unstable, and phase splitting is 

required, the second ANN model predicts initial guesses of the vapor mole fraction and K- values. 

The results from applying the two models echoed those of other researchers, with more than a 90% 

reduction of the time spent on stability analysis and flash calculations. However, contrary to other 

researchers' results, K. Wang et al., 2019 indicated that prediction accuracy is not affected by 

increasing the mixture's components in isothermal conditions.  

The work discussed earlier focused on applying ML to speed up compositional fluid property 

modeling for conventional petroleum reservoirs. However, S. Wang et al., 2019 extended the 

application of ML to unconventional reservoirs with significant capillary effects by introducing 

the pore radius as an input into the ANNs. They developed a proxy flash model with two ANNs 

and implemented this in their in-house simulator. The proxy ANN model performed a two-step 

classification-regression process, where an ANN classifier is first used for phase classification, 

after which the phase mole fractions are determined using an ANN regression model. The input 

parameters for both neural networks are pressure, temperature, concentration, and pore radius. In 

their framework, the phase classification step results are accepted as final if the phase classification 
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step predicts that only one phase exists. However, if two phases exist in the system, the second 

ANN predicts the capillary pressure and K-values. These values are then used to initialize the 

physical flash calculation instead of Wilson's K-value correlation. Their results indicated that the 

implementation of the proxy ML model reduced the number of iterations for flash by more than 

50%, increased the stability or convergence ratio by 8%, and reduced CPU time by 10 - 12% when 

compared with the initialization of the K-value using its value from the previous iteration. Their 

work also showed that the error increased as the number of components in the reservoir fluid 

increased.   

Although the DL models are typically very fast compared to rigorous analytical or numerical 

modeling, one of their limitations lies in the fact that the model accuracy is stochastic, and there is 

no way to guarantee that output will honor physical laws. One way to address this limitation 

involves using physics-informed neural networks (PINNs) instead of the standard DL models. The 

application of PINNs in different engineering aspects has increased significantly over the years 

because they facilitate the seamless integration of data and physics into neural networks. They can 

be used to model systems that have governing equations based on the laws of physics. Much of 

the previously published use of PINNs include the solution of partial differential equations (PDEs) 

such as the Buckley Leverett equation (Fraces et al., 2020; Fuks & Tchelepi, 2020), Burgers' 

equation (Raissi, 2018; Raissi et al., 2019), Korteweg-De Vries (KdV) equation (Raissi, 2018, 

Raissi et al., 2019), Kuramoto-Sivashinsky equation (Raissi, 2018), non-linear Schrodinger (Raissi 

et al., 2019), and Navier Stokes equations (Raissi, 2018, Raissi et al., 2019), and the Allen–Cahn 

equation (Raissi et al., 2019).  

Additionally, other studies have shown evidence of the feasibility of implementing PDE 

constraints as extensions to the computational graph for deep neural networks (Huang et al., 2020; 
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Xu & Darve, 2020). PINNs are well suited to the solution of PDEs because they can leverage the 

automatic differentiation used in the backpropagation step of the DL model training process to 

compute the differential operators in the PDEs (Raissi et al., 2019). This allows for the quick 

solution of complex multi-rate, multi-scale problems in solid mechanics (Haghighat et al., 2020) 

and fluid mechanics (Raissi et al., 2018, Raissi et al., 2019, Fraces et al., 2020). Although most 

publications on integrating physics into neural networks involve solving PDEs, the boundary and 

initial conditions are not PDEs. However, they meet the criteria of being differentiable and 

continuous (Daw et al., 2020).  Since the main stipulation for using PINNs is that the physics-

based equations added to the standard loss function are differentiable and continuous (Daw et al., 

2020), PINNs can be developed with any physics constraints where the output is supposed to honor 

some physical laws (Manepalli et al., 2019; Yucesan & Viana, 2019; Daw et al., 2020; Dourado 

& Viana, 2020; Kashinath et al., 2021).  

Data is an integral part of any machine learning involved process. Therefore, when machine 

learning algorithms are used to generate models for compositional modeling, experimental design 

for mixtures (i.e., mixture design) is used to ensure that the data used for the training covers the 

sample space. In experimental design, space-filling designs are used to place the design points to 

cover the entire experimental region (Joseph, 2016). The design space comprises three component 

mixtures with a sum of one, so each component is expressed as a fraction of the mixture. Statistical 

software like JMP (SAS Institute Inc, 2020-2021) can be used to implement the experimental 

design of the mixtures. JMP uses a constrained Fast Flexible Filling space-filling mixture design 

(Lekivetz & Jones, 2015) that evenly spreads the points over the design region, allowing us to 

sample the entire design region and set linear constraints (SAS Institute Inc, 2020-2021). The Fast 

Flexible Filling mixture design is a maximum projection design that maximizes space-filling 
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properties on projections to all subsets of factors (Joseph et al., 2015). This solves the issue of poor 

projections on lower-dimensional spaces resulting from minimax and maximin designs 

considering only space-filling in the entire dimensional space (Joseph et al., 2015).  
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3. VAPOR-LIQUID EQUILIBRIUM FOR MULTICOMPONENT 

SYSTEMS. 
 

 This chapter provides a background on the stability analysis and two-phase flash calculation 

processes that make up compositional modeling. This chapter covers how the Peng-Robinson 

equation of state (PR-EOS) can be used to describe the phase behavior of multicomponent systems 

using algorithms. The Phase behavior calculations involve determining the amounts of the 

equilibrium phases and their respective compositions by satisfying the equality of chemical 

potentials, inter-phase mass balance constraint, and the component balance constraint.  

A mixture's volumetric and phase behavior can be described by cubic equations of state (EOS's) 

using the critical properties (critical temperature 𝑇𝑐 and critical pressure 𝑃𝑐), acentric factor (𝜔), 

and interaction factor in the form of equilibrium ratios (K-values) of each component (Firoozabadi, 

2016). The majority of the EOS applications rely on isothermal two-phase flash calculations, and 

the most common EOS used in petroleum applications is the Peng- Robinson Equation of state 

(PR-EOS).  

For N components, i =1....N, Figure 3.1 shows a two-phase system with a mixture comprising a 

feed composition (𝑧𝑖) at pressure (P) and temperature (T).  The amounts of each phase are denoted 

by the vapor fraction  𝑉 and liquid fraction  𝐿. The composition of the liquid phase and vapor phase 

is denoted by 𝑥𝑖 and 𝑦𝑖 respectively. 
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Figure 3.1. Two-phase system 

Before determining the amounts and composition of the equilibrium phases, we first determine if 

the mixture is stable or unstable at the given temperature and pressure.  If the mixture is stable in 

the single-phase state, it will exist in either the single-phase liquid or gas states. Otherwise, we 

assume it is stable in the two-phase state. The process of determining the mixture's stability is 

referred to as stability analysis (Whitson & Brulé, 2000). The overarching goal is to ensure that 

the mixture exists in the state to minimize Gibb's free energy. This is consistent with the second 

law of thermodynamics, which requires Gibb's free energy to be minimum at equilibrium. 

Phase stability analysis determines if a mixture can attain a lower Gibbs free energy level by 

splitting the mixture into two or more phases and evaluating Gibb's free energy. Different 

algorithms have been designed to perform stability analysis. In this work, I use an algorithm based 

on the Michelsen stability test (Michelsen, 1982a, 1982b), which uses the tangent plane distance 

(TPD) analysis. The Michelsen stability test is based on locating second phase compositions with 

tangent planes parallel to the mixture composition (Whitson & Brulé, 2000). It involves two 

successive tests conducted separately, with one converging, assuming the second phase is liquid-

like and the other converging, assuming the second phase is vapor-like (Whitson & Brulé, 2000). 

A summary of the Michelsen phase stability analysis procedure is shown in Figure 3.2.  
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Figure 3.2. Flowchart for the phase stability analysis algorithm. 

 

After determining the stability of the mixture, no further computation is required if it is stable in a 

single-phase state. However, if the mixture exists in a two-phase state, two-phase flash calculations 

are performed to determine each component's mole fractions in each phase. Figure 3.3 summarizes 

the procedure for the two-phase flash calculation used in this work.  
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Figure 3.3. Flow chart for two-phase equilibrium alculations algorithm 

 

Mathematically, two-phase flash can be solved using a successive-substitution or Newton-

Raphson algorithm to ensure that  

(i) the chemical potential of each component is the same in both phases,  

(ii) the mole-fractions of each component in each phase, as well as the overall mole fraction 

of each component, sum up to one, and 
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(iii) the mass or number of moles of each component is conserved across the two phases. 

(Whitson & Brulé, 2000). 

Each of these conditions is implemented as a constraint and discussed in the following subsection. 

3.1. Chemical-potential (equal fugacity) constraint 

 

This sub-section focuses on the phase equilibrium between the liquid (or oil) and vapor (or gas) 

phases, which can be formulated in terms of the fugacity of each hydrocarbon component in the 

liquid and vapor phases. The criterion of thermodynamic equilibrium is satisfied when the 

chemical potential of all the components in the liquid and vapor phases is equal, assuming all other 

forces are negligible (Whitson & Brulé, 2000). Chemical-potential is typically expressed in terms 

of fugacity.   

Fugacity has all the features of chemical potential, but unlike chemical potential, it has an absolute 

value (Firoozabadi, 2016). So, it is typically used as a proxy for chemical potential in 

thermodynamics. The relationship between chemical potential 𝜇𝑖 and fugacity 𝑓𝑖  can be written as 

(Firoozabadi, 2016): 

 𝑑𝜇𝑖 = 𝑅𝑇 𝑑𝑙𝑛𝑓𝑖 [1] 
 

For components, i = 1...., N, the equal fugacity constraint is given as: 

 𝑓𝐿𝑖(𝑥𝑖, 𝑧𝐿 , 𝑃𝐿 , 𝑇) =  𝑓𝑉𝑖(𝑦𝑖, 𝑧𝑉, 𝑃𝑉 , 𝑇) [2] 

Where 𝑃𝐿 and 𝑃𝑉 are the pressures in the liquid and vapor phases, respectively. In this work, the 

fugacity of each component in the liquid (𝑓𝐿𝑖) and vapor phases (𝑓𝑉𝑖) are calculated from the 

fugacity coefficients ∅𝑖 using the Peng-Robinson equation of state (Peng & Robinson, 1976). The 

phase compressibility factors  𝑍𝐿 and 𝑍𝑉 are also calculated with this equation of state (EOS).  The 

Peng Robinson EOS (PR-EOS) is given as:  
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𝑃 =  

𝑅𝑇

𝑣 − 𝑏
−  

𝑎

𝑣(𝑣 + 𝑏) + 𝑏(𝑣 − 𝑏)
 

[3] 

Where a and b are constants given as: 

 
𝑎 = 0.45724

∝  𝑅2𝑇𝑐
2

𝑃𝑐
  

[4] 

 
𝑏 = 0.07780

 𝑅2𝑇𝑐
2

𝑃𝑐
 

[5] 

The symbols ∝, 𝑚, and 𝜔  represent a dimensionless function of reduced temperature and acentric 

factor, a constant characteristic of each substance, and the acentric factor, respectively. They are 

given as:  

 

∝ =  [1 + 𝑚(1 − √
𝑇𝑐

𝑇
]

2

 

[6] 

 

 𝑚 = 0.37464 + 1.54226𝜔 −  0.26992𝜔2 [7] 

 

 𝜔 =  
3

7
(

𝑇𝑏𝑖/𝑇𝑐𝑖

1 −
𝑇𝑏𝑖

𝑇𝑐𝑖

𝑙𝑜𝑔 (
𝑃𝑐𝑖

𝑃𝑠𝑐
)  − 1) 

[8] 

Here, R is the gas constant, and 𝑇𝑐 and 𝑃𝑐 are the critical temperature and pressure, respectively. 

The PR-EOS is expressed in terms of the compressibility (Z) factor for the liquid and vapor phases 

as follows: 

 𝑍𝐿
3 − (1 − 𝐵𝐿)𝑍𝐿

2 + 𝑍𝐿(𝐴𝐿 − 3𝐵𝐿
2 − 2𝐵𝐿) − (𝐴𝐿𝐵𝐿 − 𝐵𝐿

2 − 𝐵𝐿
3) = 0  [9] 

 

 𝑍𝑉
3 − (1 − 𝐵𝑉)𝑍𝑉

2 + 𝑍𝑉(𝐴𝑉 − 3𝐵𝑉
2 − 2𝐵𝑉) − (𝐴𝑉𝐵𝑉 − 𝐵𝑉

2 − 𝐵𝑉
3) = 0 [10] 

where: 
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𝐴𝐿 =  

𝑎𝑃𝐿

(𝑅𝑇)2
     𝐵𝐿 =  

𝑏𝑃𝐿

𝑅𝑇
    𝑍𝐿 =  

𝑃𝐿𝑉𝐿

𝑅𝑇
    𝐴𝑉 =  

𝑎𝑃𝑉

(𝑅𝑇)2
    𝐵𝑉 =  

𝑏𝑃𝑉

𝑅𝑇
    𝑍𝑉 =  

𝑃𝑉𝑉𝑉

𝑅𝑇
  

[11] 

From the PR-EOS, the fugacity coefficients 𝑙𝑛∅𝑉𝑖 and 𝑙𝑛∅𝐿𝑖 are given as: 

 
𝑙𝑛∅𝑉𝑖 = 𝑙𝑛

𝑓𝑉𝑖

𝑦𝑖𝑃
    

[12] 

 
 𝑙𝑛∅𝐿𝑖 = 𝑙𝑛

𝑓𝐿𝑖

𝑥𝑖𝑃
 

[13] 

where:   

 
𝑙𝑛∅𝐿𝑖 =  

𝑏𝑖𝐿

𝑏𝐿

(𝑍𝐿 − 1) −𝑙𝑛 𝑙𝑛 (𝑍𝐿 − 𝐵𝐿)  

+
𝐴𝐿

2√2𝐵𝐿

(
𝑏𝑖𝐿

𝑏𝐿
−

2

𝑎𝐿
∑ 𝑥𝑗𝐿𝑎𝑖𝑗

𝑁

𝐽=1

)) 𝑙𝑛 [
𝑧𝐿 + 2.414𝐵𝐿

𝑍𝐿 − 0.414𝐵𝐿
] 

[14] 

 
𝑙𝑛∅𝑉𝑖 =  

𝑏𝑖,𝑉

𝑏𝑉

(𝑍𝑉 − 1) −𝑙𝑛 𝑙𝑛 (𝑍𝑉 − 𝐵𝑉)  

+
𝐴𝑉

2√2𝐵𝑉

(
𝐵𝑖𝑉

𝐵𝑉
−

2

𝑎𝑉
∑ 𝑦𝑗𝐿𝑎𝑖𝑗

𝑁

𝐽=1

)) 𝑙𝑛 [
𝑍𝑉 + 2.414𝐵𝑉

𝑍𝑉 − 0.414𝐵𝑉
] 

[15] 

 𝑎𝑖𝑗 = (1 − 𝑘𝑖𝑗)√𝑎𝑖𝑎𝑗    [16] 

 

𝑎𝑉 =  ∑ ∑ 𝑦𝑖𝑦𝑗𝑎𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 

[17] 

 

𝑎𝐿 =  ∑ ∑ 𝑥𝑖𝑥𝑗𝑎𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 

[18] 

 

𝑏𝐿 = ∑ 𝑥𝑖𝑏𝑖

𝑁

𝑖=1

 

[19] 
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𝑏𝑉 = ∑ 𝑦𝑖𝑏𝑖

𝑁

𝑖=1

 

[20] 

Here, 𝑘𝑖𝑗 are the binary-interaction parameters between components i and j, whereas ∅𝑉𝑖 and ∅𝐿𝑖 

are the fugacity coefficients of each component in the vapor and liquid phases respectively. 

3.2. Inter-phase Mass Balance Constraint 

 

In phase equilibrium of multicomponent mixtures, it is essential that the mass or number of moles 

of each hydrocarbon component is conserved regardless of the state(s) in which the mixture is 

stable. The inter-phase mass balance constraint states that the total number of moles n of the feed 

composition 𝑧𝑖  should distribute into 𝑛𝐿 moles of liquid with composition 𝑥𝑖 and 𝑛𝑣 moles of vapor 

with composition 𝑦𝑖 without loss of matter or chemical alteration of the component species 

(Whitson & Brulé, 2000).  

The overall mole fraction of each component (𝑧𝑖) can be written as a function of the phase mole 

fractions (𝑥𝑖 and 𝑦𝑖) and vapor fraction (V) as follows:   

 𝑧𝑖 = 𝑉𝑦𝑖 + (1 − 𝑉)𝑥𝑖 [21] 

The phase mole fractions 𝑥𝑖 and 𝑦𝑖 are obtained by combining equation [21] with the definition of 

the vapor-liquid equilibrium factor (𝑘𝑖 =  𝑦𝑖/𝑥𝑖) as follows: 

 𝑥𝑖 =  
𝑧𝑖

𝑉(𝑘𝑖 − 1) + 1
   [22] 

 

 
𝑦𝑖 =  

𝑧𝑖𝑘𝑖

𝑉(𝑘𝑖 − 1) + 1
=  𝑘𝑖𝑥𝑖  

[23] 

The K-values (𝑘𝑖) for the iterative solution of the Rachford-Rice (RR) equation are obtained from 

Wilson's correlation (Wilson, 1968):  
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𝑘 𝑖

0 =  
𝑒𝑥𝑝 [5.37(1 + 𝜔𝑖)(1 − (𝑇𝑐𝑖/𝑇)]

𝑃/𝑃𝑐𝑖
 

[24] 

 

3.3. Component Balance Constraint 

 

The final constraint to be satisfied in two-phase flash calculations is the component balance 

constraint. It requires that every component's overall mole fractions and phase mole fractions must 

sum up to one. This is because each component's total number of moles in each phase and in the 

overall mixture is conserved. Recalling that:  

 
𝑥𝑖 =  

𝑛𝐿
𝑖

𝑛𝐿
, 𝑦𝑖 =

𝑛𝐺
𝑖

𝑛𝐺
,     𝑎𝑛𝑑 𝑧𝑖 =  

𝑛𝑖

𝑛 
 

[25] 

 

where 𝑛𝐿
𝑖  is the number of moles of component i in the liquid phase, 𝑛𝐺

𝑖  is the number of moles of 

component i in the gas/vapor phase, and 𝑛𝑖 is the number of moles of component i in the overall 

mixture. It is easy to show that each of these mole fractions will sum up to one: 

 

∑ 𝑥𝑖

𝑛𝑐

𝑖=1

= 1,    ∑ 𝑦𝑖

𝑛𝑐

𝑖=1

= 1,   ∑ 𝑧𝑖

𝑛𝑐

𝑖=1

= 1 

[26] 

 

where 𝑛𝑐 is the total number of components in the mixture. 

Equation [26]  is the mathematical representation of the component balance constraint. For 

computational efficiency, the first two can be combined and written as (MøYNER, 2021):  

 

 

∑(𝑥𝑖 − 𝑦𝑖)

𝑛𝑐

𝑖=1

= 0 

[27] 

 

Combining equations [22] and [23], we obtain the Rachford-Rice (RR) equation:  
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𝑅𝑅 =   ∑(𝑥𝑖 − 𝑦𝑖)

𝑁

𝑖=1 

=  ∑
𝑧𝑖(𝑘𝑖 − 1)

𝑉(𝑘𝑖 − 1) + 1
= 0

𝑁 

𝑖=1

. 
[28] 

The Rachford-Rice (RR) equation solution yields the vapor mole fraction, V.  

 

In a two-phase flash algorithm like the one shown in Figure 3.3, the algorithm begins with a 

Michelsen stability test (Michelsen, 1982a, 1982b) to assess whether the fluid mixture is stable at 

the given pressure and temperature in the single phase. If the fluid is stable in a single phase, the 

phase mole fractions are determined without solving the Rachford- Rice equation. Otherwise, a 

combination of successive substitution and Newton- Raphson's methods are used to compute the 

vapor fraction from equation [28] -the Rachford-Rice equation. 

 

The phase mole fractions (𝑥𝑖 and 𝑦𝑖) are then estimated using equations [22] and [23] based on an 

initial estimate of the vapor-liquid equilibrium factor (K-value) derived using equation [24] -

Wilson's correlation (Wilson, 1968). Next, the fugacity coefficient of the vapor phase  ∅𝑉𝑖 and the 

compressibility of the vapor phase 𝑍𝑉𝑖 are computed from the PRE-EOS using equation [10] and 

equation [12] respectively. The K-values initialized with Wilson's correlation in equation [24] can 

be updated as follows: 

 
𝑘 𝑖

𝑁+1 =  
𝑃𝐿∅𝐿𝑖

𝑃𝑉∅𝑉𝑖
 

[29] 

The algorithm refines the solution iteratively until convergence. The condition for convergence  𝜀 

of the equilibrium ratio is specified as:  

 |𝐾𝑖
𝑁+1 − 𝐾𝑖

𝑁| ≤  𝜀 [30] 
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(N) and (N +1) indicate the iteration level and the recommended convergence tolerance is   𝜀 =

 1.0𝑒−13 (Whitson & Brulé, 2000) . If convergence is not reached, the K values are updated with 

successive substitution (Whitson & Brulé, 2000).  
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4. DEEP LEARNING AND INCORPORATION OF PHYSICS 

Advancements in computational resources and deep learning, also known as artificial neural 

networks, have revolutionized problem solving in industries like health care, finance, search 

engines, etc. In recent years, there has been a surge in interest in using deep learning to solve 

engineering problems. The increased interest has led to the development of platforms like Theano 

(Bergstra et al., 2010), Tensorflow (Abadi et al., 2016), and MXNET (Chen et al., 2015) that 

facilitate deep learning calculations using techniques such as automatic differentiation (Baydin et 

al., 2018). There has also been an introduction of a new type of neural network called the Physics 

Informed Neural Network. These networks are specifically designed for engineering problems 

because they can be trained with data while integrating the equations governing the physics of the 

modeled systems. In this chapter, we review deep learning models and how standard DNNs can 

be modified to incorporate physical constraints using physics-informed neural networks (PINNs). 

In this work, we used Tensorflow 2 to create the deep neural network models. TensorFlow provides 

the numeric platform that implements the mathematical operations needed for deep learning. This 

work focuses on predictive modeling using supervised machine learning. In this process, a model 

is created when a deep learning algorithm learns the target function that best maps the input 

variables to a training dataset's output variables to make predictions on any given new input 

variables (Brownlee, 2019). A better estimate of the target function provides better predictions 

from the model, so much time is spent attempting to improve this function through optimization. 

Since most of the recent work involving machine learning for compositional modeling is done 

using neural networks, this work will extend the work discussed in the literature review. 
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4.1. Deep Neural Networks (DNN) 

This sub-section will briefly review deep neural networks and how a neural network generates one 

or more output value(s) from multiple input values. A more in-depth discussion on DNNs can also 

be found in renown textbooks in this field by Goodfellow et al., 2016, Trask, 2019 and  Weidman, 

2019.  

A neural network is a non-parametric machine learning algorithm that does not make assumptions 

about the mapping function's form to learn and make predictions from non-linear training data. 

The neural network is essentially a universal approximator because of its ability to mathematically 

capture and map very complex relationships (Brownlee, 2019). Structurally, a neural network is a 

collection of neurons arranged in layers. Figure 4.1 shows a simple neural network structure made 

up of a group of neurons arranged in layers.  The neurons in this layer do not perform any 

computation; they are simply a gateway for the input value to move to the next layer. The hidden 

layer(s) is/are the layer(s) between the input and output layers. The neurons in the hidden layer 

take as input the values from the input neurons and other preceding hidden layers. The output layer 

is the last layer, which obtains input from the last hidden layer and yields the output variable(s). 

The tremendous increase in computational power over the last couple of decades has enabled the 

application of deep neural networks with several layers.  
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Figure 4.1. Configuration of a simple neural network 

 

Figure 4.2 shows the configuration of a neuron. Each neuron has an input 𝑥𝑖, output 𝑦𝑗, weight 

𝑤𝑖𝑗, activation function 𝑎𝑖 and bias. The weight (𝑤𝑖,𝑗) determines the strength and sign of the 

connection between a pair of neurons. The bias is represented as a dummy input (𝑎0 = 1) with a 

corresponding weight (𝑤0,𝑗).  

                          

 

Figure 4.2. Configuration of a neuron 
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The output  of a neuron in a single layer feed-forward neural network is computed as the weighted 

sum of the inputs as follows: 

 
𝑠𝑗 =  ∑ 𝑤𝑖𝑗𝑎𝑖

𝑛

𝑖=1

, 
[31] 

 

Applying the activation function 𝜎 to the weighted sum gives the output 𝑎𝑗 of the neuron as: 

 
𝑎𝑗 =  𝜎 (∑ 𝑤𝑖𝑗𝑎𝑖

𝑛

𝑖=1

), 
[32] 

where:  

 𝑎𝑖 = (𝑤0,𝑗𝑥𝑖 +  𝑎0) + 𝑎𝑖,𝑗  [33] 

 

The activation function maps the weighted sum over a specified interval before passing it on to 

another neuron in the next layer. The primary purpose of the activation function is to help the 

neural network learn non-linear trends by determining the threshold of the neuron and the output 

signal's strength. 

 

The two widely used activation functions are sigmoid and hyperbolic tangent (TanH). As shown 

in Figure 4.3, the TanH maps values to the [-1,1] interval and is mathematically represented by: 

 
𝜎(𝑥) =  

𝑒𝑥 −  𝑒−𝑥

𝑒𝑥 +  𝑒−𝑥
 

[34] 
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Figure 4.3. Hyperbolic tangent (Tanh) activation function 

Figure 4.4 shows the sigmoid activation function. The sigmoid function maps values to the [0,1] 

interval. It is mathematically represented by:  

 
𝜎(𝑥) =  

1

1 +  𝑒−x
 

[35] 

 

 

Figure 4.4. Sigmoid activation function 

 

One of the most significant drawbacks of the sigmoid and hyperbolic functions is that the 

magnitude of the error diminishes drastically as the number of layers increases. This situation is 

often referred to as the vanishing gradient problem. The Rectified Linear Units (ReLU) activation 

function was introduced to overcome the vanishing gradient problem and has since become the 

most popular function for hidden layers. This is because it has a more straightforward 
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mathematical operation, which trains several times faster than the other activation functions while 

avoiding the vanishing gradient problem.  

Figure 4.5 shows the ReLU activation function that maps values to the interval [0, x] and is 

represented by:  

 𝜎(𝑥) = {
0 , 𝑥 < 0
𝑥, 𝑥 ≥ 0

 
[36] 

 

 

Figure 4.5. Rectified Linear Units (ReLU) activation function 

It is worth noting that, unlike the other activation functions, the ReLU activation function is only 

applicable to hidden layers. 

The type of activation function used for the output layers depends on the type of problem being 

solved. For classification problems, the SoftMax activation function is used. This activation 

function maps the value to the interval [0,1]. It is analogous to a categorical probability distribution 

in that it splits each result so that the sum of all outputs equals 1. For the regression problems, any 

other activation functions can be used for the output layer. The two most popular are hyperbolic 

tangent function and sigmoid function. 
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Training the neural network.  

Training a model involves estimating the weights that lead to the best predictive results by 

minimizing the loss on the dataset using gradient descent. A standard method for estimating 

weights in neural networks involves iteratively updating weights based on the error of the output 

node.  

The most widely used approach of utilizing model errors to update weights is referred to as Back 

Propagation of Error. In this approach, the error of the output node △𝑝 is distributed across all 

hidden nodes j that led to it. The determined error values △𝑗 for the hidden layer, the error is based 

on the connection's strength between the hidden node and the output node. 

For a neural network with p nodes in the output layer, the error is defined as (Russell & Norvig, 

2016):  

 △𝑝= ( 𝑦𝑝 −  𝑦𝑝̂)𝜎′(𝑠𝑝).  

 

 
△𝑝 = ( 𝑦𝑝 − 𝑦𝑝̂)𝜎′ (∑ 𝑤𝑖,𝑝𝑎𝑖

𝑛

𝑖=1

). 
[37] 

 

The weight update rule for minimizing the loss at the output layer is specified as (Russell & 

Norvig, 2016):  

 𝑤𝑖,𝑗
𝑛𝑒𝑤 =  𝑤𝑖,𝑗

𝑜𝑙𝑑 + 𝑙(𝑎𝑗 △𝑝) [38] 

 

l is the learning rate, weight decay parameter, or step size that determines how the weights change 

from one iteration to another. The learning rate l can be configured to remain constant over time 

or to degrade as the learning process progresses. 

During back propagation of the error, △𝑝, the error of the hidden layers △𝑗 is distributed based 

on the strength of the connection between the hidden node and the output node. 
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The error values of the hidden layers are computed as (Russell & Norvig, 2016): 

 △𝑗=  𝜎′(𝑠𝑗) ∑ 𝑤𝑗,𝑘 △𝑝

𝑘

 
 

 

 
△𝑗=  𝜎′ (∑ 𝑤𝑖𝑗𝑎𝑖

𝑛

𝑖=1

) ∑ 𝑤𝑗,𝑝 △𝑝

𝑝

 
[39] 

 

The △𝑗 error values at each node are used to update the weights using the weight update rule for 

minimizing the loss in the hidden layers, which is defined as (Russell & Norvig, 2016): 

 𝑤𝑖,𝑗
𝑛𝑒𝑤 =  𝑤𝑖,𝑗

𝑜𝑙𝑑 + 𝑙(𝑎𝑖 △𝑗) [40] 

  

This rule is similar to equation [38], with l as the learning rate.  

The loss function utilized in this work is the mean-squared error (MSE) which is defined as:  

 

𝐿 =
1

𝑁
 ∑( 𝑦𝑗 −  𝑦̂𝑗)

2
𝑁

𝑗=1

 

[41] 

 

where 𝑦𝑗 is the actual output value and  𝑦𝑗̂ is the predicted output value. 

For a neural network with p nodes in the output layer, the loss at the pth output unit is:  

 𝐿𝑝 = (𝑦𝑝 − 𝑎𝑝)
2
 [42] 

 

To minimize this function using a gradient-based (or stochastic gradient) approach, we need to 

find the gradient of the loss 𝐿𝑝with respect to the weights 𝑤𝑗,𝑝 connecting the hidden layer to the  

pth output unit. To determine the gradient, we differentiate the loss function with respect to the 

weight 𝑤𝑗,𝑝 as follows (Russell & Norvig, 2016):  

 𝜕𝐿𝑝

𝜕𝑤𝑗,𝑝
= −2(𝑦𝑝 − 𝑎𝑝)

𝜕𝑎𝑝

𝜕𝑤𝑗,𝑝
,  
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           = −2(𝑦𝑝 − 𝑎𝑝)

𝜕𝑠𝑝

𝜕𝑤𝑗,𝑝
, 

 

 
           = −2(𝑦𝑝 − 𝑎𝑝)

𝜕𝑠𝑝

𝜕𝑤𝑗,𝑝
, 

 

 
  = −2(𝑦𝑝 − 𝑎𝑝)𝜎′(𝑠𝑝)

𝜕𝑠𝑝

𝜕𝑤𝑗,𝑝
, 

 

 

 = −2(𝑦𝑝 − 𝑎𝑝)𝜎′(𝑠𝑝)
𝜕

𝜕𝑤𝑗,𝑝
(∑ 𝑤𝑗,𝑝𝑎𝑗

𝑗

), 

 

 = −2(𝑦𝑝 − 𝑎𝑝)𝜎′(𝑠𝑝)𝑎𝑗,  

 
    

𝜕𝐿𝑝

𝜕𝑤𝑗,𝑝
= −𝑎𝑗 △𝑝 

[43] 

To determine the gradient of the loss with respect to the weights connecting the input layer to the 

hidden layer 𝑤𝑖,𝑗, we differentiate the loss function with respect to the weight 𝑤𝑖,𝑗  as 

follows(Russell & Norvig, 2016): 

 
       

𝜕𝐿𝑝

𝜕𝑤𝑖,𝑗
= −2(𝑦𝑝 − 𝑎𝑝)

𝜕𝑎𝑝

𝜕𝑤𝑖,𝑗
,  

 

 
= −2(𝑦𝑝 − 𝑎𝑝)

𝜕𝑠𝑝

𝜕𝑤𝑖,𝑗
, 

 

 
= −2(𝑦𝑝 − 𝑎𝑝)𝜎′(𝑠𝑝)

𝜕𝑠𝑝

𝜕𝑤𝑖,𝑗
, 

 

 

= −2 △𝑝

𝜕

𝜕𝑤𝑖,𝑗
(∑ 𝑤𝑗,𝑝𝑎𝑗

𝑗

), 

 

 
= −2 △𝑝 𝑤𝑗,𝑝

𝜕𝑎𝑗

𝜕𝑤𝑖,𝑗
, 
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   = −2 △𝑝 𝑤𝑗,𝑝

𝜕𝜎(𝑠𝑗)

𝜕𝑤𝑖,𝑗
, 

 

 
    = −2 △𝑝 𝑤𝑗,𝑝𝜎′(𝑠𝑗)

𝜕𝑠𝑗

𝜕𝑤𝑖,𝑗
, 

 

 
    = −2 △𝑝 𝑤𝑗,𝑝𝜎′(𝑠𝑗)

𝜕

𝜕𝑤𝑖,𝑗
(∑ 𝑤𝑖𝑗𝑎𝑖

𝑛

𝑖=1

), 
 

     = −2 △𝑝 𝑤𝑗,𝑝𝜎′(𝑠𝑗)𝑎𝑖,  

 
        

𝜕𝐿𝑝

𝜕𝑤𝑖,𝑗
= 𝑎𝑖 △𝑗 

[44] 

The process of updating the weights to minimize the loss is an optimization problem solved using 

gradient descent. During gradient descent, small values are used as the starting weights and then 

reduced until convergence on the minimum value of the loss. The gradient descent process can be 

either a batch process or a stochastic process. In batch gradient descent, we minimize the sum of 

the entire dataset for each learning rate. This process guarantees convergence to a global minimum 

if the learning rate is low enough; however, it tends to be very computationally expensive. To 

speed the training process up, stochastic gradient descent can be used. In stochastic gradient, we 

minimize the sum of a subset of the dataset at each learning rate, thereby accelerating the training 

process. However, one shortcoming of stochastic gradient training is that it does not guarantee 

convergence, but this can be overcome by steadily decreasing the learning rates as the training 

process proceeds.   

 

4.2. Incorporating Physics into Neural Networks 

This sub-section will discuss how physical laws/constraints are incorporated into standard neural 

networks to obtain the so-called "physics-informed neural networks" (PINNs). Unlike most 
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previous publications that include physics-based constraints as a simple arithmetic sum of 

additional loss functions to the standard loss function, this work will use a weighted-summation in 

this penalty-based approach. To determine the optimum weights that simultaneously maximizes 

the accuracy of the prediction and enforce the physical constraints, several cases were run at 

different weight values, as discussed in Chapter 6.  

 

As discussed in section 0, when using deep learning algorithms like neural networks to model 

systems that have governing equations based on the laws of physics, the model can yield 

predictions that do not honor physics unless the physical laws are explicitly integrated into the 

learning process. Numerous authors have created several methods for integrating physics into deep 

neural networks. In this work, I use penalty-based PINNs, which are typically used to incorporate 

PDE constraints into the training of deep learning models. According to Raissi et al., 2019, this 

technique adds the mean-squared errors (MSE) associated with the governing PDEs, as well as the 

initial and boundary conditions, to the standard loss function defined in equation [41]. The 

modified loss function is presented as:  

 𝐿 = 𝑀𝑆𝐸1 +  𝑀𝑆𝐸2 +  𝑀𝑆𝐸3, [45] 

where 𝑀𝑆𝐸1 , 𝑀𝑆𝐸2 , and 𝑀𝑆𝐸3 are the MSEs associated with the standard DL, PDE, and boundary 

conditions, respectively. It is worth noting that Raissi et al., 2019 proposed a different version of 

the equation that included the loss related with the PDE. (𝑀𝑆𝐸2 ) only instead of both 𝑀𝑆𝐸2  and 

𝑀𝑆𝐸3 . In this multi-objective optimization problem, the strategy of simply adding up the MSEs 

implicitly assumes equal weights for all three MSEs. Given that the magnitudes of each MSE may 

differ, there is no guarantee that all three MSEs will be minimized to the same extent. The greatest 

of these MSEs will typically be minimized at the expense of the others. This work proposes using 
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a weighted summation of the standard DL MSE and the MSEs associated with the thermodynamic 

constraints. Due to the computational complexity of determining fugacity equality and the 

requirement to solve the equation of state for each fluid combination, we focus on the interphase 

mass balance and component balance constraints. 

 

To be clear, generating training data from the iterative solution of the RR equation is analogous to 

generating training data for traditional PDE-based PINNs using a numerical or analytical model, 

as described in Raissi et al., 2019 and Haghighat & Juanes, 2021 (Ihunde & Olorode, 2022). 

Therefore, we use the interphase mass balance and component balance constraints in place of the 

PDEs and boundary conditions in Raissi et al., 2019 and Haghighat & Juanes, 2021 (Ihunde & 

Olorode, 2022). Given that the mathematical formulation and usage of the penalty-based approach 

is not limited to PDEs, this work will demonstrate the feasibility of introducing physical constraints 

that are not PDEs into a neural network (Ihunde & Olorode, 2022). 

 

The modified loss function used in this work is given as: 

 𝐿𝑜𝑠𝑠 = 𝜆1𝑀𝑆𝐸1 +  𝜆2𝑀𝑆𝐸2 +  𝜆3𝑀𝑆𝐸3 [46] 

where these three loss functions are given as:  

 

𝑀𝑆𝐸1 =  
1

𝑁
∑ ∑(𝑦𝑖,𝑗 −  𝑦𝑖,𝑗̂)

2
𝑀

𝑗=1

𝑁

𝑖=1

, 
[47] 

 

𝑀𝑆𝐸2 =  
1

𝑁
∑ ∑(𝑥𝑖𝑗(1 − 𝑉𝑖) +  𝑦𝑖𝑗𝑉𝑖 − 𝑧𝑖𝑗)

2

𝑛𝑐

𝑗=1

𝑁

𝑖=1

, 
[48] 

 

𝑀𝑆𝐸3 =  
1

𝑁
∑ ∑(𝑥𝑖𝑗 − 𝑦𝑖𝑗)

2
,

𝑛𝑐

𝑗=1

𝑁

𝑖=1

 

[49] 
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sand 𝜆1, 𝜆2, and 𝜆3 are their corresponding weights. Note that the inner summation in equation [47] 

is over the total number of variables M, whereas it is over the total number of components 𝑛𝑐 in 

equations [48] and [49] (Ihunde & Olorode, 2022). A comparison of the equations for 𝑀𝑆𝐸2 and 

𝑀𝑆𝐸3 with the equations for the interphase mass balance and component balance constraints 

(equations [21] and [26]) indicates that these equations correspond to both constraints in the 

homogeneous form (Ihunde & Olorode, 2022). On the other hand, 𝑀𝑆𝐸1 is the data misfit, which 

is based on the difference between the model and the training data, as in equation [41]. To 

determine the importance of 𝑀𝑆𝐸2 and 𝑀𝑆𝐸3, I run them separately in this work to avoid one 

disguising the influence of the other. This means there are two basic scenarios: one with a loss 

function that just includes 𝑀𝑆𝐸1 and 𝑀𝑆𝐸2, and the other with 𝑀𝑆𝐸1 and 𝑀𝑆𝐸3. 

 

 

4.3. Model evaluation metrics 

 

Since the standard metrics used to evaluate model performance strictly evaluate if the prediction 

made by the model is close to the actual value in the training data, we need a metric that will 

evaluate the extent to which the model predictions honor the physical constraints. In this sub-

section, we discuss how to evaluate the effectiveness of the PINN model at honoring the physical 

constraints using the root mean squared error (RMSE) (Ihunde & Olorode, 2022).  

For the interphase mass balance constraint, the RMSE is given as: 

 

𝑅𝑀𝑆𝐸2 =   √
∑ ∑ {(𝑧𝑖,𝑗 − [𝑥̂𝑖,𝑗(1 − 𝑉𝑖̂) + 𝑦̂𝑖,𝑗𝑉̂])

2
}

𝑛𝑐

𝑗=1
𝑛
𝑖=1 

𝑁
        |𝑖 = 1,2,3 … . . 𝑁 

[50] 

  

Considering that the overall mole fractions provided in the training, validation, and test data are 

guaranteed to sum up to one, the component balance constraint will consist of two RMSEs—one 
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for the liquid phase (𝑅𝑀𝑆𝐸𝐿) and the other for the vapor phase (𝑅𝑀𝑆𝐸𝑉) (Ihunde & Olorode, 

2022).  These two RMSEs are computed as follows: 

 

𝑅𝑀𝑆𝐸𝐿 =  
√∑ ((∑ 𝑥̂𝑖,𝑗)

𝑛𝑐

𝑗=1 − 1)
2

 𝑛
𝑖=1 

𝑁
         |𝑖 = 1,2,3 … . . 𝑁 

[51] 

 

𝑅𝑀𝑆𝐸𝑉 =   
√∑ ((∑ 𝑦̂𝑖,𝑗)

𝑛𝑐

𝑗=1 − 1)
2

𝑛
𝑖=1 

𝑁
        |𝑖 = 1,2,3 … . . 𝑁 

[52] 

 

To keep things simple, we sum these two RMSEs to obtain a single RMSE for the component 

balance constraint as follows: 

 𝑅𝑀𝑆𝐸3 = 𝑅𝑀𝑆𝐸𝐿 + 𝑅𝑀𝑆𝐸𝑉    [53] 
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5. IMPLEMENTATION 

This chapter discusses how the PINN and standard DNN models are designed and implemented. 

It begins with a discussion of how the data used to train the models is generated. We review the 

use of a space-filling mixture design to generate one million overall compositions (zi) that are 

evenly distributed throughout the sample space (Ihunde & Olorode, 2022). Next, we discuss how 

MATLAB Reservoir Simulation Toolkit (MRST) (Lie, 2019) was used to perform stability 

analysis and isothermal two-phase flash to obtain the phase mole-fraction values xi and yi and the 

vapor fraction V (Ihunde & Olorode, 2022). The overall composition, pressure, phase mole-

fractions, and vapor fraction make up the dataset used to train the PINN and DNN models (Ihunde 

& Olorode, 2022). This chapter ends with a discussion of how the standard DNN model and PINN 

models are implemented.   

 

5.1. Experimental Design for Mixtures 

 

Data is a critical component of every machine learning process. When machine learning methods 

are used to generate models for compositional modeling, experimental design for mixtures (i.e., 

mixture design) is used to ensure that the training data covers the sample space. 

In this work, the JMP software is used for the experimental design for mixtures.  Ten thousand 

unique compositions of three-component reservoir fluids are generated using a space-filling 

mixture design in JMP (Ihunde & Olorode, 2022). This allows us to sample the entire parameter 

space  (0 ≤ 𝑧𝑖 ≤ 1) evenly while enforcing the linear constraint that requires that the mole-

fractions of each component in each fluid mixture sums up to one (∑ 𝑧𝑖
3
𝑖 = 1). The fluid mixtures 

used to test the feasibility of incorporating physics-based components include methane (C1), 

propane (C3), and tetradecane (C14). Error! Reference source not found. shows a ternary plot 
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of some of the compositions obtained using the space-filling mixture design. It shows that the use 

of the design yields mixtures that are evenly distributed within the entire sample space of all 

possible mixtures with C1, C3, and C14. 

 

In JMP, the fast flexible filling space filling design (Lekivetz & Jones, 2015) algorithm generates 

many random points within the specified design region (SAS Institute Inc, 2020-2021). Then, a 

Fast Ward algorithm (Ward Jr, 1963) is used to cluster the points into multiple clusters that equal 

the number of runs specified (SAS Institute Inc, 2020-2021). The final design points are obtained 

using the maximum projection (MaxPro) optimality criterion (SAS Institute Inc, 2020-2021). The 

MaxPro criterion maximizes the space-filling properties on projections to all subsets of factors, 

thereby generating good space-filling properties on factor projections. (Joseph et al., 2015).  

For design points 𝑥𝑖𝑘 and 𝑥𝑗𝐾, the MaxPro criterion (𝐶𝑀𝑎𝑥 𝑃𝑟𝑜) to construct an n-run  design in p 

factors is defined as (Joseph et al., 2015):  

 

𝐶𝑀𝑎𝑥 𝑃𝑟𝑜 =  ∑ ∑ [
1

∏ (𝑥𝑖𝑘 − 𝑥𝑗𝐾)2𝑝
𝑘=1

]
𝑛

𝑗=𝑖+1

𝑛−1

𝑖

 

[54] 
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Figure 5.1. Ternary plot showing some of the compositions 

5.2. Compositional modeling for data generation. 

This subsection details the generation of the datasets used to train, validate, and test the DL models 

for two-phase flash. The compositional modeling routines in the MATLAB Reservoir Simulation 

Toolkit (MRST) (Lie, 2019) were used to perform stability analysis and isothermal two-phase flash 

(Ihunde & Olorode, 2022). The ten thousand compositions obtained from the space-filling design 

discussed in the previous section were flashed using 100 different pressures ranging between 14.7 

and 5000 psia to generate one million fluid mixtures that make up the training dataset. Considering 

the focus on isothermal two-phase flash, the temperature was maintained at a value of 353 K 

(176℉). The two-phase flash procedure discussed in chapter 0 is used to obtain the phase mole 

fractions and vapor fraction for each fluid mixtures the dataset.  

 

Table 1 shows the first six rows of a randomly selected subset of the data. The first four columns 

show the overall mole fractions (𝑧𝑖) and pressure (P), which serve as input variables for the actual 

phase-equilibrium calculations (Ihunde & Olorode, 2022). The output variables from the two-
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phase flash computations are shown in the remaining columns. The goal of this research is to use 

input data (overall mole fractions and pressure) to train deep neural networks (with and without 

physical restrictions) to predict output data (phase mole fractions and vapor fractions). The 

subscripts 1, 3, and 14 correspond to methane (C1), propane (C3), and tetradecane (C14), which 

are the hydrocarbon components in each of the fluid mixtures. The one million unique fluid 

mixtures were divided into training, validation, and testing in the ratio 70:15:15. During the 

training process, the training and validation datasets are used, while the test dataset is withheld and 

not exposed to the models. 

Table 1. Sample from the dataset used to train DNN models. 

z1 z3 z14 P (psi) V x1 x3 x14 y1 y3 y14 

0.0303 0.8517 0.1180 4345.358 0 0.0303 0.8517 0.1180 0 0 0 

0.2450 0.3969 0.3580 1626.076 0 0.2450 0.3969 0.3580 0 0 0 

0.9031 0.0937 0.0032 367.1495 1 0 0 0 0.9031 0.0937 0.0032 

0.6841 0.3151 0.0009 1676.433 1 0 0 0 0.6841 0.3151 0.0009 

0.6861 0.1365 0.1774 820.3632 0.7027 0.5919 0.1572 0.2509 0.9087 0.0876 0.0036 

0.6125 0.2196 0.1679 1072.149 0.3554 0.2165 0.3113 0.4722 0.8308 0.1691 0.0001 

 

Table 2 shows a description of the variables in the dataset. Three additional variables are added to 

the dataset to identify each composition as single-phase liquid, single-phase vapor, or two-phase. 

Figure 5.2 shows the code used to implement the label encoding and one-hot encoding used to 

generate the additional phase identifying variables. Using the vapor fraction V of each 

composition, label encoding is first performed to assign each composition with an integer value of 

"0", "1," or "2," identifying it as single-phase liquid, single-phase vapor, or two-phase. Since the 

integer values are only used as labels, one-hot encoding replaces the integer values with binary 
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variables to ensure that the model does not assume an ordinal relationship incorrectly. The possible 

classes for the fluid phase necessitate the use of three binary variables, each with a value of "1" 

for the identified phase and a value of "0" for the two other phases. 

Table 2. Description of the variables in the dataset 

z1, z3, z14  Overall mole fraction for methane, Propane and Tetradecane  

P  Pressure 

V Vapor fraction 

 x1, x3, x14 Liquid-phase mole fraction for methane, Propane and Tetradecane 

y1, y3, y14 Vapor-phase mole fraction for methane, Propane and Tetradecane 

liquid (1,0,0) One-hot encoded variable identifying liquid phase  

gas (0,1,0) One-hot encoded variable identifying gas phase  

two-phase (0,0,1) One-hot encoded variable identifying two-phase 

 

 

Figure 5.2. Snippet of code used to perform Label encoding and one-hot encoding. 

 

Since the dataset contains variables of different magnitudes, the data is scaled to a range of [0, 1] 

using the "MinMaxScaler" from the Sci-kit learn Python package. The formula for 

"MinMaxScaler" is given as:  

Xstd =  
(X − min)

(max − min)
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This work uses the MinMaxScaler because the data has no outliers, and its standard deviation is 

relatively small.  

5.3. Implementation of the Neural Network Models 

 

This subsection discusses how the neural network models are implemented in this work. It starts 

with presenting the structure and parameters of the classification neural network model trained for 

phase identification. Next, we review how the standard DNN and PINN models are implemented. 

Lastly, considering the stochastic nature of the deep learning training process, section 5.4 describes 

how K-fold cross-validation is performed to guarantee the model's mean and standard deviation 

are reliably estimated. 

The methodology used to implement the PINN and DNN models mimics the compositional fluid 

modeling process of performing a stability analysis for phase identification, then two-phase flash 

to determine phase compositions and vapor fraction. This process translates into a two-step process 

in ML with classification and regression, as shown in Figure 5.3. A classification model is 

developed in the first step to determine the phase from the molar compositions and pressure. DNN 

and PINN regression models are created in the second step using the input and output variables 

from the classification model as shown in Figure 5.3. This work aims to incorporate physics into 

the second step, as demonstrated using the PINN model. Figure 5.3 shows the neural network 

schematics with the input and output layers indicating the variables of interest.  
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Figure 5.3. Neural network schematics showing the input and output variables 

 

5.3.1 Implementation of the classification model.  

 

Table 3 summarizes the key parameters of the classification neural network used to identify the 

state of each fluid mixture in the dataset. The network has four layers. The inputs of the network 

are the overall mole fractions (𝑧𝑖) and the pressure (p). The network is compiled with the Adam 

optimizer and the categorical cross-entropy loss function. The activation function for all the hidden 

layers is ReLU, and for the output layer, the SoftMax activation function. The network's output is 

a binary output that identifies the composition as liquid, gas, or two-phase. The SoftMax activation 

will output a probability value for each node in the output layer, and the probability values sum up 

to 1.0. The probabilities are converted to encoded class labels after applying a threshold. This will 

give an output of (1,0,0), (0,1,0) or (0,0,1) to classify the composition as liquid, gas or two-phase. 

The output from the classification model is used as part of the input into the regression model, but 

only two of the three output phase classes are used to avoid the dummy variable trap (Suits, 1957) 

during the training of the regression model. 
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Table 3. Summary of the neural network used for phase classification. 

Dataset  Training: 700,000 Testing: 150,000 Validation: 

150,000  

Neurons per layer Input: 4 neurons,  

Hidden layers: 128 neurons each.  

Output layer: 3 neurons. 

Batch size  256 

Number of epochs  250 

Optimizer  Adam 

Loss function Categorical Cross-entropy 

The hidden layer 

activation function 

ReLU 

Output layer activation 

function 

SoftMax 

Metric  Accuracy  

 

5.3.2 Implementation of the regression models.  
 

A standard DNN regression model and a PINN regression model are created with similar 

architecture as summarized in Table 4. The results of the predictive performance of the two models 

are compared and discussed in Chapter 6 to understand the effect of incorporating physics into the 

second step using the PINN.  

I used the SciANN Python package (Haghighat & Juanes, 2021) for the PINN regression model to 

take advantage of the flexibility of turning the physics constraints on or off. The SciANN package 

is based on TensorFlow (TensorFlow, 2019), so I had access to all the deep learning functionalities 

of this robust deep learning package. For the standard DNN model, I implemented a fully 

connected feed-forward deep neural network with the loss function given in Equation [[47]. For 

the PINN model, the standard loss function is modified to include the physics constraints as shown 

in Equation [46]. Table 4 summarizes the model parameters used in the DNN and PINN models.  

Table 4. Summary of the Model Parameters for the DNN and PINN models 
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 PINN DNN 

Dataset  Training: 700,000 Testing: 150,000 

Validation: 150,000  

Training: 7,000,000 Testing: 150,000 

Validation: 150,000  

Network Input layer: 6 neurons,  

Hidden layers: 128 neurons each 

Output layer: 7 neurons 

Input layer: 6 neurons,  

Hidden layers: 128 neurons each 

Output layer: 7 neurons 

Batch size  256 256 

Number of epochs  300 300 

Optimizer  Adam Adam 

Modified Loss 

function 
𝜆1𝑀𝑆𝐸1 +  𝜆2𝑀𝑆𝐸2 +  𝜆3𝑀𝑆𝐸3 𝑀𝑆𝐸1  

The hidden layer 

activation function 

ReLU ReLU 

Output layer 

activation function 

Sigmoid Sigmoid 

Metrics  RMSE, R2 RMSE, R2 

 

5.4. K-fold cross-validation  

 

Given the stochastic nature of the random initial weights and gradient optimizers used to train the 

ML model, the predicted outputs frequently vary even when the same model is trained multiple 

times on the same input data. To alleviate this problem in this work, seven-fold cross-validation is 

performed to obtain a robust estimate of the model's performance on unseen data, using the mean 

and standard deviation of the adjusted coefficient of determination. Figure 5.4 provides a 

schematic illustration of the seven-fold cross-validation. On different subsets of the training data, 

seven models with the same parameters are trained and evaluated. Six-sevenths of the combined 

training and validation data are used to train the model in each of the seven-folds, with the 

remaining one-seventh utilized to compute the model's performance. As a result, seven unique 

estimates for each of the model parameters are obtained. The box plots shown in the following 

chapter are based on these seven estimates. 
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Additionally, the model averaging or bootstrap aggregating ("bagging" for short) technique is used 

to reduce the generalization error (Breiman, 1996). In this technique, the seven models generated 

for each combination of model parameters are saved and combined to form an ensemble model. 

This is achieved by simply weighting the model predictions from each model equally. Bagging is 

well-known to outperform the single best-performing model because of the reduction in the 

generalization error (Goodfellow et al., 2016). 

 

Figure 5.4. Seven-fold cross-validation 
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6. RESULTS AND DISCUSSION 

This chapter starts with a discussion of the results obtained from using a DNN classification model 

to determine the phase of the fluid mixture based on the given overall mole fractions and pressure. 

To evaluate the incorporation of physics via the PINN model, we compare the PINN model results 

to those from a standard DNN that does not incorporate the thermodynamics constraints explicitly. 

Finally, we compare the phase diagrams based on the PINN model predictions of the overall mole 

fractions to those based on a standard DNN model, a linear regression model, and the phase 

envelopes computed using the actual overall mole fractions in the test dataset.  

 

6.1. Discussion of results for phase classification  

 

This section presents the results of the phase classification, where we determine if the composition 

is in the single-phase liquid, gas, or two-phase state. It also discusses the results of training the 

DNN model on a dataset with an imbalanced class distribution and the effect on the model's 

predictive ability.  

The model is trained to predict three output variables that classify the phase as a liquid, vapor, or 

two-phase for any given composition and pressure. The model took 94 minutes to fit the 700,000 

training dataset and 5 seconds to predict the flash output variables using the 150,000 validation 

dataset. The results are achieved using a computer with an Intel ® Xeon ® Silver 4216 CPU 16-

Core, 32-Thread @ 2.10GHz and a 64 GB RAM. The model's overall accuracy is 97.7%, and the 

value of the loss function is 0.0872. Figure 6.1 and Figure 6.2 present the model accuracy and loss 

function evolution during the training and validation.  
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Figure 6.1. Overall accuracy of the classification model 

 

Figure 6.2. Loss during the training and validation of classification model 

 

Accuracy is defined as the ratio of correctly predicted observations to the total observations. From 

the results, we can see that the overall accuracy of the classification model is 97.7%. However, 

since the model predicts three different phases, it is crucial to measure the model's predictive 

ability for each phase separately. This is done by individually evaluating each phase's precision, 

recall, and F1-score. Precision is the ratio of correctly classified positive observations to the total 

number of observations classified as positive, i.e. (TP/(TP+FP)). High precision indicates an 

observation labeled as positive is indeed positive (a small number of FP). The recall, also known 

as sensitivity, is the ratio of correctly classified positive observations to all observations classified 

as positive, i.e. (TP/(FP+FN)). The F1 score is the weighted average of the recall and precision, 

i.e. ((2*precision*recall)/ (precision + recall)).  
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Figure 6.3 shows the confusion matrix for the gas phase. From the matrix, we can see that the 

model correctly predicted the classification of 266 fluid mixtures as gas phase, and it wrongly 

predicted 318 fluid mixtures as not gas phase when in fact, they are.  We also computed the 

precision, recall, and F-1 score for the single-phase gas state as 78.2%, 45.5%, and 57.6%, 

respectively. These metrics indicate that although the overall model accuracy is very high (97.7%), 

its ability to correctly classify fluid mixtures in the single-phase gas state is weak. This is typically 

due to the imbalance or uneven class distribution in the population of fluid mixtures used to train 

the deep learning model. This issue is addressed at the end of this section.  

 

Figure 6.3. Gas Confusion Matrix 

 

Figure 6.4 shows the confusion matrix obtained for the liquid phase. The model correctly classified 

111,604 fluid mixtures as liquid phase, and it incorrectly predicted that 2954 fluid mixtures are not 

in the liquid phase when in fact, they are.  To evaluate the model's ability to correctly predict the 

classification of the fluid mixtures in the liquid phase, we computed the recall (98%), precision 

(97%), and F-1 score (98%). These results indicate that the model is able to correctly classify the 

fluid mixtures in the liquid phase. 
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Figure 6.4.  Liquid Phase Confusion Matrix 

 

Figure 6.5 shows the confusion matrix for the two-phase state.  The confusion matrix for the two-

phase is shown in Figure 6.5. We can see from the matrix that the model correctly classified 33,030 

fluid mixes as two-phase while incorrectly predicting 1795 fluid mixtures as not two-phase when 

they are. As previously done for the liquid and gas phase, to assess the model's ability to forecast 

the classification of fluid mixes in the two-phase correctly, we compute the recall, precision, and 

F-1 score, which are 91%, 95%, and 93%, respectively. Comparing these values to the 

corresponding values for the liquid state,              d           m d  ’   b                   

classify fluid mixtures in the two-phase state is slightly less than its ability to classify fluix mixtures 

in the single-phase liquid state. 
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Figure 6.5. Two-phase Confusion Matrix 

 

Table 5 summarizes the precision, recall, and F-1 scores of the three phases in the dataset with the 

imbalanced class distribution. Although the model has a high overall accuracy of 97.7%, its low 

values of precision, recall, and F1 score in the gas phase indicate that it will not correctly classify 

the gas phase within an acceptable range of error. 

Table 5. Summary statistics for the dataset with an imbalanced class distribution 
 

Precision Recall   F1-score 

Gas 0.78 0.46 0.58 

Liquid 0.97 0.98 0.98 

Two-phase 0.95 0.91 0.93 

 

The validation dataset had 150,000 observations with a class distribution of 76.4%, 23.2%, 0.397% 

of the data in the liquid, two-phase, and gas states, respectively. The number of observations in 

each phase of these states was 114558, 34825, and 584 for the liquid, two-phase, and gas states, 

respectively. From these numbers, it is apparent that the dataset has an imbalanced or highly 

skewed class distribution. The measures of accuracy for training data with imbalanced class 

distribution are typically dependent on the number of observations that the model is trained on for 
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each phase. This is the reason that the precision, recall, and F-1 score values were lowest in the 

single-phase gas state and highest in the single-phase liquid state.  

To resolve this limitation, we modificed the dataset to include more fluid mixtures in the gas state. 

A new deep learning model was then trained with the more evenly balanced dataset. Figure 6.6 

shows the overall accuracy of a classification model trained on a dataset with an even distribution 

of fluid mixtures in the liquid, gas, and two-phase states. The model took 60 minutes to fit the 

700,000 fluid mixtures in the training dataset and 32 seconds to predict on the 150,000 fluid 

mixtures in the validation dataset. The model's overall accuracy is 98.2%, and the value of the loss 

function is 0.0427. 

 

Figure 6.6. Accuracy of an evenly distributed dataset 

 

Figure 6.7 shows that the training and validation loss function value decreases to a minimal value, 

indicating a good fit for the model with a balanced dataset. The minimal difference between the 

training and validation data loss functions indicates that the trained model does not overfit the 

training data provided. 
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Figure 6.7. Loss propagation of an evenly distributed dataset 

 

Figure 6.8 shows the gas phase confusion matrix generated from a model trained with a balanced 

class distribution dataset. From the gas confusion matrix, the recall is computed as 99.4%, the 

precision is 99.8%, and the F-1 score is 99.6%.  

 

Figure 6.8. Gas confusion matrix for evenly distributed dataset 

 

The confusion matrix for the fluid mixtures in the liquid phase predicted by a model trained and 

evaluated on a dataset with a balanced class distribution is shown in Figure 6.9.  The recall is 

98.9% from the matrix, the precision is 95.7%, and the F-1 score is 97.3%.  
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Figure 6.9. Liquid confusion matrix for evenly distributed dataset 

 

Figure 6.10 shows the two-phase confusion matrix for fluid mixtures classified using a model 

trained and evaluated on a dataset with a balanced class distribution. From Figure 6.10, we can 

calculate the recall, precision, and F-1 score for the two-phase class as  96%, 98.5%, and 97.2%, 

respectively.  

 

Figure 6.10. Two-phase confusion matrix for evenly distributed dataset 
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Table 6 summarizes the precision, recall, and F-1 score of the three phases in a dataset with a 

balanced class distribution. We observe that the classification model's overall accuracy increased 

from 97% to 98% from these results. In the case of the evenly distributed dataset, the model's 

overall accuracy reliably represents the model's predictive ability for all three phases within an 

acceptable range of error. 

Table 6. Summary statistics for the dataset with a balanced class distribution 
 

precision recall   F1-score 

Gas 0.994 0.998 0.996 

Liquid 0.989 0.957 0.973 

two-phase 0.960 0.985 0.972 

 

These results indicate that for compositional fluid property modeling using machine learning, it is 

crucial to ensure that the dataset generated from the traditional two-phase flash process has an 

approximately equal number of observations from each phase before it is used to train and evaluate 

the deep learning models.  

 

6.2. Discussion of results for Regression using DNNs and PINNs 

 

This section discusses the results of training a standard DNN and a PINN model to predict the 

phase mole fractions and vapor fraction, given the overall composition, pressure, and temperature. 

To quantify the significance of incorporating the physics constraints, this section discusses the 

standard DNN model trained to provide a reference base case. The interphase mass balance and 

component balance constraints are then incorporated and optimized one at a time to clearly 

distinguish the effect of incorporating the constraints and keep the optimization simple to 
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implement and interpret. This section is divided into three parts. The first discusses the DNN 

model, while the remaining two subsections discuss the results obtained from the PINN model 

with the two physics constraints.  

 

6.2.1 Regression using the DNN model.  

This subsection discusses the results from the standard DNN model. The loss function in the 

standard DNN model is the MSE. This loss only measures the error associated with the misfit of 

the data. Using equation [46], the loss function for the DNN model is obtained by setting the values 

of λ2 and λ3 to zero and setting 𝜆1 to one. Therefore equation [46] is simplified to represent the 

loss function equation for the DNN model as:  

 𝐿 = 𝑀𝑆𝐸1  [55] 

5 
 

The metrics used to evaluate the performance of the DNN model are summarized in Table 7. These 

results will later be compared to the results from the PINN models to understand the effect of 

incorporating thermodynamics constraints on model performance.  

 

Table 7. Results of the DNN model. 

 DNN 
Overall Model R2 0.9663 
Overall RMSE 0.0399 

Loss 0.0112 

 

Figure 6.11 shows the loss learning curves of the DNN model for the training and validation 

dataset. The results indicate that the training and validation loss functions reduce to a very low 

value at the end of the training. The close match between the training and validation losses 

indicates that the trained model does not overfit the input data.   



56 

 

 

Figure 6.11. The learning curve for the DNN model. 

 

6.2.2 PINNs with inter-phase mass balance constraint 

 

Next, we discuss the results from incorporating the inter-phase mass balance constraint into the 

deep learning process and compare the results of the PINN model with the interphase mass balance 

constraint to those from the standard DNN model. Using the weighted sum of MSEs, we obtain 

the results of the PINN model with only the interphase mass balance constraint by simply setting  

λ3 to zero, 𝜆1 to one, and assigning different values to λ2. So, the loss function equation (equation 

[46]) simplifies to the following: 

 𝐿 = 𝑀𝑆𝐸1 +  𝜆2𝑀𝑆𝐸2  [56] 

Considering that the goal is to minimize the loss function L, it is essential to determine the optimum 

value of λ2 at which the model minimizes the errors associated with the data misfit (𝑀𝑆𝐸1 ) and 

the interphase mass balance (𝑀𝑆𝐸2 ) (Ihunde & Olorode, 2022). To determine the optimum value 

of λ2, the RMSE of the interphase mass balance constraint and the coefficient of determination 

(R2) are plotted against weight λ2 to find the optimum value of λ2 where the RMSE of the 
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interphase mass balance constraint is minimized, and the R2 is still very high (Ihunde & Olorode, 

2022).  

Figure 6.12 shows the box plot created using the seven RMSE and R2 values obtained from the 

seven-fold cross-validation results plotted against weights λ2 . The RMSE measures the degree to 

which the predictive model honors the laws governing phase equilibrium, and the R2 quantifies 

the model's overall accuracy (Ihunde & Olorode, 2022). The box plot provides insight into the 

model's performance as the weights gradually increase and facilitates the determination of the 

optimal weight for the inter-phase mass balance constraint. It is worth noting that we initially 

attempted a computationally intensive multi-objective optimization of the weights however, 

gradually increasing the weights while monitoring the evaluation metrics provides insights into 

the model's performance at various weight values (Ihunde & Olorode, 2022). So, it was deemed a 

more pragmatic and useful approach.  

 

Figure 6.12. Box plots show how the model accuracy and physics constraint errors (indicated by 

the R2 and RMSE, respectively) vary with the weights applied to the interphase mass balance 

constraint. 
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In Figure 6.12, we can see that the weights (λ2) are set to vary from 0 to 10. The weight of zero is 

the reference weight that represents the results from the standard DNN model, where the model 

does not impose any physical constraints. So, equation [56] simplifies into equation [55] when 

λ2  =  0. When λ2 is increased from 0 to 2, the RMSE of the interphase mass balance error 

decreases from 0.0027 to 0.0012. Beyond the weight of 2, the R2 value decreases appreciably. So, 

we can conclude from Figure 6.12 that the optimal weight for the interphase mass balance 

constraint is ~1.73. This weight is selected because the RMSE is only marginally reduced when 

the weight increases above the weight of 1.73, but the model's R2 decreases significantly.  

Table 8 shows a comparison between the PINN model with the interphase mass balance constraint 

and the DNN model without the interphase mass balance constraint using the R2 and RMSE values 

(Ihunde & Olorode, 2022).   This table presents the best single PINN and DNN models rather than 

the ensemble model results. When benchmarking models, utilizing a single model rather of an 

ensemble model helps to avoid the natural effect of model averaging-induced model performance 

improvement. (Goodfellow et al., 2016). From Table 8, the RMSE for the interphase mass balance 

constraint is 55% lower in the PINN model than in the DNN model, resulting in a lower total 

RMSE for the PINN model. The R2 for the PINN is approximately the same as in the DNN model. 

This indicates that incorporating the interphase mass balance constraint results in a model that 

honors the physical constraint without decreasing the model's accuracy. 

Table 8. Comparison of DNN to PINN with interphase mass balance constraint 

 PINN DNN 

Overall Model R2 0.9658 0.9663 

Overall RMSE 0.0356 0.0399 

RMSE𝟐 0.0118 0.0265 
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Figure 6.13. Progression of the loss function for the inter-phase mass balance constraint at a 

weight of 1.73  

Figure 6.13  shows the training progression of the modified loss function for the best PINN model 

with the inter-phase mass balance constraint at the optimal weight of 1.73. The overall RMSE of 

the PINN model with the inter-phase mass balance constraint is 0.0356. A closer look at the loss 

in Figure 6.13 shows that the model does not overfit the data because the training and validation 

loss functions decrease to a small value with a minimal gap between the two loss function values 

at the end of the training and validation.  

6.2.3 PINNs With Component Balance Constraint 

 

This subsection discusses the outcomes of training PINNs with a component balance constraint. 

As in the Section 6.2.2, I use a weighted sum of MSEs to obtain the results of the PINN model 

with the component balance constraint by setting the value of λ2 to zero, 𝜆1 to one, and assigning 

different values to λ3(Ihunde & Olorode, 2022). For the component balance constraint, the loss 

function given in equation [46] is simplified as follows (Ihunde & Olorode, 2022):  

 𝐿 = 𝑀𝑆𝐸1 +  𝜆3𝑀𝑆𝐸3  [57] 
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Figure 6.14  shows the RMSE of the component balance constraint and the R2 against the weight 

𝜆3 (Ihunde & Olorode, 2022). This box plot was created using the seven RMSE and R2 values 

obtained from the seven-fold cross-validation results (Ihunde & Olorode, 2022). It provides insight 

into the model's performance as the weights gradually increase and helps determine the optimal 

weight for the component balance constraint. The RMSE measures the degree to which the 

predictive model adheres to the laws governing phase equilibrium, and the R2 quantifies the 

model's overall accuracy (Ihunde & Olorode, 2022). Like in Figure 6.12, the reference point for 

the standard DNN model is obtained when λ3 is set to zero, which implies that no physical 

constraints enforced. The RMSE decreases from 0.15% to 0.02% while the R2 remains relatively 

constant as the value of λ3 increases from zero to 2.24 (Ihunde & Olorode, 2022). Beyond a weight 

of 2.24, the RMSE does not decrease any further, and the R2 begins to decline. Therefore, the 

optimal weight for the component balance constraint is ~2.24 (Ihunde & Olorode, 2022). 
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Figure 6.14. Box plots show how the model accuracy and physics constraint errors (indicated by 

the R2 and RMSE, respectively) vary with the weights applied to the component balance 

constraint.  

Table 9 compares the PINN and DNN models using the R2 and the RMSE of the data misfit and 

the component balance constraint (Ihunde & Olorode, 2022). As in Table 7, this table compares 

single best models rather than ensemble models. It shows that the RMSE for the component 

balance constraint is 88% lower in the PINN model than in the DNN model (Ihunde & Olorode, 

2022).  This indicates that incorporating the component balance constraint results in a model that 

honors the physical constraint without a decrease in the model's accuracy at the selected λ3 value 

of 2.24. 

Table 9. Comparison of DNN to PINN with component balance constraint 

 PINN DNN 
Overall Model R2 0.9683 0.9663 
Overall RMSE 0.03887 0.0399 
RMSE𝟑 0.00015 0.00126 
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Figure 6.15  shows the training progression of the modified loss function for the best PINN model 

with the component balance constraint at the optimal weight of 2.24. The overall RMSE of the 

PINN model with the component balance constraint is 0.0388. Figure 6.15 shows that the training 

and validation loss functions decrease to a minimal value and the difference between them is 

negligible at the end of the training process. This indicates that the resulting model does not overfit 

the training data.  

 

Figure 6.15. Evolution of the loss function for the component balance constraint at a weight of 

2.24 

 

A comparison of the RMSEs in Figure 6.12 and Figure 6.13, as well as Table 8 and Table 9, shows 

that the RMSEs of the component balance constraint are one order of magnitude smaller than those 

of the interphase mass balance constraint (Ihunde & Olorode, 2022This may be due to the relative 

ease with which the deep learning model can learn the component balance constraint without 

explicitly implementing it into the loss function (Ihunde & Olorode, 2022). In contrast, the 

interphase mass balance constraint is a linear combination of the vapor fraction, overall, and phase 
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mole fractions (Ihunde & Olorode, 2022). This is more complex than the simple summation of 

mole fractions in the component balance constraint.  

 

Additionally, the component balance error could be much smaller because the standard DNN 

models can infer that the phase compositions should sum to one based on the implicit component 

balance in the overall mole fractions provided in the training data (Ihunde & Olorode, 2022). From 

these results, we can infer that the inter-phase mass balance constraint appears to be more 

important than the component balance constraint. So, the comparison of the model results in the 

next section is based on the PINN model with the inter-phase mass balance constraint. 

 

6.3. Comparison of model results   

 

This section compares the results of the PINN model predictions to those from standard DNN and 

linear regression models using phase envelopes. To make this comparison, we use the PINN, DNN, 

and linear regression models to predict the phase mole fractions 𝑥𝑖, 𝑦𝑖, and volume fraction V of 

the 150,000 fluid mixtures in the test dataset. The interphase mass balance errors for each of the 

predicted fluid mixtures in the PINN model are then used to rank the fluid mixtures in percentiles. 

Using equation [21], the respective overall mole concentrations 𝑧𝑖 of the fluid mixtures at the 99th, 

75th, 50th, 25th, and 1st error percentiles are computed from the predicted 𝑥𝑖, 𝑦𝑖 , and V for each of 

the models.   

 

Table 10Error! Reference source not found. shows each fluid mixture's total and interphase mass 

balance errors at the specified percentiles (Ihunde & Olorode, 2022). The total error is the sum of 

the absolute difference between the 𝑥𝑖, 𝑦𝑖, and V values predicted by the PINN and DNN models 

and their corresponding values in the test data (Ihunde & Olorode, 2022). The DNN and PINN 

interphase error is the absolute value    “𝑧𝑖 − 𝑉𝑦𝑖 − (1 − 𝑉)𝑥𝑖" from equation [21] (Ihunde & 
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Olorode, 2022).  The results in the table indicate that the PINN model outperforms the DNN model 

at all percentiles (Ihunde & Olorode, 2022). 

 

Table 10. Summary of the performance of the DNN and PINN models at specific percentiles 

Percentile 
DNN 

Total error 

DNN 

Interphase error 

PINN 

Total error 

PINN 

Interphase error 

99 1.20E-04 7.00E-05 8.60E-05 2.00E-06 

75 3.91E-03 7.30E-04 1.33E-03 1.20E-05 

50 2.37E-02 2.17E-02 1.22E-02 2.16E-03 

25 1.35E-01 2.19E-02 7.37E-02 1.47E-02 

1 4.13E-01 2.83E-02 4.07E-01 1.34E-02 

 

Using the computed overall mole fractions as inputs into CMG's Winprop (Computer Modelling 

Group Ltd, 2017), we generate the pressure-temperature (P-T) phase diagrams shown in Figure 

6.16. Figure 6.16(a) - Figure 6.16(e) show the phase envelopes generated from the predictions of 

zi by the PINN model (solid blue line), DNN model (solid green lines), linear regression model 

(solid orange lines), and the actual zi values in the test data (dotted red lines) at the 1th, 25th, 50th, 

75th, and 99st percentiles of the error. The actual phase envelopes (dotted red lines) were obtained 

from the test data's overall composition (𝑧𝑖) values for the corresponding fluid mixtures at the 

respective percentiles. Although these phase diagrams cover a wide range of temperature and 

pressure values, the input data provided as input into Winprop corresponds to a single point in the 

P-T phase diagram (Ihunde & Olorode, 2022). So, it is unrealistic to expect a neural network model 

trained to predict the fluid properties for a distinct fluid mixture at only one pressure and 

temperature to match the actual phase behavior over the wide pressure and temperature range over 

which it is not trained (Ihunde & Olorode, 2022). 

 

Figure 6.16(a) shows phase diagrams based on model predictions of the overall mole fractions for 

a fluid mixture at pressure and temperature values where it exists in the single-phase liquid state 
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(Ihunde & Olorode, 2022).  In this case, the three estimated 𝑧𝑖 values for C1, C2, and C3 exactly 

match the actual 𝑧𝑖 values because the 𝑥𝑖 's are identical to the 𝑧𝑖values, whereas 𝑦𝑖 and V are zeros 

(Ihunde & Olorode, 2022). Figure 6.16(b) to (e) shows the P-T phase diagrams for the two-phase 

fluid mixtures at the specified percentiles (Ihunde & Olorode, 2022). The results show that the 

phase diagrams from the PINN model predictions outperform the standard DNN model and linear 

regression model predictions in all the two-phase fluid mixture cases. The trend in these phase 

envelopes is more apparent at the isothermal temperature of 176 oF at which all the fluid 

compositions were specified (Ihunde & Olorode, 2022). At this temperature, the figure shows that 

as the error percentile decreases, the deviation of the models from the actual saturation pressure 

increases as expected (Ihunde & Olorode, 2022).   

 

Although the R2 and RMSE values for the models in Table 8 do not appear to indicate a statistically 

significant difference in the results, the phase diagrams indicate that incorporating physics with 

PINNs results in predictions that more accurately describe the phase behavior of compositional 

fluid mixtures (Ihunde & Olorode, 2022). In spite of strong performance metrics, DNN models 

may not adhere to thermodynamics constraints of phase equilibrium since they are not applied 

during the deep learning process. By adding the physics restrictions via custom loss functions, 

PINNs address this shortcoming and produce better model predictions that honor the physical 

limits of phase equilibrium. These customized loss functions serve as a form of physics-based 

regularization that aids in the solution of ill-posed problems. (Kashinath et al., 2021). Finally, it is 

worth noting that our performance analysis of the trained PINN model shows that it is 145 times 

faster than the standard two-phase flash algorithm (Ihunde & Olorode, 2022).  
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Figure 6.16. Phase envelopes for compositions at different percentiles indicate that the PINN 

model yields a better description of the phase behavior than the DNN 
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7. CONCLUSIONS 
 

 This work demonstrates how thermodynamics constraints can be incorporated into neural network 

models trained on data from two-phase flash calculations. The data in this work has one million 

unique fluid mixtures generated using a space-filling mixture design. The flash output variables 

𝑥𝑖, 𝑦𝑖, and V are predicted from the overall composition, pressure, and temperature of the fluid 

mixtures. During the training of the deep learning models, classification is first performed to 

identify the phase of each fluid mixture then the regression is performed to predict the flash output 

variables. The main takeaway from the classification using the deep learning model is that it is 

vital that the dataset used to train the classification model has a balanced class distribution for the 

phases. If the dataset has an imbalanced class distribution, the metrics used to evaluate the model's 

      m                            m d  ’     d    v   b               phase. Instead, it will be 

skewed by the phase with the largest number of fluid mixtures.  

 

After identifying the phases of the fluid mixtures, regression models are trained to predict the flash 

output variables 𝑥𝑖, 𝑦𝑖, and V from the overall composition, pressure, and temperature of the fluid 

mixtures. This work shows how the thermodynamic constraints are incorporated by replacing the 

standard loss function with a weighted sum of the standard DNN MSE and the MSEs associated 

with thermodynamic constraints. Using the weighted sum of MSEs allows us to perform a 

sensitivity study to systematically determine the optimal weights to incorporate the physics 

constraints without compromising model accuracy. 

 

The results show that the PINN model yields phase equilibrium predictions with over 55% lower 

physics constraint errors (RMSEs) when compared to the standard DNN model predictions. These 

lower physics constraint errors were achieved at little or no loss of overall model accuracy, as 
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evidenced by the insignificant (<0.05%) difference in the overall R2 value of the PINN and DNN 

models. From the results of this work, we conclude that PINNs yield model predictions that honor 

physical constraints without lowering overall model accuracy and are 145 times faster than the 

standard two-phase flash calculation procedure. 

 

Comparing the phase diagrams generated using the output from PINNs, DNNs, and linear 

regression models to those estimated using the test data indicates the importance of incorporating 

physics into DNN models for two-phase flash. The results show that although the PINN and DNN 

models have nearly the same R2, the phase diagrams show that the PINN model outperforms the 

DNN model in predicting the phase behavior of these fluid mixtures (Ihunde & Olorode, 2022). 
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