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Abstract 

Modern human-machine systems such as microservices rely upon agile engineering practices 

which require changes to be tested and released more frequently than classically engineered sys- 

tems. A critical step in the testing of such systems is the generation of realistic workloads or load 

testing. Generated workload emulates the expected behaviors of users and machines within a 

system under test in order to find potentially unknown failure states. Typical testing tools rely 

on static testing artifacts to generate realistic workload conditions. Such artifacts can be cumber- 

some and costly to maintain; however, even model-based alternatives can prevent adaptation to 

changes in a system or its usage. Lack of adaptation can prevent the integration of load testing 

into system quality assurance, leading to an incomplete evaluation of system quality. 

The goal of this research is to improve the state of software engineering by addressing open 

challenges in load testing of human-machine systems with a novel process that a) models and 

classifies user behavior from streaming and aggregated log data, b) adapts to changes in system 

and user behavior, and c) generates distributed workload by realistically simulating user behav- 

ior. This research contributes a Learning, Online, Distributed Engine for Simulation and Testing 

based on the Operational Norms of Entities within a system ( lodestone ): a novel process to dis- 

tributed load testing by modeling and simulating user behavior. We specify lodestone within 

the context of a human-machine system to illustrate distributed adaptation and execution in load 

testing processes. lodestone uses log data to generate and update user behavior models, cluster 

them into similar behavior profiles, and instantiate distributed workload on software systems. 

We analyze user behavioral data having differing characteristics to replicate human-machine in- 

teractions in a modern microservice environment. We discuss tools, algorithms, software design, 

and implementation in two different computational environments: client-server and cloud-based 

microservices. We illustrate the advantages of lodestone through a qualitative comparison of 

key feature parameters and experimentation based on shared data and models. lodestone con- 

tinuously adapts to changes in the system to be tested which allows for the integration of load 

testing into the quality assurance process for cloud-based microservices. 

xi



 

Chapter 1. Introduction 

My life seemed to be a series of events 

and accidents. Yet when I look back, I 

see a pattern. 

-- Benoît Mandelbrot 

A Fractal Life 

With the proliferation of the human population, our interconnected devices, and the systems 

which now compose our infrastructure and every facet of modern civilization, our society has 

evolved into an ecosystem of humans and machines emitting a profound amount of data every 

day about how its denizens live and interact. One way in which our human-machine ecosystem 

records and echoes human behavior is through digital traces produced as a side effect of humans 

changing or interacting with other people, processes, and technology. From a human-centric 

perspective, such traces of behavior can be used to describe a population of users as well as the 

devices with which they regularly interact. However, the scale of data recording human-machine 

events can be overwhelming in even the simplest of scenarios; moreover, attempts to expand and 

use the knowledge inside streams of trace data can overwhelm the resources organizations are 

willing to dedicate toward analysis. As the amount of data produced by our human-machine 

ecosystem outpaces the ability to consume and understand it, a pressing need exists to change 

the computational approaches, tool-sets, and mind-sets we use to create and maintain the systems 

upon which our society relies. 

A landmark stride toward improving the approaches associated with creation and analysis of 

systems is the advent of the cloud. The rapid propagation of cloud technology has sparked the 

widespread adoption of architectural patterns such as stateless microservices based on represen- 

tational state transfer (REST) and similar protocols [56]. Microservices rely less frequently upon 

heavyweight, synchronous, stateful operations preferring lightweight, asynchronous, stateless 

operations built on serverless computing functionality such as Lambda Functions from Amazon 

Web Services (AWS) [3] or similar offerings from other commercial cloud-service providers [2, 8, 
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51, 61, 91].The decrease in cost for computational cycles juxtaposes the increase in availability of 

technological solutions and knowledge. Dynamically evolving software design choices replacing 

classical architectures motivate a rationale to change the manner and extent to which modern 

systems should be evaluated for quality. 

1.1. Research Questions 

The goal of this research is to improve the state of software engineering by addressing open 

challenges in load testing of human-machine systems with a novel approach that: a) models and 

classifies user behavior from streaming and aggregated log data, b) adapts to changes in system 

and user behavior, and c) generates distributed workload by realistically simulating user behavior. 

This research is motivated by the following questions: 

𝑅𝑄1: Can a data-driven process for Markov Chain (MC) model-based load testing be developed 

that offers advantages over existing data-driven processes? 

𝑅𝑄2: Can raw streaming behavioral data in a human-machine system be continuously and effi- 

ciently measured, modeled, and stored as MC models? 

𝑅𝑄3: Can aggregated batched behavioral data in a human-machine system be systematically 

grouped into semantically related MC models? 

𝑅𝑄4: Can MC models of a human-machine system be extended to adapt to changes in a system 

under observation? 

1.2. Challenges of Markov Chain Model-based Load Testing 

Current load testing (LT) processes are not capable of swiftly adapting to changes within a system 

under observation, requiring manual work by quality assurance engineer(s) (QA) for static and 

modeled processes [13]. Indeed, an automated load testing system capable of mimicking the 

capabilities of live human testers to adapt to the changes in a system under test does not exist [68]. 

Most classical automated testing systems are either strictly “record and play” based on system 

traces, randomized with a backing MC model, or use probabilistic timed automatons which extend 

the capabilities of a MC model by adding the dimension of thinktime to show how users might 

pause while moving from state to state to increase workload realism [68, 126]. 
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However, even recent processes to LT are not adaptive or reactive to changes in the system 

to be tested [13, 77]; moreover, LT of modern microservice architectures provides additional 

challenges over classical architectures [56]. The current capabilities of cloud-native test systems 

can partially address the performance concerns listed in [56, 98] through ready availability, swift 

scale-out/scale-in, distributed computation spanning geographic and infrastructure boundaries to 

mimic actual users of cloud-based systems, and fine-grained component-level monitoring [88]. 

Thematic challenges from the works above are: 

𝐶1: As users become more familiar with a system, usage patterns are likely to change which 

merits an update to a realistic-based testing load. [68] 

𝐶2: As a system evolves over time, model building of fault-inducing loads might be improved 

through incremental analysis of the system internals. [68] 

𝐶3: LT processes should align with agile development practices such as continuous integration, 

dynamic deployment, and test automation. [56] 

𝐶4: LT processes should continuously update testing artifacts such as models and scenarios based 

on changes in the underlying infrastructure, system, and user behavior. [56] 

The research suggests that viable processes addressing these challenges should be robust in 

differing properties; to wit, such processes should use multiple agents and be adaptive, realistic, 

efficient, and operationally based. 

𝑃1(Adaptive) : A process for load testing which is adaptive should be able to automatically evolve, 

based on changes in the underlying system under observation (SUO). 

𝑃2(Realistic) : A process for load testing which is realistic should produce or run load tests which 

are representative of how the SUO is used, or will be used. 

𝑃3(Efficient) : A process for load testing which is efficient should not rely upon algorithms or data 

structures which preclude testing of arbitrarily large systems. 

𝑃4(Multiple Agents) : A process for load testing which uses Multiple Agents should be agent-based 

and should rely on more than one operating agent. 

3



 

𝑃5(Operationally Based) : A process for load testing which is operationally based should use data 

representative of the people, process, and technology of the SUO. 

In summary, data-driven processes for realistic model-based load testing should continuously 

and automatically adapt to behavioral and infrastructural changes in a system to be tested. We 

examine how existing processes address these challenges. 

1.3. Existing Processes 

Previous attempts at automated load testing provide valuable insight and direction; however, no 

process exists which addresses challenges 𝐶1− 𝐶4 

or exhibits properties 𝑃1− 𝑃5 

listed in Section 1.2. 

A load testing process which exhibits these properties would exhibit advantages over existing load 

testing methodologies. We describe previous attempts to better frame the scope of this research. 

(2002) Kant et al. [70] show the design of Geist as a means of showing how a MC model 

can drive a system for stress testing web servers. While Geist is ‘dialable’, it does not provide a 

mechanism for automatically adapting to changes in the SUO. Geist is based on operational traffic 

and provides a requisite level of realism, but does not provide a suitable means for efficiently 

scaling to ‘large’-scale systems. Moreover, Geist does not allow for multiple running agents or 

modeling of user behavior; rather, it replays traffic which has previously been observed in the 

system similar to Selenium [19]. 

(2002) Menasce [84] shows methods which are not adaptive in nature, but rely upon manual 

changes to the load testing process. Menasce’s process is based on virtual users which run in a 

load generating program. However, this process is not efficient, as the load generating program 

is not designed for distributed computing or for using multiple agents to generate the requisite 

workload. It also is not specifically designed for inducing faults; rather, it focuses on means to 

replay traffic behavior based on manually created customer/user models. As the load testing 

process is based on replaying of behavior which has been previously observed, it is realistic in 

nature. 
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(2005) Canfora et al. [23] use genetic algorithms in order to provide adaptive responses to 

change in the system under test (SUT). Their methods are not based in operational behavior or 

behavioral models, preferring a prescriptive rule-based process instead. Genetic algorithms are 

unconstrained [23], thus efficiency is not baked into this process, although the authors seek to 

constrain the boundaries of the genetic algorithms used. The genetic algorithms used do not use 

multiple agents due to performance limitations. However, the method is designed to elicit faults 

through the dynamic genetic algorithm process and will optimize toward finding such faults. 

(2007) Barros et al. [9] show a process for load testing which is based on operational data and 

MC models to perform cached replaying of the behavior of the SUO. The process is not efficient 

in that models have the potential for becoming larger than is computationally feasible for many 

organizations, and the authors do not provide a means for compensating; moreover the process 

does not use multiple agents or a distributed framework for executing workload. The process is 

designed for benchmarking systems. However, it is operationally based as it uses logs from the 

SUO as input for the underlying MC models. 

(2007) Penta et al. [37] use genetic algorithms to optimize against the Quality of Service (QoS) 

constraints given. Their algorithm is capable of changing and optimizing toward the goal of 

violating those constraints, thus the load testing process is adaptive. However, the process is 

not realistic in that it is focused on violating QoS and is not based on any realistic behavior 

patterns. Genetic algorithms are not inherently efficient due to the large state space they cover. 

The process by Penta et al. is not designed to use multiple agents or distributed computation. 

Finally, the process seeks to induce faults related to QoS and is not based on operational data, 

rather on states in the SUO. 

(2009) Gu & Ge [53] use genetic algorithms as a means for load testing as they seek to have 

the process adapt to changes in the SUO. This process is not realistic as it searches over tests for 

suitable candidates rather than working with realistic behavior patterns. Genetic algorithms are 

not inherently efficient due to the large state space. The process is not designed for distribution 
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as it runs offline. Genetic algorithms are not by default agent-based; also, the process is not 

distributed. As with Penta et al.[37], the load testing process used in this process seeks to violate 

QoS restrictions. The process focuses on system modeling based explicitly on QoS, not on actual 

program execution or operational data. 

(2012) Zhang et al. [143] have a compositional process for load testing which is adaptive in 

nature based on the analysis of system components. Their focus on the system components does 

not provide a realistic user-behavioral point of reference for load testing; however, it does lend 

itself gracefully to distributed workflows. However, the state space of the symbolic execution 

mechanism proposed can grow beyond the boundaries of what we would consider an ‘efficient’ 

load testing process. The compositional process is not inherently multi-agent based; however, 

each subcomponent could be analyzed by an agent with different goals and rewards. The process 

is not based on log data; rather, their method is based on system component information. 

(2015) Cotreneo et al. [35] describe RELAI which does not adapt to changes in the SUO as it 

does not ingest additional data for behavior modeling after the first ingestion. RELAI supports 

usage of operational/usage profiles, but is structured for running on a single test machine, rather 

than being distributed. RELAI is not multi-agent based, neither is it designed to specifically find 

faults in the SUT; however, RELAI is based on operational data such as user profiles or machine 

profiles. 

(2015) Schur et al. [105] do not provide a mechanism for automatically adapting to changes 

in the SUO. When defining ProCrawl, they specified challenges related to ‘adapting’ the under- 

lying models to a new SUO-based operational profile. The process can be considered realistic 

as is based on user/system behavioral data to automate testing. ProCrawl does not work in a 

distributed fashion, thus scaling the process to a large-scale system is infeasible. ProCrawl uses 

operational data; however, it is not designed to work with multiple agents or in a distributed 

manner. ProCrawl focuses on extracting operational models from software in which multiple 

users are working through concurrent workflows. 
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Table 1.1. Qualitative Comparison of Existing Load Testing Processes

 

𝑃1

 

𝑃2

 

𝑃3

 

𝑃41

 

𝑃5 

Author

 

Adaptive

 

Realistic

 

Efficient

 

Multiple Agents

 

Operationally Based

 

Barros et al. [9]

 

✓

 

✓

 

Canfora et al. [23]

 

✓

 

Cotreneo et al. [35]

 

✓

 

✓

 

Gu & Ge [53]

 

✓

 

Kant et al. [70]

 

✓

 

✓

 

Menasce [84]

 

✓

 

✓

 

Penta et al. [37]

 

✓

 

Schur et al. [105]

 

✓

 

✓

 

van Hoorn [58]

 

✓

 

✓

 

Vogele et al. [126]

 

✓

 

✓

 

Zhang et al. [143]

 

✓

 

(2008, 2016) van Hoorn, Vogele et al. [58, 126] proposed Markov4JMeter as a MC method for 

realistic load testing; however, Markov4JMeter does not provide a mechanism for automatically 

adapting to changes in the SUO. Manual pre-processing is required to create the operationally 

based models used for executing LT in Markov4JMeter; however, these MC models are realistic 

when executing against the SUT. Markov4JMeter is based on JMeter [117] - a tool known in 

industry for having efficiency limitations [15] and operating on a single machine rather than 

multiple agents. This process was extended in 2016 with WESSBAS [126] which centers on a 

domain specific language for mining MC models from operational data. However, WESSBAS 

does not have the capability for continuous adaptation to the SUO, and still requires offline pre- 

processing and modeling of data. 

A summary of these processes and how they relate to properties 𝑃1− 𝑃5 

defined in Section 1.2 

is listed in Table 1.1. Upon review of the existing processes for automated load testing, a process 

to distribute load testing by modeling and simulating user behavior which successfully addresses 

all of the challenges 𝐶1 − 4 

listed in Section 1.2 does not exist. 
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Figure 1.1. Sequence Diagram of lodestone Process 
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1.4. LODESTONE Process 

We present a Learning, Online, Distributed Engine for Simulation and Testing based on the Op- 

erational Norms of Entities within a system ( lodestone ). The process can be implemented in 

any distributed computing environment where there exists a SUT separated from a SUO and op- 

erational logs can be mined from the SUO. A more detailed overview of our process is illustrated 

by the diagram in Figure 1.1. lodestone requires the following end-to-end sequential steps con- 

tinuously operating to generate workload against the SUT: 

I. Generate Behavioral Data : Event data are produced by the interactions between people, pro- 

cess, and technology within the SUO. These data can be aggregated into a preliminary 

form or atomically encapsulated in a stream of events. 

A. Behavioral Data Batch : A pre-aggregated set of events periodically emitted by the SUO. 

B. Behavioral Data Stream : A raw set of events continuously emitted by the SUO. 

II. Preliminary Analysis of Behavioral Data : Performed by subject matter expert to inform the 

parsing, cleaning, configuration, and initialization of load generation agents. 

III. Parse and Clean Data : After preliminary analysis of input data is completed, an appropriate 

parsing model formats the data, and extraneous data points are cleaned from the input data. 

IV. Define Constant and Random Bases of Behavior : Based on the possible set of states in the SUO, 

define MC models which may randomly transition between states or execute observed state 

transitions with equal likelihood. 

V. Define & Update Global Bases of Behavior : Based on the possible set of states in the SUO, define 

MC models which may execute observed state transitions based on previously observed 

likelihood across all users. 

VI. Define & Update Semantic Bases of Behavior : Based on the possible set of states in the SUO, 

define MC models which subdivide the global basis of behavior based on semantically 

linked portions of the SUO. 
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VII. Define & Update User Bases of Behavior : Based on the possible set of states in the SUO, define 

MC models which may execute observed state transitions based on previously observed 

likelihood for individual users. 

VIII. Define & Update Profile Bases of Behavior : Based on the possible set of states in the SUO, de- 

fine MC models which may execute observed state transitions based on previously observed 

likelihood for users with similar behavior patterns. 

IX. Manage Load Generation : The QA may perform additional steps to manage load generation. 

A. Perform Configuration and Customization : The QA may perform configuration to im- 

prove the performance or operation of load generation. 

B. Schedule or Initialize Load Generation Agents : The QA may schedule or change load gen- 

eration. 

X. Define & Update Agent Configurations : Given the set of observable states in the SUO, and the 

MC models generated in IV-VIII, define an appropriately sized number of agents based on 

expected behavior for the SUO. 

XI. Execute Behavioral Load : Multiple distributed agents interact with the SUT by executing be- 

havior and volumetric state transitions previously recorded or customized by QA. 

XII. Execute Behavioral Responses : The SUT provides responses for each state transition to the 

load generation agents, to include if the requested state transition resulted in failure. 

XIII. Emit Operational Metrics : The observed number of responses, errors, and response time are 

recorded by the load generation agents for additional analysis and improvement. 

XIV. Q-Learning of Behavioral Patterns : The metrics generated by the SUT are modeled according 

to the Q-Learning reinforcement learning algorithm for load generation agent usage. 

XV. Pruning of Behavioral Patterns : As additional data come from the SUO, behavioral patterns 

and state transitions which are no longer in operation should be removed to conserve op- 

erational resources. 
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Figure 1.2. Research Roadmap 

lodestone relies upon the usage of multiple distributed agents, operational data, and efficient 

algorithms to create a realistic and adaptive workload against the SUT. It combines methods 

for modeling user behavior from raw and aggregated data with algorithmic optimizations for 

adapting load generation as the SUO changes. 

1.5. Contributions 

The expense and difficulty associated with classical load testing methods have become outmoded 

by the ubiquity and speed with which software systems are developed and deployed. At its core, 

this research has followed the steps shown in Figure 1.2 to contribute lodestone : a novel process 

for testing systems based on the data generated through interactions between users and those 

systems that exhibits the properties 𝑃1 − 5 

from Section 1.2. 
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A. Extract User Models from Raw Log Data : The inception of this research was an investigation 

of anonymous user data and a definition of formalisms supporting the overall process. Fol- 

lowing this investigation was the creation of models from the anonymous data and showing 

the reduction of the quantity of models through clustering. In order to examine the quality 

of the clustered models, it was necessary to simulate behavioral data with an independently 

developed mechanism. 

B. Infer User Models from Aggregated Log Data : The user and profile models created with the pre- 

vious step of this research cannot be directly inferred from aggregated data due to the 

lack of individual identifiers for disambiguating observed behaviors. An investigation into 

Wikipedia’s publicly available clickstream data was necessary to address those situations 

where only aggregated data are available. A methodology and algorithm were constructed 

to extract semantic models from such aggregated data and was evaluated as part of the 

research. 

C. Learn Adaptive User Models from Streaming Log Data : In order to allow the models produced 

in the previous two steps of this research to adapt to changes in the SUO, improved data 

structures formed the core of the computational requirements. These data structures met 

the requirements of the formalisms previously described, and were augmented with rein- 

forcement learning, Laplace smoothing, and a least-recently-used cache to solve for various 

scenarios where adaptation were necessary. 

D. Distribute User Modeling and Load Testing : The final step of this research combined the results 

of the formalisms, analyses, algorithms, data structures, and tooling developed in the pre- 

vious steps. A logical and physical architecture for how lodestone should operate and be 

structured preceded an implementation on Amazon Web Services and an evaluation against 

a contemporary tool widely used for load testing. [3] 

In creating and evaluating lodestone , several directed aspects of the research were required 

for the process to be instantiated, completed, and evaluated; these aspects were as follows: 
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• A set of terminology and formalisms defining the parameters, data, and models to be amal- 

gamated by lodestone and informed by an ad-hoc analysis of several anonymous public 

user behavioral datasets. 

• A data ingestion process using the DBSCAN clustering algorithm to detect and model sim- 

ilar users by their behavior patterns. 

• A functional microservice (TinyERP) and test oracle (Loki) written in a production-grade 

software framework (Spring Boot) for realistic evaluation of load testing processes, contin- 

uous generation of performance and behavioral data, generation of rule-based behavioral 

traffic, and controlled simulation of errors in the system. 

• A collection of streaming statistics algorithms which provide dataset statistics in O(1) space 

and O(1) time. 

• A Depth Constraint extension of Tarjan’s STRONGCONNECT algorithm for efficient seg- 

mentation of aggregated log data into smaller subgraphs of related user behavior and exe- 

cuted on aggregated Wikipedia data. 

• An extension of the formalisms of Chapters 2 and 3 through the Q-Learning reinforcement 

machine learning algorithm, supported by a proof of optimality. 

• An extension of SparseVector and SparseMatrix data structures to address the “sunrise 

problem” of events which have never been observed but should have a non-zero proba- 

bility of being simulated through Laplace smoothing. 

• Addition of a least-recently-used event cache to allow for efficient reduction of inactive, 

invalid, or unlikely historical event transitions. 

• Provision for the Kullback-Leibler Divergence for determining if clustered models provide 

the same level of informational representation as the raw data used by classical load testing 

processes. 
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• Requirement of a system to monitor and learn from in addition to the system to be tested; 

such a requirement, not appearing elsewhere in the literature, enables an implementation of 

lodestone to accept streamed data from a production environment for continuous adaptive 

testing of a system under test. 

• The lodestone process as an implementation in Amazon Web Services with a logical ar- 

chitecture and a physical architecture. 

• Qualitative and quantitative comparison against a ubiquitous load testing tool JMeter using 

identical models learned from rule-based behavioral data generated by TinyERP. 

• A distributed load testing process which is adaptive, realistic, efficient, operationally based, 

and supports multiple-agent execution. 

These aspects of the lodestone process delineate how raw system data may be collected 

in their various forms to efficiently learn and simulate interactions between the humans and 

machines in a real human-machine-system. lodestone may be used toward solving problems 

in fields such as cybersecurity, emergency response, product management, and user experience. 

However, with this research we tender theoretical concepts of and concrete evidence concerning 

the understanding of user behavior data to solve load testing challenges in software engineering. 
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Chapter 2. Background 

The longer you can look back, the 

farther you can look forward. 

-- Winston Churchill 

Road to Victory Speech, March 1944 

We briefly overview the modeling of human-machine systems and the simulation of Agency 

within human-machine systems; additionally, we describe approaches to realistic generation of 

workload on software systems which use similar theories, mathematical structures, and compu- 

tational structures as our framework. 

2.1. The Modeling of Human-Machine Systems 

We define a human-machine system (HMS) to be a collection of people, process, and technology 

working together within a larger organization of entities to accomplish a prescribed or emergent 

goal. Work has been done to model different entities within HMS in order to understand and 

predict how the HMS will operate under changing conditions. We posit that the growing co- 

dependency of humans and machines in our technological society allows for both sets of entities 

to be modeled and simulated as Agents within an HMS. Multi-Agent Systems (MAS) are detailed 

in texts such as the work on by Shoham and Leyton-Brown [109] as models with distributed 

Agency which are intended for the simulation and solving of problems. For more detailed ex- 

ploration of mining for business processes and business roles, we refer the reader to the works 

by van der Aalst [120, 121] for process mining, and Colantonio et al. [30] for role mining. For 

additional background in load testing of software systems, we direct the reader toward Jiang and 

Hassan’s systematic literature review on the subject [68]. We overview select works in modeling 

of people, process, and technology. 
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2.1.1. People 

We discuss traditional methods of modeling user-specific Agents responsible for creating change 

within the SUO. One of the primary works on user profiling was done by Elaine Rich, who detailed 

a data-driven approach to modeling multiple users for clustering [102] resulting in a static model 

akin to a decision tree for user representation. Such user-profiling has been applied to security 

by the National Institute of Standards and Technology standard definition of Role-Based Access 

Control [44] which extended Ferraiolo’s original work on the subject in [43]. Frank et. al. define 

two creating role-based profiles of users: the top-down prescriptive approach and the bottom- 

up descriptive approach [47]. The prescriptive approach is usually an effort-intensive manual 

process [54]; the bottom-up approach is usually data-driven, but suffers from over-generality or 

over-specific results. Middleton et. al. show a knowledge-based ontological method for profiling 

users within recommender systems such as used by Netflix [86]. 

2.1.2. Process 

The collection of workflow steps, conditional rules, and reactions is another key element to move- 

ment of data and progress within an HMS which is done through process management and min- 

ing[36]. According to van der Aalst, such workflows are typically used for simulation purposes 

or general intelligence on the behavioral characteristics of an HMS for improvement purposes 

[121]. Pecarina described APSAT as a framework for mining and managing workflow processes 

from network traffic [95, 96]. Li, Kang, and Lv show a method [78] for dynamic business process 

mining from event data. Fei, Liqun, GuangYun, and Xiaolei describe an algorithm for detecting 

concept drift in process mining [42]. Such detection is useful for determining changes in existing 

business processes. Bose et. al. discuss a method for dealing with concept drifts in process mining 

meant to deal with changes over time [16]. As such, data-mining is a feasible means of modeling 

processes in an HMS; however, care must be taken to address changes in the HMS in order for 

simulation and studies to remain accurate after the mining process has completed. 
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2.1.3. Technology 

Modeling technical components in an HMS is typically used for anomaly detection of system- 

level behaviors and performance characteristics[26, 57, 60, 69, 107, 111, 141]. Static means of 

using operational models have been used in software engineering practices such as Whittaker’s 

approach to Cleanroom Software Engineering [128]. Tools such as ProCrawl can extract behavior 

models from web applications [105], and RELAI framework is able to use a probabilistic model 

based on operational profiles in order to improve software reliability [35]. Genetic algorithms 

are used to test Service Level Agreements and QoS through LT [23, 37, 53, 143]; however, these 

approaches are not directly using user-based behavior models to generate application workload. 

Anderson’s novel approach using a MC representation of sequential instructions is described 

in [4] where instruction combinations are used as clustering features for categorizing various 

families of malware. 

2.2. Markov Modeling for Load Testing of Systems 

Markov Chain models are a subset of stochastic processes based on descriptive statistics; however, 

they can be additionally used in various real-life contexts such as anomaly detection modeling 

and Agent behavior. Karlin and Taylor define a stochastic Markov Process as: 

A stochastic process is a Markov process when

 

𝑃𝑟 { 𝑎 < 𝑋𝑡 ≤ 𝑏 | 𝑋𝑡1 = 𝑥1, 𝑋𝑡2 = 𝑥2, . . . , 𝑋𝑡𝑛 = 𝑥𝑛}

 

= 𝑃𝑟 { 𝑎 < 𝑋𝑡 ≤ 𝑏 | 𝑋𝑡𝑛 = 𝑥𝑛}

 

where 𝑡𝑖 ∈ 𝑇, and 𝑡1 < 𝑡2 < . . . < 𝑡𝑛 

< 𝑡 . A discrete time Markov Chain (MC) 

{ 𝑋𝑛} is a Markov process whose state space is a countable or finite set, and for which 

𝑇 = ( 0 , 1 , 2 , ... ) . It is customary to speak of 𝑋𝑛 

being in state 𝑖 if 𝑋𝑛 = 𝑖 . The probability 

of 𝑋𝑛 + 1 

being in state 𝑗 , given that 𝑋𝑛 

is in state 𝑖 , is noted by 𝑃
𝑛,𝑛 + 1 

𝑖 𝑗 

, i.e.

 

𝑃
𝑛,𝑛 + 1 

𝑖 𝑗 

= 𝑃𝑟 { 𝑋𝑛 + 1 = 𝑗 | 𝑋𝑛 = 𝑖 } .
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As such, 𝑃
𝑛,𝑛 + 1 

𝑖 𝑗 

= 𝑃𝑖 𝑗 

is independent of 𝑛, and 𝑃𝑖 𝑗 

is the probability that the state 

value undergoes a transition from 𝑖 to 𝑗 in one trial. It is customary to arrange these 

probabilities as a matrix, that is, a square array. We further refer to P = | | 𝑃𝑖 𝑗 | | as the 

Markov matrix, or transition probability matrix of the process. As the measurable 

quantity of states is finite, the quantity of rows is equivalent to the quantity of states. 

[72] 

Probabilistic methods such as shown by Menasce in [84], Barros et al. in [9], and Kant et al. in 

[70], use a MC model for generating background web traffic. However, in [70], we observe a 

looming fault in typical MC approaches: that individual users are modeled individually. Individ- 

ual modeling of users cannot easily scale in modern web-based software LT. The inherent lack of 

scalability that such over-abundance of individualized models implies leads us to suggest means 

of clustering user behavior profiles, such as those shown by Barth to discover groups in wikis 

[10], Xiong et al. for clustering sequences of categorical data [137], Melnykov for clustering of 

clickstream data [83], and Benson for clustering of higher order mathematical models such as 

tensors [12]. Such clustering is performed to reduce the number of individual models being used 

and thus unnecessary performance overhead. The direction on MC clustering for model-based 

LT by Menasce [84] was followed by van Hoorn with Markov4JMeter [58] and WESSBAS [59]. 

The work by Barros et al. [9] shows that static LT methods must be able to react to chang- 

ing user behaviors, and the underlying probabilistic models should be updated periodically to 

accurately represent the SUT. Such static methods provide valuable insight into how the system 

performs under certain types of load; however, dynamic interaction with the SUO provides ad- 

ditional insight into how the SUT reacts to different types of load which might not be accounted 

for by QA. While static methods might provide information on one particular part of the sys- 

tem, they do not always provide a broad view of how the system might holistically react under 

a realistic production-level load or react to change within an observed HMS. Change within an 

observed HMS is also studied in newer work by Bezemer et al. and Schulz et al. [13, 104] who 

state that the problem of stale data exists even in modern DevOps environments, preventing au- 

tomated model-based LT from being adopted into DevOps and Agile development environments. 

The work by Schulz et al. represents a prescriptive effort such as the top-down approach in role 
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mining to mapping the change delta C𝛿 

within a continuous integration environment [104]. In 

order to provide a dynamic approach to addressing stale, missing, and incomplete data, we ex- 

tend descriptive MC models with formalisms, efficient algorithms, and inferential methods such 

as those given by machine learning. 

2.3. Concept Modeling 

We show relevant methods and ideas from process mining, user behavior analysis and modeling, 

web application modeling, and conceptual models of knowledge (ontology). Additionally, we 

show previous work using Wikipedia data which is relevant to our methods and results. 

The term ‘ontology’ found its mathematical underpinnings with the work of Wille, who es- 

tablished foundations for what he termed ‘Concept Lattices’ [131, 132, 133]. This series of works 

focused on providing an applications-centric bridge to the field of lattice theory with the key 

contribution being a formal definition of how concepts can be structured. The commonly used 

description of information-specific ontology came when Gruber listed [52] a formal process for 

the design and subsequent care of knowledge representation in the form of ontology. Gruber 

described ontology as “a specification of a conceptualization: in other words, a formal means of 

representing how knowledge and concepts are interrelated” [52]. With the creation of Wikipedia 

as an online knowledge store (ca. 2001), the global user community of the site has generated 

large amounts of domain-specific content. While Voss [127] states that Wikipedia articles do 

not have a strict semantic structure as do computer scientific ontologies (as described by Gru- 

ber in [52]), such structure can be inferred from the similarities between articles and categories. 

Since Wikipedia’s inception, efforts have focused on extracting such formal concept specifications 

from the Wikipedia content. Punuru and Chen [97] show methods for extracting concepts from 

domain-specific documentation, and Schönhofen [103] details how cross-referencing Wikipedia 

titles and categories with document words can be used to classify the domain of documents. 

Similar efforts using natural language processing [63],[135],[134] have focused on extracting on- 

tological structure from the site by the text inside the articles. However, other approaches such 

as Nakayama, Hara, and Nishio in [89] and Syed, Finin, and Joshi in [113] focus on the categories 
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associated with each article, the resultant hierarchy of concepts on the site, and graphs of both 

the links and concepts extracted from the articles. One user study related to Wikipedia consump- 

tion by Yu, Thom, and Tam in [142] describes how users of the site tended to have exploratory 

patterns with consistent ‘backtracking’ (navigation from the current page to the previous one) 

when the navigational information of the site was not clear enough to complete various research- 

related tasks (assigned as part of the study). The results indicate that backtracking represents the 

single largest percentage of user behavior on the Wikipedia site: users locate a ‘gateway’ page (a 

topical anchor point for basing further searches) and iterate through the page links until the next 

‘gateway’ can be located [142]. 

Wikipedia has released aggregated clickstream data to aid in deeper understanding of 

Wikipedia users’ behavior; this data may be used to improve upon previous Wikipedia-based 

ontological efforts. From [102], Rich proposes one of the original works on using a data-driven 

approach to modeling multiple users for clustering. This knowledge based approach results in a 

static model akin to a decision tree for user representation. Middleton, Shadbolt, and De Roure 

in [86] show a knowledge-based ontological method for profiling users in recommender systems. 

Anderson’s novel approach [4] using the MC representation of sequential actions is used for 

classification of malware. Instruction combinations are used as features for clustering malware 

families. 

Static means of using such models of processes and usage have been used in software engi- 

neering practices such as Cleanroom Software Engineering [128]. Schur, Roth, and Zeller show 

how their tool ‘ProCrawl’ can extract behavior models from web applications [105], and Cotreneo 

et al. show that their ‘RELAI’ framework is able to use a probabilistic model based on operational 

profiles to improve software reliability [35]. Probabilistic methods proposed by Menasce in [84], 

Barros et al. in [9], Kant, Tewari, and Iyer in [70] use a MC model for generating behavioral 

traffic. However, in these approaches, each user’s behavior is represented by a unique model: an 

approach which does not scale when taking into account the volume of traffic for Wikipedia. 
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In order to reduce the number of individual models being used (and thus unnecessary per- 

formance overhead), many methods have been shown to cluster user behavior. Notable works 

include Barth in [10] who used social network analysis to identify groups of users in wikis (such 

as Wikipedia); Xiong, Wang, Jiang, and Huang in [137] showed how to use MC models to clus- 

ter sequences of categorical data (such as user behavioral trace data); Melnykov in [83] showed a 

method for clustering clickstream data; and Benson, Gleich, and Leskovec in [12] describe a means 

of segmenting network structures (such as our clickstream behavioral graph) using a tensor-based 

representation of the data and spectral clustering. Lee, Ellis, and Loui in [75]) show a MC model 

for clustering which is capable of detecting semantic concepts in audio data. Ahlers, Dirk and 

Mehrpoor show methods of semantically searching shared information in [1]. 

Community detection algorithms are another means of detecting subgroups or clusters inside 

of graphs. Yang et al. discuss different community detection algorithms and their performance 

in [140]. These algorithms have been implemented and tested in the R programming platform 

within the ‘igraph’ package. 

As nomenclature for measuring algorithmic complexity, let 𝐸 as the number of edges in the 

subject graph, and 𝑁 to be the number of nodes, or vertices. The ‘Edge betweenness’ algorithm 

focuses on using Freeman’s betweenness centrality as a means of filtering out edges which are 

highly shared between different communities in order to extract those highly shared edges from 

the larger graph. The algorithm runs in 𝑂 ( 𝐸2𝑁 ) [140]. ‘Fastgreedy’ runs in 𝑂 ( 𝑁𝑙𝑜𝑔2( 𝑁 )) and 

starts with every node in the subject graph representing a single-member cluster or community 

then proceeds to pairwise match communities until a ‘modularity’ metric is no longer maxi- 

mal[140]. ‘Infomap’ runs in 𝑂 ( 𝐸 ) and uses decoders to reconstruct a view of the graph based 

on information collected from random walks on the network graph[140]. ‘Label propagation’ 

also runs in 𝑂 ( 𝐸 ) and relies upon a majority heuristic by assigning tokens to each node in the 

graph and iterating until each node has the same token as the majority of its neighbors[140]. 

‘Leading eigenvector’ runs in 𝑂 ( 𝑁 

2) on sparse graphs (where the number of edges is much lower 

than the number of nodes), and 𝑂 ( 𝑁 ( 𝑁 + 𝐸 )) otherwise; it relies upon using eigenvalues and 
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eigenvectors of the modularity matrix to maximize modularity iteratively until there is less than 

an 𝜖 level of increase in modularity[140]. The ‘Multilevel’ algorithm is similar to ‘Fastgreedy’, 

but runs in 𝑂 ( 𝑁𝑙𝑜𝑔𝑁 ) [140]. ‘Spinglass’ runs in 𝑂 ( 𝑁 

3 . 2) and can use simulated annealing to find 

communities[140]. ‘Walktrap’ runs in 𝑂 ( 𝑁 

2𝑙𝑜𝑔 ( 𝑁 )) for sparse graphs and 𝑂 ( 𝐸𝑁 

2) otherwise; it 

also relies upon random walks of the network and works on edge degree distance between nodes 

to hierarchically merge communities pairwise[140]. 

Another effective algorithm to segment a graph is the STRONGCONNECT algorithm de- 

scribed in [116]; this algorithm works to extract strongly connected components from a directed 

graph, and weakly connected components from an undirected graph (all of which are further 

discussed in [38]). STRONGCONNECT runs in 𝑂 ( 𝑁 + 𝐸 ) and is deterministic in nature. Build- 

ing on the approaches used in these algorithms, we show how the Wikipedia clickstream data 

are structured and how MC user behavior modeling and graph clustering can be used to extract 

semantic clusters from the Wikipedia.com website. 

There are many approaches to LT of scale-conscious software systems; for recent literature 

reviews of academic work, we recommend the reader examine the work of Jiang [67] as well as 

the collaboration between Jiang and Hassan [68]. In addition, we suggest a review of Leitner and 

Bezemer’s work [77] for a recent overview of industrial tooling. Chen and Shang [27] perform a 

longitudinal study of several releases of the same open source products to analyze regression in 

performance quality, asserting that most performance regressions come from bug fixes and are 

not noticed until after they are deployed to production - a key reason for QA efforts such as LT 

before software is deployed to production. Chen et al. [28] discuss many open problems related to 

performance and regression testing partially informing the direction of our work. Performance is 

also a security concern in the form of Distributed Denial of Service attacks, as addressed by Jiang 

et al. in [66]. It is important to be able to evaluate the performance and quality characteristics of 

the load and performance testing frameworks themselves. 
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2.4. Metrics and Validation 

When performing automated performance or LT, there are a number of approaches for validating 

and comparing the specific sort of testing methods being executed and optimizing the variety and 

volume of the data being analyzed. Malik et. al [82] describe means of using Principal Compo- 

nent Analysis to reduce the total number of metrics required for analysis by performance quality 

analysts. Nikravesh et al. [90] show how various workload patterns can be used to determine the 

comparative accuracy of neural network and support vector machine approaches to optimizing 

scale in and scale out of computing resources. One means of comparing various LT mechanisms 

is proposed by Gao et al. [49] in order to meet large-scale performance characteristic goals in 

cloud based systems. Ferreira et al. [45] propose a tool to perform similar levels of optimization 

in Service Oriented Architectural (SOA) environments. Two additional approaches to validating 

and assessing LT frameworks are proposed by Avritzer et al. in [7] and Laaber et al. in [73]. 

Where Avritzer et al. focus on the approach, Laaber et al. show how various suites perform for 

continuous assessment. For additional context related to our work, we describe model-driven 

and adaptive methods. 

2.5. Adaptive Load Testing 

Realistic scenarios and rapidly closing the feedback response loop are two of the most important 

qualities for legitimate system testing; in addition, natural feedback is why human testing will 

continue to be critical for performance testing of production-critical systems. The ability of a 

testing system to adapt to incoming data is paramount toward bridging the gap between human 

efforts and rote machine script execution. Lenz et al. [99] describe a machine-learning approach 

to clustering of various load and performance testing metrics toward improving results of the 

quality assurance lifecycle; however, their approach is offline and does not mention dynamic 

generation of tests or test data from the learned information. In cloud-based systems, Shariffdeen 

et al. [108] describe adaptive auto-scaling strategies to meet performance goals; similarly, Iqbal et 
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al. [62] describe such adaptive scaling approaches in web applications. The tendency of modeling 

typically relies upon a manual process consisting of a period of observation, followed by building 

or rebuilding models, and then executing the performance testing itself. The process of LT must 

remain adaptive and reactive to current data (instead of requiring manual intervention from QA). 

2.6. Model-Based Load Testing 

Modeling system or user behavior is a powerful means of using data from an SUO which can 

impact approaches toward testing the SUT. Gao and Jiang describe an ensemble-model based 

approach to performance testing and show how it can outperform baseline models under envi- 

ronmental changes in the SUT [50]. Apte et al. describe AutoPerf [5] for modeling performance 

metrics of a system under test while simultaneously driving the performance testing process. 

While AutoPerf requires profiling and testing to be two separate processes, lodestone allows 

for online statistical performance profiling. Kapoor et al. describe a statistical analysis and model 

of user behavior within a website [71] which is based on the hazard function and has been ob- 

served within various production systems (the authors have maintained) as a valid means of 

approximating the amount of time users spend interacting with a system. Ramakrishnan et al. 

[100] discuss metrics for tracking user interaction times. Vögele et al. as well as van Hoorn et 

al. describe several means of modeling of users and workload in session-based systems [59, 122, 

124, 125, 126]. Trubiani et al. in [119] discuss using operational profiles in LT in order to detect 

and correct performance-based anti-patterns. Wienke et al. describe a domain specific language 

approach in [129] for modeling performance testing in robotics. 

In summary, the modeling of user, machine, operational, and performance characteristics of 

a system is a powerful means of improving that system’s measurable quality and maintainabil- 

ity. For better results in a prospective automated performance testing process, adaptive methods 

should be included for improved speed in testing feedback. 

This chapter has described various theoretical underpinnings, processes, and improvements 

to the core of system modeling for LT which inform and catalyze the techniques in lodestone 

for modeling user behavior from system logs. 
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Chapter 3. Extracting User Models from Log Data 

In minor ways we differ, in major 

we’re the same. 

-- Maya Angelou 

Human Family 

We define terminology for MC behavior models and supporting structures. With the exception 

of necessary clarification between the SUO and the SUT, the underlying systematic framework 

we describe below is similar to that used by Menasce [84] and van Hoorn [58]. However, the 

separation of systems is in the same spirit as the continuous integration pipelines described by 

Schulz et al. [104]. We recall the underlying mathematical structures for extension and show 

how they fit into a logical framework for learning and extending MC behavior models for LT 

from event data. 

3.1. Systems Under Observation and Test 

We employ the following formalisms to define how behaviors within a system S can be rep- 

resented in the context of this work. Simply put, S should consist at the minimum of a set of 

actions, a set of states, and a transition function in order to match a minimalistic finite state 

machine definition. We expect that operation of S produces output logs representing the cur- 

rent operational status and Agent behaviors. We extend S with additional formalisms to support 

streaming log-based behavior profiling. 

Actions ( 𝐴 ) = { 𝐵𝑟𝑜𝑤𝑠𝑒 ( 𝐵 ) , 𝑅𝑒𝑎𝑑 ( 𝑅 ) , 𝐴𝑑𝑑 ( 𝐴 ) , 𝐸𝑑𝑖𝑡 ( 𝐸 ) , 𝐷𝑒𝑠𝑡𝑟𝑜𝑦 ( 𝐷 )} 

States ( 𝑆 ) = { 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙, 𝐿𝑜𝑔𝑖𝑛, 𝐿𝑜𝑔𝑜𝑢𝑡, 𝐻𝑜𝑚𝑒,𝐴𝑐𝑐𝑜𝑢𝑛𝑡,𝐶𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 } 

Roles ( 𝑅 ) = { 𝐴𝑢𝑑𝑖𝑡𝑜𝑟,𝑈𝑠𝑒𝑟, 𝐵𝑢𝑠𝑖𝑛𝑒𝑠𝑠 𝐴𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑜𝑟, 

𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝐴𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑜𝑟, 𝑆𝑢𝑝𝑒𝑟 𝐴𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑜𝑟 } 

Proficiency ( 𝑃 ) = { 𝑈𝑛𝑡𝑟𝑎𝑖𝑛𝑒𝑑, 𝑁𝑜𝑣𝑖𝑐𝑒,𝐶𝑜𝑚𝑝𝑒𝑡𝑒𝑛𝑡, 𝐸𝑥𝑝𝑒𝑟𝑡,𝐺𝑢𝑟𝑢 }

 

Figure 3.1. Sample System Definition 
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For an example of how a sample system can be structured, refer to Figure 3.1. The sample 

system represents an enterprise resource planning website and contains six states which may 

be accessed by users interacting with the system. The users are subdivided into several roles 

which represent how they might need to access different states within the system. Each user 

has a level of proficiency which represents how familiar they are with the system based on the 

amount of time they need to perform the different actions in the system. The actions allowed to a 

user enables them to interact with the site by changing the underlying data storage mechanisms 

while maneuvering between the states of the system. 

With the example from Figure 3.1 in mind, we define the system S such that:

 

S = { 𝐴, 𝑆, 𝑅,𝑈 , 𝑃, E𝑘 , E𝑢, 𝜙𝑝, 𝜙𝑙 , 𝜙𝜇, 𝜙𝑘 , 𝜙𝑢} .

 

Let 𝐴 be the set of all actions which can be taken within S , 𝑆 be the set of all observable states 

inside S , 𝑅 be the set of all behavioral roles in S , 𝑈 be the set of users which interact with S , and 

𝑃 be the proficiency that each user 𝑢 ∈ 𝑈 can assume while interacting with S . Let E be the set 

of all possible errors in S . We classify such errors into two disjoint subsets of E : known errors 

E𝑘 , and unknown errors E𝑢 . 

The following functions represent how each of the above sets are used to model the behaviors 

of entities in S . 

Transition Function 

Let 𝜙𝑝 

: 𝑆 × 𝑆 × 𝐴 × 𝑅 → R[ 0 , 1 ] 

be a probability function such that, given a source state, a target 

state, an action, and a role, returns a probability between 0 and 1 that the action will take place. 
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Proficiency Function 

Let 𝜙𝜇 

: 𝑆 × 𝑆 × 𝐴 × 𝑅 × 𝑃 → N[ 0 , ∞) 

be a probability function such that, given a source state, a target 

state, an action, a role, and a proficiency, returns the discrete mean transition time between the 

states for the given input tuple in seconds between 0 and ∞ . 

Role Function 

Let 𝜙𝑙 

: 𝑆 × 𝑆 × 𝐴 × 𝑅 → { 0 , 1 } be a binary function such that, given a source state, a target state, 

an action, and a role, returns a 1 if the input tuple represents a legal transition and a 0 if the input 

tuple represents an illegal transition. Such roles can be visualized as in Figure 3.2 and Figure 3.3 

using the sample system defined in Figure 3.1. In Figure 3.2, the ‘Super Administration User’ is 

capable of performing every action while in states 𝜙2, 𝜙4, and 𝜙5; in contrast, Figure 3.3 shows 

how a sample ‘User’ is capable of reading and browsing state 𝜙5, but cannot even access 𝜙4. 

Known Error Function 

Let 𝜙𝑘 

: 𝑆 × 𝑆 × 𝐴 × 𝑅 → { 0 , 1 } be a binary function such that, given a source state, a target state, 

an action, and a role, returns a 1 if the input tuple represents a known error transition and a 0 

otherwise. A known error transition represents a static set of discoverable or pre-defined logical 

flaws in S . 

Unknown Error Function 

Let 𝜙𝑢 

: 𝑆 × 𝑆 × 𝐴 × 𝑅 → { 0 , 1 } be a binary function such that, given a source state, a target state, 

an action, and a role, returns a 1 if the input tuple represents an unknown error transition and a 

0 otherwise. An unknown error transition represents a flaw which is not statically defined in S 

through the use of 𝜙𝑘 . 

The change delta C𝛿 

between S𝑡 , and S𝑜 

may affect any of the sub-components of 𝑆 , including 

the functions. It is of note that 𝜙𝑢, 𝜙𝑘 

are not explicitly defined in S𝑜 , but they implicitly exist 

if the rest of the conditions above are followed; however, in S𝑡 , the error functions 𝜙𝑢, 𝜙𝑘 

may 

specify failure logic for testing Agents to discover as part of evaluating an LT approach. There 

may also exist a testing-error oracle separate from S which is capable of alerting observers of 

27



 

𝜎0

 

𝜎1

 

𝜎2

 

𝜎3

 

𝜎4

 

𝜎5

 

𝐵

 

𝐵

 

𝐵

 

𝑅, 𝐸,𝐴, 𝐷, 𝐵

 

𝐵

 

𝐵

 

𝐵

 

𝑅, 𝐸,𝐴, 𝐷, 𝐵

 

𝐵

 

𝐵

 

𝑅, 𝐸,𝐴, 𝐷, 𝐵

 

𝐵

 

𝐵

 

𝐵

 

Figure 3.2. Legal Application State Space for User Profile: ‘Super Administrator User’
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Figure 3.3. Legal Application State Space for User Profile: ‘User’ 
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Figure 3.4. Framework for Simultaneous Modeling and Simulation of User Behavior 

errors through additional event data. For systems such as S𝑜 , oracles are useful for showing 

operational metrics and failures in production. However, for systems such as S𝑡 , oracles are 

useful for training and detecting issues in the SUT. The data simulation testbed we describe in 

Section 3.7 provides more detail about testing oracles and their place in the load testing process. 

3.2. Event Data Collection 

The interactions between people, process, and technology within an HMS result in the generation 

of system logs or streams of event data. The difficulty of extracting events from the SUO and 

deciphering information from such events can vary; however, we can assume some basic structure 

to event data streams. An event is a five-tuple ( 𝜎𝑠, 𝜎𝑡 , 𝜏,𝑢, 𝑒, 𝑠 ) such that 𝜎𝑠 ∈ 𝑆 is a source state, 

𝜎𝑡 ∈ 𝑆 is a target state, 𝜏 ∈ 𝑇 is a time-stamp, 𝑢 ∈ 𝑈 is a unique identifier for each user or some 

distinct entity in S𝑜 , 𝑒 ∈ E represents a detected error in S𝑜 , and 𝑠 is additional event information. 

For S𝑜 

in Figure 3.4, the Event API represents a mechanism for collecting events from raw web 

responses, filesystems, or databases. The Event API is used to collect data for the Data Processing 

Pipeline to parse and pass event tuples into the Knowledge Store. The Knowledge Store is a 

central location used for storing transition probabilities within the 𝜙𝑝 

function, mean times in 

the 𝜙𝜇 

function, and any additional behavioral data for generating behavior profiles. For S𝑡 

in 
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Figure 3.4, the same Event API used for the SUO represents a mechanism for collecting events 

from the SUT. Where the data from S𝑜 

are used to model behavior patterns, the data collected 

from S𝑡 

are used to calculate the effectiveness of an LT approach and reward testing Agents for 

successfully detecting flaws in the SUT. 

3.3. Descriptive Models for Agent Behavior 

We conceptualize users and machines within S , S𝑜 , and S𝑡 

as Agents, a simulated collection 

of which can operate within a MAS. Individual agents and groups of agents can follow vari- 

ous behavior models or bases. It is important for application stakeholders, technologists, and 

researchers to understand how behaviors of systems and users of systems [11] interrelate; to 

that end, operational and simulation models should be understandable by specialists and non- 

specialists alike. We define the Descriptive Model for Agent Behavior (DMAB) as any statistically 

descriptive model of behavior used to govern the actions of an Agent. 

For example, let two Agents 𝐴, and 𝐵 , be responsible for generating random numbers from a 

distribution 𝐷. Let us say that Agent 𝐴 operates using the five number summary statistics of 𝐷 : 

{ 𝐷min, 𝐷𝑄 1, 𝐷𝜇, 𝐷𝑄 3, 𝐷max} . As such, Agent 𝐴 operates using a DMAB. In contrast, let us say Agent 

𝐵 operates using an opaque deep-learning model which cannot be easily described. As such, 𝐵 

does not operate using a DMAB. We assert that a DMAB is more likely to be acceptable in an 

enterprise MAS due to its descriptive nature. Although less descriptive models have the potential 

of representing complex behavior patterns, the overhead of maintaining user confidence in such 

models can outweigh any perceived value of increased accuracy. The cost analysis between a 

model and how understandable it is should be performed in any situation where there is a ques- 

tion of justifying errant MAS behaviors. Such an exercise is a crucial step in the development 

life-cycle of any automated MAS. 
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Figure 3.5. Markov Chain Directed Graph for Example User Behavior Model 

Table 3.1. Conditional Probability Matrix for Example User Behavior Model

 

𝜎1 𝜎2 𝜎3

 

𝜎1

 

0.4 0.3 0.3 

𝜎2

 

0.3 0.4 0.3 

𝜎3

 

0.3 0.3 0.4

 

The MC is a DMAB, due to the cause-effect nature of its mathematical structure; as such it has 

been used in many MAS, including the LT tool Markov4JMeter [58]. Markov4JMeter, although 

not built on fully distributed and independent operating models, does model users or Agents as 

Threads within JMeter [58]. A DMAB based on MC logic can be categorized into different bases 

of behavior, depending on available data from an SUO. 

3.4. Behavior Bases 

Within an automated MAS, MC based Agents can operate according to a prescriptive or descrip- 

tive basis of behavior. It is important to remember that although we use an underlying MC, there 

are many different approaches to storing behavioral profiles in memory based on event data. 

Additional methods involve constructing hidden Markov models, Bayesian networks, decision 

trees/forests, neural networks, Petri nets, as well as many other abstractions. It is conceivable 

then that our methods can be ported to those models as well; however, the main behavior profile 

structure we explore here is the MC. The MC can be equivalently represented as a connected 
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graph as in Figure 3.5 or an adjacency matrix as in Table 3.1. We define and focus on six of many 

possible distinct categories of the MC, which we term: constant basis, random basis, user ba- 

sis, profile basis, global basis, and semantic basis. We will use model and basis interchangeably 

throughout the rest of this document. 

3.4.1. Constant Basis 

The Constant Basis of Behavior (CBB) is a prescriptive DMAB representing a fixed set of sequen- 

tial behaviors in a HMS with static probability of transition between the individual states. The 

CBB is representative of rule-based approaches to LT such as in JMeter [117], or in code-based 

LT mechanisms. 

3.4.2. Random Basis 

The Random Basis of Behavior (RBB) is a prescriptive DMAB representing random transitions 

between states in a HMS. The RBB is representative of randomized approaches to LT such as in 

JMeter [117]. 

3.4.3. User Basis 

The User Basis of Behavior (UBB) is a DMAB representing how an individual user may behave in 

a HMS. These bases may be learned by observing individual users and may be used to build a MC 

model which represents how each individual user transitions between states in a given system. 

3.4.4. Profile Basis 

The Profile Basis of Behavior (PBB) is a DMAB which comprises a set of similar UBB. The PBB 

represents the behavior patterns present within a UBB without requiring the additional storage 

space or computational costs necessary for an agent using the PBB to operate. 

3.4.5. Global Basis 

The Global Basis of Behavior (GBB) is a DMAB which comprises all UBB. The GBB is calculated 

similarly to the UBB with the exception of user identity distinction being removed. In essence, 

the GBB is that PBB which comprises the aggregated behavior patterns of all users observed in 

an SUO. 
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Figure 3.6. Aggregated User Behavior Count Graph ( © 2020 IEEE) 

3.4.6. Semantic Basis 

The Semantic Basis of Behavior (SBB) is a DMAB which comprises a set of logically divided sub- 

graphs within a GBB. The SBB is calculated through the use of graph partitioning or clustering 

methods such as Tarjan’s algorithm [116] and represents behavior patterns which are connected 

through semantic means. Semantic connections can be procedure calls within an application 

library, or API calls within the same module. When only aggregated data such as the GBB are 

available from the SUO, the SBB can divide the GBB such that Agent behavior in an automated 

MAS may be controlled and observed with finer grained detail. 

3.5. Behavior Model Generation and Clustering 

In Figure 3.4, we show that underlying event data is collected by the Event API; each MC basis 

is constructed from these events. We construct each MC DMAB by tracking and aggregating 

the temporal deltas and frequencies of input-state to output-state transitions for each uniquely 

identifiable data stream and creating a set of UBB. For example, in Figure 3.6, the running counts 

of transitions between each state 𝜎𝑖 

are represented as weighted edges in the Knowledge Store as 

the adjacency matrix illustrated with the heatmap in Figure 3.7. By dividing each of the weights of 

all outgoing edges for each source state by the total number of events originating from the same 

state, we compute the resultant MC shown in Figure 3.8– the UBB for the observed behavior 

stream. We can visualize such a UBB as the heatmap in Figure 3.9 with columns representing the 
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Figure 3.7. Heatmap of Transition Count Matrix for Example Users
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Figure 3.8. Markov Chain Directed Graph for User Behavior 
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Figure 3.9. Heatmap of Conditional Probability Matrix for Example Users 
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Figure 3.10. Conditional Probability for Clustered UBBs to Transition from 𝜎𝑖 

to 𝜎 𝑗 

start state and row indexes representing the target state, with each shade showing the relative 

importance of state transitions within the recorded UBB. If users are not uniquely identifiable in 

the data stream with identifiers such as session ids, MAC addresses, or microservice API keys, we 

may still capture a UBB for each uniquely identified subset of events existing within the stream 

of data. 

Calculating the GBB requires similar aggregation of such frequencies for all inbound event 

streams rather than per user as the UBB. When there exist too many UBB representations to 

economically store or describe how Agents in the MAS interact we may extract SBBs or PBBs to 

reduce the complexity of the bases. 

We use unsupervised machine learning in the form of clustering to extract PBBs from the 

UBBs. While clustering can be run against the raw observed frequency adjacency matrices, this 

approach creates more noise, as it favors the weights associated with frequent state transition 

volumes over conditional transition probabilities. We may use methods such as DBSCAN, K- 
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(a) UBB for Example User 𝑈1
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(b) UBB for Example User 𝑈2
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(c) UBB for Example User 𝑈3
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(d) UBB for Example User 𝑈4 

Figure 3.11. Markov Chain Directed Graph for Example User Behavior Model 
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Means, X-Means, or KNearestNeighbor to determine which of the MC are of similar structure. 

Our approach relies upon DBSCAN due to the fact that an expected resultant number of clusters 

does not need to be specified nor require constant re-computation as is required in the X-Means 

approach outlined by van Hoorn [58]. As such, DBSCAN can be continuously run with minimal 

pre-configuration rather than requiring manual intervention. Each output cluster represents a 

different behavior profile in 𝑃 – to be executed by Agents for LT. An example set of UBBs can 

be seen in Figure 3.11 and represented as the heatmap in Figure3.10. By extracting PBBs instead 

of only recording UBB and storing those, we reduce the amount of data required to represent 

the operational variance present and observed in the SUO. The SBBs are extracted from the GBB 

with the constrained depth-first Tarjan’s algorithm to effectively separate aggregated behavioral 

data from Wikipedia.1 The approach lodestone uses for storing modeled user behavior pat- 

terns is similar in implementation to how tools such as Markov4JMeter [58] and WESSBAS [59] 

achieve MC modeling. As several anonymized user behavioral data sets of different formations 

are publicly available, we examine them to inform the direction of lodestone . 

3.6. Experimental Data 

To confirm the regularity of behavioral patterns occurring within external, non-simulated 

datasets, we analyze various anonymous and publicly available user behavioral datasets from 

UCI Machine Learning Repository [79] and Mozilla Labs [74]. Each data set represents the ac- 

tions of distinct sets of users interacting with a system. The behaviors of each user are logged and 

anonymized / symbolized in order to preserve user privacy. This section describes each dataset, 

places them within the context of this research, and uses them to describe specifics of the for- 

malisms and data models of our approach.

 

1 See Chapter 5 for details on depth-constrained Tarjan’s algorithm. 
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3.6.1. Week In the Life of a Browser (WITL) 

The ‘Week In the Life of a Browser’ data (WITL) [74] represent the recorded interactions between 

the Mozilla Firefox web browser and a consenting set of users. These data were recorded across

several versions of the product; the users also consented to responding to surveys about how the 

software was typically employed. The data represent seven days of events recorded for about 

27,000 users (as well as the survey responses.) Three tables of information are provided: a list of

users (Table 3.2), a list of recorded events (Table 3.3), and a list of survey responses (Table 3.4).

The Table 3.2 provides (for each user) a randomized user_id (for event and survey response 

correlation), the operating system and Firefox versions, and the number of extensions installed. 

A few other fields are listed in the data dictionary; however, these were sparsely populated or not

cogent to this study. The Table 3.3, provides the user id generating the event, the code associated

with an event in the Firefox browser, string data used to further describe the event (these fields 

are not consistently populated), a Unix epoch-based time-stamp, and an un-populated session id.

The Table 3.4 shows the written responses to survey questions asked of each user participating in 

the study. These questions can be used for further clustering of the data (e.g. correlation between 

survey responses and event sequences); however, these data are not part of our further analysis 

but included here for the sake of completion.

As data are recorded at the user level, the prevalent behavior base for the WITL data set is the

User Basis . Each event is correlated to an individual user (as opposed to a group of people.) Each

user represents a distinct user/machine combination using the Firefox browser; this uniqueness 

is enforced by the os, fx, and version attributes shown in Table 3.2. Thus, for each user, it is

necessary to collect a descriptive model as a basis for behavior of that user. There are a number

of events in the WITL data set which users and the Firefox browser can initiate which are fully 

detailed in [74]. There is a direct mapping from the states of the software and the states in the

DMAB. Edges in the UBB represent the transition between states in the software, and the weights

on the edges represent the frequency the transition was observed in the sample data for the given 

user. 
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Figure 3.12. MSNBC.com on November 9, 1999

3.6.2. MSNBC.com Anonymous Web Data

The ‘MSNBC.com Anonymous Web Data’ data (MSNBC) [55][20] represent the user browsing

patterns on the MSNBC.com website on September 28, 1999. For a view of the organization of

the site homepage, refer to Figure 3.12. Individual users who browsed the site were observed,

and the categories of articles they browsed were recorded. The sequences of article categories

comprise this dataset and provide insight into how users interacted with the site. A sample of

the category to key mapping is listed in Table 3.5 with a sample of sequences from the dataset.

Each Sequence row in Table 3.5 (b) represents a unique user of the site on the observed day.

As such, the prevalent basis is the User Basis , and a UBB can be constructed from each sequence 

having 𝑛 > = 2 . We further stipulate for this dataset that 𝑛 < = 16 , as the maximum number of

items per sequence can be about 14,000. Intuitively, the length of a sequence is indicative of the

behavioral patterns a web crawler might exhibit, indexing the site and traversing each link as the

43



Table 3.5. MSNBC.com Anonymous Web Data

(a) Categories

Key Name
1 Frontpage
2 News
3 Tech
4 Local
5 Opinion
6 On-Air
7 Misc
8 Weather

(b) Sequences

Sequence
1 1
2
3 2 2 4 2 2 2 3 3
5
1
6
1 1
6

Figure 3.13. MSNBC.com Number of Users vs. Number of Clicks
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Table 3.6. Anonymous Microsoft Web Data

(a) Categories

Key Name
1287 International AutoRoute
1288 library
1289 Master Chef Product Information
1297 Central America
1215 For Developers Only Info
1279 Multimedia Golf
1239 Microsoft Consulting
1282 home

(b) Sequences

Type Key
C 10016
V 1025
V 1026
C 10017
V 1004
C 10018
V 1008
V 1058

(c) Transposed

User Sequence
10016 1025 1026
10017 1004
10018 1008 1058

crawler discovers it – such sequences can grow to be quite long due to the automated nature of

web crawlers. As we are only interested in the behavior of users, the typical user’s attention span

on MSNBC.com can be modeled using the general exponential hazard function as illustrated in 

Figure 3.13. Figure 3.13, represents 95% of the user sequences observed.

3.6.3. Anonymous Microsoft Web Data

The ‘Anonymous Microsoft Web Data’ data (AMSWD) [17][18] represent behavior patterns of

38,000 Microsoft.com website users from a week in February of 1998. We show with Figure 3.14

the organization of the site in that epoch. The data represent a list of ‘vroots’, or categories for

articles, a list of numbered users who interacted with the site, and a sequence of votes each user 

put for different articles on the site (see Table 3.6). The user and sequence data may be transposed

(see Table 3.6) to provide a similar format to the data in Table 3.5. As each sequence of data can

be compiled back to individual users, the User Basis is most prevalent here. There are more than

38,000 different users, so automating the process of browsing the Microsoft.com would require

an equivalent number of UBBs to represent the user population.
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Figure 3.14. Microsoft.com in November, 1998
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3.7. Simulating Behavioral Data

A significant challenge addressed by this research was the lack of freely available user behavior

data recording interactions within a HMS. The optimal data set would provide sufficient richness

of detail for accurate study; in addition, those data would be necessarily obscured in order to pro- 

tect the privacy and anonymity of users being modeled. Moreover, there was no standard example 

of a controlled environment for comparing and contrasting the effectiveness of two analogous 

load testing processes in a microservice architecture environment [68]. Sample microservices

such as Sock Shop were developed for load testing as well as microservice software emulation 

[6]; yet when framed within the goals of this research, sufficiently described or prescribed testing

information are largely not available for these systems. The absence of such data as well as the

need for a testing oracle prompted the need for a solution which would be capable of repeat- 

ably generating error information. To solve this challenge, we designed, tested, engineered, and 

evaluated a multi-faceted microservice application simulation testbed. In addition, this test appli- 

cation needed to be capable of generating log data in the format required for this research while 

amalgamating the classical scripted approach of load testing tools such as JMeter [117] with the 

observations garnered through the experimental analysis of Section 3.6. 

We developed TinyERP to be a microservice which emulates the critical functions necessary to 

support an enterprise resource planning business unit. In addition to the TinyERP microservice,

we designed a testing oracle called Loki was designed to be paired with the microservice so 

that errors could be randomly generated by sequences of actions within the stream of events 

sent to TinyERP. These errors are randomly generated based on a seed value in the application

configuration in addition to the percentage of such ‘known’ and ‘unknown’ error transitions to

be generated. As TinyERP is a simulated environment as well as a fully functional application,

being able to control the existence of such errors is important for validating the effectiveness of

a testing tool. The principal components required to successfully implement TinyERP were:

• A software component for fluently developing templates used for generating and executing 

the scripted behavior patterns in TinyERP 
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Figure 3.15. Class Diagram for TinyERP Spring Boot Services

• A configuration process which can swiftly generate various behavior data sets conforming

to test script analogues in other load testing processes as well as parameterize the bound- 

aries for TinyERP 

• A simulation engine which executes the behavior scripts generated by TinyERP with web

request level details which would be present in a production environment and meets our

definition of 𝑆

• A functional multi-tiered microservice which operates within a production-quality soft- 

ware environment to facilitate diagnostic-level stimulus and response metrics capture and 

recording

• A testing oracle which generates critical operational metrics and error information for

TinyERP as well as accurately simulating and recording 𝜙𝑘 

and 𝜙𝑢

• A metrics and statistics generation component which is transparently lightweight and does

not significantly impact the run-time characteristics of TinyERP. 
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# DATABASE CONFIGURATION
spring.security.user.password=*****************
spring.h2.console.enabled=true
h2.tcp.enabled=true

#LOKI CONFIGURATION
loki.seed=42
loki.logFilePath=logs
loki.numberOfUsers=100
loki.generateLogs=true
loki.startTime=1500000000000
loki.failureRate=0.10
loki.timeIncrement=120000
#three separate conditions for
finalizing the number of generated logs.
loki.endTime=1600000000000
loki.maxNumberOfLogs=1000000
loki.maxRunTime=300000

Figure 3.16. TinyERP and Loki Runtime Configuration

The implementation of TinyERP grew from a small set of data generation and testing scripts

with a static web service to its culmination in the development of a fully functional microservice

in Spring Boot [123]. Spring Boot is an industry standard framework for developing microser- 

vices which standardizes much of the underlying boilerplate functionality such as logging, doc- 

umentation, deployment, dependency management, dependency injection, in addition to many

other features [123]. As a fully featured framework, it is also designed to seamlessly operate

on development desktops in addition to client-server models and more modern cloud-based en- 

vironments such as AWS [3, 123]. Due to the abstraction of complexities, Spring Boot was an

optimal framework for engineering TinyERP so that operational inconsistencies would be within

a largely controlled environment. The premise of such a controlled environment was to ensure 

that errors and variations could be more accurately simulated and measured.
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The connections between the major underlying components of TinyERP can be seen within

the class diagram of the Spring Boot application shown in Figure 3.15. TinyERP is the main

microservice application, relying up a User and Role Repository to emulate the principal access

control mechanisms of the microservice. The core initialization platform of TinyERP operates

via an ApplicationConfiguration which may be modified by a markup configuration file with- 

out requiring TinyERP be recompiled or reinterpreted. The required data elements can be seen 

in Figure 3.16, containing database configuration elements as well as boundary conditions for

simulated data generation. One of the primary parameters stored within this configuration file 

is the seed value for initializing the RandomService which provides randomly generated values 

throughout the execution of TinyERP. While the RandomService uses the configured seed value 

to ensure randomness where it is required, the RandomService also ensures consistency in the

output between executions of the Simulator component. While outputs may be vastly differ- 

ent between executions having differently configured seed values, executions sharing the same

seed value contain very little significant variance. The NameGenerator uses the most frequently 

assigned female, male, and surnames available by the Social Security Administration [110] for

generation of sample users and usernames to simulate with generated load testing scripts.

Operation of TinyERP follows a sequence of steps denoted in Figure 3.17 which begins with

(I) the creation and configuration of behavior parameters. These parameters consist of (II) con- 

figuration data and script templates written with a Java library component developed during

the course of this research. The execution (III) of TinyERP has two primary modes, microservice

only, or microservice and simulation execution (IV). The rationale for the two modes of operation

follows the need for TinyERP to be capable of independently running on multiple machines to

support a distributed testing scenario. In (V), the RandomService, NameGenerator, configuration

random seed information, and behavior script templates are used to define a set of logical agents

(VI) which execute behavioral load.
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Precursory Steps Simulator Loki TinyERP

Define & Update 
Agent 

Configurations

V
Emit Operational 
Metrics, Behavior 
Logs, and Error 

Information

IX

Execute 
Behavioral 

Load

VI

Behavioral Data 
Stream

VII

Configuration 
Data

II

Begin Process 
Execution

III

Create 
Configuration and 

Behavior 
Parameters

I

Should 
Behavior Scripts 

be Executed?

IV

Yes

Host Test 
Microservice 
Process for 

Testing

VIII

No

Figure 3.17. Sequence Diagram of Simulated Data Generation Process

These agents follow the sequential set of behaviors prescribed by the script templates. An 

example of such a template using the fluent script template generator is shown in Figure 3.18.

The template follows the format of a prescriptive probabilistic state machine, implicitly beginning 

with a LOGIN action and ending with a LOGOUT action. The steps in between may be bounded

and repeated in sequence or individually, depending on the script outline configuration. The

set of generated agents emit a behavioral data stream (VII) monitored by Loki which logs the

behaviors to the system user log files as in Figure 3.19. Loki can also generate simulated errors if

the configured random seed determines an input state to be considered faulty. The error is logged 

in the behavior data as well as the state data.

The event stream also actuate the TinyERP microservice - TinyERP (VIII) to emulate the actual 

usage of the microservice by a population of users by emitting realistic response times as well 

as non-functional architectural deficiencies such as server configuration specifications. Loki also 

captures operational metrics such as CPU usage, memory usage, behavior logs, and all simulated
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ScriptBuilder.getBuilder()
.addScript(

Script.getBuilder()
.setRepeatProbability(0.2)
.setUsedProbability(0.2)
.addStep(

ScriptAction.getBuilder()
.setModule(ACCOUNT)
.setAction(VIEW)
.setRepeatProbability(0.50)
.setMaxRepeats(5)
.build()

)
.addStep(

ScriptAction.getBuilder()
.setModule(ACCOUNT)
.setAction(ADD)
.setRepeatProbability(0.50)
.setMaxRepeats(5)
.build()

)
.addStep(

ScriptAction.getBuilder()
.setModule(ACCOUNT)
.setAction(MODIFY)
.setRepeatProbability(0.50)
.setMaxRepeats(10)
.build()

).build()
)

Figure 3.18. TinyERP User Simulation Script Template 
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FREEMEMORY
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THREADCOUNT

 

Figure 3.20. System Metrics captured for TinyERP 

error information from TinyERP for system level approximation of the effectiveness of the load

testing tool. The full set of system-level metrics that are captured by Loki is enumerated in Figure 

3.20. For each run of TinyERP, the metrics in Figure 3.20 are streamed to the TinyStats component

where various statistics are calculated for evaluating the effectiveness of the load testing system

being used. 

The TinyStats component is a powerful contribution in its own right because each time a

number is added to the set of metrics, the statistics may be called in O(1) time minus the operating

cost of system level math operations such as log_n. For example, the naive mean calculation

operation on a set 𝑁 = { 𝑛1, 𝑛2, 𝑛3, ..., 𝑛 𝑗 } of measured data points requires an O(1) operation to

insert a new element into the set, an O(n) operation to provide the sum of the contained elements, 

and either a constant time operation to provide the number of elements in the set, or another O(n) 

operation to count the number of elements. To calculate the mean, the following formula applies:

 

𝜇𝑛𝑎𝑖𝑣𝑒 = |𝑁 |−1 ·
𝑗

Σ

 

𝑖 = 1 

𝑛𝑖 .
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By amortizing the precursory statistical operations in constant time, the metric statistics can also 

be called with constant time in addition to removing the need to store the numbers in memory.

For a contrasting example, the TinyStats version of the mean operation costs O(1) to update the 

current sum of elements Σ𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

and O(1) to update the current count of elements 𝑁𝑛 

with no 

additional space requirement. Then, to calculate the mean, the following formula applies:

 

𝜇𝑇𝑖𝑛𝑦𝑆𝑡𝑎𝑡𝑠 =
Σ𝑐𝑢𝑟𝑟𝑒𝑛𝑡

 

𝑁𝑛
.

 

Additional statistics calculations such as first, second, third mean, skewness, kurtosis, min, and 

max may be similarly calculated. TinyStats is a lightweight statistics library which may accept

very large streams of numbers and provide statistics with very little required processing time.

Refer to Appendix B. for more details on the TinyStats statistics component developed to support

this research.

The simulated behavioral logs generated by TinyERP emulates concepts and patterns ob- 

served in Section 3.6, and the scripted approach used to generate behavior-based traffic is similar

to the steps used to generate load tests as on the Sock Store microservice [6] as well as JMeter 

[117]. However, one of the main catalysts affecting this research was the ability of the Simula- 

tor to quickly generate different data patterns with minimal configuration and execute it against

different endpoints - allowing for local testing on TinyERP in addition to cloud testing on an 

implementation of TinyERP on AWS (see Chapter 6). Also of note is the test oracle Loki’s con- 

sistently thorough logging, simulated error generation, comprehensive metrics, and lightweight

statistics via TinyStats.

3.8. Summary

We have defined the formalisms, data structures, and processes required to ingest data with lode- 

stone . The Descriptive Model of Agent Behavior represents the bases used for all agent opera- 

tions throughout the approach. We have defined the agent-based structure required to execute 

the various bases of behavior used to generate realistic workload. By clustering behavior pro-
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files, we have shown how to reduce the data storage footprint required to operate the realistic

load generating agents. Our experimental analysis of three anonymous behavioral web datasets

informed how the pattern-based behavior of users can be modeled; the analysis illustrated the

type of data produced by systems upon which the lodestone process can generate workload.

The implementation of a scripting template component and simulation engine enabled the cre- 

ation of various datasets based on rule-based patterns common to classical load testing processes.

The microservice testbed, behavior logging, metrics calculations, and our testing oracle Loki pro- 

vided a way to locally compare lodestone with other tools as well as a template for replicating

the research within a cloud-based environment. 

As described in this chapter, we extend formalisms of traditional state machines and stochas- 

tic models for data-driven user modeling which provide additional details over historical meth- 

ods ( 𝑅𝑄1 

from Chapter 1). In addition, we describe how various forms of behavioral data can

be analyzed, clustered into more efficient models, and how TinyERP can be used to simulate

the generation of such data ( 𝑅𝑄1, 𝑅𝑄2 

from Chapter 1). When behavioral data cannot be sim- 

ulated, scripted, or extracted at the necessary level of atomicity described within this chapter,

other methods for extracting profiles of user behavior may be extracted from aggregated data.

One particular method is through the mining of semantic clusters from aggregated data and is

described in Chapter 4.
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Chapter 4. Inferring User Models from Aggregated Log Data

The whole is greater than the sum of
its parts.

-- Aristotle
Metaphysics, Book 8

Wikipedia is a rich source of information for researchers who find value from not only the

content, but also the structure and organization of the articles in this open-source repository.

We contribute a means of using aggregated user behavioral clickstream data from Wikipedia to

derive meaningful semantic clusters. We apply community detection algorithms and modified

graph algorithms to extract semantic clusters from graphs of user behavior. We derive a set of

connected components which represent related articles within a shared subject domain. These 

resulting knowledge communities have application in numerous domains where understanding 

user behavior would be relevant, including software engineering, healthcare, and security do- 

mains [93].

4.1. Introduction

The Internet has become the primary mechanism through which human knowledge is produced,

stored, and consumed. We direct our attention to means through which users of this ‘system of

systems’ extract knowledge. One particular source, the website ‘Wikipedia.com’, has become a

rich source of information for users and researchers. As an open-source knowledge repository,

Wikipedia hosts millions of articles on a broad range of topics. Researchers find value from not

only the content but also the structure and organization of these articles. Since this site has been

available to the public, the number of articles has increased from 0GB in 2001 to 12GB in 2014,

cementing Wikipedia as one of the major repositories of human knowledge (see Figure 4.1). With

the release of monthly aggregated clickstream data, Wikipedia has provided a new perspective

for researchers to study how users interact with the site’s contents. When a set of Wikipeda

articles share topically related content, we refer to these articles as a knowledge community, or

semantic cluster1. From the released behavioral data, we investigate how such data can be mod-

1 The terms knowledge community and semantic cluster are used interchangeably in this chapter.
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Figure 4.1. Compressed Text Size of All Wikipedia Articles Over Time[130]

eled, knowledge communities can be extracted through various community detection algorithms,

and how these extracted communities can model behavior of the Wikipedia website users. Our

methods can be extended to any website where similar behaviors occur, such as corporate wiki

sites, user forums, and social media sites. 

Previous work concerning data from Wikipedia.com has shown how the data can be used to

construct ontologies, human language models (through natural language processing), and im- 

provements to the process of requirements engineering[81]. The data used in these works have

come from the content of the Wikipedia website itself: ontologies of domain knowledge based

on how content is organized on the site [112], natural language models based on the text within

the articles [31], and extraction of verbiage for software requirements engineering based on the

text within the articles[81]. The form, structure, content, and links present within a Wikipedia

article reflect the authors’ understanding of the semantic relations between the authored con- 

tent and other content on the site. In contrast, the aggregated clickstream data reveal how users

understand semantic relations between different articles on the site. We posit that research ef- 

forts using content from Wikipedia as source material can benefit from analysis of the aggregated

clickstream data.
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In particular, as researchers use information about how the content of the site is structured 

to form ontologies of domain knowledge, understanding how users interact with the links which 

are present can provide valuable perspective into how the content is related. This assertion ap- 

plies to other knowledge stores as well (such as corporate wiki sites [113]). Understanding how 

consumers of a site interact with its content is to understand the content from the eyes of those 

consumers. Collectively, the activity patterns of Wikipedia users can provide insight into the ‘re- 

latedness’ of articles on the site. We loosely define relatedness as the degree to which two or more 

articles share similar content, subject matter, and domain knowledge. Relatedness is the heart of 

semantic structure in a knowledge community. The core of a topic listed on Wikipedia is usually 

not stored in just one article. Meaning must be extracted from several articles (which might be 

linked together by contributors to that article). When links between several articles are regularly 

traversed by readers, logically, traversed links are more germane to the shared topicality of those 

articles than are those links which might be present but minimally traversed (or not traversed 

at all). Links listed in an article echo how the author(s) intended the content to be consumed; 

however, user behavior shows how articles are actually related in a knowledge community. 

Existing methods for analyzing these data rely on the content. We extend prior methods 

with new analysis that includes user behavior. Mahmoud and Carver state [81] the necessity of 

Wikipedia-based knowledge extraction efforts to be able to focus on individual domains rather 

than the entirety of the site’s contents. 

We describe the clickstream data (a small portion of which is illustrated in Figure 4.2) to 

be a weighted directed graph, the Wikipedia Behavioral Clickstream Graph, where the distinct 

articles are represented by vertices, the links between articles are represented by edges, and the 

amount of web traffic between two articles are represented by the edge weights. Based on the 

behavioral clickstream data however, one immediate observation is that not all links in each 

article are actually used or represented as edges. Thus, we can truncate the number of links/edges 

in the Wikipedia Link Graph (a small portion of which is illustrated in Figure 4.3) to be only those 

links which have been traversed by the users, as observed in Figure 4.2. 
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Figure 4.2. Example Wikipedia Behavioral Clickstream Graph

Figure 4.3. Example Wikipedia Link Graph

60



Table 4.1. Example Wikipedia Clickstream Data

Previous Current Type Count
Blacksmith Hephaestus link 1000
Hephaestus Goldsmith link 100
Goldsmith Pewter link 1000
Pewter Tinsmith link 1000
Tinsmith Blacksmith link 100
Hephaestus Bladesmith link 100
Blacksmith Goldsmith link 100
Blacksmith Metallurgy link 30000
Metallurgy Tinsmith link 100
Bladesmith Metallurgy link 100

Classic link-based approaches to building ontologies from Wikipedia use the links in each ar- 

ticle (which might be on the order of several hundred, depending on the article). We propose that

when constructing a Wikipedia-based domain ontology, the linked articles to which users navi- 

gate are more relevant to the domain than those linked articles which are ignored. In addition,

articles which are in strongly connected components of the Wikipedia behavioral clickstream

graph are topically more representative of the encompassing domain than articles which are only 

weakly connected. Strongly connected components require components which are constructed

of outbound directed edges only, where weakly connected components can be constructed us- 

ing inbound edges as well. In effect, a weakly connected component can be constructed which

contains a set of articles not satisfying Tarjan’s classic Connected Component algorithm [116],

as discussed in this chapter.

4.2. Wikipedia Clickstream Graph

The first clickstream dataset for Wikipedia was released by the Wikimedia Foundation for the

month of January 2015 [136]. Sporadic monthly releases have since followed which represent the

aggregated traffic of all articles for the observed month. Table 4.1 shows a simplified example of

how the data are arranged; although these transitions exist in the data, the exact frequencies have

been simplified for the sake of our example. These data contain a list of links as tuples containing

information on the ‘Previous’ or ‘source’/‘referrer’ article from which the browsing behavior is
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initiated, the ‘Current’ or ‘target’ article which is being navigated to, the volume of traffic as- 

sociated with the browsing behavior (‘N’), and additional classification information on the link 

itself (‘Type’). Individual records of user behavior are obscured by a monthly aggregation of the 

traffic. The clickstream data provide more information about how the site is navigated other than 

internal link traffic (traffic from one article on Wikipedia to another); however, as this research 

focuses on internal traffic, the additional classification information is useful for filtering out ex- 

ternal link traffic.2 The data provides one-hop frequency information. As shown in Figure 4.2, 

each record in the data provides the previously observed page as well as the currently observed 

page, for example from Bladesmith to Metallurgy. By constructing a graph of the clickstream, 

additional analysis of the data provides multi-hop information for base level statistical analysis; 

moreover, such analysis provides the data to analyze the semantic relationships between the links 

on the site. 

Our clickstream graph 𝐺 = ( 𝑉 , 𝐸 ) where 𝑉 = { 𝑣 | 𝑣 is a distinct article on Wikipedia } , and 

𝐸 = { 𝑒 = ( 𝑣1, 𝑣2,𝑤 ) | 𝑣1, 𝑣2 ∈ 𝑉 ,𝑤 ∈ N ,𝑤 > 0 } is the set of all edges between any two articles 

on Wikipedia where users have navigated from 𝑣1 

to 𝑣2, and where 𝑤 represents the directed 

volume of traffic flowing in the direction: 𝑣1 → 𝑣2. The clickstream graph is similar to the data 

structure used in the PageRank algorithm [92] employed by Google’s search engine framework. 

The clickstream graph as shown in Figure 4.2 is a sub-graph of the link graph shown in Figure 

4.3; however, we see that traffic in the clickstream graph represents search behavior on the site as 

well. A link to an article might not be present on the site and thus in the link graph, yet it might be 

present in the clickstream graph. Conversely, links which are part of a source article might never 

be clicked by users of the site; thus, these links will not be present within the clickstream graph, 

but present within the link graph. A minor modification to the clickstream graph calculates total 

transition volume from each source article and represents all edge weights as probabilities of 

transitioning from the source article of the edge to the target article of the edge, by dividing edge 

weight by total source volume. The resultant data structure is a MC representing the internal

 

2 Traffic from Wikipedia to external sites or from external sites to Wikipedia is not useful to this research. 
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Figure 4.4. Process to Extract Knowledge Communities

traffic at Wikipedia as a memoryless stochastic process. However, this MC clickstream graph is

large and represents the traffic for all users across all articles on the Wikipedia website. We now

focus on how to extract semantic clusters of interrelated articles on specific domains from this

clickstream graph.

4.3. Methodology to Extract Semantic Clusters

Semantic clusters in the context of Wikipedia Clickstream Graph are knowledge communities

of articles which are topically similar and thus ‘semantically related’. The high level process

we describe for extracting these communities is shown in Figure 4.4. The steps range from (I) 

collection and (II) analysis of user data, to (III) flattening and aggregation, and finally (IV) the

extraction of semantic clusters. Many methods exist for extracting semantic clusters, communi- 

ties, and connected components from graphs; however, as described in Section 4.2, each algorithm

comes with computational cost to consider. As a MC representation of the Wikipedia Clickstream

Graph is simply a graph with additional data associated, we use efficient graph-based algorithms

for extracting communities. Tarjan’s algorithm[116] is a means of discovering connected compo- 

nents of nodes within a connected graph. A connected component is considered to be “strongly 

connected” if this algorithm is run on a directed graph by only following the direction of the

edges. A connected component is defined to be “weakly connected” if the algorithm is run on 

a directed graph and follows the edges disregarding the direction (thus as an undirected graph).

More formally, Tarjan defines [116] strongly connected components with the following lemma, 

and provides a Depth First Search (DFS)-based algorithm for discovering the components shown

in Figure 4.5.
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StrongConnect:
begin:

index <- 0
indices <- {}
lowlink <- {}
on_stack <- {}
S <- Stack()
G <- Graph()

for node in G.nodes:
if node not in indices:

ConnectComponent(
G.nodes[node]

)
end

ConnectComponent(n):
begin:

v <- n.value
indices[v] <- index
lowlink[v] <- index
index <- index + 1
S.append(v)
on_stack[v] <- True

for e in n.edges:
v <- e.left
w <- e.right

if w not in indices:
ConnectComponent(

G.nodes[w]
)
lowlink[v] <- min(

lowlink[v], lowlink[w]
)

elif on_stack[e.right]:
lowlink[v] <- min(

lowlink[v], indices[w]
)

if lowlink[v] == indices[v]:
cc <- Component()
while len(S) > 0:

w <- S.pop()
on_stack[w] <- False
cc.add_node(G.nodes[w])
if w is v:

break
G.components.append(cc)

end

Figure 4.5. Tarjan’s StrongConnect Algorithm and ConnectComponent SubRoutine [116]
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Lemma 8: Let 𝐺 = ( 𝑉 , 𝐸 ) be a directed graph. We may define an equivalence 

relation on the set of vertices as follows: two vertices 𝑣 and 𝑤 are equivalent if there 

is a closed path 𝑝 : 𝑣 = ⇒ 𝑣 which contains 𝑤 . Let the distinct equivalence classes 

under this relation be 𝑉𝑖, 1 < 𝑖 < 𝑛. Let 𝐺𝑖 = ( 𝑉𝑖, 𝐸𝑖) where 𝐸𝑖 = {( 𝑣,𝑤 ) ∈ 𝐸 | 𝑣,𝑤 ∈ 𝑉𝑖} . 

Then each 𝐺𝑖 

is strongly connected [...] the sub-graphs of each 𝐺𝑖 

are the strongly 

connected components of 𝐺.3 [116] 

Extracting strongly connected components from the clickstream graph is equivalent to finding 

sets of articles which are circularly linked together through behavioral traffic patterns. Thus, if 

link traffic in our clickstream graph of Figure 4.2 shows that an article on ‘Blacksmith’ has traffic 

to an article on ‘Metallurgy’, the article on ‘Metallurgy’ has traffic to ‘Tinsmith’, and the article 

on ‘Tinsmith’ has traffic back to ‘Blacksmith’, we consider these articles and any others in the 

path from the source article back to itself as being in one strongly connected component. The 

weaker condition - weakly connected components - only requires an undirected path between 

these articles. 

When random and systematically iterative behaviors appear in the data, such as those emitted 

by web crawling programs, it is the case that unrelated topics may become behaviorally related by 

the data. The resultant behavioral chains then extend through the graph to connect topics which 

are unrelated. When such long chains of unrelated data appear, we must constrain the depth of 

the search through these vertices in order to reduce the size of the resultant strongly connected 

components and increase the semantic relatedness of each component’s articles. We introduce a 

Depth Constraint to Tarjan’s algorithm - the recursion through which the STRONGCONNECT 

algorithm performs its search is halted when the constraint has been met. 

Users of the Wikipedia site might not choose to browse hundreds of articles in a single read- 

ing or research session; it is necessary to prevent the creation of strongly connected components 

which might have a deep transitive relationship, but not as deep of a semantic connection be- 

tween the content of the two articles. An example illustrated with Figure 4.6 is ‘Blacksmith’ → 

‘Hephaestus’ → ‘Mythology’ → ‘Zeus’ → ... → ‘Blacksmith’. Using the original STRONGCON- 

NECT algorithm results in a set of articles represented by Figure 4.6. The shaded nodes are the set

 

3 It is of note here that while the exact definition of G, V, and E are different here from how they are defined in 

Section 4.3, our definition extends the definition being used in this Lemma. 

65



Figure 4.6. Full-Depth Connected Component

of articles most related by their content to ‘Blacksmith’. Where the transitive relationship chain

might be thousands of links deep and create a strongly connected component, the resultant con- 

nected component will also have thousands of articles (such as ‘Zeus’ and ‘Apollo’) which are 

not directly relevant to the content of the original article (‘Blacksmith’). Our goal is to reduce the

number of articles which have this transitive relationship. We increase the depth of the constraint

by powers of 10 to simulate the level of depth the entire knowledge community might browse

in extending the content of an article. Constraining the maximum recursion depth to ten links 

deep reduces the inclusion of tertiary transitive articles in our semantic clusters which are not

topically related to the domain being described by the other articles in the cluster.

We modify the STRONGCONNECT algorithm as depicted in Figure Figure 4.7 with bold text

and adding a recursion counter which increases with each level of recursion. If a max depth of

recursion has been reached and we have traversed out to a maximum distance from the current

search node, the recursion is broken and the next child of the search node is processed. Ex- 

tracting connected components from the clickstream graph with the additional Depth Constraint

reduces the number of extraneous nodes in each of these connected components. By reducing

extraneous nodes, we are able to increase the semantic relatedness of each connected compo- 

nent. We illustrate via Figure 4.6 through the subset of shaded nodes versus the set of all nodes 

in the Figure. The more semantically related nodes are shaded where all nodes depicted in Figure

4.6 are only transitively related. Again, semantic relatedness is analogous to cohesion in that
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ConstrainedConnect( k ):
begin:

index <- 0
indices <- {}
lowlink <- {}
on_stack <- {}
S <- Stack()
G <- Graph()
max_depth <- k

for node in G.nodes:
if node not in indices:

ConstrainedComponent(
G.nodes[node], 0

)
end

ConstrainedComponent(n, depth ):
begin:

v <- n.value
indices[v] <- index
lowlink[v] <- index
index <- index + 1
S.append(v)
on_stack[v] <- True

for e in n.edges:
v <- e.left
w <- e.right
if depth >= max_depth:

break

if w not in indices:
ConstrainedComponent(

G.nodes[w],
depth + 1

)
lowlink[v] <- min(

lowlink[v], lowlink[w]
)

elif on_stack[e.right]:
lowlink[v] <- min(

lowlink[v], indices[w]
)

if lowlink[v] == indices[v]:
cc <- Component()
while len(S) > 0:

w <- S.pop()
on_stack[w] <- False
cc.add_node(G.nodes[w])
if w is v:

break
G.components.append(cc)

end

Figure 4.7. Constrained StrongConnect Algorithm and ConnectComponent SubRoutine [116]
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the articles are cohesive in their meaning. The articles discuss content which is similar in na- 

ture and topicality; without the Depth Constraint, the number of unrelated articles produced by

the original STRONGCONNECT algorithm is untenable as a model for representing knowledge 

communities.

4.4. Evaluation 

The process for extracting semantic clusters from previously aggregated clickstream data pro- 

duced results which we present in this section. In addition, we discuss the results and how they 

impact the process of segmenting communities of related subjects on Wikipedia in a way which

capitalizes upon the ways in which users interact with the site as well as being computationally 

friendly. 

4.4.1. Results 

The behavioral clickstream data are structured such that the graphical approach subject to the 

depth constraint is able to reveal information about the articles on the Wikipedia site which might

not be readily apparent from the links listed in each article. Where the Wikipedia Links Graph 

shown in Figure 4.3 could represent several articles which are connected by links, these articles 

could only be partially connected by content. Specifically, Figure 4.8, Figure 4.9, and Figure 4.10 

illustrate how the depth constraint filters noisy traversals between articles. In Figure 4.8, we 

show how the maximum recursion is set to 10,000 nodes. For each search node, the DFS tree is 

traversed in the STRONGCONNECT algorithm for at most 10,000 hops until a cycle back to the 

search node is reached; this is represented by the dashed lines in Figure 4.6. 

To traverse this tree without optimization is computationally expensive; moreover, it can be 

problematic as resultant connected components include many articles which are not cohesively 

relevant to the domain of the DFS tree’s search root. The upper limit of 10,000 is used to illustrate 

the scale of larger, unconstrained executions of Tarjan’s STRONGCONNECT Algorithm. By ex- 
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Figure 4.8. Strongly Connected Components With Depth Constraint: 10000 

ample of what STRONGCONNECT can produce without suitable Depth Constraint, Figure 4.8, 

represents the results of the algorithm running with a Depth Constraint of 10,000. There are com- 

ponents which have an inordinate amount of traffic across all the articles inside each component. 

Similarly, these components have an inordinate amount of articles in each component. 

Each circle in Figures 4.8, 4.9, and 4.10 represents a connected component extracted using 

Depth Constraint. The connected component contains a set of articles which we expect to share 

content within a shared domain. The size of the circles represent the number of articles in 

logarithmic scale where their position on the x-axis shows the total amount of traffic for each 

component. While we might not care as much about the volume of traffic being larger for one 

component than another, it is problematic to have that many pages in only a few components. 

Such disproportionately sized clusters are undesirable due to the natural preference for smaller 

cohesive clusters of topically related articles. 

Similarly, for weakly connected components with a maximum recursion depth of 10,000 nodes 

such as those depicted in Figure 4.9, even more of these components have an overly large amount 

of pages. Both inbound edges and outbound edges are computed for the weakly connected con- 

dition to be satisfied, thus, the weakly connected components algorithm uses even more compu- 

tational resources than the strongly connected version of the algorithm. By reducing the depth 
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Figure 4.9. Weakly Connected Components With Depth Constraint: 10000

Figure 4.10. Strongly Connected Components With Depth Constraint: 10
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of recursion as in Figure 4.10 to 10 nodes (Depth Constraint: 10), a drastic size reduction in the

scale of the outliers occurred. With the progression from Figure 4.8 and Figure 4.9 to Figure 4.10,

we observe how reducing the Depth Constraint simultaneously reduces the average size of the

resultant connected components.

With the classical Tarjan algorithm, the output consists of many tiny connected components

and few extremely large connected components as shown in Figure 4.8 and Figure 4.9. An example 

of a tiny connected component is the set containing the shaded nodes shown in Figure 4.6; in

contrast, a large, semantically unrelated component would be the set of all nodes depicted in 

Figure 4.6 such that the dashed lines represent hundreds or thousands more nodes. Inspection

of the large connected components revealed that the articles represented had many differing

unrelated topics and thus did not share a holistic semantic relationship. By constraining the

depth to which maximum recursion was able to execute to a smaller number of traversed links,

we reduced the size of the outlier components by orders of magnitude which can bee seen in

Figure 4.10. This change is made observable by the smaller circles shown in Figures 4.8, 4.9, and

4.10 results in the production of components having a more consistent size. The large connected

components represent long chains of links in articles which are semantically related to each other

but not to articles further down the chain. The chained relations between Wikipedia articles

require any DFS-based community detection algorithm to make similar adjustments as we have

shown with Tarjan’s algorithm. Such adjustments increase the cohesiveness of the articles in

each knowledge community.

4.4.2. Discussion

We have shown that using community detection algorithms and adapting graph algorithms to- 

ward the goal of detecting knowledge communities can be used to extract semantically related

articles from Wikipedia. By constraining the depth to which such community detection algo- 

rithms execute, we are able to reduce the number of extraneously related articles in the resultant

knowledge communities. The articles maintained by such knowledge communities are semanti- 

cally related because users navigate the site by clicking links on each source page to reach the
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next target page and the community-based content-management processes governing the site 

reflect that related and relevant links are typically present on each page [136]. Modeling knowl- 

edge communities as individual behavioral MC models will enable researchers to extend previous 

efforts at constructing ontologies, requirements engineering, knowledge mapping, and semantic 

mapping of the articles on Wikipedia. In addition, using Wikipedia’s behavioral data requires 

orders of magnitude less space and memory as compared to the raw article text. If we include the 

amount of data related to users editing pages, the costs of space can rise by an additional four or 

five orders of magnitude. For researchers on a constrained budget, these behavioral data could 

provide insight previously not available at a space/computational cost reduction. In addition, us- 

ing Depth Constraint to extract knowledge communities from the data simplifies the process of 

analyzing the semantic relatedness of the Wikipedia.com website content. 

These results show how clickstream data can be used to extract semantic clusters from 

Wikipedia data. Previous methods using only the link graph to construct Wikipedia-based do- 

main ontologies result in groups of articles which include unrelated pages, as index pages and 

other unrelated links appear in every article on the site. Inclusion of unrelated pages is due to 

extraneous transitive links; the ‘backtracking’ observed in the study by [142] could provide ad- 

ditional insight into or partially explain how user behavior with the Wikipedia site could cause 

such results. The depth constraints presented reduce the inclusion of such unrelated transitive 

links in semantic clusters. The connected component approach is used by Janik and Kochut [63] 

for text categorization and classification of non-Wikipedia documents; however, our usage for 

the connected components algorithm is focused on extracting semantic clusters from Wikipedia. 

Janik and Kochut create a graph, extract connected components, and use Wikipedia to classify 

documents according to a similar graph constructed from Wikipedia data. However, Janik and 

Kochut do not use clickstream data; rather, they focus on using the natural language from the 

documents they seek to classify and the natural language from the articles on Wikipedia. While 
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Janik and Kochut use similar methods, the output and focus of their work is different from our

research, in that they seek to classify documents through features extracted from the natural lan- 

guage of documents, not create semantic clusters of related documents through the behavioral

analysis of the users interacting with those documents.

By reducing the recursive depth of the Depth First Search steps in the STRONGCONNECT al- 

gorithm, the nodes in the resulting components are more tightly connected than those which can 

be extracted from the links graph. This ‘tight-connectedness’ property filters extraneous edges 

from components of large graphs such as social networks or computer networks. We have con- 

tributed the Depth Constraint extension of the STRONGCONNECT algorithm; however, an addi- 

tional way in which the data can be constrained is the Pareto Constraint, formed by looking at the

weight associated with the edges of the graph. While the edge weight represents traffic volume, 

it is not immediately relevant for the construction of the Depth-Constrained connected compo- 

nents within our clickstream graph; moreover, these edge weights could be used for pruning the

size of the connected components by removing links which only have transitive relatedness to

the overall component. We define this procedure to be a Pareto Constraint; in other words, if

the inbound and outbound traffic volume associated with a vertex is below an observed or pre- 

defined Pareto frontier, we disclude that vertex from the connected component. If the vertex is

discluded from the connected component, all of that vertex’s outbound neighbors must thus be

discluded as well unless they can be visited by a transitive neighbor of the originating node of the

STRONGCONNECT algorithm’s current iteration. We plan future inquiry on Pareto Constraint

to restrict the size, breadth, and depth of connected components in large network graphs.

4.5. Summary

We have shown a modified version of Tarjan’s STRONGCONNECT algorithm which we use to

extract semantic clusters from a monthly aggregation of Wikipedia.com user browsing patterns.

We represent the aggregated browsing patterns as a graph. Previous community detection algo- 

rithms do not run in the same order of efficiency as Tarjan’s STRONGCONNECT algorithm, and 

Tarjan’s STRONGCONNECT algorithm is not typically used for extracting communities from
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graphs, or network structures. The changes we have made to Tarjan’s algorithm capitalize upon 

the compact structure of Wikipedia browsing data, the efficient structure of Tarjan’s Algorithm,

and the relatedness of the sites to extract meaning from data which previously has not been ex- 

plored. Our modified version of the algorithm reduces the depth to which the embedded search

algorithm in STRONGCONNECT traverses the graph. The output of the algorithm is a set of

connected components which represent related articles within a shared subject domain. This

depth constrained graph-based approach to extracting knowledge communities uses aggregated

browsing data to capitalize on user behavior to produce representative clusters of semantically

related articles on Wikipedia.com.

With this chapter, we demonstrated that aggregated batched behavioral data in a human- 

machine system can be systematically grouped into semantically related MC models, which we

wished to show with 𝑅𝑄2 

from Chapter 1. One of the key ways of understanding a set of

users in an online community is by understanding how those users interact with the systems

also in that community. Such interactions most often are captured in various forms and can be

stored and modeled as a large interconnected graph of nodes and edges. With the Depth Con- 

straint this chapter contributes, we have shown a general means of extracting clusters of nodes

within a graph based on the weight and direction of the edges in that graph. Where Tarjan’s

STRONGCONNECT algorithm provides an efficient means of segmenting large graphs such as

the Wikipedia Clickstream graph, the imposition of a Depth Constraint to the STRONGCON- 

NECT algorithm allows for larger clusters of nodes to be further segmented. Our Depth Con- 

straint contribution to Tarjan’s STRONGCONNECT is useful in the research efforts related to

graph segmentation, data clustering, and general knowledge extraction from large data sets. By

segmenting such large sets of interrelated data into smaller segments, we reduce the amount of

computation and time it takes for analysts and scientists to understand the data. Smaller succinct

models are also optimal for automation efforts such as those used in the generation of realistic

workloads on a system under test. We discuss how such models may be alternatively learned and

automated in the following chapter.
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Chapter 5. Learning Adaptive User Models from Streaming Data

The consequences of an act affect the
probability of its occurring again. 

-- B.F. Skinner 

Wade & Tavris, Psychology 

A critical step in the testing of modern software is the generation of realistic workloads on 

a system under test before that system under test is released to production, also known as load 

testing. Appropriately generated workload adequately emulates the expected behaviors of users 

and machines within the system under test to find potential failure states. Typical testing tools

rely on static testing artifacts such as scripts or recorded packet streams to generate realistic

workload conditions. Such artifacts can be cumbersome and costly to maintain; however, model- 

based alternatives to static artifacts do not allow for reactive adaptation to changes in the system

under test or its currently observed usage. Model-based alternatives do not address the sunrise

problem - when failure states exist in the system under test but are not empirically modeled due

to an incomplete amount of data.

We describe the formalisms of Markov Chain behavior models which are useful for load test- 

ing and capable of being extended. We detail a novel approach to modeling and executing work- 

load which provides greater flexibility over traditional static and model-based load testing tools

in three ways. The first improvement is by evolving observed Markov Chain behavior models

to Markov Decision Process behavior models through reinforcement learning. The second is by

efficiently solving the sunrise problem with amended sparse data structures to facilitate Laplace

smoothing over the sample state space. The third is by providing our models with the streaming

ability to learn and forget previously observed behavior probabilities in the system under test

such as new states or pruned execution paths via a least-recently-used cache.
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5.1. Introduction 

The spontaneous growth of human-machine systems over the past century has provided an ex- 

panding treasure trove of benefits to society; however, with such benefits comes the responsibility 

of ensuring that technology does not adversely affect those who use it. One of the critical roles 

that data scientists can fill on system development teams is the determination of features and 

aspects most used and beloved by a system’s users [11]. Understanding which features are most 

used is an important part of knowing which code paths are necessary to upgrade, test, and support 

between and after software releases. Previous work by van Hoorn has shown that the application 

of data scientific methods and models to system logs to create operational profiles of the system 

can extend the capabilities of classical tools used for testing [58]. Testing software based on op- 

erational profiles, behavior and process models is not new; neither is the process of discovering 

operational profiles and models from behavioral data. However, to the best of our knowledge, the 

application of operational profiles toward an evolving, realistic, online load testing system based 

on Markov Chains (MC) has not been fully explored. 

Automated testing tools extend the capabilities of traditional human quality assurance en- 

gineers (QA) through the use of data captured from a system under observation (SUO, or S𝑜 ). 

These data are a vehicle for modeling behavior and simulating the various types of behaviors 

which might elicit potential faults within the system under test (SUT, or S𝑡 ). It is important 

to delineate these two system environments: the SUO is a production system where realistic 

data can be captured for modeling and mining, where the SUT is a staging system mirroring the 

SUO, but strictly reserved for pre-release testing of code and infrastructural changes to detect 

hidden faults in the system change delta. Data streams from the SUO are typically put through 

an extensive process where they are queried, exported, defined, mined, and modified to become 

monolithic testing artifacts for usage in tools such as JMeter [58] and Selenium [19]. As the SUO 

evolves with time to meet the needs of the human-machine system in which it is placed, the test- 

ing artifacts must also change to meet those same needs. The consequence is that accurate and 

consistent LT of a SUT is a cumbersome undertaking requiring significant re-work by QA [104]. 
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Model-based approaches to LT such as Markov4JMeter by van Hoorn [58] have been pro- 

posed to address the required manual update of static artifacts, but have a shared susceptibility

to adaptation issues when the underlying system undergoes significant changes between releases 

[13]. In addition, sufficient data from the SUO between releases may not exist to accurately up- 

date testing artifacts or models for testing [13]. Model-based approaches have been shown to

suffer from adaptation challenges brought about by the proliferation of continuous integration 

practices such as DevOps and Agile Programming [13]. To help address such challenges within

the scope of the challenges and problems ( 𝐶1 − 4, 𝑃1 − 5) listed in Chapter 1, we list the following 

problem statements addressed by the contributions of this chapter:

Problem Statement 5.1 : Existing approaches to LT currently require significantly repetitive

manual effort to integrate into a living testing and DevOps environment. (See 𝐶1,𝐶2,𝐶3,𝐶4, 𝑃1, 

and 𝑃3 

in Chapter 1.) 

Problem Statement 5.2 : Existing approaches to LT do not learn to actively search the SUT for

flaws while still following the previously observed behavioral distributions. (See 𝐶4, 𝑃1, 𝑃2, 𝑃3 

and 

𝑃4 

in Chapter 1.) 

Problem Statement 5.3 : Existing approaches to LT do not allow for stale, inactive, or dead 

activity patterns to be filtered when generating testing artifacts, testing, or modeling. (See 𝐶1, 𝐶2, 

𝐶3, 𝐶4, 𝑃1, and 𝑃3 

listed in Chapter 1.) 

Problem Statement 5.4 : Existing approaches to LT do not account for missing or incomplete 

data when generating testing artifacts, testing, or modeling. (See 𝐶2,𝐶3, 𝑃1, 𝑃2, and 𝑃5 

listed in 

Chapter 1.) 

Problem Statement 5.5 : Existing approaches to LT do not provide a comprehensive set of for- 

malisms for modeling a human-machine system. (See 𝐶4 

in Chapter 1.) 

In addressing these problems, we show how logs from a mirrored production environment can 

facilitate the automatic maintenance of an online model of usage behavior (Problem Statement 

5.1) for realistic testing against an SUT. Recall Figure 3.4 for the interplay between the SUO

and the SUT. We discuss an approach for describing the various behavioral functions in a SUO
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(Problem Statement 5.5). In addition, we define an extension to MC “behavior mixes” [58] with

Q-Learning, allowing for the model to evolve to find faults within the SUT (Problem Statement

5.2). We apply streaming versions of data structures, statistical methods, and caching to allow for

operational changes in the SUO to be reflected in the testing patterns applied to the SUT (Problem

Statement 5.3). Such improvements also reduce the computational cost and space required to

operate, store, and maintain operational models. Finally, we apply Laplace smoothing to our

MC behavioral models to account for faults which might exist within the SUT, but not reachable

through data-modeling (Problem Statement 5.4).

5.2. Q-Learning Behavior Models

We developed the process of evolving MC models to Q-Learning Behavior Models (MCQL).

Q-Learning is a machine learning technique useful for emulating emergence within a HMS with

which learning Agents are interacting. Due to the mathematical similarities in the underlying 

mechanisms of Q-Learning and MC models, an intuitive mapping exists toward a MAS built on

these mechanisms. Q-Learning allows Agents to follow state transitions which have previously

been marked as more fruitful than others in the process of optimizing toward the goals of the

MAS. We provide the following definition of Q-Learning by Mitchell for the reader [87]:

The optimal action in state 𝑠 is the action 𝑎 which maximizes the sum of the
immediate reward 𝑟 ( 𝑠, 𝑎 ) plus the value of 𝑉 ∗ (equivalent to 𝑉 𝜋∗) of the immediate
successor state, discounted by 𝛾 :

 

𝑉 𝜋 ≡
∞

Σ

 

𝑖 = 0 

𝛾 𝑖𝑟𝑡+1

 

(5.1)

 

𝑉 ∗ ≡ argmax
𝜋 

𝑉 𝜋 (𝑠), (∀𝑠)

 

(5.2)

 

𝜋∗(𝑠) = argmax
𝑎 

[𝑟 (𝑠, 𝑎) + 𝛾𝑉 ∗(𝛿 (𝑠, 𝑎))]

 

(5.3) 

where 𝛿 ( 𝑠, 𝑎 ) denotes the state resulting from applying action 𝑎 to state 𝑠 . An Agent 

can acquire the optimal policy by learning 𝑉 ∗, provided it has perfect knowledge of
the immediate reward function 𝑟 and the state transition function 𝛿 . In instances 

where we do not have access to such reward or state transition functions, we resort
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to the Q-function for evaluation of the optimal state transition.

 

𝑄 (𝑠, 𝑎) ≡ 𝑟 (𝑠, 𝑎) + 𝛾𝑉 ∗(𝛿 (𝑠, 𝑎))

 

(5.4) 

It follows that we can rewrite equation 5.2 as follows:

 

𝜋∗(𝑠) = argmax
𝑎 

𝑄 (𝑠, 𝑎)

 

(5.5) 

Maximum Likely Reward is a greedy way of determining the most optimal path for generating 

an error in S𝑡 . In calculating the most likely path and the most likely error action based on a MC

behavior model, we can filter out testing scenarios in which typical system behavior is expected.

By using Maximum Likely Reward, we provide a mechanism for our learning Agents to pursue 

those errors which might have been previously un-observable within the SUT.

Theorem 1 : MCQL provides the Maximum Likely Reward in a stochastic process where re- 

wards are given for Agents reaching specific states.

Proof. Assume functions 𝛿 : 𝑆 × 𝐴 → 𝑆, the transition function, and 𝑟 : 𝑆 × 𝐴 → R the reward

function. Further assume we are given M , a Markov Chain represented in its matrix 𝑃𝑖, 𝑗 

form to

represent the probability that 𝛿 ( 𝑠, 𝑎 ) can occur for all 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴 . As the state space of 𝛿 ( 𝑠, 𝑎 )

and M are equivalent, we can define a function 𝛿 M 

: 𝛿 ( 𝑠, 𝑎 ) → R which denotes the probability

that 𝛿 ( 𝑠, 𝑎 ) will occur. Then, for all 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴 , we can calculate the MCQL function as follows:

 

𝑄M(𝑠, 𝑎) ≡ 𝑟 (𝑠, 𝑎)𝛿M(𝛿 (𝑠, 𝑎)) + 𝛾𝑉 ∗(𝛿M(𝛿 (𝑠, 𝑎)))

 

(5.6)

As all terms are weighted by the probability that event an can occur, we force the argmax to

return the Maximum Likely Reward. Q.E.D.

In the case of this work, the Maximum Likely Reward is the chain of transitions through S 

such that the Q-Learning reward and 𝜙𝑝 

are both maximized. In order to address the situations in 

which 𝜙𝑝 

results in zero, we must solve the sunrise problem: namely, determining the conditional

probability that an event will occur even though it has not been observed in the sample data.
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Table 5.1. Conditional Probability Feature Vectors for Example Users

( 𝜎1, 𝜎1) ( 𝜎1, 𝜎2) ( 𝜎1, 𝜎3) ( 𝜎2, 𝜎1) ( 𝜎2, 𝜎2) ( 𝜎2, 𝜎3) ( 𝜎3, 𝜎1) ( 𝜎3, 𝜎2) ( 𝜎3, 𝜎3)
𝑈1 0.4 0.3 0.3 0.3 0.4 0.3 0.3 0.3 0.4
𝑈2 0.3 0.4 0.3 0.4 0.3 0.3 0.3 0.3 0.4
𝑈3 0.4 0.3 0.3 0.3 0.3 0.4 0.3 0.4 0.3
𝑈4 0.0 0.6 0.4 0.2 0.1 0.7 0.4 0.4 0.2

5.3. Streamlining MCQL Data Modeling

We describe the process to efficiently mine and store MC behavior models in order to solve the

sunrise problem with amended sparse data structures to facilitate Laplace smoothing over 𝑆 . We 

imbue our models with the ability to “forget” previously observed behavior probabilities in the

SUO through a least-recently-used (LRU) cache.

As | 𝑆 | ∈ S can grow quite large, causing the number of transitions in 𝜙𝑝 

to grow large as 

well, it is important to efficiently implement MC behavior models so that they may be used in an 

operational environment. We rely upon sparse vectors and sparse matrices [118] to reduce the

operational memory and computational footprint. Sparse vectors are similar to hashed map data

structures where the entry key is the vector index, the value is the value stored at the vector index, 

and most importantly, zero-values such as 𝑈4 → ( 𝜎1, 𝜎1) depicted in Table 5.1 are not stored.

Sparse vectors allow for efficient computation of matrix and vector operations by skipping zero- 

valued indexes in the structure. While our computational examples provide non-sparse values 

for convenience, it is of note that most operational profiles will be extremely sparse in nature. 

Such sparseness within data from the SUO presents a problem when dealing with novel states

and transitions in an SUT. As such, we must present a solution to the so-called sunrise problem

while leaving our approach computationally efficient. The sunrise problem is a classical way of

representing the difficulty that descriptive statistics has with attempting to model the probability

of an event occurring when prior examples do not exist in the observed sample data. Colloquially, 
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we want to know the likelihood that the sun will not rise tomorrow. As the event in question has

never occurred, we do not have a rough estimate of the requested likelihood. Such an estimate

may be calculated with Laplace smoothing which is the inclusion of a non-zero smoothing value 

to a priori distributions in order to account for the occurrence of rare events. 

We thus extend the sparse vector and sparse matrix algorithm with a smoothing factor 𝑙 such

that 𝑆𝑝𝑎𝑟𝑠𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑙 

is a 𝑆𝑝𝑎𝑟𝑠𝑒𝑉𝑒𝑐𝑡𝑜𝑟 where the zero values are replaced with 𝑙 but not stored in 

memory, and the non-zero values are discounted by a fraction of 𝑙 , such that | | 𝑆𝑝𝑎𝑟𝑠𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑙 | | = 

| | 𝑆𝑝𝑎𝑟𝑠𝑒𝑉𝑒𝑐𝑡𝑜𝑟 | | . We similarly extend the definition of a sparse matrix, such that non-zero values 

are discounted according to the 𝑙 value and the row-major sums still equal to one. By smoothing

our internal data structures while maintaining the computational and storage efficiency asso- 

ciated with sparse vectors, our approach allows for potential of changes existing in C𝛿 

when

representative sample data are not available for behavior modeling.

However, when sample data are available through historical means, but a series of applied

system changes C𝛿𝑛 , 𝑛 ∈ N[ 1 , ∞] 

renders those data stale or inaccurate, we must also be able to

dynamically adjust our MC models accordingly. Such updates should optimally occur without the

need for major interactions from QA [104], in order to increase the usefulness of our approach.

We recall the User (UBB), Profile (PBB), Semantic (SBB), and Global (GBB) Behavior Bases we 

introduced in Section 3.4. Each frequency-based adjacency matrix which is used to generate 

UBB,PBB,SBB, and GBB is adjusted to account for any attributed staleness in the data by providing

a configurable range of time beyond which data are truncated, or forgotten. This is similar to

a Least-Recently-Used Cache in systems development, and based on a priority queue with the 

priority of the stored events within the queue being the time 𝜏 when each event occurred. When 

a truncation filter range is reached, all elements beyond the priority range of the queue are purged, 

thus removing stale data from our operational models. By converting our behavior bases to use 

smoothed sparse data structures, the possibility of those events occurring are still non-zero, so 

the truncation of the data is non-destructive.
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To evaluate our clustered models against a given dataset, it is necessary to show the relative 

divergence between models in a means other than the distance metric used for clustering. Various

statistical tests, metrics, and pre-metrics exist to provide the required comparative power. How- 

ever, in many instances such as Fisher’s Test of Independence, 𝜒2, G-Test, and Kullback-Leibler 

Divergence ( 𝐷𝐾𝐿) , non-zero frequencies, probabilities, categorical observances must exist for ap- 

propriate comparative behavior to occur. To overcome situations where the data are sparse, we 

use Laplace smoothing with 𝛼 = 1 to ensure that event frequency matrices are non-zero, over- 

coming the sunrise problem. Frequency-based Laplace smoothing over a categorical distribution

is 𝑃𝑟 ( 𝑖 ) = 

𝑥𝑖+ 𝛼

 

𝑁 + 𝛼𝑑 

where 𝑑 is the number of known categories, 𝑥𝑖 

is the number of observations in 

the 𝑖𝑡ℎ category, and 𝑁 is the total number of observations in all categories. After the data are 

smoothed, we use 𝐷𝐾𝐿 

to measure the accuracy of our clustered models.

The Kullback-Leibler Divergence is defined as

 

𝐷𝐾𝐿 (𝑃 ∥𝑄) =Σ

 

𝑖 

𝑃 (𝑖) log 𝑃 (𝑖)

 

𝑄 (𝑖) = −Σ

 

𝑖 

𝑃 (𝑖) log 𝑄 (𝑖)

 

𝑃 (𝑖)

 

and is undefined where 𝑃 ( 𝑖 ) = 0 or where 𝑄 ( 𝑖 ) = 0 . This divergence is roughly a measure of the

amount of ‘surprise’ associated with model 𝑄 when the expectation is to see results based on the

parameters (or prior probabilities observed) from model 𝑃 . The undefined nature of this function

over zero observed probabilities in 𝑃 or 𝑄 has forced an ergodicity requirement for Markov Chain

comparisons in previous work.

To determine if the information conferred by the UBBs is represented by the clustered set of

PBBs, we let 𝑂𝑚 

be a trace observed from model 𝑚 . We then wish to see if

 

𝐷𝐾𝐿 (𝑂𝑈𝐵𝐵 ∥𝐷𝑎𝑡𝑎) ≤ 𝐷𝐾𝐿 (𝑂𝑃𝐵𝐵 ∥𝐷𝑎𝑡𝑎).

 

(5.7)
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The information conferred by the UBBs is represented by the clustered set of PBBs when the

inequality in Equation 5.7 holds. The process of studying and simulating the MAS begins when 

the UBBs and PBBs have been evaluated and we know if the MAS should consist principally of 

the UBBs or if we may use the PBBs instead. If system resources allow, the reduced PBB models 

can be executed in parallel with the UBB models or with the GBB model. 

5.4. Summary

With the large amount of data in systems, it is critical to be able to adjust to changes in the 

underlying data in addition to inferring probabilities from data which may not be present. The 

impact of understanding, modeling, testing, and simulating human-machine systems is crucial to

obtain for increasing the efficiency of our societal co-evolution with technology. Data scientists

must provide materials and methods toward such ends – addressing computational and storage

problems in non-traditional ways. With this work, we developed a set of formalisms for merging 

Markov Chains with Q-Learning (MCQL) toward the goal of harnessing the emergent behavior

typically associated with Agents in a MAS. We proved that MCQL provides the Maximum Likely 

Reward in a stochastic process where rewards are given for Agents reaching specific states. We 

detailed the steps for streaming sample data into MCQL and how MCQL uses Laplace Smoothing

with Sparse Vectors and Sparse Matrices to efficiently model expected behavior as well as to allow 

for the exhibition of unexpected behaviors by MCQL. MCQL is capable of simultaneously mining 

and modeling event data for model-based load testing of software systems and is based on the 

data structures and methods required for improving previous approaches.

We presented five problem statements and addressed them with a series of formalisms and 

implementation mechanisms which can extend the capabilities of a workload modeling and sim- 

ulation engine. The first problem (Problem Statement 5.1) dealt with the manual effort involved 

with scrubbing and maintaining operational models for LT. We addressed Problem Statement 5.1 

with a tandem SUO/SUT environment, having event data automatically being mined and modeled 

through the pipeline depicted in Figure 3.4. The second problem (Problem Statement 5.2) reflects

that current model-based LT approaches do not actively search for flaws in an SUT; rather, they 
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simply execute the operational models provided to them. We addressed (Problem Statement 5.2)

with the combination of Markov Chains and Q-Learning (MCQL) which opens up the prospects

of various types of simulations in system fault testing, performance testing, security testing, as

well as functional and non-functional requirements testing.

Principally, MCQL allows for human-like variation in testing procedures to occur. By intro- 

ducing MCQL into a testing approach, we enable additional testing paths previously unavailable 

through rote scripting, test cases defined by hand, and even model-based LT such as

Markov4JMeter. The third and fourth problems (Problem Statements 5.3 and 5.4) describe incom- 

plete, inactive, or dead operational patterns existing in stale operational data – models derived

from which are not able to adjust to changes in the SUO. Our approach includes formalisms and

data structures necessary for efficiently addressing the sunrise problem and adapting to changes

in a SUT. Such formalisms were missing from previous approaches (Problem Statement 5.5) and

their inclusion here allows for future development and research to advance in the area of pre- 

emptive workload-related error detection in a SUT. MCQL and the computational optimizations

provide an avenue for QA to introduce intelligent variation into LT tools.

With this chapter, we demonstrated that raw streaming behavioral data can be continuously 

and efficiently measured, modeled, and stored as MC models ( 𝑅𝑄2 

from Chapter 1); moreover,

such MC models of a human-machine system can be extended to adapt to changes in a system

under observation ( 𝑅𝑄4 

from Chapter 1). In order to meet several challenges in the field of auto- 

mated systems testing, we contributed the pairing of stochastic processes in the form of Markov

Chains with reinforcement learning with the Q-Learning algorithm for learning of adaptive user 

behavior models from streamed data. We also contributed modifications to the SparseVector

and SparseMatrix data structures which allow for simulation of novel behaviors with Laplace 

Smoothing. Our modified data structures also can exhibit the ability to forget unused behaviors

through a least-recently-used cache. We showed how the Kullback-Leibler Divergence can be 

used as a checkpoint to determine if PBBs may be used for user behavior simulation as an alter- 

native or complement to UBBs. The contributions of this chapter address problems imposed upon 
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traditional testing platforms such as JMeter [117] by the evolution in systems development prac- 

tices. The formalisms, algorithms, data structures, and general concepts specified in this chapter

catalyzed the development and refinement of a real-time approach for generating workload in 

software systems, detailed in Chapter 6. 
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Chapter 6. Distributed User Modeling and Load Testing

Handfuls make a load.
-- Irish Proverb

Routledge Book of World Proverbs

It is evident that our technologically-dependent society rightly expects systems engineers to

produce systems having increasing levels of performance, efficiency, and reliability. As such,

we must convolve academic and industrial approaches to provide theory, systems, and working

technologies which can catalyze and propel engineers, developers, and technical professionals of

various disciplines toward the ultimate goal of consistent delivery of quality systems. Tools and

processes exist for improving the quality-oriented posture of the systems engineering industry;

in practice, the most perpetual form of software testing continues to be rote repetition of test

cases through either manual testing or scripted automation of those same manual tests [94].

We developed lodestone : a real-time process for generating workload in software systems.

This real-time process to LT uses streaming log data to generate and dynamically update user 

behavior models, cluster them into similar behavior profiles, and instantiate distributed workload

of software systems. We show that lodestone outperforms Markov4JMeter through a qualitative

comparison of key feature parameters as well through experimentation based on shared data and 

models [94].

6.1. Introduction

1Our society has become wholly reliant upon the continuous creation, operation, maintenance, 

and improvement of human-machine systems. The metrics and tools for verifying and validat- 

ing system quality can range from the opaquely theoretical to the overly simplistic - having few

solutions of practical use between the two extremes. The number of processes to automatically

evaluate the quality of a software system are continuously increasing; however, such processes do

not readily incorporate real-time understanding of and feedback from a SUT. SUO allow for logs 

and metrics to be captured. Figure 6.1 shows an example log from a SUO. However, such logs and

1 Contents of this chapter adapted, with permission, from:
C. Parrott, and D. Carver, "Lodestone: A Streaming Approach to Behavior Modeling and Load Testing," 2020 3rd
International Conference on Data Intelligence and Security (ICDIS), © 2020 IEEE. 
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{
"source_state": "login",
"target_state":"role_view",
"transition_time":1500000087,
"user":"bbicke",
"session":"9474dec4-f3f8",
"errors":null,
"ResponseMetadata": {

"HTTPHeaders": {
"connection": "keep-alive",
"content-length": "2",
"content-type":

"application/json"
},
"HTTPStatusCode": 200,
"RetryAttempts": 0

}
}

Figure 6.1. Recorded Log Data from SUO ( © 2020 IEEE) 
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metrics are not always brought into an analytically modeled or executable form for performance

or quality testing due to their complexity and the associated cost to properly analyze and utilize. 

In systems which must continuously be evaluated for quality, various factors must be accounted

for - from functional requirements such as consistent user experience, to non-functional require- 

ments such as system up-time and security concerns. Where sophisticated tools and processes

can potentially ensure quality within an SUT or an SUO, such tools and processes are anecdotally 

eschewed in favor of other quality-based metrics such as: estimates from engineers, projected

timelines, agile sprint burndown, analysis and reporting, as well as the fiscal costs associated

with completed project delivery. 

The inter-dependency between people, process, and technology portents a paradigm shift in 

how our organizations and systems should be structured, viewed, and modeled. 

6.2. Modeling a Human-Machine System 

The migration toward automated and computational processing of units of work in organizations

has led to an easily observable co-dependence between human and machine entities teaming to 

fulfill organizational goals. Conway’s Law [32] states that organizations create systems of ma- 

chines which are roughly reflective of the organization in which those systems are created. As 

such systems are reflective of the organizations, so too are the organizations reflective of the req- 

uisite systems. Even casual study of traces or logs produced by systems of humans and machines 

can cause an observer to lend credence to the attribution of ‘Agent-like’ properties to the various 

entities which compose a human-machine system [138]. While machines are not sentient, their 

composition imbues within them a set of ‘Agent-like’ properties analogous to the ‘Agent-like’ 

properties of their human counterparts [106, 109]. Capable of sharing similar properties, actions, 

and goals, users and machines may both be equivalently modeled in a human-machine system 

as Agents [21, 24, 64, 109]. We define an Agent as an entity capable of executing a set of ac- 

tions to accomplish one or many given or discoverable goals [106]. In the computational sense, 

Multi-Agent System(s) (MAS) are an instance of distributed computing in which each computa- 

tional node executes actions as commanded by one or more Agents [21, 109]. From a semantic 
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perspective, a MAS is simply a collection of Agents working toward a larger purpose which is

either pre-defined or emergent, by design [34, 106, 109]. There exists utility for MAS to inform

various aspects of modeling, simulating, and testing of realistic events within the context of a

larger system [40, 65, 139].

Effort has been dedicated to modeling and understanding how people, process, and technol- 

ogy come together to form a cohesive and productive human-machine system [32, 76, 101, 114].

User behavior mining uses event data from systems to prescribe or describe sets of behaviors for

improving user experience or controlling user behaviors in a human-machine system [29, 30, 33,

39]. Process mining relies upon event data from human-machine systems to derive repeatable 

models representing how such events are typically sequenced within a human-machine system

[121]. Several main data models are used by these modeling approaches, such as Petri Nets [25],

Causal Nets [121], and Markov Chains [114]; however, the MC is the model most ubiquitously 

extending to other areas of behavior modeling and research [72]. Simpler models such as the

MC can provide much more context toward the goal of improving a human-machine system

[46] by allowing for feedback and approval from a wider audience such as business management

professionals, software engineers, and QA, all of whom are instrumental in designing, building,

and maintaining the systems critical to the functional well-being of our society [105]. Human- 

machine systems are developed by software engineers through a systematic process known as

software engineering and evaluated by QA in the testing process.

6.3. Testing a Human-Machine System

It is a well known problem that the cost of maintaining a system after it has been deployed is

much higher than the cost associated with producing the system itself. The software engineering 

process - whether agile, waterfall, or some other development process is used - usually begins 

with an inception phase in which the software is conceptualized [115]. Inception is followed by

a requirements elicitation phase, in which the desired behaviors of the system are documented

[80]. Requirements documentation is a time-consuming and expensive process which sets the

standards of quality for the rest of the software engineering process, when done correctly [81].
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The requirements process results in a detailed description of how a project should be designed, 

implemented, tested, and maintained [81]. If an unaddressed error or oversight in the require- 

ments process occurs, a flaw in the system may be the result [115]. Due to human error, such

flaws are not always detected in the testing process as they are not accounted for in requirements 

documentation [115]. It is quite typical for non-functional system specifications to be under- 

documented as compared to functional requirements [80]. It follows that the process of testing 

non-functional requirements must tend to be less thorough than that of testing functional re- 

quirements. Incomplete evaluation of a system under test may have long-reaching consequences 

in the maintenance phase of the software development lifecycle when it becomes a system under 

observation [80]. A system under test S𝑡 

is roughly equivalent to a system under observation S𝑜 

plus a change delta C𝛿 , i.e.

 

S𝑡 + C𝛿 ≊ S𝑜 .

 

Undiscovered faults in a system under observation can result in failures ranging in severity from

loss of productivity to loss of life and limb, depending on the level of risk associated with usage 

[22]. The number of approaches to automatically evaluate the quality of a software system are 

continuously increasing; however, such approaches do not readily incorporate real-time updates 

from a system under test. One type of software testing is the generation of workload on a system

under test to ensure that system meets expected performance requirements [68]. 

To preempt and reduce the monetary cost associated with system maintenance, a QA uses 

manual processes and automated tools to validate an acceptable level of quality within a system

under test [115]. One set of tools and processes, load testing (LT), is a subset of automated testing 

which focuses upon the non-functional qualities of a system under test such as security, stability,

and scalability [68, 80]. LT is used to evaluate the quality of the system under test through expo- 

sure to expected workload [68]. A successful LT process evaluates a system under test through

repetitive and lengthy exposure to various patterns of system usage [105]. A properly main- 

tained and developed LT process and infrastructure are critical for reducing the cost associated

with maintaining production systems by exposing failures inconspicuous to other automated or
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manual testing efforts. We posit that LT processes should also: create a realistic test-bed for

evaluating a system under test, be cost-efficient as well as computationally efficient, be straight- 

forward for QA to employ, and be unambiguous for non-QA to evaluate. Widely available tools

such as JMeter [117] and Selenium [19] are well-established as an effective means of LT in both

the industrial and research communities. Although JMeter has begun migrating toward large- 

scale distributed execution of test cases, it is still a stand-alone product, lacking the capabilities

of cloud-native testing systems [15]. Tools like JMeter primarily rely upon recorded or configured

scenarios to submit a stream of statically defined stimuli to a system under test [105].

Static scenarios can be a powerful tool for discovering flaws in a system under test by building

up a service-side state/cache of information necessary to repetitively test a specific condition or

circumstance; they are typically based on behavioral traces, system logs, or hand-crafted scripts

[105]. As artifacts, static scenarios must be regularly pruned, updated, and maintained by QA in

order to combat the risk of diminished expected value [105]. The bulky nature of testing arti- 

facts can emit financial and productivity costs such as: storage, transmission, security, execution, 

maintenance, and modification [105]. Due to the cost overhead associated with monolithic test- 

ing artifacts, simplified models of such scenarios have been shown to be alternative to static

LT scenarios [48, 105]. Model-based LT processes draw from various bodies of research (data- 

mining, statistics, process mining, and machine learning) to reduce the operational and compu- 

tational cost associated with static scenarios. However, model-based LT processes can also suffer 

from the same cost overhead as static scenarios: execution, maintenance, and modification [105].

Model-based LT processes typically trade thoroughness for simplicity, so they must be carefully 

validated by non-QA as well; toward this end, simple statistical models such as the MC have been 

used to mature the research in LT [105]. Maturation in processes and tooling is required for QA 

to adapt to modern architectural choices and system development strategies such as DevOps, 

continuous integration, and microservices [13]. 
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6.3.1. Research Direction

To the best of our knowledge, a streaming cloud-based process to LT does not exist which is

designed to meet the accelerating modeling and responsiveness requirements of the agile de- 

velopment practices and uses a Markov process, such as in WESSBAS and the Markov4JMeter

extension to JMeter. To help address these limitations, we developed lodestone : a Learning, On- 

line, Distributed Engine for Simulation and Testing based on the Operational Norms of Entities 

within a system. Our work with lodestone represents a novel, cloud-based process to ingest- 

ing system logs, modeling and simulating human-machine behaviors, and executing realistic LT 

upon a human-machine system. We recall 𝑅𝑄1 

from Chapter 1 in order to focus the direction and 

intent of our investigation. 

𝑅𝑄1: Can a data-driven process for MC model-based load testing be developed that offers advan- 

tages over existing data-driven processes? 

We want to show that if such a data-driven process for MC model-based load testing is devel- 

oped, then it offers advantages over an existing data-driven process. The following two assertions 

establish the sufficiency of lodestone as it pertains to 𝑅𝑄1: 

𝐴1: lodestone extends the features of an open-source tool for MC-based LT such as JMeter. 

𝐴2: When compared to an open-source tool for MC-based LT such as JMeter, lodestone provides

measurable performance benefits as the scale of LT increases. 

In this chapter, we substantiate the validity of Assertions 𝐴1 

and 𝐴2. Sections 6.2 and 6.3

contain relevant research related to MC model-based load testing. In order to provide additional

context and terminology, we discuss User Behavior Modeling for LT in Section 6.4. We describe

the overall process and the architecture of lodestone in Section 6.5. Section 6.6 contains an eval- 

uation describing the quantitative and qualitative guidelines used for our study and a discussion

of our results. We conclude with a Summary and potential future directions in Section 6.7. 
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6.4. User Behavior Modeling for Load Testing

Throughout the ongoing effort of synthesizing and evolving tools and processes to measure and 

improve the operational quality of software systems, it is imperative to account for the human 

factor exemplified by the practices of QA. We describe microservices, system logs, and behavior

modeling as related to LT. A data-driven model-based process to LT allows for a certain degree 

of human facility to be imposed on the process.

6.4.1. Cleaning and Filtering of System Logs

Logs are a semi-structured representation of data points recorded throughout the process of op- 

erating and maintaining the SUO. When extracted from a SUO, such logs can be a treasure trove

of valuable information for understanding the health of the SUO; moreover, if certain metrics and 

semantic data (such as HTTP request headers, query parameters, unique identifiers, and access 

tokens) are available within the SUO’s logs, data aggregation can facilitate statistical models of 

expected usage behavior for the SUO. We expect a log 𝐿 to be a sextuple

 

𝐿 = (𝜎𝑠 ∈ 𝑆, 𝜎𝑡 ∈ 𝑆, 𝜏,𝑢, 𝑒, 𝑠)

 

such that 𝜎𝑠 

is a source state and 𝜎𝑡 

is a target state within a set of possible states 𝑆 in the system,

𝜏 is a time-stamp of when the state transition occurred, 𝑢 is a unique identifier for a user or

session, 𝑒 represents whether the state transition resulted in an error, and 𝑠 is any attached satellite 

information. For simplicity, we will also refer to such sextuples as logs. The process of discovering

and modeling through log structures is described by Menasce et al. [85] as Customer Behavior

Model Graphs and extended by Menasce in [84]; further, a streaming log processing process is

discussed by Du and Li [41]. In order for the process of modeling logs to commence, a mechanism

must exist for collecting a stream of logs from raw web responses, filesystems, and databases;

moreover, such a mechanism must also parse, clean, and pass sextuples into a readily-available
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{
"event_chain": [

"login",
"role_view",
"logout"

],
"login": 1,
"logout": 1,
"role_view": 1,
"session": "9474dec4-f3f8",
"session_end": 1500000137,
"session_length": 50,
"session_start": 1500000087,
"uid": "bbicke"

}

Figure 6.2. Recorded Session Data from SUO ( © 2020 IEEE) 

location for reporting and analyses purposes, such as extracting behavior profiles. A cleaning, 

filtering, and modeling mechanism is not built into Markov4JMeter [58] as JMeter is a LT tool

not a data-mining tool; however, WESSBAS [126] approaches the problem of modeling the data

required for Markov model-based LT with a domain-specific language. 

6.4.2. Modeling User Behavior 

A simple process for modeling user behavior as proposed by Whittaker [128] involves the ob- 

served relative activation frequency of each state 𝑠 ∈ 𝑆 as recorded in system logs or other data.

See the login, role_view, logout counts as shown in Figure 6.2 for an example of how this fre- 

quency may be recorded and stored. In contrast, a Markov approach to behavior modeling is

based on the observed relative activation frequency of each transition between states, as shown

in the event_chain attribute in Figure 6.2. We briefly outline the critical points; a more thor- 

ough description on modeling from log data can be found in the work of Menasce [85]. Karlin 

and Taylor define a Markov Process as: 
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Table 6.1. Observed State Transitions for Example User Behavior Model ( © 2020 IEEE)

𝜎1 

𝜎2 

𝜎3

𝜎1 320 240 240
𝜎2 18 24 18
𝜎3 300 300 400

“a process with the property that, given the value of 𝑋𝑡 , the values of 𝑋𝑠, 𝑠 > 𝑡, do
not depend on the values of 𝑋𝑢, 𝑢 < 𝑡 ; that is, the probability of any particular future
behavior of the process, when its present state is known exactly, is not altered by
additional knowledge concerning its past behavior.” [72]

Karlin and Taylor describe a Markov Process as being a MC if it is composed of a distinct set

of states which are countable, and finite [72]. We can visualize the MC as the directed graph in

Figure 3.6, where nodes of the graph are states of the chain, and edges represent the transition

between states. A value or weight associated with an edge between two nodes is representative

of the probability of transitioning between the two states. More formally, given two states in an 

MC 𝜎𝑎, and 𝜎𝑏, let edge < 𝜎𝑎, 𝜎𝑏 > have a weight of 𝑝. It stands that 𝑃𝑟 ( 𝜎𝑏 | 𝜎𝑎) = 𝑝, or, given that

the currently observed state is 𝜎𝑎 , the probability that 𝜎𝑏 

is the next observed state is equivalent 

to 𝑝.

In Table 6.1, we show a sample user’s behavioral statistics with observed state transitions

between 𝜎𝑖 → 𝜎 𝑗 . By dividing each row vector by the row sum, we produce the MC-based

user behavior model shown in Table 3.1, which can be visualized as the graph in Figure 3.5.

Similarly, the aggregation of user sessions can be illustrated as the directed graph in Figure 3.6 and

condensed to the MC shown in Figure 3.8. An example of how these data can be stored as shown

in Figure 6.3. As is typical in modern web-based software systems, if the size of 𝑆 is large it is 

more computationally and spatially efficient to represent the counts and frequencies of extracted

behavior models as sparse vectors, as defined by Tinney et al. [118]. Sparse vectors can be 

structured from session data as represented by the transition_counts , user_behavior , 

and clustered_behavior_profile attributes in Figure 6.3 and Figure 6.4. By assuming 
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{
"uid":"bbicke",
"average_session_length": 28,
"transition_counts": {

"(login,logout)": 2,
"(login,inventory_view)": 4,
"(login,role_view)": 1,
"(inventory_view,logout)": 4,
"(role_view,logout)": 1

},
"number_of_sessions": 7,
"session_lengths": [

33,33,33,33,7,7,50
],
"user_behavior_profile": {

"(login,logout)": 0.28571,
"(login,inventory_view)": 0.57143,
"(login,role_view)": 0.14286,
"(inventory_view,logout)": 1,
"(role_view,logout)": 1

}
}

Figure 6.3. Aggregated User Behavior Model ( © 2020 IEEE) 
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{
"average_session_length": 30.35,
"number_of_users": 2,
"user_ids": ["bbicke", "thuels"],
"clustered_behavior_profile": {

"(login,logout)": 0.34286,
"(login,inventory_view)": 0.43571,
"(login,role_view)": 0.22143,
"(inventory_view,logout)": 1,
"(role_view,logout)": 1

},
"probability": 0.0253164557,
"profile_id": 5

}

Figure 6.4. Clustered Profile Behavior Model ( © 2020 IEEE) 

that the set of states 𝑆 is fully known, sparse vectors can be reconstructed into a non-sparse 

matrix having the same dimensionality as 𝑆 · 𝑆 . 

The Markov4JMeter software depends on a non-sparse matrix, such as shown by Table 6.2.

Note that the $ symbol in the matrix represents the final accepting state of the MC, such as logout;

moreover, the * 

symbol represents the initial state of the MC. By measuring the session length 

and average transition time, or think time as termed by Menasce [85], we capture a metric for the

estimated proficiency of each observed user within the SUO as well as the relative complexity

involved in the tasks being performed by the user and the SUO. The proficiency metric can also 

inform the hazard function process for modeling transition wait times as in [71]. 

6.4.3. Modeling Behavior Profiles

Generating behavior profiles from users relies on machine learning algorithms such as clustering 

[126]. lodestone executes the DBSCAN [14] clustering algorithm on aggregated user profiles, 

as illustrated by user_behavior_profile attribute in Figure 6.3. 
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In Table 5.1, we see four example profiles which represent four different users having similar 

behavioral tendencies. The similarities can be illustrated with the heatmap in Figure 3.10. The 

members of this cluster do not have identical behavior patterns, but enough similarity exists such 

that a replication of their individual behavior patterns in study or in simulation is not needed. We 

calculate a centroid matrix which may be used in place of the individual elements of the cluster 

for storage, simulation, or additional analysis. An example profile behavior model extracted from 

the data within our SUO is shown in Figure 6.4. After the learning process is completed, the 

Euclidean centroid of the set of user profiles is calculated to become the “representative” matrix 

or representative profile of the cluster. Various distance metrics can be used depending on how 

well the distance metrics subdivide the data; however, in instances with large sets of possible 

events, the curse of dimensionality can threaten the completion of this process. The number of 

users represented by each profile model, as divided by the total number of observed users in the 

test population, is the frequency associated with that profile’s behavior mix, as described in [126]. 

The clustered user profiles and behavior mix frequency rate are the final parameters required to 

setup the Markov4JMeter tool and lodestone . We refer the reader to the documentation for 

Markov4JMeter[58] for additional details required to configure its usage. It is key to note that 

both Markov4JMeter and lodestone rely on these data pre-processing steps, data structures, and 

resultant models. 

6.5. LODESTONE Architecture 

We present the logical and physical architecture of lodestone . 
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Figure 6.5. lodestone Logical Architecture ( © 2020 IEEE) 

6.5.1. Logical Architecture

The logical architecture of lodestone shown in Figure 6.5 is composed of data ingestion, pro- 

cessing, storage, modeling, simulation, and training. Generally, the SUO will closely replicate the

SUT to the point that scenarios, events, and processes will generally not deviate drastically be- 

tween the two systems. As human and machine agents interact within the SUO, resultant event 

data are then passed to the lodestone REST or TCP-based Event API, which must be fault toler- 

ant enough to scale with the workload of the SUO, the SUT, and the variations of good and bad

data which may be sent through the API. 
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For storage, modeling, and value to be captured from ingested event data, lodestone must

provide a consistent processing pipeline as shown in Figure 6.5. This pipeline must be capable of

adjusting to the variations in data that can arise as a result of errant processes, failed connections,

as well as functional and non-functional bugs in the SUO. The validation, parsing, and cleaning 

steps accept various types of data which can be produced by the SUO, and converts them into a

consistent event format. The event is then separated if the inbound data are aggregated, frequency 

statistics as described in Section 6.4.3 are calculated or updated, and the data are compressed for

updating existing knowledge stores. Like the rest of lodestone , the knowledge store must be

capable of scaling with the size of relevant behavioral information required for simulation and

testing of the SUT. Behavior modeling in lodestone consists of a number of statistics calculated

to form a MC which describes the first order approximation of behavior patterns characterizing

individual agents, groups of agents, as well as the whole population of agents.

Think time metrics as described in Section 6.4.2 are then calculated for the amount of time

spent transitioning between states as a model for agents waiting to perform the necessary action.

We then calculate, update, and store user behavior models as an initial step. Additional work can

be then done to define and describe profile behavior models as from the user behavior models.

Simulating realistic load in the SUT consists of running a scalable set of agents following the

behavior models previously modeled. Outputs from the simulation are then fed back into lode- 

stone as a means of recording discovered errors with the requisite replication scenarios. With

enough agents simulating realistic behaviors, a realistic load is produced upon the SUT in order to

allow functional and non-functional performance issues to be discovered. Additional data from

the SUT into lodestone produce feedback from the behavior models; however, it provides an

additional means for ensuring the performance quality characteristics are better measured and

tested. Namely, the feedback loop can be used to strengthen the behaviors of the agents to test

those areas of the SUT which might not necessarily be receiving enough attention; moreover, to

evolve the testing patterns associated with the agents.
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The learning capability of lodestone is based on the ability of the underlying MC or behavior 

models to be updated as additional information is received either from the SUO, or the SUT and 

appropriately shuttled through the Data Processing Pipeline. It is not merely sufficient to serialize 

and store individual users, actions, transitions, counts, and frequencies in a series of database 

tables; rather, such database objects must also be kept up-to-date through a streaming calculation 

of the necessary statistics. The models themselves are kept in the principal knowledge store; but 

the raw data are aggregated in memory to prevent an overwhelming amount of repetitive bits 

being stored and queried as the amount of inbound data increases with the observed and expected 

system load. By maintaining the models instead of the data, we enforce the ability of lodestone 

to scale in response to the data demands; in addition, the ability to adapt to changing application 

states allows for a testing system to remain online without needing to update the underlying 

configuration or modeling parameters, unlike other commercial and open source systems. 

6.5.2. Physical Architecture 

In Figure 6.6, we show the architecture and dataflow of our implementation of lodestone in 

Amazon Web Services. Our implementation consists of (1) an API Gateway serving as the Exter- 

nal SUO, closely mirroring (8) the External SUT. The SUO and SUT are built as a microservice 

consisting of various resources such as login , inventory , and role ; in addition, they con- 

tain actions such as add , modify , view2. As the microservice SUO is used, the event data are 

collected into (2) a triggered Data Processor Lambda which cleans, processes, and writes to (3) 

DynamoDB, the Knowledge Store - capturing live and completed session information represented 

as in Figure 6.2. This step serves to replace the more traditional offline method of collecting be- 

havioral data for analysis and storage such as WESSBAS. As the session information is written, 

another Lambda (4) is triggered - the User Behavior Model Builder. The User Behavior Model 

Builder analyzes the session data, updates the model of the user associated with the session and 

stores the user model, represented as in Figure 6.3 within the Behavioral Model Cache which 

is implemented also in DynamoDB. As these user models are updated, the model builder runs

 

2 See Chapter 3 and Appendix A for the basic structure of the SUO and SUT. 

102



Figure 6.6. lodestone Physical Architecture and Data Flow ( © 2020 IEEE) 
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another processing step (5), the Profile Behavior Model Builder, to cluster the user models into

profile models as represented in Figure 6.4. Since clustering happens as the data are processed, no 

additional processing needs to be performed by QA. The LT Manager (6) is another Lambda which

can run in a scheduled manner using CloudWatch Event scheduling through UNIX-style CRON 

triggers, or ad-hoc as part of a continuous integration or testing process. The Behavioral Model 

Executor Lambda (7) will scale out the requisite number of Lambda operations when triggered;

these Lambda instances represent the users to simulate based on the number of user models rep- 

resented by a profile model. As lodestone is cloud-based, it is scalable to within the limits of

the cloud ecosystem being used. Through the analysis and log-metrics platforms provided by

AWS, we can determine the number of errors in the SUT (8) in real-time, in order to evaluate the

load-bearing capability of the SUT.

6.6. Evaluation

We defined a methodology used for evaluating LT systems through their measurable run-time

performance, satisfying Assertion 𝐴1, and selected desirable key features satisfying Assertion 𝐴2. 

We show the results on lodestone and Markov4JMeter as well as provide discussion within the

boundaries of our methodology.

6.6.1. Qualitative Methodology

We define qualitative parameters informed by the literature, express why having these parameters

affects the desirability of an LT system, and describe what an LT system must exhibit in order

to achieve these parameters. Our qualitative methodology reflects the properties 𝑃1 − 5 

listed in 

Chapter 1.

Behavioral: The LT system must replicate interactions between users and the SUO. An LT

having this quality is desirable as it will be data-driven, rather than strictly configured or pro- 

grammed - reducing the cost to maintain and use the LT. This is related to Problem 𝑃5 

listed in

Chapter 1.
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Modeled: The LT system must use models representing behaviors of users of the SUO. An LT

having this quality is desirable as models are easier to store, maintain, and update than massive

testing artifacts - in addition, models can morph or completely remove sensitive and private in- 

formation, catalyzing LT capabilities within restricted environments. This is related to Problems

𝑃2, 𝑃3 

and 𝑃4 

in Chapter 1.

Distributed: The LT system must use distinct operating instances to represent the distribution

of users of the SUO. An LT having this quality is desirable as distributed instances may expose

infrastructure flaws (such as hardware failures or network bottlenecks) which might be otherwise

invisible to small sets of dedicated testing machines. This is related to Problems 𝑃3 

and 𝑃4 

in

Chapter 1.

Compressed: The LT system must use components which are efficiently stored and executed.

An LT having this quality is desirable due to the performance cost of transmitting and running

inefficient artifacts compounding the necessary additional fiscal cost to store and compute work- 

load. This is related to Problem 𝑃3 

in Chapter 1.

Streaming: The LT system must dynamically adapt to observable changes within the SUO. An

LT having this quality is desirable due to the the associated cost of maintaining rapidly-changing

modern software systems. This is related to Problems 𝑃1 

and 𝑃3 

in Chapter 1.

Scalable: The LT system must be capable of immediately and massively scaling. An LT having

this quality is desirable due to the need to verify the expected demands on scalability in modern

software systems. This is related to Problems 𝑃1 

and 𝑃5 

in Chapter 1.

Cloud-based: The LT system must be built on cloud-based technology stacks. An LT having

this quality is desirable due to the migration of software systems to the cloud, the data storage

and transfer synergy available on cloud-native stacks, and the distributed networking capabilities

available for validating non-functional infrastructure requirements. This is related to Problems

𝑃1, 𝑃3, and 𝑃5 

in Chapter 1.
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Think Time: The LT system must be capable of representing the time it takes for an instance 

to transition between states in the SUT at the profile level. An LT having this quality is desirable 

due to the need to accurately replicate expected workload on the SUT. This is related to Problems 

𝑃2 

and 𝑃4 

in Chapter 1. 

6.6.2. Quantitative Methodology:

We describe the process for evaluating the measurable capability of the LT systems under analy- 

sis. For the purposes of our experiments, we were solely concerned with the capability of the LT 

system to produce sustained testing volume. To measure and control for such, we introduce two 

quantitative parameters to extend the desired qualities above, namely: user volume and sustained 

requests per minute. 

User Volume (UV): represents the number of users being simulated - the primary contribut- 

ing factor determining the required amount of computational and storage resources required to 

operate the LT system under analysis. 

Sustained Requests-Per-Minute (SRPM): represents the workload that the LT system is able to 

produce while maintaining expected operational norms. We gather data points to measure the 

SRPM by providing sufficient time for the LT system to warmup, operate, and cooldown. 

We conducted four experiments, each having UV as the primary variation in input. The first 

two experiments consisted of running each LT system with UV=100 for at least five minutes, plus 

sufficient warmup and cooldown time. The second two experiments consisted of running the LT 

systems with UV=1000 for at least five minutes, plus sufficient warmup and cooldown time. As 

part of our steps to ensure consistency, we used the same models to execute both LT systems; 

these are the same behavioral models learned from the streaming-behavioral training of the SUO. 

For creation of the models, we generated a baseline of rule-based simulated behavioral data 

using the TinyERP system as defined in Chapter 3 and Appendix A. With the rule-based approach 

that TinyERP uses to define user behavior, we defined behavioral patterns similar to those exhib- 

ited in the anonymous datasets analyzed in Chapter 3 and matched those with the states of the 
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Table 6.3. Feature Matrix of Select Load Testing Tools ( © 2020 IEEE) 

JMeter[117] Markov4JMeter[58, 126] lodestone
Behavioral ✓ ✓ ✓ 

Modeled ✗ ✓ ✓

Distributed ✗ ✗ ✓ 

Compressed ✗ ✗ ✓ 

Streaming ✗ ✗ ✓ 

Scalable ✗ ✗ ✓ 

Cloud-based ✗ ✗ ✓ 

Time-variant ✗ ✗ ✓

TinyERP system. For more information, recall Figure 3.18 as an illustration of the rules gener- 

ating the baseline of sample traffic. The TinyERP lodestone implementation was then directed

toward the AWS implementation of lodestone for live data capture. The AWS implementation

of lodestone captured the behavioral data and performed modeling internally. 

We trained the models based on 4470 live requests from 79 users against the SUO API and 

noted an average latency of 485ms per request while training, with no observable non-functional 

errors such as API responses of 400, 404, or 500. For executing the Markov4JMeter load tests, we 

used a 2018 MacBook Pro with 2.2GHz 6-Core Intel Core i7 with 16GB 2400 MHz DDR4 RAM. For

the lodestone testing, our instances operated on Lambdas configured at 3008MB of RAM with a

15m timeout period. As Markov4JMeter does not allow for profile-level think time between steps,

we used an average of the profile think-time averages learned when configuring Markov4JMeter

- 30s per step. In order to ensure the SUT properly entered a dormant state with no cached

information, we cleared all caches and cookies before executing each experiment. 

6.6.3. Results and Discussion

We compare the features between Markov4JMeter and lodestone , as shown in Table 6.3. JMeter 

[117] is a well-studied open-source tool that has classically been used for LT of systems in research

as well as industry. While it can be deployed in the cloud in virtual servers, it is not a cloud-native

technology. We show JMeter as the base case for comparison. It does not support model-based LT

by default, it is client-based instead of being distributed; however, it can be based on user behavior
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Figure 6.7. Test Per Minute Volume (UV=100) ( © 2020 IEEE)
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Figure 6.8. Test Per Minute Volume (UV=1000) ( © 2020 IEEE) 

if explicitly configured from static artifacts. Markov4JMeter extends JMeter with the capability

to configure user-behavior Markov models within the LT system [58]. However, Markov4JMeter 

does not continuously capture or model user behavior; thus, it not built for online distributed

systems or cloud-native operations. WESSBAS, an extension to Markov4JMeter [126], relies on 

batch-based learning instead of online learning. lodestone provides a cloud-native means to

learn, store, and execute user behavior models from streaming data in the form of Markov models. 

As lodestone is based on the serverless compute model, our process is both distributed and 

scalable. In addition, lodestone provides analysis of think-time per user as well as per profile, 

where Markov4JMeter’s documentation [58] shows a standard Gaussian think-time per behavior

test iteration.

For the first set of tests, we used UV=100 users on both LT engines. In Figure 6.7a, we ob- 

served the SUT warming up to around 200 SRPM while running Markov4JMeter with 100 users;

by comparison, in Figure 6.7b, we observed the SUT warming up to 1000 SRPM while running 

lodestone with 100 simulated users. For the second set of tests, we used UV=1000 users on 

both LT engines observing 2000 SRPM in Figure 6.8a for Markov4JMeter; for lodestone , we ob-
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served around 9500 SRPM in Figure 6.8b. With our second test, we were able to hit the throttling

limit of the SUT- an operational upper bound in the SUT. The SRPM of lodestone was an order

of magnitude higher than Markov4JMeter when generating workload on the same models for

UV=100 and UV=1000. In addition, our results show that lodestone was able to cause an op- 

erational limitation or non-functional fault that Markov4JMeter would not capable of detecting

unless on a testing machine having CPU and RAM beyond the capabilities of the testing machine

that was used. Any additionally perceived slowdown in Markov4JMeter is a well known limita- 

tion of the product [15] due to the JMeter product being primarily single-client based. While the

Markov4JMeter product could achieve better performance than displayed here through iterative

tuning of Java parameters [15], the underlying limitations of JMeter being single-client based is

insurmountable compared to a cloud-based process for LT. We control for this factor through the

use of a lower order of magnitude UV in addition to the higher UV to account for low throughput

scenarios. Other factors we considered were the variations in run-time and unknown environ- 

mental factors between our experiments; however, we controlled for these factors by running 

multiple iterations of our experiments and waiting a sufficient time between iterations to allow 

for such variations and environmental factors to clear. Throughout the multiple iterations of the

experiment, the SRPM of lodestone remained an order of magnitude higher than the SRPM of

Markov4JMeter.

Our results show that our cloud-based implementation of lodestone can extend the features 

of an open-source tool for MC-based LT such as JMeter by exhibiting all of the qualitative pa- 

rameters in Section 6.4.1 where JMeter only exhibits the Behavioral parameter, per our Assertion 

𝐴1. In addition, our quantitative analysis shows that lodestone consistently quantitatively out- 

performs JMeter by an order of magnitude, per Assertion 𝐴2.
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6.7. Summary

We have described the processes and architecture used to implement lodestone - a real-time

process to ingest event logs, model user behavior, and simulate scalable workload on software

systems. lodestone is capable of real-time behavior modeling in systems where richly-populated

event logs are readily available from an SUO, and a representative SUT is available for evaluating 

software before it is released to users. We compared the features and operational measurements of

lodestone with an extension to a well-researched open-source product JMeter - Markov4JMeter.

Based on the boundaries established in our evaluation, we have shown lodestone to perform

favorably when using the same learned models as Markov4JMeter; moreover, lodestone extends 

the features provided by Markov4JMeter to scale to cloud-scale workload requirements. Our

process also has potential for future extension toward dynamic execution of massive simulations,

agile requirements mining through examination of the behavior models, automated regression

testing, and adaptive security testing. Additional work can be done to extend our results by

varying the configuration parameters of our experimentation and providing additional metrics for

comparing the two LT systems. This real-time process to LT uses streaming log data to generate 

and dynamically update user behavior models, cluster them into similar behavior profiles, and

instantiate distributed workload of software systems.

The research described in this chapter demonstrates that a data-driven process for MC model- 

based load testing can be developed that offers advantages over existing data-driven processes

per 𝑅𝑄1 

from Chapter 1; moreover, raw streaming behavioral data in a human-machine system

can be continuously and efficiently measured, modeled, and stored as MC models per 𝑅𝑄2 

from

Chapter 1. The specific advantages that lodestone provides are verified with our quantitative

and qualitative comparison of a cloud-based implementation with a ubiquitous load testing tool

JMeter - extended with the Markov4JMeter plugin. 
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Chapter 7. Conclusion

If a conclusion is not poetically
balanced, it cannot be scientifically

true. 

-- Isaac Asimov
The Robots of Dawn 

7.1. Summary

Modern systems must be able to withstand sudden catastrophic changes in their environment 

and usage; however, the rapidly changing set of tools and processes associated with software

and systems development continuously solves technological difficulties at the inevitable cost of

adding an untold number of additional challenges. The challenge that this research stands to

solve is the process of generating realistic workload on a software system when such systems

regularly change. The traditional approach to load testing includes hand-crafted scripts, web

traffic recordings of test users, and the rote execution of tools and processes which are replayed

by quality assurance professionals against a system to be tested. Such artifacts must necessarily

co-evolve with the system being tested or risk becoming stale and uninformative or potentially 

destructive. The manual update process for these testing artifacts is time-consuming, error prone,

expensive, and can undermine the efforts of technologists to adequately evaluate changes to sys- 

tems before those changes are implemented. As our reliance upon technology increases, so too

does its importance in our society due to the widespread distribution and intensity of demand.

As such, it is not expedient to decry regular system evaluation due to the perceived urgency of

desired change or an expected cost to evaluate a system.

This research details lodestone : a novel process to distributed load testing by modeling and

simulating user behavior. We specify lodestone within the context of a human-machine system

in order to illustrate the necessity for including distributed adaptation and execution in existing

load testing processes. This research contributes and stands on a bottom-up process to under- 

standing how users interact with systems by an examination of several anonymized or aggregated

user behavior datasets. This research also presents a formal system of modeling individual users
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or profiling populations of users in addition to algorithms and data structures for improving the

computational and storage efficiency required to mine user behavior datasets. Likewise this re- 

search contributes a fluent software application programming interface for quickly developing

user behavior script templates, a software component for constant-time amortized calculation of

streaming summary statistics, and a test oracle paired with a microservice which is developed on

an industry-standard framework for the purpose of evaluating load testing processes. We further

extend this research with machine learning for profiling user behaviors from atomic system logs,

a heuristic algorithm for profiling semantic user behaviors from aggregated logs, and an adap- 

tation of reinforcement learning to user behavior profiles so that they co-evolve with a system

under test.

The research details how the microservice and test oracle can be effectively replicated within

a cloud-based environment on Amazon Web Services. With the cloud implementation we con- 

tribute a qualitative and quantitative methodology for comparing load testing processes. We

empirically show how even using an entirely different technology stack the lodestone process

can outperform industry-standard load-testing processes and tools. This research rises to the

challenge of reducing the cost and time to evaluate rapidly changing systems with lodestone ,

which continuously adapts to changes in the system to be tested which allows for load testing to

be integrated into the quality assurance process for cloud-based microservices.

7.2. Research Questions

With this research, we have addressed the problem that data-driven processes to realistic model- 

based load testing should continuously and automatically adapt to behavioral and infrastructural

changes in a system to be tested. We have demonstrated that lodestone provides features which

outperform and outmode industry-grade tools by extending the current research in load testing.

The contribution of this research subsumes the following research questions:

𝑅𝑄1: Can a data-driven process to MC model-based load testing be developed that offers advan- 

tages over existing processes?
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We have presented lodestone as a data-driven MC model-based process for load testing. In 

Chapter 3, we described how data can be analyzed and simulated through the TinyERP implemen- 

tation of lodestone . In Chapter 6, we showed how a cloud-based implementation of lodestone 

has both qualitative and quantitative advantages over an open-source load testing tool through

load-testing experiments and a comparison of features. In Table 7.1, we showed how Lodestone

compares against current research efforts in load testing through several parameters ( 𝑃1 − 5) de- 

fined in Chapter 1. Through the diagrams and analyses presented, lodestone thus demonstrates

that data-driven process to MC model-based load testing can be developed that offers advantages

over existing processes by merging formalisms, data structures, models and features which do

not exist together in current LT processes in order to outperform current LT processes.

𝑅𝑄2: Can raw streaming behavioral data in a human-machine system be continuously and effi- 

ciently measured, modeled, and stored as MC models?

Load testing tools such as JMeter as well as the research listed in Table 7.1 relies upon data or

models which are statically engineered and maintained by QA. By comparison, lodestone can

accept raw streaming behavioral data from a human-machine system, efficiently measure, model,

and store those data as MC models. We demonstrate this capability with our experimentation in

Chapter 6, and outline the necessary improvements to a classic data extraction, transfer, load

process required by such tools as JMeter in Chapter 5. With DBSCAN clustering (described in

Chapter 3), we can extract Profile Behavior Bases in lieu of User Behavior Bases from these raw

data - other tools such as JMeter rely upon the raw data which can be orders of magnitude more

substantial in size. Where Markov4JMeter can extend the capabilities of JMeter by using clustered

models such as our PBBs, it is still not capable of streaming those data directly from the SUO or

learning from those data in a streaming fashion. lodestone thus demonstrates how raw stream- 

ing behavioral data in a human-machine system can be continuously and efficiently measured,

modeled, and stored as MC models.

𝑅𝑄3: Can aggregated batched behavioral data in a human-machine system be systematically

grouped into semantically related MC models?
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One characteristic of anonymized data that the research listed in Table 7.1 and tools such as JMe- 

ter with Markov4JMeter do not address is when such data are aggregated beyond the point of 

deciphering the actions and intents of individual users. As we illustrated in Chapter 3, all such 

state-transitional data can be represented as a graph. With Chapter 4, we showed how such a 

graph can be segmented with an extension to Tarjan’s STRONGCONNECT algorithm that re- 

duces the depth the graph is traversed for new neighbor nodes removing the false trails issued by 

web crawlers and search engine indexing software. By segmenting the aggregated behavioral data 

of Wikipedia users with the Depth Constrained STRONGCONNECT algorithm, we showed that 

aggregated batched behavioral data in a human-machine system can be systematically grouped 

into semantically related MC models. 

𝑅𝑄4: Can MC models of a human-machine system be extended to adapt to changes in a system 

under observation? 

The speed at which software changes and the software development lifecycle evolves has be- 

come a liability for software system testers who rely on manual processes and static artifacts for 

testing. Such static artifacts introduce additional security risk if they contain sensitive data, and 

the amount of time associated with updating them means that the cost to continuously evalu- 

ate software for quality increases to the point where some levels of testing are no longer readily 

applied to new releases. Teams using processes such as continuous integration may release soft- 

ware several times per hour, depending on the processes enacted. It is imperative for testing 

tools to be able to adapt to changes in the software to be tested and observed. With Chapter 5, we 

showed how the combination of Markov Chains with Q-Learning and Laplace smoothing allows 

for new behaviors to occur which are not in the observed data. In addition, the least-recently- 

used cache in Chapter 5 shows how outdated transitions which were previously learned can be 

pruned from the testing models and lodestone can adapt to the SUO in that way. Through the 

various improvements in Chapter 5, we showed that MC models of a human-machine system can 

be extended to adapt to changes in a system under observation. 
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Table 7.1. Qualitative Comparison of lodestone with Existing Load Testing Processes

Author Adaptive Realistic Efficient Multiple Agents Operationally Based
Barros et al. [9] ✓ ✓

Canfora et al. [23] ✓

Cotreneo et al. [35] ✓ ✓

Gu & Ge [53] ✓

Kant et al. [70] ✓ ✓

Menasce [84] ✓ ✓

Penta et al. [37] ✓

Schur et al. [105] ✓ ✓

van Hoorn [58] ✓ ✓

Vogele et al. [126] ✓ ✓

Zhang et al. [143] ✓

lodestone ✓ ✓ ✓ ✓ ✓

We have shown answers to each of the research questions listed in Chapter 1. The lodestone 

process in this research contains the processes, data structures, algorithms, architectural designs, 

and implementation results to support an affirmative conclusion to each of the research questions 

in Chapter 1. The primary contribution of this research can be subdivided into several aspects.

7.3. Contribution and Significance

The expense and difficulty associated with classical load testing methods have become outmoded

by the ubiquity and speed with which software systems are developed and deployed. At its core,

this research contributes lodestone : a novel process for testing systems based on the data gen- 

erated through interactions between users and those systems that exhibits the properties 𝑃1 − 5

from Section 1.4 by: a) modeling and classifying user behavior from streaming and aggregated

log data, b) adapting to changes in system and user behavior, c) generating distributed workload

by realistically simulating user behavior. Toward the goal of creating and evaluating lodestone ,

several directed aspects of the research are required for the process to be instantiated, completed,

and evaluated; these aspects are as follows:

• A set of terminology and formalisms defining the parameters, data, and models to be amal- 

gamated by lodestone and informed by an ad-hoc analysis of several anonymous public

user behavioral datasets.
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• A data ingestion process using the DBSCAN clustering algorithm to detect and model sim- 

ilar users by their behavior patterns. 

• A functional microservice (TinyERP) and test oracle (Loki) written in a production-grade

software framework (Spring Boot) for realistic evaluation of load testing processes, contin- 

uous generation of performance and behavioral data, generation of rule-based behavioral

traffic, and controlled simulation of errors in the system.

• A collection of streaming statistics algorithms which provide dataset statistics in O(1) space

and O(1) time.

• A Depth Constraint extension of Tarjan’s STRONGCONNECT algorithm for efficient seg- 

mentation of aggregated log data into smaller subgraphs of related user behavior and exe- 

cuted on aggregated Wikipedia data.

• An extension of the formalisms of Chapters 2 and 3 through the Q-Learning reinforcement

machine learning algorithm, supported by a proof of optimality.

• An extension of SparseVector and SparseMatrix data structures to address the “sunrise 

problem” of events which have never been observed but should have a non-zero proba- 

bility of being simulated through Laplace smoothing.

• Addition of a least-recently-used event cache to allow for efficient reduction of inactive,

invalid, or unlikely historical event transitions.

• Provision for the Kullback-Leibler Divergence for determining if clustered models provide

the same level of informational representation as the raw data used by classical load testing 

processes. 

• Requirement of a system to monitor and learn from in addition to the system to be tested;

such a requirement, not appearing elsewhere in the literature, enables an implementation of

lodestone to accept streamed data from a production environment for continuous adaptive

testing of a system under test. 

• The lodestone process as an implementation in Amazon Web Services with a logical ar- 

chitecture and a physical architecture.
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• Qualitative and quantitative comparison against a ubiquitous load testing tool JMeter using 

identical models learned from rule-based behavioral data generated by TinyERP. 

• A distributed load testing process which is adaptive, realistic, efficient, operationally based, 

and supports multiple-agent execution. 

These aspects of the lodestone process delineate how raw system data may be collected 

in their various forms to efficiently learn and simulate interactions between the humans and 

machines in a real human-machine-system. lodestone may be used toward solving problems 

in fields such as cybersecurity, emergency response, product management, and user experience. 

However, with this research we tender theoretical concepts of and concrete evidence concerning 

the understanding of user behavior data to solve load testing challenges in software engineering. 

A dynamic process to addressing stale, missing, and incomplete data must extend descriptive

MC models with formalisms, efficient algorithms, and inferential methods (such as those given 

by machine learning). We showed processes to extracting and modeling user behavior within the 

context of a human-machine system in order to illustrate qualitative and quantitative advantages 

over existing load testing methodologies.

7.4. Future Work 

Future work to improve lodestone can focus on various facets of the process. Of particular note 

is the future role that testing oracles can play in LT of continuous integration environments, 

and how testing oracles can be improved for continuous integration environments. Cleaning 

and parsing data from the SUO is one of the major preliminary steps given in Figure 1.1; of 

particular importance is how machine learning might be used such that raw event data can be 

automatically parsed and cleaned into a usable form without needing additional interaction from

system engineers. As the maturity of the process improves, error data from the SUT could be used 

even further for operational modeling for future development of system enhancements as well as 

for testing purposes. As we have discussed behavior modeling of users in depth, we also would 

like to further understand how DMABs could be used for adding business value, operational 

value, and intelligence purposes in software development organizations. 
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Appendix A. TinyERP Table Data Definitions 

The TinyERP microservice consists of various modules, each of which support multiple actions,

depending on the authorization permissions granted to the user calling the service. Below is

the data definition language defining the various modules required to operate TinyERP. Each

“CREATE” statement represents the initialization of the in-memory database used for managing 

online transaction processing for user behavior. The entity tables are ROLE, USER, ACCOUNT, 

INVOICE, ORDERS, and WIDGET. The join tables are USER_ROLE and WIDGET_ORDER.

create table ROLE
(

ID BIGINT default auto_increment
primary key,

DESCRIPTION VARCHAR(255),
MAXIMUM_NUMBER_OF_USERS BIGINT,
MINIMUM_NUMBER_OF_USERS INTEGER,
MODULE INTEGER,
NAME VARCHAR(255),
PERCENT DOUBLE,
USER_TYPE INTEGER

);

Figure A.1. Role Table DDL for TinyERP Application

create table USER
(

ID BIGINT default auto_increment
primary key,

FIRST_NAME VARCHAR(255),
LAST_NAME VARCHAR(255)

);

Figure A.2. User Table DDL for TinyERP Application
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create table ACCOUNT
(

ID BIGINT default auto_increment
primary key,

NAME VARCHAR(255),
OWNER_USER_ID BIGINT,
constraint FKB4JVTN40PEM0OTJ1GA6R7T852

foreign key (OWNER_USER_ID)
ref. USER

);

Figure A.3. Account Table DDL for TinyERP Application

create table INVOICE
(

ID BIGINT default auto_increment
primary key,

END_TIME TIME,
START_TIME TIME,
ACCOUNT_ID BIGINT,
constraint FKOEVV8H8T2QGYM9S0CN7OH069B

foreign key (ACCOUNT_ID)
ref. ACCOUNT

);

Figure A.4. Invoice Table DDL for TinyERP Application
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create table ORDERS
(

ID BIGINT default auto_increment
primary key,

AMOUNT DOUBLE,
ORDER_TIME TIME,
ACCOUNT_ID BIGINT,
INVOICE_ID BIGINT,
constraint FK3C7GBSFAWN58R27CF5B2KM72F

foreign key (ACCOUNT_ID)
ref. ACCOUNT,

constraint FKJA77CITBXEILGQCHN5VVBI55J
foreign key (INVOICE_ID)
ref. INVOICE

);

Figure A.5. Orders Table DDL for TinyERP Application

create table USER_ROLE
(

USER_ID BIGINT not null,
ROLE_ID BIGINT not null,
primary key (USER_ID, ROLE_ID),
constraint FK859N2JVI8IVHUI0RL0ESWS6O

foreign key (USER_ID)
ref. USER,

constraint FKA68196081FVOVJHKEK5M97N3Y
foreign key (ROLE_ID)
ref. ROLE

);

Figure A.6. User_Role Table DDL for TinyERP Application
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create table WIDGET
(

ID BIGINT default auto_increment
primary key,

DESCRIPTION VARCHAR(255),
NAME VARCHAR(255),
PRICE DOUBLE

);

Figure A.7. User_Role Table DDL for TinyERP Application

create table WIDGET_ORDER
(

WIDGET_ID BIGINT not null,
ORDER_ID BIGINT not null,
primary key (WIDGET_ID, ORDER_ID),
constraint FK4D3877UHT4K9QX2CQ9K6GQQJU

foreign key (WIDGET_ID)
ref. WIDGET,

constraint FKCWQDL0NQGIJU04D5FLVDY5C50
foreign key (ORDER_ID)
ref. ORDERS

);

Figure A.8. Widget_Order Table DDL for TinyERP Application
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Appendix B. TinyStats Definition 

We refer the reader to the code at

https://github.com/parrottsquawk/TinyStats/blob/master/TinyStats.java for

a more mathematically readable version of this class.

public class TinyStats implements StatisticalSummary {
private double n, n-1, n-2, n-3; // number of items,

// decremented versions to save processing time.
private double sum; // Sum
private double mu_1, mu_2, mu_3, mu_4;
//first, second, third, and fourth moments.
private double sumxlogx; // sum of x* 

log_2(x)
private double max = Double.MIN_VALUE,

min = Double.MAX_VALUE;

public TinyStats(double[] data) {
for (double d : data) {

this.put(d);
}

}

public TinyStats() {
}

public void put(double x) {
n-3 = n-2;
n-2 = n-1;
n-1 = n;
n++;

max = x > max ? x : max;
min = x < min ? x : min;

sum += x;
sumxlogx += x * 

Math.log(x) / Math.log(2);

double std_dev = x - mu_1;
double std_dev_divided_by_n =

std_dev / n;
double std_dev_squared_divided_by_n =

std_dev * 

std_dev_divided_by_n;
double std_dev_cubed_divided_by_n_squared =
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std_dev_divided_by_n *
std_dev_squared_divided_by_n;

double t1 = std_dev_divided_by_n * 

3 * 

mu_2;

mu_4 +=
(std_dev_divided_by_n *
std_dev_cubed_divided_by_n_squared) *
n-1 * 

(n * 

n-3 + 3) +
std_dev_divided_by_n * 

t1 * 

2 -
std_dev_divided_by_n * 

4 * 

mu_3;
mu_3 += std_dev_cubed_divided_by_n_squared *

n-2 * 

n-1 - t1;
mu_2 += std_dev_squared_divided_by_n * 

n-1;
mu_1 += std_dev_divided_by_n;

}

public double getMean() {
return mu_1;

}

public double getSum() {
return sum;

}

public double getVariance() {
return n < 2 ? Double.NaN : mu_2 / n-1;

}

public double getStandardDeviation() {
return Math.sqrt(getVariance());

}

@Override
public double getMax() {

return max;
}

@Override
public double getMin() {

return min;
}

@Override
public long getN() {
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return (long) n;
}

public double getKurtosis() {
return ((n * 

mu_4) / (mu_2 * 

mu_2));
}

public double getSkewness() {
return (Math.sqrt(n) * 

mu_3) /
Math.sqrt(mu_2 * 

mu_2 * 

mu_2);
}

public double getEntropy() {
return (-sumxlogx * 

Math.log(n) /
(n * 

Math.log(2)));
}

public double getExactHistogramBinSize() {
return 3.49 * 

getStandardDeviation() *
Math.pow(getN(), -(1.0 / 3.0));

}
}

124



Appendix C. Institutional Review Board Exemption Approval

125



Appendix D. IEEE Copyright Information

D.5. IEEE Disclaimer

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE 

does not endorse any of Louisiana State University’s products or services. Internal or personal 

use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted ma- 

terial for advertising or promotional purposes or for creating new collective works for resale 

or redistribution, please go to https://www.ieee.org/publications/rights/rights-link.html to learn 

how to obtain a License from RightsLink. If applicable, University Microfilms and/or ProQuest

Library, or the Archives of Canada may supply single copies of the dissertation.

D.6. IEEE Copyright and Consent Form

Full content follows on the next page. 

126



127



128



129



Appendix E. Further Reading 

J. P. Achara, M. M. Maaz, W. Saab, R. Rudnik, and J.-Y. Le Boudec. T-RECS: A Software Testbed for
Multi-Agent Real-Time Control of Electric Grids . Tech. rep. EPFL, 2017.

D. Ahlers, M. Mehrpoor, K. Kristensen, and J. Krogstie. “Challenges for information access in 

multi-disciplinary product design and engineering settings”. In: Digital Information Manage- 

ment (ICDIM), 2015 Tenth International Conference on . Oct. 2015, pp. 109–114. doi : 10.1109/ 

ICDIM.2015.7381865 . 

B. Anderson, D. Quist, J. Neil, C. Storlie, and T. Lane. “Graph-based malware detection using 

dynamic analysis”. In: Journal in Computer Virology 7.4 (2011), pp. 247–258.

J. B. Ard, M. Bishop, C. Gates, and M. X. Sun. “Information behaving badly”. In: Proceedings of the 

2013 workshop on New security paradigms workshop . ACM. 2013, pp. 107–118.

M. M. Arif, W. Shang, and E. Shihab. “Empirical study on the discrepancy between performance
testing results from virtual and physical environments”. In: the 40th International Conference . 

New York, New York, USA: ACM Press, 2018, pp. 822–822.

Q. Bai, M. Zhang, and H. Zhang. “A colored Petri net based strategy for multi-agent scheduling”. 

In: Rational, Robust, and Secure Negotiation Mechanisms in Multi-Agent Systems, 2005 (2005).

M. Ben Salem and S. J. Stolfo. “Modeling User Search Behavior for Masquerade Detection. ” In:
RAID 6961.Chapter 10 (2011), pp. 181–200.

T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext transfer protocol–HTTP/1.0 . Tech. rep. HTTP
Working Group, 1996.

O. Brdiczka, J. Liu, B. Price, J. Shen, A. Patil, R. Chow, E. Bart, and N. Ducheneaut. “Proactive
Insider Threat Detection through Graph Learning and Psychological Context”. In: Security 

and Privacy Workshops (SPW), 2012 IEEE Symposium on . May 2012, pp. 142–149. doi : 10. 

1109/SPW.2012.29 . 

G. Cai, J. Gao, and Y. Huang. “Modeling electronic institutions with extended colored Petri net”. In:
Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 

2007. SNPD 2007. Eighth ACIS International Conference on . 2007.

D. Cappelli, A. Moore, and R. Trzeciak. The CERT Guide to Insider Threats: How to Detect, Prevent, 

and Respond to Information Technology Crimes . 2012.

X. Congqi, L. Tianmei, D. Runnan, and J. Guizhi. “Research on Energy-Hub Control Method of
Micro-grid Based on Multi-agent & Petri Nets”. In: Intelligent Systems Design and Engineering 

Applications, 2013 Fourth International Conference on . 2013.

G. Creech and J. Hu. “Generation of a new IDS test dataset: Time to retire the KDD collection”. In:
2013 IEEE Wireless Communications and Networking Conference (WCNC) . IEEE, 2013, pp. 4487–
4492.

130



O. M. Dahl and S. D. Wolthusen. “Modeling and execution of complex attack scenarios using 

interval timed colored Petri nets”. In: Information Assurance, 2006. IWIA 2006. Fourth IEEE 

International Workshop on (2006). 

V. Di Gesu, G. Lo Bosco, and J. H. Friedman. “Intruders pattern identification”. In: Pattern Recog- 

nition, 2008. ICPR 2008. 19th International Conference on . IEEE, 2008, pp. 1–4. 

T. F. Düllmann, R. Heinrich, A. van Hoorn, T. Pitakrat, J. Walter, and F. Willnecker. “CASPA - 

A Platform for Comparability of Architecture-Based Software Performance Engineering Ap- 

proaches.” In: ICSA Workshops (2017). 

Y. F. Eddy, H. B. Gooi, and S. X. Chen. “Multi-agent system for distributed management of micro- 

grids”. In: IEEE Transactions on power systems 30.1 (2015), pp. 24–34.

E. Egho, C. Raïssi, T. Calders, N. Jay, and A. Napoli. “On measuring similarity for sequences of
itemsets”. In: Data Mining and Knowledge Discovery 29.3 (2012), pp. 732–764.

P. Estraillier and F. Kordon. “Structuration of large scale Petri nets: an association with higher
level formalisms for the design of multi-agent systems”. In: Systems, Man, and Cybernetics, 

1996., IEEE International Conference on . 1996.

F. M. Facca and P. L. Lanzi. “Mining interesting knowledge from weblogs: a survey.” In: Data
Knowl. Eng. () 53.3 (2005), pp. 225–241.

G. Fan, H. Yu, L. Chen, and D. Liu. “A Game Theoretic Method to Model and Evaluate Attack-
Defense Strategy in Cloud Computing”. In: Services Computing (SCC), 2013 IEEE International 

Conference on . 2013.

D. Ferreira and J. P. Ferreira. “A workflow management system for coordinating distributed
information-based business processes”. In: Agent-Based Systems in the Business Context. Papers
from the AAAI Workshop . Technical Report WS-99-02. AAAI Press. 1999.

D. R. Ferreira, S. Alves, and L. H. Thom. “Ontology-Based Discovery of Workflow Activity Pat- 

terns”. In: Business Process Management Workshops . pp.314 - 325. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012.

D. R. Ferreira, F. Szimanski, and C. G. Ralha. “Improving process models by mining mappings of
low-level events to high-level activities.” In: J. Intell. Inf. Syst. () 43.2 (2014), pp. 379–407.

H. Fiorino and C. Tessier. “Agent cooperation: a Petri net based model”. In: Multi Agent Systems,
1998. Proceedings. International Conference on . 1998.

M. Flores-Badillo and E. Lopez-Mellado. “Mobile agent based automation of distributed workflow
processes”. In: System of Systems Engineering, 2008. SoSE ’08. IEEE International Conference on .
2008.

V. Frias-Martinez, J. Sherrick, S. J. Stolfo, and A. D. Keromytis. “A network access control mech- 

anism based on behavior profiles”. In: Computer Security Applications Conference, 2009. AC- 

SAC’09. Annual . IEEE. 2009, pp. 3–12.

131



M. P. Gallaher, A. C. O’Connor, and B. Kropp. “The economic impact of role-based access control”.
In: Planning report (2002), pp. 02–1.

J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, and A. Bouchachia. “A survey on concept drift
adaptation”. In: Computing Surveys (CSUR 46.4 (Apr. 2014).

D. Giraldo, A. Herrera, M. E. Sánchez, and J. Villalobos. “Analysis of ICT services by observing
“fit for use” attributes.” In: CONF-IRM . 2017.

J. Glasser and B. Lindauer. “Bridging the Gap: A Pragmatic Approach to Generating Insider Threat
Data”. In: Security and Privacy Workshops (SPW), 2013 IEEE . May 2013, pp. 98–104. doi : 10. 

1109/SPW.2013.37 . 

M. Gupta, J. Gao, C. Aggarwal, and J. Han. Outlier Detection for Temporal Data . Vol. 5. Morgan & 

Claypool Publishers, Mar. 2014.

F. He, Q. Miao, Y. Li, F.-Y. Wang, and S. Tang. “Modeling and analysis of artificial transportation
system based on multi-agent technology”. In: Intelligent Transportation Systems Conference, 

2006. ITSC ’06. IEEE . 2006.

C. Herrero and J. Oliver. “Extended cooperating automata”. In: Systems, Man and Cybernetics, 

2003. IEEE International Conference on . 2003.

L. Hodge and M. Kamel. “An agent-based approach to multisensor coordination”. In: Systems, Man
and Cybernetics, Part A: Systems and Humans, IEEE Transactions on 33.5 (2003), pp. 648–661.

D. of Homeland Security Science and T. Directorate. A Roadmap for Cybersecurity Re- 

search . Department of Homeland Security Science and Technology Directorate.
http://www.cyber.st.dhs.gov/documents.html, Nov. 2009.

T. Hospedales, S. Gong, and T. Xiang. “A Markov Clustering Topic Model for mining behaviour in
video”. In: IEEE International Conference on Computer Vision. Proceedings (Jan. 2009), pp. 1165–
1172.

F.-S. Hsieh. “Collaborative timed Petri net for holonic process planning”. In: American Control 

Conference, 2003. Proceedings of the 2003 . 2003.

F.-S. Hsieh and J.-B. Lin. “A multiagent approach for managing collaborative workflows in supply 

chains”. In: Computer Supported Cooperative Work in Design, Proceedings of the 2014 IEEE 18th
International Conference on . 2014.

X. Huang, J. Yong, J. Li, and J. Gao. “Prediction of student actions using weighted Markov models”.
In: 2008 IEEE International Symposium on IT in Medicine and Education (ITME) . IEEE, 2008,
pp. 154–159.

Z. Jian, H. Shirai, I. Takahashi, J. Kuroiwa, T. Odaka, and H. Ogura. “Masquerade detection by
boosting decision stumps using UNIX commands”. In: Computers and Security 26.4 (Jan. 2007),
pp. 311–318.

132



P. Jun. “Application Research of the Game Theory in the Teaching of College Physical”. In: Intel- 

ligent Systems Design and Engineering Applications, 2013 Fourth International Conference on .
2013.

F. Khalil, J. Li, and H. Wang. “Integrating recommendation models for improved web page predic- 

tion accuracy”. In: ACSC ’08: Proceedings of the thirty-first Australasian conference on Computer 

science . Australian Computer Society, Inc, Jan. 2008.

G.-W. Kim, S. H. Lee, J. H. Kim, and J. H. Son. “An Effective Algorithm for Business Process
Mining Based on Modified FP-Tree Algorithm”. In: Communication Software and Networks,
2010. ICCSN ’10. Second International Conference on . Feb. 2010, pp. 119–123. doi : 10.1109/ 

ICCSN.2010.77 . 

H.-S. Kim and S.-D. Cha. “Empirical evaluation of SVM-based masquerade detection using UNIX
commands”. In: Computers and Security 24.2 (Jan. 2005), pp. 160–168.

A. Kobsa. “Generic User Modeling Systems”. In: User Modeling and User-Adapted Interaction 11.1
(Mar. 2001), pp. 49–63.

C.-H. Kuo. “Development of distributed agent-oriented Petri net simulation and control environ- 

ment for discrete event dynamic systems”. In: 2004 IEEE International Conference on Systems, 

Man and Cybernetics 5 (2004), 5001–5006 vol.5. 

C.-H. Kuo and T.-S. Chen. “Modeling and control of autonomous soccer robots using high-level 

Petri nets”. In: SICE Annual Conference 2010, Proceedings of . 2010.

C.-H. Kuo and C.-S. Huang. “Distributed modeling and simulation of 300 mm fab intrabay au- 

tomation systems using distributed agent oriented Petri nets”. In: Robotics and Automation, 

2003. Proceedings. ICRA ’03. IEEE International Conference on . 2003.

C.-H. Kuo and I.-H. Lin. “Modeling and Control of Autonomous Soccer Robots Using Distributed
Agent Oriented Petri Nets”. In: Systems, Man and Cybernetics, 2006. SMC ’06. IEEE International 

Conference on . 2006.

C.-H. Kuo and I.-H. Lin. Modeling and Control of Autonomous Soccer Robots Using Distributed Agent 

Oriented Petri Nets . Vol. 5. IEEE, 2006.

C.-H. Kuo, C.-H. Wang, and K.-W. Huang. “Behavior modeling and control of 300 mm fab in- 

trabays using distributed agent oriented Petri net”. In: Systems, Man and Cybernetics, Part A:
Systems and Humans, IEEE Transactions on 5 (2003).

J. Lejeune, L. Arantes, J. Sopena, and P. Sens. “A fair starvation-free prioritized mutual exclusion 

algorithm for distributed systems”. In: Journal of Parallel and Distributed Computing 83 (Sept.
2015), pp. 13–29.

133



C. Liu, Y. Ge, H. Xiong, K. Xiao, W. Geng, and M. Perkins. “Proactive workflow modeling by
stochastic processes with application to healthcare operation and management”. In: KDD ’14:
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data
mining . New York, New York, USA: ACM Request Permissions, Aug. 2014, pp. 1593–1602.

Y. Liu. “Game theory semantics for PCTL model checking label-extended probabilistic Petri net”. 

In: Computer and Information Science (ICIS), 2014 IEEE/ACIS 13th International Conference on .
2014.

T. Lux and M. Marchesi. “Scaling and criticality in a stochastic multi-agent model of a financial 

market”. In: Nature (1999).

Maksim. https://commons.wikimedia.org/wiki/File:Scc.png.

E. Manavoglu, D. Pavlov, and C. L. Giles. “Probabilistic user behavior models”. In: Audio, Trans- 

actions of the IRE Professional Group on (Nov. 2003), pp. 203–210.

S. Mei-hong, J. Shou-shan, G. Yong-gang, C. Liang, and C. Kai-duan. “A Method of Adaptive
Process Mining Based on Time-Varying Sliding Window and Relation of Adjacent Event De- 

pendency”. In: Intelligent System Design and Engineering Application (ISDEA), 2012 Second In- 

ternational Conference on . Jan. 2012, pp. 24–31. doi : 10.1109/ISdea.2012.536 . 

K. Montanez. Amazon Access Samples Data Set . 2011. url : https://archive.ics.uci. 

edu/ml/datasets/Amazon+Access+Samples . 

J. N. Mordeson and P. S. Nair. Fuzzy Mathematics: An Introduction for Engineers and Scientists . 

Physica, 2001. isbn : 3790814202.

J. Murphy, V. Berk, and I. Gregorio-de Souza. “Decision Support Procedure in the Insider Threat 

Domain”. In: Security and Privacy Workshops (SPW), 2012 IEEE Symposium on . May 2012, 

pp. 159–163. doi : 10.1109/SPW.2012.17 . 

C. Pascal and D. Panescu. “On resource allocation in a holonic manufacturing execution system”. 

In: System Theory, Control, and Computing (ICSTCC), 2011 15th International Conference on . 

2011.

A. A. Pouyan and S. Reeves. “Behavioral modeling for mobile agent systems using Petri nets”. In: 

Systems, Man and Cybernetics, 2004 IEEE International Conference on . 2004.

A. Prodromidis, P. Chan, and S. Stolfo. “Meta-learning in distributed data mining systems: Issues 

and approaches”. In: Advances in distributed and parallel knowledge discovery 3 (2000), pp. 81– 

114. 

R. Ramakrishnan and A. Kaur. “Little’s law based validation framework for load testing”. In: In- 

formation & Software Technology (Nov. 2018). 

134



A. P. Reynolds, G. Richards, B. de la Iglesia, and V. J. Rayward-Smith. “Clustering Rules: A Com- 

parison of Partitioning and Hierarchical Clustering Algorithms”. In: Journal of Mathematical 

Modelling and Algorithms 5.4 (2006), pp. 475–504. issn : 1572-9214. doi : 10.1007/s10852- 

005-9022-1 . url : http://dx.doi.org/10.1007/s10852-005-9022-1 .

J. R. Rice. “The algorithm selection problem”. In: Advances in computers 15 (1976), pp. 65–118.

M. Román, C. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell, and K. Nahrstedt. “A middle- 

ware infrastructure for active spaces”. In: IEEE pervasive computing 1.4 (2002), pp. 74–83.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach (3rd Edition) . Pearson, 2009.
isbn : 0136042597.

B. S and S. Saravanan. “Survey of Network Anomaly Detection Using Markov Chain”. In: Inter- 

national Journal of Computer Science, Engineering and Information Technology 4.1 (Feb. 2014),
pp. 49–55.

S. B. Sanjabi and F. Pommereau. “Modelling, verification, and formal analysis of security prop- 

erties in a P2P system”. In: Collaborative Technologies and Systems (CTS), 2010 International 

Symposium on (2010).

O. Shehory and S. Kraus. “Methods for task allocation via agent coalition formation”. In: Artificial 

intelligence 101.1-2 (May 1998), pp. 165–200.

J. Shen, J. Luo, and G. Gu. “An object-oriented net graph model for agent group-based network
management”. In: Technology of Object-Oriented Languages and Systems, 1999. TOOLS 31. Pro- 

ceedings . 1999.

K. M. Sim, S. C. K. Shiu, and M. L. Bun. “Simulation of a multi-agent protocol for task alloca- 

tion in cooperative design”. In: Systems, Man, and Cybernetics, 1999. IEEE SMC ’99 Conference 

Proceedings. 1999 IEEE International Conference on . 1999.

K. A. Smith-Miles. “Cross-disciplinary perspectives on meta-learning for algorithm selection”. In: 

ACM Computing Surveys (CSUR) 41.1 (2009), p. 6. 

H.-J. Song, Z.-Q. Shen, C.-Y. Miao, A.-H. Tan, and G.-P. Zhao. “The Multi-Agent Data Collection 

in HLA-Based Simulation System”. In: Principles of Advanced and Distributed Simulation, 2007.
PADS ’07. 21st International Workshop on (2007). 

M. Sorba, M. Ghenima, and H. H. Ben Ghezala. “Towards a hybrid approach for a predictive
modeling of user navigational behaviors: State of the art”. In: 2013 3rd International Symposium 

ISKO-Maghreb . IEEE, 2013, pp. 1–7.

A. C. Squicciarini, G. Petracca, W. G. Horne, and A. Nath. “Situational awareness through reason- 

ing on network incidents”. In: CODASPY ’14: Proceedings of the 4th ACM conference on Data
and application security and privacy . New York, New York, USA: ACM Request Permissions,
Mar. 2014, pp. 111–122.

135



X. Tan and H. Xi. “Hidden semi-Markov model for anomaly detection”. In: Applied Mathematics 

and Computation 205.2 (Jan. 2008), pp. 562–567.

A. J. C. Trappey, D. W. Hsiao, and L. Ma. “Maintenance Chain Integration Using Petri-Net En- 

abled Multiagent System Modeling and Implementation Approach”. In: Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 3 (2011).

A. J. C. Trappey, D. W. Hsiao, L. Ma, and Y.-L. Chung. “Maintenance chain integration using Petri- 

net enabled Prometheus MAS modeling methodology”. In: Computer Supported Cooperative 

Work in Design, 2009. CSCWD 2009. 13th International Conference on . 2009.

D. Verdegem and P. Harrison. Tarjan’s algorithm and topological sorting implementation in Python .
Nov. 2015. url : http://logarithmic.net/pfh/blog/01208083168 .

W. Wang, X. Zhang, and S. Gombault. “Constructing attribute weights from computer audit data
for effective intrusion detection”. In: Journal of Systems and Software 82.12 (2009), pp. 1974–
1981.

G. I. Webb, M. J. Pazzani, and D. Billsus. “Machine learning for user modeling”. In: User modeling 

and user-adapted interaction 11.1-2 (2001), pp. 19–29.

R. Weiss and C. Steger. “Design and implementation of a real-time multi-agent system”. In: Elec- 

trotechnical Conference, 1998. MELECON 98., 9th Mediterranean . 1998.

G.Wen, Z. Duan, G. Chen, and W. Yu. “Consensus tracking of multi-agent systems with Lipschitz- 

type node dynamics and switching topologies”. In: IEEE Transactions on Circuits and Systems
I: Regular Papers 61.2 (2014), pp. 499–511.

R. J. Witty, A. Allan, J. Enck, and R. Wagner. “Identity and access management defined”. In: Re- 

search Study SPA-21-3430, Gartner (2003).

B. Xian-hua and X. Wei. “An Approach of Workflow Optimization of Global Supply Chain Based
on Object Oriented Petri Net Paper Title”. In: Information Technology and Computer Science, 

2009. ITCS 2009. International Conference on . 2009.

Y. X. Y. Xie and S.-Z. Y. S.-Z. Yu. “A Large-Scale Hidden Semi-Markov Model for Anomaly Detec- 

tion on User Browsing Behaviors”. In: Networking, IEEE/ACM Transactions on 17.1 (Feb. 2009),
pp. 54–65.

N. Ye and T. Farley. “A scientific approach to cyberattack detection”. In: Computer 38.11 (2005),
pp. 55–61.

N. Y. N. Ye, Y. Z. Y. Zhang, and C. M. Borror. “Robustness of the Markov-chain model for cyber- 

attack detection”. In: Reliability, IEEE Transactions on 53.1 (Mar. 2004), pp. 116–123.

W. Ye, R. Li, and H. Li. “Role Mining Using Boolean Matrix Decomposition with Hierarchy”.
In: Trust, Security and Privacy in Computing and Communications (TrustCom), 2013 12th IEEE
International Conference on . July 2013, pp. 805–812. doi : 10.1109/TrustCom.2013.98 .

136



 

W. T. Young, H. G. Goldberg, A. Memory, J. F. Sartain, and T. E. Senator. Use of Domain Knowledge 

to Detect Insider Threats in Computer Activities . IEEE, 2013. 

A. N. Zakrzewska and E. M. Ferragut. “Modeling cyber conflicts using an extended Petri Net 

formalism”. In: Computational Intelligence in Cyber Security (CICS), 2011 IEEE Symposium on 

(2011). 

L. Zhang, Y. Zhang, P. Jamshidi, L. Xu, and C. Pahl. “Workload Patterns for Quality-Driven Dy- 

namic Cloud Service Configuration and Auto-Scaling”. In: 2014 IEEE/ACM 7th International 

Conference on Utility and Cloud Computing (UCC) . IEEE, 2014, pp. 156–165. 

137



Cited Work

[1] D. Ahlers and M. Mehrpoor. “Everything is Filed under ‘File’: Conceptual Challenges in 

Applying Semantic Search to Network Shares for Collaborative Work”. In: Proceedings of
the 26th ACM Conference on Hypertext & Social Media . ACM. 2015, pp. 327–328.

[2] Alibaba Cloud. Alibaba Cloud Function Compute . https://www.alibabacloud. 

com/help/doc-detail/52895.htm . [Online; accessed: 2019-05-17]. 2019.

[3] Amazon Web Services. AWS Lambda - Serverless Compute - Amazon Web Services . https: 

//aws.amazon.com/lambda . [Online; accessed: 2019-05-17]. 2019.

[4] B. Anderson, D. Quist, J. Neil, C. Storlie, and T. Lane. “Graph-based malware detection
using dynamic analysis”. In: Journal in Computer Virology 7.4 (2011), pp. 247–258.

[5] V. Apte, T. V. S. Viswanath, D. Gawali, A. Kommireddy, and A. Gupta. AutoPerf: Automated 

Load Testing and Resource Usage Profiling of Multi-Tier Internet Applications . Automated
Load Testing and Resource Usage Profiling of Multi-Tier Internet Applications. New York,
New York, USA: ACM, Apr. 2017.

[6] M. Autili, A. Perucci, and L. De Lauretis. “A hybrid approach to microservices load bal- 

ancing”. In: Microservices . Springer, 2020, pp. 249–269.

[7] A. Avritzer, V. Ferme, A. Janes, B. Russo, H. Schulz, and A. van Hoorn. “A Quantitative
Approach for the Assessment of Microservice Architecture Deployment Alternatives by
Automated Performance Testing”. In: Software Architecture . Cham: Springer International 

Publishing, Sept. 2018, pp. 159–174.

[8] Azure Cloud. Azure Functions . [Online; accessed: 2019-05-17]. 2019. url : https:// 

azure.microsoft.com/en-us/services/functions .

[9] M. D. Barros, J. Shiau, C. Shang, K. Gidewall, H. Shi, and J. Forsmann. “Web Services
Wind Tunnel: On Performance Testing Large-Scale Stateful Web Services”. In: 37th Annual 

IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’07) . June 

2007, pp. 612–617. doi : 10.1109/DSN.2007.102 .

[10] F. J. Barth. “Using Social Network Analysis and Hierarchical Clustering to Identify Groups
in Wikis”. In: 2010 Brazilian Symposium of Collaborative Systems II - Simposio Brasileiro de
Sistemas Colaborativos (SBSC-II) . IEEE, 2010, pp. 8–11.

[11] A. Begel and T. Zimmermann. “Analyze this! 145 questions for data scientists in software
engineering”. In: Proceedings of the 36th International Conference on Software Engineering . 

2014, pp. 12–23.

[12] A. R. Benson, D. F. Gleich, and J. Leskovec. “Tensor Spectral Clustering for Partitioning
Higher-order Network Structures”. In: arXiv preprint arXiv:1502.05058 (2015).

138



[13] C.-P. Bezemer et al. “How is Performance Addressed in DevOps?” In: Proceedings of the 

2019 ACM/SPEC International Conference on Performance Engineering . ICPE ’19. Mumbai,
India: Association for Computing Machinery, 2019, pp. 45–50. isbn : 9781450362399. doi :
10.1145/3297663.3309672 . url : https://doi.org/10.1145/3297663. 

3309672 . 

[14] D. Birant and A. Kut. “ST-DBSCAN: An algorithm for clustering spatial–temporal data”.
In: Data & Knowledge Engineering 60.1 (2007), pp. 208–221.

[15] BlazeMeter. What’s the Max Number of Users You Can Test on JMeter? https://www. 

blazemeter.com/blog/what’s-the-max-number-of-users-you-can- 

test-on-jmeter/ . [Online; accessed: 2019-07-12]. 2019.

[16] R. Bose, W. van der Aalst, I. Zliobaite, and M. Pechenizkiy. “Dealing With Concept Drifts
in Process Mining”. In: Neural Networks and Learning Systems, IEEE Transactions on 25.1
(Jan. 2014), pp. 154–171. issn : 2162-237X. doi : 10.1109/TNNLS.2013.2278313 .

[17] J. S. Breese, D. Heckerman, and C. M. Kadie. Anonymous Microsoft Web Data Data Set .
1998. url : https://archive.ics.uci.edu/ml/datasets/Anonymous% 

20Microsoft%20Web%20Data .

[18] J. S. Breese, D. Heckerman, and C. Kadie. “Empirical analysis of predictive algorithms
for collaborative filtering”. In: Proceedings of the Fourteenth conference on Uncertainty in
artificial intelligence . Morgan Kaufmann Publishers Inc. 1998, pp. 43–52.

[19] A. Bruns, A. Kornstadt, and D. Wichmann. “Web Application Tests with Selenium”. In:
IEEE Software 26.5 (Sept. 2009), pp. 88–91. issn : 1937-4194. doi : 10.1109/MS.2009. 

144 .

[20] I. V. Cadez, D. Heckerman, C. Meek, P. Smyth, and S. White. “Visualization of navigation
patterns on a Web site using model-based clustering”. In: KDD . 2000, p. 280.

[21] L. Cai, C. K. Chang, and J. Cleland-Huang. “Supporting agent-based distributed software
development through modeling and simulation”. In: Distributed Computing Systems, 2003.
FTDCS 2003. Proceedings. The Ninth IEEE Workshop on Future Trends of . 2003.

[22] K. Campbell, L. A. Gordon, M. P. Loeb, and L. Zhou. “The economic cost of publicly an- 

nounced information security breaches: empirical evidence from the stock market”. In:
Journal of Computer Security 11.3 (2003), pp. 431–448.

[23] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani. “An approach for QoS-aware ser- 

vice composition based on genetic algorithms”. In: Proceedings of the 7th annual conference 

on Genetic and evolutionary computation . ACM. 2005, pp. 1069–1075.

[24] J. R. Celaya, A. A. Desrochers, and R. J. Graves. “Modeling and analysis of multi-agent
systems using petri nets”. In: Systems, Man and Cybernetics, 2007. ISIC. IEEE International 

Conference on . 2007.

139



[25] W. Chainbi. “Multi-agent systems: a Petri net with objects based approach”. In: Intelligent 

Agent Technology, 2004. (IAT 2004). Proceedings. IEEE/WIC/ACM International Conference 

on . 2004.

[26] V. Chandola, A. Banerjee, and V. Kumar. “Anomaly Detection for Discrete Sequences: A 

Survey”. In: IEEE Transactions on Knowledge and Data Engineering 24.5 (2012), pp. 823–
839.

[27] J. Chen and W. Shang. “An Exploratory Study of Performance Regression Introducing
Code Changes.” In: ICSME (2017).

[28] T.-H. Chen, M. D. Syer, W. Shang, Z. M. Jiang, A. E. Hassan, M. N. Nasser, and P. Flora.
“Analytics-Driven Load Testing - An Industrial Experience Report on Load Testing of
Large-Scale Systems.” In: ICSE-SEIP (2017).

[29] B. Chikhaoui, S. Wang, and H. Pigot. “Causality-Based Model for User Profile Construc- 

tion from Behavior Sequences”. In: Advanced Information Networking and Applications 

(AINA), 2013 IEEE 27th International Conference on . Mar. 2013, pp. 461–468. doi : 10. 

1109/AINA.2013.109 .

[30] A. Colantonio, R. Di Pietro, and A. Ocello. Role Mining in Business: Taming Role-Based
Access Control Administration . World Scientific, 2012.

[31] R. Collobert and J. Weston. “A unified architecture for natural language processing: Deep 

neural networks with multitask learning”. In: Proceedings of the 25th international confer- 

ence on Machine learning . ACM. 2008, pp. 160–167.

[32] M. E. Conway. “How do committees invent”. In: Datamation (1968).

[33] D. J. Cook and N. C. Krishnan. Activity Learning: Discovering, Recognizing, and Predicting
Human Behavior from Sensor Data . John Wiley & Sons, 2015.

[34] P. A. Corning. “The re-emergence of “emergence”: A venerable concept in search of a
theory”. In: Complexity 7.6 (2002), pp. 18–30. issn : 1099-0526. doi : 10.1002/cplx. 

10043 . url : http://dx.doi.org/10.1002/cplx.10043 .

[35] D. Cotroneo, R. Pietrantuono, and S. Russo. “RELAI testing: a technique to assess and
improve software reliability”. In: IEEE Transactions on Software Engineering PP.99 (2015),
pp. 1–1. issn : 0098-5589. doi : 10.1109/TSE.2015.2491931 .

[36] B. De Carolis, S. Ferilli, and D. Redavid. “Incremental Learning of Daily Routines as Work- 

flows in a Smart Home Environment”. In: Transactions on Interactive Intelligent Systems
(TiiS 4.4 (Jan. 2015).

[37] M. Di Penta, G. Canfora, G. Esposito, V. Mazza, and M. Bruno. “Search-based testing of
service level agreements”. In: Proceedings of the 9th annual conference on Genetic and evo- 

lutionary computation . ACM. 2007, pp. 1090–1097.

140



 

[38] R. Diestel. Graph Theory (Graduate Texts in Mathematics, 173) . Springer-Verlag, 1997. isbn : 

0387982108. 

[39] V. Dimitrova, T. Kuflik, D. Chin, F. Ricci, P. Dolog, and G.-J. Houben. User Modeling, Adap- 

tation and Personalization . Vol. 8538. 22nd International Conference, UMAP 2014, Aalborg, 

Denmark, July 7-11, 2014. Proceedings. Cham: Springer, June 2014. 

[40] W. Dong. “Multi-agent test environment for BPEL-based web service composition”. In: 

Cybernetics and Intelligent Systems, 2008 IEEE Conference on . 2008. 

[41] M. Du and F. Li. “Spell: Streaming parsing of system event logs”. In: 2016 IEEE 16th Inter- 

national Conference on Data Mining (ICDM) . IEEE. 2016, pp. 859–864. 

[42] D. Fei, Z. Liqun, N. GuangYun, and X. Xiaolei. “A Algorithm for Detecting Concept Drift 

Based on Context in Process Mining”. In: Digital Manufacturing and Automation (ICDMA), 

2013 Fourth International Conference on . June 2013, pp. 5–8. doi : 10.1109/ICDMA. 

2013.2 . 

[43] D. Ferraiolo and D. Kuhn. “Role Based Access Control”. In: 15th National Computer Security 

Conf . Oct. 1992, pp. 554–563. 

[44] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli. “Proposed NIST 

standard for role-based access control”. In: ACM Transactions on Information and System 

Security (TISSEC) 4.3 (2001), pp. 224–274. 

[45] C. H. G. Ferreira, L. H. Nunes, L. A. Pereira, L. H. V. Nakamura, J. C. Estrella, and S. Reiff- 

Marganiec. “PEESOS-Cloud: A Workload-Aware Architecture for Performance Evaluation 

in Service-Oriented Systems”. In: 2016 IEEE World Congress on Services Computing (SER- 

VICES) . IEEE, 2016, pp. 118–125. 

[46] D. R. Ferreira, F. Szimanski, and C. G. Ralha. “A Hierarchical Markov Model to Under- 

stand the Behaviour of Agents in Business Processes”. In: Business Process Management 

Workshops . Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 150–161. 

[47] M. Frank, J. M. Buhmann, and D. Basin. “On the Definition of Role Mining”. In: Proceedings 

of the 15th ACM Symposium on Access Control Models and Technologies . SACMAT ’10. 

Pittsburgh, Pennsylvania, USA: ACM, 2010, pp. 35–44. isbn : 978-1-4503-0049-0. doi : 10. 

1145/1809842.1809851 . url : http://doi.acm.org/10.1145/1809842. 

1809851 . 

[48] H. Funke. “Model Based Test Specifications: Developing of Test Specifications in a Semi 

Automatic Model Based Way”. In: 2011 IEEE Fourth International Conference on Software 

Testing, Verification and Validation Workshops (ICSTW) . IEEE, 2011, pp. 496–500. 

[49] R. Gao, Z. M. Jiang, C. Barna, and M. Litoiu. A Framework to Evaluate the Effectiveness of 

Different Load Testing Analysis Techniques . IEEE, Apr. 2016. 

141



[50] R. Gao and Z. M. J. Jiang. An exploratory study on assessing the impact of environment 

variations on the results of load tests . IEEE Press, May 2017.

[51] Google Cloud. Google Cloud Functions . [Online; accessed: 2019-05-17]. 2019. url : https: 

//cloud.google.com/functions . 

[52] T. R. Gruber. “Toward principles for the design of ontologies used for knowledge sharing?”
In: International journal of human-computer studies 43.5 (1995), pp. 907–928.

[53] Y. Gu and Y. Ge. “Search-based performance testing of applications with composite ser- 

vices”. In: Web Information Systems and Mining, 2009. WISM 2009. International Conference 

on . IEEE. 2009, pp. 320–324.

[54] P. Harika, M. Nagajyothi, J. John, S. Sural, J. Vaidya, and V. Atluri. “Meeting Cardinality
Constraints in Role Mining”. In: Dependable and Secure Computing, IEEE Transactions on 

PP.99 (2014), pp. 1–1. issn : 1545-5971. doi : 10.1109/TDSC.2014.2309117 . 

[55] D. Heckerman. MSNBC.com Anonymous Web Data Data Set . 2000. url : http : / / 

archive.ics.uci.edu/ml/datasets/msnbc.com+anonymous+web+ 

data . 

[56] R. Heinrich, A. van Hoorn, H. Knoche, F. Li, L. E. Lwakatare, C. Pahl, S. Schulte, and J. 

Wettinger. “Performance Engineering for Microservices: Research Challenges and Direc- 

tions”. In: Proceedings of the 8th ACM/SPEC on International Conference on Performance 

Engineering Companion . ICPE ’17 Companion. L’Aquila, Italy: ACM, 2017, pp. 223–226.
isbn : 978-1-4503-4899-7. doi : 10.1145/3053600.3053653 . url : http://doi. 

acm.org/10.1145/3053600.3053653 . 

[57] X. A. Hoang and J. Hu. “An efficient hidden Markov model training scheme for anomaly 

intrusion detection of server applications based on system calls”. In: 2005 13th IEEE Inter- 

national Conference on Networks Jointly held with the 2005 IEEE 7th Malaysia International 

Conf on Communic 2 (Nov. 2004), pp. 470–472.

[58] A. van Hoorn. Markov4JMeter - Probabilistic and Intensity-Varying Workload Generation 

for Session-Based Software Systems . https://www.se.informatik.uni-kiel. 

de/en/research/projects/markov4jmeter . [Online; accessed: 2019-05-19].
2008. 

[59] A. van Hoorn, C. Vögele, E. Schulz, W. Hasselbring, and H. Krcmar. “Automatic Extrac- 

tion of Probabilistic Workload Specifications for Load Testing Session-Based Application 

Systems”. In: 8th International Conference on Performance Evaluation Methodologies and 

Tools . ICST, 2015. 

[60] J. H. J. Hu, X. Y. X. Yu, D. Qiu, and H.-H. C. H.-H. Chen. “A simple and efficient hidden 

Markov model scheme for host-based anomaly intrusion detection”. In: Network, IEEE 23.1 

(Feb. 2009), pp. 42–47. 

142



 

[61] IBM Cloud. IBM Cloud Functions . [Online; accessed: 2019-05-17]. 2019. url : https:// 

www.ibm.com/cloud/functions . 

[62] W. Iqbal, A. Erradi, and A. Mahmood. “Dynamic workload patterns prediction for proac- 

tive auto-scaling of web applications”. In: Journal of Network and Computer Applications 

124 (Dec. 2018), pp. 94–107. 

[63] M. Janik and K. J. Kochut. “Wikipedia in action: Ontological knowledge in text categoriza- 

tion”. In: Semantic Computing, 2008 IEEE International Conference on . IEEE. 2008, pp. 268– 

275. 

[64] N. R. Jennings. “On agent-based software engineering”. In: Artificial intelligence 117.2 

(Mar. 2000), pp. 277–296. 

[65] N. R. Jennings, K. Sycara, and M. Wooldridge. “A Roadmap of Agent Research and Devel- 

opment”. In: Autonomous Agents and Multi-Agent Systems 1.1 (Jan. 1998), pp. 7–38. 

[66] M. Jiang, C. Wang, X. Luo, M. Miu, and T. Chen. “Characterizing the Impacts of Applica- 

tion Layer DDoS Attacks”. In: 2017 IEEE International Conference on Web Services (ICWS) . 

IEEE, 2017, pp. 500–507. 

[67] Z. M. Jiang. “Load Testing Large-Scale Software Systems”. In: 2015 IEEE/ACM 37th IEEE 

International Conference on Software Engineering (ICSE) . IEEE, 2015, pp. 955–956. 

[68] Z. M. Jiang and A. E. Hassan. “A Survey on Load Testing of Large-Scale Software Systems”. 

In: IEEE Transactions on Software Engineering 41.11 (Nov. 2015), pp. 1091–1118. issn : 0098- 

5589. doi : 10.1109/TSE.2015.2445340 . 

[69] S. S. Joshi and V. V. Phoha. “Investigating hidden Markov models capabilities in anomaly 

detection”. In: the 43rd annual southeast regional conference . New York, New York, USA: 

ACM Press, 2005, p. 98. 

[70] K. Kant, V. Tewari, and R. Iyer. “Geist: A web traffic generation tool”. In: International Con- 

ference on Modelling Techniques and Tools for Computer Performance Evaluation . Springer. 

2002, pp. 227–232. 

[71] K. Kapoor, M. Sun, J. Srivastava, and T. Ye. “A hazard based approach to user return time 

prediction”. In: KDD ’14: Proceedings of the 20th ACM SIGKDD international conference on 

Knowledge discovery and data mining . ACM Request Permissions, Aug. 2014. 

[72] S. Karlin and H. M. Taylor. A First Course in Stochastic Processes, Second Edition . Academic 

Press, 1975. isbn : 0123985528. 

[73] C. Laaber and P. Leitner. “An evaluation of open-source software microbenchmark suites 

for continuous performance assessment”. In: the 15th International Conference . New York, 

New York, USA: ACM Press, 2018, pp. 119–130. 

143



[74] M. Labs. A Week in the Life of a Browser - Version 2: Aggregated Data Samples . July 2011.
url : https://testpilot.mozillalabs.com/testcases/a-week-life- 

2/aggregated-data.html . 

[75] K. L. K. Lee, D. Ellis, and A. C. Loui. “Detecting local semantic concepts in environmen- 

tal sounds using Markov model based clustering”. In: IEEE International Conference on 

Acoustics, Speech and Signal Processing. Proceedings (Mar. 2010), pp. 2278–2281.

[76] P. Leitao and A. W. Colombo. “Petri net based Methodology for the Development of Col- 

laborative Production Systems”. In: Emerging Technologies and Factory Automation, 2006.
ETFA ’06. IEEE Conference on . 2006.

[77] P. Leitner and C.-P. Bezemer. “An Exploratory Study of the State of Practice of Perfor- 

mance Testing in Java-Based Open Source Projects”. In: the 8th ACM/SPEC . New York,
New York, USA: ACM Press, 2017, pp. 373–384.

[78] N. Li, J. Kang, and W. Lv. “A hybrid approach for dynamic business process mining based
on reconfigurable nets and event types”. In: e-Business Engineering, 2005. ICEBE 2005. IEEE
International Conference on . Oct. 2005, pp. 289–294. doi : 10.1109/ICEBE.2005.5 .

[79] M. Lichman. UCI Machine Learning Repository . 2013. url : http://archive.ics. 

uci.edu/ml .

[80] A. Mahmoud. “An information theoretic approach for extracting and tracing non- 

functional requirements”. In: 2015 IEEE 23rd International Requirements Engineering Con- 

ference (RE) . Aug. 2015, pp. 36–45. doi : 10.1109/RE.2015.7320406 . 

[81] A. Mahmoud and D. Carver. “Exploiting online human knowledge in Requirements Engi- 

neering”. In: 2015 IEEE 23rd International Requirements Engineering Conference (RE) . IEEE. 

2015, pp. 262–267.

[82] H. Malik, Z. M. Jiang, B. Adams, A. E. Hassan, P. Flora, and G. Hamann. “Automatic Com- 

parison of Load Tests to Support the Performance Analysis of Large Enterprise Systems”.
In: 14th European Conference on Software Maintenance and Reengineering (CSMR 2010) .
IEEE, 2010, pp. 222–231.

[83] V. Melnykov et al. “Model-based biclustering of clickstream data”. In: Computational 

Statistics & Data Analysis 93.C (2016), pp. 31–45.

[84] D. A. Menascé. “Load testing of Web sites”. In: IEEE Internet Computing 6.4 (June 2002),
pp. 70–74. issn : 1089-7801. doi : 10.1109/MIC.2002.1020328 .

[85] D. A. Menascé, V. A. Almeida, R. Fonseca, and M. A. Mendes. “A methodology for work- 

load characterization of e-commerce sites”. In: Proceedings of the 1st ACM conference on 

Electronic commerce . 1999, pp. 119–128.

144



[86] S. E. Middleton, N. R. Shadbolt, and D. C. De Roure. “Ontological user profiling in recom- 

mender systems”. In: ACM Transactions on Information Systems (TOIS) 22.1 (2004), pp. 54–
88.

[87] T. M. Mitchell. Machine Learning . McGraw-Hill Education, 1997. isbn : 0070428077.

[88] S. Nachiyappan and S. Justus. “Cloud testing tools and its challenges: A comparative
study”. In: procedia computer Science 50 (2015), pp. 482–489.

[89] K. Nakayama, T. Hara, and S. Nishio. “Wikipedia mining for an association web the- 

saurus construction”. In: International Conference on Web Information Systems Engineering .
Springer. 2007, pp. 322–334.

[90] A. Y. Nikravesh, S. A. Ajila, and C.-H. Lung. “Evaluating Sensitivity of Auto-Scaling De- 

cisions in an Environment with Different Workload Patterns”. In: 2015 IEEE 39th Annual 

Computer Software and Applications Conference (COMPSAC) . IEEE, 2015, pp. 415–420.

[91] Oracle Cloud. Oracle Functions . https://docs.cloud.oracle.com/iaas/ 

Content / Functions / Concepts / functionsoverview . htm . [Online; ac- 

cessed: 2019-05-17]. 2019.

[92] L. Page, S. Brin, R. Motwani, and T. Winograd. “The PageRank citation ranking: bringing
order to the web.” In: Stanford InfoLab (1999).

[93] C. Parrott and D. Carver. “A Model of Wikipedia Knowledge Communities: Learning from
User Behavior”. In: 2020 22nd International Conference of the Society for Design and Process
Science (SDPS) . SDPS, 2020, pp. 108–117.

[94] C. Parrott and D. Carver. “Lodestone: A Streaming Approach to Behavior Modeling and
Load Testing”. In: 2020 3nd International Conference on Data Intelligence and Security
(ICDIS) . IEEE, 2020.

[95] J. Pecarina and J.-c. Liu. “APSAT: A framework for modeling and analysis of workflow
dynamics”. In: in msn-centric Syst., in Collaboration Tech. and Syst. (CTS), 2012 Int. Conf.
on . 2012, pp. 575–582.

[96] J. Pecarina and J.-c. Liu. “Behavior instance extraction for risk aware control in mis- 

sion centric systems”. In: Cognitive Methods in Situation Awareness and Decision Support
(CogSIMA), 2013 IEEE International Multi-Disciplinary Conference on . Feb. 2013, pp. 51–58.
doi : 10.1109/CogSIMA.2013.6523823 .

[97] J. Punuru and J. Chen. “Automatic acquisition of concepts from domain texts”. In: 2006
IEEE International Conference on Granular Computing . IEEE. 2006, pp. 424–427.

[98] A. Qusef, L. Issa, E. Ayoubi, and S. Murad. “Challenges and opportunities in cloud test- 

ing”. In: Proceedings of the Second International Conference on Data Science, E-Learning and
Information Systems . ACM. 2019, p. 15.

145



 

[99] A. Rafael Lenz, A. Pozo, and S. Regina Vergilio. “Linking software testing results with a 

machine learning approach”. In: Engineering Applications of Artificial Intelligence 26.5-6 

(May 2013), pp. 1631–1640. 

[100] R. Ramakrishnan, V. Shrawan, and P. Singh. “Setting Realistic Think Times in Performance 

Testing”. In: the 10th Innovations in Software Engineering Conference . New York, New York, 

USA: ACM Press, 2017, pp. 157–164. 

[101] A. S. Rao and M. P. Georgeff. “Modeling rational agents within a BDI-architecture”. In: 

KR (1991). 

[102] E. Rich. “User modeling via stereotypes*”. In: Cognitive science 3.4 (1979), pp. 329–354. 

[103] P. Schönhofen. “Identifying document topics using the Wikipedia category network”. In: 

Web Intelligence and Agent Systems: An International Journal 7.2 (2009), pp. 195–207. 

[104] H. Schulz, A. van Hoorn, and A. Wert. “Reducing the maintenance effort for parameter- 

ization of representative load tests using annotations”. In: Software Testing, Verification 

and Reliability 30.1 (2020). e1712 stvr.1712, e1712. doi : 10.1002/stvr.1712 . eprint: 

https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1712 . 

url : https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr. 

1712 . 

[105] M. Schur, A. Roth, and A. Zeller. “Mining Workflow Models from Web Applications”. In: 

IEEE Transactions on Software Engineering 41.12 (Dec. 2015), pp. 1184–1201. issn : 0098- 

5589. doi : 10.1109/TSE.2015.2461542 . 

[106] H. M. Schwartz. Multi-Agent Machine Learning: A Reinforcement Approach . Wiley, Jan. 

2014. 

[107] W. Sha, Y. Zhu, T. Huang, M. Qiu, Y. Zhu, and Q. Zhang. “A Multi-order Markov Chain 

Based Scheme for Anomaly Detection”. In: 2013 IEEE 37th International Computer Software 

and Applications Conference Workshops (COMPSACW) . IEEE, 2013, pp. 83–88. 

[108] R. S. Shariffdeen, D. T. S. P. Munasinghe, H. S. Bhathiya, U. K. J. U. Bandara, and H. M. N. D. 

Bandara. “Adaptive workload prediction for proactive auto scaling in PaaS systems”. 

In: 2016 2nd International Conference on Cloud Computing Technologies and Applications 

(CloudTech) . IEEE, 2016, pp. 22–29. 

[109] Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic, and 

Logical Foundations . Cambridge University Press, 2008. isbn : 9781139475242. 

[110] Social Security Administration. Beyond the Top 1000 Names . url : https://www.ssa. 

gov/oact/babynames/limits.html . (accessed: 05.29.2017). 

[111] Y. Song, A. D. Keromytis, and S. J. Stolfo. “Spectrogram: A Mixture-of-Markov-Chains 

Model for Anomaly Detection in Web Traffic.” In: NDSS 2009 (2009). 

146



[112] F. M. Suchanek, G. Kasneci, and G. Weikum. “Yago: A large ontology from wikipedia and 

wordnet”. In: Web Semantics: Science, Services and Agents on the World Wide Web 6.3 (2008),
pp. 203–217.

[113] Z. S. Syed, T. Finin, and A. Joshi. “Wikipedia as an Ontology for Describing Documents.” 

In: ICWSM . 2008.

[114] H. A. Taha. Operations Research: An Introduction . Collier Macmillan Ltd, 1977. isbn :
0024188204.

[115] M. A. Talib, A. Khelifi, A. Abran, and O. Ormandjieva. “Techniques for quantitative anal- 

ysis of software quality throughout the SDLC: The SWEBOK Guide Coverage”. In: 2010
Eighth ACIS International Conference on Software Engineering Research, Management and
Applications . May 2010, pp. 321–328. doi : 10.1109/SERA.2010.47 .

[116] R. Tarjan. “Depth-first search and linear graph algorithms”. In: SIAM journal on computing 

1.2 (1972), pp. 146–160.

[117] The Apache Software Foundation. Apache JMeter . https://jmeter.apache.org . 

[Online; accessed: 2019-05-19]. 2019.

[118] W. Tinney, V. Brandwajn, and S. Chan. “Sparse vector methods”. In: IEEE transactions on 

power apparatus and systems 2 (1985), pp. 295–301.

[119] C. Trubiani, A. Bran, A. van Hoorn, A. Avritzer, and H. Knoche. “Exploiting load testing
and profiling for Performance Antipattern Detection”. In: Information & Software Tech- 

nology 95 (Mar. 2018), pp. 329–345.

[120] W. Van Der Aalst. “On the Representational Bias in Process Mining”. In: Enabling Tech- 

nologies: Infrastructure for Collaborative Enterprises (WETICE), 2011 20th IEEE International 

Workshops on . June 2011, pp. 2–7. doi : 10.1109/WETICE.2011.64 . 

[121] W. Van Der Aalst. Process mining: discovery, conformance and enhancement of business
processes . Vol. 2. Springer, 2011.

[122] A. Van Hoorn, M. Rohr, and W. Hasselbring. “Generating probabilistic and intensity- 

varying workload for web-based software systems”. In: SPEC International Performance
Evaluation Workshop . Springer. 2008, pp. 124–143.

[123] VMware, Inc. Spring Framework . url : https://spring.io/microservices .
(accessed: 01.12.2018).

[124] C. Vögele, A. Brunnert, A. Danciu, D. Tertilt, and H. Krcmar. Using performance models 

to support load testing in a large SOA environment . New York, New York, USA: ACM, Mar.
2014.

[125] C. Vögele, A. van Hoorn, and H. Krcmar. “Automatic Extraction of Session-Based Work- 

load Specifications for Architecture-Level Performance Models”. In: the 4th International 

Workshop . New York, New York, USA: ACM Press, 2015, pp. 5–8.

147



[126] C. Vögele, A. van Hoorn, E. Schulz, W. Hasselbring, and H. Krcmar. “WESSBAS: extraction
of probabilistic workload specifications for load testing and performance prediction - a 

model-driven approach for session-based application systems”. In: Software & Systems 

Modeling 17.2 (Oct. 2016), pp. 443–477.

[127] J. Voss. “Collaborative thesaurus tagging the Wikipedia way”. In: arXiv preprint cs/0604036 

(2006).

[128] J. A. Whittaker and J. H. Poore. “Statistical testing for cleanroom software engineering”. 

In: System Sciences, 1992. Proceedings of the Twenty-Fifth Hawaii International Conference 

on . Vol. ii. Jan. 1992, 428–436 vol.2. doi : 10.1109/HICSS.1992.183256 . 

[129] J. Wienke, D. Wigand, N. Köster, and S. Wrede. “Model-Based Performance Testing for
Robotics Software Components”. In: 2018 Second IEEE International Conference on Robotic 

Computing (IRC) . IEEE, 2018, pp. 25–32. 

[130] Wikipedia.com. Wikipedia: Size of Wikipedia . url : %7Bhttps://en.wikipedia. 

org/wiki/Wikipedia:Size_of_Wikipedia%7D . 

[131] R. Wille. “Concept lattices and conceptual knowledge systems”. In: Computers & Math- 

ematics with Applications 23.6 (1992), pp. 493–515. issn : 0898-1221. doi : http://dx. 

doi.org/10.1016/0898-1221(92)90120-7 . 

[132] R. Wille. “Restructuring lattice theory: an approach based on hierarchies of concepts”. In: 

Ordered sets . Springer, 1982, pp. 445–470. 

[133] R. Wille. “Subdirect decomposition of concept lattices”. In: Algebra Universalis 17.1 (1983), 

pp. 275–287.

[134] F. Wu and D. S. Weld. “Automatically refining the wikipedia infobox ontology”. In: Pro- 

ceedings of the 17th international conference on World Wide Web . ACM. 2008, pp. 635–644. 

[135] Y. Wu, S. Yang, and X. Yan. “Ontology-based subgraph querying”. In: Data Engineering 

(ICDE), 2013 IEEE 29th International Conference on . IEEE. 2013, pp. 697–708. 

[136] E. Wulczyn and D. Taraborelli. Wikipedia Clickstream . 

http://dx.doi.org/10.6084/m9.figshare.1305770. Feb. 2015. 

[137] T. Xiong, S. Wang, Q. Jiang, and J. Huang. “A New Markov Model for Clustering Categor- 

ical Sequences”. In: Data Mining (ICDM), 2011 IEEE 11th International Conference on . Dec. 

2011, pp. 854–863. doi : 10.1109/ICDM.2011.13 . 

[138] H. Xu and S. M. Shatz. “A framework for model-based design of agent-oriented software”. 

In: Software Engineering, IEEE Transactions on 1 (2003). 

[139] H. Xu and S. M. Shatz. “A framework for modeling agent-oriented software”. In: Dis- 

tributed Computing Systems, 2001. 21st International Conference on . 2001. 

148



[140] Z. Yang, R. Algesheimer, and C. J. Tessone. “A Comparative Analysis of Community De- 

tection Algorithms on Artificial Networks”. In: Scientific Reports 6 (Aug. ). url : http: 

//dx.doi.org/10.1038/srep30750 . 

[141] N. Ye. “A markov chain model of temporal behavior for anomaly detection”. In: Proceed- 

ings of the 2000 IEEE Systems . 2000.

[142] J. Yu, J. A. Thom, and A. Tam. “Ontology evaluation using wikipedia categories for brows- 

ing”. In: Proceedings of the sixteenth ACM conference on Conference on information and 

knowledge management . ACM. 2007, pp. 223–232.

[143] P. Zhang, S. Elbaum, and M. B. Dwyer. “Compositional load test generation for software
pipelines”. In: Proceedings of the 2012 International Symposium on Software Testing and
Analysis . ACM. 2012, pp. 89–99.

149



Vita 

Chester Ira Parrott was born in Tennessee and raised in Baton Rouge, Louisiana. His focus has

always been on forging creative solutions to technological problems through data-driven tools

and analysis. A non-traditional background provided him with stubborn tenacity, a solid practical

foundation, and a driving curiosity for his higher education in computer science and mathematics.

Before completing his undergraduate degree he provided cyber-security, access management,

consultation, and software development services to Fortune 500 companies, as well as to state,

local, and federal governmental agencies.

He worked full-time while completing his undergraduate studies in computer science and

mathematics and graduated from Southeastern Louisiana University. Upon graduation, he came

to Louisiana State University to pursue graduate studies in computer science. Even as his family

grew from two to six throughout his graduate studies, he continued to work full-time as a data

scientist and technology leader. He has presented original research at industrial and academic

conferences and currently holds one patent. He plans to continue in the field of data scientific

user behavior analysis toward a better understanding of the patterns through which people and

machines interact to improve the current-state tools and practices of software engineering. 

150


	Distributed Load Testing by Modeling and Simulating User Behavior
	Recommended Citation

	Acknowledgements
	List of Tables
	List of Figures
	Acronyms, Terms, and Definitions
	Abstract
	Introduction
	Research Questions
	Challenges of Markov Chain Model-based Load Testing
	Existing Processes
	LODESTONE Process
	Contributions

	Background
	The Modeling of Human-Machine Systems
	Markov Modeling for Load Testing of Systems
	Concept Modeling
	Metrics and Validation
	Adaptive Load Testing
	Model-Based Load Testing

	Extracting User Models from Log Data
	Systems Under Observation and Test
	Event Data Collection
	Descriptive Models for Agent Behavior
	Behavior Bases
	Behavior Model Generation and Clustering
	Experimental Data
	Simulating Behavioral Data
	Summary

	Inferring User Models from Aggregated Log Data
	Introduction
	Wikipedia Clickstream Graph
	Methodology to Extract Semantic Clusters
	Evaluation
	Summary

	Learning Adaptive User Models from Streaming Data
	Introduction
	Q-Learning Behavior Models
	Streamlining MCQL Data Modeling
	Summary

	Distributed User Modeling and Load Testing
	Introduction
	Modeling a Human-Machine System
	Testing a Human-Machine System
	User Behavior Modeling for Load Testing
	LODESTONE Architecture
	Evaluation
	Summary

	Conclusion
	Summary
	Research Questions
	Contribution and Significance
	Future Work

	Appendix A. TinyERP Table Data Definitions
	Appendix B. TinyStats Definition
	Appendix C. Institutional Review Board Exemption Approval
	Appendix D. IEEE Copyright Information
	IEEE Disclaimer
	IEEE Copyright and Consent Form

	Appendix E. Further Reading
	Cited Work
	Vita


Accessibility Report

		Filename: 

		parrott_diss.pdf



		Report created by: 

		analytics

		Organization: 

		



 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found problems which may prevent the document from being fully accessible.

		Needs manual check: 2

		Passed manually: 0

		Failed manually: 0

		Skipped: 2

		Passed: 25

		Failed: 3



Detailed Report

		Document



		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Needs manual check		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Needs manual check		Document has appropriate color contrast

		Page Content



		Rule Name		Status		Description

		Tagged content		Failed		All page content is tagged

		Tagged annotations		Failed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms



		Rule Name		Status		Description

		Tagged form fields		Skipped		All form fields are tagged

		Field descriptions		Skipped		All form fields have description

		Alternate Text



		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Failed		Other elements that require alternate text

		Tables



		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Passed		Tables must have a summary

		Lists



		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings



		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting




Back to Top