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Abstract

For a simple complex algebraic group G, M. Kamgarpour and D. Sage have shown

that the adjoint irregularity of an irregular singular flat G-bundle on the formal punctured

disc is bounded from below by the rank of G, moreover the rank is realized by the formal

Frenkel-Gross connection. This is a geometric analog of a conjecture of Gross and Reeder

on the swan conductor of arithmetic local Langlands parameters. In this work, we explore

an interesting combinatorial problem which arises when trying to consider the minimal

value of the irregularity function with respect to an arbitrary representation of G.
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Chapter 1. Introduction and Motivations

This thesis is an attempt to establish and explore an interesting combinatorial

problem which arises when trying to consider the minimal value of a certain integer-valued

local invariant in the geometric Langlands program—in the style of Arinkin, Frenkel and

Gaitsgory [5], [1]—with wild ramification. This invariant, namely the irregularity, can

be understood to measure how wildly ramified a local geometric Langlands parameter is.

These considerations in turn stem from a conjecture concerning ramification data of Lang-

lands parameters in, what is more contemporarily referred to as, the classical or arith-

metic local Langlands conjectures, which like much of the Langlands program with wild

ramification, is for the most part still rather mysterious.

Very roughly, in the arithmetic setting of the local Langlands correspondence, the

main objects of interest are, on one side of the correspondence, Galois representations, or

rather representations of the Weil-Deligne group of a local field, and on the other side, so-

called irreducible admissible representations. In this study, we will primarily be concerned

with the objects on the Galois side of local Langlands correspondences. In [7], Gross and

Reeder formulate, and prove in some instances, a conjecture concerning a lower bound on

the (adjoint) Swan conductor of a wildly ramified Langlands parameter. In the geometric

setting, formal flat G-bundles on algebraic curves replace Galois representations to serve

as Langlands parameters. In this setting, the analog of the Swan conductor is the irregu-

larity of a formal flat G-bundle. An analogy between these two types of Langlands param-

eters was noted by Sage and Kamgarpour in [12], where the authors prove an analogous

lower bound on the irregularity under lighter restrictions as the aforementioned conjec-

ture of Gross and Reeder. The existence of such an analogy between these two different
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settings of the Langlands program is just one example in a well-known collection of such

analogies which arise when switching between arithmetic and geometry in the Langlands

program. Therefore, this work is towards a better understanding of wild ramification in

the general framework of the Langlands program.

1.1. The Langlands Program

The Langlands program, in perhaps broadest of terms, aims to build dictionaries

or correspondences between different areas of mathematics. In its original inception, this

was formulated in terms of relating Galois groups in algebraic number theory to more an-

alytic flavored objects called automorphic forms and the representation theory of algebraic

groups over local and global fields. These ideas of R.P. Langlands followed earlier work by

Harish-Chandra, Selberg and Gelfand concerning trace formulas for semisimple Lie groups

while attempting to also incorporate new connections to number theory via categorical

constructions. While more recent statements can be formulated for G an arbitrary reduc-

tive algebraic group, for our purposes, it suffices to consider G = GLn, in fact, all relevant

constructions in this thesis will be concerned with the situation where G is a simple alge-

braic group. All algebraic number theoretic objects in what follows can be found in any

introductory text on the subject.

In number theory, the Langlands correspondence is a conjectural correspondence

between n-dimensional complex linear representations of GalF := Gal(F/F ), where F is

a finite field extension of Q, i.e. a number field or a function field of a curve over Fq, and

automorphic representations of the n-dimensional general linear group GLn(AF ), where

AF is the ring of adeles of F . The latter objects can be realized in representations given
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by functions on the double coset space GLn(F ) \ GLn(AF )/GLn(O), where O is the ring

of integers of all formal completions of F . Such a correspondence should also exhibit reci-

procity and functoriality. We outline these concepts. Firstly, objects on both sides of the

correspondence should have associated L-functions. Reciprocity can then be understood

as the conjecture that the L-functions coming from the two sides are equivalent. Further-

more, such constructions should behave well with respect to precomposing with analytic

homomorphisms between dual groups so that the associated L-function remains invariant

with respect to such a change. This was Langlands’ original notion of functoriality.

As a quick illustrative example of such a correspondence, we roughly state the now

famous theorem for G = GLn as proved by Harris, Lan, Taylor and Thorne in 2013 and

then by Scholze in 2017. Let E be a totally real field or a number field with complex mul-

tiplication. Let π be a cuspidal automorphic representation of GLn(AE). Modulo some

further restrictive algebraicity conditions on π, there exists a Galois representation

ρπ : GalE → GLn(Q`)

which is canonically attached to π.

The local Langlands conjectures can then be considered as a refinement of these

conjectures by way of considering the above constructions over local fields rather than

global fields. For G a reductive algebraic group over K a local field, the local Langlands

conjectures then predict that the irreducible complex representations of the locally com-

pact group G(K) should correspond to homomorphisms φ from the Weil-Deligne group of

K to the complex Langlands dual group of G, together with an irreducible representation

ρ of the component group of the centralizer of φ.
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1.2. Gross-Reeder Conjecture

We recall the setup of [10] along with some useful observations from [12]. Let G be

a simple complex algebraic group. If the Langlands parameter φ : W × SL2(C) → G is

discrete and inertially discrete, then the Swan conductor of Ad(φ) is greater than or equal

to the rank of G, i.e.

sw(Adφ) ≥ rk(G).

While this conjecture remains open in full generality, many important cases have

been shown. Moreover, by analyzing the case when equality was attained, this led Gross

and Reeder to their construction of simple wild parameters. Using the Langlands corre-

spondence they then went on also to construct simple supercuspidal representations of p-

adic groups with dual group G which correspond under the local Langlands program to

simple wild parameters. Simple supercuspidal representations are in turn the simplest ex-

amples of what are known as epipelagic representations. Epipelagic representations were

constructed by Reeder and Yu in [20]. As we can see, these inquiries and constructions by

Gross and Reeder initiated an important new direction in the local Langlands program.

This theory also has important applications to the global Langlands program.

Recently, Heinloth, Ngo and Yun used these results to construct Kloosterman

sheaves-`-adic local systems on P1 \ {0,∞} whose single wildly ramified singularity

corresponds to a simple wild parameter. This then can be seen to provide an example

of a wildly ramified Langlands correspondence between `-adic local systems and Hecke

eigensheaves. See [11] for more details into this aspect of study.

One can use ”Weil’s Rosetta Stone”, see [6], to translate from number theory to
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geometry, and even more startlingly, to physics and quantum field theories. For the latter

vein of study we refer the interested reader to [19], [21] and [14] for fascinating expositions

into this aspect of the Langlands program. These connections relate algebraic properties

of fields to geometric properties of algebraic curves defined over C. In the geometric world,

as noted above, it is now well known that formal flat G-bundles play the role of Langlands

parameters, see for example [15]. Let K = C((t)) be the field of formal Laurent series and

we denote by D× = Spec(K) the formal punctured disk. A formal flat G-bundle (E,∇) is

then a principal G-bundle E on D× endowed with a connection ∇ (which is automatically

flat). Interestingly, switching to the geometric setting affords the ability to fully prove the

geometric analog of the Gross-Reeder conjecture.

1.3. A Geometric Analog of the Gross-Reeder Conjecture

Observe the following theorems of Sage and Kamgarpour [12].

Theorem 1 (Sage, Kamgarpour). Let G be a simple group and let (E,∇) be an

irregular singular formal flat G-bundle. Then,

irr(Ad(∇)) ≥ rk(G). (1.3.1)

Where (Ad(E), Ad(∇)) is the associated adjoint bundle of (E,∇).

Theorem 2 (Sage, Kamgarpour). For G and (E,∇) as above, then the following

are equivalent:

1. irr(Ad(∇)) = rk(G)

2. s(∇) = 1/h

3. ∇ is a formal Frenkel-Gross connection.

This explicit result, and characterization of the formal Frenkel-Gross connection
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which we will denote by ∇FG, strongly suggests that the Frenkel-Gross connection should

be viewed as the geometric analog of the simple wild parameters of Gross and Reeder.

Some natural questions arise. How special is the Frenkel-Gross connection? And, why is

the adjoint representation needed for these statements?

1.4. A Conjecture on the Minimal Irregularity

To address the inquiries stated above, let g = Lie(G) be a simple Lie algebra

and let V ∈ Rep(g) be a finite dimensional representation of g. Denote by Lirr ⊂ L =

Ω1(g(K))/G(K) the space of irregular formal flat connections. For a formal flat G-bundle

(E,∇), we will denote by irrV : L → Z the irregularity of the associated flat vector bun-

dle (VE, V∇), and we shall refer to this local invariant as the λ-irregularity (λ will denote

the highest weight of an irreducible V ) of a formal flat connection ∇ ∈ L. Once properly

defined, this invariant will provide us the technology to tackle the following conjecture.

The minimal irregularity Conjecture: In the above set-up, and for all V ∈

Rep(g),

irrV (∇FG) = min
∇∈Lirr

{irrV (∇)}. (1.4.1)

Note, for this conjecture to be completely affirmed with respect to a specific simple Lie

algebra g, it must hold for all V ∈ Rep(g). An important observation to also consider is

that an arbitrary representation V of a simple Lie algebra g will be completely reducible.

This means that V will decompose into a direct sum of irreducible representations, V ∼=⊕
Vi. Also, the irregularity is additive i.e.

irrV (∇) =
∑

irrVi(∇).

Therefore, rather than considering V ∈ Rep(g) we can restrict to only considering V ∈
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Irr(g). As we will see, while this conjecture seems rather innocuous, there will arise com-

binatorial complexities, already even for g = A2, for which we will need to provide some

novel constructions in order to derive formulae for the λ-irregularity of certain minimal

classes of connections in Lirr. In what follows, we show that the inequality

irrV (∇FG) < irrV (∇)

holds for all ”generic” ∇ ∈ Lirr, and furthermore we will prove the minimal irregularity

conjecture in full generality for the cases A1 and A2.
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Chapter 2. Preliminaries

Throughout this work we will for the most part only be considering constructions

for type A simple Lie algebras. Unless otherwise stated g = Lie(G) = sln, i.e. G = SLn.

Most of the representation theory we recall here can be found in standard textbooks on

representation theory, for example see [9] or [4]. For the relevant bundle theory and results

on irregular connections I will be using as references [3], [12], [13].

2.1. Irreducible Representations

Let Mn(k) be the associative algebra of all n × n matrices over the field k and we

write Lie(Mn(k)) for the corresponding Lie algebra, i.e. gln(k) = Lie(Mn(k)) with dim

gln(k) = n2. A representation of a Lie algebra L over k is then a homomorphism of Lie

algebras ρ : L → gln(k), or ρ ∈ Hom(L, gln(k)) for short, for some n, and ρ is called a

representation of degree or dimension n. Two representations ρ, ρ′ of the same degree are

said to be equivalent if there exists a non-singular matrix T such that

ρ′(x) = T−1ρ(x)T

for all x ∈ L.

A left L-module is a vector space V over k together with a multiplication (or ac-

tion)

L× V → V

(x, v) 7→ xv

which is bilinear, and for all x, y ∈ L and v ∈ V we have

[xy]v = x(yv)− y(xv).
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Let g be a finite-dimensional semisimple complex Lie algebra with Cartan subalgebra h.

Let R be the associated root system. Then we say that an element λ ∈ h∗ is integral if

2(λ, α)/(α, α) is an integer for every root. Choosing a set of positive roots R+, λ is domi-

nant if (λ, α) ≥ 0 for all positive roots. λ is dominant integral if it is both dominant and

integral. For λ and µ we say the λ is higher than µ if you can express λ − µ as a linear

combination of positive roots with non-negative coefficients, we denote this by µ � λ.

A weight of a representation V of g is called a highest weight if λ is higher than all other

weights of V . The theorem of the highest weight tells us that if V is a finite dimensional

irreducible representation of g then V has a unique highest weight, and this highest weight

is dominant integral. We will denote the finite dimensional irreducible representations of g

by Irr(g).

Let g = sln = Lie(SLn) and let h be the maximal Cartan subalgebra consisting

of the diagonal matrices, we can write h = {diag(θ1, . . . , θn) | θi ∈ C,
∑n

i=1 θi = 0}. For

1 ≤ i ≤ n set εi(diag(θ1, . . . , θn) = θi. We have

h∗ =
n⊕
i=1

Cεi/〈
n∑
i=1

εi = 0〉.

The set of positive roots is R+ = {εi − εj | 1 ≤ i < j ≤ n}. The weight lattice is then

P =
n⊕
i=1

Zεi/〈
n∑
i=1

εi = 0〉

The set of irreducible representations Irr(sln) are parameterized by n − 1-tuples

(k1, . . . , kn−1) ∈ Zn−1≥0 , they will lie in the following cone of P

P++ =

{
n−1∑
i=1

kiεi ∈ P | k1 ≥ · · · ≥ kn−1 ≥ 0

}
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with highest weights of the form

λ =k1ε1 + k2(ε1 + ε2) + · · ·+ kn−1(ε1 + · · ·+ εn−1)

=(k1 + · · ·+ kn−1)ε1 + (k2 + · · ·+ kn−1)ε2 + · · ·+ kn−1εn−1

with εi ∈ h∗. With respect to such an h, each Vλ ∈ Irr(sln) has a weight space decomposi-

tion

Vλ =
⊕
µ�λ

V µ
λ

where � is the partial order on weights. Since we are dealing with finite dimensional rep-

resentations, dimV µ
λ < ∞ for all µ � λ. For our purposes it will be convenient to define

the following function

χ : Irr(sln)→ Z≥0

Vλ 7→
∑
µ6=0

dimV µ
λ ,

which is well defined since
∑
dimV µ

λ < ∞. In the literature dimV µ
λ is called a Kostka

number and is usually denoted Kλµ. In general Kλµ counts the number of semistandard

Young tableaux of shape λ and content µ, both considered as partitions. We refer the

interested reader to [8] for the details on the combinatorics of Young tableaux and their

importance in representation theory. For our purposes, the relevant combinatorics of Vλ

can be encapsulated by considering the convex hull of the set of weights appearing in Vλ,

following the constructions of [18], we call this the weight polytope of λ, and denote it by

P(Vλ) ⊂ Zn−1 ⊂ Rn−1. We will sometimes write Pλ for P(Vλ).
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2.2. Formal Flat Connections

Let G be a topological group. A principal G-bundle is a fiber bundle (P,X, π, F ),

with a continuous right action of G, P × G → P , that preserves the fibers of P , i.e. for

y ∈ Px, then yg ∈ Px for every g ∈ G, and that acts freely and transitively such that for

each x ∈ X, and y ∈ Px, G → Px is a homeomorhpism, via g 7→ yg, i.e. each fiber of the

bundle is homeomorphic to G.

Let K = C((t)). For G a simple complex algebraic group of finite rank, a formal flat

G-bundle (E,∇) is a principal G-bundle E on the formal punctured disk D× ∼= Spec(K)

with a connection ∇, which is automatically flat. After choosing a trivialization the con-

nection can be written in terms of its matrix [∇] ∈ g(K), we can write ∇ = d + [∇]dt
t
∈

Ω1(g(K)). Changing the trivialization by an element of the loop group g ∈ G(K), changes

the matrix by the so-called gauge action

g.[∇] = Ad(g)[∇]− (dg)g−1.

Accordingly, the set of isomorphism classes of flat G-bundles on D×, which we denote by

BunG(D×) is isomorphic to the quotient Ω1(g(K))/G(K) where the loop group G(K) acts

by the gauge action.

A flat G-bundle (E,∇) on D× is called regular singular if the connection matrix

has only simple poles with respect to some trivialization, otherwise it is called irregular.

Irregular formal flat G-bundles are wildly ramified geometric Langlands parameters. Fol-

lowing cues from the arithmetic Langlands correspondence, one can then ask ”how irregu-

lar” an irregular singular flat G-bundle is. This is measured by two invariants: the slope—

a rational number—and the irregularity with respect to a representation of G, an integer-
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valued invariant.

2.3. Slope

Let b ≥ 1 be an integer then there is a ramified cover D×b = Spec(C((u))) with

u = t1/b and a trivialization of the pullback bundle such that the pullback connection is of

the form

d+ (X−au
−a +X1−au

1−a + . . . )
du

u

Xi ∈ g, X−a non-nilpotent and a ≥ 0. The quotient a/b is independent of the choice

of such an expression, one calls it the slope of ∇, which we denote by s(∇). By the con-

travariance of Spec, we can lift the order of the pole, ord :
∑

n≥n0
ant

n 7→ −n0 in the

induced diagram

C((u)) 1
b
Z ⊂ Q

C((t)) Z

ordb

ord

where u = t1/b, so that ordb = ord
b
∈ Q in the diagram. The slope is positive if and only if

the flat G-bundle is irregular, and the smallest possible slope is 1/h where h is the Coxeter

number of G, these results and other results related to the slope of irregular connections

can be found in [2], [12].

2.4. Irregularity

We recall the constructions in [12]. Let G = GLn, although the following results

will hold for more general G. In this case a flat G-bundle is equivalent to a pair (E,∇)

where E is a vector bundle on D× endowed with a connection ∇. After passing to a ram-

ified cover D×b the pullback connection π∗bE has a Jordan decomposition, which is called a
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Levelt-Turrittin (LT) decomposition, into a finite sum

⊕
(Li ⊗Mi,∇Li ⊗∇Mi

),

where (Li,∇Li) is rank one and (Mi,∇Mi
) is regular singular. For (E,∇) a formal flat G-

bundle there will always exist a positive integer b and a trivialization of π∗bE such that

π∗b∇ = d+ (h+ n)
du

u

with h ∈ h[u−1] and n ∈ n(C) such that h and n commute and any such pair of h and

n is unique. Let si be the slope of the flat connection (Li ⊗ Mi,∇Li ⊗ ∇Mi
), then the

irregularity, irr(∇) is ∑
si · dim(Mi) ∈ Z≥0.

Moreover, it can be shown that irr(∇) = 0 if and only if ∇ regular singular. The Levelt-

Turrittin form essentially gives an explicit computational tool to compute the irregularity.

Let G = GLn with B the upper triangular matrices and H the diagonal matrices. Let

(E,∇) be a formal flat G-bundle with Levelt-Turrittin form d + (h + n)du
u

with respect to

B and H. Then since h is diagonal we can write it as

h = diag(h1, . . . , hn)

with hi ∈ C[u−1]. From here we can equivalently define the irregularity as

irr(∇) =
n∑
i=1

{max{0, ord(hi)

b
}}

where ord is the order of the pole of hi.

We consider an example to illustrate. For G = SL5 consider the connection with

13



Levelt-Turrittin form 

t−1/3

ζt−1/3

ζ2t−1/3

t−1/2

−t−1/2


with ζ a primitive cube root of unity. In this case from the notation above n = 0. This is

an example of a non-generic irregular formal flat G-bundle, by which we mean a connec-

tion that has mixed Galois orbits for the valuations. Its irregularity is 1/3 + 1/3 + 1/3 +

1/2 + 1/2 = 2.

Recall, by the theorems of Sage and Kamgarpour listed in section 1, the formal ir-

regular flat connection with minimal possible slope 1/h is called the Frenkel-Gross connec-

tion denoted ∇FG, its connection matrix is of the form

0 1

0
. . .

. . . 1

t 0


∈ sln((t)), (2.4.1)

and we will work with the inverse form

0 t−1

1 0

. . . . . .

1 0


, (2.4.2)
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which changes the wildly ramified point from ∞ to 0.

The Frenkel-Gross connection is one in, what we shall call, a larger combinatorial

class of irregular connections called formal Coxeter connections introduced by Sage and

Karmgarpour in [13]. For example, for sln, let Nr be the matrix with 1’s on the rth sub-

diagonal and 0’s everywhere else, and let Er be the matrix with 1’s on the (n − r)th su-

perdiagonal and 0’s everywhere else. Then, the formal Coxeter connection can be written

as

∇q
r,m = d+ t−mq(Nr + t−1Er)

dt

t

with for q ∈ C× and m, r ∈ Z≥0 such that gcd(r, h) = 1 and 1 ≤ r ≤ h. Note, if

one restricts ∇FG to the formal neighborhood at the irregular singular point we get ∇−11,0.

∇FG is also an example of a cohomologically rigid irregular flat connection, which are con-

nections that can be determined by their monodromy data around the singular points.

This is equivalent to having no infinitesimal deformations. The Frenkel-Gross connection

was defined by Frenkel and Gross in [7] and has been exploited by Heinloth, Yun, Ngo,

Kamgarpour-Sage, Lam, Templier and others for its many interesting properties, including

relations to mirror symmetry, for example see [17].

In a specified combinatorial class, we can also parameterize a formal connection

by multiplying each of its non-zero entries by a non-zero scalar. In some sense these are

”smooth” parameters. For instance, by parameterizing the Frenkel-Gross connection we
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can arrive at the following form 

0 a1t
−1

a2 0

. . . . . .

an 0


(2.4.3)

with ai 6= 0 for all i. Its Levelt-Turrittin form will be

Ct−1/n



1

ζ

. . .

ζn−1


∈ sln((u)) (2.4.4)

where u = t1/n, ζ = e2πi/n and C = (
∏
ai)

1/n. We denote by p(∇) the number of non-

zero scalars needed to parameterize a formal flat irregular connection ∇. Observe that by

taking the LT form of ∇FG, we reduce the number of parameters needed to parameterize

∇FG. We can see that p(∇FG) = 1, and in fact it follows that p(∇q
r,m) = 1 for all q, r,m

as above. Thus, the Frenkel-Gross connection has the minimal possible slope and number

of parameters.

Another relevant combinatorial class of irregular formal flat connection is what we

shall call a diagonalizable connection, and denote by ∇D. This type of connection will

have connection matrix as follows,

a1(t
−1)

. . .

an−1(t
−1)

an(t−1)


∈ sln((t)) (2.4.5)
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where the ai(t
−1) are polynomials in t−1 such that

∑
i ai(t

−1) = 0. As we can see, contrary

to the Coxeter connections, there is no need to lift to a field extension for the LT form. It

follows that s(∇D) = maxi(deg(ai)). We note also that the irregularity of any ∇D will be

minimal when s(∇D) = max(deg(ai)) = 1. For example, a diagonalizable irregular formal

flat connection with connection matrix

t−1



a1

. . .

an−1

−
∑n−1

i=1 ai


∈ sln((t)) (2.4.6)

has slope 1 and p = n − 1. We denote the diagonal connection with connection matrix

(2.6) ∇(a1, . . . , an−1).

Remark 0.1. In general, specifying a combinatorial class in Lirr amounts to specifying the

Galois structure along with choosing specific eigenvalues.

Now, for a fixed irreducible representation Vλ and a formal G-bundle (E,∇), there

is an associated flat vector bundle for Vλ, (VλE, Vλ∇). Let ∇ be a formal flat connection

of a specific combinatorial type, then the irregularity with respect to Vλ will have the fol-

lowing form,

irrVλ(∇) =
′∑
µ

dim(V µ
λ )(−val([∇] · µ)) (2.4.7)

where
∑′ denotes the sum over µ appearing in Vλ such that the valuation of [∇] · µ is

strictly negative. We have denoted by [∇] the LT form of ∇. We denote by

irrλ(∇) := irrVλ(∇) (2.4.8)
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the λ-irregularity of a ∇ ∈ Lirr. For sl2 and sl3 we will give explicit formulae for irrλ to

resolve the minimal irregularity conjecture. For g = sln, fix a Vλ ∈ Irr(g) in these cases

and consider its weight polytope Pλ ⊂ Zn−1 ⊂ Rn−1. For sl2 and sl3, the points of Pλ are

arranged in unbroken strings of weights. The multiplicity of a weight µ � λ in a string

of weights is constant so one may consider the multiplicity of a string of weights in Pλ.

The multiplicity of a string of weights increases from outer to inner. Recall the function

χ(Vλ) = dimVλ − dimV 0
λ . We will define a non-negative integer c which we shall call the

cancellation parameter of ∇. The cancellation parameter counts lattice points, with multi-

plicity, lying on the intersection of the weight polytope and a lower dimensional subspace

determined by ∇, which we denote by `(∇) ⊂ Rn−1. For sl2, sl3 these subspaces will be ei-

ther the origin, or lines through the origin, in the ambient real euclidean space containing

Pλ, for all irreducible representations. It will follow that

c(∇) =
∑

µ6=0∈`(∇)∩Pλ

Kλµ. (2.4.9)

2.5. Minimal Irregularity

We can now discuss an ambiguity which arises when trying to find irregular formal

flat connections which are minimal irregular with respect to a fixed irreducible representa-

tion. Given Vλ ∈ Irr(g) we want to find connections ∇′ ∈ Lirr such that

irrλ(∇′) ≤ irrλ(∇) (2.5.1)

for all ∇ ∈ Lirr. An obvious candidate is the formal Frenkel-Gross connection since, as

noted above, it has the minimal possible slope and number of smooth parameters. The

Frenkel-Gross connection also has a known formula with respect to the adjoint representa-
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tion. In our notation this formula can be written

irrAd(∇FG) = rk(g). (2.5.2)

For example, let g = sl2, then by the above formula we have that irrAd(∇FG) = 1, the

minimal possible irregularity. Now note that here is also another irreducible representa-

tion, the standard representation std, for which ∇FG also yields the minimal possible ir-

regularity, in other words, for sl2 we will have

irrstd(∇FG) = irrAd(∇FG) = 1. (2.5.3)

The following question then arises. Are there other irreducible representations for which

the minimal possible irregularity is realized by connections which are not the Frenkel-

Gross connection? As we will see, settling this will settle the minimal irregularity conjec-

ture for sl2.

2.6. Generic Formal Flat Connections

We consider G = SLn. Given a connection of a fixed combinatorial class we have

an associated partition of n. If b is a part (so 1 ≤ b ≤ n), then the associated diagonal en-

tries all have valuation −a/b for some positive a relatively prime to b, unless the part has

size 1 with a 0 eigenvalue. Now, suppose that the n diagonal entries have no Q-linear de-

pendence relations other than the obvious trace 0 condition. It is then the case that any

nonzero integral weight vector µ evaluated on this diagonal matrix is nonzero and will

contribute dim(V µ) · a
b

for one of the valuations appearing among the entries. Now, If the

partition is not the one associated to Coxeter connections, in other words, not the parti-

tion with the single part n, then b < n for each part, therefore a/b > 1/n. Thus, in this
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case

irrVλ(∇) =
∑

µ6=0∈Vλ

dim(V µ
λ )a/b

>
∑

µ6=0∈Vλ

dim(V µ
λ )1/n

= irrVλ(∇FG).

Therefore, the conjecture is true generically. We have the following theorem.

Theorem 1. For generic SLn-connections ∇ and any representation V which has an ir-

reducible component that is not the trivial representation, we have the following strict in-

equality

irrV (∇) > irrV (∇FG). (2.6.1)

We should note that this is a considerably more complicated theorem for non-

generic ∇ where a strict inequality would fail. For sl2 and sl3 we find that there are only

two and three types, respectively, of Galois orbits to consider. For the various choice of

partition in these cases, it is clear that you get the smallest possible irregularity if you

take the slope 1/2 connection for sl2 and the slope 1/3 connection for sl3.

Let us now turn to the task of proving the minimal irregularity conjecture for sl2.
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Chapter 3. sl2

For sl2, the minimal irregularity conjecture can be verified rather straightforwardly

via our methods. In this case the complexity of all the relevant data is at a minimum.

Moreover, we have a simplification for the formula of the λ-irregularity. In this case, the

relevant formal irregular connections are what are called toral connections see [13] for re-

sults and constructions of toral connections. Consequently, irrλ takes the simple form

irrλ(∇) = s(∇)(χ(Vλ)− c(∇)).

Observe, Irr(sl2) is parameterized simply by Z≥0, and strings of weights, with respect to

a given irreducible, are just decreasing sequences of integers whose pairwise differences are

congruent modulo 2. The weight lattice has rank 1. For a connection ∇ ∈ Lirr, the slope

can take values in Q ∩ [1/2,∞). For g = sln in general, types of ∇ such that s(∇) ∈ Q ∩

[1/n, 1] can be broken into two classes, ∇ which have fractional slope less than one, and ∇

with slope equal to one. Returning to the sl2, we have that there are only two such type

of connections to consider, ∇FG with slope 1/2, and ∇(a1) with slope 1, where a1 ∈ R×.

Respectively, we have  0 a1t
−1

a2 0

 , and t−1

a1 0

0 −a1

 .

As noted above because we compute the irregularity from a connection’s LT form, for the

Frenkel-Gross connection, we have

Ct−1/2

1 0

0 −1

 ,

with C =
√
a1a2. We note in this case p(∇FG) = p(∇(a1)) = 1. Moreover, there can be no

non-trivial cancellation. Thus, c(∇FG) = 0.
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Let us explicitly derive the formula in this case. We will use the pullback of the

Frenkel-Gross to define irrλ(∇FG) for a given Vλ ∈ Irr(sl2). All the irreducibles in this

case are symmetric tensor products of the standard 2 dimensional representation St ∈

Irr(sl2) with respect to [∇FG]. Choosing a basis e0, e1 we have

[∇FG].e0 = t−1/2e0

[∇FG].e1 = −t−1/2e1

irrSt(∇FG) : = ord2(t
−1/2) dim(V−1) + ord2(ζt

−1/2) dim(V1)

=
1

2
+

1

2
= 1

where the V i are the weight spaces for St, i.e. St ' V −1 ⊕ V 1. Let a ∈ Z≥0 then{
ea−i0 ⊗ ei1

}
for i = 0, . . . , a is a basis for Syma(St) ∈ Irr(sl2) with respect to a maximal

Cartan h. We can establish via the Leibniz rule that for (i, j) ∈ Z2
≥0 with 0 ≤ i, j ≤ a such

that i+ j = a ∈ Z≥0

[∇FG]ei0 ⊗ e
j
1 = (i+ jζ)t−1/2ei0 ⊗ e

j
1. (3.0.1)

Note that i = a− j and in this case ζ = ζ2 = −1 so we can rewrite the above as

[∇LT
FG]ea−j0 ⊗ ej1 = (a− j + jζ)t−1/2ea−j0 ⊗ ej1

= (a− 2j)t−1/2ea−j0 ⊗ ej1

for 0 ≤ j ≤ a. Let hj(t) := (a − 2j)t−1/2 and ej := ea−j0 ⊗ ej1, then we can clean up the

previous lines as

[∇FG]ej = hj(t)e
j (3.0.2)
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for j = 0, 1, . . . , a. So via the definition of the standard irregularity we define

irrSyma(St)(∇FG) :=
a∑
j=0

ord(hj(t)) · dim(Vj)

=


a+1
2

for a 6≡ 0 mod 2

a
2

for a ≡ 0 mod 2

=

⌊
a+ 1

2

⌋
.

We can repeat the same argument except with diagonal type connection [∇(a1)] =

t−1diag(a1,−a1) instead of ∇FG to arrive at

irrSyma(St)(∇(a1)) =


a+ 1 for a 6≡ 0 mod 2

a for a ≡ 0 mod 2

.

Writing in our formalism, where Vλ = Syma(St) with highest weight a, we have shown

irrλ(∇FG) =
1

2
χ(Vλ). (3.0.3)

Let us describe `(∇(a1)). Since a1 6= 0 we can define `(∇(a1)) as the line (in R) through 0

and a1. Since we are in one dimension `(a1)∩Pλ = Pλ, therefore we cannot cancel without

trivializing so we get c(∇(a1)) = 0. Therefore, we have

irrλ(∇(a1)) = χ(Vλ). (3.0.4)

Moreover, we see that for all Vλ ∈ Irr(sl2), we have the strict inequality

irrλ(∇FG) < irrλ(∇(a1)). (3.0.5)

This confirms the minimal irregularity conjecture for formal flat sl2((t))-connections, and

we have shown the following.
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Lemma 1.1. Let k ∈ Z>0, for Vλ ∈ Irr(sl2) with dominant weight λ = kε1, and a1 ∈ R×

then we have the following:

i.) irrλ∇(a1) = χ(Vλ),

ii.) irrλ∇FG = 1
2
χ(Vλ),

where ∇FG is the slope 1/2 Frenkel-Gross connection, ∇(a1) is the slope 1 minimal

diagonalizable connection, and χ(Vλ) =
∑

µ 6=0 dimV
µ
λ .

Corollary 1.1. For SL2, the Frenkel-Gross connection is the unique minimal irregular

singular formal flat connection, by which we mean

irrλ∇FG = min
∇∈L
{irrλ∇}

for all Vλ ∈ Irr(sl2).

For SLn and n ≥ 3 we will see that the λ-irregularity is, in some sense, not as alge-

braic, as it is for SL2. By this we mean, as we see in the above result, irrλ∇ can be given

entirely in terms of data coming from the representation Vλ and the Lie algebra via its

Coxeter number.

We continue with the sl3 case.

24



Chapter 4. sl3

In this case, as was the case for sl2, for the relevant classes of connections, namely

those with slopes 1, 1/2 and 1/3, irrλ takes the form

irrλ(∇) = s(∇)(χ(Vλ)− c(∇)).

Let Vλ ∈ Irr(sl3), then the highest weight will be of the form λ = (k1 + k2)ε1 + k2ε2 =

k1ε1 − k2ε3 and the weight polytopes are in two dimensional weight lattices Pλ ⊂ Z2 ⊂ R2.

The multiplicity of strings of weights are well known in this case, for instance see [9] .

We recall the structure. For an arbitrary weight polytope Pλ the strings of weights are

arranged in hexagons and triangles with their multiplicities potentially decreasing from

outer to inner strings. There are special cases. If k2 = 0 then the strings of weights will

be arranged as a sequence of only regular triangles and the multiplicity of the strings are

always one, in other words Kλµ = 1 for all µ � λ = k1ε1 with k1 ≥ 1. If k2 = k1 then

the polytope will consist of a sequence of only regular hexagons and the multiplicities of

the strings will increase by one from outer to inner, with the outer most hexagonal string

having multiplicity 1. In general, the strings in a weight polytope will be arranged in a

sequence of outer non-regular hexagons in which the multiplicities decrease by one from

outer to inner until you reach an inner sequence of regular triangles where the multiplic-

ities will be constant. A useful numerical property of χ(Vλ) is that it is dual invariant.

This implies dual invariance of irrλ, therefore without loss of generality we can consider

only the irreducibles with λ = k1ε1 − k2ε3 and k1 ≥ k2 in the cone of dominant weights

in the weight lattice. We note now an important difference in the sl3 case, which did not

occur in rank one, but will persist in higher rank. In this case we must consider the lower
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rank toral connections along with the toral connections of rank equal to the rank of the

Lie algebra. Let us first consider the irregular toral connections with fractional slope less

than one. We denote the three parameter Frenkel-Gross connection with slope 1/3 as ∇1/3

and the two parameter slope 1/2 connection as ∇1/2. As sl3((t))-connections we have the

following connection matrices

[∇1/3] =


0 0 a1t

−1

a2 0 0

0 a3 0


and

diag([∇1/2], 0) =


0 a1t

−1 0

a2 0 0

0 0 0

 .

For the slope one connections we have the two parameter connection ∇(a1, a2) and one

parameter connection ∇(a1), considered as sl3((t))-connections, with connection matrices

[∇(a1, a2)] = t−1


a1 0 0

0 a2 0

0 0 −a1 − a2


and

diag([∇(a1)], 0) = t−1


a1 0 0

0 −a1 0

0 0 0

 .

As before, to arrive at explicit formulae for irrλ, we describe the `(∇) subspaces of the

polytopes to determine c(∇). As we will see, in rank two, there can occur non-trivial can-

cellation of parameters.
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Let Vλ ∈ Irr(sl3), then Pλ ⊂ Z2 ⊂ R2. To address the minimal irregularity conjec-

ture for sl3, it follows to systematically understand where the function c(∇) is maximized

for a given irreducible representation. Our parameter space is then R2. Choosing a point

(a1, a2) 6= 0 ∈ R2 we let `(∇(a1, a2)) be the line through 0 and the point (a1, a2). For the

two parameter slope one irregular toral connection ∇(a1, a2) we note that p = rk(sl3).

For the one parameter slope one connection ∇(a1) we have that p < rk(sl3) which should

indicate that c(∇(a1)) will not always be 0. Indeed, observe that for ∇(a1) there is a can-

cellation that will automatically occur in the weight polytope Pλ. This happens because

its sl3 matrix has a zero in the third diagonal entry, therefore it follows that

c(∇(a1)) =
∑

µ 6=0∈`(ε3)∩Pλ

Kλµ (4.0.1)

for all a1 6= 0 and Vλ. For c(∇(a1, a2)), we first note that if a1 and a2 are Q-linearly inde-

pendent

c(∇(a1, a2)) = 0.

for all Pλ. A further analysis of the weight polytopes Pλ for λ = k1ε1 − k2ε3 and k1 ≥ k2

gives us that

max(c(∇(a1, a2))) =


∑

µ 6=0∈`(ε1)∩Pλ Kλµ if k1 − k2 6≡ 0 mod 3

∑
µ 6=0∈`(ε1−ε3)∩Pλ Kλµ if k1 − k2 ≡ 0 mod 3

. (4.0.2)

In the above formulas we have written `(εi) to be the line through the weight εi and the

zero weight i.e. the origin. Let us denote by r(εi) the ray extending from the zero weight

through the weight εi. Since `(εi) = −r(εi) ∪ r(εi),

∑
µ 6=0∈`(εi)∩Pλ

Kλµ =
∑

µ 6=0∈−r(εi)∩Pλ

Kλµ +
∑

µ6=0∈r(εi)∩Pλ

Kλµ. (4.0.3)
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For certain irreducible representations, the relevant lines will be symmetric about the ori-

gin. Let us turn our attention to the irregular formal flat connections with slope less than

one.

The parameter restriction condition for ∇1/3 is the same as before namely,

a1, a2, a3 6= 0. Since p(∇1/3) = 1, we have that c(∇1/3) = 0, and we arrive at the

formula

irrλ∇1/3 =
χ(Vλ)

3
.

Considering ∇1/2 as a sl3((t))-connection we see that while p(∇1/2) = 1, c(∇1/2) will not

always be zero. Indeed, by simple observation we see that for an arbitrary Vλ, χ(Vλ) will

not always be an even number so, by the integrality of the irregularity, c(∇1/2) will surely

not always be zero. By the same reasoning employed for the one parameter connection

∇(a1) of slope one, we see that there is a zero in the last diagonal entry of ∇1/2 considered

as an sl3((t))-connection, therefore we deduce that

c(∇1/2) =
∑

µ6=0∈`(ε3)∩Pλ

Kλµ. (4.0.4)

As noted above, there is an induced dual invariance of irrλ so that the relevant alcove we

must consider is made up of the points in between the boundaries of dominant weights of

the form λ = k1ε1 and λ = k2(ε1 − ε3) with k1, k2 ≥ 1. Let us examine our constructions

for the irreducible representations with highest weights on the boundaries of our alcove.

There is a well-known formula for the dimension of the zero weight space, for instance see
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[16], we have

dimV 0
λ =


1 +min{k1, k2} if k1 − k2 ≡ 0 mod 3

0 if k1 − k2 6≡ 0 mod 3

. (4.0.5)

It follows that for all Vλ that when a1 and a2 are Q-linearly independent

∑
µ 6=0∈`∩Pλ

dimV µ
λ = 0. (4.0.6)

The first examples of such irreducible representations are the so-called fundamental

representations. They are the standard representation, with highest weight λ = ε1, and the

adjoint representation, with highest weight λ = ε1 − ε3.

Let std ∼= C3 ∈ Irr(sl3) be the standard representation. Firstly, we note that

χ(std) = dim(std)− dim(std0) = 3.

So, for ∇1/3 we then have

irrstd(∇1/3) =
3

3
= 1.

For ∇1/2, in the standard representation Kλµ = 1 for all µ � λ therefore

c(∇1/2) =
∑

µ6=0∈`(ε3)∩Pλ

Kλµ =
∑

µ6=0∈`(ε3)∩Pλ

1 = 1,

thus

irrstd(∇1/2) =
3− 1

2
= 1.

We proceed with the slope one connections ∇(a1, a2). For `(∇(a1, a2)) we choose a point

in the parameter space and take `(∇(a1, a2)) to be the line from that point to 0 ∈ R2

which will correspond to the connection ∇(a1, a2) with parameters (a1, a2) 6= 0 ∈ R2. For

∇(a1, a2) we find that the domain of irrSt∇(a1, a2) is broken into six sectors separated by
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three lines. Along said lines the function irrSt : ∇(a1, a2) → Z≥0 is minimized. This hap-

pens since if you choose (a1, a2) lying on one of these lines you can cancel the parameter

and the resulting connection will still be irregular singular. Therefore this produces three

kinds of irregular singular connections with slope one, corresponding to connections with

coordinate lying on one of the three lines in the domain of irrSt∇(a1, a2), they are of the

form ∇(a1, 0),∇(0, a2) and ∇(a1,−a1).

We compute the irregularities of ∇1/i for i = 2, 3, ∇(a1, a2) and ∇(a1) in the stan-

dard representation std ∈ Irr(sl3).For the one parameter connection ∇(a1) we have

irrstd(∇(a1)) = 3−
∑

µ 6=0∈`(ε3)∩Pλ

1 = 3− 1 = 2.

For the two parameter connection ∇(a1, a2), since k1 = 1 6≡ 0 mod 3, we have that

max(c(∇(a1, a2))) =
∑

µ 6=0∈`(ε1)∩Pλ

1 = 1.

Therefore

min{irrstd(∇(a1, a2))} = 3− 1 = 2.

In conclusion we see that for the standard representation, the minimal irregularity prob-

lem is solved by the two fractional slope connections. In other words

irrstd(∇1/i) = min
∇∈L
{irrstd(∇)} (4.0.7)

for i = 2 and 3.

We now consider the eight dimensional adjoint representation ad ∈ Irr(sl3) with

highest weight λ = ε1 − ε3. For the slope one diagonalizable type connection ∇(a1, a2) the

domain of irrAd∇(a1, a2) again breaks into six sectors separated by three lines. It follows
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that

irrAd∇(a1,−a1) = irrAd∇(a1,−2a1) = irrAd∇(a1,−
1

2
a1) = 4

and irrAd∇(a1, a2) = 6 otherwise. In this case we have

χ(ad) = dim(ad)− dim(ad0) = 8− 2 = 6,

and, as for the standard representation, Kλµ = 1 for all µ � λ. Observe that in the adjoint

representation, `(ε3) ∩ Pλ = ∅, therefore

∑
µ 6=0∈`(ε3)∩Pλ

Kλµ = 0. (4.0.8)

It follows that

irrad(∇1/3) =
6

3
= 2.

This is in agreement with the results of [KS19]. For ∇1/2 we see that via (4.6), c(∇1/2) =

0, thus

irrad(∇1/2) =
6

2
= 3.

Note, in contrast to the case for the standard representation we have

irrad(∇1/3) < irrad(∇1/2). (4.0.9)

For the one parameter connection ∇(a1), since c(∇(a1)) = 0,

irrad(∇(a1)) = 6.

Lastly, for the two parameter, slope one connection ∇(a1, a2), since k1−k2 = k1−k1 = 0 ≡

0 mod 3 and by the above discussion

max(c(∇(a1, a2))) =
∑

µ 6=0∈`(ε1−ε3)∩Pλ

1 = 2.
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Thus

min{irrad(∇(a1, a2))} = 6− 2 = 4.

We conclude that

irrad(∇1/3) = min
∇∈L
{irrad(∇)}, (4.0.10)

and we note that in the adjoint representation, the minimal irregularity problem is solved

by the unique minimal slope connection ∇1/3.

Let us consider the six dimensional irreducible representation Sym2(std) ∈ Irr(sl3)

with highest weight 2ε1. In this case it follows that

irr2ε1(∇1/3) = 6/3

= 2

= 4/2 = irr2ε1(∇1/2)

and

irr2ε1(∇(a1)) = 4 = min{irr2ε1(∇(a1, a2))}.

Therefore as with the standard representation

irr2ε1(∇1/i) = min
∇∈L
{irr2ε1(∇)} (4.0.11)

for i = 2 and 3.

Let us now consider the irreducible representations along the boundaries of our re-

duced alcove in the cone of dominant weights P++.

We first consider the irreducible representations with highest weights k1ε1 with

k1 ∈ Z≥1. These correspond to the symmetric powers of the standard representation. The
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structure of the weight polytope Pk1ε1 particularly nice. As noted above, in this case, the

strings of weights are arranged purely as concentric regular triangles. Another useful fact

in this case is that the multiplicity of all the weights are one, i.e. Kλµ = 1 throughout the

polytope. Therefore, our approach essentially turns into a counting problem. For k1 ≥ 1

χ(Vk1ε1) = dim(Vk1ε1)− dim(V 0
k1ε1

)

=
(k1 + 1)(k1 + 2)

2
−


1 if k1 ≡ 0 mod 3

0 if k1 6≡ 0 mod 3

.

As we have seen throughout, the relevant data coming from the connection is the parame-

ter cancellation number. Note that in general

c(∇1/2) = c(∇(a1)) =
∑

µ6=0∈`(ε3)∩Pλ

Kλµ.

Another useful fact is that in Pk1ε1

∑
µ6=0∈`(ε3)∩Pλ

Kλµ =
∑

µ6=0∈`(ε1)∩Pλ

Kλµ. (4.0.12)

Therefore by (3.10) and (3.2), to compute all the parameter cancellation numbers, it fol-

lows to evaluate the sums over the two intersections, `(ε1) ∩ Pλ and `(ε1 − ε3) ∩ Pλ. Since

Kλµ = 1 we have

∑
µ6=0∈`(ε1)∩Pλ

Kλµ =
∑

µ6=0∈`(ε1)∩Pλ

1

=
∑

µ6=0∈−r(ε1)∩Pλ

1 +
∑

µ 6=0∈r(ε1)∩Pλ

1.

We observe that
∑

µ 6=0∈r(ε1)∩Pλ 1 counts the number of triangles, therefore

∑
µ6=0∈r(ε1)∩Pλ

1 =

⌊
k1 + 2

3

⌋
.
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For
∑

µ6=0∈−r(ε1)∩Pλ 1, by computational inspection we find the following curious identity

∑
µ6=0∈−r(ε1)∩Pλ

1 =

⌊
k1
2

⌋
−
⌊
k1
3

⌋
. (4.0.13)

Putting this together arrive at the following formula

∑
µ6=0∈`(ε1)∩Pλ

1 =

⌊
k1
2

⌋
−
⌊
k1
3

⌋
+

⌊
k1 + 2

3

⌋
. (4.0.14)

We note that it follows to sum over µ 6= 0 ∈ `(ε1 − ε3) ∩ Pλ only when k1 ≡ 0 mod 3.

And, in such cases the line `(ε1 − ε3) intersects the polytope the same number of times in

the two directions, therefore for k1 ≡ 0 mod 3

∑
µ 6=0∈−r(ε1−ε3)∩Pλ

1 =
∑

µ6=0∈r(ε1−ε)∩Pλ

1

so that

∑
µ 6=0∈`(ε1−ε3)∩Pλ

1 = 2
∑

µ 6=0∈r(ε1−ε3)∩Pλ

1.

We observe that for k1 ≡ 0 mod 3 the sum over the intersection r(ε1 − ε3) ∩ Pλ again just

counts the number of triangles, therefore

∑
µ6=0∈`(ε1−ε3)∩Pλ

1 = 2
∑

µ 6=0∈r(ε1−ε3)∩Pλ

1

= 2 · k1
3
.

With these formulae we can now give explicit formulas for irrk1ε1 . In other words, have

shown the following lemma.
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Lemma 1.2. Let k1 ∈ Z≥1, then for Vk1ε1 ∈ Irr(sl3) we have

irrk1ε1(∇1/3) =
χ(Vk1ε1)

3
, (4.0.15)

irrk1ε1(∇1/2) =
1

2

[
χ(Vk1ε1)−

[⌊
k1
2

⌋
−
⌊
k1
3

⌋
+

⌊
k1 + 2

3

⌋]]
, (4.0.16)

irrk1ε1(∇(a1)) = χ(Vk1ε1)−
[⌊
k1
2

⌋
−
⌊
k1
3

⌋
+

⌊
k1 + 2

3

⌋]
, (4.0.17)

min{irrk1ε1(∇(a1, a2))} = χ(Vk1ε1)−


2 · k1

3
if k1 ≡ 0 mod 3

⌊
k1
2

⌋
−
⌊
k1
3

⌋
+
⌊
k1+2
3

⌋
if k1 6≡ 0 mod 3

,

(4.0.18)

where χ(Vk1ε1) = (k1+1)(k1+2)
2

−


1 if k1 ≡ 0 mod 3

0 if k1 6≡ 0 mod 3

.

We proceed to derive the analogous formulae for the irreducible representations on

the other boundary component. Without loss of generality, these irreducible representa-

tions will have highest weights λ = k2(ε1 − ε3) with k2 ∈ Z≥1. For such irreducible rep-

resentations, the weight polytopes will no longer have constant Kostka numbers. However,

the strings of weights will be arranged in sequences of concentric regular hexagons. The

strings of weights will have multiplicities, from inner to outer, k2 − i with i = 0, 1, . . . , k2 −

1. It follows that for k2 6= 0,

χ(Vk2(ε1−ε3)) = (k2 + 1)3 − (k2 + 1)

= (k2 + 1)((k2 + 1)2 − k2 − 1)

= (k2 + 1)(k22 + k2)

= k2(k2 + 1)2.
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Another simplicity here is that all the intersections ` ∩ Pλ enjoy the property

∑
µ 6=0∈−r∩Pλ

Kλµ =
∑

µ6=0∈r∩Pλ

Kλµ,

so that it will always be the case that

∑
µ6=0∈`∩Pλ

Kλµ = 2
∑

µ 6=0∈r∩Pλ

Kλµ. (4.0.19)

In determining the parameter cancellation numbers we find that, as before, we need only

consider the sums over the two intersections `(ε3) ∩ Pλ and `(ε1 − ε3) ∩ Pλ. We find that

∑
µ 6=0∈`(ε1−ε3)∩Pλ

Kλµ = 2
∑

µ6=0∈r(ε1−ε3)∩Pλ

Kλµ

= 2

k2−1∑
i=0

(k2 − i)

= 2(k2 +

k2−1∑
i=1

(k2 − i))

= 2(k2 +

k2−1∑
i=1

k2 +

k2−1∑
i=1

i

= 2

(
k2 + k2(k2 − 1) +

(k2 − 1)k2
2

)
= k2(3(k2 − 1) + 2).

For `(ε3) ∩ Pλ we find that

∑
µ 6=0∈`(ε3)∩Pλ

Kλµ = 2
∑

µ6=0∈r(ε3)∩Pλ

Kλµ

= 2

k2−1∑
i=0
i odd

(k2 − i).

For the two parameter slope one connection ∇(a1, a2) we find that

max(c(∇(a1, a2))) =
∑

µ6=0∈`(ε1−ε3)∩Pλ

Kλµ. (4.0.20)

Therefore we have shown the following identities
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Lemma 1.3. Let k2 ∈ Z≥1, then for Vk2ε1 ∈ Irr(sl3) we have

irrk2(ε1−ε3)(∇1/3) =
χ(Vk2(ε1−ε3))

3
, (4.0.21)

irrk2(ε1−ε3)(∇1/2) =
1

2

χ(Vk2(ε1−ε3))− 2

k2−1∑
i=0
i odd

(k2 − i)

 , (4.0.22)

irrk2(ε1−ε3)(∇(a1)) = χ(Vk2(ε1−ε3))− 2

k2−1∑
i=0
i odd

(k2 − i), (4.0.23)

min{irrk2(ε1−ε3)(∇(a1, a2))} = χ(Vk2(ε1−ε3))− k2(3(k2 − 1) + 2), (4.0.24)

with χ(Vk2(ε1−ε3)) = k2(k2 + 1)2.

For the remaining cases, we consider Vλ ∈ Irr(sl3) with highest weight λ = k1ε1 −

k2ε3 and k1 > k2 6= 0. We note that the corresponding formulas in this case will generalize

the previous two lemmas. Thus, we will use the last resulting lemma to prove the minimal

irregularity conjecture for sl3.

In this case the strings of weights in the corresponding polytope will be arranged in

an outer sequence of non-regular hexagons and an inner sequence of regular triangles. For

the outer sequence of hexagons the Kostka numbers will again increase by one as we move

from outer to inner until we reach the sequence of triangles, where they will remain con-

stant. Let us denote by T the data coming from the sequence of triangles and by H the

data coming from the sequence of hexagons. As we will see, in this case, the intersection

sums will break into a T -sum and an H-sum. We note that since k1 > k2, k1 − k2 > 0.

As expected, we find that the relevant intersections to sum over will be `(ε1) ∩ Pλ and

`(ε1 − ε3) ∩ Pλ.

We determine the Kostka numbers for the strings of weights. On the sequence of
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hexagons, from inner to outer, they will be, as before, k2 − i for i = 0, 1, . . . , k2 − 1. For

the sequence of triangles, where they are constant, they will be k2 + 1. Let us consider the

intersection `(ε3) ∩ Pλ. We first compute the H and T data individually. The H-data will

be

∑
µ 6=0∈`(ε3)∩Pλ

Kλµ =
∑

µ 6=0∈−r(ε3)∩Pλ

Kλµ +
∑

µ 6=0∈r(ε3)∩Pλ

Kλµ

=

k2−1∑
i=0
i even

(k2 − i) +

k2−1∑
i=0
i odd

(k2 − i)

=

k2−1∑
i=0

(k2 − i)

=
k2(3(k2 − 1) + 2)

2
.

For the T -data we can modify the identity (3.12) by using k1 − k2 rather than k1 and in-

stead of 1 for the Kostka number, we have k2 + 1. Therefore, we find that the T -data is

∑
µ6=0∈`(ε1)∩Pλ

(k2 + 1) = (k2 + 1)
∑

µ6=0∈`(ε1)∩Pλ

1

= (k2 + 1)

(⌊
k1 − k2

2

⌋
−
⌊
k1 − k2

3

⌋
+

⌊
k1 − k2 + 2

3

⌋)
.

Putting this together we conclude

∑
µ 6=0∈`(ε3)∩Pλ

Kλµ =
k2(3(k2 − 1) + 2)

2
(4.0.25)

+ (k2 + 1)

(⌊
k1 − k2

2

⌋
−
⌊
k1 − k2

3

⌋
+

⌊
k1 − k2 + 2

3

⌋)
.

We proceed with the intersection `(ε1−ε3)∩Pλ. As usual, we only consider this case

when λ = k1ε1 − k2ε3 and k1 − k2 ≡ 0 mod 3. As we’ve seen throughout, the intersection
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sum is the same for r and −r. For the H-data we have

∑
µ 6=0∈`(ε1−ε3)∩Pλ

Kλµ = 2

k2−1∑
i=0

(k2 − i)

= k2(3(k2 − 1) + 2).

And for the T -data we can deduce

∑
µ6=0∈`(ε1−ε3)∩Pλ

Kλµ =
2(k2 + 1)(k1 − k2)

3
.

Combining, we have

∑
µ6=0∈`(ε1−ε3)∩Pλ

Kλµ = k2(3(k2 − 1) + 2) +
2(k2 + 1)(k1 − k2)

3
. (4.0.26)

Once again, we compose these results into explicit formulae for irrk1ε1−k2ε3 . And,

we have shown the following lemma.

Lemma 1.4. Let Vλ ∈ Irr(sl3) with highest weight λ = k1ε1 − k2ε3 and k1 > k2 6= 0. It

follows that

irrk1ε1−k2ε3(∇1/3) =
χ(Vk1ε1−k2ε3)

3
(4.0.27)

irrk1ε1−k2ε3(∇1/2) =
1

2

[
χ(Vk1ε1−k2ε3)− (R.H.S. of (4.25))

]
(4.0.28)

irrk1ε1−k2ε3(∇(a1)) = χ(Vk1ε1−k2ε3)− (R.H.S. of (4.25)) (4.0.29)

min{irrk1ε1−k2ε3(∇(a1, a2))} = χ(Vk1ε1−k2ε3) (4.0.30)

−


k2(3(k2 − 1) + 2) + 2(k2+1)(k1−k2)

3
if k1 − k2 ≡ 0 mod 3

(R.H.S. of (4.25)) if k1 − k2 6≡ 0 mod 3

with χ(Vk1ε1−k2ε3) = (k1+1)(k2+1)(k1+k2+2)
2

−


1 +min{k1, k2} if k1 − k2 ≡ 0 mod 3

0 if k1 − k2 6≡ 0 mod 3

.
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To prove the conjecture for all Irr(sl3) we must show inequalities among the above

identities. We first note that (4.28) < (4.29) will always hold. Also, in the case k1 − k2 6≡ 0

mod 3 we see that (4.29) = (4.30). We first want to show (4.27) < (4.28).

Note (4.27) < (4.28) if and only if

χ

3
<
χ−R.H.S.

2
⇔ 6(R.H.S.) < 2χ,

where we multiply by 2 to get rid of denominators in the expressions. Expanding and sim-

plifying we have that the last inequality is the same as

6(k2 + 1)T (k1 − k2) < k21k2 + k22k1 + k21 − 9k22 + 3k1k2 + 3k1 + k2 + 3 (4.0.31)

where we’ve written T (k1 − k2) =
⌊
k1−k2

2

⌋
−
⌊
k1−k2

3

⌋
+
⌊
k1−k2+2

3

⌋
. Let k1 = k2 + a where

a ≥ 0 is an integer. Then the R.H.S. of (4.31) becomes

(k2 + a)2k2 + k22(k2 + a) + (k2 + a)2 − 9k22 + 3(k2 + a)k2 + 3(k2 + a) + k2 + 3 =

= 2k32 + (3a− 5)k22 + (5a+ 4)k2 + a2 + 3a+ 3.

Note also that

6(k2 + 1)(
a

2
− a

3
+ 1 +

a+ 2

3
) = 6(k2 + 1)(a+

5

3
) (4.0.32)

=
6(k2 + 1)(3a+ 10)

6

= (k2 + 1)(3a+ 10).

This allows us to approximate the LHS of (4.31). Therefore, we have

(RHS of (4.31))− (LHS of (4.31)) ≥ (RHS of (4.31))− (4.32)

= 2k32 + (3a− 5)k22 + (2− 6)k2 + (a2 − 7). (4.0.33)
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We see that every term in (4.33) is positive except the last three when a = 1 or the last

two when a = 2. Therefore, if a ≥ 3 we have that

(RHS of (4.31))− (LHS of (4.31)) ≥ 0 (4.0.34)

for all k2 ≥ 0. For a = 2, 1 we can use (4.33). Note, If a = 2, (4.33) becomes 2k32 + k22 −

2k2 − 3, therefore if k2 = 0, 2k32 + k22 − 2k2 − 3 = −3 and similarly if k2 = 1 we have

-2. So we must check (k1, k2) = (2, 0), (3, 1). Also, if a = 1 we then when k2 = 0, 1, 2

(4.33) gives -6,-10, and -6, respectively. Thus, in total, we must check when (k1, k2) =

(2, 0), (3, 1), (1, 0), (2, 1), (3, 2). For (k1, k2) = (2, 0) we have 12 < 13. For (k1, k2) = (3, 1)

we have 12 < 34. For (k1, k2) = (1, 0) we have 6 < 7. For (k1, k2) = (2, 1) we have 12 < 17.

And, for (k1, k2) = (3, 2) we have 18 < 35. Therefore we have shown the following theo-

rem.

Theorem 2. Let ∇1/2 and ∇1/3 be as above, then for all Vλ ∈ Irr(sl3)

irrλ(∇1/3) ≤ irrλ(∇1/2), (4.0.35)

with equality holding only for Vλ with λ = ε1 and 2ε1.

Proof.

We now consider the main ingredient to prove the minimal irregularity conjecture,

which is to compare (4.27) and (4.30) when k1 − k2 ≡ 0 mod 3. For the conjecture to hold

it should follow that (4.27) < (4.30). This is the same as

χ

3
< χ−

(
k2(3(k2 − 1) + 2) +

2(k2 + 1)(k1 − k2)
3

)
.

Simplifying and expanding we find that this is equivalent to whether

0 < k21k2 + k22k1 + 2k1k2 − 6k22 + k21 − 4k2 + k1 (4.0.36)
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is always true. Now since k1 − k2 > 0 and k1 − k2 ≡ 0 mod 3 we can write k1 = k2 + 3b

with b ≥ 1. Rewriting the RHS we have

2k32 + (9b− 3)k22 + (9b2 + 12b− 3)k2 + 9b2 + 3b.

We see that 9b− 3 and 9b2 + 12b− 3 will always be positive for b ≥ 1, therefore (4.36) will

always hold. This shows the conjecture for sl3. We have the following theorem.

Theorem 3. For all Vλ ∈ Irr(sl3) not the trivial representation,

irrλ(∇1/3) = min
∇∈Lirr

{irrλ(∇)}.

In other words, the minimal irregularity conjecture holds true for SL3.

Proof.
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Chapter 5. Concluding Remarks

In summary, the main directive of this thesis was to describe how for G = SL2 and

SL3, the Frenkel-Gross connection realizes the strict lower bound of the irregularity func-

tion irrλ of a formal flat G-bundle, with respect to an arbitrary element of Vλ ∈ Irr(G).

In closing, we examine some examples in order to illustrate what occurs for other simple

G.

Consider g = sp4, with Coxeter number 4. In this case, the eigenvalues must come

in pairs. We list the relevant combinatorial classes of connections to be considered. We

have the Coxeter connections ∇1/4 and ∇1/2 with LT forms

Ct−1/4



1

ζ4

ζ24

ζ34


and Ct−1/2



1

ζ2

0

0


respectively, where ζi is an ith root of unity. The diagonalizable connection ∇(a1, a2) will

have connection matrix

t−1



a1

a2

−a1

−a2


.

And, in this case there is also a non-generic connection with two different slopes, which we
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denote by ∇1/2,1, its LT form can be written as follows

[∇1/2]

[∇(a1)]

 =



Ct−1/2

Cζ2t
−1/2

a1t
−1

−a1t−1


.

Since there does exist explicit formulae for the dimensions of arbitrary weight spaces for

Vλ ∈ Irr(sp4), the techniques applied in the proofs presented above should also be able to

be applied to address the minimal irregularity conjecture for Sp4.

For groups of higher rank it seems that one can only find explicit formulas for di-

mensions of arbitrary weight spaces of certain special irreducible representations. There-

fore, new or modifications of our techniques might need to be considered to prove the the

minimal irregularity conjecture in full generality for a given simple Lie algebra of a speci-

fied rank.
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2008/2009 exposés 997-1011 - Avec table par noms d’auteurs de 1848/49 à 2008/09,
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