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Abstract 

This dissertation is devoted to the study of three-dimensional (regularized) stochas-

tic Navier-Stokes equations with Markov switching. A Markov chain is introduced into the 

noise term to capture the transitions from laminar to turbulent flow, and vice versa. The 

existence of the weak solution (in the sense of stochastic analysis) is shown by studying 

the martingale problem posed by it. This together with the pathwise uniqueness yields 

existence of the unique strong solution (in the sense of stochastic analysis). The existence 

and uniqueness of a stationary measure is established when the noise terms are additive 

and autonomous. Certain exit time estimates (exponential inequalities) for solutions to 

such switching equations are obtained, and its connection with its counterpart in the non-

switching scenario is discussed. 

vi 



Chapter 1. Functional Analytic Setup 

1.1. The Navier-Stokes Equations 

The motion of (viscous) fluid flows is described by a system of partial differential 

equations known as the Navier-Stokes equations. If the fluid is compressible (e.g., air or 

gas), then the motion of such a flow is modeled by compressible Navier-Stokes equations; 

if the fluid is incompressible (e.g., water or honey), then the motion of such a flow is mod-

eled by incompressible Navier-Stokes equations. In this article, we focus on the study of 

incompressible flows and refer the reader interested in the mathematical theory of com-

pressible flows to, for instance, [21] and [46]. 

Let G be a bounded domain in Rd . Let u(x, t) and p(x, t) denote the velocity and 

pressure of the fluid at each x ∈ G and time t ∈ [0, T ]. The motion of viscous incompress-

ible flow on G is described by the Navier-Stokes system: 

∂tu − ν4u + (u · r)u + rp = 0 in G × [0, T ], (1.1a) 

r · u = 0 in G × [0, T ], (1.1b) 

u(x, t) = 0 on ∂G × [0, T ] (1.1c) 

u(x, 0) = u0(x) on G × {t = 0}, (1.1d) 

where ν > 0 is the viscosity coefficient of the fluid. The condition (1.1b) indicates incom-

pressiblity of the fluid. There are several well-known books on Navier-Stokes equations 

such as [54, 58, 59]. It is worth mentioning that if G ⊆ R3 , then the uniqueness of the 

global weak solution of such a system (1.1) is an open problem, and is one among the Mil-

lennium Prize problems. 
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If randomness is introduced into (1.1a), then the resulting model is called stochas-

tic Navier-Stokes equations. The study of stochastic Navier-Stokes equations has been an 

important and active area of research, and has received considerable attention in recent 

years. The introduction of randomness in Navier-Stokes equations arises from a need to 

understand (i) the velocity fluctuations observed in wind tunnels under identical exper-

imental conditions, and (ii) the onset of turbulence. Random body forces also arise as 

control terms, or from random disturbances such as structural vibrations that act on the 

fluid. It was originally the idea of Kolmogorov (see e.g., [61]) to introduce a white noise in 

the Navier-Stokes system in order to obtain an invariant measure for the system. In fact, 

Kolmogorov’s point of view to the theory of turbulence states that “the ultimate goal is to 

find an invariant measure of turbulence (see e.g., [7, 43, 44]).” 

On the other hand, randomness may occur naturally. As a matter of fact, it can be 

shown that (see, e.g., [8]) additive noise has to be added into the Navier-Stokes equation 

for a proper description of fully developed turbulence; in addition, if there are “jumps” in 

point vorticities (velocity gradient), then multiplicative noises should be added into the 

deterministic equation to adjust (see, e.g., [8]), i.e., equation (1.1a) becomes 

Z 
∂tu − ν4u + (u · r)u + rp = f + σ(t, u)dW (t) + G(t−, u, z)Ñ(dz, dt), 

Z 

˜where W (t) is a Wiener process and N(dz, ds) is a compensated Poisson random measure. 

As mentioned in previous paragraph, the well-posedness of a (global-in-time strong) 

solution to a three-dimensional Navier-Stokes equation is an open problem. In order to 

resolve such an issue, we follow Leray’s idea [36] to modify the original Navier-Stokes equa-
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tion: for a mollifier k, 

∂tu − ν4u + ((k ∗ u) · r)u + rp = 0. (1.2) 

Equation (1.2) is often called Leray regularization of Navier-Stokes equation (see, e.g., 

[48]). Therefore, the corresponding (regularized) stochastic Navier-Stokes equation appears 

as Z 
∂tu − ν4u + ((k ∗ u) · r)u + rp = f + σ(t, u)dW (t) + G(t−, u, z)Ñ(dz, dt). 

Z 

If the noise coefficient is subject to random changes, then we capture such changes 

in the noise coefficient in a class of equations. We introduce a Markov chain {r(t)} to such 

a class of equations appears as follows: 

∂tu − ν4u + ((k ∗ u) · r)u + rp Z (1.3) 

= f + σ(t, u, r(t))dW (t) + G(t−, u, r(t−), z)Ñ(dz, dt). 
Z 

We shall call equation (1.3) as three-dimensional regularized stochastic Navier-Stokes equa-

tion with Markov switching. Moreover, equation (1.3) can be transformed into the follow-

ing formulation: 

du(t) + [νAu(t) + Bk(u(t))]dt Z (1.4) 

= f(t)dt + σ(t, u(t), r(t))dW (t) + G(t−, u(t−), r(t−), z)Ñ(dz, dt). 
Z 

The study of equation (1.4) is the main theme of this article. In particular, we also study 

the non-switching equations which refers to the following: 

du(t) + [νAu(t) + Bk(u(t))]dt Z (1.5) 

= f(t)dt + σ(t, u(t))dW (t) + G(t−, u(t−), z)Ñ(dz, dt). 
Z 
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This thesis is organized as follows. Preliminaries, functional analytic settings, and 

auxiliary results will be introduced in Section 1.2. A priori estimate will be introduced 

in Chapter 2. Chapter 3 is devoted to the study of three-dimensional regularized stochas-

tic Navier-Stokes equations with Markov switching (1.4). The martingale problem and 

existences and uniqueness of stationary measures for the equations are investigated. The 

exit time estimates (exponential inequalities) for solutions to switching equations are es-

tablished, and its relation with the Freidlin-Wentzell type large deviation principle are 

studied. 

1.2. Preliminaries 

In this section, we review facts that will be used repeatedly throughout this work. 

1.2.1. Facts from probability 

Let (Ω, F , P) be the underline probability space. Suppose X ∈ L1(P). By Markov 

inequality, we mean the following estimate: 

P(|X| ≥ λ) ≤ λ−1E(|X|) 

for any λ > 0. 

Definition 1 (Uniform integrability). A family of random variables X in L1(P) is said to 

be uniformly integrable if 

Z 
lim sup |X|dP = 0. 
c→∞ X∈X {|X|>c} 

We introduce some properties regarding uniform integrability below and refer the 

interested reader to [52, Sec. 6.5.1] and [55, Lem. 5.3] for more details. 
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Lemma 1.2.1 (Crystal Ball Condition). For p > 0, the family {|Xn|p} is uniformly 

integrable if sup E(|Xn|p+δ) < ∞ for some δ > 0n 

Lemma 1.2.2. Let f ∈ C(Ω) and sup EPn [|f |1+δ] ≤ C for some δ > 0. Let {Pn}n 

be a sequence of probability measures on Ω with Pn ⇒ P, as n → ∞. Then we have 

EPn (|f |) → EP (|f |). 

1.2.2. Facts from analysis 

For 1 < p < ∞, we set q to be the number such that 1 
p + 1 

q = 1. By basic Young 

inequality, we mean 

p bqa 
ab ≤ + , 

p q 

where a, b are positive numbers. If 1 ≤ p < ∞ and a, b ≥ 0, then 

p(a + b)p ≤ 2p−1(a + bp). (1.6) 

Let f and g be two measurable functions in Rd . Then the convolution of f and g is 

defined by 

Z 
(f ∗ g)(x) = f(t)g(x − t)dt. 

Rd 

Let p, q, and r satisfy 1 + 1 = 1 + 1 . If f ∈ Lp(Rd) and g ∈ Lq(Rd), then by Young’s 
p q r 

convolution inequality, we mean 

kf ∗ gkr ≤ kfkpkgkq. 

Now we introduce the uniform integrability and tightness for general measure space 

and then the Vitali Convergence Theorem. 

5 



Definition 2. Let (X, M, µ) be a measure space and {fn} a sequence of functions on X, 

each of which is integrable over X. The sequence {fn} is said to be uniformly integrable 

over X provided for each � > 0, there is a δ > 0 such that for every natural number n and 

measurable subset E of X, 

Z 
if µ(E) < δ, then |fn|dµ < �. 

E 

The sequence {fn} is said to be tight over X provided for each � > 0, there is a subset X0 

of X that has finite measure and, for any natural number n, 

Z 
|fn|dµ < �. 

X\X0 

Theorem 1.2.3 (The Vitali Convergence Theorem). Let (X, M, µ) be a measure space 

and {fn} a sequence of functions on X that is both uniformly integrable and tight over X. 

Assume fn → f pointwise almost everywhere on X and the function f is integrable over X. 

Then 

Z Z 
lim fndµ = fdµ. 
n→∞ X X 

In particular, if X is of finite measure, then the tightness condition on {fn} is removable. 

Theorem 1.2.4 (Gronwall inequality). Let T > 0 and α(·) an integrable function. Let 

u(·) be a Borel measurable bounded nonnegative function on [0, T ] and β(·) a nonnegative 

integrable function on [0, T ]. If 

Z t 
u(t) ≤ α(t) + β(s)u(s)ds 

0 
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for all 0 ≤ t ≤ T , then Z �Z �t t 

u(t) ≤ α(t) + α(s)β(s) exp β(r)dr ds 
0 s 

for all 0 ≤ t ≤ T . In addition, if α(t) ≥ 0 for 0 ≤ t ≤ T , then Z t �Z t � 
u(t) ≤ α(s)β(s) exp β(r)dr ds 

0 s 

for 0 ≤ t ≤ T . In particular, if α(t) = 0 for all 0 ≤ t ≤ T , then we conclude that u(t) = 0 

for all 0 ≤ t ≤ T . 

In what follows, we shall recall some facts regarding the Sobolev spaces. The inter-

ested reader is referred to [3, 19] for more details. 

By domain, we mean an open connected set in Rd . Let G ⊂ Rd be a bounded 

domain, and ∂G denote the boundary of G. 

Definition 3 (Geometric properties of boundary [19, App. C.1]). We say the boundary ∂G 

is Ck if for each point x0 ∈ ∂G, there exist r > 0 and a Ck-function φ : Rd−1 → R such 

that (upon relabeling and reorienting the coordinates if necessary) we have 

G ∩ B(x0, r) = {x ∈ B(x0, r) : xd > φ(x1, · · · , xd−1)} 

Likewise, ∂G is C∞ if ∂G is Ck for all k ∈ N, and ∂G is analytic if φ is analytic. 

Definition 4 (Outer normal [19, App. C.1] ). 

(i) If ∂G is C1 , then along ∂G is defined the outward pointing unit normal vector 
field n = (n1, · · · , nd). The unit normal at any point x0 ∈ ∂G is n(x0) = n = 
(n1, · · · , nd) 

(ii) Let u ∈ C1(Ḡ). We call 

∂u 
:= n · Du 

∂n 
the (outward) normal derivative of u. 
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Throughout this thesis, we assume that G is a bounded domain with smooth 

boundary, i.e., ∂G is C∞ . 

Let Cc 
∞(G) denote the space of infinitely differentiable functions φ : G → R, with 

compact support in G. For a multiindex α = (α1, · · · , αn) of order |α| = α1 + · · · + αn = k, 

we write 

∂α1 ∂αn 

Dαφ = · · · φ. 
∂xα 

1 
1 ∂xα 

1 
n 

Now we are in a position to introduce the definitions of weak derivative and Sobolev 

spaces. 

Definition 5 (Weak Derivative). Suppose u, v ∈ L1 (G) and α is a multiindex. We sayloc 

that v ∈ L1 (G) is the αth-weak partial derivative of u, writtenloc

Dα u = v, 

provided Z Z 
uDαφdx = (−1)|α| vφdx 

G G 

for all φ ∈ C∞(G).c 

Definition 6 (The Sobolev space). Fix 1 ≤ p ≤ ∞ and let k be a nonnegative integer. The 

Sobolev space 

W k,p(G) 

consists of all locally summable function u : G → R such that for each multiindex α with 

|α| ≤ k, Dαu exists in the weak sensei and belongs to Lp(G). 

iin the sense of Definition 5 
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⎪⎪
⎪⎪

The norm of W k,p(G) is defined by ⎧ � 1�P R⎪⎨ |α|≤k G |D
αu|pdx 

p 
(1 ≤ p < ∞) 

kukW k,p(G) := P⎪⎩ 
|α|≤k ess supG |Dαu| (p = ∞). 

If u ∈ C(G), then it is clear that u has certain values on ∂G. Therefore, it is intu-

itive for defining C0(G) as the space of continuous functions defined on G that vanish on 

∂G. After introducing the Sobolev spaces W 1,p(G), one may analogously define W0
1,p(G) 

as the space of W 1,p-functions that vanish on ∂G. This definition is plausible. However, 

notice that a function u ∈ W 1,p(G) is only defined almost everywhere on G, and the d-

dimensional Lebesgue measure of ∂G is zero. Therefore, the assertion “u vanishes on ∂G” 

is (at least, at this stage) meaningless. 

To resolve this problem, we shall introduce the notion of trace operator. 

Theorem 1.2.5 (Trace theorem [19, Sec. 5.5]). Assume G is bounded and ∂G is C1 . Then 

there exists a bounded linear operator 

T : W 1,p(G) → Lp(∂G) 

such that 

(i) Tu = u|∂G if u ∈ W 1,p(G) ∩ C(Ḡ), and 

(ii) kTukLp(∂G) ≤ CkukW 1,p(G) for each u ∈ W 1,p(G), with the constant C depending 
only on p and G. 

Moreover, we call Tu the trace of u on ∂G. 

With the concept of trace, we may introduce the space W0
1,p(G) formally. 

Theorem 1.2.6 (Trace-zero functions in W 1,p [19, Sec. 5.5]). Assume G is bounded and ∂G 
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is C1 . Suppose furthermore that u ∈ W 1,p(G). Then 

u ∈ W 1,p 
0 (G) if and only if Tu = 0 on ∂G. 

The following theorems are the Sobolev inequality (see, e.g., [3, Thm. 4.12]) and 

the Gagiardo-Nirenberg-Sobolev inequality (see, e.g., [3, Ch. 5]). We shall remind the 

reader that the Sobolev inequalities may be proved under different conditions of ∂G. The 

interest reader may consult [3, Ch. 4] for a detailed discussion. 

Theorem 1.2.7 (Sobolev Embedding/ Sobolev Inequality). Let G ⊂ Rn be a bounded 

domain and C a constant. 

(i) If n > kp, then W k,p(G) ,→ Ln− 
np
kp (G). In other words, 

kuk (G) ≤ CkukW k,p(G).np 
n−kp L 

p c,1+b 
n
p c− n 

(ii) If n < kp, then W k,p(G) ,→ Ck−1−b n
p (G). 

In particular, if n = 2, then 

if n = 3, then 

W 

W 

1 
2

1 
2 

,2(G) ,→ L4(G); (1.7) 

,2(G) ,→ L3(G); (1.8) 

Theorem 1.2.8 (The interpolation inequality/ Gagiardo-Nirenberg-Sobolev inequality). Let 

p, q, r, j, k, ̀  and α satisfy the following relation 

� � � �1 k 1 ` 1 j
j ≤ k � `, − = α − + (1 − α) − , 

p n q n r n 

1 1 1 
p, q, r ≥ 1, 0 < α ≤ 1, > − ≥ 0. 

n q p 
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Then we have 

kuk1−αkukW k,p(G) ≤ Ckukα
W j,r (G)W ̀ ,q (G) 

for all u ∈ W `,q(G) ∩ W j,r(G), where C is a constant depending on G. 

In particular, when n = 3, we have 

1 1 

1kuk 
2 ,2 ≤ Ckuk 2 kuk 2 (1.9)W 1,2(G) L2(G). W (G) 

Next, we review a few essential concepts and results pertaining to operators on 

Hilbert spaces. The interested reader is referred to [11, 50] for more details. 

Let (U, (·, ·)U ) and (H, (·, ·)H ) be two real separable Hilbert spaces. We denote by 

L(U, H) the space of all bounded linear operators from U to H. For simplicity, we use 

L(U) to denote L(U, U). For an operator T ∈ L(U, H), we denote by T ∗ ∈ L(H, U) its 

adjoint operator. An element T ∈ L(U) is called symmetric if (T u, v)U = (u, T v)U for all 

u, v ∈ U . In addition, T ∈ L(U) is called nonnegative if (T u, u)U ≥ 0 for all u ∈ U . Let 

T ∈ L(U) and {ek}k∈N be an orthonormal basis of U . Then the trace of T is defined by 

X 
trT := (Tek, ek)U 

k∈N 

if the series is convergent. In addition, the trace of T takes the same value for any orthono-

mal basis of U , and thus it is well-defined (see, e.g., [50, Rmk. B. 0.4.]). 

We shall start by introducing some important operators on real separable Hilbert 

spaces. 

Definition 7 (Nuclear operator). An element T ∈ L(U, H) is said to be a nuclear operator 

11 



if there exists a sequence {aj }∞ in H and a sequence {bj }∞ in U such thatj=1 j=1 

∞X 
Tu = aj (bj , u)U 

j=1 

for all u ∈ U and 

∞X 
kaj kH kbj kU < ∞. 

j=1 

Denote by L1(U, H) the collection of all nuclear operators from U to H. For T ∈ L1(U, H), 

define nX∞ ∞ oX 
kT kL1(U,H) := inf kaj kH kbj kU : Tu = aj (bj , u)U , u ∈ U . 

j=1 j=1 

Then k · kL1(U,H) is a norm, and (L1(U, H), k · kL1(U,H)) is a Banach space, which is called a 

Nuclear space. 

In particular, if U = H and T ∈ L1(U, H) is nonnegative and symmetric, then T is 

called trace-class operator. 

Definition 8 (Hilbert-Schmidt operator). A bounded linear operator T : U → H is called 

Hilbert-Schmidt if 

∞X 
kT k2 kTekk2 < ∞,L2(U,H) := H 

k=1 

where {ek}∞ is an orthonormal basis of U . The number kT k2 is independent ofk=1 L2(U,H) 

the choice of the orthonormal basis {ek}∞ and thus is well-defined (see, e.g., [50, Rmk. k=1 

B. 0.6]). Denote by L2(U, H) the collection of all Hilbert-Schmidt operators from U to H. 

Then (L2(U, H), k · kL2(U,H)) is a Banach space. Furthermore, for S, T ∈ L2(U, H), define 

∞X 
(T, S)L2 := (Sek, T ek)H , 

k=1 

then (L2(U, H), (·, ·)L2 ) is a separable Hilbert space. 

12 
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The following lemma gives useful relationships between L1(U, H), L2(U, H), and 

L(U, H). 

Lemma 1.2.9. Let (K, (·, ·)K ) be a further real separable Hilbert space. 

(i) If T ∈ L2(U, H) and S ∈ L2(H, K), then ST ∈ L1(U, K) and 

kST kL1(U,K) ≤ kSkL2(H,K)kT kL2(U,H). 

(ii) Let S1 ∈ L(H, K), S2 ∈ L(K, U), and T ∈ L2(U, H). Then S1T ∈ L2(U, K), 
TS2 ∈ L2(K, H), and 

kS1T kL2(U,K) ≤ kS1kL(H,K)kT kL2(U,H) 

kTS2kL2(K,H) ≤ kS2kL(K,U)kT kL2(U,H). 

Recall that a bounded operator T : U → U is called compact operator if the image 

under T of a bounded sequence has a convergent subsequence. It is worth mentioning that 

both nuclear operators and Hilbert-Schmidt operators are compact operators. 

Let G ⊂ R3 be a bounded domain with smooth boundary.ii Throughout this thesis, 

the notation L2(G), H1(G) etc. would mean three-dimensional vector-valued functions 

defined on G whose components are in L2(G), H1(G) etc. 

Let V denote the divergence-free members in C0 
∞(G). Define the spaces H and V 

as the completion of V in L2(G) and H1(G) norms respectively. Recalling Definition 4, 

Theorem 1.2.5, and Theorem 1.2.6, we are in a position to introduce the characterization 

of spaces H and V (see, e.g., [59, Sec. 1.4, Ch. I]): 

H = {u ∈ L2(G) : r · u = 0, u · n = 0},
∂G 

V = {u ∈ W 1,2(G) : r · u = 0},0 

iiDefinition 3 

13 
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where the divergence r · u is understood in the weak senseiii and n is the outward normal of 

G. 

Invoking the Helmholtz decomposition, one may decompose the space L2(G) as the 

direct sum of H and its complement, i.e., 

L2(G) = H ⊕ H⊥ . (1.10) 

Having such a decomposition, one may further define the orthogonal projector 

Y 
: L2(G) → H, (1.11) 

H 

which is known as the Leray-Helmholtz projector. For the detailed discussion regarding 

the space H⊥ and the Leray-Helmholtz projector, we refer the interested reader to, e.g., 

[54, Sec. 2.5, Ch. II], [58, Sec. 1.6], and [59, Sec. 1.4, Ch. I]. 

Let V 0 denote the dual space of V . Define the Stokes operator A : V → V 0 by Q
Au = − H Δu for u ∈ D(A), where D(A) is defined as 

n Y o 
D(A) := u ∈ H : − Δu ∈ H = W 2,2(G) ∩ V, 

H 

and the second equal sign above is guaranteed by the Cattabriga-Solonnikov Regularity 

Theorem (see, e.g., [54, Lem. 2.3.2, Ch. III]). 

It can be shown that A : D(A) → H is bijective if G is bounded, which implies 

that A−1 : H → D(A) is well-defined and onto (see, e.g., [24, Eq. (6.2)] or [54, Thm. 

2.1.1, Ch. III] and reference therein). In addition, it follows from the Rellich theorem that 

the natural inclusion i : D(A) ,→ H is compact (see, e.g., [3, Thm. 6.3], [19, Sec. 5.7]). 

iiiin the sense of Definition 5 
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Therefore, if we view A−1 as an operator from H to H, then A−1 : H → H is a compact 

operator. � � 
It can be shown, by using integration by parts, that A is symmetric: Au, v 

H 
= � � 

u, Av 
H 
for all u, v ∈ D(A); it turns out that A−1 is also symmetric. 

Thus, we infer from the spectral theory of compact symmetric operator in Hilbert 

space that there exists an orthonormal basis in H, which consists of the eigenfunctions 

of A−1 (see, e.g., [2, Ch. V], [11, Thm. 6.11], [19, Thm. 7, App. D]). We shall state such 

statements formally as the following theorem and refer the interested reader to, e.g., [10, 

Thm. IV. 5.5] or [59, Sec. 2.6, Ch. I]. 

Theorem 1.2.10. Let G ⊂ Rd be a bounded domain with Lipschitz boundary.ivThere 

exists an increasing sequence of positive real numbers {λk}∞ 
k=1, which tends to infinity, and 

a sequence of functions {ek}∞ which is orthonormal in H, orthogonal in V and in D(A),k=1 

forming a (complete) basis in H, in V , and in D(A), and a sequence of functions {pk}∞ 
k=1 

in L20(G)
v satisfying 

−Δek + rpk = λkek in G, (1.12a) 

r · ek = 0 in G, (1.12b) 

ek = 0 on ∂G. (1.12c) 

Utilizing the special basis {ek}∞ obtained from Theorem 1.2.10, one obtainsk=1 

1 
) = V and D(A− 1 

2 ) = V 0 . In addition, kukV = krukH = kA 
11 D(A 2ukH for u ∈ D(A 2 ).2 

Therefore, it is not hard to see that (Au, u)H = kuk2 
V > 0 for all u 6= 0 in D(A), which 

ivφ is Lipschitz continuous in Definition 3. 
vL2

0(G) := L2(G)/R is a quotient space. See [10, Def. IV. 1. 8]. 
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concludes that A is positive definite. For a detailed discussion, we indicate the reader to, 

e.g., [24, Sec. 6, Ch. II], [54, Sec. 2, Ch. III]. 

The asymptotic behavior of λk has been derived in [40]: λk ∼ C(d,G) · k d 
2 
, as k →∞, 

where d is the dimension of the domain G and Cd,G is a constant depending on d and G. 

The interested reader may also consult [29] for more details. 

The Poincaré inequality in the context of this thesis appears to be 

kuk2 
H ≤ 

λ 
1 

1 
kuk2 

V (1.13) 

for all u ∈ V , where λ1 is the first eigenvalue of the Stokes operator A and is the best 

constant for which inequality (1.13) holds. The reader may consult [24, Eq. (5.11), Ch. II] 

and references therein. For Poicaré inequality in general contexts, we indicate reader to, 

e.g.,[19, Sec. 5.8], [24, Sec. 4, Ch. I], or [54, Sec. 1, Ch. II]. 

Next, we recall the basic results on weak and weak-star topologies. The contents 

are adapted from [11, Ch. 3]. 

Let E be a Banach space and let f ∈ E 0 , where E 0 is the dual space of E. We 

denote by ϕf (x) : E → R the linear function ϕf (x) = hf, xi. Then the weak topology on E, 

denoted τ(E, E 0), refers to the coarsest topology on E under which the map ϕf for each 

f ∈ E 0 is continuous. For every x ∈ E consider the linear functional ϕx : E 0 → R defined 

by f 7→ ϕx(f) = hf, xi. The weak-star topology τ(E 0, E) is the coarsest topology on E 0 

with respect to which the collection {ϕx}x∈E is continuous. 

Let {xn}∞ be a sequence in E. By xn → x weakly in E, we mean hf, xni → hf, xin=1 

for any f ∈ E 0 . The next theorem is a special case of Banach-Alaoglu Theorem, which 
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characterizes an important property of the weak-star topology. The interested reader is 

referred to, e.g., [11, Ch. 3] or [19, App. D.4]. 

Theorem 1.2.11 (Banach-Alaoglu Theorem). Let E be a reflexive Banach space. Suppose 

the sequence {xn}∞ ⊂ E is bounded. Then there exists a subsequence {xnj }∞ and x ∈ En=1 j=1 

such that 

xnj → x 

weakly in E. 

Recall that a Polish space is a complete separable metrizable topological space (see, 

e.g., [34, Sec. 33, Ch. 3]). Then we introduce Lusin space (see, e.g., [41, Ch. IV]) and one 

theorem regarding it (see, e.g., [41, Thm. 1, Ch. IV]). 

Definition 9 (Lusin space). A topological space Y that is the image by a one-to-one con-

tinuous mapping f : X → Y of a Polish space X is called a Lusin space. 

Theorem 1.2.12. A topological space Y is a Lusin space if and only if it is homeomorphic 

to a topological space which is a Borel set B of a Polish space. 

1.2.3. Facts from stochastic analysis 

We shall collect some concepts and facts pertaining to the infinite-dimensional 

stochastic analysis. The interested reader is referred to, e.g., [17], [26], [45], and [50] for 

details. 

Throughout this subsection, (U, (·, ·)U ) is a real separable Hilbert space, and L(U) 

denotes the set of all bounded linear operator on U . We use B(X) to denote the Borel 

σ-algebra of a topological space X. 
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Definition 10 (Gaussian measure). Fix an element v ∈ U , define the bounded linear 

mapping φv : U → R by φv(u) := (u, v)U for all u ∈ U . A probability measure µ on 

(U, B(U)) is called Gaussian if for all v ∈ U , the mapping φv has a Gaussian law, i.e., for 

all v ∈ U there exists m := m(v) ∈ R and σ := σ(v) ∈ [0, ∞) such that, if σ(v) > 0, Z 
(µ ◦ φ−1)(A) = µ(φvv ∈ A) = 

1 √ 
2πσ2 

(x−m 2)− e 2σ2 dx 
A 

for all A ∈ B(R) and, if σ(v) = 0, 

µ ◦ φ−1 
v = δm(v), 

which is a Dirac delta function centered at m(v). 

Let N(m, Q) be an Rd-valued Gaussian random vector with mean vector m = 

(m1, · · · ,md) and covariance matrix Q = (qij )d×d. Then the characteristic function (or 

Fourier transform) of N(m, Q) is given by 

im u− 1 uT Qu
2FN (u) = e 

T 
, (1.14) 

where u ∈ Rd is a vector and uT denote the transpose of u, and it is known that the char-

acteristic function uniquely determines a random variable. We will see in next theorem 

that the same properties hold for the infinite-dimensional setting, i.e., the Fourier trans-

form of a Gaussian measure takes form similar to (1.14), and the Fourier transform also 

uniquely determines such a measure. In addition, in the finite-dimensional case, the covari-

ance matrix Q is a nonnegative symmetric matrix, and we will see that those properties 

are inherited by the “covariance operator” in the infinite-dimensional setting. 

Denote by µ̂ the Fourier transform of µ. 
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Theorem 1.2.13. A measure µ on (U, B(U)) is Gaussian if and only if Z 
i(u,v)U i(m,u)U − 1 (Qu,u)U2µ̂(u) := e µ(dv) = e , 

U 

where u ∈ U , m ∈ U , and Q ∈ L(U) is nonnegative, symmetric with finite trace (trace-

classvi). In this case µ will be denoted by N(m, Q), where m is called mean and Q is called 

covariance operator.The measure µ is uniquely determined by m and Q. Furthermore, for 

all h, g ∈ U , Z 
(x, h)U µ(dx) = (m, h)U , Z 
((x, h)U − (m, h)U )((x, g)U − (m, g)U )µ(dx) = (Qh, g)U Z 
kx − mk2 

U µ(dx) = trQ. 

Proof. We refer the reader to [50, Thm. 2.1.2]. 

Let Q ∈ L(U) be a nonnegative symmetric trace-class operator. Then Q is a com-

pact operator, hence, there exists an orthonormal basis {ok}∞ of U consisting of eigenvec-k=1 

tors of Q with corresponding eigenvalues {ζk}∞ Then the following proposition connectsk=1. 

the Gaussian measure in infinite dimension to the Gaussian random variable in one dimen-

sion. 

Proposition 1.2.14 (Representation of a Gaussian random variable). Let m ∈ U and 

Q ∈ L(U) be nennegative, symmetric, with finite trace. Then a U-valued random variable 

X on a probability space (Ω, F , P) is Gaussian with P ◦ X−1 = N(m, Q) if and only if 

Xp
X = ζkβkok + m, 

k≥1 

see the paragraph after Definition 7 
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where βk, k ≥ 1, are independent real-valued random variables with P ◦ βk 
−1 = N(0, 1) for all 

k ≥ 1 with ζk > 0. The series converges in L2(Ω, F , P ; U). 

Now we are in a position to introduce one the key ingredients in the infinite-

dimensional stochastic analysis: Q-Wiener process. To this end, we let Q ∈ L(U) be 

nonnegative, symmetric, and of trace-class. Let T > 0 be a fixed real number. 

Definition 11 (Q-Wiener process). A U-valued stochastic process W (t), t ∈ [0, T ] , on a 

probability space (Ω, F , P) is called a Q-Wiener process if 

(i) W (0) = 0, 

(ii) W has continuous trajectories P-almost surely, 

(iii) W had independent increments, i.e., the random variables 

W (t1),W (t2) − W (t1), · · · ,W (tn) − W (tn1 ) 

are independent for all 0 ≤ t1 < · · · < tn ≤ T , n ∈ N, 

(iv) the increments have the following Gaussian laws: 

P ◦ (W (t) − W (s))−1 = N(0, (t − s)Q) 

for all 0 ≤ s ≤ t ≤ T . 

Similar to the infinite-dimensional Gaussian random variable, the Q-Wiener process 

admits the following representation formula which connects it to the real-valued Brownian 

motion. 

Proposition 1.2.15 (Representation of the Q-Wiener process). Let {ok}∞ be the or-k=1 

thonormal basis of U consisting of the eigenvectors of Q with corresponding eigenvalues 

{ζk}∞ Then a U-valued stochastic process W (t), t ∈ [0, T ], is a Q-Wiener process if andk=1. 
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only if 

Xp
W (t) = ζkβk(t)ok, 

k≥1 

where t ∈ [0, T ] and βk, k ∈ {n ∈ N : ζn > 0}, are independent real-valued Brownian 

motion on a probability space (Ω, F , P). The series converges in L2(Ω, F , P; C([0, T ]; U)), 

and thus always has a P-almost surely continuous modification. In particular, for any Q as 

above, there exists a Q-Wiener process on U . 

Let (H, (·, ·)H ) be another real separable Hilbert space and Q ∈ L(U) be nonneg-

ative, symmetric, and of trace-class. Define the subspace U0 := Q 2
1 
(U) with the inner 

product given by 

(u, v)0 := (Q− 1
2 u, Q− 1

2 v)U 

2 2for u, v ∈ U0, where Q− 1 
is the pseudo inverse of Q 

1 
in the case that Q is not one-to-one 

(see, e.g., [50, App. C]). Then it follows from [50, Prop. C.0.3 (i)] that (U0, (·, ·)0) is again 

a separable Hilbert space. 

Let L2(U0, H) denote the separable Hilbert space of the Hilbert-Schmidt opera-

torsvii from U0 to H. Then it can be shown that (see, e.g., [50, p. 27]) 

1 
kLkL2(U0,H) = kL ◦ Q 2 kL2(U,H) (1.15) 

for each L ∈ L2(U0, H). 

Let T > 0 be a fixed real number, (Ω, F , {Ft}t≥0, P) be a filtered probability space, R T
and σ : [0, T ] × Ω → L2(U0, H) be predictable. If E kσ(s)k2 ds < ∞, then for

0 L2(U0,H) 

viiDefinition 8 
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t ∈ [0, T ], the stochastic integral Z t 
σ(s)dW (s) 

0 

is well-defined and is a H-valued continuous square integrable martingale with the Itô 

isometry (see, e.g., [50, Sec. 2.3]) Z T 2 
Z T 

E σ(s)dW (s) = E kσ(s)kL 
2 
2(U0,H)

ds. 
H0 0 

Define Z t 
hMit := kσ(s)k2 

L2(U0,H)
ds 

0 

for t ∈ [0, T ]. Then it follows from [50, Lem. 2.4.3] that hMit is the unique continuous 

increasing (Ft)-adapted process starting at zero such that kM(t)k2 
H − hMit, t ∈ [0, T ], is a 

local martingale. 

Let f be an (Ft)-adapted continuous H-valued process. Define Z T Z T 

hf(s), σ(s)dW (s)i := σ̃f (s)dW (s), (1.16) 
0 0 

where 

� � 
σ̃f (s)(u) := f(s), σ(s)u 

H 
, 

u ∈ U0. Then it follows from [50, Lem. 2.4.2] that (1.16) is a well-defined continuous real-

valued stochastic process. More precisely, σ̃f is a PT /B(L2(U0, R))-measurable mapviii from 

Ω × [0, T ] to L2(U0, R) with 

kσ̃f (ω, t)kL2(U0,R) = kσ ∗ (ω, t)f(ω, t)kU0 

viiiPT = dx ⊗ P, where dx is the Lebesgue measure. 
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for all (ω, t) ∈ Ω × [0, T ] and, for P-almost surely, ZZ T T 

kσ̃f (s)kL 
2 
2(U0,R)ds ≤ sup kfkH kσ(s)kL2(U0,H)ds < ∞. 

0 t∈[0,T ] 0 

Next, we recall some facts regarding the Poisson random measure, Point processes, 

and the stochastic integrals with respect to point processes. The contents are adapted 

from [30, Sec. 8, 9, Ch. I and Sec. 3, Ch II.]. 

Let (Z, B(Z)) be a measurable space, M be the collection of all of nonnegative 

integer-valued measure on (Z, B(Z)), and B(M) be the smallest σ-field on M with respect 

to which all N 7→ N(B) are measurable, where N ∈ M, N(B) ∈ Z+ ∪ {∞}, and B ∈ B(Z). 

Definition 12 (Poisson random measure). Let (Ω, F , P) be the underline probability space. 

An (M, B(M))-valued random variable N : Ω → M is called a Poisson random measure if 

(i) for each B ∈ B(Z), N(B) is Poisson distributed, i.e., 

−ν(B)e P(N(B) = n) = ν(B)n 

n! 

for n = 0, 1, 2, · · · , where ν(B) = E(N(B)), and 

(ii) if B1, B2, · · · , Bn ∈ B(Z) are disjoint, then N(B1), N(B2), · · · , N(Bn) are mutually 
independent. 

The measure ν in the above definition is called the intensity measure, the mean 

measure, or the Lévy measure of the Poisson random measure N . 

A point function p on Z is a mapping from D(p) to Z, where D(p) is the domain 

of p and is a countable subset of (0, ∞). A point function p defines a counting measure 

Np(dz, dt) on Z × (0, ∞) by 

Np(E × (0, t)) := #{s ∈ D(p) : s ≤ t, p(s) ∈ E}, 
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where t > 0 and E ∈ B(Z). 

Let ΠZ be the collection of all point functions on Z and B(ΠZ ) be the smallest 

σ-field on ΠZ with respect to which all p 7→ Np(E × (0, t]), t > 0, E ∈ B(Z), are measurable. 

Definition 13. Let (Ω, F , P) be the underline probability space. A point process p on Z 

is a (ΠZ , B(ΠZ ))-valued random variable, i.e., a mapping p : Ω → ΠZ which is F/B(ΠZ )-

measurable. 

Let p be a point process with domain D(p). For t > 0, define (θtp)(s) := p(s + t), 

where the domain of θtp is D(θtp) = {s ∈ (0, ∞) : s + t ∈ D(p)}. Then p is called stationary 

if p and θtp have the same probability law for every t > 0. A point process p is called 

Poisson if Np(dz, dt) is a Poisson random measure on Z × (0, ∞). A Poisson point process is 

stationary if and only if its intensity measure νp(dz, dt) = E(Np(dz, dt)) is of the form 

νp(dz, dt) = ν(dz)dt 

for some measure ν(dz) on (Z, B(Z)). The measure ν(dz) is called the characteristic mea-

sure of p. 

Let (Ω, F , {Ft}t≥0, P) be a filtered probability space. A point process p = p(t) on Z 

defined on Ω is called (Ft)-adapted if for every t > 0 and E ∈ B(Z), 

X 
Np(E, t) = 1E(p(s)) 

s∈D(p) 
s≤t 

is Ft-measurable. A point process p is called σ-finite if there exist En ∈ B(Z), n ∈ N, such 

that En ↑ Z and E(Np(En, t)) < ∞ for all t > 0 and n ∈ N. 
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For a given (Ft)-adapted, σ-finite point process p, let 

Γp = {E ∈ B(Z) : E(Np(E, t)) < ∞ for all t > 0}. 

If E ∈ Γp, then t 7→ Np(E, t) is an adapted, integrable increasing process, hence, there 

exists a natural integrable increasing process N̂ 
p(E, t) such that Ñ 

p : t 7→ Ñ 
p(E, t) = 

Np(E, t) − N̂ 
p(E, t) is a martingale. 

Definition 14. An (Ft)-adapted point process p on (Ω, F , P) is said to be of the class 
(QL)ix with respect to (Ft) if it is σ-finite and there exists N̂ 

p(E, t) such that 

(i) for E ∈ Γp, t 7→ N̂ 
p(E, t) is a continuous (Ft)-adapted increasing process, 

(ii) for each t and almost all ω ∈ Ω, E 7→ N̂ 
p(E, t) is a σ-finite measure on (Z, B(Z)), 

(iii) for E ∈ Γp, t 7→ Ñ 
p(E, t) = Np(E, t) − N̂ 

p(E, t) is an (Ft)-martingale. 

The random measure {N̂ 
p(E, t)} is called the compensator of the point process p (or 

{Np(E, t)}). 

Definition 15. A point process p is called an (Ft)-Poisson point process if it is an (Ft)-

adapted, σ-finite Poisson point process such that {Np(E, t + h) − Np(E, t)}h>0,E∈B(Z) is 

independent of Ft. 

An (Ft)-Poisson point process is of class (QL) if and only if t 7→ E(Np(E, t)) is con-

tinuous for E ∈ Γp. The compensator in such a case is given by N̂ 
p(E, t) = E(Np(E, t)). In 

particular, a stationary (Ft)-Poisson point process is of the class (QL) with compensator 

N̂ 
p(E, t) = ν(E)t, where ν(dz) is the characteristic measure of p. 

Let p be a point process. Then it follows from [30, Thm. 3.1] that Ñ 
p(·, E) is a 

ixQuasi left-continuous 
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square integrable martingale for E ∈ Γp, and we have 

˜ ˆhÑ 
p(·, E1), Np(·, E2)i = Np(·, E1 ∩ E2). 

Before proceeding to the discussion regarding the stochastic integral with respect to 

the Poisson random measure, we shall introduce the (Ft)-predictable process. Let H be a 

real separable Hilbert space. 

Definition 16. A H-valued function f(ω, z, t) defined on Ω × Z × [0, ∞) is called (Ft)-

predictable if the mapping (ω, z, t) → f(ω, z, t) is P/B(H)-measurable where P is the small-

est σ-field on Ω × Z × [0, ∞) with respect to which all g having the following properties are 

measurable: 

(i) for each t > 0, (ω, z) 7→ g(ω, z, t) is B(Z) ×Ft-measurable; 

(ii) for each (ω, z), t 7→ g(ω, z, t) is left-continuous. 

Let (Ω, F , {Ft}t≥0, P) be the underline filtered probability space. Let p be a sta-

tionary (Ft)-Poisson point process of class (QL). Then Np(dz, dt) is a Poisson random 

measure with compensator N̂ 
p(dz, dt) = ν(dz)dt. 

Suppose that f(ω, z, t) is an (Ft)-predictable process. Then 

Z Zt+ X 
f(·, z, s)Np(dz, ds) := f(·, p(s), s). 

0 Z s∈D(p) 
s≤t 

The integral is well-defined whenever the right hand series is absolute convergent. In addi-

tion, if f is such that 

Z t+ Z 
E |f(·, z, s)|ν(dz)ds < ∞ (1.17) 

0 Z 
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for every t > 0, then it can be shown that Z Z Z Zt+ t+ 

E |f(·, z, s)|Np(dz, ds) = E |f(·, z, s)|ν(dz)ds. (1.18) 
0 Z 0 Z 

Set Z Z Z Z Z Zt+ t+ t 

f(·, z, s)Ñ 
p(dz, ds) = f(·, z, s)Np(dz, ds) − f(·, z, s)ν(dz)ds. 

0 Z 0 Z 0 Z R t+
Then t 7→ 

0 f(·, z, s)Ñ 
p(dz, ds) is an Ft-martingale. 

If f satisfies (1.17), and further, ZZ t+ 

E |f(·, z, s)|2ν(dz)ds < ∞, 
0 Z RR t+

then t 7→ 
0 Z f(·, z, s)Ñ 

p(dz, ds) is a square integrable martingale and Z Z Z Zt+ t+ 

h f(·, z, s)Ñ 
p(dz, ds)i = f 2(·, z, s)ν(dz)ds (1.19) 

0 Z 0 Z 

Let M(t) be a right-continuous submartingale and T > 0 be a real number. By 

basic submartingale inequality (see, e.g., [31, Ch. 3]), we mean 

λP{ sup |M(t)| ≥ λ} ≤ E|M(T )|
0≤t≤T 

for any λ > 0. 

Let M(t) be a càdlàg (right continuous with left limits) process. Denote by [M ]t = 

[M, M ]t the quadratic variational process of M(t). The following well-known theorem 

gives us lower and upper Lp-bound estimates for the expectation of the supremum of a 

martingale. The case for 1 < p < ∞ was established by Burkholder [5], and the case of 

0 < p < 1 was established by Burkholder and Gundy [6]. Finally, the case of p = 1 was 

established by Davis [14]; we therefore refer the Davis inequality to the case of p = 1. 
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If M(t) is of Rd-valued, the interested reader may consult, e.g., [30, Sec. 3, Ch. III], 

[31, Sec. 5.6], [32, Ch. 17] or, [49, Sec. 5, Ch. IV] for the detailed discussion and proof; if 

M(t) is of infinite-dimensional Hilbert spaced valued, the interested reader may consult, 

e.g., [12, Ch. 6], [38], or [51, Sec. 3.9] the detailed discussion and proof. 

Theorem 1.2.16 (Burkholder-Davis-Gundy inequality). Let T > 0. For any 0 < p < ∞, 

there exist universal constants cp/2 and Cp/2 such that 

� � � � � � 
p/2 p/2 

cp/2E [M ] ≤ E sup |M(t)|p ≤ Cp/2E [M ] .T T 
0≤t≤T 

It may be of interest to study the optimality of the constants. The interested reader 

may consult, e.g., [4], [15, Sec. 3, Ch. VII], [25], [47] and references therein. For the gener-

alizations of Burkholder-Davis-Gundy inequality, we indicate the reader to, e.g., [35]. 

√ 
In this thesis, we take C1/2 = 2 for continuous martingales starting from 0 (see, 

√ 
e.g., [47]); for general càdlàg martingales, we take C1/2 = 10 (see, [25]). For general � �p 
1 < p < ∞ and càdlàg martingales, we take Cp/2 = 

p− 
p 
1 (see, [31, Thm. 5.6.3]). 

Let K be a complete separable metric space with distance d. For T > 0, we de-

note by D([0, T ]; K) the K-valued càdlàg functions defined on [0, T ]. Let ΛT be the set of 

increasing homeomorphisms of [0, T ]. Define the metric 

n λ(t) − λ(s) o 
δT (x, y) = inf sup d(x(t), x ◦ λ(t)) + sup |t − λ(t)| + sup log . (1.20) 

λ∈ΛT t∈[0,T ] t∈[0,T ] s6=t t − s 

Then it is known that (D([0, T ]; K), δT ) is a complete separable metric space (see, e.g., 

[20]). The topology induced by δT is called the (Skorohod) J-topology and the space 

D([0, T ]; K) endowed with J-topology is called the Skorohod space. For more information 

regarding the Skorohod space, we refer the interested reader to [9, 41]. 
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⎪
⎪

Let m ∈ N. Let {r(t) : t ∈ R+} be a right continuous ergodic x Markov chain with 

generator Γ = (γij )m×m taking values in S := {1, 2, 3, .....m} such that ⎧ ⎪⎨ γij h + o(h) if i =6 j, 
Rt(i, j) = R(r(t + h) = j|r(t) = i) = ⎪⎩ 1 + γiih + o(h) if i = j, 

and 

X 
γii = − γij . 

i6=j 

The transition probability Rt(i, j) satisfies the Chapman-Kolmogorov equation: 

mX 
Rt+s(i, k) = Rs(i, j)Rt(j, k). 

j=1 

There exists a stationary distribution π = (π1, · · · , πm) for this Markov chain r(t), where 

πj satisfies 

lim Rt(i, j) = πj
t→∞ 

In addition, r(t) admits a stochastic integral representation (see, e.g, [42, Sec. 1.7], [53, 

Sec. 2.1, Ch. 2], or [64, Ch. 2]): Let Δij be consecutive, left closed, right open intervals of 

xirreducible aperiodic positive recurrent, see [33]. 
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⎪
⎪

the real line each having length γij such that 

Δ12 = [0, γ12), 

Δ13 = [γ12, γ12 + γ13), 

. . . h m−1 mX X � 
Δ1m = γ1j , γ1j , 

j=2 j=2 

. . . h m m−1 m m �X X X X 
Δ2m = γ1j + γ2j , γ1j + γ2j 

j=2 j=1,j=26 j=2 j=1,j 6=2 

and so on. Define a function 

h : S × R → R 

by ⎧ ⎪⎨ j − i if y ∈ Δij , 
h(i, y) = ⎪⎩ 0 otherwise. 

(1.21) 

Then 

Z 
dr(t) = h(r(t−), y)N2(dt, dy), (1.22) 

R 

with initial condition r(0) = r0, where N2(dt, dy) is a Poisson random measure with inten-

sity measure dt × L(dy), in which L is the Lebesgue measure on R. 

We assume that such a Markov chain, Wiener process, and the Poisson random 

measure are independent. 
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1.2.4. Facts from the theory of large deviations 

Here, we recall the basic definitions and properties of the theory of large deviations. 

The interested reader is referred to, e.g., [16, 18, 60]. 

Let (X , B) be a topological space, and {µ�} is a sequence of probability measures 

defined on it. 

Definition 17 (Rate function). A rate function I is a lower semicontinuous mapping 

I : X → [0, ∞] (such that the level set ΨI (α) := {x : I(x) ≤ α} is a closed subset of X for 

all α ∈ [0, ∞)). A good rate function is a rate function for which all the level sets ΨI (α) 

are compact subsets of X . 

For any set Γ, Γ̄ denotes its closure and Γ◦ denotes its interior.We adapt the con-

vention that the infimum over an empty set is ∞. 

Definition 18 (Large deviation principle). The sequence of probability measures {µ�} is 

said to satisfy the large deviation principle with a rate function I if 

− inf I(x) ≤ lim inf � log µ�(Γ) ≤ lim sup � log µ�(Γ) ≤ − inf I(x) 
x∈Γ◦ �→0 �→0 x∈Γ̄ 

for all Γ ∈ B. 

One of the properties of the large deviation principle is that it is preserved under a 

continuous mapping. 

Theorem 1.2.17 (Contraction principle). Let X and Y be Hausdorff topological spaces and 

f : X → Y a continuous function. Consider a good rate function I : X → [0, ∞]. 

(i) For each y ∈ Y, define 

J(y) := inf{I(x) : x ∈ X , y = f(x)}. 

Then J is a good rate function on Y. 
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(ii) If I controls the large deviation principle associated with a family of probability 
measures {µ�} on X , then J controls the large deviation principle associated with 
the family of probability measures {µ� ◦ f−1} on Y. 

In the context of this article, the probability measures under consideration are 

(mostly) defined on a complete metric space (Polish space). In such a case, the large devia-

tion principle is known to be equivalent the “Laplace–Varadhan principle.” In what next, 

we will collect the definition of the Laplace-Varadhan principle, and a theorem that shows 

the equivalence between the large deviation principle and the Laplace-Varadhan principle. 

The interested reader is referred to, e.g., [31, Ch. 12]. Let E be a Polish space. 

Definition 19 (Laplace-Varadhan principle). A sequence of E-valued random variables 

{Xn} is said to satisfy the Laplace-Varadhan principle with a good rate function I if 

� �1 −nh(Xn)lim log E e = − inf {h(x) + I(x)}
n→∞ n x∈E 

for all h ∈ Cb(E). The inequality 

� �1 −nh(Xn)lim sup log E e ≤ − inf {h(x) + I(x)}
n x∈En→∞ 

is known as the upper bound for the Laplace-Varadhan principle, and the inequality 

� �1 −nh(Xn)lim inf log E e ≥ − inf {h(x) + I(x)}
n→∞ n x∈E 

is known as the lower bound for the Laplace-Varadhan principle. 

The following theorem gives the equivalence between the large deviation principle 

and the Laplace-Varadhan principle. The interested reader may consult [31, Thm. 12.2.1 

and 12.2.2] for the detailed discussion and proofs. 
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Theorem 1.2.18. Let E be a Polish space. 

(i) Let {Xn} be a sequence of random variables taking values in E and satisfy large 
deviation principle on E with a good rate function I. Then � �1 −nh(Xn)lim log E e = − inf {h(x) + I(x)}

n→∞ n x∈E 

for all h ∈ Cb(E). 

(ii) If I is a rate function on E and the limit � �1 −nh(Xn)lim log E e = − inf {h(x) + I(x)}
n→∞ n x∈E 

holds for all h ∈ Cb(E), then {Xn} satisfies the large deviation principle with rate 
function I. 

1.2.5. Functional analytic setup 

From now on, H and V is reserved for the following specific spaces that have been 

introduced in the previous section: 

H = {u ∈ L2(G) : r · u = 0, u · n = 0},
∂G 

V = {u ∈ W 1,2(G) : r · u = 0},0 

and we denote the H-norm (V -norm, resp.) by | · | (k · k, resp.) and the inner product 

on H (duality pairing on V , resp.) by (·, ·) (h·, ·iV , resp.) when there is no ambiguity. In 

addition, we have the following inclusion between the spaces: 

V ,→ H ,→ V 0 , 

and both of the inclusions V ,→ H and H ,→ V 0 are compact embeddings ( see, e.g., [54, 

Lem. 1.5.1 and 1.5.2, Ch. II]). 

The set {ei}∞ is reserved for the orthonormal basis obtained from Theorem 1.2.10i=1 

and Hn := span{ei}ni=1; Πn is the orthogonal projection of H on Hn. 
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Let k be a mollifier with kkk 6 = 1. Define b(k ∗ ·, ·, ·) : V × V × V → R by 
5 X3 Z 

∂vj
b(k ∗ u, v, w) := (k ∗ u)i wj dx, 

G ∂xii,j=1 

which induces a bilinear form Bk(u, v) by b(k ∗ u, v, w) = hBk(u, v), wiV . A combination of 

(generalized) Hölder inequality and the Young convolution inequality yields 

|b(k ∗ u, v, w)| ≤ kk ∗ uk6krvk2kwk3 ≤ kkk 6 kuk3krvk2kwk3, 
5 

which together with (1.8) and (1.9) further implies 

(1.23) 

1 1 1 1 
|b(k ∗ u, v, w)| ≤ Ckuk 2 |u| 2 kvkkwk 2 |w| 2 

In particular, when u = w, we have 

(1.24) 

|b(k ∗ u, v, u)| ≤ Ckuk · |u| · kvk. 

For the sake of simplicity, we shall assume that C = 1 in this article. 

(1.25) 

For the (U -valued) Q-Wiener process W (s) introduced in Section 1.2.3, we take 

U = H and write 

k · kLQ = k · kL2(H0,H), 

where k · kL2(H0,H) is defined in (1.15) with H0 = U0. 

Now we introduce hypotheses of the noise coefficients. 

The functions σ : [0, T ] × H × S → L2(H0, H) and G : [0, T ] × H × S × Z → H are 

continuous and satisfy the following Hypotheses H: 

H1. For all t ∈ (0, T ) and i ∈ S, there exists a constant K > 0 such that 

kσ(t, u, i)kp ≤ K(1 + |u|p + |i|p)LQ 

for p = 2, 3 (growth condition on σ). 
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H2. For all t ∈ (0, T ), there exists a constant L > 0 such that for all u, v ∈ H and 
i, j ∈ S, 

kσ(t, u, i) − σ(t, v, j)k2 ≤ L(|u − v|2 + |i − j|2)LQ 

(Lipschitz condition on σ). 

H3. For all t ∈ (0, T ) and i ∈ S, there exists a constant K > 0 such that Z 
|G(t, u, i, z)|pν(dz) ≤ K(1 + |u|p + |i|p) 

Z 

for p = 1, 2, and 3 (growth condition on G). 

H4. For all t ∈ (0, T ), there exists a constant L > 0 such that for all u, v ∈ H and 
i, j ∈ S, Z 

|G(t, u, i, z) − G(t, v, j, z)|2ν(dz) ≤ L(|u − v|2 + |i − j|2) 
Z 

(Lipschitz condition on G). 

Without further notice, we will assume the noises coefficients satisfy Hypotheses H. 

Any change that we made on the noise coefficients will be clearly specified at the begin-

ning of each chapter or section. 

The transformation from (1.3) to (1.4) is sketched as follows. By applying the 

Leray-Helmholtz projector (1.11) to each term of (1.3), and utilizing the Helmholtz decom-

position (1.10), one transforms (1.3) into (1.4). For more details, we refer the interested 

reader to [37, 54]. In addition, we shall remind the reader that (1.4) is understood in the 

following integro-variational sense: Z t 
hu(t), ρiV + hνAu(s) + Bk(u(s)), ρiV ds 

0 ZZ t t 

= hu(0), ρiV + hf(s), ρiV ds + h σ(t, u(s), r(s))dW (s), ρiV (1.26) Z t Z 
0 0 

+ h G(s−, u(s−), r(s−), z)Ñ 
1(dz, ds), ρiV 

0 Z 
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for all ρ ∈ V . 

Now we are in a position to introduce the Itô formula. We remind the reader that 

the Itô formula introduced here is in the context of u(t), which is the solution to equation 

(1.4). For full generality, we refer the reader to, e.g., [12, 30, 31, 42, 45, 51, 53]. 
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Let F : [0, T ] × V × S → R+ be a continuous function with its Fréchet derivatives Ft, 

Fv, and Fvv are bounded and continuous. Define the operator 

LF (t, v, i) : = Ft(t, v, i) + h−νAv − Bk(v) + f(t), Fv(t, v, i)iV Xm 
1 � � 

+ γij F (t, v, j) + tr Fvv(t, v, i)σ(t, v, i)Qσ ∗ (t, v, i)
2 

j=1 Z � 
+ F (t, v + G(t, v, i, z), i) − F (t, v, i) 

Z � � � 
− Fv(t, v, i), G(t, v, i, z) ν1(dz). 

H 

Then we have the following change of variables formula due to Itô (see, e.g., [42, Thm. 

1.45], [53, Lem. 3 in Sec. 2.1, Ch. 2]): 

Z t 
F (t, u(t), r(t)) = F (0, u(0), r(0)) + LF (s, u(s), r(s))ds Z 

0 
t 

+ hFx(s, u(s), r(s)), σ(s, u(s), r(s))dW (s)i Z0 Zt � 
+ F (s, u(s−) + G(s−, u(s−), r(s−), z), r(s−)) 

0 Z � 
˜− F (s, u(s−), r(s−)) N1(dz, ds) Z Zt � 

+ F (s, u(s−), r(s−) + h(r(s−), y)) 
0 R � 

˜− F (s, u(s−), r(s−)) N2(ds, dy), 

Ñ1(dz, ds) is the compensated Poisson random measure introduced in Section 1.2.3, 

Ñ2(ds, dy) = N2(ds, dy) − L(dy)ds and N2(ds, dy) = N(ds, dy) in (1.22), and L(dy)ds is 

as in (1.22); h(s, y) is defined as in (1.21). In particular, if F (t, u(t), i) = |u(t)|2 , then the 
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P 
term m

j=1 γij |u(t)|2 = 0, therefore, we have 

Z t 
|u(t)|2 = |u(0)|2 + 2 h−νAu(s) − Bk(u(s)) + f(s), u(s)iV ds 

0 ZZ t t 

+ kσ(s, u(s), r(s))k2 
LQ 
ds + 2 hu(s), σ(s, u(s), r(s))dW (s)i Z0 Z 

0 
t � � 

˜+ |u(s−) + G(s−, u(s−), r(s−), z)|2 − |u(s−)|2 N1(dz, ds) Z0 ZZ 
t � 

+ |u(s) + G(s, u(s), r(s), z)|2 − |u(s)|2 

0 Z � � � 
− 2 u(s), G(s, u(s), r(s), z) ν1(dz)ds. 

H 

Denoted by {τi}4 the topologies i=1 

τ1 = J-topology on D([0, T ]; V 0), 

τ2 = weak topology on L2(0, T ; V ), 

τ3 = weak-star topology on L∞(0, T ; H), 

τ4 = strong topology on L2(0, T ; H), 

and Ωi the spaces 

Ω1 = D([0, T ]; V 0), 

Ω2 = L2(0, T ; V ), 

Ω3 = L∞(0, T ; H), 

Ω4 = L2(0, T ; H). 

Then {(Ωi, τi)}4 
i=1 are all Lusin spacesxi . 

xiDefinition 9. 
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Definition 20. Define the space Ω∗ by 

Ω ∗ = ∩4 
i=1Ωi. 

Let τ be the supremum of the topologiesxii induced on Ω∗ by all τi. Then it follows from [41, 

Prop. 1, Ch. IV] thatxiii 

(i) (Ω∗, τ) is a Lusin space. 

(ii) Let {µk}k∈N be a sequence of Borel probability laws on Ω∗ (on the Borel σ-algebra 
B(τ )) such that their images {µi }k∈N on (Ωi, B(τi)) are tight for τi for all i. Thenk 

{µk}k∈N is tight for τ . 

As shall be seen, the space (Ω∗, τ) is the path space of the “solution” u(t) of equa-

tion (1.4). Let (Ω, F , P) be a (complete) probability space on which the following are 

defined: 

(i) W = {W (t) : 0 ≤ t ≤ T }, an H-valued Q-Wiener process. 

(ii) N = {N(z, t) : 0 ≤ t ≤ T and z ∈ Z}, the Poisson random measure. 

(iii) r = {r(t) : 0 ≤ t ≤ T }, the Markov chain. 

(iv) ξ, an H-valued random variable. 

Assume that ξ, W , N , and r(t) are mutually independent. For each t, define the σ-field 

Ft := σ(ξ, r(t),W (s), N(z, s) : z ∈ Z, 0 ≤ s ≤ t) ∪ {all P-null sets in F}. 

Then it is clear that (Ft) satisfies the usual conditions, and both W (t) and N(z, t) are 

Ft-adapted processes. 

xiiThe coarest topology that is finer than each τi. See, e.g., [27, Sec. 5.2] 
xiiiNote that all the natural inclusion Ωi ,→ Ω1, i = 2, 3, 4, are continuous. 
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Denoting by J the J-topology in the space D([0, T ]; S), we define 

Ω† := Ω ∗ ×D([0, T ]; S), 
(1.27) 

τ † := τ × J . 

We are in the position to introduce the concept of solutions of equation (1.4). The follow-

ing contents regarding the concepts of solutions are adapted from [31, Ch. 6]. 

Definition 21 (Strong solution). The H ×S-valued process (u(t), r(t)), t ∈ [0, T ], defined on 

(Ω, F , P), is called a strong solution of the stochastic Navier-Stokes equation with Markov 

switching (1.4) with initial condition (u(0), r(0)) = (ξ, r) if it satisfies 

(i) (u(t), r(t)) is Ft-adapted with sample path in (Ω†, τ †). R T
(ii) For all ρ ∈ V , 

0 hνAu(s) + Bk(u(s)), ρiV ds < ∞ P-almost surely. R T
(iii) E 

0 kσ(s, u(s), r(s))k
2 
LQ 
ds < ∞. 

R T R 
(iv) E |G(s, u(s), r(s), z)|2ν1(dz)ds < ∞.

0 Z 

(v) For each t ∈ [0, T ], the equation (1.26) is satisfied P-almost surely. 

Definition 22 (Strong uniqueness). The stochastic Navier-Stokes equation with Markov 

switching (1.4) with initial condition (u(0), r(0)) = (ξ, r) has a unique strong solution if, 

for any two strong solutions (u1(t), r1(t)) and (u2(t), r2(t)) on (Ω, F , P), one has 

P{ω : (u1(ω, t), r1(ω, t)) = (u2(ω, t), r(ω, t)) ∀t ∈ [0, T ]} = 1. 

Similar to the study of the Navier-Stokes equations (NSEs), the study of stochastic 

Navier-Stokes equations (SNSEs) allows one the defines “weak solutions.” However, unlike 

the study of NSEs, the “weak” here does not mean “less differentiable” but mean “finding 

solutions in another probability space.” 
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Definition 23 (Weak solution). Suppose that, on some probability space (Ω, F , P), there 

exists an increasing family (Gt) of sub σ-field of F , an H × S-valued random vector (ξ, r) 

˜with given distribution µ, and Gt-adapted processes W (t), N(z, t), u(t), and r(t) such that 

(i) (W (t), Gt, P) is an H-valued Q-Wiener martingale. 

˜(ii) N(z, t) is an square integrable martingale with respect to (Gt). 

(iii) W (t), N(z, t), and (ξ, r) are mutually independent. n oR T
(iv) For all ρ ∈ V , P ω : 

0 hνAu(ω, s) + Bk(u(ω, s)), ρiV ds < ∞ = 1. 

(v) For all t and ρ ∈ V , Z t 
hu(ω, t), ρiV + hνAu(ω, s) + Bk(u(ω, s)), ρiV ds Z t 

0 Z t 
= hξ, ρiV + hf(s), ρiV ds + h σ(t, u(s), r(s))dW (ω, s), ρiV Z Z 0 0 

t 

+ h G(s−, u(s−), r(s−), z)Ñ 
1(ω, dz, ds), ρiV 

0 Z 

P-almost surely. 

Then the family (Ω, F , (Gt), P , ξ, r, {W (t)}, {N(z, t)}, {u(t)}, {r(t)}) is called a weak solu-

tion of the stochastic Navier-Stokes equation (1.4). 

Similar to the NSEs case, a strong solution of an SNSEs is also a weak solution. 

Next, we define the “uniqueness” that is suitable for the weak solutions of SNSEs. 

Definition 24 (Pathwise uniqueness). A weak solution of the stochastic Navier-Stokes 

equation (1.4) is said to be pathwise unique if, for any two weak solutions give by 

(Ω, F , (Gti), P , ξi, ri , {W (t)}, {N(z, t)}, {ui(t)}, {ri(t)}), i = 1, 2, the following holds: 

n o 
P (u 1(t), r 1(t)) = (u 2(t), r 2(t)) ∀t ≥ 0 = 1. 
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1.2.6. Auxiliary results 

In this thesis, we will need some compactness of functions or measures for extract-

ing a suitable convergent (sub)sequence, and we collect them in this subsection for the ben-

efit of the reader. The first lemma can be viewed as a desired formulation of the Aubin-

Lions Lemma (see, e.g., [58, Sec. 3.4], [59, Sec. 2.1, Ch. III]) in the context of stochastic 

differential equations. The statement of which is adapted from [41, Lem. 3, Ch. VI]. 

Lemma 1.2.19. Consider the continuous dense embeddings V ,→ H ,→ V 0 with V ,→ H 

and H ,→ V 0 being compact. Suppose that a set B in Lq(0, T ; H) ∩ D([0, T ]; V 0) is rela-

tively compact in D([0, T ]; V 0) and bounded in Lq(0, T ; V ). Then B is relatively compact in 

Lq(0, T ; H). 

Next we introduce a lemma due to Aldous that gives a criterion for the tightness 

(compactness) of a sequence of probability measures. For the details, we refer the reader 

to, e.g., [1, 9, 31, 41, 63]. 

Lemma 1.2.20 (Aldous’ criterion). Let {Xn}∞ be a sequence of processes with paths inn=1 

the space D([0, T ]; V 0). Suppose that for each rationals t ∈ [0, T ], we have 

� � 
lim lim sup P kXn(t)kV 0 > N = 0. (1.28)

N→∞ n 

Then {Xn}∞ is tight in D([0, T ]; V 0) if the following condition is satisfied: n=1 

For every sequence (Tn, δn) where each Tn is a stopping time such that Tn + δn ≤ T , 

and δn > 0, δn → 0, we have kXn(Tn + δn) − Xn(Tn))kV 0 → 0 in probability as n →∞. 

Proof. The interested reader may consult [31, Thm. 10.4.1], [63, p. 354, Th. 6.8] 

The next lemma characterizes a property of càdlàg functions (see, e.g., [9, Lem. 
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1, Ch. 3]): there can be at most finitely many points at which the jump exceeds a given 

positive number . 

Lemma 1.2.21. Let K be a separable Hilbert space. For each x ∈ D([0, T ]; K) and each 

positive �, there exists points t0, t1, . . . , tv such that 

0 = t0 < t1 < · · · < tv = T 

and 

sup kx(s) − x(t)kK < �, 
s,t∈[ti,ti+1) 

i = 1, 2, . . . , v. 
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Chapter 2. A Priori Estimates 

In the chapter, we establish a priori estimates to the approximation of (1.4). Re-

calling the definitions of {ei}∞ 
i=1, Hn, and Πn from Section 1.2.5, we define Wn := ΠnW , 

Nn := ΠnN , σn := Πnσ, and Gn := ΠnG. 

Define un as the solution to following equation: for each v ∈ Hn, 

�� �� 
d(un(t), v) = − νAun(t) − Bk(un(t)), v dt + hf(t), viV dt � � 

+ σn(t, un(t), r(t))dWn(t), v (2.1) 

� Z � 
+ Gn(t−, un(t−), r(t−), z)Ñ 

1n(dz, dt), v 
Z 

˜ ˜ ˜with un(0) = Πnu(0), where N1n = ΠnN1 and N1(dz, ds) = N1(dz, ds) − ν1(dz)ds. 

Proposition 2.0.1 (A priori estimates). Let T > 0 be fixed. Suppose that E|u(0)|2 < ∞ 

and f ∈ L2(0, T ; V 0). Then, under Hypotheses H, we have 

Z t Z T 

E|un(t)|2 + νE kun(s)k2ds ≤ C(E|u(0)|2 , E kf(s)k2 
V 0 ds, ν, K, m, T ), (2.2) 

0 0 

for any t ∈ [0, T ] and 

Z T Z T 

E sup |un(t)|2 + νE kun(s)k2ds ≤ C(E|u(0)|2 , E kf(s)kV 
2 
0 ds, ν, K, m, T ). (2.3) 

0≤t≤T 0 0 

Suppose further that E|u(0)|3 < ∞ and f ∈ L3(0, T ; V 0). Then, under Hypotheses H, 

we have 

Z T Z T 

E sup |un(t)|3 + 2νE |un(s)|kun(s)k2ds ≤ C(E|u(0)|3 , E kf(s)kV 
3 
0 ds, ν, K, m, T ) 

0≤t≤T 0 0 

(2.4) 
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��� ���

Proof. Let N > 0. Define Z t 
τN := inf{t ∈ [0, T ] :|un(t)|2 + kun(s)k2ds > N 

0Z t 
or |un(t−)|2 + kun(s)k2ds > N}. 

0 

It follows from the Itô formula that Z t∧τN 

|un(t ∧ τN )|2 = |u(0)|2 + 2 h−νAun(s) − Bk(un(s)) + f(s), un(s)iV ds Z 
0 Zt∧τN t∧τN 

+ kσn(s, un(s), r(s))k2 
LQ 
ds + 2 hun(s), σn(s, un(s), r(s))dWn(s)i Z0 Z 

0 
t∧τN � � 

˜+ |un(s−) + Gn(s−, un(s−), r(s−), z)|2 − |un(s−)|2 N1n(dz, ds) Z0 ZZ 
t∧τN � 

+ |un(s) + Gn(s, un(s), r(s), z)|2 − |un(s)|2 

0 Z �� � 
− 2 un(s), Gn(s, un(s), r(s), z) H 

ν1(dz)ds. 

(2.5) 

Note that un ∈ Hn ⊂ D(A), therefore, it follows from the property of A thati 

� � 
hAun = Aun(s), un(s) = kun(s)k2 ,(s), un(s)iV H 

which implies that Z t∧τN 
Z t∧τN 

2 −νhAun(s), un(s)iV ds = −2ν kun(s)k2ds. 
0 0 

By the definition of Bk, hBk(un(s)), un(s)iV = 0. For the external force term f , one de-

duces from the basic Young inequality that Z t∧τN 

2 hf(s), un(s)iV ds 
0 Z Z Zt∧τN t t∧τN 

≤ 2 kf(s)kV 0 kun(s)kds ≤ 
1 kf(s)k2 

V 0 ds + ν kun(s)k2ds. 
ν0 0 0 

iTheorem 1.2.10 and references therein. 
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A simplification of the last term in (2.5) gives 

Z t∧τN 
Z � 

|un(s) + Gn(s, un(s), r(s), z)|2 − |un(s)|2 

0 Z �� � 
− 2 un(s), Gn(s, un(s), r(s), z) H 

ν1(dz)ds Z t∧τN 
Z 

= |Gn(s, un(s), r(s), z)|2ν1(dz)ds. 
0 Z 

Now, taking expectation on the both side of (2.5), using Hypotheses H1 and H3, and 

then putting everything together, we obtain 

Z t∧τN 

E|un(t ∧ τN )|2 + νE kun(s)k2ds Z T 
0 Z t1 2).≤ E|u(0)|2 + E kf(s)k2 

V 0 ds + 2KE |un(s ∧ τN )|2ds + 2KT (1 + m (2.6)
ν 0 0 

Denoting CT := E|u(0)|2 + 1 E 
R T kf(s)k2 

V 0 ds + 2KT (1 + m2), we utilize the Gronwall’s 
ν 0 

inequality to obtain 

E|un(t ∧ τN )|2 ≤ CT e 
2KT . (2.7) 

A combination of (2.6) and (2.7) yield 

Z t∧τN 

E|un(t ∧ τN )|2 + νE kun(s)k2ds ≤ CT (1 + 2KTe2KT ). (2.8) 
0 

In particular, 

Z t∧τN 

E kun(s)k2ds ≤ 
1 
CT (1 + 2KTe2KT ). (2.9)

ν0 
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��� ���
An application of Davis inequality yields Z t 

2E sup hun(s), σ(s, un(s), r(s))dW (s)i 
0≤t≤T ∧τN 0 

√ n� Z T ∧τN � 
2
1 o 

≤ 2 2E |un(s)|2kσ(s, un(s), r(s))k2 
LQ 

√ 
0 

√ Z T ∧τN 

≤ 2 2�1E sup |un(t)|2 + 2 2C�1 E kσ(s, un(s), r(s))k2 dsLQ
0≤t≤T ∧τN 0 

and Z t Z � � 
˜2E sup un(s−), G(s−, un(s−), r(s−), z) H 
N1(dz, ds) 

0≤t≤T ∧τN 0 Z 

√ √ Z T ∧τN 
Z 

≤ 2 10�2E sup |un(t)|2 + 2 10C�2 E |G(s, un(s), r(s), z)|2ν(dz)ds. 
0≤t≤T ∧τN 0 Z 

Therefore, Itô formula implies Z T ∧τN 

E sup |un(t)|2 + νE kun(s)k2ds 
0≤t≤T ∧τN 0 Z T √ √1 ≤ E|u(0)|2 + E kf(s)k2 

V 0 ds + 2( 2�1 + 10�2)E sup |un(t)|2 

ν 0 0≤t≤T ∧τN 

√ Z T ∧τN 

+ (2 2C�1 + 1)E kσ(s, un(s), r(s))k2 
LQ 
ds 

√ Z0 
T ∧τN 

Z 
+ (2 10C�2 + 1)E |G(s, un(s), r(s), z)|2ν(dz)ds. 

0 Z 

√ √ 
Take �1 = √1 and �2 = √1 . Then C�1 = 2 2 and C�2 = 2 10. One obtains from above 

8 2 8 10 

and (2.9) that Z T ∧τN1
E sup |un(t)|2 + νE kun(s)k2ds 
2 0≤t≤T ∧τN 0 

1 
Z T Z T ∧τN 

≤ E|u(0)|2 + E kf(s)kV 
2 
0 ds + 50KE (1 + |un(s)|2 + m 2)ds 

ν Z0 
T 

0 

1 50K ≤ E|u(0)|2 + E kf(s)k2 
V 0 ds + CT (1 + 2KTe2KT ) + 50KT (1 + m 2)

ν ν0 

:= C2(T ). (2.10) 
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Now consider the event {τN < T }. By the definition of τN , we have 

Z Zn t o n t o 
{τN < T } = |un(t)|2 + kun(s)k2ds > N ∪ |un(t−)|2 + kun(s)k2ds > N 

0 0 

for some t ∈ [0, T ], therefore, 

Z Zn t o n t o 
P{τN < T } ≤ P |un(t)|2 + kun(s)k2ds > N + P |un(t−)|2 + kun(s)k2ds > N , 

0 0 

which together with the Markov inequality imply � � � �R t R tE |un(t)|2 + kun(s)k2ds E |un(t−)|2 + kun(s)k2ds0 0 
P{τN < T } ≤ + . 

N N 

Using (2.10) in above, we obtain 

2 � Z T ∧τN � 2 P{τN < T } ≤ E sup |un(t)|2 + E kun(s)k2ds = C2(T ). 
N N0≤t≤T ∧τN 0 

Note that C2(T ) is a constant independent of N , therefore, P{τN < T } → 0 as N → ∞, 

which implies that τN → ∞ almost surely as N → ∞. This together with the fact that 

τN is increasing in N further imply that T ∧ τN → T almost surely as N → ∞. Letting 

N →∞ in (2.10) and (2.8), we obtain (2.3) and (2.2). 
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Define 

Z t 
τ 0 := inf{t ∈ [0, T ] :|un(t)|3 + |un(s)|kun(s)k2ds > NN 

0Z t 
or |un(t−)|3 + |un(s)|kun(s)k2ds > N}. 

0 

Denote 

Z t 
M(t) = 2 hun(s), σ(s, un(s), r(s))dWn(s)i, Z0 

t Z t 
A(t) = 2 h−νAun(s) − Bk(un(s)) + f(s), un(s)iV ds + kσ ∗ (s, un(s), r(s))k2 

LQ 
ds Z Z 

0 
t+ � 

+ |un(s) + Gn(s, un(s), r(s), z)|2 − |un(s)|2 

0 Z �� � 
− 2 un(s), Gn(s, un(s), r(s), z) H 

ν1(dz)ds, 

g(z, t) = |un(t−) + G(t−, un(t−), r(t−), z)|2 − |un(t−)|2 , 

temporarily. Then the process |un(t)|2 defined in (2.5) is a real-valued process and can be 

expressed in the following formulation 

Z t+ Z 
|un(t)|2 = |u(0)|2 + M(t) + A(t) + g(z, s)Ñ 

1n(dz, ds). 
0 Z 

Let F (x) = x 
3 
2 . 

√3 3 1Then F 0(x) = 
2 x and F 00(x) = 

4 
√ . Utilizing the Itô formula in Ikeda 
x 

and Watanabe [30, Thm. 5.1, Ch. II] to |un(t)|2 with F (x) = x 
3 
2 , we have 
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(|un(t)|2) 
3 
2 Z p3 t 

2= (|u(0)|2) |un(s)|2 · 2hun(s), σ(s, un(s), r(s))dWn(s)i+ 
2 0Z t p n3 

+ |un(s)|2 2h−νAun(s) − Bk(un(s)) + f(s), un(s)iV + kσ ∗ (s, un(s), r(s))k2 
LQ2 0 Z � 

+ |un(s) + Gn(s, un(s), r(s), z)|2 − |un(s)|2 

Z � o� � 
− 2 un(s), Gn(s, un(s), r(s), z) H 

ν1(dz)ds ds Z 
1 t 3 1 

+ p · 4kσ ∗ (s, un(s), r(s))un(s)k2 ds 
2 0 4 |un(s)|2 LQ n�Z Z � 3 

2 
t+ 

+ |un(s−)|2 + (|un(s−) + Gn(s−, un(s−), r(s−), z)|2 − |un(s−)|2) 
0 Z o 

− (|un(s−)|2) 
3 
2 Ñ1n(dz, ds) Z Zt+ n� � 3 

3 
2 

2 |un(s)|2 + (|un(s) + Gn(s, un(s), r(s), z)|2 − |un(s)|2) − (|un(s)|2)+ 
0 Z 

3 − (|un(s) + Gn(s, un(s), r(s), z)|2 − |un(s)|2) · 
p
|un(s)|2 

o 
ν1(dz)ds. 

2 

A simplification of the second term on the right of above gives 

Z t 
3 |un(s)|hun(s), σ(s, un(s), r(s))dWn(s)i; 

0 

a simplification of the third term gives Z t 
3 |un(s)|h−νAun(s) − Bk(un(s)) + f(s), un(s)iV ds 

0 Z t3 
+ |un(s)|kσ ∗ (s, un, r(s))k2 dsLQ2 Z0 Z 
3 t 

+ |un(s)||Gn(s, un(s), r(s), z)|2ν1(dz)ds;
2 0 Z 
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a simplification of the forth term gives 

Z t3 kσ∗(s, un(s), r(s))un(s)kL 
2 
Q ds;

2 0 |un(s)| 

a simplification of the fifth term gives 

Z Zt+ � � 
˜(|un(s−)| + |Gn(s−, un(s−), r(s−), z)|)3 − |un(s−)|3 N1n(dz, ds); 

0 Z 

a simplification of the sixth (last) term gives 

Z Zt+ n 
|un(s) + Gn(s, un(s), r(s), z)|3 − |un(s)|3 

0 Z � �o3 � � 
− |un(s)| (2 un(s), Gn(s, un(s), r(s), z) + |Gn(s, un(s), r(s), z)|2 ν1(dz)ds. H2 

Hence, we conclude 

|un(t)|3 = |u(0)|3 Z t 
+ 3 |un(s)|h−νAun(s) − Bk(un(s)) + f(s), un(s), iV ds Z0 

t 

+ 3 |un(s)|hun(s), σn(s, un(s), r(s))dWn(s)i Z0 Z 
3 t 3 t kσ∗(s, un(s), r(s))un(s)kL 

2 
Q+ |un(s)|kσn 

∗ (s, un(s), r(s))k2 ds + ds Z 
2 0Z 

LQ 2 0 |un(s)|
t � � 

˜+ |un(s−) + Gn(s, un(s−), r(s), z)|3 − |un(s−)|3 N1(dz, ds) Z0 
t ZZ � 

+ |un(s) + Gn(s, un(s), r(s), z)|3 − |un(s)|3 

0 Z �� � 
− 3|un(s)| un(s), Gn(s, un(s), r(s), z) ν(dz)ds. 

H 

(2.11) 
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Taking integration up to t ∧ τN 
0 and then expectation in (2.11), we have 

Z t∧τ 0 
E|un(t ∧ τ 0 )|3 + 3 Z 

νE 
0 

|un(s)|kun(s)k2ds (2.12)N 

t∧τ 0 

N 

≤ E|u(0) Z |
3 + 3E 

0 
|un(s)|kf(s)kV 0 |kun(s)kds 

t∧τ 0 

N 

+ 3E |un(s)|kσ(s, un(s), r(s))k2 dsLQ Z 
0 Zt∧τ 0 

N 

N � 
+ E |un(s) + Gn(s, un(s), r(s), z)|3 − |un(s)|3 

0 Z �� � 
− 3|un(s)| un(s), Gn(s, un(s), r(s), z) ν(dz)ds. 

H 

An application of triangle inequality and Hypothesis H3 yields 

Z Zt∧τ 0 N � 
E |un(s) + Gn(s, un(s), r(s), z)|3 − |un(s)|3 (2.13) 

0 Z �� � 
− 3|un(s)| un(s), Gn(s, un(s), r(s), z) ν(dz)ds 

H Z Zt∧τ 0 N 

N

≤ E 6|un(s)|2|Gn(s, un(s), r(s), z)|ν(dz)ds 
0Z 

ZZt∧τ 0 

N 

+ E 3|un(s)||Gn(s, un(s), r(s), z)|2ν(dz)ds Z0 ZZ 
t∧τ 0 

N 

+ E |Gn(s, un(s), r(s), z)|3ν(dz)ds 
0 Z 

Z Zt∧τ 0 t∧τ 0 N 

≤ 10KE |un(s)|3ds + 6K(1 + m)E |un(s)|2ds 
0 Z 

0 
t∧τ 0 N 

+ 3K(1 + m 2)E |un(s)|ds + KT (1 + m 3). 
0 

It follows from the basic Young inequality and the property | · | ≤ k · k that 

3kf(s)kV 0 |un(s)|kun(s)k (2.14) 

1 1 
2≤ kf(s)k3 

V 0 + 2ν(|un(s)|kun(s)k) 
3 
≤ kf(s)k3 

V 0 + 2ν|un(s)|kun(s)k2 . 
ν2 ν2 
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Using Hypothesis H1, (2.13), and (2.14) in (2.12), one has Z t∧τ 0 

E|un(t ∧ τN 
0 )|3 + νE |un(s)|kun(s)k2ds (2.15) Z 

0 Zt∧τ 0 t∧τ 0 N 

N 

N1 ≤ E|u(0)|3 + E kf(s)kV 
3 
0 ds + 6K(1 + m)E |un(s)|2ds 

0 0 ZZ 
ν2 

t∧τ 0 

+ 4K(1 + m 2)E |un(s)|ds + KT (1 + m 3) + 11kE |un(s)|3ds. 
0 0 

Notice that Z Zt∧τ 0 N 

N 
0∧τt N 

t 

|un(s)|ds ≤ |un(s)|ds 
0 0 

since t ∧ τN 
0 ≤ t. Thus, by the Schwarz inequality, the Jesen inequality (for concave func-

tions), the property that | · | ≤ k · k, and (2.2), we have Z Zt∧τ 0 N t 

E |un(s)|ds ≤ E |un(s)|ds (2.16) 
0 0 �Z Zt � � t �√ √1 1 

2 2 |un(s)|2ds kun(s)k2ds≤ E ET ≤ T ; 
0 0 

N 

we also have Z Zt∧τ 0 t 

E |un(s)|2ds ≤ E kun(s)k2ds ≤ C. (2.17) 
0 0 

Making use of the above two estimates in (2.15), we then use the Gronwall inequality to 

obtain Z T 

E|un(t ∧ τ 0 )|3 ≤ C(E|u(0)|3 , E kf(s)k3 
V 0 ds, ν, K, m, T ). (2.18)N 

0 

Utilizing above bound on the last term on the right of (2.15), we conclude Z t∧τN 

E|un(t ∧ τ 0 )|3 + νE |un(s)|kun(s)k2dsN Z T 
0 

≤ C(E|u(0)|3 , E kf(s)kV 
3 
0 ds, ν, K, m, T ). 

0 
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It follows from the Itô formula that Z t 
|un(t)|3 = |u(0)|3 + 3 |un(s)|h−νAun(s) − Bk(un(s)) + f(s), un(s), iV ds Z t 

0 

+ 3 |un(s)|hun(s), σn(s, un(s), r(s))dWn(s)i Z0 
t 

+ 3 |un(s)|kσn(s, un(s), r(s))k2 ds (2.19)
LQ Z 

0Zt � � 
+ |un(s−) + Gn(s, un(s−), r(s), z)|3 − |un(s−)|3 N1(dz, ds) 

0Z 
ZZt � � 

− 3 |un(s)| un(s), Gn(s, un(s), r(s), z) ν(dz)ds. 
H 

0 Z 

Taking supremum over T ∧ τN 
0 and then expectation on (2.19), we have 

Z T ∧τ 0 N 

(t)|3 + 3νE |un(s)|kun(s)k2ds 
0 

E sup 
0≤t≤T ∧τ 0 N

|un (2.20) Z T ∧τ 0 N 

≤ E|u(0)|3 + 3E |un(s)|hf(s), un(s)iV ds Z0 
t 

+ E sup 3 |un(s)|hun(s), σ(s, un(s), r(s))dWs(s)i 
0 
N0≤t≤T ∧τ 0 Z T ∧τ 0 N 

+ 3E 
0 Z|un(s)|kσn(s, un(s), r(s))k2 dsLQ Z T ∧τ 0 N � � 

+ E |un(s−) + Gn(s, un(s−), r(s), z)|3 − |un(s−)|3 N1(dz, ds) Z0 
T ∧τ ZZ 

0 
N � � 

+ 3E |un(s)| un(s), Gn(s, un(s), r(s), z) ν(dz)ds. 
H 

0 Z 

By the Davis inequality, we have 

Z t 
3E sup |un(s)|hun(s), σ(s, un(s), r(s))dWn(s)i 

0 
N n� Z T ∧τ 

≤ 3 2E kσ(s, un(s), r(s))(|un(s)|un(s))k2 
LQ 

0 �Z T ∧τ 

0≤t≤T ∧τ 0 �0 
N o√ 1 

2 

� 1 
2 
o 

ds ; 
n 0 

N√ 
(t)|2 kσ(s, un(s), r(s))k2 

LQ 
0 

≤ 3 2E sup 
0 
N

|un 
0≤t≤T ∧τ 
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invoking the basic Young inequality and Hypothesis H1 and continuing, 

�Z T ∧τ 0 N � 3 
2 
on√ 2 1 

0 
N

|un(t)|3 + 
3 

(s), r(s))k2 
LQ 
ds≤ 3 2E kσ(s, un� C�sup

3 0≤t≤T ∧τ 0 Z T ∧τ 0 Nn o√√ 2 1 
(t)|3 (s), r(s))k3 

LQ 
≤ 3 2E 

0 
N

|un kσ(s, un� C� T ds+sup
3 30≤t≤T ∧τ 0 Z T ∧τ 0 N√ √ √ 

(s)|3 + 2 TKC�E |un(s)|3ds 
0 

2�E≤ 2 |unsup 
0≤t≤T ∧τ 0 N 

√ 
2KT 

3 
2

3)C�.(1 + m (2.21)+ 

An application of triangle inequality and expanding the cubic power yields 

Z T ∧τ 0 N 
Z � � 

E |un(s−) + Gn(s−, un(s−), r(s−), z)|3 − |un(s−)|3 N1(dz, ds) 
0 Z T ∧ 

Z

τ Z0 
N 

≤ 3E |un(s−)|2|Gn(s−, un(s−), r(s−), z)|N1(dz, ds) 
0Z T ∧τ

ZZ0 
N 

+ 3E |un(s−)||Gn(s−, un(s−), r(s−), z)|2N1(dz, ds) 
0 ZZ T ∧τ Z0 

N 

+ E |Gn(s, un(s), r(s), z)|3N1(dz, ds); 
0 Z 

invoking Hypothesis H3 and continuing, 

Z T ∧τ 0 N 
Z 

≤ 3E |un(s)|2|Gn(s, un(s), r(s), z)|ν(dz)ds 
0Z T ∧τ

ZZ0 
N 

+ 3E |un(s)||Gn(s, un(s), r(s), z)|2ν(dz)ds 
0 ZZ T ∧τ Z0 

N 

+ E |Gn(s, un(s), r(s), z)|3ν(dz)ds 
0 ZZ T ∧τ Z T ∧τ0 

N 
0 
N 

≤ 7KE |un(s)|3ds + 3K(1 + m)E |un(s)|2ds 
0 Z 

0 
0 
NT ∧τ 

+ 3K(1 + m 2)E |un(s)|ds + K(1 + m 3)T. (2.22) 
0 

Employing (2.21) and (2.22) in (2.20) and then using Hypotheses H1 and H3 and 
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the basic Young inequality, we have 

Z T ∧τ 0 

(t)|3 + νE |un(s)|kun(s)k2ds 
0 

N 

E sup |un 
0≤t≤T ∧τ 0 

1 ≤ E|u(0)|3 + 

N Z T ∧τ 0 

E kf(s)kV 
3 
0 ds 

N 

ν2 
0 Z T ∧τ 0 

(s)|3 + 2 TKC�E |un(s)|3ds + 
0 

N√ √ √ 

0≤t≤T ∧τ 0 Z T ∧τ 0 N 

N 

√ 3 
2 (1 + m 3)C�2�E+ 2 |un 2KT sup Z T ∧τN 

+ 3K(1 + m 2)E |un(s)|ds + 3KE |un(s)|3ds Z 
0 Z0 

T ∧τ 0 T ∧τ 0 NN 

+ 7KE |un(s)|3ds + 3K(1 + m)E |un(s)|2ds 
0 0Z T ∧τ 0 N 

+ 3K(1 + m 2)E 
0 

|un(s)|ds + K(1 + Z 

m 3)T Z T ∧τ 0 NT ∧τ 0 N 

+ 3K(1 + m)E 
0 

|un(s)|2ds + 3KE 
0 

|un(s)|3ds 

√ 
1Choose � = √ . Then C� = 4 2. The inequality above can be simplified as 
4 2 

|un 

N 
Z T ∧τ 0 

(t)|3 + νE |un(s)|kun(s)k2ds 
0 

1
E sup
2 0≤ ≤ ∧0 T τt N 

NN

N 

Z T ∧τ 0 Z T ∧τ 0 

≤ (13 + 8 T )KE |un(s)|3ds + 6(1 + m)KE |un(s)|2ds 
0 0Z T ∧τ 0 

√ 

√ 
+ 6(1 + m 2)KE |un(s)|ds + (8 T + 1)(1 + m 3)KT. 

0 

Using (2.16), (2.17), and (2.18) in above, we conclude, upon a simplification, that 

Z T ∧τ 0 N 

(t)|3 + 2νE |un(s)|kun(s)k2ds 
0 

E 
N 

sup 
0≤t≤T ∧τ 0 

|un Z T 

≤ C(E|u(0)|3 , E kf(s)kV 
3 
0 ds, ν, K, m, T ), 

0 

which leads T ∧ τN 
0 → T as N →∞. Therefore, (2.4) is proved. 
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Chapter 3. Stochastic Navier-Stokes Equations with Markov 
Switching 

This chapter is devoted to the study stochastic Navier-Stokes equations with 

Markov switching (1.4). We first establish the existence of a weak solution (in the sense 

of stochastic analysis) by studying the martingale problem posed by it. Then we show 

that the weak solutions are pathwise unique so that by a well-known result of Yamada 

and Watanabe [62], the existence of a unique strong solution (in the sense of stochastic 

analysis) is obtained. 

Having the solution to equation (1.4), we turn our attention to study certain prop-

erties of the solution. We establish the existence and uniqueness of the stationary measure 

of the system (1.4), and obtain exit time estimates as well. These estimates will be com-

pared to the corresponding ones obtained for the non-switching case. The relation between 

the latter and the Freidlin-Wentzell type large deviations are also discussed 

3.1. Martingale Problem 

Suppose that ω† = (u, r) is a solution to equation (1.4). Then it is not hard to see 

from the Itô formula that 

Z t 
Mω† 

(t) := F (t, u(t), r(t)) − F (0, u(0), r(0)) − LF (s, u(s), r(s))ds (3.1) 
0 

is a µ-martingale, where µ := P ◦ ω†−1 
is the distribution of ω† , and L is the operator 

introduced in Section 1.2.5. 

Recalling (1.27), we have defined Ω† := Ω∗ × D([0, T ]; S). Now let ω = (u, i) be a 

generic element in Ω† . Substituting (u, r) by (u, i) in (3.1), we obtain a canonical expres-
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sion: Z t 
Mω(t) := F (t, u(t), i(t)) − F (0, u(0), i(0)) − LF (s, u(s), i(s))ds. (3.2) 

0 

The aim of this section is to identify a measure µ on the path space Ω† under which M(·) 

in (3.2) is a martingale, and this is called the martingale problem posed by the stochastic 

Navier-Stokes equation with Markov switching (1.4). 

Recalling the definition of path space (Ω†, τ †) from (1.27), we let B denote the 

Borel σ-field of the topology τ † . Define 

Ft := σ(ω(s) : 0 ≤ s ≤ t, ω ∈ Ω†). 

Recall that L is the operator introduced in Section 1.2.5. We are in the position to intro-

duce the definition of a solution to a martingale problem. 

Definition 25. A probability measure µ on (Ω† , B) is called a solution of the martingale 

problem with the initial distribution µ0 and operator L if the following hold: 

(i) The time marginal of µ at t = 0 is µ0, i.e., µ|t=0 = µ0 

(ii) The canonical expression M(t) defined in (3.2) is an Ft-martingale. 

Let Xt(ω) = ω(t) for all ω ∈ Ω† be the canonical process on Ω† . Therefore, in terms 

of the canonical process, the definition becomes: 

Definition 26. A process X = {Xt} with path in (Ω†, τ †) defined on a probability space 

(Ω, F , P) is called a solution to the martingale problem for the initial distribution µ0 and 

operator L if the following hold: 

(i) The distribution of X0 is µ0. 
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(ii) For any F ∈ D(L), the process (3.2) is a Ft
X -martingale. 

The study of martingale problem was introduced by Stroock and Varadhan. More-

over, it is shown that the existence of such a measure is equivalent to the existence of a 

weak solution to a stochastic differential equation. 

Theorem 3.1.1. Assume that E|u(0)|3 < ∞ and f ∈ L3(0, T ; V 0). Then, under Hypotheses 

H, there exists a unique strong solution to (1.4). 

3.1.1. The proof of existence 

As mentioned in the beginning of Section 3.1, the existence of the solution is estab-

lished by studying its martingale problem. There are several equivalent formulations of 

a solution to a martingale problem (see, e.g., [55]), and we introduce one of them in the 

following lemma. The interested reader is referred to [31, Prop. 7.1.2] for more details. 

Lemma 3.1.2. The following statements are equivalent: 

(i) X is a solution to the martingale problem for the operator L. 

(ii) For all f ∈ D(L), 0 ≤ t1 < t2 < · · · < tn+1, h1, h2, · · · hn ∈ Cb, and n ≥ 1, we have Zn� tn+1 � n oY 
E f(Xtn+1 ) − f(Xtn ) − Lf(Xs)ds hj (Xtj ) = 0 

tn j=1 

Let φ(t, i) be a real-valued bounded smooth function with compact support (in 

each variables). For ρ ∈ D(A) ⊆ V , 0 ≤ s ≤ t, and each generic element ω = (u, i) ∈ Ω† , 

define 
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Mφ(t) − Mφ(s) Z mt X 
:= φ(hu(t), ρiV , i(t)) − φ(hu(s), ρiV , i(s)) − γi(r−)j φ(hu(r), ρiV , j)dr 

s j=1 Z t � � 
− φ 

0 
(hu(r), ρiV , i(r)) · h−νAu(r) − Bk(u(r)) + f(r), ρiV dr 

sZ t 
(3.3)� � 

− 
1 

φ 
00 
(hu(r), ρiV , i(r)) · ρ, σ(r, u(r), i(r))Qσ ∗ (r, u(r), i(r))ρ 

H 
dr 

2 Z t
sZ � 

− φ(hu(r) + G(r, u(r), i(r), z), ρiV , i(r)) − φ(hu(r), ρiV , i(r)) 
s Z � 

− φ 
0 
(hu(r), ρiV , i(r)) · hG(r, u(r), i(r), z), ρiV ν(dz)dr, 

According to Lemma 3.1.2, to show Mφ(t) is a solution to the martingale problem, 

it suffices to find a Radon measure µ such that 

m�Y � 
Eµ ψj (sj )(M

φ(t) − Mφ(s)) = 0, ∀s < s1 < · · · < sm < t, 
j=1 

where ψj ∈ Cb(Ω) and Fs-measurable. 

Define the truncation of Mφ(t) as follows: 

Mn
φ(t) − Mn

φ(s) Z t mX 
:= φ(hu(t), ρiV , i(t)) − φ(hu(s), ρiV , i(s)) − γi(r−)j φ(hu(r), ρiV , j)dr 

s j=1 Z t � � 
− φ 

0 
(hu(r), ρiV , i(r)) · h−νAnu(r) − Bn

k (u(r)) + f(r), ρiV dr 
sZ t 

(3.4) 
1 � � 

− φ 
00 
(hu(r), ρiV , i(r)) · ρ, σn(r, u(r), i(r))Qσn 

∗ (r, u(r), i(r))ρ 
H 
dr 

2 Z 
sZt � 

− φ(hu(r) + Gn(r, u(r), i(r), z), ρiV , i(r)) − φ(hu(r), ρiV , i(r)) 
s Z � 

− φ 
0 
(hu(r), ρiV , i(r)) · hGn(r, u(r), i(r), z), ρiV ν(dz)dr, 
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where An = A, Bn = = = G, and ω = (u, i) ∈ Ω† is a genericΠn k ΠnBk, σn Πnσ, Gn Πn 

element. 

Let (un, r) be the solution to equation (2.1) and denote by µn the (joint) distribu-

tion of (un, r). Then it follows from the (finite dimensional) Itô formula that Mn
φ(t) is a 

µn-martingale, therefore, for all n, 

mY 
Eµn ψj (sj )Mn

φ(t) = 0, ∀s < s1 < · · · < sm < t, 
j=i 

for ψj ∈ Cb(Ω) and Fs-measurable. Hence, 

mY 
lim Eµn ψj (sj )Mn

φ(t) = 0, ∀s < s1 < · · · < sm < t, 
n→∞ 

j=i 

for ψj ∈ Cb(Ω) and Fs-measurable. 

If we can show that 

M1. there exists a probability measure µ such that µn “converges” to µ, 

M2. limn→∞ Mn
φ(t) = Mφ(t) µ-almost surely, and 

M3. limn→∞ Eµn Mφ(t) = EµMφ(t), 

then we conclude that Mφ(t) is a µ-martingale. 

Now we prove M1. Recall that un is the solution to (2.1) for each n. 

Lemma 3.1.3. The sequence {un} forms a relative compact set in D([0, T ]; V 0). 

Proof. It is clear that {un} is a subset of D([0, T ]; V 0). 

Let N > 0. By the Markov inequality, the property that k · kV 0 ≤ | · |, and (2.2), we 

have 

� � 1 1 C P kun(t)kV 0 > N ≤ Ekun(t)k2 
V 0 ≤ E|un(t)|2 ≤ . 

N2 N2 N2 
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Therefore, 

� � 
lim lim sup P kun(t)kV 0 > N = 0. 

N→∞ n 

Let (Tn, δn) be a sequence, where Tn is a stopping time with Tn + δn ≤ T and δn > 0 

with δn → 0. For each � > 0, the Chebyshev’s inequality implies 

P(kun(Tn + δn) − un(Tn)kV 0 > �) 

1 1 ≤ Ekun(Tn + δn) − un(Tn)kV 
2 
0 ≤ E|un(Tn + δn) − un(Tn)|2 . 

�2 �2 

It follows from the Itô formula and the Gronwall inequality that 

� 1 
Z δn � 

E|un(Tn + δn) − un(Tn)|2 ≤ E kf(s)kV 
2 
0 ds + 2Kδn e 

2Kδn → 0 
ν 0 

as n →∞. Therefore, kun(Tn + δn) − un(Tn)kV 0 → 0 in probability as n →∞. By Aldous’ 

criterion, we conclude that {un} is tight in D([0, T ]; V 0). 

Hence, {un} is relatively compact in D([0, T ]; V 0). 

We have a even stronger convergence which is proved in the following proposition. 

Proposition 3.1.4. The sequence {un} forms a relative compact set in L2(0, T ; H). 

Proof. It follows from (2.3) that {un} is bounded in L2(0, T ; V ); also, we have 

Z T Z T 

E |un(t)|2dt ≤ E kun(t)k2dt ≤ C, 
0 0 

which implies that {un} ⊂ L2(0, T ; H) ∩ D([0, T ]; V 0). 

In addition, by Lemma 3.1.3, {un} is relatively compact in D([0, T ]; V 0). 

Hence, the proposition follows from Lemma 1.2.19. 
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Recalling Definition 20 and un being the solution to (2.1), we deduce from a priori 

estimates and Banach-Alaoglu theorem that {un} is relatively compact in (Ω2, τ2) and 

(Ω3, τ3). In addition, Lammata 3.1.3 and 3.1.4 imply that {un} is compact in (Ω1, τ1) and 

(Ω4, τ4), respectively. Therefore, by Prohorov’s theorem, the induced distribution {µ ∗ }i isn 

tight on each space (Ωj , τj ) for j = 1, 2, 3, 4. Hence, by (ii) in Definition 20, {µ ∗ } is tight n 

on (Ω∗, τ). 

Let µn be the joint distribution of (un, r). Then {µn} is tight on the space (Ω†, τ †), 

hence, there exist a subsequence {µn` }` and a measure µ such that µn` ⇒ µ. 

Next, we consider M2. Recall from Section1.2.5 that Hn = span{ej }n and Πn is aj=1 

projection operator from H onto Hn. Denote by {n`}∞ the indices such that µn` ⇒ µ.`=1 

Lemma 3.1.5. For each ρ ∈ D(A), Πn` ρ → ρ in V , as ` →∞. 

kej k2 

Proof. Defining fj := √ej , one sees kfj k = = λj = 1. This implies that {fj } is aλj λjλj 

complete orthonormal basis in V . Thus, 

∞ n`X X 
ρ = (ρ, fj )V fj ; Πn` ρ := ρn` = (ρ, fj )V fj . 

j=1 j=1 P∞As a consequence, kρ − Πn` ρk = (ρ, fj )V fj → 0, as ` →∞.j=n`+1 

Lemma 3.1.6. For each ρ ∈ D(A), we have Z t Z t 
lim φ 

0 
(hu(r), ρiV , i(r))h−νAn` u(r), ρiV dr = φ 

0 
(hu(r), ρiV , i(r))h−νAu(r), ρiV dr, 

`→∞ s s 

Proof. A direct computation gives, for almost all r ∈ [t, s], 

h−νAn` u(r), ρiV = −νhAu(r), ρn` i → −νhAu(r), ρi 

i ∗ −1µ := P ◦ un n 
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as ` →∞, by Lemma 3.1.5. In addition, 

|h−νAn` u(r), ρiV | = | − νhAu(r), ρn` i| ≤ νkρkV 0 ku(r)k. 

Notice that u ∈ Ω∗ , therefore, u ∈ L2(0, T ; V ) ⊂ L(0, T ; V ). Hence, the lemma follows from 

the Lebesgue Dominated Convergence Theorem. 

Lemma 3.1.7. For each ρ ∈ D(A), we have 

Z t Z t 
lim φ 

0 
(hu(r), ρiV , i(r))hBn

k 
` (u(r)), ρiV dr = φ 

0 
(hu(r), ρiV , i(r))hBk(u(r)), ρiV dr 

`→∞ s s 

Proof. A similar argument as in Lemma 3.1.6 shows that 

hBn
k 
` (u(r)), ρiV → hBk(u(r)), ρiV 

as ` →∞ for almost all r ∈ [s, t]. In addition 

|hBn` (u(r)), ρiV | = |hBk(u(r)), ρn` iV | ≤ ku(r)k|u(r)|kρn` kk 

by (1.25). Since u ∈ Ω∗ , u ∈ L2(0, T ; V ). Thus, 

|φ 
0 
(hu(r), ρiV , i)hBk(u(r)), ρiV | ≤ kφ 

0 k∞kρkku(r)k2 , 

which is an L1-function. Therefore, the lemma follows from the Lebesgue Dominated Con-

vergence Theorem. 

Lemma 3.1.8. For each ρ ∈ D(A), we have 

Z t 
lim φ 

00 
(hu(r), ρiV , i(r)) 

� 
ρ, σn` (r, u(r), i(r))Qσn 

∗ 
` 
(r, u(r), i(r))ρ 

� 
H 
dr 

`→∞ Z t
s � � 

= φ 
00 
(hu(r), ρiV , i(r)) ρ, σ(r, u(r), i(r))Qσ ∗ (r, u(r), i(r))ρ 

H 
dr, 

s 
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Proof. For the notation simplicity, we write σ(r) = σ(r, u(r), i(r)) when there is no ambi-

guity. A direct computation shows that 

� � � � 
ρ, σn` (r)Qσn 

∗ 
` 
(r)ρ 

H 
= ρn` , σ(r)Qσn 

∗ 
` 
(r)ρ 

H � � � � 
= (r)Qσ ∗ (r)ρn` , ρ = σ(r)Qσ ∗ (r)ρn` , ρn` ,σn` H H 

therefore, 

� � � � � � � � 
ρ, σn` (r)Qσ ∗ (r)ρ − ρ, σ(r)Qσ ∗ (r)ρ = ρn` , σ(r)Qσ ∗ (r)ρn` − ρ, σ(r)Qσ ∗ (r)ρ ,n` H H H H 

which implies 

� � � � 
| ρ, σn` (r)Qσ ∗ (r)ρ − ρ, σ(r)Qσ ∗ (r)ρ |n` H H � � � � 
≤ | ρn` , σ(r)Qσ ∗ (r)ρn` − σ(r)Qσ ∗ (r)ρ | + | ρn` − ρ, σ(r)Qσ ∗ (r)ρ |

H H 

≤ |ρn` ||σ(r)Qσ ∗ (r)||ρn` − ρ| + |ρn` − ρ||σ(r)Qσ ∗ (r)||ρ| 

= 2|ρ||ρn` − ρ|kσ(r)kLQ ≤ 2kρk · kρn` − ρk · kσ(r)kLQ 

Thus, by Lemma 3.1.5, 

� � � � 
ρ, σn` (r)Qσn 

∗ 
` 
(r)ρ 

H 
→ ρ, σ(r)Qσ ∗ (r)ρ 

H 

as ` →∞ for all r ∈ [s, t]. In addition, 

� � 
|φ 
00 
(hu(r), ρiV , i(r)) ρ, σn` (r, u(r), i(r))Qσ ∗ (r, u(r), i(r))ρ |n` H 

00 00 ≤ kφ k∞|ρn` |kσ(r)kLQ ≤ kφ k∞ · kρk · kσ(r, u(r), i(r))kLQ . 

Consider Z T √ �Z T � 1 

kσ(r, u(r), i(r))kLQ dr ≤ T kσ(r, u(r), i(r))k2 
LQ 
dr 

2 
. 

0 0 
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Recall that u ∈ Ω∗ , therefore, u ∈ L2(0, T ; H); Hypothesis H1 implies Z T Z T 

kσ(r, u(r), i(r))k2 dr ≤ K(1 + |u(r)|2 + i2)dr < CLQ 
0 0 

for a constant C. Therefore, we conclude that the function 

� � 
|φ 
00 
(hu(r), ρiV , i(r)) ρ, σn` (r, u(r), i(r))Qσ ∗ (r, u(r), i(r))ρ |n` H 

is bounded by an L1-function, hence, the lemma follows from the Lebesgue Dominated 

Convergence Theorem. 

Lemma 3.1.9. For each ρ ∈ D(A), we have Z t Z � 
lim φ(hu(r) + Gn` (r, u(r), i(r), z), ρiV , i(r)) − φ(hu(r), ρiV , i(r)) 
`→∞ s Z � 

− φ 
0 
(hu(r), ρiV , i(r)) · hGn` (r, u(r), i(r), z), ρiV ν(dz)dr Z Zt � 

= φ(hu(r) + G(r, u(r), i(r), z), ρiV , i) − φ(hu(r), ρiV , i(r)) 
s Z � 

− φ 
0 
(hu(r), ρiV , i(r)) · hG(r, u(r), i(r), z), ρiV ν(dz)dr, 

Proof. It follows from Lemma 3.1.5 that 

hGn` (r, u(r), i(r), z), ρiV = hG(r, u(r), i(r), z), ρn` iV → hG(r, u(r), i(r), z), ρiV 

as ` →∞ for all r ∈ [s, t]. Therefore, the convergence of the integrand is shown. 

For a fixed `, writing a = hu(r), ρiV and b = hu(r) + Gn` (r, u(r), i(r), z), ρiV , we 

deduce from the Mean Value Theorem that 

φ(hu(r) + Gn` (r, u(r), i(r), z), ρiV , i) − φ(hu(r), ρiV , i(r)) 

= φ0(c, i(r))hGn` (r, u(r), i(r), z), ρiV , 
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where c ∈ (a, b). Therefore, 

|φ(hu(r) + Gn` (r, u(r), i(r), z), ρiV , i(r)) − φ(hu(r), ρiV , i(r))| 

≤ kφ 
0 k∞|ρn` ||G(r, u(r), i(r), z)|, 

which implies 

� 
φ(hu(r) + Gn` (r, u(r), i(r), z), ρiV , i(r)) − φ(hu(r), ρiV , i(r)) � 

− φ 
0 
(hu(r), ρiV , i(r)) · hGn` (r, u(r), i(r), z), ρiV 

≤ |φ(hu(r) + Gn` (r, u(r), i(r), z), ρiV , i(r)) − φ(hu(r), ρiV , i(r))| 

+ |φ 
0 
(hu(r), ρiV , i(r)) · hGn` (r, u(r), i(r), z), ρiV | 

≤ 2kφ 
0 k∞kρk|G(r, u(r), i(r), z)|. 

R 
By Hypothesis H3, |G(r, u(r), i(r), z)|ν(dz) is an L1-function. Thus, this lemma follows 

Z 

from the Lebesgue Dominated Convergence Theorem. 

In light of Lemmata 3.1.5 to 3.1.9, M2 has been proved. Moreover, as shown in the 

proofs of Lemmata 3.1.5 to 3.1.9, the expectation and limit is exchangeable, i.e., 

lim EMn
φ(t) = E lim Mn

φ(t). 
n→∞ n→∞ 

Lastly, we consider M3. Clearly, if the assumption of Lemma 1.2.2 is fulfilled, then 

M3 is obtained. So far, we have a sequence of measures {µn}, and there exists a measure 

µ such that µn` ⇒ µ as ` →∞. Therefore, it remains to prove that 

(i) Mφ(t) is continuous on (Ω†, τ †), and � � 
Eµn |Mφ(t)|1+δ(ii) for some δ > 0, supn < C, where C is a constant. 
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We begin the proof of continuity of Mφ(t) with the following auxiliary lemma. 

Lemma 3.1.10. Let {un} and u be members of (Ω∗, τ ) with un → u as n → ∞ in τ -

topology. For almost all t ∈ [0, T ], k = 0, 1, 2, and each i ∈ S, we have 

dk dk 

φ(hun(t), ρiV , i) → 
dxk 

φ(hu(t), ρiV , i),
dxk 

as n → ∞. 

� � 
Proof. Define C(u) := {t ∈ [0, T ]; P u(t) = u(t−) = 1}. Then it follows from Lemma 

1.2.21 that the complement of C(u) is at most countable (see, e.g., [9, Lem. 1]). Therefore, 

for almost all t ∈ [0, T ], one has un(t) → u(t), as n → ∞. This further implies that 

hun(t), ρiV → hu(t), ρiV , as n →∞ for any ρ ∈ D(A). Therefore, the lemma follows from 

the smoothness of φ. 

Lemma 3.1.11. Mφ(t) is continuous in the (τ †)-topology. 

Proof. It suffices to prove that Mφ(t) is continuous in the τ -topology since there is no 

convergence issue in r. 

Let {un} and u be members of (Ω∗, τ) with un → u as n → ∞ in τ -topology. Let 

Mφ(un(t)) be the function where un is in place of u in (3.3). Given un → u. We need to 

show that limn→∞ M
φ(un(t)) = Mφ(u(t)), and we prove it by taking the term-by-term 

limit. 

The first three terms follows from Lemma 3.1.10 and the Bounded Convergence 

Theorem. 
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For the A term, it is not hard to see that 

hAun(r), ρiV = hun(r), AρiV → hu(r), AρiV 

as n →∞ for almost all r ∈ [s, t] by Lemma 3.1.10. Consider 

|hAun(r), ρiV |2 ≤ kun(r)k2kρk2 
V 0 , 

and 

Z T Z T √ �Z T � 
kun(r)kkρkV 0 dr = kρkV 0 kun(r)kdr ≤ kρkV 0 T kun(r)k2dr 

1 
2 
< C 

0 0 0 

for all n and a constant C since un → u in τ -topology and thus in τ2. This implies that Z T 

sup |hAun(r), ρiV |2dr < ∞. 
n 0 

Thus, by Lemma 1.2.1, {hAun(r), ρiV } is uniformly integrable, and thus by Theorem 1.2.3, 

we have 

Z t Z t 
lim h−νAun(r), ρiV = h−νAu(r), ρiV . 
n→∞ s s 

For the B term, using the definition of B, we have 

|hBk(un(r)), ρiV − hBk(u(r)), ρiV | 

≤ |b(k ∗ un(r), un(r) − u(r), ρ)| + |b(k ∗ (un(r) − u(r)), u(r), ρ)|, 

which together with (1.24) further imply 

|hBk(un(r)), ρiV − hBk(u(r)), ρiV | 

11 
≤ 2kρkkun(r)kkun(r) − u(r)k 2 |un(r) − u(r)| 2 . 
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0 

Therefore, the Schwarz inequality implies 

Z T 

|hBk(un(r)), ρiV − hBk(u(r)), ρiV |dr �Z T �Z T� � 11 
22 ≤ 2kρk kun(r)k2dr kun(r) − u(r)k|un(r) − u(r)|dr Z T 

0 �Z0 
T�Z T � � 11 

22 ≤ 2kρk kun(r)k2dr kun(r)k|un(r) − u(r)|dr + ku(r)k|un(r) − u(r)|dr 
00 0 �Z T � 

≤ 2kρk kun(r)k2dr 
0 

1 
2 

n� Z T �Z T� �1 1 
2 2 kun(r)k2dr |un(r) − u(r)|2dr· 

0 �Z0 �Z T � � o1
2 

1 
2 

T1 
2 ku(r)k2dr |un(r) − u(r)|2dr+ . 

0 0 

Since un and u are members of Ω∗ , the L2(0, T ; V )-norms are finite. In addition, un → u 

in τ -topology implies that un → u in τ4 (the strong topology in L2(0, T ; H)). Hence, we 

conclude that 

Z T 

lim 
n→∞ 0 

|hBk(un(r)), ρiV − hBk(u(r)), ρiV |dr = 0, 

which implies 

Z t Z t 
lim 
n→∞ 

hBk(un(r)), ρiV dr = hBk(u(r)), ρiV dr. 
s s 

For the term represents the continuous noise, consider 

� � � � 
ρ, σ(r, un(r), i(r))Qσ ∗ (r, un(r), i(r))ρ 

H 
− ρ, σ(r, u(r), i(r))Qσ ∗ (r, u(r), i(r))ρ 

H 

≤ ρ · σ(r, un(r), i(r))Qσ ∗ (r, un(r), i(r))ρ − σ(r, u(r), i(r))Qσ ∗ (r, u(r), i(r))ρ 

≤ |ρ|2 σ(r, un(r), i(r))Qσ ∗ (r, un(r), i(r)) − σ(r, u(r), i)Qσ ∗ (r, u(r), i(r)) . 
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Recalling the definition of LQ-norm, we see that 

σ(r, un(r), i(r))Qσ ∗ (r, un(r), i(r)) − σ(r, u(r), i(r))Qσ ∗ (r, u(r), i(r)) 

= kσ(r, un(r), i(r)) − σ(r, u(r), i(r))kLQ . 

Therefore, by Hypothesis H2, we have Z T � � � � 2 
ρ, σ(r, un(r), i(r))Qσ ∗ (r, un(r), i(r))ρ 

H 
− ρ, σ(r, u(r), i)Qσ ∗ (r, u(r), i(r))ρ 

H 
dr 

0 Z T Z T 

≤ kρk4 kσ(r, un(r), i(r)) − σ(r, u(r), i(r))k2 dr ≤ Lkρk4 |un(r) − u(r)|2dr, LQ 
0 0 

which approaches to 0 as n → ∞ since un → u in τ means that un → u in τ4 (the strong 

topology in L2(0, T ; H)). Thus, we have Z t � � 
lim ρ, σ(r, un(r), i(r))Qσ ∗ (r, un(r), i(r))ρ 

H 
dr 

n→∞ Z 
s 

t � � 
= ρ, σ(r, u(r), i(r))Qσ ∗ (r, u(r), i(r))ρ 

H 
dr. 

s 

For the jump noise term, notice that G is continuous in all of its components, there-

fore, by Lemma 3.1.10 

lim G(r, un(r), i(r), z) = G(r, u(r), i(r), z) 
n→∞ 

for almost all r ∈ [s, t] and all fixed z. This implies that 

φ(hun(r) + G(r, un(r), i(r), z), ρiV , i) − φ(hun(r), ρiV , i(r)) 

− φ 
0 
(hun(r), ρiV , i(r)) · hG(r, un(r), i(r), z), ρiV 

converges to 

φ(hu(r) + G(r, u(r), i(r), z), ρiV , i(r)) − φ(hu(r), ρiV , i(r)) 

− φ 
0 
(hu(r), ρiV , i(r)) · hG(r, u(r), i(r), z), ρiV 
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almost surely in [s, t] × Z. Writing an = hun(r), ρiV and bn = hun(r) + G(r, un(r), i(r), z)iV , 

one infers from the Mean Value Theorem that 

φ(hun(r) + G(r, un(r), i(r), z), ρiV , i(r)) − φ(hun(r), ρiV , i(r)) 

= φ 
0 
(cn, i(r))hG(r, un(r), i(r), z), ρiV , 

where cn ∈ (an, bn). Therefore, 

φ(hun(r) + G(r, un(r), i(r), z), ρiV , i) − φ(hun(r), ρiV , i(r)) 

− φ 
0 
(hun(r), ρiV , i(r)) · hG(r, un(r), i(r), z), ρiV 

≤ φ(hun(r) + G(r, un(r), i(r), z), ρiV , i(r)) − φ(hun(r), ρiV , i(r)) 

+ φ 
0 
(hun(r), ρiV , i(r)) · hG(r, un(r), i(r), z), ρiV 

= φ 
0 
(cn)hG(r, un(r), i(r), z), ρiV 

+ φ 
0 
(hun(r), ρiV , i(r)) · hG(r, un(r), i(r), z), ρiV 

≤ 2kφ 
0 k∞|ρ||G(r, un(r), i(r), z)|, 

which implies Z T Z 
φ(hun(r) + G(r, un(r), i(r), z), ρiV , i(r)) − φ(hun(r), ρiV , i(r)) 

0 Z 

2 
− φ 

0 
(hun(r), ρiV , i(r)) · hG(r, un(r), i(r), z), ρiV dr Z T Z Z T 

≤ 4kρk2 |G(r, un(r), i(r), z)|2dr ≤ 4Kkρk2 (1 + |un(r)|2)dr, 
0 Z 0 

where the last inequality follows from Hypothesis H3. Since un → u in τ -topology, un → u 

in τ4, which implies that Z T 

sup |un(r)|2dr < C 
n 0 
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for a constant C. Therefore, we have 

Z T Z 
sup φ(hun(r) + G(r, un(r), i(r), z), ρiV , i(r)) − φ(hun(r), ρiV , i(r)) 
n 0 Z 

0 2 
− φ (hun(r), ρiV , i(r)) · hG(r, un(r), i(r), z), ρiV dr < C, 

which shows the validity of Lemma 1.2.1. Hence, we conclude 

Z Zt � 
lim φ(hun(r) + G(r, un(r), i(r), z), ρiV , i(r)) − φ(hun(r), ρiV , i(r)) 
n→∞ s Z � 

− φ 
0 
(hun(r), ρiV , i(r)) · hG(r, un(r), i(r), z), ρiV ν(dz)dr Z Zt � 

= φ(hu(r) + G(r, u(r), i(r), z), ρiV , i(r)) − φ(hu(r), ρiV , i(r)) 
s Z � 

− φ 
0 
(hu(r), ρiV , i(r)) · hG(r, u(r), i(r), z), ρiV ν(dz)dr, 

which completes the proof. 

The following lemma is the final piece of the required argument. It is the only place 

where we require E|u(0)|3 < 0 and f ∈ L3(0, T ; V 0). 

Lemma 3.1.12. Suppose that Hypotheses H is fulfilled, E|u(0)|3 < ∞, and f ∈ L3(0, T ; V 0). 

There exist some δ > 0 such that 

� � 
Eµn` |Mφ|1+δ sup ≤ C, 

` 

where C is an appropriate constant. 

Proof. Recalling from (3.3) the definition of Mφ , we employ inequality (1.6) and the Mean 
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Value Theorem (on G) to deduce 

|Mφ(t)|1+δ ≤ 5δ|φ(hu(t), ρiV , i(r))|1+δ + 5δ|φ(hu(s)iV , i(r))|1+δ Z t 
+ 5δkφ0k∞ |hνAu(r) + Bk(u(r)) + f(s), ρiV |1+δdr Zs t 

+ 5δkφ00k∞ |(ρ, σ(r, u(r), i(r))Qσ ∗ (r, u(r), i(r)))H |1+δdr Z t
s Z 

1+δ 
+ 5δ kφ0k∞ hG(r, u(r), i(r), z), ρiV ν(dz) dr 

s Z 

since φ is bounded smooth function. 

For the A term, 

Z Z Zt t t� �1+δ ku(r)k1+δ|νhAu(r), ρiV |1+δdr ≤ ν1+δ ku(r)kV kAρkV 0 dr ≤ C1 dr, V 
s s s 

= ν1+δkAρkV 0 .where C1 This implies that 

Z Z Zt t t 

Eµn` |νhAu(r), ρiV |1+δdr ≤ C1Eµn` ku(r)k1+ 
V

δdr = E kun` (r)k1+ 
V

δdr, 
s s s 

hence, 

Z t 
sup En` hνAu(r), ρiV 

1+δ 
dr ≤ CA 

` s 

if δ < 1. 

For the nonlinear term, (1.24) and Hölder inequality imply 

n Z t o n�Z t o 
1+δ �1+δEµn` Eµn`hBk(u(r)), ρiV dr ≤ kρk1+δ ku(r)kV |u(r)|H drV 

s n o 1 n � Z t
s o 1� �p p �q q≤ kρk1+δ Eµn` sup |u(t)|1+δ Eµn` ku(r)k1+δdr ,V H V 

0≤t≤T s 
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where 1 
p + 1 

q = 1. Choosing q such that (1 + δ)q = 2, we have n Z t o 
Eµn` 

1+δhBk(u(r)), ρiV (3.5) 
s n o 1−δ n Z t o 1+δ 

2( 1+δ 
1−δ ) 2 ≤ kρk1+δ Eµn` sup |u(t)| 2 Eµn` ku(r)k2 dr .V H V 

0≤t≤T s o 1+δn o 1−δ n Z t 
2( 1+δ 

2 
= kρk1+ 

V
δ E sup |un` (t)|H 

1−δ ) 2 E kun` (r)k2 
V dr 

0≤t≤T s 

Taking δ = 1 , we have 2(1+δ ) = 3. The first expectation on the right of (3.5) will have 
5 1−δ 

a uniform bound by (2.4) if we further assume that E|u(0)|3 < ∞. The boundedness of R tE 
s kun` (r)k2 

V dr is followed from (2.2). Therefore, (3.5) implies that n Z t o 
sup Eµn` hBk(u(r)), ρiV 

1+δ 
dr ≤ CB 

` s 

if δ ≤ 1
5 . 

For martingale terms, we have Z t � � 1+δ 
ρ, σ(r, u(r), i(r))Qσ ∗ (r, u(r), i(r))ρ 

H 
dr 

s Z t 
2(1+δ)≤ |ρ|H kσ(r, u(r), i(r))k1+δdrLQ 

s Z t 
1+δ 1+δ2(1+δ) 2
2≤ |ρ| K (1 + m + |u(r)|2 ) 2 drH H 

s Z� t � 1+δ 
2(1+δ) 1+δ 2 

2 2≤ |ρ|H K T 
1+δ 

(1 + m 2)T + |u(r)|2 
H dr , 

s 

where the second inequality follows from Hypothesis H1 with p = 2, and the last inequal-

ity follows from the concavity of the power 1+
2 
δ . Using Hypothesis H3 and inequality (1.6), 

we have Z t Z 
1+δ 

hG(r, u(r), i(r), z), ρiV ν(dz) dr 
s Z � Z t � 
≤ 2δ|ρ|1+δK1+δ (1 + m)1+δT + |u(r)|1+δdr .H H 

s 
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Therefore, taking expectation and then supremum over ` on martingale terms, the above 

estimates imply 

En` sup 
Z t � � 

ρ, σ(r, u(r), i(r))Qσ ∗ (r, u(r), i(r))ρ 
H 

1+δ 
dr ≤ CQ(T ) 

` s 

and Z Zt 

En` sup hG(r, u(r), i(r), z), ρiV ν(dz) dr ≤ CG(T ) 
` s Z 

since, by (2.2), Z t Z t 
Eµn` ku(r)k1+δ (r)k1+δdrV dr = E kun` Zs t 

s Z t 
≤ E kun` (r)k2dr = Eµn` ku(r)k2 

V dr ≤ C, 
s s 

if δ < 1. 

In conclusion, the argument above shows that for 0 < δ ≤ 1
5 , there is a constant C 

such that sup` En` [|Mφ|1+δ] ≤ C provided that E|u(0)|3 is finite. Hence, we complete the 

proof. 

As M1, M2, and M3 are shown, the existence theorem follows: 

Theorem 3.1.13. Suppose that E|u(0)|3 < ∞ and f ∈ L3(0, T ; V 0). Then, under Hypotheses 

H, Mφ(t) is a µ-martingale, i.e., µ is a solution to the martingale problem posed by (1.4). 

3.1.2. The proof of uniqueness 

In this subsection, we prove that the (weak) solution obtained in Theorem 3.1.13 is 

pathwise unique. 

Theorem 3.1.14. Let E|u(0)|3 < ∞ and f ∈ L3(0, T ; V 0). Then, under Hypotheses H, the 

solution obtained in Theorem 3.1.13 is pathwise unique. 
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Proof. Let w = u − v, where u, v are solutions with same initial data. Let F (t, x, i) := 

−ρ(t)e x, where ρ(t) is a function that will be determined later. Then the Itô formula im-

plies Z t 
e −ρ(t)|w(t)|2 + 2ν e −ρ(s)kw(s)k2ds 

s ZZ t t 

= −ρ 
0 
(s)e −ρ(s)|w(s)|2ds − e −ρ(s)hBk(u(s)) − Bk(v(s)), u(s) − v(s)iV ds 

0Z t 
0 

+ e −ρ(s)kσ(s, u(s), i(s)) − σ(s, v(s), j(s))k2 
LQ 
ds 

0Z t 
+ 2 e −ρ(s)hu(s) − v(s), [σ(s, u(s), i(s)) − σ(s, v(s), j(s))]dW (s)i Z0 

t Z 
−ρ(s−)+ 2 e 

0 Z � � 
˜· u(s−) − v(s−), G(s−, u(s−), i(s−), z) − G(s−, v(s−), j(s−), z) 

H 
N1(dz, ds) Z t Z 

+ e −ρ(s−)|G(s−, u(s−), i(s−), z) − G(s−, v(s−), j(s−), z)|2N1(dz, ds). 
0 Z 

(3.6) 

Applying the basic Young inequality to the nonlinear term, we see that 

Z t Z 
e −ρ(s)hBk(u(s)) − Bk(v(s)), u(s) − v(s)iV ds 

0Z 
Z 
t 

≤ e −ρ(s)(kw(s)k · |w(s)| · ku(s)k)ds 
0Z t Z t1 ≤ ν e −ρ(s)kw(s)k2ds + e −ρ(s)|w(s)|2ku(s)k2ds. 

4ν0 0 

77 



R 
Therefore, choosing ρ(t) := 

4
1 
ν 0 

t ku(s)k2ds, we deduce form (3.6) that 

Z t 
e −ρ(t)|w(t)|2 + ν e −ρ(s)kw(s)k2ds (3.7) Z t 

0 

≤ e −ρ(s)kσ(s, u(s), i(s)) − σ(s, v(s), j(s))k2 
LQ 
ds 

0 Z t 
+ 2 e −ρ(s)hu(s) − v(s), [σ(s, u(s), i(s)) − σ(s, v(s), j(s))]dW (s)i Z0 

t Z 
−ρ(s−)+ 2 e 

0 Z � � 
· u(s−) − v(s−), G(s−, u(s−), i(s−), z) − G(s−, v(s−), j(s−), z) 

H 
Ñ 
1(dz, ds) Z t Z 

+ e −ρ(s−)|G(s−, u(s−), i(s−), z) − G(s−, v(s−), j(s−), z)|2N1(dz, ds). 
0 Z 

Moreover, by the Davis and the basic Young inequalities and Hypotheses H2 and H4, the 

martingale terms in (3.7) have the following estimates. 

Z t 
E sup 2e −ρ(s)hu(s) − v(s), [σ(s, u(s), i(s)) − σ(s, v(s), j(s))]dW (s)i 
0≤t≤T 0 n o√ Z T 

≤ 2 LC 1 
2 
� sup 
0≤t≤T 

e −ρ(t)|w(t)|2 + C� e −ρ(s)|w(s)|2ds 
0 

and 

Z t Z 
−ρ(s−)E sup 2e 

0≤t≤T 0 Z � � 
˜· u(s−) − v(s−), G(s−, u(s−), i(s−), z) − G(s−, v(s−), j(s−), z) 

H 
N1(dz, ds) Zn T o√ 

≤ 2 LC 1 
2 
E � sup e −ρ(t)|w(t)|2 + C� e −ρ(s)|w(s)|2ds 

0≤t≤T 0 
. 

As a consequence, taking supremum over [0, T ] and then expectation, one obtains from 
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(3.7) the following. Z T 

E sup e −ρ(t)|w(t)|2 + νE kw(s)k2ds 
0≤t≤T 0 Z T Z T 

≤ 2LE e ρ(s)|w(s)|2ds + C�E sup e −ρ(t)|w(t)|2 + CC�E e −ρ(s)|w(s)|2ds, 
0 0≤t≤T 0 

√ 
where C = 4 LC 1 . Choosing � small enough so that C� < 1

2 , one obtains from above that 
2 Z T Z T 

E sup e −ρ(t)|w(t)|2 ≤ CE e −ρ(s)|w(s)|2ds ≤ CE sup e −ρ(r)|w(r)|2ds, 
0≤t≤T 0 0 0≤r≤s 

where C stands for a generic constant. Furthermore, we employ the Gronwall inequality 

to obtain E sup0≤t≤T e
−ρ(t)|w(t)|2 ≤ 0, which implies the pathwise uniqueness. Hence, we 

complete the proof. 

3.1.3. Martingale problem for non-switching case 

It is not hard to see that (1.5) is a special case of (1.4), and thus the solution is 

guaranteed by Theorem 3.1.1. More precisely, suppose now that the noise coefficients 

σ : [0, T ] × H → L2(H0, H) and G : [0, T ] × H × Z → H are continuous and satisfy the 

following Hypotheses H0: 

H1’. For all t ∈ (0, T ), there exists a constant K > 0 such that 

kσ(t, u)kp ≤ K(1 + |u|p)LQ 

for p = 2, 3 (growth condition on σ). 

H2’. For all t ∈ (0, T ), there exists a constant L > 0 such that for all u, v ∈ H, 

kσ(t, u) − σ(t, v)k2 
LQ 
≤ L(|u − v|2) 

(Lipschitz condition on σ). 

H3’. For all t ∈ (0, T ), there is a constant K > 0 such that Z 
|G(t, u, z)|pν(dz) ≤ K(1 + |u|p) 

Z 

for p = 1, 2, and 3 (growth condition on G). 
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H4’. For all t ∈ (0, T ), there exists a constant L > 0 such that for all u, v ∈ H,Z 
|G(t, u, z) − G(t, v, z)|2ν(dz) ≤ L(|u − v|2) 

Z 

(Lipschitz condition on G). 

It is clear that the Hypotheses H0 is a subclass of the Hypotheses H, therefore, the exis-

tence and uniqueness of the solution to equation (1.5) is guaranteed by Theorem 3.1.1. 

Corollary 3.1.15. Assume that E|u(0)|3 < ∞, and f ∈ L3(0, T ; V 0). Then, under Hypothe-

ses H0 , there exists a unique strong solution to (1.5). 

3.2. Stationary Measures 

In this section, we study the stationary measures of the system (1.4). The study of 

the invariant measures of the two-dimensional Navier-Stokes equations has been addressed 

by several authors (see, e.g., [22, 23, 39, 56]) under a variety of conditions. Here, the noise 

coefficients σ and G are assumed to be additive and autonomous, i.e., the equation under 

study is Z 
du(t) + [νAu(t) + Bk(u(t))]dt = f(t)dt + σ(r(t))dW (t) + G(r(t−), z)Ñ 

1(dz, dt), (3.9) 
Z 

where u(0) = u0 ∈ H. 

Instead of Hypotheses H, we assume that the noise coefficients σ and G satisfy 

Hypotheses A (throughout this section). Though these hypotheses can be written more 

simply, we state it as below since it would be more useful for our future work when the 

Markov chain has more general state space. Suppose that the functions σ : S → L2(H0, H) 

and G : S × Z → H are continuous functions and satisfy 

A1. For any i ∈ S, there exist a constant K > 0 such that 

kσ(i)k2 ≤ K(1 + |i|2),LQ 
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(growth condition on σ). 

A2. For any i, j ∈ S, there exist a constant L > 0 such that 

kσ(i) − σ(j)k2 ≤ L(|i − j|2),LQ 

(Lipschitz condition on σ). 

A3. For any i ∈ S, there exists a constant K > 0 such that Z 
|G(i, z)|pν(dz) ≤ K(1 + |i|p), 

Z 

for p = 1, 2, and 4 (growth condition on G). 

A4. For any i, j ∈ S, there exist a constant L > 0 such that Z 
|G(i, z) − G(j, z)|pν(dz) ≤ L(|i − j|p), 

Z 

p = 1, 2, and 4 (Lipschitz condition on G). 

It is clear that Hypotheses A is a subclass of the Hypotheses H, therefore, the 

existence and uniqueness of equation (3.9) follows from Theorem 3.1.1. In addition, under 

a new hypothesis, the solution u of equation (3.9) satisfy the following modified estimates. 

Proposition 3.2.1. Let T > 0 be fixed. Assume that E|u(0)|2 < ∞ and f ∈ L2(0, T ; V 0). 

Then, under Hypotheses A, the solution u of equation (3.9) satisfies the following esti-

mates. 

Z t 
E|u(t)|2 + νE ku(s)k2ds (3.10) 

0 Z 
1 t 

≤ E|u(0)|2 + E kf(s)kV 
2 
0 ds + 2(1 + m 2)Kt 

ν Z 
0 
t 

= C(E|u(0)|2 , E kf(s)kV 
2 
0 ds, ν, m, K, t) 

0 
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for each t ∈ (0, T ], and Z T 

E sup |u(t)|2 + νE ku(s)k2ds (3.11) 
0≤t≤T 0 Z T4 kf(s)k2≤ 2E|u(0)|2 + E V 0 ds + 100(1 + m 2)KT 

3ν Z T 
0 

= C(E|u(0)|2 , E kf(s)kV 
2 
0 ds, ν, m, K, T ). 

0 

Proof. The proof is skipped since it follows a similar argument as the proof of Proposition 

2.0.1. 

The next step is to establish auxiliary results for proving exponential stability. Z t 
M1(t) = hu(s), σ(r(s))dW (s)i (3.12) Z0 

t Z � � 
˜M2(t) = |u(s) + G(r(s), z)|2 − |u(s)|2 N1(dz, ds). (3.13) 

0 Z 

Let us denote M∗(T ) := sup0≤t≤T |M(t)| for a martingale M(t). 

Lemma 3.2.2. Assume that E|u(0)|2 < ∞ and f ∈ L2(0, T ; V 0). In addition, if 

limT →∞ 
1 
R T kf(s)kV 

2 
0 ds = F > 0, then there exist a sequence {Tn} with Tn → ∞ as

T 0 

n →∞ such that limn→∞ Mi 
∗(Tn)/Tn = 0 almost surely for i = 1, 2. 

Proof. For M1(t), utilizing the Davis inequality, we have Z t 
EM1 

∗ (T ) = E sup hu(s), σ(r(s))dW (s)i 
t∈[0,T ] 0 n� Z T n� Z T� �o o√ √1 1 

2 
ds ≤ 

2 kσ ∗ (r(s))u(s)k2 
LQ 

kσ ∗ (r(t))k2 |u(s)|2dsLQ 
≤ 2E 2E ; 

0 0 

invoking Hypothesis A1, the property | · | ≤ k · k, the Schwarz inequality, and continuing 

n� Z T � Z T� �o √√ 1 1 
2 22)E ku(s)k2ds 2) E ku(s)k2ds≤ 2K(1 + m ≤ 2K(1 + m . 

0 0 
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1 
2 

In addition, it follows from (3.11) that 

� Z T � Z T ��1 2 42E ku(s)k2ds 
0 

≤ 
ν 
E|u(0)|2 + 

3ν2 
E 

0 
kf(s)k2 

V 0 ds + 
100(1 + m2)KT 

ν 
. 

Therefore, 

√ � Z T �EM1 
∗(T ) 2K(1 + m2) 2 4 100(1 + m2)KT ≤ E|u(0)|2 + E kf(s)k2 

V 0 ds + 
T T ν 3ν2 0 ν 

1 
2 

R T �E 
0 kf(s)kV 

2 
0 ds 100(1 + m2)K 

√ � 1 
2 

2) E|u(0)|2 

T 
+ 

2K(1 + m √ 
2 4 

+= . 
3ν2ν T νT 

Moreover, it follows from the assumption of f that EM1 
∗(T )/T → 0 as T → ∞. Thus, 

there exists a subsequence {T1,n} such that M1 
∗(T1,n)/T1,n → 0, as n →∞, almost surely. 

For M2(t), we have 

Z Zt � � 
˜M2(t) = |u(s) + G(r(s), z)|2 − |u(s)|2 N1(dz, ds) Z0 

t ZZ Z t Z� � 
˜= 2 u(s), G(r(s), z) N1(dz, ds) + |G(r(s), z)|2Ñ 

1(dz, ds), 
0 Z 0 Z 

therefore, the Davis inequality, Hypothesis A3, and the property | · | ≤ k · k, imply 

n� Z T Z �� � 2 1 
2 
o√ 

EM2 
∗ (T ) ≤ 10E u(s), G(r(s), z) ν(dz)ds 

0 ZZn� Z T � 1 
2 
o√ 

+ 10E |G(r(s), z)|4ν(dz)ds 

√ n� Z T 
0Z 

Z � o1 
2

p
10E |u(s)|2|G(r(s), z)|2ds 

0 Z 

4)≤ 10KT (1 + m+ 

p n�Z T � o1 
2

p
2)E ku(s)k2ds 10KT (1 + m4);≤ 10K(1 + m + 

0 
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invoking the Schwarz inequality and (3.11), continuing 

p � Z T � 1 
2

p
≤ 10K(1 + m2) E ku(s)k2ds + 10KT (1 + m4) � 

0 Z T �p 2 4 100(1 + m2)KT ≤ 10K(1 + m2) E|u(0)|2 + E kf(s)kV 
2 
0 ds + 

ν 3ν2 0 ν p 
+ 10KT (1 + m4). 

1 
2 

This implies that EM2 
∗(T )/T → 0 as T →∞. Therefore, by an analogous argument as for 

M1(t), there exist a sequence {T2,n} such that M2 
∗(T2,n)/T2,n → 0 almost surely as n →∞. 

Let {Tn} be a common subsequence of {T1,n} and {T2,n}. Then 

Mi 
∗(Tn)

lim = 0 
n→∞ Tn 

almost surely for i = 1, 2. 

Remark. The argument employed in Lemma 3.2.2 is in the context of stochastic Navier-

Stokes equations. One may employ other method to deduce the such a limit. For instance, 

one may utilize [57, Lem. 2.1] to obtain the almost surely limits of M1 and M2 of the origi-

nal sequence instead of a subsequence (cf. [56, Eq. (3.17)]). 

Recall that λ1 is the first eigenvalue of the Stokes operator A and K is the constant 

in Hypotheses A. 

Lemma 3.2.3. Assume that E|u(0)|2 < ∞ and f ∈ L2(0, T ; V 0). In addition, if 

1 
R T

limT →∞ T 0 kf(s)k
2 
V 0 ds = F > 0 and 

ν3λ1 − F/ν 
K < ,

2(1 + m2) 
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then Z� T � 
lim νλ1 − 

1 ku(s)k2ds > 0 
T →∞ νT 0 

almost surely. 

Proof. It follows from the Itô formula and the basic Young inequality that Z T 

sup |u(t)|2 + ν ku(s)k2ds 
0≤t≤T 0 Z T Z T1 ≤ |u(0)|2 + kf(s)kV 

2 
0 ds + kσ(r(s))k2 ds + 2M ∗ (T ) + M ∗ (T )LQ 1 2ν Z T Z 

0 0 

+ |G(r(s), z)|2ν(dz)ds, 
0 Z 

where M1(T ) and M2(T ) are defined as in (3.12) and (3.13), respectively, and Mi 
∗(T ), 

i = 1, 2, are introduced before Lemma 3.2.2. Using Hypotheses A1, A3, and dropping 

sup0≤t≤T |u(t)|2 , we have Z T1 ku(s)k2ds 
νT 

|u 
0 

(0)|2 1 
R T kf(s)k2 

V 0 ds 2(1 + m2)KT 2M1 
∗(T ) M2 

∗(T )≤ + 0 + + + ,
ν2T ν3 T ν2T ν2T ν2T 

which implies Z T 

νλ1 − 
1 ku(s)k2ds 
νT 0 R T �� |u(0)|2 1 kf(s)kV 

2 
0 ds 2(1 + m2)K 2M∗(T ) M∗(T )0 1 2≥ νλ1 − + + + + . 

ν2T ν3 T ν2 ν2T ν2T 

By Lemma 3.2.2, the assumption of f , and the requirement of K, we conclude 

� Z Tn �1 F 2(1 + m2)K 
lim νλ1 − ku(s)k2ds ≥ νλ1 − − > 0 
n→∞ νTn 0 ν3 ν2 

almost surely. 
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Let ui(t) be the solution of (3.9) with initial conditions ui(0) = ui and ri(0) = ri. 

Write w(t) = u1(t) − u2(t), σ12(t) = σ(r1(t)) − σ(r2(t)), and G12(t, z) = G(r1(t), z) − 

G(r2(t), z). Now we are in a position to introduce the exponential stability. 

Theorem 3.2.4 (Exponential stability). Assume that E|u(0)|2 < ∞ and f ∈ L2(0, T ; V 0). 

1 
R T ν3λ1−F/ν ν3λ1−F/ν Suppose that limT →∞ kf(s)k2 

V 0 ds = F > 0, K < , and L < . Then
T 0 2(1+m2) 2(1+m2) 

lim |w(t)|2 = 0 
t→∞ 

for almost all ω ∈ Ω. 

Proof. It follows from the Itô formula that Z t Z t 
|w(t)|2 + 2ν kw(s)k2ds + hBk(u1(s)) − Bk(u2(s)), u1(s) − u2(s)iV ds Z0 

t 
0 Z t 

= |w(0)|2 + kσ12(s)k2 ds + 2 hw(s), σ12(s)dW (s)iLQ Z Z 
0 0 (3.14)

t � � 
˜+ |w(s) + G12(s, z)|2 − |w(s)|2 N1(dz, ds) Z0 ZZ 

t � � 
+ |w(s) + G12(s, z)|2 − |w(s)|2 − 2(w(s), G12(s, z)) ν(dz)ds. 

0 Z 

For the non-linear term, we have 

|hBk(u1(s)) − Bk(u2(s)), u1(s) − u2(s)iV | ≤ kw(s)k|w(s)|ku1(s)k, 

therefore, one infers from the basic Young inequality that 

Z t 
2 |hBk(u1(s)) − Bk(u2(s)), u1(s) − u2(s)iV |ds 

0 Z Zt 1 t 

≤ ν kw(s)k2ds + |w(s)|2ku1(s)k2ds. 
ν0 0 
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Let Z t 
M̃1(t) = hw(s), σ12(s)dW (s)i Z0 Zt � � 
˜ ˜M2(t) = |w(s) + G12(s, z)|2 − |w(s)|2 N1(dz, ds). 

0 Z 

˜Using the notation Mi(t), i = 1, 2, the estimate for nonlinear term, and Hypotheses A2 

and A4 in (3.14), we obtain Z t 
|w(t)|2 + ν kw(s)k2ds 

0 Z t Z t1 
M ∗ M̃ ∗≤ |w(0)|2 + |w(s)|2ku1(s)k2ds + L|r1(s) − r2(s)|2ds + 2 ˜ 1 (T ) + (T )2ν Z t 

0 0 

+ L|r1(s) − r2(s)|2ds. 
0 

Using the Poincaré inequality (1.13) and the fact that |r1(s) − r2(s)| ≤ m, we have Z t 1 
M ∗ M̃ ∗|w(t)|2 + (νλ1 − ku1(s)k2)|w(s)|2ds ≤ |w(0)|2 + 2 ˜ (T ) + (T ) + 2m 2LT. 1 2ν0 

M∗ M̃ ∗Writing CT = |w(0)|2 + 2 ˜ 1 (T ) + 2 (T ) + 2m2LT , one infers from the Gronwall inequality 

that 

R T R T− 0 (νλ1− 1 ku1(s)k2)ds −(νλ1− 
νT 0 ku(s)k

2ds)T
ν|w(t)|2 ≤ CT e = CT e 

1 
. 

The theorem follows from Lemma 3.2.3 and the fact that CT is growing as a polynomial in 

T . 

Now we study the existence of the stationary measure induced by u(t), the solution 

to (3.9). Denote by Qt(x, i; B, j) the transition probability function of (u, r): 

Qt(x, i; B, j) = P((u(t), r(t)) ∈ (B, j)|(u(0), r(0)) = (x, i)), 
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where x ∈ H, B ∈ B(H), and i, j ∈ S. 

Let φ(x, i) : H × S → R be a bounded continuous function. Let u(t) be a solution to 

(3.9) with initial conditions u0 = x and r0 = i. Define 

m ZX 
(Qtφ)(x, i) : = φ(z, k)Qt(x, i; dz, k) = Ex,i(φ(u(t), r(t))). (3.15) 

Hk=1 

We say λ(y, j) is a stationary measure if 

m Z m ZX X 
(Qtφ)(y, j)λ(dy, j) = φ(y, j)λ(dy, j) 

H Hj=1 j=1 

for all t ≥ 0 and φ ∈ Cb(H × S). 

Theorem 3.2.5. Assume that E|u(0)|2 < ∞ and kf(x)k2 
V 0 = F > 0. If 

ν3λ1 − F/ν ν3λ1 − F/ν 
K < and L < ,

2(1 + m2) 2(1 + m2) 

then there exists a unique stationary measure, with support in V × S and a finite second 

moment, for the solution u of the equation (3.9). 

Proof. We begin the proof by showing the existence. It follows from (3.10) that 

Z tν 
E ku(s)k2ds ≤ C (3.16)
t 0 

for t > 1 and C is an appropriate constant independent of t. Hence by the Chebyshev 

inequality 

Z 
1 t 

lim sup P(ku(s)k > N)ds = 0 (3.17)
N→∞ tt>1 0 

follows. 
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Let {tn} be any increasing sequence of positive numbers with limn→∞ tn = ∞. 

Define probability measures λn as follows: Z tn1 
λn(B, j) = Qs(x, i; B, j)ds (3.18)

tn 0 

for all B ∈ B(H) and j ∈ S. 

Let N be an positive integer and A := {v ∈ V : kvk ≤ N}, which is a bounded 

set in V . Then by the compact embedding i : V ,→ H, A is a relative compact set in H. 

Consider 

Z tn1 
λn(A

c, j) = Qs(x, i; A
c, j)ds 

tn Z0 
tn1 

= P((u(t), r(t)) ∈ (Ac, j)|(u(0), r(0)) = (x, i))
tn Z0 

tn1 
= P(ku(t)k > N and r(t) = j|u(0) = x and r(0) = i), 
tn 0 

which together with (3.17) further imply 

Z tn1 
λn(A

c, j) = P(ku(t)k > N and r(t) = j|u(0) = x and r(0) = i) → 0 
tn 0 

as N →∞. Hence {λn} is tight in the space of probability measures on (H × S, B(H × S)) 

equipped with the weak topology. Therefore, the Prokhorov theorem implies that there 

exists a subsequence {λn` } such that λn` → λ. 

For φ ∈ Cb(H × S), we have 

m Z m ZX X 
(Qtφ)(y, j)λ(dy, j) = lim (Qtφ)(y, j)λn` (dy, j) 

`→∞H Hj=1 j=1 

m Z ZX tn`1 
= lim (Qtφ)(y, j) Qs(x, i; dy, j)ds. 

`→∞ tn` 0Hj=1 
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Using (3.15) in above, we further have 

m ZX 
(Qtφ)(y, j)λ(dy, j) (3.19) 

Hj=1 

m m Z Z ZXX tn`1 
= lim φ(z, k)Qt(y, j; dz, k) Qs(x, i; dy, j)ds. 

`→∞ H H tn` 0j=1 k=1 

The Chapman-Kolmogorov equation gives 

m ZX 
Qs+t(x, i; dz, k) = Qs(x, i; dy, j)Qt(y, j; dz, k). 

Hj=1 

Plugging the above formula into (3.19), we have 

m Z m Z ZX X tn`1 
(Qtφ)(y, j)λ(dy, j) = lim φ(z, k) Qs+t(x, i; dz, k)ds. 

`→∞ tn`H H 0j=1 k=1 

Note that Z Z +ttn` tn`1 1 
lim Qs+t(x, i; dz, k)ds = lim Qu(x, i; dz, k)du 
`→∞ `→∞tn` 0 tn` t �Z Z +t Z t �tn` tn`1 
= lim Qu(x, i; dz, k)du + Qu(x, i; dz, k)du − Qu(x, i; dz, k)du 

`→∞ tn` 00 tn` Z tn`1 
= lim Qu(x, i; dz, k)du 

`→∞ tn` 0 

Thus, we have 

m Z m Z ZX X tn`1 
(Qtφ)(y, j)λ(dy, j) = lim φ(z, k) Qs+t(x, i; dz, k)ds 

`→∞ tn`H H 0j=1 k=1 Z Z m ZXm tn` X1 
= lim φ(z, k) Qu(x, i; dz, k)du = φ(z, k)λ(dz, k). 

`→∞ H tn` 0 Hk=1 k=1 

Hence, we conclude that λ is a stationary measure. 

For the second moment of λ, one employs the lower semi-continuity of the H-norm 

to deduce 

m Z m ZX X 
(|y|2 + j2)λ(dy, j) ≤ lim inf (|y|2 + j2)λn` (dy, j). 

`→∞H Hj=1 j=1 
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Then using (3.15) and (3.18) with φ(y, j) = |y|2 + j2 , one further deduce 

m Z m Z ZX X n`1 
(|y|2 + j2)λn` (dx, i) = φ(y, j) Qt(x, i; dy, j)dt 

n`H H 0j=1 j=1 Z m Z ZX1 n` 1 n` 

= φ(y, j)Qt(x, i; dy, j)dt = E(|uy(t)|2 + i2)dt < ∞ 
n` n`0 H 0j=1 

by (3.11). Therefore, the second moment for the measure λ exists. 

For the support of λ, let u denote the solution of (3.9) started at u0 and r0, where 

the (joint) distribution of (u0, r0) is given by λ. By (3.16), it follows that u(s) is almost 

surely V -valued for almost all s. In particular, λ has support in V × S. 

Let λ1 and λ2 be two stationary measures. To show the uniqueness, it suffices to 

show that 

m Z m ZX X 
φ(x, i)λ1(dx, i) = φ(x, i)λ2(dx, i) 

H Hi=1 i=1 

for all φ ∈ Cb(H × S). 

xLet u denote the solution of (3.9) with u0 = x and ri(t) the Markov chain r(t) 

with r0 = i. Define 

Z T 

λx,i 
1 

(B, j) = Qt(x, i; B, j)dtT T 0 

for all B ∈ B(H) and j ∈ S. Let λ(dx, i) denote a stationary measure. Then by stationar-

ity, 

m Z m m Z ZX XX 
φ(x, i)λ(dx, i) = φ(y, j)λx,iT (dy, j)λ(dx, i) 

H H Hi=1 i=1 j=1 

m m Z ZXX 
= φ(y, j)λx,i(dy, j)λ(dx|i)πi,T 

H Hi=1 j=1 
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where π = (π1, · · · , πm) is the unique stationary distribution of the Markov chain r(t). 

Furthermore, one obtains 

m Z m m Z ZX XX 
φ(x, i)λ(dx, i) = φ(y, j)λx,i(dy, j)λ(dx|i)πiT 

H H Hi=1 i=1 j=1 

m Z Z T m Z Z TX X1 1 
= Ex,i(φ(u(t), r(t)))dtλ(dx|i)πi = E(φ(u x(t), r i(t)))dtλ(dx|i)πi. 

T TH 0 H 0i=1 i=1 

Hence, 

m Z m ZX X 
φ(x, i)λ1(dx, i) − φ(w, i)λ2(dw, i) 

H Hi=1 i=1 
m Z Z TX 1 

= E(φ(u x(t), r i(t)))dtλ1(dx|i)πi
TH 0i=1 

m Z Z TX 1 − E(φ(u w(t), r i(t)))dtλ2(dw|i)πi
TH 0 

m Zi=1Z ZX T1 ≤ E φ(u x(t), r i(t)) − φ(u w(t), r i(t)) dtλ1(dx|i)λ2(dw|i)πi. (3.20)
TH H 0i=1 

By Theorem 3.2.4 and the continuity of φ, we have 

φ(u x(t), r i(t)) − φ(u w(t), r i(t)) → 0 

as t →∞ for almost all ω ∈ Ω. Therefore, 

Z T1 
φ(u x(t), r i(t)) − φ(u w(t), r i(t)) dt → 0 

T 0 

as T → ∞. Finally, it follows from Lebesgue Dominated Convergence Theorem that 

(3.20)→ 0 as T →∞. This implies 

Z Z 
φ(x, i)dλ1 = φ(x, i)dλ2 

H×S H×S 

for all φ ∈ Cb(H × S). So that λ1 = λ2. 
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3.2.1. Stationary measures for non-switching case 

Consider the following equation: 

Z 
du(t) + [νAu(t) + Bk(u(t))]dt = f(x)dt + σ(x)dW (t) + G(x, z)Ñ 

1(dz, dt) (3.21) 
Z 

with u(0) = u0 ∈ H, where the noise coefficients satisfy the following Hypotheses A0: 

A1’. There exist a constant K > 0 such that 

kσ(x)k2 
LQ 
≤ K, 

(growth condition on σ). 

A2’. There exists a constant K > 0 such that Z 
|G(x, z)|pν(dz) ≤ K 

Z 

for p = 1, 2, and 4 (growth condition on G). 

It is clear that Hypotheses A0 is a subclass of Hypotheses H, therefore, the solution u to 

equation (3.21) exists and is unique. Moreover, the system (3.21) admits a unique station-

ary measure since Hypotheses A0 is a subclass of Hypotheses A: 

Corollary 3.2.6. Assume that E|u(0)|2 < ∞ and kf(x)k2 
V 0 = F > 0. If 

ν3λ1 − F/ν 
K < ,

2 

then there exists a unique stationary measure, with support in V and a finite second mo-

ment, for the solution u of the equation (3.21). 

3.3. Exponential Inequalities 

In this section, we focus our attention on a completely different probabilistic behav-

ior of solutions on a class of stochastic Navier-Stokes equations with Markov switching. 
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Let W (t) be a one-dimensional Wiener process defined on the filtered probability 

space (Ω, F , {Ft}t≥0, P). Let r > 0 be fixed, define τr := inf{t ∈ [0, T ] : |W (t)| > r}, the 

first time (before time T ) that the process W (t) exists the interval (−r, r). In addition, it 

can be shown that 

P(τr < T ) = P( sup |W (t)| > r) ≤ 2e − r 
2

2 

t . 
0≤t≤T 

It can be seen from above that the exist time estimate for the (one-dimensional) Wiener 

process decays exponentially, therefore, we usually refer it exponential inequality. In gen-

eral, exponential estimates for exit times for a class of stochastic evolution equations were 

obtained systematically by Chow and Menaldi [13]. Inspired by their work, we consider 

those exit time estimates (exponential inequalities) for the solution to equation (3.9) and 

start the investigation from a less-complicated case: 

du(t) + [νAu(t) + Bk(u(t))]dt = f(t)dt + σ(r(t))dW (t) (3.23) 

with u(0) = u0 ∈ H, where σ satisfy Hypotheses A. 

Proposition 3.3.1. Assume that there exists a constant F > 0 such that 

Z T 

kf(s)k2 
V 0 ds ≤ F. 

0 

Then, for any given r > 0, the solution u of (3.23) satisfies 

� � 
2 −2K(1+m2)TP{ sup |u(t)| > r} ≤ C1 exp − r e , 

0≤t≤T � � 
where C1 = exp |u(0)|2 + F + K(1 + m2)T .

ν 
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Proof. It follows from the Itô formula and the basic Young inequality that 

Z t 
|u(t)|2 + 2ν ku(s)k2ds 

0Z Z Zt t t 

= |u(0)|2 + 2 hf(s), u(s)iV ds + 2 hu(s), σ(r(s))dW (s)i + kσ ∗ (r(s))k2 dsLQ 
0 0 0Z Z Zt t t1 ≤ |u(0)|2 + kf(s)kV 

2 
0 ds + ν ku(s)k2ds + η(t) + 2 kσ ∗ (r(s))u(s)k2 ds (3.24)LQν 0 0 0Z t 

+ kσ ∗ (r(s))k2 
LQ 
ds, 

0 

where 

Z t Z t 
η(t) := 2 hu(s), σ(r(s))dW (s)i − 2 kσ ∗ (r(s))u(s)k2 

LQ 
ds. 

0 0 

By Hypothesis A1, one deduces 

Z Z Zt t t 

kσ ∗ (r(s))u(s)k2 
LQ 
ds ≤ K(1 + i2)|u(s)|2ds ≤ K(1 + m 2) |u(s)|2ds. 

0 0 0 

Using above estimate and the assumption on f in (3.24), we have 

Z t 
|u(t)|2 + ν ku(s)k2ds 

0 Z tF 2)≤ |u(0)|2 + + η(t) + 2K(1 + m |u(s)|2ds + K(1 + m 2)t. 
ν 0 

Dropping the second term on the left and using the Grownwall inequality, we have 

� �F |u(t)|2 ≤ |u(0)|2 + + η(t) + K(1 + m 2)t)
νZ t � F � 

2K(1+m+ |u(0)|2 + + η(s) + K(1 + m 2)s) 2K(1 + m 2)e 
2)(t−s)ds 

ν0 � �F 2K(1+m2)t≤ |u(0)|2 + + sup η(s) + K(1 + m 2)t) e . 
ν 0≤s≤t 
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Hence, for fixed r > 0, we obtain, 

n o 
P sup |u(t)| > r 

0≤t≤T n� � o 
≤ P |u(0)|2 + 

F 
+ sup η(t) + K(1 + m 2)T ) e 2K(1+m

2)T > r 2 

ν 0≤t≤T n oF 2)T2 −2K(1+m2)T = P sup η(t) > r e − |u(0)|2 − − K(1 + m 
0≤t≤T ν n � �oF 2)Tη(t) 2 −2K(1+m = P sup e > exp r e 

2)T − |u(0)|2 − − K(1 + m 
0≤t≤T ν � F 2)T 

� 
2 −2K(1+m2)T≤ exp − r e + |u(0)|2 + + K(1 + m 

ν 

by the basic submartingale inequality, and the proof is complete. 

Next we consider the solution u to equation (3.9), where σ and G satisfy Hypothe-

ses A. 

Proposition 3.3.2. Assume that there exists a constant F > 0 such that Z T 

kf(s)k2 
V 0 ds ≤ F. 

0 

Then, for any given r > 0, the solution u of (3.9) satisfies 

2 

2P{ sup |u(t)| > r} ≤ C2e 
− r 

0≤t≤T � � 
|u(0)|2 Fwhere C2 = 2 exp 
2 + 

2ν + K(1 + m2)T . 

Proof. It follows from the Itô formula that 

|u(t)|2 = |u(0)|2 Z Zt � � 
+ (kσ ∗ (r(s))k2 + 2hf(s), u(s)i − 2νku(s)k2 + |G(r(s), z)|2 ds (3.25)LQ 

0Z t t � 
Z �Z 

˜+ 2 hu(s), σ(r(s))dW (s)i + 2(u(s), G(r(s), z)) + |G(r(s), z)|2 N(dz, ds). 
0 0 
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For α > 0, let Fα(x) = log(1 + αx)α 
1 
. Applying Itô formula to (3.25) with Fα(x), we have 

1 
log(1 + α|u(t)|2)

α 
1 

= log(1 + α|u(0)|2) + ηα(t) + θα(t)
α Z t � (3.26)

1 kσ ∗ (s)k2+ LQ 
+ 2hf(s), u(s)i − 2νku(s)k2 

0 1 + α|u(s)|2 Z � 
+ |G(s, z)|2ν(dz) ds, 

Z 

where Z t 1 
Z t kσ∗(r(s))u(s)kL 

2 
Qηα(t) := h2u(s), σ(r(s))dW (s)i − 2 ds 

1 + α|u(s)|2 (1 + α|u(s)|2)2 
0 0 

and Z Zt � �1 α(2(u(s), G(r(s), z)) + |G(r(s), z)|2) ˜θα(t) : = log 1 + N(dz, ds)
α 1 + α|u(s)|2 

0Z t
ZZ n � �1 α(2(u(s), G(r(s), z)) + |G(r(s), z)|2)

+ log 1 + 
α 1 + α|u(s)|2 

0 Z oα((u(s), G(r(s), z)) + |G(r(s), z)|2)− ν(dz)ds. 
1 + α|u(s)|2 

Since 1/(1 + α|u(s)|2) ≤ 1, we have Z t Z t Zkσ∗(r(s))k2 
LQ |G(r(s), z)|2 

ds ≤ K(1 + m 2)T, ν(dz)ds ≤ K(1 + m 2)T, (3.27)
1 + α|u(s)|2 1 + α|u(s)|2 

0 0 Z 

and from the basic Young inequality that Z Zt 2hf(s), u(s)i F t ku(s)k2 

ds ≤ + ν ds. 
1 + α|u(s)|2 ν 1 + α|u(s)|2 

0 0 

Utilizing above estimates in (3.26), we obtain Z t1 ku(s)k2 

log(1 + α|u(t)|2) + ν ds 
α 1 + α|u(s)|2 

0 

1 F ≤ log(1 + α|u(0)|2) + 2K(1 + m 2)T + + sup ηα(t) + sup θα(t). 
α ν 0≤t≤T 0≤t≤T 
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Thus, for given r > 0, 

n o 
P sup |u(t)| > r 

0≤t≤T n o 
log(1 + α|u(t)|2) 

1 
α > log(1 + αr2) 

1 
α= P n oF 

log(1 + α|u(0)|2) 
1 
α + 2K(1 + m 2)T + 

1 
αθα(t) > log(1 + αr2)≤ P + sup ηα(t) + sup

ν 0≤t≤T 0≤t≤T n � � o1 1 + αr2 F 
= P sup ηα(t) + sup θα(t) > log − − 2K(1 + m 2)T 

0≤t≤T 0≤t≤T α 1 + α|u(0)|2 ν n � � � �o1 1 1 + αr2 F ≤ P sup ηα(t) > log − − 2K(1 + m 2)T 
0≤t≤T 2 α 1 + α|u(0)|2 ν n � � � �o1 1 1 + αr2 F 

+ P sup θα(t) > log − − 2K(1 + m 2)T 
0≤t≤T 2 α 1 + α|u(0)|2 ν n � � � � ��o1 1 1 + αr2 Fηα(t)= P sup e > exp log − − 2K(1 + m 2)T 

0≤t≤T 2 α 1 + α|u(0)|2 ν n � � � � ��o1 1 1 + αr2 Fθα(t)+ P sup e > exp log − − 2K(1 + m 2)T . 
0≤t≤T 2 α 1 + α|u(0)|2 ν 

θα(t)Notice that both eηα(t) and e are martingales, therefore, we conclude from the basic 

submartingale inequality that 

� � � �1 
α1 + αr2F 2 P{ sup |u(t)| > r} ≤ 2 exp K(1 + m 2)T + 

0≤t≤T 
− log . 

1 + α|u(0)|22ν 

Taking α → 0, we obtain the desired estimate. 

3.3.1. Exponential inequality and the large deviation principle 

In this subsection, we study the exit time estimate for the solution to the following 

(non-switching) equation 

du(t) + [νAu(t) + Bk(u(t))]dt = f(t)dt + σ(t)dW (t) (3.28) 
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with initial condition u(0) = u0, and σ(t) satisfies the following growing condition: For all 

t ∈ [0, T ], there exists a constant K > 0 such that 

kσ(t)kLQ ≤ K. (3.29) 

It is clear that equation (3.28) is a special case of equation (3.9), therefore, the exit time 

estimates that we obtained in Propositions 3.3.1 and 3.3.2 shall be able to apply to the 

solution to equation (3.28). In what next, we will study the exit time estimate by using 

small noise asymptotics provided by large deviations theory. It is worthwhile to point out 

that the analysis is carried out despite the fact that the stochastic equations do not have a 

small parameter in the noise term. 

Remark. The content of this subsection is adapted from the author’s earlier work [28]. 

Consider the unique solution z(t) of 

dz + Azdt = σ(t)dW (t). (3.30) 

with z(0) = 0. Define v := u − z, and notice that 

∂v ∂u ∂z 
= − 

∂t ∂t ∂t 
dW dW 

= (−Au − Bk(u) + f(t) + σ(t) ) − (−Az + σ(t) )
dt dt 

= −A(u − z) − Bk(u) + f(t) = −Av − Bk(v + z) + f 

Therefore, with z given, solving for u − z would be equivalent to solving for v in 

∂v 
+ Av + Bk(v + z) + f = 0 (3.31)

∂t 
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with initial data v(0) = u0 ∈ H. Note that equation (3.31) is a non-random, nonlinear 

partial differential equation and is solved for each ω, where ω enters the equation through 

z(ω). 

From a priori bounds, one can easily show that (similar to Proposition 2.3 in [?]), 

� � �Z T � 

E sup |z(t)|2 + E kz(t)k2dt ≤ C(ν, T, K) 
0≤t≤T 0 

where C(ν, T, K) is a finite constant that depends on ν, T , and K that appear in the 

(3.29). Hence, one obtains that almost surely, z ∈ C0([0, T ]; H) ∩ L2(0, T ; V ). 

Lemma 3.3.3. Given a function ϕ ∈ C0([0, T ]; H) ∩ L2(0, T ; V ), let map Λ : ϕ 7→ vϕ be 

defined by 

∂vϕ 
+ Avϕ + Bk(vϕ + ϕ) + f = 0 (3.32)

∂t 

for t ∈ [0, T ], with vϕ(0) = u(0). Then Λ is a continuous map from C0([0, T ]; H) ∩ 

L2(0, T ; V ) to the space C([0, T ]; H) ∩ L2(0, T ; V ). 

Proof. Consider functions ϕ1 and ϕ2 in C0([0, T ]; H) ∩ L2(0, T ; V ), and denote the corre-

sponding solutions of equation (3.32) as v1 and v2, respectively. Let 

wi := vi + ϕi for i = 1, 2. 

Then, by the energy equality, Z t 
|v1(t) − v2(t)|2 + 2ν kv1(s) − v2(s)k2ds Z t 

0 (3.33) 

= 2 hBk(w1(s)) − Bk(w2(s)), v1(s) − v2(s)iV ds. 
0 
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By the basic properties of the bilinear operator Bk, we have, 

hBk(w1(s)), v1(s) − v2(s)iV 

= hBk(w1(s), w2(s)), v1(s) − v2(s)iV + hBk(w1(s), ϕ1 − ϕ2), v1(s) − v2(s)iV 

which enables us to write the integrand on the right side of (3.33) (suppressing the time 

parameter s) as 

hBk(w1) − Bk(w2), v1 − v2iV 

= hBk(w1 − w2, w2), v1 − v2iV + hBk(w1, ϕ1 − ϕ2), v1 − v2iV 

= hBk(v1 − v2, w2), v1 − v2i + hBk(ϕ1 − ϕ2, w2), v1 − v2iV 

+ hBk(w1, ϕ1 − ϕ2), v1 − v2iV . (3.34) 

Thus the integral on the right side of (3.33) can be split into three integrals, each of which 

is bounded as follows: First, consider 

Z t 
hBk(v1(s) − v2(s), w2(s)), v1(s) − v2(s)iV ds 

0 Z Z 
ν t 3 t 

≤ kv1(s) − v2(s)k2ds + |v1(s) − v2(s)|2kw2(s)k2ds (3.35)
6 ν0 0 
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by applying (1.25) and the basic Young inequality. Next, consider 

Z t 
hBk(ϕ1(s) − ϕ2(s), w2(s)), v1(s) − v2(s)iV ds 

0 Z t Z tν 3 ≤ kv1(s) − v2(s)k2ds + kϕ1(s) − ϕ2(s)kL 
2 
4(G) kw2(s)kL 

2 
4(G)ds 6 ν Z0 

t Z0 
tν 3 ≤ kv1(s) − v2(s)k2ds + |ϕ1(s) − ϕ2(s)|2kw2(s)k2ds 

6 2ν0 Z t 
0 

3 
+ kϕ1(s) − ϕ2(s)k2|w2(s)|2ds 
2ν Z t 

0 h Z tν 3 ≤ kv1(s) − v2(s)k2ds + sup |ϕ1(s) − ϕ2(s)|2 kw2(s)k2ds 
6 0 2ν 0≤s≤T 0 Z t i 
+ sup |w2(s)|2 kϕ1(s) − ϕ2(s)k2ds , (3.36) 
0≤s≤T 0 Z t 

Finally, hBk(w1(s), ϕ1(s) − ϕ2(s)), v1(s) − v2(s)iV ds 
0 Z Zt h tν 3 ≤ kv1(s) − v2(s)k2ds + sup |ϕ1(s) − ϕ2(s)|2 kw1(s)k2ds 
6 0 2ν 0≤s≤T 0 Z t i 
+ sup |w1(s)|2 kϕ1(s) − ϕ2(s)k2ds (3.37) 
0≤s≤T 0 

by the same reasoning employed in obtaining (3.36). Using bounds (3.35), (3.36) and 

(3.37) in equation (3.33), we obtain upon simplification, 

Z t 
|v1(t) − v2(t)|2 + ν kv1(s) − v2(s)k2ds Z t 

0 

6 ≤ |v1(s) − v2(s)|2kw2(s)k2ds 
ν 0 � Z t 
+
3 � 

sup |ϕ1(s) − ϕ2(s)|2 (kw1(s)k2 + kw2(s)k2)ds 
ν 0≤s≤T 0 � Z t 

+
3 � 

sup |w1(s)|2 + sup |w2(s)|2 kϕ1(s) − ϕ2(s)k2ds. (3.38)
ν 0≤s≤T 0≤s≤T 0 
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Dropping the second term on the left, and applying the Gronwall inequality, we obtain 

|v1(t) − v2(t)|2 

� Z t Z t3 � 6 ≤ sup |ϕ1(s) − ϕ2(s)|2 (kw1(s)k2 + kw2(s)k2) exp{ kw2(r)k2dr}ds 
ν 0≤s≤T 0 ν s 

3 � � 
+ sup |w1(s)|2 + sup |w2(s)|2 

ν 0≤s≤T 0≤s≤T Z t Z t6 · kϕ1(s) − ϕ2(s)k2 exp{ kw2(r)k2dr}ds. (3.39)
ν0 s 

If ϕn → ϕ in C0([0, T ]; H) ∩ L2(0, T ; V ), as n →∞, it is simple to obtain an upper bound R T
uniform in n for sup |wn(t)| and kwn(s)kds, where wn := vn + ϕn. Hence, (3.39) allows 0 

0≤t≤T 

us to conclude that vn − v → 0 in C0([0, T ]; H), and we use this result to estimate (3.38) to 

justify that vn − v → 0 in L2(0, T ; V ) as well. The continuity of the map Λ has thus been 

proven. 

R 
For each h ∈ L2(0, T ; H0), we will use the notation G0( 

0 
· 
h(s)ds) to denote the set 

of all solutions of the equation 

dx(t) + Ax(t)dt = σ(t)h(t)dt 

with x(0) = 0. 

For each � > 0 , let z� denote the solution of 

√ 
dz�(t) + Az�(t)dt = �σ(t)dW (t) 

√ R t
for 0 ≤ t ≤ T with z�(0) = 0. Then z�(t) = � σ(s)dW (s) where S is the semigroup

0 St−s 

generated by A. It is well-known (cf. [?]) that the large deviations rate function for the 
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family {z�} is given by, 

Z T1 
I(x) = inf R · 

|h(s)|02ds. 
{h∈L2(0,T ;H0):x∈G0( h(s)ds)} 2 0 0 

Define the map Γ from C0([0, T ]; H) ∩ L2(0, T ; V ) to C([0, T ]; H) ∩ L2(0, T ; V ) by 

Γ(z) = z + Λ(z). 

Then Γ is continuous by Lemma 3.3.3, and u� = Γ(z�) for all � > 0. Hence, by Theorem 

1.2.17 (the contraction principle), {u�} satisfies the large deviation principle large devia-

tions principle with rate function 

J(A) = inf I(x) 
x ∈ Γ−1(A) 

for any Borel set A in C([0, T ]; H) ∩ L2(0, T ; V ), and in particular, 

lim sup � log P{u � ∈ Bc} ≤ −J(Bc). (3.40)r r 
�→0 

Thus, for any given δ > 0, there exists an �1 > 0 such that for all 0 < � ≤ �1, 

� �1 P{u � ∈ Bc} ≤ exp − (J(Bc) − δ) .r � r 

That is, n o � � 
√ 
1
Γ−1(Bc 1

(J(BcP z ∈ r ) ≤ exp − r ) − δ) . (3.41)
� � 

Let A denote the set Γ(√1 
� Γ
−1(Br

c)). Then (3.41) can be written as 

� �1 P{u ∈ A} ≤ exp − (J(Bc) − δ) . 
� r 

We have thus proved the following theorem: 
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Theorem 3.3.4. For any given r > 0 and δ > 0, there exists a large positive constant ρ0, 

such that for all ρ ≥ ρ0 if we define the set Aρ := Γ(ρΓ−1(Br
c)), then solution u of equation 

(3.28) satisfies 

P{u(t) ∈ Aρ} ≤ exp(−ρ(J(Bc) − δ)) (3.42)r 

where Br = {h ∈ C([0, T ]; H) : sup |h(t)|2 < r}, 
0≤t≤T 

J(Br
c) = inf I(x), 

x∈Γ−1(Bc)r 

and Z T1 
I(x) = inf |h(s)|2ds.R 0· {h∈L2(0,T ;U0):x ∈ G0( h(s)ds)} 2 0 0 

Remark. 

(i) In case ρ0 = coincides with Bc , and the theorem gives the rate of decay as1, A1 r 

J(Bc). Also, if we can ascertain the existence of an R such that Bc , ther R ⊆ Aρ0 

above result leads to a simpler inequality. 

(ii) Since we know, by Proposition 3.3.1 that the rate of decay is of the order of r2 , we 
can follow the above procedure by considering the set 

Fr = {x : J(x) ≤ r 2} 

for r > 0 and define the set Gr as any open neighborhood of Fr. Then given any 
δ > 0, there exists an �1 > 0 such that for all � < �1, we have � �1 P{u � ∈ Gc

r} ≤ exp − (J(Gr
c) − δ)

�� � 
≤ exp − 

1
(r 2 − δ)
� 

by the definition of Gr. Thus, we can conclude that n o � �1
Γ−1(Gc 1 2 − δ)P u ∈ Γ(√ r)) ≤ exp − (r . (3.43)
� � 
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3.3.2. Discussion 

Let u be the solution to equation (3.28), which is a special case of equation (3.23). 

Thus, it follows from Proposition 3.3.1 that u satisfies 

� � 
2 −2K(1+m2)TP{ sup |u(t)| > r} ≤ C1 exp − r e , (3.44) 

0≤t≤T � � 
where C1 = exp |u(0)|2 + F + K(1 + m2)T . In addition, processing the argument of the

ν 

proof of Proposition 3.3.2, one deduces that u satisfies 

n o 
P sup |u(t)| > r ≤ C2e 

−r2 
, (3.45) 

0≤t≤T � � 
where C2 = exp |u(0)|2 + F + K(1 + m2)T .

ν 

Comparing the inequalities (3.44) and (3.45), we see that the latter is sharper than 

the former. Moreover, we see from the two inequalities that there are many constants that 

will effect the estimates, but the constants K, m, and T are the factor for making (3.44) 

looserii . 

On the other hand, (3.43) gives a different story. (3.43) reveals that the exponential 

inequality may be obtained independent of all the factors in both (3.44) and (3.45); it only 

depends �, the smallness of the noise, which is arbitrary according to Theorem 3.3.4. How-

ever, there is still a price to pay if one employs Theorem 3.3.4 to obtain the exponential 

inequality. Notice that � appears on the both side of (3.43). Therefore, if one chooses a 

small � to obtain a sharper estimate, one enlarges the set (whose diameter depends on r 

and �) that u escapes from while in (3.44), one only need to enlarge K, m, or T (without 

effecting the size of the r-ball). 
iiF is the constant relates the external forcing f , K is the constant that appears in the growing condi-

tion of σ, and m is the largest element of the state space S of the Markov chain r(t). 
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[48] W. S. Ożański and B. C. Pooley: Leray’s fundamental work on the Navier-Stokes 
equations: a modern review of “Sur le mouvement d’un liquide visqueux emplissant 
l’epsace”. Partial Differential Equations in Fluid Dynamics, London Math. Soc. Lec-
ture Note Ser., 452, Cambridge Univ. Press, 2018. 

[49] P. Protter: Stochastic Integration and Differential Equations. Applications of Mathe-
matics (New York), 21. Springer-Verlag, Berlin, 1990. 
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