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ABSTRACT 

Foam is one of the most common used multiphase fluid in petroleum industry. Because of its 

low density, high capacity of lifting and carrying cuttings, low cost and compatibility with 

formations, foam has become more superior than the conventional drilling mud when depleted 

reservoir pressure, severe lost circulation, or unstable borehole are encountered. In general, the 

success of foam applications rely on the understanding of the fundamentals of foam rheology in 

downhole conditions. 

Foam rheology has been studied for decades. Conventional foam rheological models usually 

fail to interpret the monitored circulating pressure changes in operation, not to mention foam 

behaviors in downhole. Understanding bubble size and foam texture impacts at different foam 

quality ranges in the foam model development become very significant.  

A new foam rheological model based on Low-Quality Regime (LQR) and High-Quality 

Regime (HQR) behaviors is developed. This new model, which originally came from 

comprehensive foam flow experiments, together with the visualization of foam texture and bubble 

distribution, is proved to be easily and conveniently implemented for industry use in this study. 

With the newly developed foam model, we apply it in the following two foam applications in 

petroleum industry. 

First of all, a foam drilling and wellbore clean-up application with foam is investigated. These 

scenarios consider foam circulation into 10000 ft long wells at different inclination angles with a 

long vertical, inclined, or horizontal trajectory. The results are compared with two existing foam 

modeling techniques. The conclusions show that, with or without formation fluid influx, the new 

foam model demonstrates the robustness of the new modeling technique in all scenarios capturing 



 xi 

foam flow characteristics better, whenever the situation forms stable fine-textured foams or 

unstable coarse-textured foams.  

Second, foam-assisted mud cap drilling for gas migration situation, which simulates using 

foam to suppress gas kicks under certain well and fluid conditions, is presented. The results show 

how mud-cap drilling parameters change at different operating conditions and scenarios. 

Moreover, a set of field data from a wellbore clean-up with foam operation is demonstrated and 

the circulating pressure changes provide the evidence of Two Flow Regimes. 
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CHAPTER 1. INTRODUCTION 

Foams are two-phase mixtures in which gas bubbles (the internal phase) are separated by 

interconnecting thin films of liquid (the external phase). Surface-active agents (surfactants, or 

commonly called foaming agents) are designed to trap the gas phase for a desired time period. Gas 

fraction in the whole foam mixture, which is referred to as “foam quality”, defines how much foam 

is dry or wet. With a sufficient amount of liquid, wet foams tend to have spherical bubbles with 

relatively large Plateau borders (the liquid-accumulated areas between gas bubbles) at low 

capillary pressure, while dry foams have polyhedral bubbles with very thin foam films and tiny 

Plateau borders at high capillary pressure. Foam quality affects bubble sizes and shapes and thus 

the resulting interactions (between individual bubbles, between bubbles and pipe wall, and 

between bubbles and surrounding liquid, for example). Bubble size distribution in foam mixture 

is defined as “foam texture” – if the mixture is dominated by a large population of well-developed 

tiny bubbles, it is called fine-textured foam; otherwise it is called coarse-textured foam. 

Experimental investigation of foam rheology can be classified into three main categories: using 

capillaries, rotational viscometers, and pipes. Although foam consists of two phases, some of the 

simple early day approaches often considered it a homogeneous mixture with pre-specified density 

and viscosity based on experimental data. Foam viscosity slowly increases with foam quality, 

when foam quality increases up to roughly 70% (i.e., more bubbles means a higher possibility of 

bubble-to-bubble and bubble-to-wall interactions to increase foam viscosity). For foam quality 

roughly between 70% and 85%, foam viscosity dramatically increases with foam quality (i.e., not 

much space is available to avoid interactions any longer). For foam quality higher than a certain 

threshold value, around 86-92%, foam viscosity dramatically decreases with foam quality. Of 

course, these intervals are case- and material-specific, depending on pipe inclination, pipe 
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diameter, roughness, injection pressure or flow rate, fluid properties, and so on (Xia and Chai, 

2012; Saxena et al., 2016), but the general trend still seems valid. 

Due to the unique characteristics such as low density, high viscosity, Non-Newtonian rheology, 

high compressibility, foam has been widely chosen as superior choice in the following fields: 

underbalanced drilling, wellbore cleaning, enhanced oil recovery, cementing and fracking, 

artificial lift and gas blockage and so on. On the other hand, the uniqueness of foam raises three 

critical issues that motivate this work. 

Critical Issue 1: Among many developed foam rheological models from literature, those 

models can hardly explain or predict the monitored pressure changes from the gauges (e.g. 

circulating pressure). The poor understanding of foam rheology change underground will cause 

the failure of field operation or even severe safety issues. 

Critical Issue 2: Numerical simulation of complex fluid flow in wellbore with Non-Newtonian 

rheology can be very difficult to handle. Besides of the expensive computation costs, the handling 

of Non-Newtonian rheological property of foam fluid may require lots of parameters and 

uncertainties that could affect foam behavior. A simple yet sophisticated modeling work is 

demanding for field applications. 

Critical Issue 3: Foam is a multiphase fluid with gas and liquid phases. A successful foam 

application requires accurate monitoring of gas and liquid injection simultaneously. Failure to 

control gas and liquid injection rates would first cause foam stabilities issues, and then cause the 

failure of the job. 

All the above mentioned issues stem the complicated and mysterious characteristics of foam 

when used in different environments and applications. This motivates us to discover a more 

generalized foam model and dig some foam applications. 
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1.1 Dissertation Statement and Contributions 

To improve the understanding of foam behavior and foam applications in petroleum industry, 

we develop a new foam model and discover two foam applications in this work. The main 

contributions of this dissertation can be summarized as follows: 

• We first present the creation of a new foam model with 9 foam parameters. These 

parameters allow the model to capture foam rheological properties in the high-quality 

and low-quality regimes. By introducing a smooth transition between the two regimes, 

this model can capture experimental data more realistically. Based on the Power-Law 

rheology model, the 9 parameters contain 3 to define the range of gas and liquid flow 

rates and corresponding frictional pressure losses of interest, 4 to fit the Power-Law 

rheology of wet and dry foams, and last 2 to capture the sensitivity of foam rheology 

to gas and liquid rates. Some key parameters for foam flow in pipe can also be obtained 

from this study such as apparent viscosity, thickness of water film, and dimensionless 

friction factor for foam flows in pipe and annuli. This work is also reported in our 

research paper (Wang et al., 2017). 

• Then we present the application of the new foam model into the foam circulation 

associated with well cleanup and conventional near-balanced drilling process. Together 

with the 9-parameter foam rheology model, a semi-steady-state finite difference model 

is developed to simulate the foam drilling process. Important outputs such as pressure, 

foam density, foam quality and velocity are plotted with depth based on different 

scenarios. This work is reported in our research paper (Wang et al., 2018).  

• We then present the second foam application, which is a special type of managed 

pressure drilling process called foam mud cap drilling. This technique has been 
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successfully used when drilling thick highly-fractured sour reservoirs or 

carbonate/karst formations where severe fluid loss or sour gas migration is 

encountered. At these situations, lost circulation is of serious concern because blocking 

or plugging the wide fractures is impossible and inefficient. Using viscous foam fluid 

as cap fluid to directly inject into the annulus with accurate control of annular pressure, 

problems might be solved efficiently. We describe and simulate different scenarios 

with respect to the response time and foam properties at interface.  We will show fluid 

positions and annular injection pressures in real time. The simulation results will help 

improve the understanding of field operations of injecting foam to suppress gas 

migration to control the wells. This work is reported in our research paper (Wang et al., 

2020). 

1.2 Dissertation Organization 

 

The rest of the dissertation is organized as follows. Chapter 2 introduces foam applications in 

petroleum industry and the concept of Two Foam Flow Regimes. Chapter 3 presents a new foam 

model that can handle rheology of wet and dry foams across a wide range of gas and liquid 

velocities. And this bring the following chapters about how such a versatile foam model can be 

applied to various foam applications in petroleum industry. Chapter 3 presents the foam model 

applied to a wide range of hole cleaning and drilling scenarios. Chapter 4 presents foam-assisted 

mud cap drilling process with gas migration situation for well control. Finally, Chapter 5 discusses 

the conclusions and the limitations of our work presented in the dissertation and our 

recommendations.  

 

  



 
5 

CHAPTER 2. LITERATURE REVIEW OF FOAM APPLICATIONS AND 

PRESENCE OF TWO FLOW REGIMES 

2.1 Foam Applications in Petroleum Industry 

As we know, foam has been widely used in many fields in petroleum industry. This section 

covers the literature reviews about foam applications in the following aspects: Foam Drilling Field 

Applications; Foam Drilling Hydraulic Simulations; Foam Applications in Production and 

Completion Engineering; Foam Applications in Enhanced Oil Recovery for Mobility Control. 

 

2.1.1 Foam Drilling Field Applications 

As one kind of untraditional drilling fluid, foam bring many benefits while drilling a well. 

These benefits are reflected in both operational and economical aspects: improved rate of 

penetration (ROP) and bit life, reduced non-productive time (NPT) and drilling cost, improved 

cutting transportation, reduced formation damage, and so on.  

In 1994, PETROBRAS (Lage et al., 1996) started to apply foam to drill vertical wells in 

Carmopolis Field, in both overbalanced and underbalanced conditions. The success of improved 

productivity inspired them to drill short radius horizontal wells in Candeias Field. Also in 1995, 

foam drilling applied in the high permeability and low pressure sandstone reservoirs in Parana 

Basin showed the success of reducing formation damage.  

Foam drilling application is not just limited to onshore under pressured formations, offshore 

drilling with foam can also bring benefits. Two wells in the Santa Barbara Channel were redrilled 

with preformed stable foam where lost circulation had occurred in past conventional drilling (Hall 

and Roberts, 1984). Drilling offshore with foam met the offshore lost circulation, well deviation 

and directional needs.  
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Sepulveda et al. (2008) reported a recyclable oil-based foam drilling fluid (OBFDF) system to 

drill in deep, high temperature, sour environment located in Deep Gulf Coast. Together with 

polymer viscosifiers, the nitrified diesel base foam can stay stable up to 450°F (232°C) according 

to the laboratory results. The drilling results showed effective control of lost circulation, minimal 

risk of formation damage, excellent hole cleaning, as well as improved bit life and ROP. 

 

2.1.2 Foam Drilling Hydraulic Simulations 

As one kind of complex fluid, foam makes the determination of the optimum combination of 

gas and liquid injection rates very difficult in foam drilling and circulations. Modeling of foam 

rheology is the key issue in hydraulics design in order to predict the bottomhole pressure accurately 

and to optimize different controllable parameters for effective cutting removal (Ozbayoglu et al., 

2000). Ozbayoglu et al. conducted a comparative study to investigate the predictive performance 

of existing foam hydraulic models such as Beyer et al. (1972), Blauer et al. (1974), Sanghani and 

Ikoku (1983), Gardiner et al. (1988) and Valko and Economides (1992). A computer program was 

developed with incorporation of these foam models, and the results were used to compare with 

their experimental results. The comparison of predicted and measured pressure losses indicated 

that there is no “best” model that can describe foam flow behavior under all conditions. The 

difference between the predicted and measured pressure losses can be between 2% to 250%. 

Unlike conventional incompressible drilling fluids, it is not possible to calculate the frictional 

pressure and hydrostatic pressure separately and then to determine the overall pressure drop in 

foam drilling. The reason is that in drilling with foam, the frictional and hydrostatic pressure 

influence each other. Numerical methods seem to be the best approach when dealing with 

compressible fluids such as foam (Paknejad et al., 2007).  
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Paknejad et al. (2007) developed a foam simulator using a Finite Difference Method (FDM). 

Besides of foam hydraulics, cutting removal simulation is also incorporated. Heat transfer is also 

incorporated by solving the energy balance equations in the wellbore. And foam rheology is 

characterized by the Power-Law model. They also conducted sensitivity analysis of key drilling 

parameters that would affect the circulating bottomhole pressure (Paknejad et al., 2009). They 

analyzed the parameters based on two categories: uncontrollable parameters and controllable 

parameters. 

2.1.3 Foam Applications in Production and Completion Engineering  

Besides the widely usage in drilling engineering, foam also is well known in liquid unloading 

process, foam fracturing, as well as foamed cementing.  

Liquid unloading. With the depletion of the reservoir, the reduced gas flow rate, in some sense 

no longer be effective in transporting the liquid phase to the wellhead and they will accumulate at 

bottom hole and lead to liquid loading. When a well is loading liquid, it may still produce at a low 

gas rate, intermittently or it may not produce at all. The accumulation of liquid phase will further 

reduce the gas flow rate upward in tubing and aggravate liquid loading. The pioneer works by 

Bernadiner (Bernadiner, M. G., 1991) investigated the application of foaming agent to assist gas 

lift in depleted reservoirs. Injecting foaming agent into liquid column will form surfactant solution 

with certain concentration. The formation of foam by injecting gas at certain flow rate would force 

part of the liquid come out, and the bottom hole pressure would decrease.  

Among different methods to control liquid loading and optimize well production and 

economics (such as gas lift, plunger lift, usage of Coiled Tubing or velocity strings, foaming 

agents), foaming is attractive: foamers do not need downhole modification, can be easily tested on 
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existing wells and facilities and are chemically compatible with corrosion inhibitors, so that the 

same injection points and devices can be used (Farina et al., 2012).  

The main reason for the low application of foam for liquid unloading is that foam stability 

issue due to the existence of liquid hydrocarbons or condensates (Farag et al., 2016). If the liquid 

phase is only water, foam can have higher strength. If both water and hydrocarbons are present in 

wellbore, on the other hand, foam is formed mainly within the water phase and the foam assists in 

carrying along the liquid hydrocarbons. Foams created in hydrocarbons is not stable and will soon 

separate.  

Foam fracturing. As one unusual kind of fracturing fluid, foam’s success in use should be 

attributed to the following two rheological properties among many: first is its very low fluid leak-

off coefficient; second is its excellent sand-carrying capability (Bullen and Bratrud, 1976). 

Because of that, foam shows many advantages in fracturing over conventional fracturing fluids.  

In many Russian oilfields such as Volga-Urals and Western Siberian Basin (Oussoltsev et al., 

2008), because of reservoir pressure depletion, the filtration leak-off of stimulation fluids had 

impacted the reservoir productivity. It also affected the possibility of flow the well back after 

stimulation treatments. Using foam system in particular to viscoelastic based foam can provide a 

better fluid-loss control, efficient post-treatment flowback, as well as the reduced consumption of 

liquid pumped overall. 

McAndrew et al. (2017) conducted experiments to measure the transport of proppant by foams 

under high pressure (2000 psi (13789520 Pa)-3000 psi (20684280 Pa)) and also developed 

computational fluid dynamics (CFD) model. Their results showed that proppants can be 

transported by foam further than water due to foam’s high suspension capability. 
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When fracturing unconventional shales, high foam deterioration and insufficient viscosity have 

been the major concerns with foam. Ahmed et al. (2019) conducted laboratory study to investigate 

the stability and foam properties of foam with different additives. Their results showed that at 

HTHP condition, polymer-free CO2 foam can produce higher stability and relatively equally high 

viscosity compared to polymer-added CO2 foam due to the fact that the added polymer had been 

degraded at HTHP condition.  

Recently, a new hydraulic fracturing process incorporating a system of ultra-high quality foam 

and ultra-lightweight proppant has been successfully employed for multi-zone fracking stimulation 

of horizontal shale gas wells (Brannon et al., 2009). And both vertical and horizontal wells had 

been treated with this process in Big Sandy, located in the eastern USA. The cumulative production 

after the first 30 days were observed to be 200% greater than the offset wells. 

Foam cementing.  Unlike neat foam, foamed cement, or nitrified cement is formed when 

injecting gas, usually nitrogen, into base slurry at high pressure. Foamed cements are used 

extensively in lost circulation zones, depleted zones, or low formation fracture gradients are 

encountered and a low-density cement system is required.  

Experiments were conducted to test the effect of foam structure on fluid loss property (Rozieres 

and Ferriere, 1991). The results show that an increase in gas volume decreased the fluid loss. 

Therefore, compared with conventional cement system, foamed cement is more suitable with 

severe cement loss conditions. More recently, foamed cement was applied to resolve the lost 

circulation problem by plugging the thief zone (Moore et al., 2005; Fomenkov et al, 2018). 

The lower-density property of foamed cement leads to lower hydrostatic pressure. The 

(Equivalent Circulating Density) ECDs along the annulus can be carefully designed to avoid 
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exceeding the fracture pressure at weak zone. This is extremely significant in low fracture gradient 

formation otherwise severe losses might be encountered (Joao et al., 2017).  

Besides onshore application, foamed cement use has expanded into regions with shallow water 

flows (SWF), for example, in deep water operations and isolating fragile formations (Doherty, 

2007; Jacobs, 2015). Foamed cements can be designed to have variable hydrostatic gradients to 

satisfy density requirements in annulus; compared to conventional cements, it also has fast setting 

time according to laboratory studies (Dusterhoft, 2003), which is a very significant aspect when 

cementing unconsolidated SWF zone in deep water operation. 

 

2.1.4 Foam Applications in Enhanced Oil Recovery for Mobility Control  

CO2 enhanced oil recovery (CO2 EOR) has been commercially implemented in the United 

States since early 1970s. However, the major challenge in implementing CO2 EOR in the field has 

been mobility control of CO2. Due to the low density of CO2, gravity segregation can easily occurs, 

and as result, the volumetric sweep efficiency is low, so as well as the recovery factor. CO2 foam 

EOR technology on the other hand, can offer a robust method for CO2 mobility control (Heller, 

1994). Foaming the gas phase for improved sweep efficiency has been proved in the laboratory 

and field for more than 50 years. Lee et al. (2016) investigated how the dimensionality change 

from laboratory-measured data to field-scale treatments can affect foam rheological properties. 

Izadi and Kam recently investigated the EOR modeling work (Izadi and Kam, 2019) and the 

optimization of injection strategies (Izadi and Kam, 2020) related with supercritical CO2 foam.   

Many successful field pilot tests have been reported such as CO2-foam field test conducted in 

Salt Creek, WY (Mukherjee et al., 2016) and SAG treatment for conformance control in Lower 

Mirador formation, Cusiana Field, Columbia (Ocampo et al. 2013; Rossen et al. 2017). Ortiz et al. 
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(2019) conducted modeling work with nanoparticle-stabilized supercritical CO2 foam using some 

reservoir conditions from Lisama Field.  

2.1 Presence of Two Flow Regimes 

The essence of our new foam model development and foam applications in this study is based 

on the two flow regimes concept. The concept of two flow regimes indicates that pressure loss in 

foam flow or foam viscosity changes differently with foam quality when foam quality reaches the 

critical foam quality. Therefore, foam can be categorized as low-quality regime and high-quality 

regime foams separated by the critical foam quality value.  

The concept of two flow regimes on foam is not solely found in a certain experimental study 

but can be found in many existing foam models and previous experimental studies. Gajbhiye 

(2011) investigated three existing foam models and three foam experimental studies: Beyer et al. 

(1972), Sanghani and Ikoku (1983), and Reidenbach et al. (1986); Sanghani and Ikoku (1983), 

Briceno and Joseph (2003), and Guzman et al. (2005). He plotted the outcomes of these studies in 

the form of pressure contours or foam viscosity contours as a function of injection velocities in 

order to evaluate the presence of two flow regimes. 

In Beyer et al.’s model (1972), the slip velocity is correlated with liquid volume fraction and 

wall shear stress, the equations are shown below: 

𝜇𝑜 =
1

(7200𝐿𝑉𝐹+267)
, for liquid volume fraction from 0.02 to 0.1,                                                     (2.1) 

and 𝜇𝑜 =
1

(2533𝐿𝑉𝐹+733)
, for liquid volume fraction from 0.1 to 0.2,                                                      (2.2) 

where 𝜇𝑜 is the Bingham plastic viscosity, and LVF presents liquid volume fraction of the foam. 

Figure 2.1 shows the plots of foam viscosity based on Equation (2.1) and Equation (2.2) 

(Figure 2.1(a) and viscosity contour (Figure 2.1(b)). The contour map seems to show low-quality 

regime with finite slopes, and did not reflect the two flow regimes concept. 
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Figure 2. 1 Beyer et al.’s model: (a) foam viscosity vs. foam quality and (b) viscosity contours  

 

In Sanghani and Ikoku’s model (1983), the effective foam viscosity is correlated with the 

power law model parameters K and n as below: 

                                             μe = K (
2n+1

3n
)

n
(

12vf

DH
)

n−1
                                                        (2.3) 

K = −0.15626 + 56.147Γ − 312.77Γ2 + 576.65Γ3 + 63.96Γ4 − 960.46Γ5 − 154.68Γ6 +

1670.2Γ7 − 937.88Γ8                                                                                                               (2.4) 

n = 0.095932 + 2.365Γ − 10.467Γ2 + 12.955Γ3 + 14.467Γ4 − 39.673Γ5 + 20.625Γ6    (2.5) 

where 𝑣𝑓 is foam velocity, 𝐷𝐻 is hydraulic diameter, and Γ is foam quality. 

Figure 2.2 shows the plots of foam viscosity based on Equation (2.3) through Equation (2.5) 

(Figure 2.2(a) and viscosity contour (Figure 2.2(b)). This model implies the presence of two flow 

regimes. 
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Figure 2. 2 Sanghani and Ikoku’s model: (a) foam viscosity vs. foam quality (b) viscosity 

contours  

 

In Reidenbach et al.’s model (1986), two separate equations were developed for foam quality 

less than 60% and more than 60%, respectively. The apparent yield point (𝜏𝑦𝑝), consistency index 

(K), and behavior index (n) were computed with least-square regression for a fixed foam quality. 

The apparent viscosity (𝜇𝑎) is given by the following equations: 

𝜇𝑎 = 𝜏𝑦𝑝 (
8𝑣

𝑑
)

−1
+ 𝐾 (

8𝑣

𝑑
)

𝑛−1
                                                                                              (2.6) 

where 𝜏𝑦𝑝 = 𝐶1Γ for Γ < 0.6 and 𝜏𝑦𝑝 = 𝐶2𝑒𝐶3Γ for Γ > 0.6,                                                     (2.7) 

and 𝐾 = 𝐾𝑙𝑖𝑞𝑢𝑖𝑑 × 𝑒(𝐶1Γ+𝐶2Γ2)                                                                                                      (2.8) 

where Γ is foam quality, d is internal diameter of pipe, v is bulk velocity and 𝐾𝑙𝑖𝑞𝑢𝑖𝑑 is consistency 

index for liquid phase. The constants 𝐶1, 𝐶2 and 𝐶3 depend on surfactant concentration, foam 

texture, and physical properties of mixture and conduit. 

Figure 2.3 shows the plots of foam viscosity based on Equation (2.6) through Equation (2.8) 

(Figure 2.3(a) and viscosity contour (Figure 2.3(b)). This model also implies the presence of two 

flow regimes. The curves of pressure contours are connected from upper left to lower right, it 

seems like the transition region between high-quality regime and low-quality regime. 
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Figure 2. 3 Reidenbach et al.’s model: (a) foam viscosity vs. foam quality (b) viscosity contours  

 

Gajbhiye (2011) also used Sanghani and Ikoku’s experimental data to plot in the way of 

pressure contours. Figure 2.4 shows their raw pressure data together with the general trend of 

pressure contours. It indicates that the contours show finite slopes similar to the high-quality 

regime. 
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Figure 2. 4 Pressure contour map developed using Sanghani and Ikoku data  

 

Figure 2.5 shows the pressure contour map with Briceno and Joseph’s experimental data 

(2003). The pressure contours are almost horizontal similar to the behavior of the low-quality 

regime.  
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Figure 2. 5 Pressure contour map developed using Briceno and Joseph data  

 

Lastly, Guzman et al.’s experimental data (2005) was used to plot as pressure contour map as 

shown in Figure 2.6. This set of experimental data also do not explicitly reflect the two flow 

regimes. Similar to Reidenbach et al.’s model (1986), the curves of pressure contours are also 

connected from upper left to lower right, it indicates that there might be a transition region between 

high-quality regime and low-quality regime. 
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Figure 2. 6 Pressure contour map developed using Guzman et al.’s data  

 

From these six studies of foam models or foam experiments, we can notice that many existing 

foam models can somehow explicitly or implicitly reflect the presence of two flow regimes. 

However, due to different experimental conditions, or gas and liquid injection rates, the limited 

experimental data we showed previously might not show the typical pressure contour map of two 

flow regimes for foam flow.  
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The following parts introduced previous foam experimental studies conducted from our 

research group at Louisiana State University. Data were plotted in the manner of contour map to 

show the presence of two flow regimes. 

Gajbhiye and Kam (2012) also tested the effect of inclination angle on the presence of two 

flow regimes. Figure 2.7 showed the contour maps of pressure and calculated apparent viscosity 

for downward flow with inclination angle 0˚ (horizontal) and 90˚ (vertical), respectively. We can 

clearly see both pressure drop contours and viscosity contours showed two flow regimes, which 

are separated by the critical foam quality curve. Moreover, there is a wide transition in between. 

 
Figure 2. 7 Contour maps for inclination angle 0˚ (left) and 90˚ (right) downward flow: pressure 

drop (A); apparent viscosity (B) 
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Later, Edrisi et al. (2014) investigated the sensitivity of two flow regimes with additives such 

as polymer and oil. Figure 2.8 through Figure 2.10 presented the pressure drop contour maps 

showing the measured pressure drops as function of gas and liquid injection velocities. We can see 

when polymer or oil were added with surfactant solution, the presence of two flow regimes seemed 

not to disappear. It is worth to mention that in the case with polymer, the contour map showed 

chaotic transition region that is unlike other cases.  

 
Figure 2. 8 Pressure drop contour map for surfactant foams  
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Figure 2. 9 Pressure drop contour map for surfactant foams in the presence of oil  
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Figure 2. 10 Pressure drop contour map for polymer-added surfactant foams  

 

Throughout the whole literature review from foam applications to foam models showing two 

flow regimes concept, we have confidence that developing a more robust foam model at the base 

of two flow regimes concept is very valuable. More importantly, implementations of the developed 

foam model to improve the understanding of foam behaviors in wellbore is also demanding. This 

way will get us closer to the success of field applications with foam. 
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CHAPTER 3. A NEW MODEL FOR FOAM FLOW IN PIPES AND ANNULI 

3.1 Introduction 

Foam flow in pipe has been regarded as a challenging topic because of its complex structures 

and stability issues (Deshpande and Barigou, 2000; Briceno and Joseph, 2003; Wang et al., 2016). 

Although foam has been widely used in numerous applications such as improved and enhanced oil 

recovery (I/EOR), drilling, cementing, liquid and solid removal, fracturing and so on, there is still 

much room to improve the modeling, simulation, and analysis of relevant applications. 

 

3.1.1 Foam Rheology Fundamentals 

A good number of experimental studies show that foam can be modeled as a Power-Law fluid 

reasonably well, if the rheology at low shear rates is not of interest. For example, Sanghani and 

Ikoku (1983) conducted foam flow experiments in the annulus with drill pipe (OD 1.5 inch (0.0381 

m) and casing (ID 4.5 inch (0.1143 m)), both about 28.5 ft (8.6868 m) long. The range of foam 

quality tested was from 0.65 to 0.95, and the shear rates ranged from 150 to 1000 sec-1. The 

calculated foam effective viscosity was in the range of 60 cp (0.06 Pa.s) to 500 cp (0.5 Pa.s). They 

formulated empirical equations for the effective foam viscosity as a function of foam quality by 

using a Power-Law model with parameters K and n. Foam flow characteristics also strongly 

depend on pipe diameter and the interaction between the pipe wall and flowing foam mixture. By 

conducting experiments in small pipes and capillary tubes, Mooney (1931) found that the presence 

of a wall significantly influences the flow behavior and, as a result, such a wall effect should not 

be neglected. Furthermore, they observed that a thin liquid layer forming at the pipe wall acts as a 

lubricant such that a relatively uniform foam core can slide on the liquid layer at the wall. This 

results in a lower-than-expected shear stress at a given shear rate, which, in turn, yields a lower 

than expected foam viscosity, due to wall slippage. Deshpande and Barigou (2000) showed that 
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the wall slip effect is more pronounced in small-diameter pipes/capillaries, where bubble size is 

comparable to the conduit diameter, and diminishes with pipe diameter. Sherif et al. (2015) 

performed experiments in three 4-m parallel transparent pipe sections to investigate oil-based foam 

rheology with varying foam quality from 34%-68%. The base liquid was prepared by mixing 

mineral oil with diesel. Their results confirmed that the lubricating effect observed in aqueous 

foams was found to be consistent with oil-based foams.  

 

3.1.2 Recent Approach with Two Flow Regimes  

Recent experiments by Bogdanovic et al. (2009) were conducted with two different pipe sizes 

(0.36 inch (0.0091 m) and 0.957 inch (0.0243 m) inner diameters, and lengths of about 12 ft 

(3.6576 m)) with nitrogen and various surfactants commonly used in drilling and completion. The 

pressure measurements along the pipe showed two different foam flow behaviors at fixed liquid 

velocity – a low-quality regime in which the pressure drop increases with increasing gas velocity, 

and a high-quality regime in which the pressure drop decreases with increasing gas velocity. Figure 

3. 1  shows similar experimental results obtained by Edrisi and Kam (2013), where the threshold 

value of foam quality necessary to separate the two flow regimes was defined as fg*.  
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Figure 3. 1 Experimental data from surfactant foam flow  

 

Gajbhiye and Kam (2011, 2012) further extended the experiments with visual cells in 

horizontal and inclined directions (i.e., 0, 45, and 90, both upward and downward). In addition 

to the size of bubbles in flowing foams, they visualized that the high-quality regime would show 

a slug flow pattern (i.e., repetition of free gas and fine-textured foams), and the low-quality regime 

shows plug flow pattern with homogeneous foam mixtures.  

Edrisi et al. (2014) conducted similar experiments to investigate the effects of oil and polymers. 

Although foam stability in the presence of oil and polymers added more complexity to the analysis, 
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the presence of two distinct flow regimes was consistently confirmed. The threshold value of foam 

quality, fg*, was shown to go down by adding oils, due to lower foam stability, and go up in the 

presence of polymers, due to higher water density and improved foam stability. Following those 

experimental studies that showed two distinct flow regimes, Edrisi and Kam (2013) proposed a 

foam rheological model to capture the trend in the high-quality and low-quality regimes, as shown 

in Figure 3. 2 (a) and Figure 3. 2 (b).  

 

 
(a) Pressure Contours on the Original Data 

Figure 3. 2 Model fit to experimental data proposed by Edrisi and Kam (2013) 

(fig. cont'd.) 
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(b) Pressure Contour Map Reconstructed by the Model  

 

 

As a first step, the model employed the Power-Law model along the fg* line that required the 

consistency index, K, and Power-Law exponent, n, which can be determined based on the gap 

between pressure contours. The two representative slopes of the pressure contours in both regimes 

then defined how sensitive the pressure drop was to the liquid and gas velocities. These two 

families of parallel lines intersected at the fg* line and, as a result the pressure contour map was 

approximated.  

 

3.2 Motivation and Objectives  

Although the previous modeling effort (Edrisi and Kam, 2013) captured the trend of pressure 

contours in both regimes, it left some significant shortcomings, as shown in Figure 3. 3 (a): (i) by 

defining foam rheology along the fg* line, the model has essentially one type of foam rheology 

that is shared by both high-quality and low-quality regimes; (ii) for those pressure con- tours with 
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relatively low values of pressure drops (for example, 2 psi (13790 Pa)), the model may crash with 

negative velocity values near the fg* line; and (iii) the modeled pressure contours did not mimic 

the smooth transition between the two regimes, which is typically shown in the lab data.  

 

 
(a) Shortcomings of the Previous Work 

Figure 3. 3 Schematic figures comparing previous model and this new model 

 (fig. cont'd.) 
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(b) Improved Model Introduced in This Study 

 

 

The objective of this study was to develop a new foam model by improving the previous foam 

model of Edrisi and Kam (2013) such that: (i) the model would have the ability to exhibit two 

different types of foam rheology independently in both regimes, and (ii) the model could handle a 

wide range of pressure and velocity conditions. The schematic of Figure 3. 3 (b) shows how these 

goals were achieved by introducing a reference point (uwRef, ugRef) in the pressure contour plot such 

that: (i) two types of foam rheology were defined separately along each of the lines (uwRef = 0 and 

ugRef = 0), and (ii) the smooth transition was made by interpolation to connect the contours of the 

two flow regimes.  

After showing the procedure for model fit, the authors also present how to extract other 

valuable properties during foam flow, such as foam viscosity, liquid layer thickness at the wall, 

and friction factor to determine the frictional pressure loss during foam flow. As a final step, the 

robustness of this model is demonstrated from an example of a foam-assisted drilling process.  
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3.3 Methodology 

3.3.1 Fundamentals of Foam Flow in Pipes  

For a two-phase flow of water and gas (including foam), the total pressure drop (∆Pt) consists 

of three major components, as given in Equation (3.1). 

                                            faht PPPP ++=                                                                   (3.1) 

where, ∆Pt is the total pressure loss; ∆Ph is the hydrostatic pressure loss; ∆Pa is the pressure loss 

due to acceleration; ∆Pf is the frictional pressure loss. 

The pressure drop due to acceleration is often neglected unless the cross-sectional area changes 

dramatically or the fluid is reactive. The hydrostatic pressure loss ∆Ph [psi] is expressed as 

Equation (3.2). 

                                                  mhP 052.0=                                                                     (3.2) 

where, ρm is the density of mixture (i.e., foams) [ppg]. 

The mixture density is commonly calculated as shown in Equation (3.3) and Equation (3.4).       

                            ( ) ( )LLgg

t

L
L

t

g

gm ff
Q

Q

Q

Q
 +=










+










=                                                 (3.3)                

                                                    Lgt QQQ +=                                                                          (3.4)  

where, ρg , ρL are gas and liquid densities [ppg]; fg , fL are gas and liquid flowing fractions; Qt is the 

total flow rate [gpm]; and Qg and QL represent gas and liquid flow rates [gpm]. 

Unlike the liquid density, the density of highly compressible gas phase is a strong function of 

pressure and temperature, as shown in Equation (3.5).  

                                                         
ZRT

PM
g =                                                                          (3.5) 

where, P and T are pressure [psia] and temperature [R]; M is the molecular weight [g/mol]; R is 
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the universal gas constant [J/mol.K]; and Z is the compressibility factor. The compressibility 

factor, Z is also a function of pressure, temperature and composition.  

The expression for the frictional pressure loss (∆Pf) depends on flow rheology (Bourgoyne et 

al., 1986). For Newtonian fluid in two-phase flow, Equation (3.6) is used if it is laminar flow, and 

Equation (3.7) if it is turbulent flow. 

                                                        
2500,1 d
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P mm

f


=                                                                       (3.6) 
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where, ρm and µm are mixture density [ppg] and viscosity [cp]; d is pipe internal diameter [inch]; 

νm is the mean flow velocity [ft/s]; and f is dimensionless Fanning friction factor. Note that for 

laminar flow, the Fanning friction factor is given in Equation (3.8).  
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for turbulent flow (smooth pipe), the empirical Equation (3.9) and Equation (3.10) can be used.   
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where, Re is the dimensionless Reynolds number. Note that the mixture viscosity µm [cp] can be 

replaced by apparent foam viscosity µapp [cp] for non-Newtonian fluid, as shown in Equation 

(3.11). 
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where, τw is the wall shear stress [lbf/ft2]; and γẇ is wall shear rate [s-1]. 

By using the hold-up of each of the phases (Hg and HL for gas and liquid hold-up, respectively), 
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the mean fluid velocity (vm [ft/s]) for flow in pipe, which is no other than total superficial velocity 

(ut [ft/s]), is expressed by Equation (3.12).           

                                                       
2448.2 d

Q
uuuv t

gwtm =+==                                                         (3.12) 

where, ug and uw are superficial gas and liquid velocities [ft/s]; ut is the total superficial velocity 

[ft/s]. Note that the wall shear stress (τw [lbf/ft2]) and wall shear rate (γẇ [s-1]) on the conduit 

walls can be expressed by Equation (3.13) and Equation (3.14), respectively. 
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where, L is the conduit length [ft]. 

The flow can be modelled by the Power-Law model, which is the case with this study, the 

equations above can be written as follows in Equations (3.15 – 3.17). (all units are the same as 

defined above): 
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where, K is the consistency index and n is the Power-Law exponent. Note that both K and n should 

be identified from experimental data. 

For fine-textured foam flowing in pipe, it can be approximated by plug flow, that is, a foam 

core located at the center of pipe sliding on a lubricating thin liquid layer at the wall. Briceno and 

Joseph (2003) suggested a simplified method to analyze the system as shown in Equation (3.18) 

in SI units: from force balance, 
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                                                            LSPA wL=                                                                   (3.18) 

where, ∆P is the pressure loss term; τwL is the shear stress within the liquid film; A is the cross-

sectional area of the pipe; L is the length of the pipe (or, segment of interest), and S is the perimeter 

of cylindrical foam core (that is concentric to the pipe). Therefore, LS represents the surface area 

of foam core over the length of L.   

If the thickness of liquid layer at the wall (δL) is very thin, then the velocity gradient (dv/dy) 

(or, shear rate (γ̇) equivalently) can be approximated by Newtonian flow, given in Equation (3.19). 

                                                            γ̇   = 
L

tu

y 






                                                                 (3.19) 

where, ∆v is velocity at the foam-liquid interface, i.e. velocity at the wall; ∆y is distance to the 

foam-liquid interface, i.e. distance to the wall); ut is the velocity of foam core and δL is the 

thickness of water film at the wall. Because the shear stress in the liquid film (τwL) can be expressed 

by Equation (3.20): 

                                                             
L

t

LwL

u


 =                                          (3.20) 

where, µL is the liquid viscosity. The liquid layer thickness (δL) can be written as follows in 

Equation (3.21).  
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For the friction factor of foam flow in pipe, the following expressions are used, given in Equations 

(3.22 – 3.23). 
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Note that the friction factor (f) is dimensionless which later can be related to dimensionless 

Reynolds number, as given in Equation (3.24). 

                                                             Re =
ρLutA

μLS
                                                    (3.24) 

Note that this definition of Reynolds number is valid when foam forms plug flow surrounded by 

liquid film, showing lubricating effect. 

 

3.3.2 New Foam Model Proposed in This Study  

The new foam model in this study has 9 model parameters to capture the flow behavior 

presented in the pressure contours constructed from laboratory flow tests in a wide range of gas 

and liquid velocities, as shown in Figure 3. 4 . There are three parameters to define the reference 

point (i.e., uwRef, ugRef, ∆PRef), two parameters to capture the trend of linear slopes in the pressure 

contour lines in both high-quality and low-quality regimes (mH and mL), and two Power-Law 

model parameters for each of the two flow regimes (KH, nH; KL, nL). Note that the boundary 

between the high-quality and low-quality regimes, fg*, is simply determined by other model 

parameters, i.e., fg* = ugRef/(uwRef+ugRef). More details about these parameters are described below. 
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Figure 3. 4 A schematic figure showing nine parameters in this new model  

 

Suppose a series of laboratory flow tests are plotted in a form of pressure contours (Figure 3. 

3 (b)). As a first step, a reference point, (uwRef, ugRef), is selected such that (i) the rectangular area 

connecting (0, 0), (uwRef, 0), (0, ugRef), and (uwRef, ugRef) covers the range of pressure contour map 

that needs to be treated by a smooth transition (this transition named as Domain 3, see Figure 3. 4 

) and (ii) the point sits on the boundary between the two flow regimes (i.e., fg* = 

ugRef/(ugRef+uwRef)). Note that the pressure contour corresponding to (uwRef, ugRef) is given by ∆PRef. 

The second step is to capture the trend of linear pressure contours, outside Domain 3, in the high-

quality regime (Domain 1 in Figure 3. 4 ) and in the low-quality regime (Domain 2 in Figure 3. 4 

). The pressure contours based on the original data (Figure 3. 3 (b)) can be captured by a series of 

straight lines with the average slopes, that is, mH and mL the average slopes in the high-quality 
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regime and in the low-quality regime, respectively. Note that mH is much larger than mL, meaning 

that the pressure drop is sensitive to “both” gas and liquid velocities in the high-quality regime, 

while “only” sensitive to gas velocity in the low-quality regime. 

The final step is to determine foam rheology in each regime by using Power-Law rheology 

model, which in some sense defines how a family of pressure contours are separated graphically 

in the contour plot (For example, if they are equally spaced, it implies that the rheology is near-

Newtonian with n value of around 1, while if the gaps between pressure contours grow or diminish 

with total velocity (ut), the rheology is shear-thickening with n greater than 1 or shear-thinning 

with n less than 1, respectively.). Among various possible options, this study uses the horizontal 

line from (0, ugRef) to (uwRef, ugRef) to determine foam rheology in the high-quality regime (i.e., KH 

and nH; Equation (3.15)), and the vertical line from (uwRef, 0) to (uwRef, ugRef) to determine foam 

rheology in the low-quality regime (i.e., KL and nL; Equation (3.15)). The selection of these lines 

are somewhat arbitrary, but the use of above-mentioned lines helps maintain a small number of 

model parameters. It should be noted that, outside Domain 3, the boundary between the two 

regimes is primarily determined by nH and nL values – if they are the same, the line separating the 

two flow regimes tends to be straight; if one is greater than the other, the line is curved towards 

that domain, however. 

As a result, this new model captures three domains (Domain 1, Domain 2, and Domain 3 for 

the high-quality regime, low-quality regime, and transition in between, respectively) with a total 

of 9 model parameters (uwRef, ugRef, ∆PRef, mH, mL, KH, nH, KL, and nL). 

 

3.3.3 Model Fit to Pressure Contour Map 

In order to demonstrate the procedure required for model fit, this study uses an experimental 

data from Edrisi and Kam (2013) as an example (Figure 3. 2 (a)) in which nitrogen and 0.5 wt% 
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Stepanform surfactant solutions are injected into 0.38 inch (0.0096 m) ID and 8.5 ft (2.5908 m)long 

stainless steel horizontal pipe. Figure 3. 4  shows a schematic drawing to define and extract all 

nine model parameters. 

First of all, the reference point of (uwRef, ugRef) = (0.034 ft/s (0.0104 m/s), 0.93 ft/s (0.2835 

m/s)), providing fg* = 96.5%, is selected at ∆PRef = 14 psi (96527 Pa), which allows the rectangular 

box for Domain 3 to be determined. Then, a series of parallel pressure contours in both high-

quality regime and low-quality regime are drawn from ∆P = 2 psi (13790 Pa) to 14 psi (96527 Pa) 

with the interval of 4 psi (27579 Pa). The average slopes of these straight pressure contours are 

determined to be 90.0 and 7.0 for mH and mL, respectively. One may choose different pressure 

contours with different intervals, but it does not make much difference in this holistic approach. 

Figure 3. 5  shows the results up to this point. As a next step, the Power-Law model parameters 

can be calculated from the relationship between the pressure drop and total velocity (KH and nH in 

Figure 3. 6 (a) for the high-quality regime along (0, ugRef) to (uwRef, ugRef); KL and nL in Figure 3. 6 

(b) for the low-quality regime along (uwRef, 0) to (uwRef, ugRef)). The curve fit shows KH= 0.1349 

dyne−s1.2202

cm2  and nH = 1.2202 for the high-quality regime, and KL = 0.0027 
dyne−s1.2074

cm2  and nL = 

1.2074 for the low-quality regime. 

Finally, Domain 3 showing the transition can be completed by connecting pressure contours 

exhibiting the same values from both regimes, as shown in Figure 3. 7. The figure also shows the 

boundary between two flow regimes and one pressure contour beyond the reference point (∆P = 

18 psi). Table 3. 1  shows a summary of all nine model parameters.  
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Figure 3. 5 A schematic figure showing the model parameters  

 

 

 
(a) KH and nH in the High-Quality Regime 

Figure 3. 6 Rheograms showing the relationship between shear stress and shear rate 
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(fig. cont'd.)  

 

 
(b) KL and nL in the Low-Quality Regime 

 

 

 
Figure 3. 7 A schematic of a complete pressure contour map  
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Table 3. 1 Summary of nine foam model parameters determined in this study 

Parameters Units 

uwRef Superficial liquid velocity at reference point 0.034 ft/s 

ugRef Superficial gas velocity at reference point 0.93 ft/s 

ΔPRef Pressure drop at reference point 14 Dimensionless 

mH Average slope in high-quality regime 90 Dimensionless 

mL Average slope in low-quality regime 7 Dimensionless 

KH Consistency index in high-quality regime 0.1349 
dyne − s1.2202

cm2
 

nH Power-Law Exponent in high-quality regime 1.2202 Dimensionless 

KL Consistency index in low-quality regime 0.0027 
dyne − s1.2074

cm2
 

nL Power-Law Exponent in low-quality regime 1.2074 Dimensionless 

 

 

3.3.4 Implication of the Model for Other Flow Characteristics 

Although this study first constructs pressure contours as a function of gas and liquid velocities 

and then turn them into foam rheology using rheograms, some previous studies in the literature 

prefer using apparent foam viscosity for more practical purposes. By using Equations (3.12-3.16), 

one can plot apparent viscosity contours calculated by Power-Law model, the result of which is 

shown in Figure 3. 8 . The filled square symbols represent the points at which actual pressure 

measurements are collected from the experiments and apparent foam viscosities are calculated. 

The position of the reference point is also shown by the filled circle. 
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Figure 3. 8 Conversion of pressure contours into apparent foam viscosity contours  
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Figure 3. 9 Apparent foam viscosity obtained at fixed superficial liquid rates  

 

Once the viscosity contours, ranging from 200 cp (0.2 Pa.s) to 2200 cp (2.2 Pa.s), are 

constructed in a wide range of gas and liquid velocities of interest as shown in Figure 3. 8 , one 

may apply the map in order to estimate how foam viscosity varies during certain applications. For 

example, in foam drilling applications (shown in the following section for more detail) the process 

has relatively constant liquid velocities with gas velocities varying significantly due to 

compressibility. For three superficial liquid velocities in such an application (as shown by the 

vertical dotted lines such as uw = 0.02 ft/s (0.0061 m/s), 0.035 ft/s (0.0107 m/s), and 0.05 ft/s 

(0.0152 m/s) in Figure 3. 8 ), Figure 3. 9  shows apparent foam viscosities as a function of foam 

quality (i.e., varying ug at fixed uw). One may notice that the results from viscosity contours 
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resemble the trend reported by previous studies – foam mixture becomes more viscous with ug for 

relatively wet foams, while less viscous with ug for relatively dry foams. It is because of foam 

stability: adding more gas to already stable wet foams increase viscosity due to increasing bubble-

to-bubble interactions during shear flow, while adding more gas to unstable dry foams decreases 

viscosity due to more active bubble coalescence. 

For foams in the low-quality regime, the flow of a relatively homogeneous foam mixture 

allows the thickness of liquid film at the wall to be determined (Equation (3.21)) under the 

influence of lubricating effect. In order to analyze how liquid-film thickness changes, 12 data 

points in the low-quality regime are selected as shown in the contour map of Figure 3. 10 , that is, 

four ug values (ug = 0.184 ft/s (0.0561 m/s), 0.46 ft/s (0.1402 m/s), 0.70 ft/s (0.2134 m/s), and 0.93 

ft/s (0.2835 m/s)) at each of three uw values (uw = 0.0341 ft/s (0.0104 m/s), 0.045 ft/s (0.0137 m/s), 

and 0.06 ft/s (0.0183 m/s)), the reference point being point 1. The liquid layer thickness 

corresponding to each point in Figure 3. 10  is calculated by Equation (3.21) and shown in Figure 

3. 11 . As expected, (i) at fixed liquid velocity (uw), the thickness of liquid layer at the wall (L) 

becomes thicker, as gas velocity decreases (or, as foam becomes wetter, equivalently), and (ii) at 

fixed gas velocity (ug), the thickness of liquid layer becomes thicker, as liquid velocity increases 

(or, as foam becomes wetter, once again). It is interesting to note that the reference point (point 1 

in Figure 3. 10 ) has the minimum L and the change in L can be significant as foam becomes 

wetter (for example, L increases from 0.001319 inch (0.000034 m) to 0.426 inch (0.0108 m), 

almost 320 times increase, comparing point 1 to point 12).   
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Figure 3. 10 A schematic figure showing 12 data points of interest in the Low-Quality regime  
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Figure 3. 11 Liquid layer thickness at different gas and liquid injection rates 

 

In addition to pressure drop and apparent viscosity, the use of friction factor is sometimes 

handy to quantify the flow of non-Newtonian fluids. The frictional pressure loss through the pipe 

depends on many parameters such as pipe diameter, density of fluid, viscosity of fluid, and average 

flow velocity, which are often grouped into dimensionless Reynolds number (see Equations (3.22-

3.24) for example). For the 10 points from Figure 3. 10  (excluding point 1 and point 12), the 

frictional factor (f) for foams in the low-quality regime is plotted as a function of Reynolds number 

(Re) as shown in Figure 3. 12 . More specifically, the best-fit straight line equation in log-log plot 

shows a relationship, as Equation (3.25): 
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584.0Re

1408.0

L

f =                                                                       (3.25) 

Where, f is the foam friction factor; ReL is the Reynolds number for low-quality foam. 

It is interesting to find that the exponent is about 0.584 (data points all in the laminar flow 

regime (ReL < 2400) due to high-viscosity foam mixture), which can be contrasted with 0.25 and 

1 for turbulent and for laminar flow of Newtonian fluid, respectively (Equations (3.8-3.9)). This 

deviation from the Newtonian fluid describes indirectly the complexity of foam flow behavior. 

 

 
Figure 3. 12 Relationship between friction factor and Reynolds number  

 

 

3.3.5 Application to Foam Drilling Process 

As an example application of this new model, a foam drilling hydraulics simulator is developed 

and presented in this study. In the literature, there exist a few underbalanced drilling hydraulics 
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simulators developed from steady-state to transient simulators. For comparison, this study uses 

correlations from Chen et al. (2007, 2009), which developed homogeneous foam rheology for 

polymer stabilized foams, for the low-quality regime foams, and it uses correlations from Edrisi 

and Kam (2015) for the high-quality regime foams.    

Figure 3. 13  shows a schematic of the drilling process with U-tube concept for a 10,000 ft 

(3048 m) vertical well (i.e. drill string on the left-hand-side column and annulus on the right-hand-

side column, both connected through bit nozzles at the bottom). Wellbore diameter is 8.5 inch 

(0.2159m), and the drill string outer diameter is 5 inch (0.127m). At the bottom hole, the bit is 

assembled with 3 nozzles with a diameter of 0.375 inch (0.009525m). 

 
Figure 3. 13 A schematic of foam drilling process using U-tube concept 

 

The direction of calculation is from the wellhead downward to the bottom hole for drill pipe 



 
47 

flow, and then upward from the bottom hole to the top of annulus for annulus flow. In calculation, 

the wall roughness is assumed to be negligible, the surface temperature 80˚F (26˚C), the wellbore 

and fluid temperatures the same as formation temperature (which has a gradient of 1.5˚F/100ft 

(2.732˚C/100m)), the liquid phase water, and the gas phase nitrogen. The overall iterative 

calculations are carried out by assuming drilling pipe pressure (i.e., the pressure at the 1st node) to 

satisfy the specified backpressure (i.e., the pressure at the 2Nth node, which is 100 psia (689476 

Pa)) at given gas and liquid circulation rates (Qg = 1300 scfm (0.611 m3/s) and QL = 40 gpm 

(0.0025 m3/s)). The basic procedure is shown as follows: 

1. Construct the computational U-tube domain for 2N cells for drill string and annulus, with 

each node representing the center of each cell, as shown in Figure 3. 13 . 

2. Specify the boundary conditions, that is, the outlet pressure as well as gas and liquid rates. 

3. Assume inlet pressure at the 1st node. 

4. For each cell in the drilling string, compute ∆Pa, ∆Ph, ∆Pf, and then the total pressure drop 

∆Pt, to determine the pressure at the next node. 

5. Between the Nth and (N+1)th nodes, there is a pressure drop through the drill bit, which is 

given by Equation (3.26). 

                                                  ∆Pbit =
8.311×10^(-5)ρmQt

2

(0.95A)2                                                        (3.26) 

where, m is mixture density [ppg]; Qt is total flow rate [gpm]; A is total nozzle area [in2]; and 

∆Pbit is pressure drop through nozzles [psig].  

6. Similarly, continue the calculations upwards along the annulus for each node until the last 

node 2Nth is reached at the outlet. 

7. Evaluate if the calculated pressure at the last node is close enough to the pre-specified 

backpressure. If not, go to step 3 with a new assumed value of inlet pressure and repeat 
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calculations; otherwise, accept it as a final solution. 

Figure 3. 14  shows the results of foam drilling simulations in terms of pressure profile, foam 

quality, foam density, and total velocity for three different methods of modeling. First of all, it 

should be noted that Edrisi and Kam’s model (2013) cannot be used for low circulation rates (see 

the discussions in Figure 3. 3 ) due to the absence of smooth transition. This is why relatively high 

Qg and QL values are used for this simulation. Second, in all three methods, the pressure profile 

(Figure 3. 14 (a)) shows the same backpressure values of 100 psia (689476 Pa) (as an input) that 

corresponds to 0.97 of foam quality at the surface in the foam quality profile (Figure 3. 14 (b)), 

which determines foam density and total velocity along the hole (Figure 3. 14 (c)) and Figure 3. 

14 (d)). Third, the results are in general consistent as expected, for example, foam quality is 

reduced with increasing pressure, foam density increases with increasing depth, total velocity 

decreases with increasing depth and so on, primarily due to the compressibility of gas phase. 
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(a) Pressure 

Figure 3. 14 Steady-state simulation results for foam circulation without formation fluid 

influx: (a) pressure (b) foam quality (c) foam density (d) total velocity 

(fig. cont'd.) 
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(b) Foam Quality 

(fig. cont'd.) 
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(c) Foam Density 

(fig. cont'd.) 
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(d) Total Velocity 

 

Figure 3. 14  reveals that (i) the model based only on the low-quality-regime foams (referred 

to as “Chen et al.” in dashed green lines) deviates significantly by missing unstable foam flow 

characteristics for dry foams, and (ii) even the model with two flow regimes (referred to as “Edrisi 

and Kam” in solid orange lines) shows the level of errors that cannot be neglected by not 

incorporating transition (500 psia (3447380 Pa) vs. 400 psia (2757904 Pa) at the inlet, 1.4 ppg 

(167.67 kg/m3) vs. 1.05 ppg (125.82 kg/m3) foam density, and so on). Note that the results from 

the new model in this study is referred to as “This study” represented by circles (i.e., open circles 

for fg>fg* and filled circles for fg<fg*) and the dotted red lines on the top represent the portion of 

the graph in the transition (Domain 3). Table 3. 2  summarizes the comparison of three different 
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methods in terms of bottom hole pressure (BHP), bottom hole foam quality, bottom hole density, 

bottom hole total velocity, and injection pressure. The relative errors are shown as well. 

Table 3. 2 Comparison of three different foam simulation methods  

 This model Chen et al. Edrisi and Kam 

BHP, psi 996 1341 (26%) 973 (2%) 

BH Foam Quality, % 82 77 (6%) 83 (1%) 

Inlet Pressure, psi 395 611 (35%) 509 (22%) 

BH Density, ppg 1.91 2.43 (21%) 1.88 (2%) 

BH Total Velocity, ft/s 1.95 1.54 (26%) 1.99 (2%) 

 

3.4 Conclusions 

A new foam model has been established in this study to characterize foam flow in pipes. The 

model incorporates unstable slug-flow-pattern dry foam rheology (referred to as high-quality 

regime), stable plug-flow-pattern wet foam rheology (referred to as low-quality regime), and a 

transition in between. This study can be concluded with the following major outcomes. 

This new foam model overcomes the limitations in the previous model by (i) allowing two 

separate and independent foam rheological properties in the high-quality and low-quality regimes 

and (ii) introducing a smooth transition between the two regimes to capture experimental data 

more realistically. The model requires nine model parameters – three (uwRef, ugRef, PRef) to define 

the transition region, four to capture Power-Law rheology in both high-quality and low-quality 

regimes (KH, nH, KL, nL), and two to describe the sensitivity of steady-state pressure drops as a 

function of gas and liquid velocities in both regimes (mH, mL). 

This study also demonstrates how some of the key parameters for foam flow in pipes can be 

decided. For example, how apparent foam viscosity can be mapped out in a wide range of gas and 

liquid velocities, how the thickness of water film at the wall (as an origin of lubricating effect) 

varies with the changes in gas and liquid contents, and how the dimensionless friction factor, 
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required for frictional pressure loss calculations, can be calculated as a function of experimental 

conditions (which can be grouped into Reynolds number). 

This new model is applied to foam drilling application and compared with two other models 

in the literature – one only based on low-quality regime foams, and the other based on both high-

quality regime and low-quality regime foams. The error analysis shows that there is a unique 

benefit of using the model presented in this study in predicting responses such as pressure, foam 

quality, foam densities, and total velocity. More detailed analysis in a wide range of drilling 

scenarios remains as a future study. 
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CHAPTER 4. MODELING OF FOAM-ASSISTED WELLBORE CLEANUP 

AND DRILLING PROCESSES WITH BOTH DRY- AND WET-FOAM 

RHEOLOGICAL PROPERTIES 
4.1 Introduction 

The use of foams, as a mixture of gas and surfactant solutions, has been widely applied to 

numerous onshore and offshore wells. Foam drilling and cleanup technology, among many, can 

bring many benefits, including minimizing water usage and formation damage, avoiding lost 

circulation, extending drill bit life, lowering treatment costs, and improving cutting and solid 

transport efficiency. In conventional drilling mud applications, the deeper the well, the higher the 

hydrostatic pressure of the mud, and thus the higher the possibility to induce fractures or wellbore 

instability problems. (Rojas et al., 2002, Chen et al., 2006, Nugroho et al., 2017).   

Foam may be generated either at the injection point (known as in-situ generation) or by passing 

through a porous medium or coiled tubing generator. When foam or foamed mud is injected, the 

hydrostatic pressure can be reduced by the lower mixture density, and the fluid viscosity can be 

improved by the foam films (or, lamellae) separating bubbles. Moreover, the density and viscosity 

of foamed mud can be adjusted further depending on the need, by controlling total flowrate (Qt, 

that is, the sum of gas and liquid rates (i.e., Qt = Qg + Qw)), gas fraction (fg, that is, also known as 

foam quality), surfactant compositions and concentrations, chemical additives, and so on.  Because 

the gas phase in the foam mixture is compressible, total flowrate (Qt) and foam quality (fg) are 

sensitive to the surrounding pressure and temperature conditions.  

Foam has also been a versatile means of transporting solids (such as sands in production wells 

or cuttings in drilling wells). In Okpobiri and Ikoku’s study (1986), a semi-empirical method was 

developed to predict the frictional pressure losses caused by solid/foam slurry flow and the 

transition between foam and mist flows. The results showed that mostly laminar flow regime was 

observed with the foam quality (fg) ranging from 55% (i.e., minimum at the bottom hole) and 96% 
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(i.e., maximum at the annular surface). Li and Kuru (2003a, 2003b) and Osunde and Kuru (2006) 

investigated cutting transport with foam in vertical wells and horizontal wells using numerical 

modeling. The results showing cutting transport efficiency were analyzed as a function of gas and 

liquid rates, reservoir influx, circulation rates and borehole geometry. Chen et al. (2007, 2009) 

conducted a similar experimental study in horizontal downhole to investigate foam rheology and 

the effect of temperature and pressure on cutting transport efficiencies in a range of pipe 

geometries, multiple phases, and inclination angles. Saxena et al. (2017) also investigated foam 

flow experimentally in various pipe diameters with and without cuttings involved. Tested at three 

different qualities (75, 83, and 88%), the results showed that the frictional pressure drop increased 

with the total volumetric rate or velocity. In addition, higher foam viscosity and lower foam density 

were caused by increasing foam quality (fg), and the presence of cutting particles resulted in 

additional pressure drops. In spite of numerous studies, there still is a gap between experimental 

data and numerical simulations even in commercial software, as reported by Nakagawa et al. 

(1999). There have also been attempts to model the non-Newtonian rheological properties of foam-

solid mixtures (Kam et al., 2002; Kam and Rossen, 2002). 

A clear understanding of foam rheology is very important to predict various operations 

associated with foam drilling or cleanup processes. In addition to foam quality (fg), foam texture, 

which is referred to as average bubble size and bubble-size distribution, is another key parameter 

to characterize the rheological properties of foams. A series of recent foam experimental studies 

in a range of pipe sizes and inclination angles and in the presence of polymers (Bogdanovic et al., 

2009; Gajbhiye and Kam, 2011, 2012; Edrisi et al., 2014) presented the concept of a threshold 

foam quality, fg*, above which bubbles are unstable and bubble stability is very sensitive to foam 

quality, and below which bubbles are stable with relatively uniform bubble sizes, as shown in 
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Figure 4. 1 . An example of the experimental data sets with frictional pressure drop contours at 

various flow rates in Figure 4. 1  presents the high-quality regime where fg > fg* and the pressure 

drop decreases with increasing gas velocity (ug) at given liquid velocity (uw), showing unstable 

slug flow pattern (i.e., repetition of free gas and fine-textured foams). On the contrary, it presents 

the low-quality regime where fg < fg* and the pressure drop increases with increasing gas velocity 

(ug) at given liquid velocity (uw), showing stable plug flow pattern (i.e., flow of only stable and 

fine-textured foams). This threshold foam quality (fg*) between the high-quality regime and low-

quality regime varies depending on surfactant types and concentrations, presence of additives, pipe 

characteristics, and many other experimental conditions. Edrisi and Kam (2013) proposed a foam 

model to capture the presence of the two regimes and related foam properties by using 5 model 

parameters. Edrisi and Kam (2015) applied the model to see the implication of the two foam flow 

regimes in large-scale foam circulation tests.  



 
58 

 
Figure 4. 1 Frictional pressure loss contours from surfactant foam flow experiments  

 

Recently, Wang et al. (2017) developed a new modeling technique, as shown in Figure 4. 2 , 

which overcame the limitations of Edrisi and Kam’s model (2013). By introducing 9 model 

parameters as shown in Figure 4. 2 , this new model allows both high-quality regime (Domain 1 

in Figure 4. 2 ) and low-quality regime (Domain 2 in Figure 4. 2 ) to have its own rheological 

properties independently, defined by two Power-Law parameters in each regime (i.e., consistency 

index and Power-Law exponent (KH and nH in the high-quality regime; KL and nL in the low-quality 

regime)). Such an improvement was possible by introducing a reference point (i.e., reference flow 

rates uwRef and ugRef, and corresponding reference frictional pressure drop ∆PRef, as shown by 

(uwRef, ugRef, ∆PRef) in Figure 4. 2 ) where foam rheology can be defined along the boundary lines 

of the transition region (Domain 3 in Figure 4. 2 ). There are two other model parameters, the 
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average slope of pressure contours (mH and mL in the high-quality and low-quality regimes, 

respectively), to define the sensitivity of foams to gas and liquid velocities. Note that the boundary 

between the high-quality and low-quality regime, fg*, is determined by the foam quality at the 

reference point, i.e., fg* = ugRef/(uwRef+ugRef). Domain 3 in Figure 4. 2  is simply a transition region 

connecting contour lines with the same pressure drops in Domain 1 and Domain 2. Wang et al. 

(2017) has more details about this modeling technique. 

 
Figure 4. 2 A schematic figure showing nine parameters in the new foam rheology model  

 

4.2 Objectives 

The objective of this study is to apply Wang et al.’s model (2017) to three different scenarios 

of drilling and cleanup field applications – a vertical well, an inclined well (or, a well with mainly 

inclined segment), and a horizontal well (or, a well with mainly horizontal segment), all with 10000 

ft (3048 m) lengths – and to demonstrate the robustness of the model. The results are compared 
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with Chen’s model (2009) (i.e., a model with only stable foams (meaning the low-quality regime)) 

and Edrisi and Kam’s model (2013) (i.e., a model with both high-quality and low-quality regimes, 

but foam rheology in both regimes dependent upon each other). This study also extends 

investigation into the cases when there is a formation influx of water or gas.     

 

4.3 Methodology  

For foam flow in drill pipe or annulus, according to the momentum-balance equation, the total 

pressure drop (∆Pt) consists of three major components, hydrostatic pressure loss (∆Ph), 

acceleration pressure loss (∆Pa), and frictional pressure loss (∆Pf), i.e.,  

                                                    ∆Pt = ∆Ph + ∆Pa + ∆Pf                                                           (4.1)                                                                          

where the hydrostatic pressure loss ∆Ph is expressed as follows: 

                                                        ∆Ph = 0.052ρm                                                                  (4.2)                                                          

The equations below are used to calculate mixture density (ρm), total flow rate (Qt), total mixture 

velocity (ut), and compressible gas density (ρg): 

                                                   ρm = ρg (
Qg

Qt
) + ρL (

Qw

Qt
) = ρg(fg) + ρw                                (4.3)                            

                                                            Qt = Qg + Qw                                                                (4.4)                                                                  

                                                      ut = uw + ug =
Qt

2.448d2                                                         (4.5)                                                                    

for drill pipe flow with pipe inner diameter d,              

                                                 ut = uw + ug =
Qt

2.448(do
2−di

2)
                                                      (4.6)                              

for annulus flow with inner and outer diameters, di and do respectively, and                                                                                                                     

                                                             ρg =
PM

ZRT
                                                                  (4.7)                                                                                                                               

for any pressure and temperature conditions (P, T) with compressibility factor Z calculated from 

molecular weight M and the ideal gas law constant R.                                                         
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The frictional pressure loss (∆Pf) can be calculated as described in Figure 4. 1  and Figure 4. 2 

, and the acceleration pressure loss (∆Pa) is ignored due to its negligible contribution. Field units 

are used in these equations, such as [psia] for pressure, [˚F] for temperature, [gpm] for flow rate, 

[ft/s] for velocity, [inch] for diameter, [ppg] for density, [lbm/lbmol] for molecular weight, and 

[J/mol. K] for the ideal gas law constant. 

This study borrows the rheological properties of low-quality-regime foams from the 

experimental study of Chen et al. (2007), which defines the consistency index (K) and Power-Law 

exponent (n) based in liquid-phase viscosity (µw) and foam quality (fg) as follows: 

                                                         K μw = eafg
2+bfg+c⁄                                                             (4.8) 

                                                          n = −0.45fg + 0.7633                                                    (4.9) 

where, a, b, and c are model parameters defined as  

                                    a = (−0.533μw
2 + 3.6735μw − 13.546)                                            (4.10) 

                                    b = (0.8926μw
2 − 6.5877μw + 29.966)                                            (4.11) 

                                    c = (−0.3435μw
2 + 2.5273μw − 14.218)                                          (4.12) 

The parameters K and µw have the units of [
𝑑𝑦𝑛𝑒−𝑠n

𝑐𝑚2 ] and [cp]. Note that these equations are not 

used in the new model explicitly; they are rather incorporated implicitly to determine a series of 

pressure contour lines in the low-quality regime (see Figure 4. 2 ) through which they help 

determining three of the nine model parameters (mL, KL and nL).   

In addition, this study borrows the high-quality regime foam rheology from Edrisi and Kam 

(2013), which is originated from the experimental data of Edrisi et al. (2014). They include next 

three of the nine model parameters (mH, KH and nH).   

As a result, there are only three more parameters to decide (i.e., uwRef, ugRef, and ∆PRef), which 

is related to how to define the reference point ((uwRef, ugRef, ∆PRef) in Figure 4. 2 ) and, in turn, the 
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size of the transition region (Domain 3 in Figure 4. 2 ).  

Once these nine parameters are determined, Figure 4. 3  through Figure 4. 5  demonstrate 

graphically how the frictional pressure loss can be calculated depending on which domain the 

velocities of interest fall into. Note again that (uwRef, ugRef, ∆PRef) defines the reference point, KH 

and nH define the Power-Law parameters along ug = ugRef, KL and nL define the Power-Law 

parameters along uw = uwRef, and mH and mL define the slopes of average contour line slopes in the 

high-quality and low-quality regimes, respectively. Suppose any (uw, ug) is given arbitrarily, and 

the corresponding frictional pressure loss is to be calculated. Such an assignment can be 

represented by the point “a”, “b”, or “c” in Figure 4. 3  through Figure 4. 5  for Domain 1, 2, or 3, 

respectively.  

 
Figure 4. 3 A schematic on how to determine the frictional pressure gradient in Domain 1 
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Figure 4. 4 A schematic on how to determine the frictional pressure gradient in Domain 2 

 

 
Figure 4. 5 A schematic on how to determine the frictional pressure gradient in Domain 3 



 
64 

The next step is to follow the average slope in the domain to reach the point (uˊw, ugRef, ∆Pa) 

for point “a”, (uwRef, uˊg, ∆Pb) for point “b”, and either (uˊw, ugRef, ∆Pc) or (uwRef, uˊg, ∆Pc) for point 

“c”. Table 4. 1  and Table 4. 2  show examples of these nine model parameters required for the 

modeling in this study. The Power-Law rheology model defines the relationship between shear 

stress (τw) and shear rate (γ̇w) along the ug = ugRef line or uw = uwRef line as follows for the high-

quality and low-quality regimes, respectively: i.e., 

                                                           τw = KHγ̇w
nH                                                                  (4.13)   

                                                            τw = KLγ̇w
nL                                                                   (4.14) 

The definitions of shear stress (τw) and shear rate (γ̇w) are given by 

                                                             τw = 3d
∆Pf

∆L
                                                                 (4.15) 

where the frictional pressure loss (∆P = ∆Pf ) over the length scale of ∆L, and 

                                                             γẇ =
96uw

d
                                                                    (4.16)                                     

for the high-quality regime foams and 

                                                                γẇ =
96ug

d
                                                                     (4.17) 

for the low-quality regime foams. The frictional pressure loss can be determined by using the 

Power-Law fluid rheology, i.e.,  

                                               
∆Pa

∆PRef
= (

uw
′

uwRef
)

nH

  , for point “a”                                              (4.18) 

                                               
∆Pb

∆PRef
= (

ug
′

ugRef
)

nL

      , for point “b”                                           (4.19)  

or                                                                

                                          
∆Pc

∆PRef
= (

uw
′

uwRef
)

nH

= (
ug

′

ugRef
)

nL

   for point “c”.                               (4.20) 
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Table 4. 1 Nine input parameters for foam flow inside drill pipe 

Parameters Units 

uwRef Superficial liquid velocity at the 

reference point 
1.53 ft/s 

ugRef Superficial gas velocity at the 

reference point 
8.7 ft/s 

ΔPRef Pressure drop at the reference point 

(frictional) 
0.05 

psi over 1 ft 

horizontal 

distance 

mH Average contour slope in the high-

quality regime 
90 Dimensionless 

mL Average contour slope in the low-

quality regime 
2.47 Dimensionless 

KH Consistency index in the high-quality 

regime 
0.0322 

dyne − s0.8858

cm2
 

nH Power-Law Exponent in the high-

quality regime 
0.8858 Dimensionless 

KL Consistency index in the low-quality 

regime 
0.0001 

dyne − s1.6145

cm2
 

nL Power-Law Exponent in the low-

quality regime 
1.6145 Dimensionless 

 

Table 4. 2 Nine input parameters for foam flow in the annulus 

Parameters Units 

uwRef Superficial liquid velocity at the 

reference point 
0.46 ft/s 

ugRef Superficial gas velocity at the 

reference point 
2.6 ft/s 

ΔPRef Pressure drop at the reference point 

(frictional) 
0.05 

psi over 1 ft 

horizontal 

distance 

mH Average contour slope in the high-

quality regime 
90 Dimensionless 

mL Average contour slope in the low-

quality regime 
1.9 Dimensionless 

KH Consistency index in the high-

quality regime 
0.0518 

dyne − s1.1223

cm2
 

nH Power-Law Exponent in the high-

quality regime 
1.1223 Dimensionless 

KL Consistency index in the low-quality 

regime 
0.0008 

dyne − s1.652

cm2
 

nL Power-Law Exponent in the low-

quality regime 
1.652 Dimensionless 
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For three scenarios considered as shown in Figure 4. 6  (vertical, inclined and horizontal wells), 

a finite difference calculation is conducted at given gas and liquid rates. Iterations are needed to 

satisfy the pre-specified backpressure (Pb) at the surface of annular section. Note that there is an 

additional pressure drop through the nozzles at the drill bit (∆Pbit) between Nth and (N+1)th nodes, 

i.e., 

                                            ∆Pbit =
8.311×10−5ρmQt

2

[0.95nnoz×(
π

4
Dnoz

2 )]
2                                                   (4.21) 

where nnoz for the number of nozzles, Dnoz for nozzle diameter in [inch], ρm for foam mixture 

density in [ppg], and Qt for total flow rate in [gpm]. The apparent foam mixture viscosity (µapp) 

for drill pipe and annulus are given by 

                                     μapp = 47900
τw

γ̇w
= 47900

3d
∆Pf
∆L

96ut
d

                                                          (4.22) 

for flow in drill pipe and 

                                  μapp = 47900
τw

γ̇w
= 47900

3(𝑑𝑜−𝑑𝑖)
∆Pf
∆L

144ut
(𝑑𝑜−𝑑𝑖)

                                                    (4.23) 

for flow in annulus. The units are [lbf/ft2] for shear stress (𝜏𝑤), [s-1] for shear rate (γ̇w), [cp] for 

apparent viscosity (µapp). 
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Figure 4. 6 Schematics of U-tube concept wellbore configurations: (a) vertical well (b) inclined 

well (c) horizontal well 

 

Numerical calculation conducted in this study essentially takes advantage of material-balance 

and momentum-balance equations for the pressure drop calculations. For steady-state flow, the 

following outlines the algorithm for the field case shown in Table 4. 3  briefly. 

1. Read input parameters as shown in Table 4. 1 , Table 4. 2 , and Table 4. 3 , including 

wellbore geometries and interval sizes for numerical calculations. 

2. Specify the boundary conditions, that is, the outlet pressure as well as gas and liquid flow 

rates at the standard condition (or, mass rates equivalently). 

3. Assume the inlet pressure at the 1st node. 

4. Calculate foam mixture properties such as density, viscosity, Z factor, velocity, flow rate 

and so on.  

5. Calculate the total pressure loss based on the frictional and hydrostatic components over 
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the interval size specified. Determine the pressure in the next node. 

6. Go to the next node and repeat step 4 and 5, until it reaches the drill bit (Nth node). 

7. Determine the pressure drop through the bit and calculate the pressure at the (N+1)th node. 

8. Go to the next node and repeat step 4 and 5, until it reaches surface. 

9. If the surface pressure calculated is close enough to the back pressure, the steady-state 

solution is obtained. If not, repeat the entire calculations by using a new assumed inlet pressure. 

 

4.4 Results and Discussions 

As shown in Figure 4. 6 , the well consists of three components. Following from the injection 

point (1st node), the foam mixture travels down inside drillpipe, through the drill bit, and up along 

the annulus to reach the annular surface (2Nth node). Foam model parameters are shown in Table 

4. 1  and Table 4. 2  for the flow in the drillpipe and annulus, respectively. The well configuration 

and related characteristics are summarized in Table 4. 3 .   
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Table 4. 3 Field data for foam circulation modeling 

Wellbore Diameter 

(Dw) 

8.5 

(inch) 

Drillpipe OD 

(Dpout) 
5 

(inch) 

Drillpipe ID 

(Dpin) 
4.276 

(inch) 

Wall Roughness 

(ε) 
0 

Number of Nozzles 

(nnoz) 
3 

Diameter of Nozzles 

(Dnoz) 

0.375 

(inch) 

Inlet Liquid Rate 

(Qw) 

40 

(gpm) 

Inlet Gas Rate 

(Qg) 

1300 

(scfm) 

Outlet Back Pressure 

(Pb) 

100 

(psia) 

Formation Fluid Influx 

(Qin) 

varies 

(gpm or scfm) 

Liquid Viscosity 

(μw) 

1  

(cp) 

Liquid Density 

(ρw) 

62.4 

(lbm/ft3) 

Gas Molecular Weight 

(M) 

28.9 

(lbm/lbmol) 

Gas Specific Gravity 

(SG) 
1 

Temperature at the Standard 

Condition 

(Tsc) 

70 

(˚F) 

Pressure at the 

Standard Condition 

(Psc) 

14.7 

(psia) 

Z-factor at the Standard 

Condition 

(Zsc) 

1 

Vertical Temperature 

Gradient 

(∆T/∆Z) 

1.5 

(˚F/100ft) 

Total Measured Length  
10000 

(ft) 

Interval Size for 

Vertical Well 

(∆L1) 

400 

(ft) 

Interval Size for Inclined Well 

(∆L2) 

500 

(ft) 

Interval Size for 

Horizontal Well 

(∆L3) 

500 

(ft) 

 

Figure 4. 7  through Figure 4. 9  show the calculation results for vertical, inclined, and 

horizontal wells when there is no formation fluid influx (Qin = 0). Each figure consists of the 

changes in pressure, foam quality, foam density, and total velocity as a function of distance from 

the injection point, where the arrows represent the direction of foam flow, either down to the 

bottom hole along the drillpipe or up to the annular surface along the annulus. In all cases, the 

injection condition (in terms of gas and liquid rates) and the outlet condition (in terms of annular 

backpressure) require foam quality of 97 % at the annular surface.  
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Figure 4. 7 Steady-state simulation results for the vertical well  
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Figure 4. 8 Steady-state simulation results for the inclined well  
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Figure 4. 9 Steady-state simulation results for the horizontal well  

 

The results for the vertical well in Figure 4. 7  show the general trend that is consistent with 

what is expected (note that the length on the y axis is equivalent to vertical depth in this case). 

First, the pressure increases with depth primarily because of hydrostatic pressure, and the slope 

(meaning the pressure gradient) is steeper along the drillpipe than the annulus due to higher 

frictional pressure loss in annulus. There exists a pressure discontinuity at the bottom hole which 

reflects the pressure drop through the nozzles at the bit. The pressure at the annular surface in all 

cases converges into the backpressure as specified in Table 4. 3 . Second, such a pressure response 

is well connected to the foam quality plot. Higher pressure means lower gas volume which, in turn, 

means lower foam quality. Third, foam density also varies accordingly. It is high near the bottom 
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hole where the pressure is high and foam mixture volume is small. In fact, the foam density plot 

seems mirror-imaged to the foam quality plot. Last, total velocity is high near the surface and low 

near the bottom hole due to gas compressibility, but the effect of gas expansion is more significant 

near the annular surface, playing more important roles in gas velocity and thus total velocity. Once 

again, the total velocity at the annular surface converges into a fixed value (ut = 12.8 ft/s (3.901 

m/s)), as set by the injection and outlet conditions. In all, the lines are curved, which primarily 

reflects the fact that the mixture contains a significant portion of compressible gas phase in it.  

Figure 4. 10 (a) and Figure 4. 10 (b) help to identify the paths followed by the new model, for 

the downward flow within drillpipe (i.e., from the top to the bottom of the vertical line in Figure 

4. 10 (a)) and for the upward flow in the annulus (i.e., from the bottom to the top of the vertical 

line in Figure 4. 10 (b)) on the top of contour plots created by using the input parameters in Table 

4. 1  and Table 4. 2  respectively. 
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Figure 4. 10 Simulated paths along the drill pipe (left) and annulus (right): (a)(b) vertical well, 

(c)(d) inclined well, (e)(f) horizontal well 

 

The three methods compared in Figure 4. 7  show a couple of interesting aspects. First, Chen 

et al.’s model (2009) based only on the low-quality regime foams over-predicts the change in 

frictional pressure loss and, as a result, over-predicts the changes in all responses such as pressure, 

foam quality, foam density, and total velocity. Second, Edrisi and Kam’s model (2013), which has 

both high-quality and low-quality regimes but with no transition region in between, captures the 
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trend reasonably well but under-predicts the changes because of wider range of low-quality-regime 

foams. Note that the results from the model used in this study have filled symbols for fg > fg
* and 

open symbols for fg < fg
*, which makes it possible to keep track of the change in domains, once 

analyzed together with Figure 4. 10 (a) and Figure 4. 10 (b). (Note that fg
* = 85% in both drillpipe 

and annulus as shown in the foam quality plot in Figure 4. 7 .) 

In contrast to the vertical well (Figure 4. 7 ), the results for the inclined and horizontal wells 

are shown in Figure 4. 8  and Figure 4. 9 , respectively. The overall responses are similar to the 

case of vertical well, but the less contribution from the hydrostatic pressure loss leaves a clear 

signature to the inclined and horizontal sections of the trajectories. As indicated by Figure 4. 8  and 

Figure 4. 9 , Figure 4. 10  confirms that, in both inclined and horizontal wells, the paths downward 

(Figure 4. 10 (c) and Figure 4. 10 (e)) stay within the transition region (Domain 3), while the paths 

upward (Figure 4. 10 (d) and Figure 4. 10 (f)) mostly stay within the high-quality regime (Domain 

1). Because of lacking the transition region, Edrisi and Kam’s model (2013) deviates from the 

results in this study. Chen et al.’s model deviates significantly more because it is based only on 

foam rheology in the low-quality regime.  

Table 4. 4  summarizes the calculation results for all three scenarios in terms of inlet pressure 

as well as pressure, foam quality, density, and mixture velocity at the bottom hole conditions. It 

clearly shows that foam modeling techniques based only on fine-textured foam rheology (or, the 

low-quality regime foam rheology) cannot predict the results accurately. Even the two-flow-

regime model without transition region can lead to a significant level of errors. 
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Table 4. 4 Comparison of three different foam simulation methods 

Vertical well case 

 This study 
Chen et al. 

(2009) 

Edrisi and Kam 

(2013) 

Inlet Pressure, psia 395 611 (35%) 509 (22%) 

BH Pressure, psia 996 1341 (26%) 973 (2%) 

BH Foam Quality, % 82 77 (6%) 83 (1%) 

BH Density, ppg 1.91 2.43 (21%) 1.88 (2%) 

BH mixture Velocity, ft/s 1.95 1.54 (26%) 1.99 (2%) 

Inclined well case 

 This study 
Chen et al. 

(2009) 

Edrisi and Kam 

(2013) 

Inlet Pressure, psia 402 618 (54%) 529 (32%) 

BH Pressure, psia 712 1003 (41%) 731 (3%) 

BH Foam Quality, % 87 80 (8%) 85 (2%) 

BH Density, ppg 1.44 2.16 (5%) 1.65 (15%) 

BH mixture Velocity, ft/s 2.59 1.73 (33%) 2.25 (13%) 

Horizontal well case 

 This study 
Chen et al. 

(2009) 

Edrisi and Kam 

(2013) 

Inlet Pressure, psia 485 764 (57%) 651 (34%) 

BH Pressure, psia 471 685 (45%) 469 (0.4%) 

BH Foam Quality, % 91 87 (4%) 91 (0%) 

BH Density, ppg 1 1.39 (39%) 1 (0%) 

BH mixture Velocity, ft/s 3.75 2.68 (28%) 3.76 (0.3%) 

 

Two more cases are investigated in this study, repeating the same calculations for three 

scenarios as shown in Figure 4. 7  through Figure 4. 10  – the first with influx of formation water 

(Qin = 4 gpm (0.00025 m3/s); Figure 4. 11  through Figure 4. 14 ) and the second with influx of 

formation gas (Qin = 500 scfm (0.235 m3/s); Figure 4. 15  through Figure 4. 18 ). The influx of 

formation water (which is a tenth of liquid circulation rate) dilutes the concentration of chemicals 

(such as surfactants and polymers) in the aqueous phase, and thus may change the foam model 

parameters (e.g., Table 4. 1  and Table 4. 2 ) and steady-state pressure contours (e.g., Figure 4. 10 

). This study assumes, however, that such an effect is negligible, only focusing on the change in 

flowrates and foam quality primarily.  
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Figure 4. 11 Steady-state simulation results for the vertical well with formation water influx  
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Figure 4. 12 Steady-state simulation results for the inclined well with formation water influx  
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Figure 4. 13 Steady-state simulation results for the horizontal well with formation water influx  
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Figure 4. 14 Simulated paths with formation water influx along the drillpipe (left) and annulus 

(right): (a)(b) vertical well, (c)(d) inclined well, (e)(f) horizontal well 

 

When there is a formation liquid influx at the bottom hole (Figure 4. 11  through Figure 4. 14 

), the increased liquid rate in the annulus causes an additional hydrostatic pressure loss, which 

distorts other responses to keep the same backpressure. Overall, there is a significant shift in liquid 

rate, foam quality, and total velocity in the annulus. Foam quality in the annular surface becomes 

slightly lower than 97%. When there is a formation gas influx at the bottom hole (Figure 4. 15  
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through Figure 4. 18 ), the opposite occurs: an increase in gas rate and foam quality, but a decrease 

in hydrostatic pressure loss. In many field applications, the process requires the bottom hole 

pressure to be maintained at a certain level. In such a case, Figure 4. 11  through Figure 4. 18  are 

believed to provide a useful guideline.  

 

 
Figure 4. 15 Steady-state simulation results for the vertical well with formation gas influx  
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Figure 4. 16 Steady-state simulation results for the inclined well with formation gas influx  
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Figure 4. 17 Steady-state simulation results for the horizontal well with formation gas influx  
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Figure 4. 18 Simulated paths with formation gas influx along the drillpipe (left) and annulus 

(right): (a)(b) vertical well, (c)(d) inclined well, (e)(f) horizontal well 

 

Some investigators find the use of apparent foam viscosity (µapp) more convenient to 

understand foam rheological properties. The results of this study can also be plotted in that manner. 

Examples are shown in Figure 4. 19 through Figure 4. 21 , apparent foam viscosity as a function 

of depth, which results from the vertical wells with no fluid influx, with water influx, and with gas 

influx (Figure 4. 7 , Figure 4. 11 , and Figure 4. 15 , respectively). Although complicated, they 
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show consistently how important it is to take two flow regimes and the transition region in between 

to accurately model foam-associated drilling and well cleanup processes.   

 

 
Figure 4. 19 Steady-state simulation results of apparent viscosity for the vertical well without 

influx  
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Figure 4. 20 Steady-state simulation results of apparent viscosity for the vertical well with 

formation water influx  

 

 
Figure 4. 21 Steady-state simulation results of apparent viscosity for the vertical well with 

formation gas influx  
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4.5 Conclusions 

This study investigates how a new foam model, recently developed by Wang et al. (2017), can 

improve the prediction of foam-associated drilling and well cleanup processes in three different 

well scenarios (vertical, inclined, and horizontal wells), with and without formation fluid influx. 

The new model has nine model parameters and can capture two different rheological properties 

for dry foams (or, the high-quality regime foams) and wet foams (or, the low-quality regime foams) 

with a transition region in between. The comparison is made with a foam model based only on 

fine-textured foam rheology (or, the low-quality regime foams) (Chen et al., 2009) and a foam 

model that accounts for two foam flow regimes with some limitations (Edrisi and Kam, 2014).  

The results show that the new model has unique advantages in accurately predicting foam 

properties and reliably guiding field applications. Ignoring coarsening foam texture in the high-

quality regime can result in significant errors, as much as 40 – 60 %, in the scenarios tested. Even 

for a model with two flow regimes built in, not incorporating a transition region and two 

independent foam rheological properties may also lead to a meaningful level of errors in terms of 

injection pressure and bottom hole conditions.  
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CHAPTER 5. NUMERICAL MODELING AND SIMULATION OF FOAM-

ASSISTED MUD CAP DRILLING PROCESSES 
5.1 Introduction 

In challenging situations with low-pressure and depleted reservoirs as well as vuggy or 

fractured carbonates, over-balanced circulation is difficult because the margin between fracture 

pressure and pore pressure is too narrow or unable to achieve. This often does not allow the 

conventional drilling techniques to be applied to reach the targets. In order to drill to the target 

depth, Equivalent Mud Weight (EMW) must stay within the drilling window for drilling to 

progress. Managed Pressure Drilling (MPD) can help these harsh conditions because of its 

improved accessibility.  

MPD is an adaptive drilling process used to precisely control the annular pressure profile 

throughout the wellbore (Kuroda et al., 2017). It aims to ascertain the downhole pressure 

environments and to manage the annular hydraulic pressure profile accordingly. There are 

typically three different categories of MPD methods. The first is Constant Bottom Hole Pressure 

Drilling (CBHP) that keeps the bottom hole pressure constant by applying backpressure on the 

annulus. This method is typically effective in formations with narrow drilling windows. Second, 

Mud Cap Drilling (MCD) is a method where the bottom hole pressure is maintained in balance 

with the reservoir pressure. MCD is particularly effective in fractured and/or vugular formations 

where total losses are encountered. In MCD, losses are allowed, but the fluid lost into the formation 

is designed to be an inexpensive sacrificial fluid. MCD could result in formation damage and 

require a large volume of sacrificial fluids, however. Third example is Dual Gradient Drilling 

(DGD), often used in Deepwater wells, where mud in the marine riser creates the bottom hole 

pressure in excess of the fracture pressure. In onshore shale-gas drilling, this method involves 

simultaneous use of higher Mud Weight (MW) in shale and lower MW in the upper sands. This 
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prevents influxes into shales without fracturing the overlying weak sand zones (Ridley et al., 2013; 

Safipour et al., 2017).  

 

5.1.1 Pressurized Mud Cap Drilling  

In general, when drilling fractured pay zones extensively, MCD (especially, Pressurized Mud 

Cap Drilling (PMCD)) is preferred over other MPD methods. For example, PMCD method can be 

found in highly fractured and cavern reservoirs such as Austin Chalk (Colbert and Medley, 2002), 

offshore Malaysian carbonate reservoir (Idris et al., 2018, Hamizan et al., 2014), and offshore 

Kalimantan (Benny et al., 2013), as well as in High Pressure High Temperature (HPHT) gas wells 

in offshore Abu Ahabi (Al-Awadhi et al., 2014) and Gulf of Mexico (GoM) (Fossli and 

Sangesland, 2006). It is shown to have many advantages in the literature, including reduced loss 

treatment cost, better well control, less Non Productive Time (NPT), and higher Rate of 

Penetration (ROP). 

Figure 5. 1  shows an example of PMCD where drilling mud, or sea water for offshore case, is 

used as a sacrificial drilling fluid (SAC) into the drillpipe and exerts the bottom hole pressure high 

enough to prevent the formation fluids from entering. At the same time, a viscous mudcap fluid, 

often called Light Annular Mud (LAM) is injected down the annulus, this capmud is maintained 

in annulus with near, or slightly lower, hydrostatic pressure than reservoir pressure. In the case of 

offshore PMCD method, backpressure is applied by the Rotating Control Device (RCD) system 

as shown in Figure 5. 2 . This mud in annulus works as a primary barrier to avoid upward gas 

migration in the event of gas kick. If the gas influx starts to invade into the annulus and 

accumulates, it has to be pumped and pushed back to the formation typically at a pre-determined 

rate, the operation of which is called bullheading. During the operation, there is no fluid return to 

the surface. While the use of choke valve is crucial, RCD plays a key role in offshore drilling. The 
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RCD is a typical setup installed to switch from conventional drilling to unconventional drilling 

such as closed-loop-circulation, PMCD and Early Kick Detection (EKD) drilling techniques 

(Kuroda et al., 2017).  

 
Figure 5. 1 A schematic of fluid flow in a typical PMCD operation for bullheading 

 

This RCD can seal the annulus around drill pipe during drilling and reciprocating by installing 

a bearing assembly. As Figure 5. 2  shows, with the RCD installation, the return fluid is directly 

diverted to the RCD flowline instead of the rig diverter. Besides of the RCD flow line, three other 

lines are usually connected up to the RCD – an injection line, a fill-up line, and a bleed-off line. 

Each line has its own purpose (Benny et al., 2013), for instance, if total loss is encountered and 

zero return is confirmed, the RCD return line valve closes to generate certain back pressure and 

the injection line must be open up to mud pump or cementing pump to inject SAC and LAM. If 

there is no return and some back pressure is observed, it means PMCD condition is achieved. If 
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the back pressure has reached a pre-specified value, the injection line can be viewed as performing 

bullheading or fill-up jobs successfully in the annulus during PMCD (Dipura et al., 2018). 

Compared to the underbalanced operations which require installation of fluid separation 

equipment, PMCD needs less equipment on surface facilities.  

 
Figure 5. 2 Offshore drilling schematic with RCD 

 

PMCD is a good choice when drilling through fractured formations where the size of surface 

working area is limited. There are some disadvantages of PMCD compared to other MPD methods, 

however. They include, for example, a large required volume of water or brine (because there are 

no returns), a possibility of severe formation damage (because drilling fluid and drilled cuttings 
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are injected into the formation), lacking information on formation evaluation and fracture 

penetration identification (because there are no returns to surface to evaluate mud log samples), 

and potential differential sticking and uncontrollable operating conditions. In order to successfully 

operate with PMCD, an injection test should be carried out prior to continued drilling with PMCD 

method.  

 

5.1.2 Pressurized Mud Cap Drilling for Well Control 

The reservoir is controlled by the hydrostatic pressure due to the column of annular fluid with 

the addition of surface backpressure. When the hydrostatic pressure is not maintained properly, it 

may trigger formation gas to start flowing into the annulus and rise to the surface. Understanding 

how quickly the gas phase rises is an important aspect of PMCD. 

 

5.1.3 Bubble-Rise Velocity 

The calculation of the annular fluid velocity to stop gas migration is very significant to safely 

control the well and force formation fluids back into the formation. Davies and Taylor (1950) 

developed a correlation to describe the rising velocity of bubbles, large enough to almost fill the 

pipe. The derived equation for the bubble-slip velocity (or, bubble-rise velocity; us) in vertical 

pipes as shown in Equation (5.1): 

                                                      𝑢𝑠 = 0.35√𝑔(𝜌𝑙 − 𝜌𝑔)𝐷 𝜌𝑙⁄                                                (5.1) 

where l and g are the liquid and gas densities, respectively, D is the pipe diameter and g is the 

acceleration of gravity. For a 200-mm (7.8 inch) diameter pipe with water, this predicts a bubble-

slip velocity of about 0.5 m/s (1.6 ft/s) (Johnson and White, 1991).  

In order to determine the factors affecting bubble rise through liquids in vertical annuli, Rader 

et al. (1975) conducted various experiments considering parameters of annular geometry, gas and 
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liquid densities and viscosities, rate of gas expansion, liquid velocity, bubble length, interfacial 

tension between gas and liquid, and inclination angle. The results showed that the eccentricity of 

the annulus had little impact on bubble-rise velocity. They also concluded that changing either gas 

or liquid density would not significantly affect bubble-rise velocity, as long as the gas density was 

small compared with the liquid density. They also observed that the bubble-rise velocity was 

affected by rapid bubble expansion or compression due to sudden annular back pressure change. 

It was found that as long as the rate of expansion or compression of the bubble was small when 

compared with its upward velocity, the velocity of the trailing edge of the bubble remained almost 

constant.  

In addition, the experimental data (Rader et al., 1975) showed that the bubble-rise velocity was 

independent of bubble length, in good agreement with theories (Davies and Taylor, 1950) and 

experiments (Griffith and Walli, 1961). The capillary effect of interfacial tension became 

significant for smaller tubes (less than 0.5 inch (0.0127 m)), while the effect of interfacial tension 

decreased as the size of the annulus increases. Those tests in the small 0.58 inch (0.0147 m) 

OD/0.44 inch (0.0112 m) ID, 0.58 inch (0.0147 m) OD/0.32 inch (0.0081 m) ID, and 0.58 inch 

(0.0147 m) OD/0.20 inch (0.0051 m) ID annular models with various interfacial tension values 

indicated no significant variations in bubble-rise velocity.  

Hasan and Kabir (1992) proposed an equation for the slip velocity of a Taylor bubble (us) in 

an annulus geometry, as shown in Equation (5.2):  

                                           𝑢𝑠 = (0.35 + 0.1
𝐷𝑖

𝐷𝑒
) √𝑔𝐷𝑒(𝜌𝑙 − 𝜌𝑔) 𝜌𝑙⁄                                       (5.2) 

where Di is the inner diameter of the outer pipe and De is the outer diameter of the inner pipe 

forming the annulus space. For PMCD process, Equation (5.2) is considered the more suitable 

formula for the bubble-rise velocity calculation. 
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5.1.4 Bullheading 

After the first detection of gas kick into the annulus, the well should shut in immediately for 

safety issues, and the surface could raise annular pressure to compensate the reduction in 

hydrostatic pressure. The surface pressure at the top of casing at the time of shut-in is called Shut-

in Casing Pressure (SICP), the drill pipe pressure at the time of shut-in is Shut-in Drill Pipe 

Pressure (SIDPP). Between well shut-in and the start of bullheading operation, it takes a certain 

response time (tresp) to initiate well control by injecting the LAM (Lighter Annular Mud) into the 

annulus. During this response time, the bottom hole pressure is balanced with the formation 

pressure causing no more fluid influx, whereas the gas kick migrates up freely and the annular 

pressure keeps increasing due to gas expansion.    

During the bullheading operation, the primary way to control the well is to fill up the annulus 

with LAM at a rate which exceeds the upward gas migration rate. When drilling a pre-salt 

carbonate reservoir in Brazil, Kuehn (2015) presented a method to determine the minimum LAM 

injection rate and the minimum volume required to ensure the gas kick back to formation. The 

LAM injection rate (𝑄𝐿𝐴𝑀_𝑖𝑛) must be greater than the gas rate (𝑄𝑔) (that is related to the gas 

velocity (𝑢𝑔) ) with a safety factor to avoid gas migration, as shown in Equation (5.3): 

                               𝑄𝐿𝐴𝑀_𝑖𝑛 = 𝑄𝑔𝑆𝐹 − 𝑄𝐿𝐴𝑀_𝑙𝑜𝑠𝑠 = 𝑢𝑔𝜋
(𝐷𝑒

2−𝐷𝑖
2)

4
𝑆𝐹 − 𝑄𝐿𝐴𝑀_𝑙𝑜𝑠𝑠                     (5.3) 

where SF is the safety factor (SF ≥1) and 𝑄𝐿𝐴𝑀_𝑙𝑜𝑠𝑠 is the rate of LAM lost to the formation during 

PMCD operation.  

5.1.5 Foam Modeling 

Foam, as a mixture of gas and surfactant solutions, has been widely applied to numerous 

onshore and offshore wells. Drilling and cleaning up wellbore with foam fluid can bring many 

benefits, including minimizing water usage and formation damage, avoiding lost circulation, 



 
95 

extending drill bit life, lowering treatment costs, and improving cutting and solid transport 

efficiency. There are also several reasons for selecting foam (or, foamed mud) as capmud in 

PMCD. First of all, it fulfills the requirements causing non- to negligible-damage to the rock 

matrix. In addition, the mud weight of foam capmud can be adjusted quite easily and quickly by 

controlling foam quality (or gas fraction, 𝑓𝑔, equivalently), while the non-Newtonian behavior such 

as yield stress and shear thinning/thickening makes foam versatile rheologically. Because 

economically viable, capable of suspending rock cuttings and highly viscous, foam has been 

regarded as a useful means of mitigating the gas migration. (Rojas et al., 2002, Chen et al., 2006, 

Nugroho et al., 2017).  

A clear understanding of foam rheology is very important to predict various operations 

associated with foam flow in wellbore and annulus conditions. A series of recent foam 

experimental studies in a range of pipe sizes,  inclinations, surfactant formulations and 

concentrations, and  polymer-added surfactants (Bogdanovic et al., 2009; Gajbhiye and Kam, 

2011, 2012; Edrisi et al., 2014) presented the concept of a threshold foam quality, fg*, above which 

bubbles are unstable and bubble stability is very sensitive to foam quality (so-called high-quality 

regime; fg > fg*), and below which bubbles are stable with relatively uniform bubble sizes (so-

called low-quality regime; fg < fg*). Edrisi and Kam (2013) proposed a foam model to capture the 

presence of these two foam flow regimes by using 5 model parameters, borrowing the 

experimentally-measured rheology of unstable foams in the high-quality regime from Edrisi et al. 

(2014) and that of stable foams in the low-quality regime from Chen et al. (2007). For example, 

Chen et al. (2007) proposed a relationship between Power-Law parameters (the consistency index 

K and Power-Law exponent n) and foam quality, fg, at a pre-specified liquid-phase viscosity w, 

as shown in Equations (5.4) through (5.8): 
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                                         K μw = eafg
2+bfg+c⁄                                                                              (5.4) 

                                      n = −0.45fg + 0.7633                                                                        (5.5) 

where, a, b, and c are model parameters defined as  

                               a = (−0.533μw
2 + 3.6735μw − 13.546)                                                   (5.6) 

                               b = (0.8926μw
2 − 6.5877μw + 29.966)        , and                                   (5.7) 

                               c = (−0.3435μw
2 + 2.5273μw − 14.218)                                                 (5.8) 

where K and µw have the units of [
𝑑𝑦𝑛𝑒−𝑠n

𝑐𝑚2 ] and [cp].  

Wang et al. (2017) further improved Edrisi and Kam’s model (Edrisi and Kam, 2013) with the 

concept of two regimes by using 9 model parameters, overcoming the major limitation of coupled 

foam rheology along the fg* line. The model from Wang et al. (2017) was applied to foam 

circulation scenarios, and the results in terms of pressure, foam-quality, foam-density and mixture-

velocity profile were compared with previous models of Chen et al. (2009) and Edrisi and Kam 

(2015), as shown in Wang et al. (2018). 

 

5.2 Objectives 

Although using foams to bullhead a gas kick has been accepted as a novel and reliable 

technique when drilling a well with total fluid loss or sour gas migration problems, it is yet to be 

clear exactly what happens as foam capmud is injected during the process, primarily because of 

complicated foam properties as well as interactions between different types of fluids in the annulus. 

Therefore, the objective of this study is to model and simulate the bullheading process of gas kick 

using a foam-assisted pressurized mud cap drilling technique for well control. More precisely, the 

process of interest is the propagation of foam mixture in the annulus, during which gas fraction 

and foam rheological properties change with time and vertical locations, to suppress gas kick 



 
97 

containing hydrocarbon or toxic gas down to the bottom hole and flow back into the fractured 

formations.  

Three scenarios are considered in this study: (i) injected foams not in contact with formation 

gas during the process because of relatively quick response after gas kick (i.e., a smaller response 

time, tresp) as Base Scenario, (ii) injected foams in contact with formation gas because of relatively 

slow response after gas kick (i.e., a larger tresp), but foam stability not affected by the gas kick 

keeping the formation gas right below foam front, as Scenario 1, and (iii) the same as (ii) but losing 

foam stability at the interface between foam front and formation gas, as Scenario 2. This study 

borrows the model and model parameters from Wang et al. (2017, 2018) in order to accommodate 

two distinct rheological properties represented by high-quality and low-quality regimes and 

calculate the frictional pressure loss during foam flow.  

Because of the focus made on modeling and simulating bullheading process based on the 

complexity of foam capmud, this study simplifies its calculations by making the following major 

assumptions: gas is compressible but liquid is not; there is no mass transfer between different 

phases; the formation gas influx exists as a single gas bubble in the well (so-called a single bubble 

model), therefore there is no two-phase flow regime concept between drilling mud and formation 

gas; the formation fluid has only gas phase with a pre-specified amount of influx; the temperature 

is constant along the well, but the pressure changes with time (t) and vertical distance (z) due to 

hydrostatic and frictional pressure losses; frictional pressure loss from drilling mud and formation 

gas is negligible compared to that from foam, among many (more details are shown below with 

model description). It should be noted that these assumptions are made not because of their 

insignificance but because of the primary focus of this study on foams. Each of these topics can 

be investigated as a separate topic in the future.  
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5.3 Methodology  

5.3.1 Modeling of Foam-Assisted Mudcap Drilling 

In order to bullhead a gas kick, foam mixture as capmud is continuously injected down to the 

annulus at a pre-specified total injection flow rate (Qt) (i.e., a sum of gas and water rates (Qg at the 

standard condition (or Qgsc) and Qw, respectively); Qt = Qg + Qw) and injection foam quality fg 

(i.e., fg = Qg /( Qg + Qw)). During the process, the system is balanced by keeping the bottom hole 

pressure equal to the formation pressure.  

Figure 5. 3  illustrates the Base Scenario bullheading process. At time t = t1, the well is shut-

in, the bottom hole pressure is balanced with the formation pressure, and no more gas enters the 

wellbore after a gas kick occurs initially. The gas kick volume, Vgk, has a value of Vgkbtm at the 

bottom hole, as an input parameter. Up until foam injection is initiated at t = t2, there is a time 

interval required to respond to the kick, so-called response time (tresp), during which the gas kick 

migrates upward freely at a pre-specified bubble-rising velocity of ubr (in other words, t2 = t1 + 

tresp). The longer the response time, the more upward the gas kick migrates and the thicker the gas-

occupied segment due to gas expansion.  
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Figure 5. 3 Foam-assisted bullheading process when foam is not in contact with formation gas  

 

At time t = t3, a certain amount of foam is already injected continuously during the time period 

of t3 – t2. Note that although the total injection flow rate (Qt) is maintained, the actual Qt value 

decreases with time, as the injection pressure (Pinj) builds up and Qg decreases due to gas 

compression. This implies that the foam frontal velocity (i.e., the downward velocity of foam front, 

uff) also slows down with time. Even though the injected foam pushes drilling mud downward, the 

formation gas does not necessarily move in the same direction – for example, the formation gas 

migrates downward only if uff  > ubr, while the formation gas can still migrate upward, even with 

foam injection, if uff  <  ubr.  

The system reaches t = t4, t5, and t6, subsequently afterwards, as foam successfully pushes 

drilling mud below the formation gas back into the formation, then the formation gas (t = t4), 

drilling mud between foam and formation gas (t = t5), and finally reaching a steady state with full 

of foam in the annulus (t = t6).  The injection pressure (Pinj) increases continuously from t1 through 

t6, after which it stays at the maximum value.   
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If the response time (tresp) is large, the gas kick can rise further upward and may contact the 

front of foam moving downward during the process. The problem becomes more complex, if it 

happens, due to the coarsening effect at the interface between gas kick and foam front. This study 

investigates such cases as well, assuming that foam stability at the interface is not affected by the 

formation gas (Scenario 1) and that foam becomes unstable and turns into gas and water of the 

same fraction as soon as it contacts the formation gas and the coalescence wave propagates upward 

at a constant wave velocity of ufc (Scenario 2). Scenarios 1 and 2 are two extreme cases, of course, 

with the reality somewhere in between (i.e., foam coarsening at the interface does occur to a certain 

extent, which depends on the nature of interactions between foam and formation gas).  

Figure 5. 4  shows an example of Scenario 1 where tresp is relatively larger than Base Scenario. 

Note that the process in Scenario 1 is the same as that in Base Scenario, but at t = t4, the foam front 

contacts the gas kick below which the drilling mud is positioned. For t > t4, the position of the 

foam front is determined by the injection rate and the gas phase is displaced and located right 

below the foam front. The process is continued to push the drilling mud (t = t4) and then formation 

gas (t = t5) into the formation, until it reaches the steady state with the well finally filled with foams 

(t = t6).   
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Figure 5. 4 Foam-assisted bullheading process when foam is in contact with formation gas but 

remains stable  

 

Similarly, Figure 5. 5  shows an example of Scenario 2. While up to t = t4 it is the same as 

Scenario 1, after t = t4 foam mixture breaks down to gas and liquid, forming wet gas, at the interface 

between foam and formation gas. As a result, the foam front contacts the gas kick at t = t4 from 

which the wet gas segment grows upward from the interface at the pre-specified foam coalescence 

wave velocity of ufc. The foam injected from the surface then pushes the drilling mud (t = t5), 

formation gas (t = t6) and wet gas (t = t7) into the formation, until it reaches the steady-state 

condition (t = t8). It must be noted that the final steady state of the well fully occupied by foams at 

t = t8 can be achieved only when the foam front velocity is greater than the foam coalescence 

velocity (i.e., uff > ufc). (If uff = ufc, the foam front stays at the same position below which the well 

is occupied by wet gas at steady state, while if uff < ufc, the front moves back upward such that the 

steady state is obtained with wet gas only eventually.)  
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Figure 5. 5 Foam-assisted bullheading process when foam is in contact with formation gas and 

becomes unstable 

 

The surface pressure at the top of the annulus (Ps, also called annular pressure or injection 

pressure during foam injection) is expressed as follows by using formation pore pressure (Pp) and 

hydrostatic, frictional and accelerational pressure losses (∆Ph, ∆Pf, ∆Pacc, respectively) : 

                                              Ps = Pp − ∆Ph − ∆Pf − ∆Pacc                                                         (5.9) 

where                                   ∆Ph = 0.052𝜌𝑗𝐻                                                                         (5.10)  

and                                      Δ𝑃𝑎𝑐𝑐 = 𝜌𝑗(𝑢1
2 − 𝑢2

2) ∆𝑧⁄                                                              (5.11) 

Note that 𝜌𝑗 is the density of phase j, H is the height of the column with phase j, u1 and u2 are the 

average fluid velocities of two adjacent vertical locations over the distance of ∆𝑧.  

For multiphase mixture with gas and water, the mixture density (m) and total mixture velocity 

(ut) are defined as follows: 

                                       𝜌𝑚 = 𝑓𝑔𝜌𝑔 + (1 − 𝑓𝑔)𝜌𝑤                                                                 (5.12) 

                                       𝑢𝑡 = 𝑄𝑡 𝐴 = (𝑄𝑔 + 𝑄𝑤) 𝐴 =⁄⁄ 𝑢𝑔 + 𝑢𝑤                                          (5.13) 
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where 𝑓𝑔 is the gas fraction, 𝜌𝑔, 𝜌𝑤 are the densities of gas and water, 𝑄𝑡  is the total injection rate, 

𝑄𝑔, 𝑄𝑤  are the injection rates of gas and water, A is the cross section flow area, and 𝑢𝑔, 𝑢𝑤 are 

the superficial velocities of gas and water. 

This study assumes that ∆Pacc is negligible compared to ∆Ph and ∆Pf,. In addition, it further 

assumes that ∆Pf of formation gas and drilling mud is negligible compared to ∆Pf of foam mixture, 

because foams are more viscous than mud or gas by a few orders of magnitude difference. Wang 

et al. (2017) is used to determine ∆Pf for the segment occupied by foams in the annulus. 

 

5.3.2 Foam Rheological Model 

Foam may be generated either at the injection point (known as in-situ generation) or by passing 

through a porous medium or coiled tubing generator. When foam (or foamed mud) is injected 

during mudcap drilling, the hydrostatic pressure can be reduced due to lower mixture density, and 

the viscosity can be improved significantly due to liquid films (or, lamellae) separating bubbles. 

The density and viscosity can be adjusted further depending on the need, by controlling total 

flowrate (Qt), foam quality (fg), surfactant compositions and concentrations, chemical additives, 

and so on. Because the gas phase in the foam mixture is compressible, total flowrate (Qt) and foam 

quality (fg) are sensitive to the surrounding pressure and temperature conditions.  

Briefly describing, Figure 5. 6  shows an example of the steady-state pressure contours 

showing the high-quality and low-quality regimes. Shown together is the bubble size distribution 

– fine-textured foams in the low-quality regime, indicated by point “a” and point “b”, and 

repetitions of fine-textured foams and free gas in the high-quality regime, indicated by point “c” 

and point “d”, separated by the threshold foam quality, fg = fg*. The region represented by a 

rectangular box at relatively lower flow rates (i.e., connecting (0, 0), (uwRef, 0), (0, ugRef) and (uwRef, 
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ugRef)) is a transition region (between the two flow regimes) where the foam characteristics are not 

fully developed.  

 
Figure 5. 6 Foam model that has both dry and wet rheological behaviors 

 

This study uses Wang et al.’s model (2017) with 9 model parameters as shown in Table 5. 1  

for foam flow in annulus. More precisely, 3 parameters are employed to define the reference point 

(uwRef, ugRef, ∆PRef), 2 parameters to define the Power-Law model in the high-quality regime (KH 

and nH along ug = ugRef), 2 parameters to define the Power-Law model in the low-quality regime 

(KL and nL along uw = uwRef), and 2 parameters to define the average slopes of contour lines in both 

regimes (mH and mL). Wang et al. (2018) has more details on how the model can be used for actual 

hydraulics calculations, similar to this study.  
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Table 5. 1 Nine foam model parameters used for frictional pressure loss in this study  

Parameters Units 

uwRef Superficial liquid velocity at the 

reference point 
0.46 ft/s 

ugRef Superficial gas velocity at the 

reference point 
2.6 ft/s 

ΔPRef Pressure gradient at the 

reference point (frictional) 
0.05 psi over 1 ft horizontal distance 

mH Average contour slope in the 

high-quality regime 
90 Dimensionless 

mL Average contour slope in the 

low-quality regime 
1.9 Dimensionless 

KH Consistency index in the high-

quality regime 
0.0518 

dyne − s1.1223

cm2
 

nH Power-Law Exponent in the 

high-quality regime 
1.1223 Dimensionless 

KL Consistency index in the low-

quality regime 
0.0008 

dyne − s1.652

cm2
 

nL Power-Law Exponent in the 

low-quality regime 
1.652 Dimensionless 

 

5.3.3 Foam-Assisted Well Control Workflow 

This study uses a finite difference calculation method along the annulus. Iterations are needed 

to satisfy the pre-specified formation pressure Pp at the bottom hole by assuming a new total 

injection flow rate (Qt) in each iteration (This specifies injection foam quality (fg) at the annular 

surface).  

Table 5. 2  lists all the input data required for the simulation work. As discussed above, the 

Base Scenario has a relatively short response time (tresp) of 20 minutes, while Scenario 1 and 2 

have a longer response time (tresp) of 50 minutes. In Scenario 2, foam coalescence wave velocity 

(ufc) is taken as half of the foam frontal velocity (uff) to account for destabilizing foam, turning 

into wet gas of the same gas and liquid fractions. 
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Table 5. 2 Input data for foam PMCD well control process 

Surface  

Conditions 

Surface pressure, psia Ps 14.7 

Surface temperature, ˚F Ts 70 

Operation 

Conditions 

Responding time between shut in 

and foam injection, min 
tresp 20, 50 

Injection pressure, psia Pinj Variable 

Injection temperature, ˚F Tinj 70 

Injection liquid rate, gpm Qw 53.2 

Injection gas rate, scfm Qgsc 12800 

Well Data 

Total Vertical Depth, ft TVD 10000 

Annulus outer diameter, inch Do 8.5 

Pipe size, inch do, di 5 x 4.276 

Temperature gradient, ˚F/ft Tgra 
0 

(isothermal) 

Fluid Data 

Mud Weight, ppg MW 13 

Formation gas kick volume at BH  

condition, bbl 
Vgkbtm 20 

Formation gas kick specific 

gravity  

(Methane) 

SGgk 0.6 

Bubble rising velocity, ft/s ubr 2 

Formation 

Data 
Formation pressure, psia Pp 8000 

Foam 

Foam coalescence wave velocity, 

ft/s 
ufc 0.5 x uff  

Surfactant solution + Nitrogen (SGn2=0.9723) 

 

Numerical calculation conducted in this study essentially solves material balance equations for 

drilling mud, formation gas, and injected foams. The following outlines the workflow for the Base 

Scenario numerical calculations briefly that can be extended to other scenarios appropriately: 

1. Right after well shut-in (t = t1), calculate the top of the formation gas (zgktop) based on the 

input gas kick volume (Vgkbtm). Note that the bottom of the formation gas coincides with the bottom 

hole (zgkbtm=  TVD). Also note that the shut-in drillpipe pressure (SIDPP) and the shut-in casing 

pressure (SICP) can be calculated by using U-tube concept and the formation pore pressure (Pp) 

provided. 

2. At the onset of foam injection (t = t2), the bottom of the formation gas is determined by the 
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bubble-rising velocity (ubr), i.e., zgkbtm= TVD - ubr×tresp. Using the pressure at z = zgkbtm, a new 

formation gas volume (Vgk) can be calculated together with the new top of the formation gas 

(zgktop). This requires the compressibility factor (Z) of the formation gas. The annular surface 

pressure, or injection pressure (Pinj), can then be calculated from the hydrostatic pressure gradients 

of drilling mud and formation gas.  

3. For t > t2, the calculation is conducted with a pre-determined time step size of t (t = 1 

min, typically). At an assumed value of Pinj, determine the depth of foam front (z = zff) and calculate 

the hydrostatic and frictional pressure losses (∆Ph and ∆Pf) (Note that the segment occupied by 

foams is modelled with a number of (typically, tens of) grid blocks). The new location of formation 

gas can be calculated similar to step 2. When the calculated pressure at the bottom hole is not close 

enough to the input formation pore pressure (Pp), the calculations are repeated with a new value of 

Pinj.  

4. Repeat step 3 at new time t until the steady-state is obtained.  

 

5.4 Results and Discussions 

By using 9 foam model parameters listed in Table 5. 1 , the pressure contours as a function of 

gas and liquid velocities (or, total velocity and foam quality, equivalently) can be generated to 

calculate the frictional pressure loss for foam flow in the annulus. Figure 5. 7  shows the results 

with parameter values. The reference gas and liquid velocities show fg* = 0.85 that separates the 

two flow regimes. In the following section, the details of simulation results for each of scenarios 

are presented.  
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Figure 5. 7 Foam flow regime map for foam flowing in annulus 

 

 

 

5.4.1 Results of Base Scenario 

Figure 5. 8  shows how the fluid column in the annulus changes with time during bullheading 

process. Note that the time t = t2 = 0 min represents the onset of foam injection into the annulus 

and the response time (tresp) from the well shut-in to foam injection, that is tresp = t2 – t1, is 20 mins 

during which the gas kick migrates upward to show the top and bottom of the formation gas at 

zgktop = 7053 ft (2149.7 m) and zgkbtm = 7600 ft (2316.5 m), respectively. The results show that 

foams injected from the top progressively displace the formation gas through the drilling mud in 

between, bullheading the formation gas completely after about 40 mins of foam injection and 
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finally reaching the steady state (with the annulus fully occupied by foams) after around 75 mins. 

During the process the bottom hole pressure is the same as the formation pressure, and the 

downward foam front velocity (uff) is faster than the velocity of formation gas bullheaded by the 

bubble rising velocity (ubr).  

 

 
Figure 5. 8 Base Scenario results showing vertical locations of different fluid zones with time 

[min] 

 

Figure 5. 9  and Figure 5. 10  present the pressure profile as a function of time during this 

process, all together in one plot as well as multiple plots at different times. At the time of well 

shut-in (t = t1), the gas kick is accumulated at the bottom hole with the input gas kick volume 

(Vgkbtm) making zgktop = 9564 ft (2915.1 m) and zgkbtm = 10,000 ft (3048 m). Because of the lower 

hydrostatic pressure of gas, the pressure gradient (or, slope) within the formation gas is much less 
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than that in the drilling mud. From t = t2 = 0 mins, foams are injected (again, as represented by the 

low pressure gradient near the surface) such that the annulus is filled with foams, drilling mud, 

formation gas and drilling mud from the top. Note that the filled and open symbols within the foam 

zone represent foams in the high-quality regime (fg > fg*) and low-quality regime (fg < fg*), 

respectively (note that fg* = 85% and the injection fg = 90% at the time of initial foam injection). 

As foam migrates downward, it pushes fluids back into the formation step by step as reflected by 

the pressure gradient. As the injection pressure increases with time during the process, the gas 

phase in the foam zone is compressed further and there is more chance for foams to stay in the 

low-quality regime at later time and at deeper location.   

 

 
Figure 5. 9 Base Scenario results showing pressure profile changing with time  
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Figure 5. 10 Base Scenario results showing pressure profile at different times  

 

Figure 5. 11 , Figure 5. 12  and Figure 5. 13  show the position of foam front (zff), foam quality 

(fg), foam density (m) and foam velocity (ut) as a function of time during the process. The results 

show that even though the mass rate at the injection point remains the same, foam is compressed 

further with time, and thus foam density increases and foam velocity decreases. 
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Figure 5. 11 Base Scenario results showing foam quality profile with time 

 

 
Figure 5. 12 Base Scenario results showing foam density profile with time 
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Figure 5. 13 Base Scenario results showing foam velocity profile with time 

 

The results in Figure 5. 9  through Figure 5. 13  can be used to determine the injection pressure 

at the annular surface (Pinj) as shown in Figure 5. 14 , with the annular pressure at the time of well 

shut-in (t = t1) noted as a reference (note that tresp = t2 – t1 = 20 mins).  At the time of foam injection 

(t = t2 = 0 min), Pinj increases by about 65 psi (448159 Pa) due to gas migration and expansion. 

The annular pressure Pinj keeps increasing until t = 32 mins because the injected foams 

continuously push drilling mud below the formation gas into the formation. The same trend is 

continued after t = 40 mins (i.e., displacing drilling mud on the top of the formation gas) and, in 

between (32 mins < t < 40 mins), the pressure increase is moderate when the injected foam 

bullheads the formation gas through the drilling mud. After t = 75 mins, the surface annular 

pressure is maintained constant after reaching the steady state condition. 
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Figure 5. 14 Base Scenario results showing injection pressure at the annular surface with time 

 

 

5.4.2 Results of Scenario 1 

Scenario 1 considers the case with a larger response time (tresp) of 50 mins where the formation 

gas rises further upward and becomes in contact with the injected foam during the process, as 

shown in Figure 5. 15 . At t = t2 = 0, the gas kick zone migrates up and occupies the annulus from 

zgktop = 3116 ft (949.7 m) to zgkbtm = 4000 ft (1219.2 m). With foam injection, to the foam front 

makes a contact with the formation gas at t = 44.54 mins after displacing the mud in between. At 

t = 74.23 mins, the system reaches a steady state after displacing the drilling mud and formation 

gas completely. 
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Figure 5. 15 Scenario 1 results showing vertical locations of different fluid zones with time [min]  

 

Similar to the Base Scenario, Figure 5. 16  and Figure 5. 17  show the pressure profiles with 

time, while Figure 5. 18  through Figure 5. 20  show the position of foam front (zff), foam quality 

(fg), foam density (m) and foam velocity (ut) as a function of time during the process. Overall, 

there are no significant differences between Base Scenario and Scenario 1 except for the fact that 

there is no mud between the injection foam and formation gas after t = 44.56 mins.  
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Figure 5. 16 Scenario 1 results showing pressure profile changing with time  

 

 
Figure 5. 17 Scenario 1 results showing pressure profile at different times 
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Figure 5. 18 Scenario 1 results showing foam quality profile with time 
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Figure 5. 19 Scenario 1 results showing foam density profile with time 

 
Figure 5. 20 Scenario 1 results showing foam velocity profile with time 
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The results in Figure 5. 16  through Figure 5. 20  can be used to determine the history of 

injection pressure as shown in Figure 5. 21 . The results show only two different events – foam 

displaces the drilling mud until t = 71 mins and the formation gas afterwards to reach the steady 

state (t = 74.43 mins). They are easily distinguished by two different slopes. 

 
Figure 5. 21 Scenario 1 results showing injection pressure at the annular surface with time 

 

 

5.4.3 Results of Scenario 2 

Scenario 2 considers the case when the injected foam becomes in contact with the formation 

gas, and foam becomes unstable at the interface. The destabilizing foam at the interface due to 

foam coalescence is factored in based on the wave velocity of foam coalescence (ufc). As shown 

in Figure 5. 22  through Figure 5. 27 , the results are identical to Scenario 1 (Figure 5. 15 ) until t 

= 44.54 mins, after which there is a zone with the wet gas (after foams turning into gas and water 

of the same fraction) that grows with time. As a result, foam displaces drilling mud, formation gas, 
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and wet gas into the formation to reach the steady state at t = 122 mins. As shown in Figure 5. 22  

through Figure 5. 27 , foam front velocity (uff) slows down significantly once the wet gas is formed 

and located between the injected foams and formation gas. This steady state with foam can only 

be obtained when uff> ufc. If uff = ufc, foam front stays at the same depth while the wet gas occupies 

the hole below. On the contrary, if uff < ufc, foam becomes coarsening continuously (with such a 

wave propagating upward) and the hole is filled with wet gas once the steady state is reached.  

 

 
Figure 5. 22 Scenario 2 results showing vertical locations of different fluid zones with time [min]  
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Figure 5. 23 Scenario 2 results showing pressure profile changing with time  

 

 
Figure 5. 24 Scenario 2 results showing pressure profile at different times  
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Figure 5. 25 Scenario 2 results showing foam quality profile with time 
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Figure 5. 26 Scenario 2 results showing foam density profile with time 

 
Figure 5. 27 Scenario 2 results showing foam velocity profile with time 
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Figure 5. 28  shows the history of injection pressure. Scenario 2 essentially shows that, with 

foams breaking at the interface and forming wet gas, the bullheading process takes longer (74.23 

mins in Scenario 1 vs. 122 mins in Scenario 2) and the injection pressure becomes higher (6098 

psia (42044246 Pa) in Scenario 1 vs. 6120 psia (42195931 Pa) in Scenario 2). This implies the 

stability of foams, when in contact with the formation gas, is an issue of paramount importance, 

affecting the maximum injection pressure as well as the operation time for bullheading process. 

There are additional factors that can be taken into consideration such as surfactant formulation and 

concentration, formation gas composition with possible presence of oil, mud composition and 

additives, colloidal and interfacial chemistry and so on. It is believed that Scenario 1 and Scenario 

2 provide two extreme cases and, as a result, the reality can be found somewhere in between.   

 
Figure 5. 28 Scenario 2 results showing injection pressure at the annular surface with time 

 

It should be noted that if more accurate simulation results are needed, some of the assumptions 

made in this study should be revisited. For example, one may improve the model by adding mass 
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exchange between different fluids, making gas rising velocity varying with depth, gas properties 

and surrounding conditions (pressure, temperature), accounting for eccentricity of the annulus 

geometry, describing the gas phase as a mixture of formation gas and drilling mud, allowing the 

deviation of well trajectory and open-/cased-hole segments, among many. 

It is important to point out that the two major outcomes (maximal injection pressure and overall 

operation time) we calculated in this study are based on the finest foam texture flow available. Any 

deviation from the finest foam texture (formation brine, dilution of surfactant, oil-wet debris, etc.) 

will make foam less stable, leading to lower frictional pressure loss and less efficient downward 

displacement of gas kick. Therefore, the calculated values tend to overestimate the maximal 

injection pressure and underestimate the duration time of operations.    

 

5.4.4 Case Study: Showing the Presence of Two Flow Regimes 

This study is developed based on a hypothesis that foams, bullheading the drilling mud or 

formation gas in the wellbore, should be modeled with two distinct foam flow regimes. This 

section throws light on the necessity of the two foam flow regimes in modeling by using an 

evidence from the field-scale testing, that is, a foam-assisted sand-cleanout job in coiled tubing. 

The job chart, recording injection flow rates, circulation pressure and wellhead pressure, allows 

the frictional pressure loss during foam circulation to be determined and the pressure contours to 

be sketched.  

Figure 5. 29  shows the well trajectory of the deviated well with survey data. The circulation 

pressure (i.e., surface injection pressure) is recorded at top of the coiled tubing on the reel, and the 

wellhead pressure (i.e., back pressure) is recorded at the top of the annulus tubing/pipe. The job 

intends to clean out fill (that is, a mixture of 20/40 Carbolite proppants and formation fines 
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(sandy/silty) from the reservoir) by injecting nitrogen foam. The top of fill is 9176 ft (2797 m) MD 

(measured depth), up inside the tailpipe, down to the TCP (tubing-conveyed perforating) guns at 

9245 ft (2818 m) MD. Figure 5. 30  shows the details job chart in real time. At the beginning, the 

coiled tubing run in hole to 6562 ft (2000 m), and starts foam injection, and then continues running 

in hole with foam circulation. When the tubing arrives the fill depth around 9185 ft (2800 m), foam 

starts to circulate and transport sands to surface. During the cleaning period, the tubing is pushed 

back and forth. Finally, when there is shown no sands returned to surface, the coiled tubing is 

pulled out from the well and finishes the cleaning job.  

 
Figure 5. 29 Well trajectory of field-scale testing and survey data 

 

As shown in Figure 5. 30 , three sample points, believed to be at or near the steady-state 

condition at different well depths (6562 ft (2000 m), 9212 ft (2808 m), and 9239 ft (2816 m)), are 

chosen and  denoted as Point A, Point B, and Point C, respectively. Table 5. 3  displays the liquid 

(i.e., surfactant solution with a similar density with water) and gas (i.e., nitrogen) flow rates 

together with pressure data. Note that the wellhead pressure and circulating pressure are measured 

at the same elevation and, thus, the difference between the two is approximately the frictional 

pressure loss over the entire distance (i.e., down through the coiled tubing and up through the 

Measured Depth, 

(MD), 

ft; m 

Inclination 

Angle,  degrees 

Total Vertica 

Depth, 

(TVD), 

ft; m 

0 0 0 

2,241; 683 10 2230; 680 

3,278; 999 32 3,194; 974 

5,958; 1,816 35 5,441; 1,658 

8,005; 2,440 32 7,152; 2,180 

9,019; 2,749 32 8,015; 2,443 

9,301; 2,835 31 8,256; 2,516 

14,587; 

4,446 
41 12,535; 3,821 
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annulus tubing) assuming the gas and liquid phases are incompressible. The overall frictional 

pressure gradient, (
∆P

∆z
)

f
, can then be calculated such as 0.2869 psi/ft (6489.8 Pa/m), 0.1832 psi/ft 

(4144 Pa/m), and 0.1138 psi/ft (2574.2 Pa/m)for Point A, B, and C, respectively.  

The results show an interesting aspect. All at the same liquid flow rates, Point A (with Qg = 

800 scfm (0.376 m3/s)) has (
∆P

∆z
)

f
 higher than Point B (with Qg = 1000 scfm (0.47 m3/s)) that is 

higher than Point C (with Qg = 700 scfm (0.329 m3/s)). When this response is plotted in a format 

of two flow regime pressure contours as shown by the three data points in Figure 5. 31 , it seems 

obvious that the two-flow regime concept with rheological properties of dry foams and wet foams 

must be incorporated in the modeling process.  

 
Figure 5. 30 Job chart of field-scale testing in real time 

 



 
128 

Table 5. 3 Flow rate data and measured pressure data for Point A, B, C 

Data 

points 

Measured 

Depth,  

MD, 

ft; m 

Gas 

flow 

rate,  

Qg, 

scfm 

Liquid 

flow rate,  

Qw,  

gpm 

Circulating 

pressure,  

Pcir,  

psia 

Wellhead 

pressure,  

Pwh, 

psia 

Approximated 

frictional  

pressure loss,  

Pcir – Pwh, 

psi 

Approximated 

frictional  

pressure 

gradient, 

(
∆P

∆z
)

f
, 

psi/ft 

A 6562; 2000 800 9.24 3880 115 3765 0.2869 

B 9212; 2808 1000 9.24 3505 130 3375 0.1832 

C 9239; 2816 700 9.24 2238 135 2103 0.1138 

 

 

 
Figure 5. 31 Three near-steady-state data points and the sketch of pressure contours 

 

There are many foam models available in literature. The example calculations for the 

circulation pressure, by using four different models (i.e., Model A based on Bingham-Plastic, 

Model B based on Power-Law, and Model C and D based on two empirical models) are shown in 

Table 5. 4 . Irrespective of the accuracy of different models, this exercise proves how difficult it 

is to match actual field-scale data that, in turn, highlights the importance of two flow regimes. 
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Table 5. 4 Comparisons of predicted circulation pressure with different foam models  

Data 

points 

Measured 

Depth,  

MD, 

ft; m 

Circulating 

pressure, 

Pcir, 

psia 

Predicted circulating pressure, Pcir, psia 

Model A 

(Bingham-Plastic) 

Model B 

(Power-Law) 
Model C Model D 

A 6562; 2000 3880 3445 2396 3206 1685 

B 9212; 2808 3505 4684 2926 4329 1873 

C 9239; 2816 2238 3296 2434 3086 1426 

 

5.5 Conclusions 

This study investigates a process of foam-assisted mud cap drilling with three different 

scenarios through numerical calculations (Base Scenario, foam bullheading gas kick without 

making contact; Scenario 1, foam bullheading gas kick by making contact with the formation gas 

but foam stability not affected; and Scenario 2, foam bullheading gas kick and losing its stability 

in contact with the formation gas). The complicated foam rheological model, showing the 

dependence on the total flow rate and foam quality through the high-quality and low-quality 

regimes, is applied to calculate the frictional pressure loss within the foam zone. The following 

shows major findings of this study: 

1. By investigating a range of possible scenarios, this study shows that the foam model with two 

flow regimes can be used to predict what happens during foam-assisted mudcap drilling 

process. 

2. The results from simulations show that the two major unknowns in this type of bullheading 

process, i.e., the maximum injection pressure and overall operation time required for the 

process, can be determined depending on the scenarios.  

3. If the response time is short such that foams do not interact with formation gas, the prediction 

of the process becomes relatively simple. If the response time is long and if the injected foams 

are in contact with the formation gas, the results can be more difficult to predict because the 
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interaction between foam and formation gas at the interface plays a significant role. If the latter 

happens, it is important to understand and quantify the level of interactions between foam and 

formation gas from additional investigations. 

4. The simulation results clearly show that there is a good chance that foams during this process 

experience both high-quality regime and low-quality regime over the range of vertical 

locations and over the range of operation time. This justifies the use of foam model with two 

flow regimes.  

5. The analysis of field-scale data clearly shows the presence of both high-quality regime and 

low-quality regime. This justifies the use of foam model with two different rheological 

properties.  
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CHAPTER 6. CONCLUSIONS AND FUTURE WORKS 

This work focuses on understanding foam fluid flow and its application in drilling, workover, 

and production stages. We have proposed a new foam rheological model with 9 model parameters 

based on the concept of Two Foam-Flow Regimes, combining the rheology of both dry and wet 

foams. This new model has been applied to simulate the well-used foam drilling, controlling gas 

migration processes to investigate the performance and potential of foam in these areas.  

6.1 Conclusions 

Throughout the whole study, we can make the following conclusions: 

• The foam drilling simulation with newly developed foam model demonstrates the necessity 

of considering both low quality and high quality foams in the foam model. After comparing 

with the existing models of Chen et al. (2009) and Edrisi and Kam (2013), we conclude 

that ignoring coarsening foam texture in the high-quality regime can result in significant 

errors, as much as 40 – 60 %, in the scenarios tested. Even for a model with two flow 

regimes built in, not incorporating a transition region and two independent foam 

rheological properties may also lead to a meaningful level of errors in terms of injection 

pressure and bottom hole conditions.  

• Using the complicated foam rheological model, which shows the dependence of total flow 

rate and foam quality, the transient simulation of foam bullheading gas kick can predict 

what can happen if foam is assisted. The calculation of maximum injection pressure and 

overall operation time can be very different in various scenarios, such as different response 

times and foam interactions at interface zones. The simulation results show that having 

both high-quality and low-quality regimes foam in the foam model plays a vital role 

considering such a range of vertical locations and a range of operation times. 
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• Using the field data from wellbore clean-up process, we can prove the evidence of Two 

Flow Regimes in terms of foam flow in circulating condition. Models such as the one we 

proposed in this study can further improve the understanding and interpretation of pressure 

changes in field operations.  

This study covers some new perspectives of foam modeling work and foam-related 

applications, this can certainly improve the understanding of the fundamentals of foam and 

handling of foam in field operations, as explained below:  

From the study of steady-state foam circulation such as foam drilling and wellbore cleanout, 

we know foam rheology plays a vital role in the implementation of foam hydraulics simulator. 

Besides those existing foam models, incorporating this new foam model, which is built on the 

basis of two flow regimes, into foam hydraulics simulators will improve the accuracy of pressure 

and foam properties at bottom hole condition.   

From the study of foam mud cap drilling application, we learn that although foam interactions 

at the interface zone is a very complex topic, it still plays a critical role in the foam 

bullheading/displacement process. Taking into account those three scenarios among many, we find 

that the two major parameters field engineers most concern about, the maximum injection pressure 

and overall operation time, greatly depend on foam stabilities. As mentioned in Chapter 5, our 

modeling results are based on the most ideal case of foam structure. The calculated maximal 

injection pressure can be treated as the upper bound of the actual maximal injection pressure. 

Meanwhile, the calculated overall operation time can be treated as the lower bound of the actual 

required duration time of foam bullheading operation. 

 

6.2 Future Works 



 
133 

In the future exploration, we can further improve our work from the following aspects: 

• More fundamental knowledge associated with the interface between foam and fluids is 

demanding. In field operations, foam does not solely exist in borehole, pipe or tube. Mixing 

with certain amount of oil (from oil-based mud, or from reservoir) or sandy fluid will 

inevitably affect foam stability and foam properties. Having small-scale experimental 

works focusing on this field will help us get closer to the actual situations that foam faces 

in downhole condition. 

• To improve the reliability of our developed foam model, despite the field data from a 

wellbore clean-up case we present in Chapter 5, we need to explore more similar field-

scale tests that inject foam especially at high foam quality injection condition, in 

underbalanced drilling, wellbore clean-up, or other steady state conditions. Pressurized 

mudcap drilling for bullheading gas kick back to formation is a very novel technology to 

date. PMCD strictly requires well-trained field engineers upon operation. Using light mud 

such as foam is still an unmatured attempt. We need more field trials to justify its 

feasibility.  

• We can further explore a broad range of other foam applications such as foam liquid 

unloading, foam fracturing, foam cementing, foam wellbore clean-up etc. 
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