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Preface

This document describes two distinct platforms that implement electrochemical

impedance spectroscopy (EIS) within microfluidic devices for rapid, label-free cell analysis.

Each study provides proof-of-concept evaluations of these devices for cell counting

and viability analysis applications to mitigate some of the challenges associated with

conventional methods. Chapter one includes background information on each version of

EIS selected and motivations for the studies conducted. Chapter two describes the design

and fabrication of a modular, reusable microfluidic device. Additionally, the methodology

for and results from the application of this platform for the measurement of zebrafish

sperm cell concentrations are presented. Chapter three describes a microfluidic impedance

flow cytometer created by a computer-aided manufacturing method for parallel electrode

geometry fabrication. This device was used for single-cell viability testing of Jurkat

cells on a continuous flow basis. Cell detection events and discrimination of intact and

disrupted cells on the basis of their membrane properties was performed using a custom

Matlab script. Major contributions to this project were made by Dr. Julianne Audiffred

and Micah Fincher including device design and fabrication, maintenance of cell lines, and

raw signal collection, that are shown in Dr. Audiffred’s dissertation “Quantitative Macro-

and Microscale Methods for Characterizing Cell Viability” (Louisiana State University,

2009). My contribution to this project, as detailed in Chapter 3, was to perform a more

thorough COMSOL simulation of parallel versus coplanar electrode geometry performance

in impedance cytometry applications, and to create a signal processing algorithm to

re-analyze the raw experimental data to improve upon the work pursuant to viability

status discrimination. As such, this work will be the basis of a co-authored manuscript
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that has been significantly re-written to include comparisons with microfluidic impedance

cytometry devices that have published more recently. Chapter four includes a summary of

conclusions from these efforts and a discussion of proposed future directions.
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Chapter 1. Background and Significance

1.1. Need for a Sperm Cell Counting Platform

The determination of sperm cell concentration is an integral factor in many

agricultural, research, clinical, and repository applications. Implementation of reliable

and robust methods for cell counting is imperative for these operations. For example,

sperm counts are a critical component in the diagnosis and prognosis of fertility, according

to World Health Organization (WHO) guidelines (Research 1992). Traditionally, this

has been performed by optical means whereby cells are counted by manual observation

with a microscope. However, manual counting is generally tedious, time consuming, and

prone to erroneous results (Auger 2000). Automated cell counting platforms capable of

accurate concentration measurements of a number of cell types are commercially available.

However, their cost and incompatibility with cell types such as sperm limit their use. A

recent review found significant differences in the correlations among various counting

methods of sperm cells (Kumar, Reddy, and Krishna n.d.). Thus, sperm cell counting

remains a challenge.

Zebrafish (danio rerio) have been used increasingly in research settings as a model

organism for embryology and genetics studies, with more than 30,000 distinct genetic

lines created to date. Effective maintenance and distribution of the gametes of these lines

is necessary for implementation and protection of these research resources (Jing et al.

2009). Cell concentration has been shown to be a fundamental consideration required for

effective implementation of various methods of preservation, fertilization, and distribution

of sperm cell lines from aquatic species. However, users often neglect to perform cell
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concentration measurements or adjust concentration to establish values which significantly

affects the efficacy of cell-preservation efforts (Dong, Huang, and Tiersch 2007). Moreover,

manual optical observation continues to be a predominant method for counting this cell

type. Potentially lacking in accuracy and repeatability, this approach acts as a barrier to

standardization of techniques for handling and use of zebrafish sperm cells.

1.2. Electrochemical Impedance Spectroscopy (EIS)

Leveraging the electrochemical properties of biological cells for analysis is an

inherently rapid and automatable approach compared to many other methods. In general,

electrochemical analyses involve the study of the nature and extent of changes in chemical

properties that result from the application of a direct or alternating electrical current

to the system being studied. Among the variations of this class of analysis methods,

electrochemical impedance spectroscopy (EIS) has become widely used for evaluating

biological samples owing to advantages including high sensitivity and low limits of

detection. The basic mechanism of EIS involves application of an AC voltage and the

measurement of the subsequent transfer function of the current response in the frequency

domain (Lasia 2014). This response is typically measured as electrical impedance, a

complex number with the form:

Z = R + jX (1.1)

where R = resistance, X = reactance, and j = an imaginary number. Instruments that

interrogate systems and collect impedance measurements typically do so in terms of

changes in the amplitude of the applied current, denoted as impedance magnitude, and

a shift in the phase of the applied signal. These components can be related to the real and
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imaginary properties of impedance by:

|Z| =
√
R2 +X2 (1.2)

θ = tan−1(X
R

) (1.3)

where |Z| = impedance magnitude and θ = phase. Using a knowledge of the dimensions

of the system under study and the frequency of the applied AC, these values can be

converted into and expressed in terms of constituent and related properties such as

resistivity, capacitance, and permittivity.

1.2.1. Base Elements of EIS

While impedance spectroscopy is a powerful technique for the analysis of biological

cell samples, a number of important design considerations must be made to achieve

sufficient device accuracy and sensitivity. Impedance spectroscopy tools generally consist

of several basic elements (each of which comprise a number of variations). Typically, EIS

is applied to biological samples of cells in liquid electrolyte solutions. A set of electrodes

is arranged adjacent to the sample, and voltage is applied via an excitation electrode by

a signal generation instrument. The change in the applied signal is carried to a signal

analysis apparatus (sometimes coupled with the generator) by a sensing electrode.

1.2.2. Electrode Geometry and Material

Traditionally, a three-electrode system has been used for impedance spectroscopy

where the third electrode, a reference electrode, measures and contributes to the

subtraction of the impedance signal corresponding to the cell-free electrolyte solution

(Brosel-Oliu et al. 2019). Early versions of dielectric spectroscopy tools for analysis of

liquid samples implemented coaxial probes (Raicu 1995) or parallel plate capacitors
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(Hollingsworth and Saville 2003). These methods provided for simple data analysis due

to their defined dimensions (Liu, Qiang, and Du 2021). Additionally, the large surface

areas offered by these geometries provide high measurement sensitivity. However, despite

these advantages, large-scale geometries suffer from an important drawback relevant

to the analysis of biological samples. Because of their large surface areas, macro-scale

electrode geometries do not offer high signal-to-noise ratios. As a result, contributions by

small biological cells and relevant physical phenomena can be neglected (Varshney and

Y. Li 2009). Instead, electrodes with dimensions at the micro-meter scale have improved

abilities to resolve small changes in impedance signals. Specifically, interdigitated electrode

arrays (IDEAs), arrays of symmetrical coplanar geometries wherein ”fingers” alternate

from excitation and sensing electrode sources as shown in Figure 1.1, are often utilized

(Varshney and Y. Li 2009).
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Figure 1.1. Illustration of an interdigitated electrode array (Source: Heileman, Daoud, and
Tabrizian 2013.)

These designs balance the advantages of an overall large surface area and the

high signal-to-noise ratio of microscale features. The performances of simple two-rail,

coplanar interdigitated, and rectangular parallel plate electrode geometries were compared

for cancer cell analysis (Demircan Yalçın et al. 2019). The parallel plate configuration

demonstrated the greatest sensitivity to changes in the cell sample while the coplanar

interdigitated array significantly outperformed the simple two-rail geometry. However,

because parallel electrode geometries require complex fabrication methods, IDEAs are

often favored.

While alternative materials are being developed and studied for specific

applications of impedance spectroscopy (Cesewski and Johnson 2020), metals such

as gold and platinum are used most often because their high conductivities allow for
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sensitive measurements of more resistive solutions. Additionally, fabrication methods

for generation of thin-film microelectrode geometries, such as by vapor deposition

(Hierlemann et al. 2003) or screen printing (Taleat, Khoshroo, and Mazloum-Ardakani

2014) are well-established.

1.2.3. Electrode Modifications

Electrical impedance spectroscopy can generally be divided into two categories of

physical orientation of cell samples: analysis of cells in suspension, and analysis of cells

adhered onto a substrate. Most commonly, EIS devices implement immobilization layers

on electrode surfaces consisting of nonspecific binding sites or specific conjugate molecules

corresponding to cells or molecules of interest. Importantly, this technique restricts cells

to regions near the electrode surface, increasing the probability of interaction with the

applied electric field. However, these functional elements are often difficult to regenerate

rendering them appropriate for single-use, and they can be cost prohibitive for users

seeking multi-use solutions (Cesewski and Johnson 2020). Conversely, interrogation of

suspended cells can be performed without the need to prepare or regenerate any labels or

binding sites. Designing testing platforms without additional elements decreases cost and

complexity while maintaining the potential for device reusability.

Electrodes can also be modified by the addition of a passivation layer. These

consist of micron-height (or smaller) layers of resistive materials deposited onto electrode

surfaces. Advantages of this approach include protection of vulnerable thin-film electrode

materials from degradation by physical contact and fouling. These layers can also allow

users to reduce the impacts of the interaction of the electrode material with electrolyte
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solutions providing for easier analysis on the basis of their capacitive properties (Tsouti

et al. 2011). However, despite these advantages, the use of passivation layers has been

shown to inhibit achievable device sensitivity (Narayanan et al. 2010) thereby making the

approach less feasible for some biologically relevant applications. Additionally, analyses

conducted using passivated electrodes are often limited to capacitive measurements and

therefore may not be suitable for applications requiring observation of resistive properties

(Couniot et al. 2015).

1.2.4. Buffer Properties

Impedance spectroscopy has also been shown to be sensitive to the properties

of the cell buffers. Detection of water-polluting bacteria was attempted in both

high-conductivity and low-conductivity liquids. Although samples with cells could not

be distinguished in the high-conductivity solution, cell concentration could be measured

in a low-conductivity liquid. This could hinder cell detection by multiple mechanisms.

First, if cells must be analyzed on the basis of conductivity, use of a conductive buffer

may limit measurement sensitivity enough that properties cannot be discriminated from

the background solution. Conversely, if cells are expected to be analyzed on the basis of

their resistance in a conductive solution, a portion of the applied electric field is likely

to bypass cells by taking the path of least electrical resistance. Similarly, solutions with

high resistivities may also limit sensitivity as the applied electric field may be dampened

or absorbed by the buffer. As a result, an appropriate balance must be tuned between the

properties of the target cell and its liquid media to achieve sensitive cell analysis.
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1.2.5. Integration of Microfluidic Technology

Microfluidic, or lab-on-a-chip, technology has revolutionized in vitro cell analysis

efforts in recent years. Microfluidic chips require microliter sample volumes and offer

greater standardization than larger-scale techniques (Petchakup, K. Li, and Hou 2017).

Additionally, because these devices can be fabricated at dimensional scales similar

to the sizes of cells, improved sensitivity of EIS tools can be achieved by restricting

cells to the physical region immediately adjacent to the electrodes without the use of

binding elements. As a result, in recent years, a new field of study, micro-electrochemical

impedance spectroscopy (µEIS), has emerged in which microfluidic devices are developed

for the application of impedance spectroscopy.

1.3. Data Collection and Processing

While a number of variations of impedance spectroscopy have been demonstrated,

this technique generally involves measurement of the current response resulting from

the application of a voltage over a range of frequencies, termed a frequency sweep. Data

collected by this method can be presented in various ways. Bode plots are among the

most commonly used methods for visualizing this type of data because they show the

components of measured impedance values, whether magnitude and phase or resistance

and reactance, in the frequency domain (Randviir and Banks 2013). Importantly, these

plots can be used to evaluate potential frequency-dependent physical phenomena that may

be occurring within a given system.
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1.3.1. Data Validation

However, this characteristic of impedance spectroscopy offers advantages over other

electrical analysis methods (e.g., voltammetry, conductometry, etc.) in that multiple

properties and processes can be measured simultaneously. Impedance spectroscopy data

in the frequency domain must meet certain criteria - stability, linearity, and causality

- to be considered valid (Barsoukov and J. R. Macdonald 2005). The Kramers-Kronig

relations are a set of mathematical expressions based on the rule of causality inherent

to the real and imaginary components of complex functions. These relations can be

used to predict the imaginary components of electrical impedance in electrochemical

systems from measured real component values and vice versa. By comparing predicted

and measured values of each component, users can test the stability and the linearity of an

electrochemical system by these relations (Daniels and Pourmand 2007,Schönleber, Klotz,

and Ivers-Tiffée 2014).

1.3.2. Frequency Dependence of Electrochemical Systems

Although different electrochemical systems exhibit differences in measured

impedance spectra, a number of important principles are conserved that can be used to

acquire understanding of liquid sample characteristics (Barsoukov and J. R. Macdonald

2005). Dielectric electrochemical systems can typically be analyzed on the basis of

dispersion events observed over sweeps of applied AC frequencies. These dielectric

dispersion, or relaxation, events result from the reordering of polarizable molecules

in the liquid due to changes in the applied electric field. These events can be used to

identify distinct frequency ranges in which applied electric fields interact with specific
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portions of the sample. Aqueous solutions generally display a characteristic relaxation

event at low frequencies. The presence of other molecules in solution can also create

additional dispersions at other frequencies based on their unique polarization properties.

Importantly, biological cells create these events (Figure 1.2) at frequencies and to extents

dependent on their biophysical properties (Schwan 1957).

Figure 1.2. A typical profile of permittivity and conductivity of biological cells and tissues
over applied AC frequencies (Source: Heileman, Daoud, and Tabrizian 2013)

Cell samples typically show a characteristic low-frequency α-dispersion below

which applied electric fields often induce polarization of ions around external interfaces

generating double layers near the excitation electrode surface. This first relaxation

event results from the movement of ions and the dissolution of the electrical double

layer, and measured resistances in this range of frequencies sometimes reflect these

10



movements (Lei 2014). As frequency increases above the first relaxation event, the double

layer dissipates, and impedance signals often become dominated by the overall solution

impedance properties. The second relaxation event, termed β-dispersion, results from the

polarization of ions around the membranes of cells. Impedance measurements collected

above this frequency typically reflect the resistive and capacitive properties of these

charged interfaces. These phenomena, along with a basic understanding of the physical

elements in analyzed samples, provide a framework for the interpretation of impedance

spectra and correlation to important biophysical properties.

1.4. Microfluidic Impedance Cytometry

In recent years, a variation of the micro-electrochemical impedance spectroscopy

technique has been implemented for the analysis of cellular properties. Motivated by the

need to identify heterogeneities in cell properties within the bulk sample measurement

methods, this tool combines the advantages of microfluidic technologies with impedance

spectroscopy. First demonstrated by Gawad et al. in 2001 (S. Gawad, Schild, and Ph.

Renaud 2001), this technique incorporates excitation and sensing electrodes immediately

adjacent to or near a liquid solution containing cells (Figure 1.3).
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Figure 1.3. Elements of the basic structure and mechanism of microfluidic impedance
cytometry including a microchannel, two electrode pairs, and the form of a typical
impedance signature acquired by this technique (Sun et al. 2009).

An AC voltage is applied across the electrodes continuously at a single frequency

(or pair of frequencies). The differential measurement of the impedance change as cells

pass through the interrogation region (corresponding to the induced electric field) is

collected. This frequency-dependent response of cell samples can then be correlated to

important biophysical properties using similar considerations to those used for basic EIS.
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1.5. Significance

The devices and methods described herein provide means for biological analyses

on the basis of the direct relationship between cell biophysical characteristics and

their electrochemical properties. First, a modular, reusable microfluidic device with

an integrated interdigitated electrode array and a custom electrode connector unit is

described. This device allows for the repeated use of microfluidic and microelectrode

components. Additionally, the modular nature of this device provides an opportunity for

integration of supplementary microfluidic control or cell analysis elements.

The determination of zebrafish sperm concentration is demonstrated with the

device in low-conductivity media. Second, a microfluidic impedance cytometer with

parallel vertical sidewall electrodes is used for single-cell discrimination of Jurkat cell

viability status. A custom signal processing algorithm was developed to extract cell

detection events from noisy baseline data using a correlation to the mathematical function

that time series data is expected to fit according to the simulated electric field created

by the device electrode design. Overall, each of these electrical analysis tools integrates

microfluidic technologies to address challenges associated with conventional analysis tools

by providing rapid, easy-to-use platforms for cell counting and viability analysis.
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Chapter 2. Quantification of Zebrafish Sperm Cell Concentration
by Impedance Spectroscopy on a Modular, Reusable Microfluidic
Device

2.1. Abstract

Zebrafish (danio rerio) are an important model organism used for a wide variety

of applications. Sperm cell concentration measurement and adjustment have been

established as vital, but often neglected, steps for effective implementation of reproductive

procedures and cryopreservation. To address the lack of standardization associated

with conventional methods for cell counting, alternative options are being explored. In

this study, electrochemical impedance spectroscopy (EIS) was applied on a modular

microfluidic assembly with a reusable microelectrode connector unit for zebrafish

sperm cell measurements. Cell detection was shown to be achievable in an isosmotic

low-conductivity sucrose solution but less sensitive in typical Hanks’ balanced salt solution

used with these cells. Various concentrations of cells from 1E5 to 1E7 cells per mL in

the sucrose solution were discriminated at a sensitivity of 9.7E-7 ± 4.5E-12 mS (cells per

mL)−1 based on a linear relationship between sample conductance and cell concentration.

To evaluate a possible basis for conductive measurement of cell concentration, cells were

maintained temporarily in the sucrose solution and removed, and the conditioned sucrose

media was tested. The conductivities of this conditioned media correlated linearly with

the cell concentrations at a sensitivity of 16.6E-7 ± 20.0E-12 mS (cells per mL)−1. This

suggested that zebrafish sperm cells change the properties of the media by increasing

conductivity. Evaluation of cell samples by microscopy showed that cell membrane

disruption occurred over time, likely causing intracellular ions to be released into the

14



sucrose solution and thus affecting its conductivity. Further evaluation is warranted to

confirm the cause of and identify the time-dependence of the cell-lysis events. The use

of a low-conductivity, buffered, and isosmotic solution should be further explored for

impedance spectroscopy of intact zebrafish sperm cells.

2.2. Introduction

Zebrafish (danio rerio) have been established as an important model organism

for developmental, genetic, and medical research (Westerfield 2000) due to a number of

factors including similarities with human genomic structures and tractability and the

optical clarity of their embryos and larvae (Lieschke and Currie 2007). To best protect

and share thousands of developed zebrafish lines, proper handling of gametes is necessary

(Lawrence 2007). Sperm concentration has been established as an important consideration

for effective implementation of multiple processes (Jing et al. 2009); however, cell

concentration is often not controlled for implementation of cryopreservation which often

leads to inconsistent results and waste (Dong, Huang, and Tiersch 2007).

The traditional method for sperm sample concentration is manual counting by

observation of cells by microscopy (Brito et al. 2016). In the case of zebrafish sperm

which are smaller than blood cells for which hemocytometers are designed, the sample

is constrained to a short focal plane on specialized platforms like the Makler® counting

chamber and cells are counted on an individual basis (Torres et al. 2017). However,

this method is laborious and time-consuming and canv produce errors in cell counts.

Alternatively, automatic cell counting methods including flow cytometry (Yang, Daly,

and Tiersch 2016) and microspectrophotometry (Tan, Yang, and Tiersch 2010) have been
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demonstrated for zebrafish sperm cells. However, while these methods are well-established,

each has challenges or limitations associated with its use. Generally, these methods detect

cells at a low throughput, require complex and expensive equipment or software, and

can involve binding with a labeling molecule that perturbs cells (Rollo et al. 2017). As a

result, zebrafish repositories and laboratories that use sperm seek inexpensive, easy-to-use

alternatives for standardized cell counting (Yang, Daly, and Tiersch 2016).

Electrochemical impedance spectroscopy (EIS) has been demonstrated to be an

effective tool for the analysis of biological samples for a number of applications including

cell detection and measurement of cell concentrations (Cheng et al. 2007, Jönsson et al.

2006, Kadan-Jamal et al. 2020). Variations of EIS devices exist, and key design features

have been shown to affect performance, sensitivity, and accuracy, and usability. For

instance, the majority of device designs include functional elements on electrode surfaces

for cell or molecule recognition and immobilization. However, while this technique has

advantages of specificity and positioning of analytes immediately adjacent to electrodes,

electrodes containing adherent layers cannot easily be regenerated for reuse, thereby

increasing their cost and complexity. Conversely, impedance spectroscopy of cells in liquid

suspensions obviates the need for preparation and regeneration of recognition elements. As

a result, there is opportunity for developing reusable EIS platforms, thereby reducing their

cost. However, despite this potential, design features and operating conditions of devices

that measure suspended cells must be optimized to achieve sufficient sensitivity for most

applications.

The materials and design of the electrodes used to apply and sense electrical

signals have been shown to influence sensitivity and signal-to-noise ratio in these systems

16



(Demircan Yalçın et al. 2019). Electrode designs integrated with microfluidic devices

can be fabricated at macro- or micro-scales and are often implemented in parallel or

coplanar orientations. Coplanar thin-film interdigitated electrode arrays (IDEAs) are

often an effective design, combining the sensitivity of large electrode surface areas with

high signal-to-noise ratio associated with designs on the scale of the cells being analyzed.

Additionally, fabrication of this electrode geometry and its integration on microfluidic

chips is easier to achieve than many other designs. However, one important drawback of

this configuration results from the non-uniform electric field induced. That is, the shape

of the electric field created between coplanar excitation and sensing electrodes varies with

increasing distance from the electrode plane. As a result, variations in the vertical position

of cells being analyzed can have an effect on the impedance observed (Daguerre et al.

2020).

The electrical properties of the cell buffer have been utilized with EIS tools to

detect the presence of cells. For example, (Houssin et al. 2010) impedance spectra of

samples of C. parvum oocysts in high-conductivity and low-conductivity solutions were

compared, and cell detection was more reliable in the low conductivity buffer. During

manipulation prior to evaluation of motility, zebrafish sperm cells are typically maintained

in 300 mOsm/kg Hanks’ balanced salt solution (HBSS), a high conductivity media, but

have also shown viability in lower conductivity media such as sucrose solutions (Jing et al.

2009, Wilson-Leedy, Kanuga, and Ingermann 2009).

Lab-on-a-chip, or microfluidic, devices provide alternative solutions to challenges

faced in larger-scale laboratory techniques, offering advantages such as low sample

consumption, improved standardization, and greater sensitivity. As a result, integration
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of electrical impedance spectroscopy on microfluidic devices (µEIS) provides a platform

for the combination of the advantages of each technology. However, standard methods

for the fabrication of microfluidic devices can prevent easy use and reuse, as most require

the irreversible bonding of material layers to generate regions for fluid confinement. As

a result, alternative methods for fabrication of modular, reversibly sealed microfluidic

platforms should be considered to allow for repeated disassembly, cleaning, and

reassembly. Modular device designs have been developed using a variety of methods

(Anwar, T. Han, and Kim 2011, Temiz et al. 2015).

Mechanical clamping for chip assembly has been demonstrated whereby the

application of pressure to elastic polydimethylsiloxane (PDMS) layers in contact with a

rigid substrate provided a sufficient sealing force (Skafte-Pedersen et al. 2013, Dekker et

al. 2018). Importantly, use of magnets for the application of a compressive force provided

a method for easy device assembly (Rasponi et al. 2011). Traditionally, connection of

thin-film microelectrodes to signal generation and analysis instrumentation is made by

application of a permanent conductive adhesive. However, this approach is not amenable

to repeated assembly and disassembly. As a result, in addition to the implementation of a

modular fluidic assembly, a reversible mechanism for microelectrode connection should be

considered.

In recent years, three-dimensional (3D) printing has gained popularity as a low-cost

fabrication method for microfluidic device components (N. P. Macdonald et al. 2017, Gale

et al. 2018, Waheed et al. 2016) as the increasing availability of low-cost printers continues

to open access to new user groups. Microfabrication research groups are embracing

consumer-grade printers to create channel features less than 50 µm in scale and chip build
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times on the order of minutes (reviewed by Nielsen et al. 2020). Particularly attractive are

the masked LCD stereolithography (MSLA) resin printers that with single-voxel resolution

of 35 × 35 × 10 µm and costs of approximately 200 USD, make rapid prototyping of

microfluidic chips possible (Zuchowicz et al).

In addition to the physical elements used for design and operation of a µEIS

device, careful consideration must be given to the method for processing data and drawing

conclusions relevant to the system under study. Due to the frequency-dependence of

electrochemical systems including biological samples, impedance spectroscopy can reveal

insights into biophysical properties and molecular phenomena. However, extraction of

these characteristics from spectral data is challenging. To aid these efforts, data are often

analyzed by fitting to analytical models such as equivalent circuit models (Barsoukov

and J. R. Macdonald 2005). In some cases, these models have been applied such that

the system is treated as a black box with no physical relevance, receiving criticism

(Lasia 2014). As a result, an evaluation of the physical elements of a given system and

consideration of common frequency-specific characteristics should be made.

For systems containing bare conductive metal electrodes (e.g., without any

functional element or passivation layer) in an electrolyte solution at the micron scale,

there are key characteristics of impedance spectra that are often observed in distinct

frequency ranges (Lei 2014). At low frequencies (up to low kHz), the induced electric field

causes ions in the electrolyte solution to polarize near the excitation electrode surface

forming a capacitive double layer. In this range of frequencies, impedance spectra are

typically dominated by the capacitance of that double layer and a resistance resulting

from the movement of ions. At intermediate frequencies (kHz to low MHz), the ions that
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formed the capacitive double layer disperse and the inherent resistance of the solution

dominates. For samples containing biological cells, this solution resistance may contain

contributions from cell membranes (typically resistive) and the electrical properties of

the solution itself. Finally, at frequencies above 1 MHz, ion polarization results from the

capacitive properties of the bulk solution. These frequency ranges can be discerned from

one another by the observation of dielectric relaxation events in which rearrangement of

ions within the solution cause changes in impedance values.

Sensitive cell detection and concentration measurement has been demonstrated

using a unique application of impedance spectroscopy whereby conductivity changes

in cell solutions resulting from ions released from lysed cells are measured. While

yet to be documented for sperm cells, this approach has been demonstrated for cell

detection and concentration measurements for various cell types including blood

mononuclear cells (Cheng et al. 2007), synthetic liposomes (Damhorst et al. 2013),

HIV cells (Demircan Yalçın et al. 2019), and parasitic bacteria (Houssin et al. 2010).

Concentration measurement of lysed cells by impedance spectroscopy eliminates the need

for maintenance and monitoring of cell viability over time. As a result, analysis of less

stable cell types can be performed at any time.

The goal of this study was to develop a modular, low-cost, easy-to-use microfluidic

platform for quantification of zebrafish sperm cell concentration by electrical impedance

spectroscopy. Design features and tools implemented for device fabrication and data

analysis were selected on the basis of providing accessible solutions to previously

demonstrated barriers for concentration measurement. Specific objectives were to:

1) evaluate effects of cell vertical position on impedance signals using finite element
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analysis; 2) design, implement, and evaluate a low-cost, modular microfluidic assembly

unit for electrical analysis of cell suspensions; 3) design and integrate an easy-to-use

instrumentation-to-electrode connector into the assembly unit; 4) measure the impedance

spectra of known concentrations of zebrafish sperm cells in high-conductivity and

low-conductivity solutions; and 5) demonstrate potential for concentration measurement

on fixed frequency basis and generate a calibration curve at an appropriate frequency. A

3D-printed reversible assembly unit with magnetic clamping was used to identify a linear

correlation between solution conductance and cell concentration resulting from the release

of intracellular ions resulting from membrane lysis.

2.3. Materials and Methods

2.3.1. Microelectrodes

A custom interdigitated microelectrode array (IDEA) was designed using

AutoCAD (Version Q.46.M.184, AutoDesk Inc., California) to produce a 6 mm x 11 mm

rectangular array. The electrode fingers were designed on the basis that, to maximize the

signal-to-noise ratio associated with any signal changes caused by cellular properties or

phenomena at the cellular scale, the electrode dimensions should be as close to the size

of the cells as possible. Because the head of zebrafish sperm cells (which is expected to

contribute most prominently to impedance signals) is approximately 2 µm in diameter

(Hagedorn et al. 2009), design features as close to this dimension as possible were

targeted. Specifically, due to limitations in standard fabrication methods, the electrode

fingers were designed to be 10 µm in width and spacing. The IDEA slides were fabricated

by and purchased from the Guangdong Provincial Key Laboratory of Sensor Technology
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and Biomedical Instrument (Sun Yat-Sen University, Guangzhou, China). The slides

contained a 100-nm layer of gold on a 30-nm adhesive layer of titanium on approximately

0.25 mm thick quartz glass (Figure 2.1).

Figure 2.1. Design of the interdigitated electrode array used in this study. All dimensions
are in mm. The electrode fingers were 10 µm wide with 10 µm gaps.

2.3.2. Finite element analysis

Finite element analysis was performed using the AC/DC module of Comsol (v5.3,

COMSOL Inc., Stockholm, Sweden). Three-dimensional geometries consisting of a 90 µm

x 90 µm chamber with a height of 50 µm were created. The chamber included two pairs

of 10 µm-wide excitation and sensing electrodes with 10 µm spacing to replicate a small
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region of the IDEAs used in this study. Two 2 µm-diameter spheres were created and

placed at midlines between electrode pairs to simulate the presence of zebrafish sperm cell

heads in the device interrogation region. A parametric sweep was conducted to vary the

vertical position of the cells (concurrently) within the microfluidic chamber.

The solution was assigned a conductivity of 0.016 mS/cm and a relative

permittivity of 134 to match the values collected for the sucrose formulation used in

this study with cells at a concentration of 1E-5 cells/mL. The cell was approximated

as an insulator with a conductivity of 1E-12 mS/cm and a relative permittivity of 6 to

approximate the cell membrane. A 250-mV voltage was applied at a frequency of 10 kHz

to each of the excitation electrodes, and the resulting system impedance was measured

using the COMSOL ec.Z11 term.

2.3.3. Microfluidic Chamber

A microfluidic chamber was designed to position cells in the vicinity of the

microelectrodes. This dimensions of the chamber were set such that samples would

completely cover the interrogation region of the electrode array (where electrode fingers

from opposite sources overlap) (Figure 2.1). The chamber was formed using a PDMS

gasket. A 10:1 mixture of Sylgard 184 polydimethylsiloxane (PDMS, DOW Corning,

Inc.) elastomer:curing agent was hand-mixed for 10 min. A 76 mm x 127 mm x 3 mm

polymethylmethacrylate (PMMA) slide was placed on a spin coater chuck (WS-650-23B,

Laurell Technologies, North Wales, PA). Approximately 3 mL of the PDMS mixture was

poured on the poly(methyl methacrylate) (PMMA) slide, and the slide was spun at 500

rpm and 300 rpm/s for 10 s then at 2570 rpm and 300 rpm/s for 5 min to create a 10-µm
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layer. The PDMS (on PMMA) was degassed at 600 mmHg vacuum and cured for 1.5 hr at

75oC in an oven. A 8 mm x 13 mm rectangle was cut into the PDMS using a single pass

cut with a 50-W CO2 laser engraver (FLUX Beambox Pro, FLUX, Inc., Nangang Dist.,

Taipei), set to 25% current, 25% power, 100% speed. The PDMS inside of the rectangle

was gently rubbed away to create an open chamber. For simple chamber loading, one

1.5 mm-diameter hole was engraved through the PMMA using eight passes of the laser

engraver at 100% current, power, and speed.

The thickness of the PDMS, which governs the height of the microfluidic chamber,

was evaluated using optical profilometry. The PDMS and exposed PMMA region were

sputter-coated with platinum (Pt) for 8 min (K550X, Emitech Inc., Fall River, MA).

The slide was profiled using an optical profiler (Wyko Hi Res, Bruker Nano, Inc., Tuscon,

AZ) using a step size of 50 µm. The resultant altitude profiles were processed using

MountainsMap (v8, Digital Surf, Besançon, France). The differential parameters tool was

used to calculate the height between the PDMS layer and PMMA substrate. A total of 13

replicates were fabricated and evaluated by this method.

2.3.4. Modular Assembly

A housing unit was designed to generate a modular assembly integrating a

microelectrode slide and microfluidic chamber layer capable of easy reassembly. The

housing was drawn in Fusion 360 (Version 2.0.10148, AutoDesk Inc., California) as

separate top and bottom pieces each with inset regions of dimensions corresponding to the

PMMA slide and microelectrode slide. Empty rectangular regions were designed in each

piece to allow for microscopic observation of the sample. Four square open regions were
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also removed near the corners of each piece for magnets. Another set of rectangular open

regions were added to the design to accommodate connection of the electrical analysis

instrumentation to the microelectrode pads.

The housing unit design was fabricated using MSLA 3D-printing (Anycubic Photon

S, Anycubic, Shenzhen, China) with black AnyCubic UV resin (AnyCubic, Shenzhen,

China) followed by post-processing sonication in isopropol alcohol for 30 min. The housing

unit applied a clamping force to the assembly sufficient to seal injected liquid into the

microfluidic chamber using 1/4-in. rare earth magnets (Magcraft Advanced Materials,

Vienna, VA) placed in the smaller open squares on the periphery. The thickness of the

PDMS gasket chamber under compression in the housing unit was evaluated using the

same optical profilometry method (and same number of replicates) described in the

previous section.

A 3D rendering of the modular assembly (Figure 2.2) was created in Blender

(Version 2.93, Blender Foundation).
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Figure 2.2. A three-dimensional rendering of the modular assembly including IDEA,
microfluidic chamber (clear), and clamping magnets.

2.3.5. Microelectrode Connector

A reusable microelectrode connector unit was designed and fabricated to allow for

reuse of IDEA slides. This unit consisted of two beryllium copper rolling spring-loaded

(pogo) pin connectors (Mill-Max Mfg. Corp., Oyster Bay, NY) set into a standard 5-pin

JST connector (Digi-Key Electronics, Thief River Falls, MN). A 5-pin connector was used

to align the pin connects with the square pads on the microelectrode slides. A 3D-printed

housing was fabricated to hold the JST connector and pins using the same printer and
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resin described above. Open regions were included in the regions flanking the JST

connector for the inclusion of magnets. Solid core wires were soldered onto the static ends

of the pin connectors for connection to signal generation and analysis instrumentation.

For application of the connector to the microelectrode slide, magnets with polarity

opposite to and spacing matching those in the connector unit were placed in the open

region of the bottom piece of the modular assembly under and adjacent to the region

occupied by the microelectrode pads. As a result, when the connector unit was brought

in close contact with the pads, the magnets pulled the connector unit to the electrode

slide creating strong contact. The rolling pogo pins allowed sufficient force to be applied

for good electrical contact without scratching the gold on the electrode pad surfaces.

Additionally, the dimensions of the open region of the 3D-printed modular assembly

through which the microelectrode connector unit was applied restricted the degree of

lateral translation, rotation, and tilting that could occur.

2.3.6. Cell Collection and Preparation

Practices for the use of animals in this study were reviewed and approved by

the Louisiana State University Agricultural Center Institutional Animal Care and

Use Committee. Zebrafish culture and sperm collection were performed as described

previously (Beckham 2018). Zebrafish were obtained from the Zebrafish International

Resource Center (Zebrafish International Resource Center, OR). Fish were maintained at

target values of 28.5oC, pH 8.5, and a 12-hr light:dark photoperiod. Additionally, water

chemistry was monitored weekly; ammonia, nitrite, and nitrate levels were maintained

below 1.0 mg/L, 0.8 mg/L, and 15 mg/L, respectively. Fish were fed a dry food mix (as
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prescribed by ZIRC) every morning and Artemia (Brine Shrimp Direct, Ogden, Utah)

every afternoon. To collect sperm cells, zebrafish were anesthetized using 0.01% MS-222

(tricaine methanesulfonate, Western Chemical, Inc. Ferndale, WA), placed ventral side

up on a sponge, and collected by pipet Cells were diluted with HBSS at 297 mOsm/kg.

Collected cells were counted on a Makler® chamber under phase-contrast microscopy.

Various concentrations were prepared by serial dilution of collected samples.

Samples were centrifuged at 4oC at 1000 rpm for 10 min. The supernatant was

removed, and cells were resuspended in the appropriate buffer for each study including

297 mOsm HBSS/kg H2O, 305 mM sucrose (305 mOsm sucrose/kg H2O), and a 300

mOsm/kg H2O Tris-HCl-buffered 305 mOsm/kg sucrose solution. These isosmotic

solutions were used to prevent cells from becoming motile, as zebrafish sperm cells will

activate when subjected to reduced osmolarity. Prior to testing, cells suspended in sucrose

were observed by brightfield microscopy to ensure that they were not motile. To observe

a range of concentrations relevant to cryopreservation processes commonly applied to

zebrafish sperm, a range from approximately 1E5 to 1E8 cells/mL was tested. Additional

experiments were performed to evaluate the potential for ion release into the sucrose

media, where cells were maintained (following centrifugation and resuspension) for 20

min. The samples were centrifuged, and the supernatant solution was removed and

tested by impedance spectroscopy. All samples were allowed to reach room temperature

before testing. Buffer pH values were measured using a YSI Ecosense pH100a pH meter

(YSI Incorporated, Yellow Springs, OH). Brightfield and phase-contrast microscopy was

performed using a Nikon Ti-E microscope (Nikon Corporation, Tokyo, Japan). Using a
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pipette, 20 µL of sample was deposited for each impedance measurement collected in the

study.

2.3.7. Impedance Measurements

All samples were loaded into the microfluidic chamber using a standard mechanical

micropipette (Gilson PIPETMAN L P20L, 2-20 µL, Gilson, Inc., Middleton, WI,

USA). Impedance measurements were collected using an LCR Meter (E4980A, Agilent

Technologies, Santa Clar, CA) at an applied voltage of 250 mV from 20 Hz to 2 MHz.

The LCR meter was connected to a custom printed circuit board (PCB) that combined

the high voltage and current and low voltage and current cables to create a two-probe

measurement system. Male ends of breadboard jumper cables (Qwiic Cable, SparkFun

Electronics, Niwot, CO) were soldered to the PCB while the female ends were used to

connect to the wires on the custom microelectrode connector unit. The LCR Meter was

controlled, and measured response signals were collected, using a custom Matlab script. A

total of 3-5 replicates were collected for each measurement.

2.3.8. Data Analysis

Impedance data were validated using scripts implementing a previously reported

(Murbach et al. 2020) Python-based impedance analysis package. The stability

and linearity of all collected data were validated using a linear Kramers-Kronig test

(Schönleber, Klotz, and Ivers-Tiffée 2014). Complete impedance spectra were displayed

in the form of Bode plots to visualize the frequency-dependence of the system.
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2.4. Results and Discussion

2.4.1. Effect of vertical positioning of cells on impedance

The effect of the height of the chamber (and location of the cells within the

chamber) on impedance measurements was evaluated using finite element analysis

simulations (Figure 2.3).

Figure 2.3. Finite element analysis of electric field strength throughout the height of a
50-µm-tall chamber (left) and theoretical relative impedance magnitude resulting from two
cells at various distances from planar electrodes.

These results highlighted the importance of positioning cells near the interrogation

electrodes in coplanar geometries. As the vertical position of the cell increased, the

relative impedance magnitude measured by the electrodes decreased. With the electrode

geometry used in this study and the conductivity of isosmotic sucrose with cells present,

impedance measurements corresponding to cell heights (of the cell center) above some

height may not be able to be distinguished from the impedance of the solution.
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2.4.2. Microfluidic Chamber

The shallow microfluidic chamber was designed to minimize the variation in

impedance measurements that can result from the electric field nonuniformity induced

by coplanar electrode geometries. Optical profilometry was performed on the spun

and laser-engraved PDMS on PMMA to evaluate the consistency of the PDMS gasket

formation. Line scans were taken from various locations on the surface profile map across

the laser-engraved chamber. To determine the actual height of the chamber during sample

analysis, the procedure was performed on the PDMS/PMMA in the 3D-printed assembly.

To compare the effects of the clamping force on the PDMS gasket chamber, the heights of

PDMS gaskets in and out of the clamping setup were collected (Figure 2.4).

Figure 2.4. Heights of 13 replicates of PDMS gaskets outside (left) and inside (right) of
the clamping assembly.
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A student’s t test was performed to determine whether the modular assembly

compressed the PDMS. No statistical difference was found between the data corresponding

to the PDMS gasket inside and outside of the assembly unit. As a result, while the

compressive forces helped maintain a sufficient seal to keep fluid in the chamber, the

PDMS gasket height was not significantly affected by the magnetic clamping force of the

assembly.

2.4.3. Comparison of Zebrafish Sperm Cell Suspension Impedance Values in
High- and Low- Conductivity Buffers

Prior to attempting to measure zebrafish sperm cell concentration, the efficacy

of detecting cells in high-conductivity (HBSS) and low-conductivity (sucrose) solutions,

was compared. In this case, cell samples near the minimum concentration of the target

detectable range (i.e. approximately 1e5 cells/mL) were suspended in each of the buffers

and tested (Figure 2.5).
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Figure 2.5. Bode plots (magnitude and phase) corresponding to zebrafish sperm cells in
high-conductivity 297 mOsm/kg HBSS and low-conductivity (300 mM sucrose) isosmotic
media. Shaded bands denote standard deviations of data (some error values are small
enough that bands are not visible relative to line thicknesses).

As expected, due to the higher ion concentration and thus higher conductivity,

samples containing HBSS had significantly lower impedance magnitudes than those in

sucrose. This shows that there is little to no discernible difference in the impedance of

samples containing different cell concentrations in HBSS, whereas samples containing

different concentrations of cells suspended in sucrose created impedance spectra that
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could be discriminated. Additionally, this highlights characteristics of impedance spectra

of conductive solutions. The transition of the phase values from negative to positive at

high frequencies can be attributed to inductive effects likely resulting from artifacts like

wire inductance. The dielectric relaxation events (shown as sharp changes in impedance

values) corresponding to the conductive samples appear to occur at significantly higher

frequencies than those of the low-conductivity samples. In fact, as the leveling of the

magnitude data only seems to occur when the inductive region is reached, no relaxation

event appeared in the data corresponding to HBSS (and cells in HBSS) in the frequencies

observed.

2.4.4. Zebrafish Sperm Cell Concentration Measurements

Upon suspension of cells in sucrose, samples were observed by brightfield

microscopy to confirm the presence of intact, nonmotile sperm cells. To evaluate the

efficacy of the approach presented in this study for zebrafish sperm cell concentration

measurement, frequency sweeps of cells suspended in sucrose at various known

concentrations were performed (Figure 2.6).
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Figure 2.6. Bode plots (magnitude and phase) corresponding to various concentrations of
zebrafish sperm cells in isosmotic sucrose solution.

The magnitude Bode plot shows that samples containing different concentrations

of cells have impedance signals at different magnitude values that were inversely

proportional to cell concentration. The most prominent differences in these magnitude

values appeared in the frequency range between 1-100 kHz. The phase data showed that

samples containing different cell concentrations underwent dielectric relaxation events
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at different frequencies while the amplitude of the phase shifts did not appear different.

The concurrence of these phenomena suggested that the most likely basis for effective

concentration discrimination is differences in the resistances or conductances of the

solutions. That is, increases in cell concentration appeared to correspond to an increase

in sample conductance as the impedance magnitude and frequency of relaxation events

were proportional and inversely proportional to cell concentration, respectively.

To establish a correlative relationship between cell concentration and measured

impedance values, the solution conductance was calculated for each sample as the inverse

of the overall system resistance at the frequency at which the minimum phase shifts

(phase values near zero) occurred in data corresponding to each cell concentration. These

points corresponded to the frequency region wherein little to no capacitance was detected,

and measured impedance values were dominated by system resistance. Furthermore,

because these events occurred in an intermediate frequency range (between 1 kHz and

1 MHz), measured resistance values could be expected to correlate to the solution

conductance (as the inverse of measured resistances). However, because the near-zero

phase region corresponding to a cell concentration of 1.00e8 cells/mL likely occurred

at a frequency greater than the measurement interrogation frequency limit of 2 MHz,

the concentrations used in the generation of the predictive relationship between sample

conductance and cell concentration were limited to 3.00e7 cells/mL. Conductance terms as

a function of cell concentration were evaluated and fit with a linear regression (with 95%

confidence intervals) (Figure 2.7).
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Figure 2.7. Sample conductance vs. log-scaled concentration (top) and linear-scaled
concentration (bottom) from samples containing cells in 300 mM sucrose. In the plot
on the bottom, a regression line with 95% confidence intervals is shown.

The resulting line of best fit had an R2 value of 0.998 ± 5.37e-4. The slope of

this line approximated the sensitivity of concentration measurements by this method as
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9.73E-7 ± 4.51E-12 mS (cells per mL)−1. This suggested a highly linear trend between

sample conductance and cell concentration in the concentration range tested.

2.4.5. Evaluating the Basis of Concentration Discrimination

The relationship shown in Figure 2.6 suggested a prospective basis for use

of the platform developed in this study as a concentration measurement tool. The

proportionality between solution conductance and cell concentration in the intermediate

frequency range was contrary to the trend that would be predicted by consideration of

the high resistivity of cell membranes, which are often measured at those frequencies.

However, in the event that cells released some of their ion content, whether by diffusion

due to the existing ion concentration gradients or by disruption of cell membranes, the

conductivity of the non-ionic sucrose solution would be expected to increase.

To explore whether ion release contributed as a basis by which cell concentration

could be discriminated, samples containing various concentrations of cells were suspended

in sucrose for 20 min centrifuged, and the supernatant was removed. The supernatant

solutions were tested in the device (Figure 2.8).
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Figure 2.8. Bode plots (magnitude and phase) corresponding to conditioned sucrose media
solutions conditioned by various cell concentrations.

These data followed a similar trend (Figure 2.9) to that observed in samples

containing cells, which suggests that solution conductivities were modified by exposure

to cells in a manner that is proportional to cell concentration.
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Figure 2.9. Sample conductance vs. log concentration (top) and concentration (bottom)
corresponding to conditioned sucrose media after cells at various concentrations were
removed. A regression line with 95% confidence intervals is shown.

The resulting line of best fit shows a comparable linearity to the relationship found

for measurements conducted with cells present in solution with an R2 value of 0.990 ±

6.61e-4. The sensitivity of this approach, as determined by the slope of the line of best fit,

was found to be 16.64E-7 ± 19.97E-12 mS (cells per mL)−1.
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The lines of best fit from data collected with and without cells were compared

(Figure 2.10).

Figure 2.10. Comparison of sample conductance vs. concentration corresponding to
samples consisting of cells in sucrose and conditioned sucrose media.

As illustrated above, each dataset showed linearity of conductance vs.

concentration; however, the quality of the fit of the data from cells in sucrose was greater

than that measured for conditioned sucrose media samples. Conversely, the higher

slope of the line corresponding to the conditioned media samples suggested a greater

sensitivity of measurements conducted under those conditions. Similarly, the conditioned

media demonstrated a larger overall conductance than the samples containing cells. This
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suggested that, in the intermediate frequency range, cells and debris may act as resistive

elements to the applied electric field, dampening the increase in buffer conductivity, as

reported by Cheng et al. Cheng et al. 2007 with T lymphocyte cells.

Comparison of the correlations between conductance and cell concentration of the

cells in sucrose and the conditioned sucrose media (Table 2.1) demonstrated a stronger

linear relationship than that found between absorbance and cell concentration during

microspectrophotometry (Tan, Yang, and Tiersch 2010).

Table 2.1. Comparison of impedance data from cells in sucrose and conditioned sucrose
media.

Spectrophotometry EIS of Cells in

Sucrose

EIS of

Conditioned

Sucrose Media

Goodness-of-fit (R2) 0.918 0.998 0.990

Sensitivity 2.5E-9 9.7E-7 16.6E-7

(cells/mL)−1 mS (cells/mL)−1 mS (cells/mL)−1

To evaluate the stability of the sperm cells in the sucrose solution, time-series

measurements were performed whereby fixed-frequency impedance data was collected

for samples containing 1E5 and 1E7 cells/mL at the frequencies at which impedance

phase was at its minimum. These measurements revealed that impedance values reached

a steady state at approximately 12 minutes. Additionally, cells were observed by

phase-contrast microscopy immediately and 20 minutes after suspension in the sucrose

solution (Figure 2.11).
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Figure 2.11. Phase-contrast microscopy images of sucrose solution shown immediately
(left) and 20 minutes after (right) suspension of cells.

The number of intact cells that could be observed significantly decreased after the

cells remained in the sucrose solution thereby indicating cell membrane disruption. This

supported the conclusion that cell lysis occurred in the sucrose solution, increasing its

conductivity.

To explore the cause of cell lysis in the non-buffered sucrose solution, the pH of the

solution was measured and found to be approximately 5.6, consistent with values expected

for deionized water in which carbon dioxide absorption has led to carbonic acid formation.

Tris-HCl buffer (pH 9.5) was added to the acidic aqueous sucrose solution to create a

Tris-sucrose buffered solution (TSBS) with a pH of 7.1. Cells were resuspended in this

buffered solution for two hours and observed by phase-contrast microscopy (Figure 2.12).
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Figure 2.12. Phase-contrast microscopy images of Tris-HCl-buffered sucrose solution
shown immediately (left) and 2 hours after (right) suspension of cells.

Cells appeared to be intact, suggesting that the TSBS solution would be more

compatible with whole cell impedance measurements. Frequency sweep impedance

spectroscopy data were collected for samples containing cells at concentrations between

1E5 and 1E7 cells/mL in TSBS (Figure 2.13).
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Figure 2.13. Bode plots (magnitude and phase) corresponding to cells in Tris-HCl-buffered
sucrose solution.

No difference between the impedance signals corresponding to samples containing

different concentrations of cells could be resolved up to 2 MHz. A single dielectric

relaxation event could be observed at approximately 1 kHz. For Bode plots of this form,

the solution resistance can typically be estimated as the maximum-frequency resistance

value in the plateau that forms after the relaxation event. However, in this case, there was

no significant difference between the measured resistance values for samples containing
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different concentrations of cells. Typically, impedance measurements from electrolyte

solutions containing biological cells reveal information about the cell membranes at

frequencies above the second dielectric relaxation event. While frequencies greater than 2

MHz were not possible with the instrumentation used in these studies, further studies are

warranted to interrogate intact cells in the buffered sucrose solution at higher frequencies

to elucidate whether the contributions of the membranes of the cells in the solution can be

detected and correlated to cell concentration.

2.5. Conclusions

Because the conventional methods for zebrafish sperm cell concentration

measurement are labor-intensive and time-consuming, an easy and rapid tool is needed to

support research and germplasm repository efforts. The incorporation of electrochemical

impedance spectroscopy modalities on microfluidic chips provides an opportunity to

overcome some of the challenges associated with conventional cell counting methods.

The goal of this study was to develop a modular, reusable µEIS device whereby zebrafish

sperm cell concentration could be measured at levels relevant to reproductive biology

practices. A custom 3D-printed modular assembly unit with a pogo pin-enabled reversible

connector was developed and utilized for impedance spectroscopy measurements of cell

suspensions.

Cell detection was compared in an isosmotic (approximately 300 mOsm/kg)

high-conductivity buffer (HBSS) and a low-conductivity solution (sucrose). Signals

corresponding to samples containing cells in sucrose were able to be discriminated from

the background media while signals from cells in HBSS could not be discriminated.
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Various concentrations of cells in sucrose were assessed and a quantitative relationship

between sample conductance and cell concentration was identified. To explore the basis

for the observed trend of increasing sample conductance with increasing cell concentration,

impedance spectra were collected corresponding to sucrose samples in which cells were

stored (for 20 min) and removed. The relationship between sample conductance and the

concentration of the conditioned sucrose media was found to have a larger measurement

sensitivity and a larger overall conductance. This suggests that the cells modified the

media likely by some conductive species, such as ion release by diffusion, while cells

and debris acted as resistive elements in the intermediate frequency range, reducing the

impact of the increase in conductivity. Because the cell-containing samples demonstrated

a significantly greater goodness-of-fit by linear regression, there existed a trade-off in the

selection of the most appropriate method for cell concentration measurement based on

sensitivity or accuracy. Analyzing supernatant samples, wherein cells were held in sucrose

solution and removed, may provide a greater sensitivity to differences in concentration,

but interrogation of samples containing cells may provide greater measurement accuracy.

The choice between these methods could depend on the application and the requirements

for subsequent sample analysis, such as motility evaluation or cryopreservation.

To evaluate the mechanism by which cells conditioned the sucrose solution, cells

were stored in isosmotic sucrose and observed by microscopy. Likely affected by the low

pH of the aqueous sucrose solution, few intact cells were found while a significant amount

of debris appeared to be present. This suggests that the increase in sucrose solution

conductivity is a result of the release of intracellular ions while cells and cell debris

provide some resistance at intermediate frequencies.
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Cells were stored in the aqueous sucrose solution and observed by phase-contrast

microscopy. After 20 minutes, very few cells could be observed, indicating the cell

membranes have been disrupted. Additionally, time-series impedance measurements

indicated that cells suspended in the acidic sucrose solution reached a steady state after

12 minutes. These observations suggest that cell lysis, and therefore the cause of sucrose

media conditioning, is caused by the low pH of the non-buffered sucrose solution. Cells

were also suspended in a Tris-HCl-buffered sucrose solution and observed by microscopy.

In this case, after two hours, a large number of cells appeared to remain intact. However,

impedance spectroscopy measurements of samples consisting of various concentrations of

cells in the buffered solution did not show adequate sensitivity for reliable cell detection

or concentration discrimination. This evidence supports the superior sensitivity of

cell detection and concentration measurement of zebrafish sperm cells as observed

by cell-lysate impedance spectroscopy measurements as observed in other cell types

(Cheng et al. 2007). Selection of a suitable low-conductivity, buffered, isosmotic solution

for impedance spectroscopy of zebrafish sperm cells is worthy of future exploration, as is

additional studies on intact cells in the buffered sucrose solution at frequencies above 2

MHz to elucidate whether contributions of cell membranes to impedance measurements

can be detected and correlated to cell concentration.
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Chapter 3. A Simple Microfluidic Impedance Cytometer and
Detection Algorithm for Cell Viability Analysis

3.1. Abstract

Microfluidic impedance cytometry has been demonstrated as an effective platform

for single cell analysis, taking advantage of microfabricated features and dielectric cell

sensing methods. In this study, we present a simple microfluidic device to improve

sensitivity, accuracy, and throughput of single suspension cell viability analysis using

vertical sidewall electrodes fabricated by a widely accessible negative manufacturing

method. A microchannel milled through a 75 µm platinum wire created a pair of

parallel vertical sidewall platinum electrodes. Jurkat cells were interrogated in a custom

low-conductivity buffer (1.2 ± 0.04 mS/cm) to reduce current leakage and increase

device sensitivity. Confirmed by live/dead staining and electron microscopy, a single

optimum excitation frequency of 2 MHz was identified at which live and dead cells were

discriminated based on the disruption in the cell membrane associated with cell death.

At this frequency, live cells were found to exhibit changes in impedance phase with

no appreciable change in magnitude, while dead cells displayed the opposite behavior.

Correlated with video microscopy, a computational algorithm was created that is able to

identify cell detection events and discriminate between live and dead cells by application

of a mathematical correlation method.

3.2. Introduction

Elucidation of the heterogeneities inherent to all populations of biological cells has

a significant impact on researchers’ and clinicians’ abilities to understand the mechanisms

of and develop effective treatments for important diseases (Buettner et al. 2015, Suresh
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2007). As a result, considerable effort has been directed to the development of tools

capable of measuring cells’ biophysical properties on a single cell basis at sufficient

throughputs to gather population- level data. Traditional methods for single-cell property

measurement analyze one cell or a small population of cells in batch conditions and are

therefore unsuitable for this purpose (Heath, Ribas, and Mischel 2016). Flow cytometry

offers a more rapid, high-throughput method for single-cell analysis, but conventional flow

technologies, such as fluorescence-activated cell sorting (FACS), require extensive sample

processing for conjugation of fluorescent labels with cells of interest prior to cytometric

detection. Such label-dependent strategies are necessarily labor-intensive and invasive

to cells and can render samples unsuitable for many subsequent uses (Seidl, Knuechel,

and Kunz-Schughart 1999). Additionally, while optical flow cytometry techniques have

been proven effective in probing biochemical properties, conventional methods are

not well suited to analysis of cells’ biophysical properties. Alternatively, analysis of

cells on the basis of their dielectric properties is an inherently rapid, non-invasive, and

label-free approach and provides the opportunity for direct correlation of measurements

to relevant biophysical properties for electrical phenotyping. The advent of microfluidic

technology has provided a means to overcome many of the challenges associated with

single cell analysis by reducing the cost and complexity of integrated tools while increasing

sensitivity and throughput (Murphy et al. 2018). In 2001, Gawad et al. (S. Gawad,

Schild, and Ph. Renaud 2001) demonstrated a microfabricated impedance flow cytometer,

which combined the advantages of microfluidic technology with the basic functionality

of standard electrical analysis methods for continuous flow-through single-cell dielectric

property measurements. The mechanism employed by this device fundamentally involved
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passing cells through a microchannel flanked by a pair of electrodes, applying a voltage

potential between the electrodes, and measuring the differential current change caused

by the impedance of the cell and suspending buffer. By combining an understanding

of the frequency dependence of the current response induced by biological cells with

simplified electrical models of a cell, impedance measurements can be correlated to

important biophysical characteristics including size and shape of the cell, properties of its

membrane, conditions of intracellular structures, etc. However, while many efforts have

necessarily been directed to the advancement of novel device designs and informational

multiparametric (multifrequency) analysis, costs of many tools required for fabrication

and operation of these devices may be prohibitive to some users. As a result, in addition

to the development of greater analysis capabilities, implementation of widely accessible

fabrication and measurement tools should be considered.

In any case, accurate and sensitive application of this technique relies on

optimization of key features of the device design and operating conditions. There are

two standard electrode configurations commonly utilized on microchips for impedance

analysis of single cells: coplanar and top/bottom parallel geometries. Coplanar electrode

geometries, in which electrodes are arranged on the same physical plane, are often used

due to the relative simplicity of their fabrication. However, the electric field generated by

these geometries is highly nonuniform, which leads to a significant positional dependence

of measured impedance values on the height of the cell in the channel that cannot be

easily resolved to generate accurate measurements. As a result, various methods have

been devoted to the mitigation of this positional dependence including use of flow focusing

techniques (Bernabini, Holmes, and Morgan 2011, Mernier, Duqi, and Philippe Renaud
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2012, Tang et al. 2017), novel electrode configurations (Mernier, Duqi, and Philippe

Renaud 2012, Solsona et al. 2019, Spencer and Morgan 2020, Wang, Sobahi, and A.

Han 2017), and advanced signal processing methods (Caselli, De Ninno, et al. 2018).

The reader is directed to the recent review of methods used to account for or reduce

positional dependence by Daguerre et al. (Daguerre et al. 2020) However, in many

cases, these methods require complex fluid manipulation strategies, result in reduced

sensitivity, and/or perform measurements using more than two electrodes, which increases

the risk of coincidence events in which impedance measurements are distorted by the

presence of multiple cells within the detection region. Conversely, in parallel electrode

geometries, the generated electric field is much more uniform, and the dependence of

measurements on cell position is significantly reduced throughout most of the detection

region. However, despite the advantages of electric field homogeneity offered by parallel

electrodes, coplanar geometries are often favored as standard methods for fabrication of

devices with top/bottom parallel electrode geometries in a microfluidic chip are complex

(Cheung, Shady Gawad, and Philippe Renaud 2005) and require advanced alignment

capabilities. Alternatively, vertical parallel sidewall electrode geometries have been shown

to generate vertically homogeneous electric fields thereby mitigating the sensitivity of

impedance measurements to cell height (Rollo et al. 2017). To date, the inclusion of

vertical electrodes has not been widely adopted in the field of microfluidic impedance

cytometry. However, advances in subtractive manufacturing techniques provide new

opportunites for rapid, low-cost fabrication of microscale features with geometries that

have otherwise been difficult to access. Properties of the cell-carrying buffer can also be

optimized to maximize the contribution of cells to measured impedance values and thereby
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maximize device sensitivity. Typically, 1x phosphate-buffered saline (PBS) is used as the

cell-containing buffer for biologically relevant analytes; however, while this solution does

effectively maintain physiologic osmolality and pH (thereby not affecting cell viability),

its relatively high electrical conductivity can lead to a significant portion of the applied

electric field bypassing cells. Constriction channels (Chen et al. 2011) and constraining

sheath flows (Bernabini, Holmes, and Morgan 2011) have been implemented in attempts

to mitigate this current leakage and increase sensitivity. However, these techniques risk

channel clogging and require additional instrumentation for flow control, respectively.

Use of reduced conductivity buffers consisting of diluted PBS (Clausen et al. 2018) and

of a PBS-sucrose mixture (Ostermann et al. 2020) have been demonstrated previously for

impedance flow cytometry.

The difficulty of achieving sufficient sensitivity of impedance flow cytometry is

also reflected in the extensive efforts undertaken, as reviewed recently by Honrado et

al. (Honrado et al. 2021), to effectively process impedance signatures and accurately

identify cell detection events. These events can be isolated from raw signals amidst

noise and baseline drift by correlation to a mathematical function that corresponds to

the expected profile, which is dictated by device design parameters including electrode

width and spacing, microchannel dimensions, buffer properties, interrogation frequency,

and cell biophysical properties and location (Caselli, De Ninno, et al. 2018, De Ninno,

Errico, et al. 2017, Sun et al. 2009). As a result, analytical or numerical analysis tools

should be applied to identify the expected impedance profile for a given device design

and to evaluate the effects of positional dependence on that profile (Daguerre et al.

2020). Microfluidic impedance cytometry has gained significant interest as a cell viability
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detection tool that can be integrated directly with various other biological analysis tools

(Luongo et al. 2013, Xu et al. 2016). The application of microfluidic impedance cytometry

for viability analysis of T lymphocyte cells specifically has been tested previously by

others (Palego et al. 2013, Schade-Kampmann et al. 2008), but each of these devices

required the use of constriction channels or ancillary particle focusing or trapping tools

that reduced their throughput and/or added complexity to their operation. Recently, De

Ninno et al. (De Ninno, Reale, et al. 2020) showed the discrimination of live, necrotic,

and apoptotic lymphoma cells interrogated at multiple frequencies in a continuous

flow-through cytometer with coplanar electrodes.

Similarly, advancements in electrical measurement instrumentation has significantly

reduced obstructions to use of electrical interrogation techniques. This study seeks to

build upon the aforementioned works to develop a microfluidic impedance cytometer

capable of Jurkat cell viability discrimination that is optimized for sensitivity and

simplicity with the use of widely accessible fabrication techniques and operational

instrumentation. The specific objectives of this study were to: 1) design and evaluate a

microfluidic impedance cytometer with parallel vertical sidewall electrodes; 2) fabricate

the device using a widely accessible manufacturing technique; 3) maximize device

simplicity by demonstrating a microfluidic chip that does not require use of constriction

channels, particle focusing, or other convoluting or limiting features; 4) optimize

device configuration and operation conditions for sensitive viability testing by use of a

custom cell buffer and optimum excitation frequency selection; 5) demonstrate reliable

discrimination of live and dead cell status with high sensitivity using a custom signal
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processing algorithm; and 6) compare optical imaging of cells to qualitatively validate

theoretical basis of dielectric live/dead discrimination.

3.3. Materials and Methods

3.3.1. Simulations of Electrode Geometries

Computational simulations of parallel and coplanar electrode geometries were

generated in the AC/DC module in COMSOL Multiphysics (COMSOL Inc., Stockholm,

Sweden) by adapting the approach described by Cottet et al. (Cottet et al. 2019). This

method involves the approximation of a single cell as an 11 µm diameter spherical region

of the microchannel with electrical properties differing from those of the fluid in the

channel and corresponding to estimated values expected to be exhibited by the cell of

interest. Electrode geometry parameters were kept consistent for congruency. For both

configurations, the electrode diameters and spacing were 76 µm and 50 µm, respectively.

The microchannel height and width were 80 µm and 50 µm, respectively. Synthetic

impedance signals consisting of 50 data points longitudinally at 20 discrete distances

relative to the electrodes were taken for each geometry.

3.3.2. Microfluidic Chip Design and Fabrication of Polymer-Based Device

A microfluidic device comprised of a single microchannel in a poly(methyl

methacrylate), PMMA, chip with a pair of vertical platinum (Pt) side-wall electrodes

(Fig. 3.1a) was fabricated using methods adapted from Adams et al. (Adams et al. 2008).

The microfabrication procedure involved micromilling (KERN MMP 522, KERN Micro-

and Feinwerktechnik GmbH and Co.KG; Germany) holes in a 3.2 mm thick PMMA

substrate (GoodFellow Corp). Pt wires (76 µm, Sigma Aldrich) were threaded into the
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holes in the PMMA and hot-embossed at 160 oC for 4 minutes to embed the wire into

the polymer. A single 50 um-wide microchannel was then milled through the PMMA

and wire, orthogonally to the wire orientation, to create access for fluid samples to be

passed directly between the two cut edges of the wire that comprise sidewall electrodes

(Fig. 3.1c). PMMA was selected as the substrate due to its good machinability and ability

to form structures, its minimal nonspecific binding of cells to the material surface, and

its clear optical properties for visualizing cells in the microchannel detection region (for

correlation to electrical signatures) (Adams et al. 2008).

Figure 3.1. (A) Schematic of the cell viability PMMA chip, (B) simplified design of the
single channel layout, and (C) integrated cell sensing electrodes consisting of cylindrical Pt
electrodes 76 µm in diameter with a 50 µm spacing between the pair of electrodes.

3.3.3. Cell Culture and Buffer

As a model for human T-lymphocyte cells, Jurkat cells (E6.1, ATCC) were used in

this study, maintained in 25 cm2 flasks with 5 mL of classical RPMI-1640 culture media

supplemented with 10% fetal bovine serum (FBS) and incubated at 37oC in a humidified

atmosphere containing 5% CO2. For the dead experimental control, Jurkat cells were

incubated in a 12-well plate with 4 mM hydrogen peroxide in RPMI for 18 hr prior to

analysis. Impedance experiments were carried out in a custom low-conductivity buffer
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at physiological pH and approximately 300 mOsm unless otherwise stated. Air, dI water,

TrisGly+Sucrose+BSA (Tris, Glycine, sucrose, and 1% BSA), and PBS were characterized

by pH, osmolarity, and conductivity at room temperature prior to testing in the device.

Cell buffer conductivity was measured at room temperature using an Omega #VDH-7X

conductivity meter (Omega, Stamford, CT), and osmolality was measured using a Wescor

#5520 osmometer (Wescor Inc., Logan, UT). Electrical impedance magnitude and phase

data of these media were collected by list sweep measurements which were performed over

the frequency range of 20 kHz to 2 MHz using the impedance analyzer described below.

3.3.4. Impedance Data Collection and Processing

NE-500 syringe pumps (New Era Pump Systems, Inc; Wantagh, NY) were

controlled to provide pressure-driven flow in the microdevice. The syringe pump was

programmed to generate a flow rate of 1 uL/hr, and the cell concentration was adjusted

to approximately 1x105 cells mL-1 to obtain an optimum rate of cells passing between

the excitation and sensing electrodes to be compatible with video microscopy. Electrical

signals from the microdevice were acquired using an Agilent E4980A Precision LCR Meter

(Agilent Technologies, Irvine, CA) at an operating voltage of 1 V and over a frequency

range of 20 kHz to 2 MHz. The impedance analyzer was self-calibrated using short-

and open- calibrations before samples were analyzed. For control sample impedance

measurements, the measurement time was set to short scans taken at 1.0, 1.5, and 2.0

MHz. Impedance data acquisition was performed using a National Instruments VI with

custom programming (National Instruments, Austin, TX). The impedance data were

further processed by correlation to the appropriate mathematical function using a custom
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digital signal processing algorithm developed in Matlab (The MathWorks, Inc., Natick,

MA).

3.3.5. Video Microscopy

Brightfield and fluorescence video microscopy were used to visually confirm cell

presence and viability during detection events in comparison to cell impedance detection

events. Live and dead cell viability control treatments were conducted wherein Calcein

AM was used as a fluorescent viability indicator. In the microdevice, fluorescent video

microscopy stream acquisition was acquired at 3 frames per second (fps) to capture

Calcein fluorescence with an exposure time of 250 ms. Images were captured with an

inverted Eclipse TS100 Nikon fluorescence microscope using 10× and 20× objective

lenses and a CoolSnapFX camera (Photometrics, Tucson, AZ). Time-lapse images were

acquired to determine cell velocimetry (ranging from 25-75 um/sec). Image processing

was performed on a Windows computer using MetaVue software (Universal Imaging

Corporation, West Chester, PA).

3.4. Results and Discussion

3.4.1. Simulations of Vertical and Coplanar Electrode Geometries

A device employing a single pair of electrodes was used to minimize the complexity

of fabrication, operation, and signal processing. This configuration also offers greater

sensitivity implementing more than two electrodes as the volume of the induced

electric field, and thus the interrogation region, is minimized thereby maximizing the

volume fraction occupied by cells. Additionally, the minimization of the volume of the
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interrogation region reduces the probability of a coincidence event in which multiple cells

were interrogated simultaneously.

Finite element analysis has been proven to be a useful tool for the study of

various electrode configurations and microfluidic geometries for impedance cytometry.

A COMSOL model of the device reported herein including an 11 µm diameter spherical

region with appropriate dielectric properties representing a Jurkat cell was generated to

evaluate the efficacy of the Gaussian function for application of the correlation method. A

second model with similar dimensions, yet coplanar electrode orientation, was evaluated to

compare the vertical positional dependence between the two approaches. Figure 3.2 shows

distributions of the electric field strengths and relative impedance signals resulting from

translation of an insulating sphere through each of these geometries at varying heights

(where cell heights and Z values refer to the vertical distance between the center of the

cell) from the channel floor.
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Figure 3.2. (A) Map of electric field strength through the microchannel centerline
created by coplanar electrode geometry, (B) map of electric field strength through the
microchannel centerline created by parallel electrode geometry, (C) relative impedance
magnitude variation (%) of insulating sphere passing between coplanar electrodes, (D)
relative impedance magnitude variation (%) of insulating sphere passing between parallel
electrodes, and (E) areas under the curves corresponding to each impedance magnitude
profile from both electrode geometries. Each plot line corresponds to a pathway through
the channel at the longitudinal centerline at various heights ranging from the top to the
bottom of the microchannel. Cell heights and Z values refer to positions of the center of
the insulating sphere.

In microfluidic impedance cytometers utilizing coplanar electrodes, the

nonuniformity of the electric field can create significant current leakage and reduced

sensitivity. Conversely, as illustrated by the electric field maps (Fig. 3.2a,b), the strength

of the electric field from the parallel sidewall electrodes is maintained through the

height of the channel. This phenomenon, which is also reflected by the larger relative
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amplitudes of the weakest impedance signal created by a cell passing between the sidewall

electrodes compared to the weakest signal created by the coplanar electrodes (Fig. 3.2c,d),

demonstrates the improved sensitivity achieved by the vertical parallel configuration.

To compare the vertical positional dependences of impedance signals generated

by the two electrode configurations independent of any curve fitting, the strengths of

the impedance magnitude signals were measured in terms of the area under the curves

(similarly to the root mean square analyses commonly performed on power spectral

density data). For congruency, these area values (Fig. 3.2e) were calculated based on

the relative impedance magnitude variations and normalized cell longitudinal positions.

The difference in these areas between the strongest and weakest signals from each of the

parallel and coplanar electrode configurations were 21.5% and 83.7%, respectively. This

demonstrates that the uniformity in the electric field created by the sidewall electrode

geometry leads to more reliable and accurate measurement capability. Additionally, the

inconsistency in the shape of the impedance profiles that occur at different heights in the

channel between coplanar electrodes are not suitable for signal processing methods that

rely on the correlation method; as a result, processing signals obtained by devices using

this configuration can be a significant obstacle.

The quality of the fit of the expected impedance signals at various heights to a

Gaussian function was also evaluated using goodness of fit (R2) values. For the electrode

and microchannel geometry used in this study, the R2 values for pure magnitude profiles

was 0.993 ± 0.004. This suggests that the single pulse Gaussian profile is an appropriate

template function for extraction of cell detection events from raw impedance signals. As a

result, this function was used for the signal processing algorithms employed in this study.
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To evaluate the effect of noise on the quality of the fit, artificial noise was added to the

impedance profiles using a periodic function and random number generator in Matlab at

an amplitude that corresponded to the noise observed from the measurement system used

in this study (raw data shown below in Fig. 3.3). The resulting average goodness of fit

value with the added noise was 0.821 ± 0.094.

3.4.2. Cell Buffer

Important parameters of the cell media such as osmolarity, pH, and conductivity

must be optimized to maintain eukaryotic cell viability and compatibility with the

impedance measurement system. Optimal cell buffer properties include physiological

osmolarity (300 mOsm for cell water balance) and physiological pH ( 7.4). To maximize

device sensitivity, it is advantageous to choose a buffer that maximizes the interactions

of cells with the electrical energy applied via electrodes. That is, the media should not

be so conductive that the energy preferentially bypasses the cells. Often supplemented

with sucrose (8.5% w/v) and dextrose (0.3% w/v), phosphate-buffered saline (PBS) is

commonly used as the base for the suspending cell media (Cheng et al. 2007; Cheung,

Shady Gawad, and Philippe Renaud 2005). To optimize the conditions described above,

a custom 25 mM Tris, 192 mM Glycine, 83 mM Sucrose, and 1% BSA low-conductivity

cell buffer was developed. As shown in Table 1, the characteristic complex impedances

of various cell buffers in the microchip device were evaluated to determine the optimum

conditions for maintaining and measuring cell viability.
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Table 3.1. Optimization of cell buffers for cell viability maintenance (low conductivity,
physiological pH, and osmolality) and compatibility with impedance detection.

Cell Buffer Solution Conductivity Osmolality pH

mS/cm mM/kg

di Water 0.002 ± 0.04 0 6.4

25mM Tris, 192mM Glycine 0.35 ± 0.04 180 8.3

25mM Tris, 192mM Glycine+83mM Sucrose+1%

BSA

1.2 ± 0.04 292 7.6

0.1x PBS 1.2 ± 0.04 56 7.4

1x PBS 9.3 ± 0.04 300 74

3.4.3. Identification of Optimum Frequency

In a previous report of a flow-through application of microfluidic impedance

measurement of T lymphocyte cell viability, cells were interrogated at 0.5 and 10 MHz.

While multifrequency analyses using low and high frequencies simultaneously can uncover

useful information about more subtle cellular properties, multiple sensing electrodes are

generally required, as well as more expensive instrumentation than utilized here. One

goal of this study was to identify a single frequency at which the impedance signatures

of live and dead cells could be easily detected and discriminated on a continuous basis.

Impedance measurements for live and dead cell control samples at several frequencies were

collected independently and analyzed. Frequencies at the lower end of the intermediate

frequency range (described above) up to the highest achievable frequency by the Agilent

LCR Meter (2 MHz) were chosen in an attempt to capture both the resistive and
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capacitive behaviors of interrogated cells. Impedance magnitude and phase signals were

collected for live and dead cell control samples at frequencies of 1.0, 1.5, and 2.0 MHz as

shown in Fig. 3.3.
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Figure 3.3. Relative changes in impedance magnitude of dead (A) and live (B) cells at 1,
1.5 and 2 MHz interrogation frequencies. Relative impedance phase changes of dead (C)
and live (D) cells.

As illustrated above, raw output signals often have baseline drift and high levels

of noise that can make extracting useful information challenging. As a result, although

the data samples shown above were chosen on the basis of their clarity for illustration,

quantitative and reliable identification of cell detection events is often difficult to achieve

reliably. A few methods have been demonsrated previously for digital impedance signal

processing including Savitzky-Golay smoothing (Evander et al. 2013) and the correlation

method (Caselli and Bisegna 2016). Savitzky-Golay smoothing, a widely used alternative

to moving average filtering for noise reduction in some fields (e.g., analytical chemistry),

64



applies a low pass polynomial filter by mathematical convolution and is dependent on an

input order and frame length of the applied filter.

When compared with video microscopy, live single-cell events were observed

to correlate with a measured change in the impedance phase signal, while dead single

cell events displayed a change in the impedance magnitude at all frequencies tested.

Importantly, at 2 MHz, live and dead cells displayed those expected dielectric responses

without displaying the converse behaviors. That is, at this frequency, interrogation of live

single cells created changes in the measured impedance phase without any appreciable

change in magnitude while dead cells induced impedance magnitude changes without any

significant phase change. Compared to previously reported devices for viability testing

of T lymphocyte cells, the selection and application of an electric field at an optimum

frequency allows for interrogation of cells at a single frequency thereby removing the need

for more complex equipment capable of multifrequency analyses.

In low MHz ranges, alternating currents can induce polarization of membrane ions

in live cells leading to membrane capacitance, which is proportional to the amplitude of

changes in impedance phase. Because the membrane is disrupted upon cell death, the ion

polarization events that lead to capacitance do not occur. Instead, the electric current

interacts only with resistive elements of the cell. As a result, combining consideration of

the effects of the frequency of the applied electric current on the nature of its interaction

with the cell being analyzed and the effects of cell death on cell biophysical characteristics

leads to the conclusion that live and dead cells of the same type can exhibit entirely

different impedimetric behaviors at a single frequency. Therefore, at an optimum

frequency (in this case, 2 MHz), live cells can be discriminated simply by observing
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relative changes in the impedance phase with no change in magnitude, while dead cells

show relative changes in impedance magnitude with no change in phase.

3.4.4. Live and Dead Control Sample Interrogation at 2 MHz

Once the frequency appropriate for cell status discrimination was determined,

live and dead cell control samples were tested at an excitation frequency of 2 MHz, and

observations were validated by comparison to fluorescence microscopy. Figure 3.4 shows

the processed, detrended data corresponding to raw data shown in Fig. 3.3 plotted against

the complete output of the signal detection algorithm.

A B

C D

Figure 3.4. Signal detection algorithm output plotted against detrended noisy impedance
output profiles corresponding to A) impedance magnitude of live cells, B) impedance
magnitude of dead cells, C) impedance phase of live cells, and D) impedance phase of
dead cells.

At 2 MHz, live and dead cells can easily be discriminated by identifying cell

detection events in impedance magnitude and phase profiles. Live cells clearly display
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impedance phase changes with no discernable impedance magnitude change whereas

dead cells display impedance magnitude changes with no evident changes in impedance

phase. Additionally, the signal detection algorithm is able to effectively process raw

data to eliminate baseline drift and identify cell detection events without reducing the

amplitude of signal peaks despite significant noise. Based on the combination of the

hardware microfluidic chip geometry utilized, an estimated maximum throughput for

detection of Jurkat cell viability is 1800 cells per minute. To illustrate the limitations of

commonly used smoothing techniques, the results of moving average and Savitzky-Golay

processing methods were applied to characteristic signals collected during this study.

Moving average filters were applied with window sizes of 5 and 50 to explore the effects

of small and large window sizes, respectively, while three combinations of orders and frame

lengths for Savitzky-Golay filtering were applied to illustrate their effects. As shown in

Fig. 3.5, moving average filters that incorporate too few data point do not adequately

smooth noisy data. Conversely, as the window size is increased, the amplitudes of signal

peaks are dampened. This leads to reduced sensitivity and an increased chance of missed

cell detection events.
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Figure 3.5. Relative changes in (A) impedance magnitude of dead cells including raw and
moving average-filtered data, (B) impedance phase of live cells including raw and moving
average-filtered data.

In Savitzky-Golay smoothing, there exists a similar compromise between

noise reduction and preservation of peak amplitudes. Higher order filters do tend to

maintain peak values but at the expense of noise reduction. Longer, lower-order filters,

conversely, tend to more effectively reduce signal noise but dampen peak amplitude

values. Identification of optimum order and frame length settings for noise reduction

and peak preservation can be difficult or, in some cases, unachievable (Sun et al. 2009).

Discrimination of cell viability states using the approach presented in this study can be

more clearly demonstrated by plotting impedance magnitude and phase values (for live

and dead cells) against one another using a scatter plot. To accomplish this, the signal

processing algorithm was amended to record the peak magnitude of every positive signal

detection event from collections of live and dead cells. That is, the algorithm identified
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the signal peak corresponding to the impedance component that displays adequately

Gaussian behavior, relative to the prescribed threshold for detection, and records the

amplitude and index of that peak. If the converse impedance component does not display

adequately Gaussian behavior as expected, that signal is averaged over a window of data

points one-tenth of the data segment in length. Figure 3.6 shows the measured impedance

magnitude and phase outputs resulting from signal processing plotted against one another.
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Figure 3.6. Representative 2D plot of change in magnitude versus phase, illustrating
that live and dead cells can be discriminated using the designed microchip device with
impedance measurements at 2 MHz.

This plot also contained 95% confidence ellipses for the sampled data collected from

live and dead cell samples. Calculated in Matlab, the widths and angles of the major and

minor axes of the ellipses were determined by the maximum and minimum eigenvalues

of the covariance matrices of phase and magnitude values. As shown above, Jurkat cell
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viability can be determined for at least 95% of interrogated cells using this device and

signal detection algorithm.

3.5. Conclusions

This paper presents a microfluidic impedance cytometer optimized for sensitive,

accurate, and high-throughput discrimination of the viability status of Jurkat cells.

Compared to previously reported devices for this application, this tool achieved effective

discrimination of live and dead cells using a vertical sidewall electrode geometry that

generated a vertically uniform electric field. This parallel sidewall geometry mitigates

problems associated with positional dependence and current leakage that are more

prominent in coplanar electrode geometries. The electrodes were fabricated using an

accessible, CAD-driven negative manufacturing process demonstrating its potential for

more widespread use. Furthermore, because the fundamental mechanisms and operation of

this device do not require complex particle focusing or trapping equipment, this device

provides a simple platform for single cell biophysical property analysis. Finally, the

inclusion of a custom buffer solution highlights a potential mitigating action that can be

used to overcome challenges of sensitivity and current leakage associated with impedance

cytometry platforms.

The general approach taken by this study can also be considered for other

applications of microfluidic impedance cytometry for single cell analysis. Simple

modifications to the applied frequency, electrode size, cell suspension buffer, and signal

processing algorithm can allow for interrogation of many cell types and extraction of a

number of important biophysical properties on a single-cell basis.
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Chapter 4. Conclusions and Future Directions

4.1. Conclusions

This work presents two similar but distinct approaches for the analysis of biological

cell samples based on the connection between their biophysical properties and the

frequency-dependent current responses they induce in the presence of applied AC electric

fields. Micro-electrochemical impedance spectroscopy (µEIS) can be applied for rapid

analysis of bulk samples of cells across a wide range of frequencies. A modular microfluidic

assembly with an integrated reversible microelectrode connector unit was presented. This

platform allowed for easy assembly and disassembly and did not require special fluid

handling instruments for operation.

This platform was shown to be an effective reusable system for application of

microfluidic technology to impedance spectroscopy testing by discrimination of zebrafish

sperm cell concentrations in a low-conductivity isosmotic buffer. A linear relationship

between sample conductance and cell concentration was observed at a goodness of fit (R2)

value of 0.998 ± 5.37e-4. The sensitivity of these measurements, as determined from the

slope of the conductance vs. concentration plot, was determined to be 9.73E-7 ± 4.51E-12

mS (cells per mL)−1. Similarly, the impedance spectra created by conditioned media

altered by temporary suspension (then removal) of sperm cells were tested. A goodness

of fit and sensitivity corresponding to this data were measured as 0.990 ± 6.61e-4 and

10.64E-7 ± 19.97E-12 mS (cells per mL)−1, respectively. Comparison of data from each

of these conditions, e.g. cell-containing samples and cell-free conditioned media, suggest
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that the sperm cells affect sucrose media in such a way that its conductivity is increased

while the presence of cells and debris reduce the extent of this increase.

Observation of the cells in sucrose by phase-contrast microscopy indicated that

cell membranes are disrupted by 20 minutes after suspension. Furthermore, time-series

measurements suggest that impedance measurements corresponding to cells suspended

in the sucrose solution reach a steady state after approximately 12 minutes. While yet

to be documented for sperm cells, increases in sample conductance have been observed

in studies applied to cell detection and concentration measurements of various other

cell types including peripheral blood mononuclear cells (Cheng et al. 2007), synthetic

liposomes (Damhorst et al. 2013), HIV cells (Demircan Yalçın et al. 2019), and parasitic

bacteria (Houssin et al. 2010) based on ion release from both intact and lysed cells.

The pH of the non-buffered sucrose solution was found to be 5.6, likely due to the

absorption and conversion of carbon dioxide to carbonic acid. This acidity, with the

reduced number of cells that can be observed in the sucrose solution over time, suggests

that cell concentration can be measured on the basis of the ions released from the cells

upon membrane disruption. As a result, it is proposed that a likely candidate for the

phenomena observed in this study is ion-release resulting from cell membrane disruption.

The second variation of dielectric spectroscopy applied herein, microfluidic

impedance cytometry, can be applied for high-throughput analysis of cellular properties

on a single-cell basis. A micromilling method was presented for the fabrication of an

impedance cytometry device consisting of parallel vertical sidewall electrodes. A physical

basis for fixed-frequency single-cell interrogation was presented by consideration of the

frequency-dependence of biological cells’ dielectric properties. Cell detection events were
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isolated from background signals amidst noise and baseline drift using a custom signal

processing algorithm. A comparison of the cell analysis prior to versus with this signal

processing algorithm showed improved noise suppression, more sensitive cell detection, and

better discrimination between live and necrotic cells.

4.2. Future Directions

4.2.1. Modular Microfluidic Assembly and Microelectrode Connector

The design and application of the modular microfluidic assembly and

microelectrode connector units used in this study were intended to be applied as a

proof-of-concept evaluation. These tools were easily assembled and disassembled during

testing and cleaning efforts.

While the clamping forces of the magnets were shown not to compress the PDMS

gasket to a statistically significant degree, the larger variance in gasket height in the

clamping assembly compared to the measurements outside of the assembly suggest that

there may be some inconsistency in the extent of PDMS compression. In the event that

future measurements are conducted on this device that are sensitive to variations in

chamber height, the possibility of such inconsistencies should be further evaluated by

measuring the height of a given PDMS gasket with the top and bottom pieces of the

assembly at variable positions. However, it should be noted that measurements conducted

on the basis of the bulk sample properties, as in the study reported in Chapter 2 herein,

the height of the microfluidic chamber may not be important.

Similarly, while the microelectrode connector unit appeared to produce sufficiently

consistent impedance measurements for cell counting in the target concentration

73



range, the consistency and effect of the application of the connector to electrode pads

should be evaluated. That is, the consistency of impedance measurements of simple,

well-characterized electrolyte solutions over some number of runs should be evaluated.

This can be done on the basis of calculation and monitoring of a cell constant value,

calculated as the ratio of measured sample resistance to solution resistivity. This term

represents a ratio of electrode dimensions and is well-established as a parameter for IDEA

characterization (“Impedance Instrumentation, Testing, and Data Validation” 2012).

The design of this device should also be advanced to improve the throughput

of sample analysis. Capabilities for easy driving of fluids through the interrogation

volume perhaps by addition of simple elements for interfacing with common fluid driving

instruments can be considered.

4.2.2. Evaluation of Other Cell Properties in Custom Buffers

While the basis for zebrafish sperm cell concentration measurement in this study

appears to be ion release resulting from cell lysis, the approach taken suggests a platform

for the analysis of other cell properties. For example, because contributions of cell

membranes to measured impedance values above beta-dispersion events, cell interrogation

at higher frequencies can reveal information regarding the biophysical properties of cell

membranes. For example, the resistance and/or capacitance of cell membranes may be

able to be correlated to the fraction of cells in a sample with intact membranes, thereby

providing a form of an estimate of sperm cell sample quality that does not require their

activation for motility analysis, which is standard practice.
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These studies highlighted the importance of appropriate solution parameters

for sensitive electrophysiological measurements of intact cells. This solution should be

biocompatible to maintain cell viability, and also remain isosmotic so as to not causing

activation of motility. Additionally, the buffer should be sufficiently conductive to carry

applied electric fields to the cells in the solution without being so conductive that their

contributions to measured impedance values cannot be detected.

The microfabricated chamber and interdigitated electrodes used in this study

could also be used for stimulating electrical fields that could be used in the evaluation

of the ion-transport properties of cell. In a solution with controlled ion content probed

at a controlled voltage, ion transport might be able to be induced and evaluated. This

information could provide an insight into the transport behavior of zebrafish sperm cell

membranes in static and activated states that may provide insights that typical motility

studies cannot, so is worthy of future exploration.
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Appendix A. Microfluidic Assembly Dimensional Drawings

Dimensional drawings for the top and bottom components are shown below. All

units are in mm.
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Appendix B. Impedance Cytometry Electric Field Simulations
and Signal Processing

The approach taken to simulate the effects of electrode geometry on impedance

cytometry, and the general approach used to process time course impedance data is

presented below.
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Material Definitions 
 
The input specifications used to define the material properties described below. 
 
Table S1 Dielectric material properties used in computational model of reported device. 

Property Symbol Unit Value Basis 
Solution 
Conductivity 

sigma_sol S/m 0.12 Conductivity of custom TrisGly + Sucrose + 
BSA buffer used in this study 

Solution Relative 
Permittivity 

eps_r_sol -- 80 Relative permittivity based on properties of 
PBS and custom buffer [2] 

Particle 
Conductivity 

sigma_par S/m 1E-12 Median value of commonly reported 
membrane conductivities of biological cells 
[3] 

Particle Relative 
Conductivity 

eps_r_par -- 6 Median value of commonly reported 
membrane conductivities of biological cells 
[3] 

 
The radius of the cell is defined as r0, and the position of its center is defined using Cartesian 
coordinates (x0, y0, z0). The properties of the material in the model are then defined using a 
conditional expression that applies the properties of the “particle” (or cell) within the radius of 
the cell and the properties of the “solution” outside of that region. The movement of the cell is 
achieved by varying the position of its center using an auxiliary parametric sweep.  
 
Meshing 
 
 A free tetrahedral mesh element shape with the following size settings was used 
throughout the full extent of the geometry. Standard adaptive meshing was used, but no 
boundary layer or other distributive modifications were made. The mesh element size settings 
were established as follows: 
 

 
Figure S2 Meshing parameters and completed mesh of model geometry. 

 



Synthetic Impedance Data 
 
 COMSOL’s AC/DC module calculates electrical properties as lumped parameters. When 
a voltage is applied in the Electrostatics physics package, an admittance matrix, Y, is determined. 
Specifically, as only one voltage is applied, the system admittance is represented as the first 
element in Y, Y11. Therefore, by definition, the system impedance can be calculated by defining 
a new variable as Z11 = 1/Y11 and assigning a global variable probe. Because impedance data is 
measured as the cell is outside of the induced electric field, the contribution of the buffer 
impedance to the synthetic data stream can be removed. 
 
Impedance Data Processing 
 
 Experimental data was collected using an Agilent E4980A LCR Meter controlled by 
LabView. Output impedance magnitude and phase data was collected and imported into Matlab. 
An algorithm was developed to process control sample data by a three-step process. First, a 
segment of data is taken whose length is based on the velocity of the cells in the microchannel 
and the length of the detection region. The data segment is then fitted against a mathematical 

single pulse Gaussian function, of the form 𝑦!"#$ = 𝑎 ∗ exp (%&'
(
)
)
 where t is time in seconds; a, 

b, and c are fitting parameters. The quality of the fits of data segments corresponding to cell 
detection events (as confirmed by video microscopy) were recorded. Data that does not 
correspond to a cell event is passed by the algorithm as noise and is detrended to remove 
baseline drift. The data segments are then recombined and expressed together. No data 
smoothing is applied to avoid artificially suppressing important trends. 
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Appendix C. Signal Processing Code

Matlab code for processing single cell cytometry data is presented below.

80



M1 = M1.*-1;

% Pdlive = round(length(tlive)/100);
% Pddead = round(length(tdead)/100);

%1.2 The Matlab "polyfit" function reads data in an [x,y,n] format to
%create coefficients, p, that fit a polynomial that fits the y data 
over
%the x range with an order of n. Mu corresponds to the mean of the 
dataset
% [p1,s1,mu1] = polyfit(tdead,Mdead,0);
% [p2,s2,mu3] = polyfit(tlive,Plive,0);
% [p3,s3,mu3] = polyfit(tdead,Pdead,0);
% [p4,s4,mu4] = polyfit(tlive,Mlive,0);
% [p1,s1,mu1] = polyfit(tdead,Mdead,1);
% [p2,s2,mu3] = polyfit(tlive,Plive,1);
% [p3,s3,mu3] = polyfit(tdead,Pdead,1);
% [p4,s4,mu4] = polyfit(tlive,Mlive,1);

[p1,s1,mu1] = polyfit(t1,M1,0);

%1.3 The Matlab "polyval" function reads data in an [p,x,[],mu] format 
to
%create a polynomial function based on the polynomial coefficients
%described by p over the range x. Mu causes the polynomial to 
incorporate
%a mean of mu by x' = (x-mu1)/mu2
% PolyVal1 = polyval(p1,tdead,[],mu1);
% PolyVal2 = polyval(p2,tlive,[],mu3);
% PolyVal3 = polyval(p3,tdead,[],mu3);
% PolyVal4 = polyval(p4,tlive,[],mu4);

PolyVal1 = polyval(p1,t1,[],mu1);

%The code below subtracts the polynomial created by the polyfit and 
polyval
%functions from the raw data
% DetrendedMagdead = Mdead - PolyVal1;
% DetrendedPhlive = Plive - PolyVal2;
% DetrendedPhdead = Pdead - PolyVal3;
% DetrendedMaglive = Mlive - PolyVal4;

DetrendedM1 = M1 - PolyVal1;

% mintlive = min(tlive);
% tliveraw = tlive'-mintlive;
% mintdead = min(tdead);
% tdeadraw = tdead'-mintdead;

mint1 = min(t1);



t1raw = t1'-mint1;

% figure(2)
% subplot(2,2,1)
% p1 = plot(tliveraw,DetrendedMaglive);
% title('Raw Output - Impedance Magnitude of Live Cells');
% ylim([-40 120])
% a = get(gca,'XTickLabel');
% set(gca,'XTickLabel',a,'fontsize',23)
% set(gca,'XTickLabelMode','auto')
% b = get(gca,'YTickLabel');
% set(gca,'YTickLabel',b,'fontsize',23)
% set(gca,'YTickLabelMode','auto')
% p1.LineWidth = 3;
% p1.Color = [0, 1.0, 0, 0.5];
% xlabel('Time (s)','FontSize',29)
% ylabel('Impedance Magnitude (Ohms)','FontSize',29)
% subplot(2,2,3)
% p2 = plot(tliveraw,DetrendedPhlive);
% title('Raw Output - Impedance Phase of Live Cells');
% ylim([-0.14 0.04])
% a = get(gca,'XTickLabel');
% set(gca,'XTickLabel',a,'fontsize',23)
% set(gca,'XTickLabelMode','auto')
% b = get(gca,'YTickLabel');
% set(gca,'YTickLabel',b,'fontsize',23)
% set(gca,'YTickLabelMode','auto')
% p2.LineWidth = 3;
% p2.Color = [0, 1.0, 0, 0.5];
% xlabel('Time (s)','FontSize',29)
% ylabel('Impedance Phase (Degrees)','FontSize',29)
% subplot(2,2,2)
% p3 = plot(tdeadraw,DetrendedMagdead);
% title('Raw Output - Impedance Magnitude of Dead Cells');
% ylim([-40 120])
% a = get(gca,'XTickLabel');
% set(gca,'XTickLabel',a,'fontsize',23)
% set(gca,'XTickLabelMode','auto')
% b = get(gca,'YTickLabel');
% set(gca,'YTickLabel',b,'fontsize',23)
% set(gca,'YTickLabelMode','auto')
% p3.LineWidth = 3;
% p3.Color = [1.0, 0, 0, 0.5];
% xlabel('Time (s)','FontSize',29)
% ylabel('Impedance Magnitude (Ohms)','FontSize',29)
% subplot(2,2,4)
% p4 = plot(tdeadraw,DetrendedPhdead);
% title('Raw Output - Impedance Phase of Dead Cells');
% ylim([-0.14 0.04])
% a = get(gca,'XTickLabel');



% set(gca,'XTickLabel',a,'fontsize',23)
% set(gca,'XTickLabelMode','auto')
% b = get(gca,'YTickLabel');
% set(gca,'YTickLabel',b,'fontsize',23)
% set(gca,'YTickLabelMode','auto')
% p4.LineWidth = 3;
% p4.Color = [1.0, 0, 0, 0.5];
% xlabel('Time (s)','FontSize',29)
% ylabel('Impedance Phase (Degrees)','FontSize',29)

%---------------------------------------------------------------------
-----------------------------------
%2. This section fits standardized Magnitude data to a Gaussian 
polynomial,
%keeps the data that fits the Gaussian profile and 3. detrends and 
filters the
%data determined to be noise using the polyfit/polyval functions and
%Savitsky-Golay Filtering, respectively

%Define new vectors as vectors of ones to reduce run time
% DetrendedPhdeadInv = ones(length(tdead)-1,1);
DetrendedPh1Inv = ones(length(t1)-1,1);
% tdeadnorm = ones(length(tdead)-1,1);
t1norm = ones(length(t1)-1,1);
% DetrendedPhliveInv = ones(length(tlive)-1,1);
% tlivenorm = ones(length(tlive)-1,1);
% xdead = ones(length(tdead),1);
x1 = ones(length(t1),1);
% xlive = ones(length(tlive),1);
% y1 = ones(length(tdead),1);
y1 = ones(length(t1),1);
% y2 = ones(length(tlive),1);
% y3 = ones(length(tdead),1);
% y4 = ones(length(tlive),1);
% MagFit1 = zeros(length(tdead),1);
MagFit1 = zeros(length(t1),1);
% MagFit1Data = zeros(length(tdead),1);
MagFit1Data = zeros(length(t1),1);
% PhFit2 = zeros(length(tlive),1);
PhFit1 = zeros(length(t1),1);
% PhFit2Inv = zeros(length(tlive),1);
PhFit1Inv = zeros(length(t1),1);
% PhFit2Data = zeros(length(tlive),1);
% PhFit2DataInv = zeros(length(tlive),1);
% PhFit3 = zeros(length(tdead),1);
% PhFit3Inv = zeros(length(tdead),1);
% PhFit3Data = zeros(length(tdead),1);
% PhFit3DataInv = zeros(length(tdead),1);
% MagFit4 = zeros(length(tlive),1);
% MagFit4Data = zeros(length(tlive),1);



% Rsq1 = zeros(length(tdead),1);
Rsq1 = zeros(length(t1),1);
% Rsq3 = zeros(length(tdead),1);
% Rsq2 = zeros(length(tlive),1);
% Rsq4 = zeros(length(tlive),1);

%Create inverse vectors for Phase signals so that findpeaks can be 
applied
% DetrendedPhdeadInv = DetrendedPhdead.*-1;
% DetrendedPhliveInv = DetrendedPhlive.*-1;

DetrendedPh1Inv = DetrnededPh1.*-1;

%Define length of vectors constructed for testing for signal detection
%events, approximate interval for length of signal corresponding to
%detection events, and minimum thresholds for goodness-of-fit values 
to
%extract detection events from noise
% VectorLengthdead = 120;
% PeakIntervaldead = 70;
% VectorLengthlive = 70;
% PeakIntervallive = ceil(VectorLengthlive/2);
% RSquareLimMag1 = 0.67;
% RSquareLimMag4 = 0.67;
% RSquareLimPh2 = 0.6;
% RSquareLimPh3 = 0.6;
% i = 1; j = 1; k = 1; l = 1;
%i = 252; %Added for troubleshooting

VectorLength1 = 50;
i = 1; k = 1;
RSquareLimMag1 = 0.5;
RSquareLimPh1 = 0.5;

% %2.1 Construct loop for length of dead control sample data. This 
means
% %that, if used for processing future impedance data, the sample must 
be run
% %for an additional time (~1-2 s) with no cells present
% while i <= (length(tdead)-VectorLengthdead)
%     %2.1.1 Construct vectors of 'VectorLength' number of points 
after the ith
%     %point in the loop. Vectors correspond to time data and 
detrended
%     %impedance magnitude over the set vector length
%     xdead = tdead(i:i+VectorLengthdead-1);
%     y1 = DetrendedMagdead(i:i+VectorLengthdead-1);
%     %2.1.2 Fit each vector to a single two-sided Gaussian profile
%     fitOptions1 = fitoptions('gauss1','Lower',[-1000 -1000 
-1000],'Upper',[1000 1000 1000]);



%     [fitf1,gof1] = fit(xdead,y1,'gauss1',fitOptions1);
%     %2.1.3 Quantify goodness-of-fit with r-squared values
%     Rsq1(i,1) = gof1.rsquare;
%     %2.1.4 If r-squared values are greater than the minimum 
threshold set
%     %execute code below to extract event signals and fit to a 
Gaussian
%     %profile
%     if Rsq1(i,1) > RSquareLimMag1
%         %2.1.4.1 Create vectors corresponding to the fit Gaussian 
profile
%         %and the detrended impedance magnitude signal over the 
vector
%         %length
%         MagFit1(i:i+VectorLengthdead-1) = fitf1(xdead);
%         MagFit1Data(i:i+VectorLengthdead-1) = y1;
%         %2.1.4.2 Identify the maximum and location of the maximum of 
the
%         %Gaussian fit profile and the detrended impedance magnitude 
signal
%         [maxMagFit1,Loc1] = 
max(abs(MagFit1(i:i+VectorLengthdead-1)));
%         [maxMagFit1Data,Loc1Data] = 
max(abs(MagFit1Data(i:i+VectorLengthdead-1)));
%         %2.1.4.3 Define new i values as the locations of the two 
maxima
%         iNew = i + Loc1Data;
%         iDataNew = i + Loc1Data;
%         %2.1.4.4 Define minumum and maximum time points 
corresponding to
%         %the assumed length of the detection event signal for 
Gaussian fit
%         %and impedance data
%         Loc1Min = max(i,iNew-PeakIntervaldead);
%         Loc1DataMin = max(i,iDataNew-PeakIntervaldead);
%         Loc1Max = min(length(tdead)-
VectorLengthdead,iNew+PeakIntervaldead);
%         Loc1DataMax = min(length(tdead)-
VectorLengthdead,iDataNew+PeakIntervaldead);
%         %2.1.4.5 Define new x vector corresponding to the peak data
%         xdeadNew = tdead(Loc1DataMin:Loc1DataMax);
%         %2.1.4.6 Define new y vector corresponding to the peak data
%         y1New = DetrendedMagdead(Loc1DataMin:Loc1DataMax);
%         %2.1.4.7 Create new Gaussian fit centered around the maximum 
of the
%         %detection event signal to ensure that all associated data 
is
%         %processed
%         [fitf1New,gof1New] = 
fit(xdeadNew,y1New,'gauss1',fitOptions1);



%         %2.1.4.8 Redefine the curve for the fit as 0 outside of 
assumed
%         %peak length and assign new curve for the data in the peak 
length
%         MagFit1(i:Loc1Min) = 0;
%         MagFit1(Loc1Min:Loc1DataMax) = fitf1New(xdeadNew);
%         if Loc1Max < i+VectorLengthdead-1
%         MagFit1(Loc1Max:i+VectorLengthdead-1) = 0;
%         end
%         %2.1.4.9 Redefine the impedance as 0 outside of assumed peak 
length
%         %and keep the data within the detection event
%         MagFit1Data(i:Loc1Min) = DetrendedMagdead(i:Loc1Min);
%         MagFit1Data(Loc1DataMin:Loc1DataMax) = y1New;
%         if Loc1DataMax < i+VectorLengthdead-1
%         MagFit1Data(Loc1DataMax:i+VectorLengthdead-1) = 
DetrendedMagdead(Loc1DataMax:i+VectorLengthdead-1);
%         end
%         MagFit1Noise(i:i+VectorLengthdead-1) = 0;
%         %2.1.4.10 Skip to end of detection event data to ensure that 
it
%         %doesn't get erased or processed as noise
%         i = Loc1DataMax;
%     %3.1 If r-squared is less than the specified limit, use polyfit 
and
%     %polyval functions to detrend noise then use Savitsky-Golay 
Filtering
%     %to filter noise to ensure that no events were missed and 
increase
%     %signal-to-noise ratio
%     else
%         %3.1.1 Create new polyfit and polyval functions to detrend 
noise
%         %data over "VectorLength"-length interval
%         %[p1Noise,s1Noise,mu1Noise] = polyfit(xdead,y1,6);
%         %PolyVal1Noise = polyval(p1Noise,xdead,[],mu1Noise);
%         %3.1.2 Subtract polynomial from previously detrended data to 
better
%         %detrend smaller section of noise
%         %MagFit1Data(i:i+length(y1)-1) = y1-PolyVal1Noise;
%         %3.1.3 Filter detrended noise data by Savitsky-Golay Filter 
of
%         %order and frame length specified
%         %order = 3;
%         %framelen = VectorLength/10 + 1;
%         %MagFit1Data(i:i+length(y1)-1) = 
sgolayfilt(MagFit1Data(i:i+length(y1)-1),order,framelen);
%         MagFit1Data(i:i+length(y1)-1) = 0;
%         MagFit1Noise(i:i+length(y1)-1) = 
DetrendedMagdead(i:i+length(y1)-1);



%         %3.1.4 Skip to end of vector to avoid reprocessing
%         i = i + VectorLengthdead-1;
%     end
%     i = i + 1;
% end
% 
% MagFit1Data(i:length(tdead)) = 0;
% MagFit1Noise(i:length(tdead)) = DetrendedMagdead(i:length(tdead));
% 
% %2.3 Construct loop for length of dead control sample data. This 
means
% %that, if used for processing future impedance data, the sample must 
be run
% %for an additional time (~1-2 s) with no cells present
% while k <= (length(tdead)-VectorLengthdead)
%     %2.3.1 Construct vectors of 'VectorLength' number of points 
after the
%     %kth point in the loop. Vectors correspond to time data and 
detrended
%     %impedance phase over the set vector length
%     xdead = tdead(k:k+VectorLengthdead-1);
%     y3 = DetrendedPhdeadInv(k:k+VectorLengthdead-1);
%     %2.3.2 Fit each vector to a single two-sided Gaussian profile
%     fitOptions3 = fitoptions('gauss1','Lower',[-1000 -1000 
-1000],'Upper',[1000 1000 1000]);
%     [fitf3,gof3] = fit(xdead,y3,'gauss1',fitOptions3);
%     %2.3.3 Quantify goodness-of-fit with r-squared values
%     Rsq3(k,1) = gof3.rsquare;
%     %2.3.4 If r-squared values are greater than the minimum 
threshold set
%     %execute code below to extract event signals and fit to a 
Gaussian
%     %profile
%     if Rsq3(k,1) > RSquareLimPh3
%         %2.3.4.1 Create vectors corresponding to the fit Gaussian 
profile
%         %and the detrended impedance phase signal over the vector
%         %length
%         PhFit3Inv(k:k+VectorLengthdead-1) = fitf3(xdead);
%         PhFit3DataInv(k:k+VectorLengthdead-1) = y3;
%         %2.3.4.2 Identify the maximum and location of the maximum of 
the
%         %Gaussian fit profile and the detrended impedance phase 
signal
%         [maxPhFit3Inv,Loc3] = 
max(abs(PhFit3Inv(k:k+VectorLengthdead-1)));
%         [maxPhFit3DataInv,Loc3Data] = 
max(abs(PhFit3DataInv(k:k+VectorLengthdead-1)));
%         %2.3.4.3 Define new j values as the locations of the two 
maxima



%         kNew = k + Loc3Data;
%         kDataNew = k + Loc3Data;
%         %2.3.4.4 Define minumum and maximum time points 
corresponding to
%         %the assumed length of the detection event signal for 
Gaussian fit
%         %and impedance data
%         Loc3Min = max(k,kNew-PeakIntervaldead);
%         Loc3DataMin = max(k,kDataNew-PeakIntervaldead);
%         Loc3Max = min(length(tdead)-
VectorLengthdead,kNew+PeakIntervaldead);
%         Loc3DataMax = min(length(tdead)-
VectorLengthdead,kDataNew+PeakIntervaldead);
%         %2.3.4.5 Define new x vector corresponding to the peak data
%         xdeadNew = tdead(Loc3DataMin:Loc3DataMax);
%         %2.3.4.6 Define new y vector corresponding to the peak data
%         y3New = DetrendedPhdead(Loc3DataMin:Loc3DataMax);
%         %2.3.4.7 Create new Gaussian fit centered around the maximum 
of the
%         %detection event signal to ensure that all associated data 
is
%         %processed
%         [fitf3New,gof3New] = 
fit(xdeadNew,y3New,'gauss1',fitOptions3);
%         %2.3.4.8 Redefine the curve for the fit as 0 outside of 
assumed
%         %peak length and assign new curve for the data in the peak 
length
%         PhFit3Inv(k:Loc3Min) = 0;
%         PhFit3Inv(Loc3Min:Loc3DataMax) = fitf3New(xdeadNew);
%         if Loc3Max < k+VectorLengthdead-1
%         PhFit3Inv(Loc3Max:k+VectorLengthdead-1) = 0;
%         end
%         %2.3.4.9 Redefine the impedance as 0 outside of assumed peak 
length
%         %and keep the data within the detection event
%         PhFit3DataInv(k:Loc3Min) = DetrendedPhdead(k:Loc3Min).*-1;
%         PhFit3DataInv(Loc3DataMin:Loc3DataMax) = y3New;
%         if Loc3DataMax < k+VectorLengthdead-1
%         PhFit3DataInv(Loc3DataMax:k+VectorLengthdead-1) = 
DetrendedPhdead(Loc3DataMax:k+VectorLengthdead-1).*-1;
%         end
%         PhFit3Noise(k:k+VectorLengthdead-1) = 0;
%         %2.3.4.10 Skip to end of detection event data to ensure that 
it
%         %doesn't get erased or processed as noise
%         k = Loc3DataMax;
%     %3.3 If r-squared is less than the specified limit, use polyfit 
and
%     %polyval functions to detrend noise then use Savitsky-Golay 



Filtering
%     %to filter noise to ensure that no events were missed and 
increase
%     %signal-to-noise ratio
%     else
%         %3.3.1 Create new polyfit and polyval functions to detrend 
noise
%         %data over "VectorLength"-length interval
%         %[p3Noise,s3Noise,mu3Noise] = polyfit(xdead,y3,6);
%         %PolyVal3Noise = polyval(p3Noise,xdead,[],mu3Noise);
%         %3.3.2 Subtract polynomial from previously detrended data to 
better
%         %detrend smaller section of noise
%         %PhFit3DataInv(k:k+length(y3)-1) = y3-PolyVal3Noise;
%         %3.3.3 Filter detrended noise data by Savitsky-Golay Filter 
of
%         %order and frame length specified
%         %order = 3;
%         %framelen = VectorLength/10 + 1;
%         %PhFit3DataInv(k:k+length(y3)-1) = 
sgolayfilt(PhFit3DataInv(k:k+length(y3)-1),order,framelen);
%         PhFit3DataInv(k:k+length(y3)-1) = 0;
%         PhFit3Noise(k:k+length(y3)-1) = 
DetrendedPhdead(k:k+length(y3)-1).*-1;
%         %3.2.4 Skip to end of vector to avoid reprocessing
%         k = k + VectorLengthdead-1;
%     end
%     k = k + 1;
% end
% 
% PhFit3Data(k:length(tdead)) = 0;
% PhFit3Noise(k:length(tdead)) = DetrendedPhdead(k:length(tdead));
% 
% %2.2 Construct loop for length of live control sample data. This 
means
% %that, if used for processing future impedance data, the sample must 
be run
% %for an additional time (~1-2 s) with no cells present
% while j <= (length(tlive)-VectorLengthlive)
%     %2.2.1 Construct vectors of 'VectorLength' number of points 
after the
%     %jth point in the loop. Vectors correspond to time data and 
detrended
%     %impedance phase over the set vector length
%     xlive = tlive(j:j+VectorLengthlive-1);
%     y2 = DetrendedPhliveInv(j:j+VectorLengthlive-1);
%     %2.2.2 Fit each vector to a single two-sided Gaussian profile
%     fitOptions2 = fitoptions('gauss1','Lower',[-1000 -1000 
-1000],'Upper',[1000 1000 1000]);
%     [fitf2,gof2] = fit(xlive,y2,'gauss1',fitOptions2);



%     %2.2.3 Quantify goodness-of-fit with r-squared values
%     Rsq2(j,1) = gof2.rsquare;
%     %2.2.4 If r-squared values are greater than the minimum 
threshold set
%     %execute code below to extract event signals and fit to a 
Gaussian
%     %profile
%     if Rsq2(j,1) > RSquareLimPh2
%         %2.2.4.1 Create vectors corresponding to the fit Gaussian 
profile
%         %and the detrended impedance phase signal over the vector
%         %length
%         PhFit2Inv(j:j+VectorLengthlive-1) = fitf2(xlive);
%         PhFit2DataInv(j:j+VectorLengthlive-1) = y2;
%         %2.2.4.2 Identify the maximum and location of the maximum of 
the
%         %Gaussian fit profile and the detrended impedance phase 
signal
%         [maxPhFit2Inv,Loc2] = 
max(abs(PhFit2Inv(j:j+VectorLengthlive-1)));
%         [maxPhFit2DataInv,Loc2Data] = 
max(abs(PhFit2DataInv(j:j+VectorLengthlive-1)));
%         %2.2.4.3 Define new j values as the locations of the two 
maxima
%         jNew = j + Loc2Data;
%         jDataNew = j + Loc2Data;
%         %2.2.4.4 Define minumum and maximum time points 
corresponding to
%         %the assumed length of the detection event signal for 
Gaussian fit
%         %and impedance data
%         Loc2Min = max(j,jNew-PeakIntervallive);
%         Loc2DataMin = max(j,jDataNew-PeakIntervallive);
%         Loc2Max = min(length(tlive)-
VectorLengthlive,jNew+PeakIntervallive);
%         Loc2DataMax = min(length(tlive)-
VectorLengthlive,jDataNew+PeakIntervallive);
%         %2.2.4.5 Define new x vector corresponding to the peak data
%         xliveNew = tlive(Loc2DataMin:Loc2DataMax);
%         %2.2.4.6 Define new y vector corresponding to the peak data
%         y2New = DetrendedPhliveInv(Loc2DataMin:Loc2DataMax);
%         %2.2.4.7 Create new Gaussian fit centered around the maximum 
of the
%         %detection event signal to ensure that all associated data 
is
%         %processed
%         [fitf2New,gof2New] = 
fit(xliveNew,y2New,'gauss1',fitOptions2);
%         %2.2.4.8 Redefine the curve for the fit as 0 outside of 
assumed



%         %peak length and assign new curve for the data in the peak 
length
%         PhFit2Inv(j:Loc2Min) = 0;
%         PhFit2Inv(Loc2Min:Loc2DataMax) = fitf2New(xliveNew);
%         if Loc2Max < j+VectorLengthlive-1
%         PhFit2Inv(Loc2Max:j+VectorLengthlive-1) = 0;
%         end
%         %2.2.4.9 Redefine the impedance as 0 outside of assumed peak 
length
%         %and keep the data within the detection event
%         PhFit2DataInv(j:Loc2Min) = DetrendedPhlive(j:Loc2Min).*-1;
%         PhFit2DataInv(Loc2DataMin:Loc2DataMax) = y2New;
%         if Loc2DataMax < j+VectorLengthlive-1
%         PhFit2DataInv(Loc2DataMax:j+VectorLengthlive-1) = 
DetrendedPhlive(Loc2DataMax:j+VectorLengthlive-1).*-1;
%         end
%         PhFit2Noise(j:j+VectorLengthlive-1) = 0;
%         %2.2.4.10 Skip to end of detection event data to ensure that 
it
%         %doesn't get erased or processed as noise
%         j = Loc2DataMax;
%     %3.2 If r-squared is less than the specified limit, use polyfit 
and
%     %polyval functions to detrend noise then use Savitsky-Golay 
Filtering
%     %to filter noise to ensure that no events were missed and 
increase
%     %signal-to-noise ratio
%     else
%         %3.2.1 Create new polyfit and polyval functions to detrend 
noise
%         %data over "VectorLength"-length interval
%         %[p2Noise,s2Noise,mu2Noise] = polyfit(xlive,y2,6);
%         %PolyVal2Noise = polyval(p2Noise,xlive,[],mu2Noise);
%         %3.2.2 Subtract polynomial from previously detrended data to 
better
%         %detrend smaller section of noise
%         %PhFit2DataInv(j:j+length(y2)-1) = y2-PolyVal2Noise;
%         %3.2.3 Filter detrended noise data by Savitsky-Golay Filter 
of
%         %order and frame length specified
%         %order = 3;
%         %framelen = VectorLength/10 + 1;
%         %PhFit2DataInv(j:j+length(y2)-1) = 
sgolayfilt(PhFit2DataInv(j:j+length(y2)-1),order,framelen);
%         PhFit2DataInv(j:j+length(y2)-1) = 0;
%         PhFit2Noise(j:j+length(y2)-1) = 
DetrendedPhlive(j:j+length(y2)-1).*-1;
%         %3.2.4 Skip to end of vector to avoid reprocessing
%         j = j + VectorLengthlive-1;



%     end
%     j = j + 1;
% end
% 
% PhFit2Data(j:length(tlive)) = 0;
% PhFit2Noise(j:length(tlive)) = DetrendedPhlive(j:length(tlive));
% 
% %2.4 Processing live control sample magnitude will be conducted 
differently
% %as there is assumed to be no magnitude response. This will be 
confirmed
% %later
% while l <= (length(tlive)-VectorLengthlive)
%     %2.4.1 Construct vectors of 'VectorLength' number of points 
after the lth
%     %point in the loop. Vectors correspond to time data and 
detrended
%     %impedance magnitude over the set vector length
%     xlive = tlive(l:l+VectorLengthlive-1);
%     y4 = DetrendedMaglive(l:l+VectorLengthlive-1);
%     %2.4.2 Fit each vector to a single two-sided Gaussian profile
%     fitOptions4 = fitoptions('gauss1','Lower',[-1000 -1000 
-1000],'Upper',[1000 1000 1000]);
%     [fitf4,gof4] = fit(xlive,y4,'gauss1',fitOptions4);
%     %2.4.3 Quantify goodness-of-fit with r-squared values
%     Rsq4(l,1) = gof4.rsquare;
%     %2.4.4 If r-squared values are greater than the minimum 
threshold set
%     %execute code below to extract event signals and fit to a 
Gaussian
%     %profile
%     if Rsq4(l,1) > RSquareLimMag4
%         %2.4.4.1 Create vectors corresponding to the fit Gaussian 
profile
%         %and the detrended impedance magnitude signal over the 
vector
%         %length
%         MagFit4(l:l+VectorLengthlive-1) = fitf4(xlive);
%         MagFit4Data(l:l+VectorLengthlive-1) = y4;
%         %2.4.4.2 Identify the maximum and location of the maximum of 
the
%         %Gaussian fit profile and the detrended impedance magnitude 
signal
%         [maxMagFit4,Loc4] = 
max(abs(MagFit4(l:l+VectorLengthlive-1)));
%         [maxMagFit4Data,Loc4Data] = 
max(abs(MagFit4Data(l:l+VectorLengthlive-1)));
%         %2.4.4.3 Define new l values as the locations of the two 
maxima
%         lNew = l + Loc4Data;



%         lDataNew = l + Loc4Data;
%         %2.4.4.4 Define minumum and maximum time points 
corresponding to
%         %the assumed length of the detection event signal for 
Gaussian fit
%         %and impedance data
%         Loc4Min = max(l,lNew-PeakIntervallive);
%         Loc4DataMin = max(l,lDataNew-PeakIntervallive);
%         Loc4Max = min(length(tlive)-
VectorLengthlive,lNew+PeakIntervallive);
%         Loc4DataMax = min(length(tlive)-
VectorLengthlive,lDataNew+PeakIntervallive);
%         %2.4.4.5 Define new x vector corresponding to the peak data
%         xliveNew = tlive(Loc4DataMin:Loc4DataMax);
%         %2.4.4.6 Define new y vector corresponding to the peak data
%         y4New = DetrendedMaglive(Loc4DataMin:Loc4DataMax);
%         %2.4.4.7 Create new Gaussian fit centered around the maximum 
of the
%         %detection event signal to ensure that all associated data 
is
%         %processed
%         [fitf4New,gof4New] = 
fit(xliveNew,y4New,'gauss1',fitOptions4);
%         %2.4.4.8 Redefine the curve for the fit as 0 outside of 
assumed
%         %peak length and assign new curve for the data in the peak 
length
%         MagFit4(l:Loc4Min) = 0;
%         MagFit4(Loc4Min:Loc4DataMax) = fitf4New(xliveNew);
%         if Loc4Max < l+VectorLengthlive-1
%         MagFit1(Loc4Max:l+VectorLengthlive-1) = 0;
%         end
%         %2.4.4.9 Redefine the impedance as 0 outside of assumed peak 
length
%         %and keep the data within the detection event
%         MagFit4Data(l:Loc1Min) = DetrendedMaglive(l:Loc4Min);
%         MagFit4Data(Loc4DataMin:Loc4DataMax) = y4New;
%         if Loc4DataMax < l+VectorLengthlive-1
%         MagFit4Data(Loc4DataMax:i+VectorLengthlive-1) = 
DetrendedMaglive(Loc4DataMax:l+VectorLengthlive-1);
%         end
%         MagFit4Noise(l:l+VectorLengthlive-1) = 0;
%         %2.4.4.10 Skip to end of detection event data to ensure that 
it
%         %doesn't get erased or processed as noise
%         l = Loc4DataMax;
%     %3.4 If r-squared is less than the specified limit, use polyfit 
and
%     %polyval functions to detrend noise then use Savitsky-Golay 
Filtering



%     %to filter noise to ensure that no events were missed and 
increase
%     %signal-to-noise ratio
%     else
%         %3.4.1 Create new polyfit and polyval functions to detrend 
noise
%         %data over "VectorLength"-length interval
%         %[p4Noise,s4Noise,mu4Noise] = polyfit(xlive,y4,6);
%         %PolyVal4Noise = polyval(p4Noise,xlive,[],mu4Noise);
%         %3.4.2 Subtract polynomial from previously detrended data to 
better
%         %detrend smaller section of noise
%         %MagFi41Data(l:l+length(y4)-1) = y4-PolyVal4Noise;
%         %3.4.3 Filter detrended noise data by Savitsky-Golay Filter 
of
%         %order and frame length specified
%         %order = 3;
%         %framelen = VectorLength/10 + 1;
%         %MagFit4Data(l:l+length(y4)-1) = 
sgolayfilt(MagFit4Data(l:l+length(y4)-1),order,framelen);
%         MagFit4Data(l:l+length(y4)-1) = 0;
%         MagFit4Noise(l:l+length(y4)-1) = 
DetrendedMaglive(l:l+length(y4)-1);
%         %3.4.4 Skip to end of vector to avoid reprocessing
%         l = l + VectorLengthlive-1;
%     end
%     l = l + 1;
% end
% 
% MagFit4Data(l:length(tlive)) = 0;
% MagFit4Noise(l:length(tlive)) = DetrendedMaglive(l:length(tlive));

while i <= (length(t1)-VectorLength1)
    x1 = t1(i:i+VectorLength1-1);
    y1 = DetrendedMag1(i:i+VectorLength1-1);
    fitOptions1 = fitoptions('gauss1','Lower',[-1000 -1000 
-1000],'Upper',[1000 1000 1000]);
    [fitf1,gof1] = fit(x1,y1,'gauss1',fitOptions1);
    Rsq1(i,1) = gof1.rsquare;
    if Rsq1(i,1) > RSquareLimMag1
        MagFit1(i:i+VectorLength1-1) = fitf1(x1);
        MagFit1Data(i:i+VectorLength1-1) = y1;
        [maxMagFit1,Loc1] = max(abs(MagFit1(i:i+VectorLength1-1)));
        [maxMagFit1Data,Loc1Data] = 
max(abs(MagFit1Data(i:i+VectorLength1-1)));
        iNew = i + Loc1Data;
        iDataNew = i + Loc1Data;
        Loc1Min = max(i,iNew-PeakInterval1);
        Loc1DataMin = max(i,iDataNew-PeakInterval1);
        Loc1Max = min(length(t1)-VectorLength1,iNew+PeakInterval1);



        Loc1DataMax = min(length(t1)-
VectorLength1,iDataNew+PeakInterval1);
        x1New = t1(Loc1DataMin:Loc1DataMax);
        y1New = DetrendedMag1(Loc1DataMin:Loc1DataMax);
        [fitf1New,gof1New] = fit(x1New,y1New,'gauss1',fitOptions1);
        MagFit1(i:Loc1Min) = 0;
        MagFit1(Loc1Min:Loc1DataMax) = fitf1New(x1New);
        if Loc1Max < i+VectorLength1-1
        MagFit1(Loc1Max:i+VectorLength1-1) = 0;
        end
        MagFit1Data(i:Loc1Min) = DetrendedMag1(i:Loc1Min);
        MagFit1Data(Loc1DataMin:Loc1DataMax) = y1New;
        if Loc1DataMax < i+VectorLength1-1
        MagFit1Data(Loc1DataMax:i+VectorLength1-1) = 
DetrendedMag1(Loc1DataMax:i+VectorLength1-1);
        end
        MagFit1Noise(i:i+VectorLength1-1) = 0;
        i = Loc1DataMax;
    else
        MagFit1Data(i:i+length(y1)-1) = 0;
        MagFit1Noise(i:i+length(y1)-1) = 
DetrendedMag1(i:i+length(y1)-1);
        i = i + VectorLength1-1;
    end
    i = i + 1;
end

MagFit1Data(i:length(t1)) = 0;
MagFit1Noise(i:length(t1)) = DetrendedMag1(i:length(t1));

while k <= (length(t1)-VectorLength1)
    x1 = t1(k:k+VectorLength1-1);
    y1 = DetrendedPh1Inv(k:k+VectorLength1-1);
    fitOptions1 = fitoptions('gauss1','Lower',[-1000 -1000 
-1000],'Upper',[1000 1000 1000]);
    [fitf1,gof1] = fit(x1,y1,'gauss1',fitOptions1);
    Rsq2(k,1) = gof1.rsquare;
    if Rsq2(k,1) > RSquareLimPh1
        PhFit1Inv(k:k+VectorLength1-1) = fitf1(x1);
        PhFit1DataInv(k:k+VectorLength1-1) = y2;
        [maxPhFit1Inv,Loc1] = 
max(abs(PhFit1Inv(k:k+VectorLength1-1)));
        [maxPhFit1DataInv,Loc1Data] = 
max(abs(PhFit1DataInv(k:k+VectorLength1-1)));
        kNew = k + Loc1Data;
        kDataNew = k + Loc1Data;
        Loc1Min = max(k,kNew-PeakInterval1);
        Loc1DataMin = max(k,kDataNew-PeakInterval1);
        Loc1Max = min(length(t1)-VectorLength1,kNew+PeakInterval1);
        Loc1DataMax = min(length(t1)-



VectorLength1,kDataNew+PeakInterval1);
        x1New = t1(Loc1DataMin:Loc1DataMax);
        y1New = DetrendedPhdead(Loc1DataMin:Loc1DataMax);
        [fitf1New,gof1New] = fit(x1New,y1New,'gauss1',fitOptions1);
        PhFit1Inv(k:Loc1Min) = 0;
        PhFit1Inv(Loc1Min:Loc1DataMax) = fitf1New(x1New);
        if Loc1Max < k+VectorLength1-1
        PhFit1Inv(Loc1Max:k+VectorLength1-1) = 0;
        end
        PhFit1DataInv(k:Loc1Min) = DetrendedPh1(k:Loc1Min).*-1;
        PhFit1DataInv(Loc1DataMin:Loc1DataMax) = y1New;
        if Loc1DataMax < k+VectorLength1-1
        PhFit1DataInv(Loc1DataMax:k+VectorLength1-1) = 
DetrendedPh1(Loc1DataMax:k+VectorLength1-1).*-1;
        end
        PhFit1Noise(k:k+VectorLength1-1) = 0;
        k = Loc1DataMax;
    else
        PhFit1DataInv(k:k+length(y1)-1) = 0;
        PhFit1Noise(k:k+length(y1)-1) = 
DetrendedPh1(k:k+length(y1)-1).*-1;
        k = k + VectorLength1-1;
    end
    k = k + 1;
end

PhFit1Data(k:length(t1)) = 0;
PhFit1Noise(k:length(t1)) = DetrendedPh1(k:length(t1));

% MagFit1Noise = MagFit1Noise(:);
% MagFit4Noise = MagFit4Noise(:);
% PhFit3Noise = PhFit3Noise(:);
% PhFit2Noise = PhFit2Noise(:);

MagFit1Noise = MagFit1Noise(:);
PhFit1Noise = PhFit1Noise(:);

% PhFit2 = PhFit2Inv.*-1;
% PhFit2Data = PhFit2DataInv.*-1;
% PhFit3 = PhFit3Inv.*-1;
% PhFit3Data = PhFit3DataInv.*-1;

PhFit1 = PhFit1Inv.*-1;
PhFit1Data = PhFit1DataInv.*-1;

% for i = 1:length(MagFit1Data)
%     if MagFit1Data(i) < 0
%         MagFit1Noise(i) = DetrendedMagdead(i);
%     end
% end



% for i = 1:length(MagFit4Data)
%     if MagFit4Data(i) < 0
%         MagFit4Noise(i) = DetrendedMaglive(i);
%     end
% end
% for i = 1:length(PhFit2Data)
%     if PhFit2Data(i) > 0
%         PhFit2Noise(i) = DetrendedPhlive(i);
%     end
% end
% for i = 1:length(PhFit3Data)
%     if PhFit3Data(i) > 0
%         PhFit3Noise(i) = DetrendedPhdead(i);
%     end
% end

for i = 1:length(MagFit1Data)
    if MagFit1Data(i) < 0
        MagFit1Noise(i) = DetrendedMag1(i);
    end
end
for i = 1:length(PhFit1Data)
    if PhFit1Data(i) > 0
        PhFit1Noise(i) = DetrendedPh1(i);
    end
end

% IncMagdead = floor(length(MagFit1Data)/5);
% IncMaglive = floor(length(MagFit4Data)/5);
% IncPhdead = floor(length(PhFit3Data)/5);
% IncPhlive = floor(length(PhFit2Data)/5);

IncMag1 = floor(length(MagFit1Data)/5);
IncPh1 = floor(length(PhFit1Data)/5);

% tMagdead = tdead(1:IncMagdead);
% tMaglive = tlive(1:IncMaglive);
% tPhdead = tdead(1:IncPhdead);
% tPhlive = tlive(1:IncPhlive);

tMag1 = t1(1:IncMag1);
tPh1 = t1(1:IncMag1);

% [pMagdeadNoise,sMagdeadNoise,muMagdeadNoise] = 
polyfit(tMagdead,MagFit1Noise(1:IncMagdead),5);
% [pMagliveNoise,sMagliveNoise,muMagliveNoise] = 
polyfit(tMaglive,MagFit4Noise(1:IncMaglive),5);
% [pPhdeadNoise,sPhdeadNoise,muPhdeadNoise] = 
polyfit(tPhdead,PhFit3Noise(1:IncPhdead),5);
% [pPhliveNoise,sPhliveNoise,muPhliveNoise] = 



polyfit(tPhlive,PhFit2Noise(1:IncPhlive),5);

[pMag1Noise,sMag1Noise,muMag1Noise] = 
polyfit(tMag1,MagFit1Noise(1:IncMag1),5);
[pPh1Noise,sPh1Noise,muPh1Noise] = 
polyfit(tPh1,PhFit1Noise(1:IncPh1),5);

% PolyValMagdeadNoise = polyval(pMagdeadNoise,tdead(1:IncMagdead),
[],muMagdeadNoise);
% PolyValMagliveNoise = polyval(pMagliveNoise,tlive(1:IncMaglive),
[],muMagliveNoise);
% PolyValPhdeadNoise = polyval(pPhdeadNoise,tdead(1:IncPhdead),
[],muPhdeadNoise);
% PolyValPhliveNoise = polyval(pPhliveNoise,tlive(1:IncPhlive),
[],muPhliveNoise);

PolyValMag1Noise = polyval(pMag1Noise,t1(1:IncMag1),[],muMag1Noise);
PolyValPh1Noise = polyval(pPh1Noise,t1(1:IncPh1),[],muPh1Noise);

% DetrendedMagdeadNoise(1:IncMagdead) = MagFit1Noise(1:IncMagdead) - 
PolyValMagdeadNoise;
% DetrendedMagliveNoise(1:IncMaglive) = MagFit4Noise(1:IncMaglive) - 
PolyValMagliveNoise;
% DetrendedPhdeadNoise(1:IncPhdead) = PhFit3Noise(1:IncPhdead) - 
PolyValPhdeadNoise;
% DetrendedPhliveNoise(1:IncPhlive) = PhFit2Noise(1:IncPhlive) - 
PolyValPhliveNoise;

DetrendedMag1Noise(1:IncMag1) = MagFit1Noise(1:IncMag1) - 
PolyValMag1Noise;
DetrendedPh1Noise(1:IncPh1) = PhFit1Noise(1:IncPh1) - PolyValPh1Noise;

% tMagdead = tdead(IncMagdead:IncMagdead*2);
% tMaglive = tlive(IncMaglive:IncMaglive*2);
% tPhdead = tdead(IncPhdead:IncPhdead*2);
% tPhlive = tlive(IncPhlive:IncPhlive*2);

tMag1 = t1(IncMag1:IncMag1*2);
tPh1 = t1(IncPh1:IncPh1*2);

% [pMagdeadNoise,sMagdeadNoise,muMagdeadNoise] = 
polyfit(tMagdead,MagFit1Noise(IncMagdead:IncMagdead*2),5);
% [pMagliveNoise,sMagliveNoise,muMagliveNoise] = 
polyfit(tMaglive,MagFit4Noise(IncMaglive:IncMaglive*2),5);
% [pPhdeadNoise,sPhdeadNoise,muPhdeadNoise] = 
polyfit(tPhdead,PhFit3Noise(IncPhdead:IncPhdead*2),5);
% [pPhliveNoise,sPhliveNoise,muPhliveNoise] = 
polyfit(tPhlive,PhFit2Noise(IncPhlive:IncPhlive*2),5);

[pMag1Noise,sMag1Noise,muMag1Noise] = 



polyfit(tMag1,MagFit1Noise(IncMag1:IncMag1*2),5);
[pPh1Noise,sPh1Noise,muPh1Noise] = 
polyfit(tPh1,PhFit1Noise(IncPh1:IncPh1*2),5);

% PolyValMagdeadNoise = 
polyval(pMagdeadNoise,tdead(IncMagdead:IncMagdead*2),
[],muMagdeadNoise);
% PolyValMagliveNoise = 
polyval(pMagliveNoise,tlive(IncMaglive:IncMaglive*2),
[],muMagliveNoise);
% PolyValPhdeadNoise = 
polyval(pPhdeadNoise,tdead(IncPhdead:IncPhdead*2),[],muPhdeadNoise);
% PolyValPhliveNoise = 
polyval(pPhliveNoise,tlive(IncPhlive:IncPhlive*2),[],muPhliveNoise);

PolyValMag1Noise = polyval(pMag1Noise,t1(IncMag1:IncMag1*2),
[],muMag1Noise);
PolyValPh1Noise = polyval(pPh1Noise,t1(IncPh1:IncPh1*2),
[],muPh1Noise);

% DetrendedMagdeadNoise(IncMagdead:IncMagdead*2) = 
MagFit1Noise(IncMagdead:IncMagdead*2) - PolyValMagdeadNoise;
% DetrendedMagliveNoise(IncMaglive:IncMaglive*2) = 
MagFit4Noise(IncMaglive:IncMaglive*2) - PolyValMagliveNoise;
% DetrendedPhdeadNoise(IncPhdead:IncPhdead*2) = 
PhFit3Noise(IncPhdead:IncPhdead*2) - PolyValPhdeadNoise;
% DetrendedPhliveNoise(IncPhlive:IncPhlive*2) = 
PhFit2Noise(IncPhlive:IncPhlive*2) - PolyValPhliveNoise;

DetrendedMag1Noise(IncMag1:IncMag1*2) = 
MagFit1Noise(IncMag1:IncMag1*2) - PolyValMag1Noise;
DetrendedPh1Noise(IncPh1:IncPh1*2) = PhFit1Noise(IncPh1:IncPh1*2) - 
PolyValPh1Noise;

% tMagdead = tdead(2*IncMagdead:IncMagdead*3);
% tMaglive = tlive(2*IncMaglive:IncMaglive*3);
% tPhdead = tdead(2*IncPhdead:IncPhdead*3);
% tPhlive = tlive(2*IncPhlive:IncPhlive*3);

tMag1 = t1(2*IncMag1:IncMag1*3);
tPh1 = t1(2*IncPh1:IncPh1*3);

% [pMagdeadNoise,sMagdeadNoise,muMagdeadNoise] = 
polyfit(tMagdead,MagFit1Noise(2*IncMagdead:IncMagdead*3),5);
% [pMagliveNoise,sMagliveNoise,muMagliveNoise] = 
polyfit(tMaglive,MagFit4Noise(2*IncMaglive:IncMaglive*3),5);
% [pPhdeadNoise,sPhdeadNoise,muPhdeadNoise] = 
polyfit(tPhdead,PhFit3Noise(2*IncPhdead:IncPhdead*3),5);
% [pPhliveNoise,sPhliveNoise,muPhliveNoise] = 
polyfit(tPhlive,PhFit2Noise(2*IncPhlive:IncPhlive*3),5);



[pMag1Noise,sMag1Noise,muMag1Noise] = 
polyfit(tMag1,MagFit1Noise(2*IncMag1:IncMag1*3),5);
[pPh1Noise,sPh1Noise,muPh1Noise] = 
polyfit(tPh1,PhFit3Noise(2*IncPh1:IncPh1*3),5);

% PolyValMagdeadNoise = 
polyval(pMagdeadNoise,tdead(2*IncMagdead:IncMagdead*3),
[],muMagdeadNoise);
% PolyValMagliveNoise = 
polyval(pMagliveNoise,tlive(2*IncMaglive:IncMaglive*3),
[],muMagliveNoise);
% PolyValPhdeadNoise = 
polyval(pPhdeadNoise,tdead(2*IncPhdead:IncPhdead*3),[],muPhdeadNoise);
% PolyValPhliveNoise = 
polyval(pPhliveNoise,tlive(2*IncPhlive:IncPhlive*3),[],muPhliveNoise);

PolyValMag1Noise = polyval(pMag1Noise,t1(2*IncMag1:IncMag1*3),
[],muMag1Noise);
PolyValPh1Noise = polyval(pPh1Noise,t1(2*IncPh1:IncPh1*3),
[],muPh1Noise);

% DetrendedMagdeadNoise(2*IncMagdead:IncMagdead*3) = 
MagFit1Noise(2*IncMagdead:IncMagdead*3) - PolyValMagdeadNoise;
% DetrendedMagliveNoise(2*IncMaglive:IncMaglive*3) = 
MagFit4Noise(2*IncMaglive:IncMaglive*3) - PolyValMagliveNoise;
% DetrendedPhdeadNoise(2*IncPhdead:IncPhdead*3) = 
PhFit3Noise(2*IncPhdead:IncPhdead*3) - PolyValPhdeadNoise;
% DetrendedPhliveNoise(2*IncPhlive:IncPhlive*3) = 
PhFit2Noise(2*IncPhlive:IncPhlive*3) - PolyValPhliveNoise;

DetrendedMag1Noise(2*IncMag1:IncMag1*3) = 
MagFit1Noise(2*IncMag1:IncMag1*3) - PolyValMag1Noise;
DetrendedPh1Noise(2*IncPh1:IncPh1*3) = PhFit3Noise(2*IncPh1:IncPh1*3) 
- PolyValPh1Noise;

% tMagdead = tdead(3*IncMagdead:IncMagdead*4);
% tMaglive = tlive(3*IncMaglive:IncMaglive*4);
% tPhdead = tdead(3*IncPhdead:IncPhdead*4);
% tPhlive = tlive(3*IncPhlive:IncPhlive*4);

tMag1 = t1(3*IncMag1:IncMag1*4);
tPh1 = t1(3*IncPh1:IncPh1*4);

% [pMagdeadNoise,sMagdeadNoise,muMagdeadNoise] = 
polyfit(tMagdead,MagFit1Noise(3*IncMagdead:IncMagdead*4),5);
% [pMagliveNoise,sMagliveNoise,muMagliveNoise] = 
polyfit(tMaglive,MagFit4Noise(3*IncMaglive:IncMaglive*4),5);
% [pPhdeadNoise,sPhdeadNoise,muPhdeadNoise] = 
polyfit(tPhdead,PhFit3Noise(3*IncPhdead:IncPhdead*4),5);



% [pPhliveNoise,sPhliveNoise,muPhliveNoise] = 
polyfit(tPhlive,PhFit2Noise(3*IncPhlive:IncPhlive*4),5);

[pMag1Noise,sMag1Noise,muMag1Noise] = 
polyfit(tMag1,MagFit1Noise(3*IncMag1:IncMag1*4),5);
[pPh1Noise,sPh1Noise,muPh1Noise] = 
polyfit(tPh1,PhFit3Noise(3*IncPh1:IncPh1*4),5);

% PolyValMagdeadNoise = 
polyval(pMagdeadNoise,tdead(3*IncMagdead:IncMagdead*4),
[],muMagdeadNoise);
% PolyValMagliveNoise = 
polyval(pMagliveNoise,tlive(3*IncMaglive:IncMaglive*4),
[],muMagliveNoise);
% PolyValPhdeadNoise = 
polyval(pPhdeadNoise,tdead(3*IncPhdead:IncPhdead*4),[],muPhdeadNoise);
% PolyValPhliveNoise = 
polyval(pPhliveNoise,tlive(3*IncPhlive:IncPhlive*4),[],muPhliveNoise);

PolyValMag1Noise = polyval(pMag1Noise,t1(3*IncMag1:IncMag1*4),
[],muMag1Noise);
PolyValPh1Noise = polyval(pPh1Noise,t1(3*IncPh1:IncPh1*4),
[],muPh1Noise);

% DetrendedMagdeadNoise(3*IncMagdead:IncMagdead*4) = 
MagFit1Noise(3*IncMagdead:IncMagdead*4) - PolyValMagdeadNoise;
% DetrendedMagliveNoise(3*IncMaglive:IncMaglive*4) = 
MagFit4Noise(3*IncMaglive:IncMaglive*4) - PolyValMagliveNoise;
% DetrendedPhdeadNoise(3*IncPhdead:IncPhdead*4) = 
PhFit3Noise(3*IncPhdead:IncPhdead*4) - PolyValPhdeadNoise;
% DetrendedPhliveNoise(3*IncPhlive:IncPhlive*4) = 
PhFit2Noise(3*IncPhlive:IncPhlive*4) - PolyValPhliveNoise;

DetrendedMag1Noise(3*IncMag1:IncMag1*4) = 
MagFit1Noise(3*IncMag1:IncMag1*4) - PolyValMag1Noise;
DetrendedPh1Noise(3*IncPh1:IncPh1*4) = PhFit3Noise(3*IncPh1:IncPh1*4) 
- PolyValPh1Noise;

% tMagdead = tdead(4*IncMagdead:IncMagdead*5);
% tMaglive = tlive(4*IncMaglive:IncMaglive*5);
% tPhdead = tdead(4*IncPhdead:IncPhdead*5);
% tPhlive = tlive(4*IncPhlive:IncPhlive*5);

tMag1 = t1(4*IncMag1:IncMag1*5);
tPh1 = t1(4*IncPh1:IncPh1*5);

% [pMagdeadNoise,sMagdeadNoise,muMagdeadNoise] = 
polyfit(tMagdead,MagFit1Noise(4*IncMagdead:IncMagdead*5),5);
% [pMagliveNoise,sMagliveNoise,muMagliveNoise] = 
polyfit(tMaglive,MagFit4Noise(4*IncMaglive:IncMaglive*5),5);



% [pPhdeadNoise,sPhdeadNoise,muPhdeadNoise] = 
polyfit(tPhdead,PhFit3Noise(4*IncPhdead:IncPhdead*5),5);
% [pPhliveNoise,sPhliveNoise,muPhliveNoise] = 
polyfit(tPhlive,PhFit2Noise(4*IncPhlive:IncPhlive*5),5);

[pMag1Noise,sMag1Noise,muMag1Noise] = 
polyfit(tMag1,MagFit1Noise(4*IncMag1:IncMag1*5),5);
[pPh1Noise,sPh1Noise,muPh1Noise] = 
polyfit(tPh1,PhFit3Noise(4*IncPh1:IncPh1*5),5);

% PolyValMagdeadNoise = 
polyval(pMagdeadNoise,tdead(4*IncMagdead:IncMagdead*5),
[],muMagdeadNoise);
% PolyValMagliveNoise = 
polyval(pMagliveNoise,tlive(4*IncMaglive:IncMaglive*5),
[],muMagliveNoise);
% PolyValPhdeadNoise = 
polyval(pPhdeadNoise,tdead(4*IncPhdead:IncPhdead*5),[],muPhdeadNoise);
% PolyValPhliveNoise = 
polyval(pPhliveNoise,tlive(4*IncPhlive:IncPhlive*5),[],muPhliveNoise);

PolyValMag1Noise = polyval(pMag1Noise,t1(4*IncMag1:IncMag1*5),
[],muMag1Noise);
PolyValPh1Noise = polyval(pPh1Noise,t1(4*IncPh1:IncPh1*5),
[],muPh1Noise);

% DetrendedMagdeadNoise(4*IncMagdead:IncMagdead*5) = 
MagFit1Noise(4*IncMagdead:IncMagdead*5) - PolyValMagdeadNoise;
% DetrendedMagliveNoise(4*IncMaglive:IncMaglive*5) = 
MagFit4Noise(4*IncMaglive:IncMaglive*5) - PolyValMagliveNoise;
% DetrendedPhdeadNoise(4*IncPhdead:IncPhdead*5) = 
PhFit3Noise(4*IncPhdead:IncPhdead*5) - PolyValPhdeadNoise;
% DetrendedPhliveNoise(4*IncPhlive:IncPhlive*5) = 
PhFit2Noise(4*IncPhlive:IncPhlive*5) - PolyValPhliveNoise;

DetrendedMag1Noise(4*IncMag1:IncMag1*5) = 
MagFit1Noise(4*IncMag1:IncMag1*5) - PolyValMag1Noise;
DetrendedPh1Noise(4*IncPh1:IncPh1*5) = PhFit3Noise(4*IncPh1:IncPh1*5) 
- PolyValPh1Noise;

% DetrendedMagdeadNoise = DetrendedMagdeadNoise(:);
% DetrendedMagliveNoise = DetrendedMagliveNoise(:);
% DetrendedPhdeadNoise = DetrendedPhdeadNoise(:);
% DetrendedPhliveNoise = DetrendedPhliveNoise(:);

DetrendedMag1Noise = DetrendedMag1Noise(:);
DetrendedPh1Noise = DetrendedPh1Noise(:);

% [TFMagdead,LMagdead,UMagdead,CMagdead] = 
filloutliers(DetrendedMagdeadNoise,0);



% [TFMaglive,LMaglive,UMaglive,CMaglive] = 
filloutliers(DetrendedMagliveNoise,0);
% [TFPhdead,LPhdead,UPhdead,CPhdead] = 
filloutliers(DetrendedPhdeadNoise,0);
% [TFPhlive,LPhlive,UPhlive,CPhlive] = 
filloutliers(DetrendedPhliveNoise,0);

[TFMag1,LMag1,UMag1,CMag1] = filloutliers(DetrendedMag1Noise,0);
[TFPh1,LPh1,UPh1,CPh1] = filloutliers(DetrendedPh1Noise,0);

% DetrendedMagdeadNoise = TFMagdead;
% DetrendedMagliveNoise = TFMaglive;
% DetrendedPhdeadNoise = TFPhdead;
% DetrendedPhliveNoise = TFPhlive;

DetrendedMag1Noise = TFMag1;
DetrendedPh1Noise = TFPh1;

% DetrendedMagdeadNoise(length(DetrendedMagdeadNoise)+1:length(tdead)) 
= 0;
% DetrendedMagliveNoise(length(DetrendedMagliveNoise)+1:length(tlive)) 
= 0;
% DetrendedPhdeadNoise(length(DetrendedPhdeadNoise)+1:length(tdead)) = 
0;
% DetrendedPhliveNoise(length(DetrendedPhliveNoise)+1:length(tlive)) = 
0;

DetrendedMagdeadNoise(length(DetrendedMagdeadNoise)+1:length(tdead)) = 
0;
DetrendedPhdeadNoise(length(DetrendedPhdeadNoise)+1:length(tdead)) = 
0;

% MagdeadData = zeros(length(DetrendedMagdead),1);
% MagliveData = zeros(length(DetrendedMaglive),1);
% PhdeadData = zeros(length(DetrendedPhdead),1);
% PhliveData = zeros(length(DetrendedPhlive),1);

i = 1;
for i = 1:length(DetrendedMagdeadNoise)
    if MagFit1Data(i) > 0
        MagFit1Data(i) = MagFit1Data(i);
    else
        MagFit1Data(i) = DetrendedMagdeadNoise(i);
    end
end
i = 1;
for i = 1:length(DetrendedMagliveNoise)
    if MagFit4Data(i) > 0
        MagFit4Data(i) = MagFit4Data(i);
    else



        MagFit4Data(i) = DetrendedMagliveNoise(i);
    end
end
i = 1;
for i = 1:length(DetrendedPhdeadNoise)
    if PhFit3Data(i) < 0
        PhFit3Data(i) = PhFit3Data(i);
    else
        PhFit3Data(i) = DetrendedPhdeadNoise(i);
    end
end
i = 1;
for i = 1:length(DetrendedPhliveNoise)
    if PhFit2Data(i) < 0
        PhFit2Data(i) = PhFit2Data(i);
    else
        PhFit2Data(i) = DetrendedPhliveNoise(i);
    end
end

for i = 1:length(tdead)
    if MagFit1(i) > 1
        if MagFit1Data(i) > -5
            DetrendedMagdeadNoise(i) = MagFit1Data(i);
        else
            DetrendedMagdeadNoise(i) = DetrendedMagdeadNoise(i);
        end
    end
end
for i = 1:length(tlive)
    if MagFit4(i) > 1
        if MagFit4Data(i) > -5
            DetrendedMagliveNoise(i) = MagFit4Data(i);
        else
            DetrendedMagliveNoise(i) = DetrendedMagliveNoise(i);
        end
    end
end
for i = 1:length(tdead)
    if PhFit3(i) < -0.001
        if PhFit3Data(i) < 0.02
            DetrendedPhdeadNoise(i) = PhFit3Data(i);
        else
            DetrendedPhdeadNoise(i) = DetrendedPhdeadNoise(i);
        end
    end
end
for i = 1:length(tlive)
    if PhFit2(i) < -0.001
        if PhFit2Data(i) < 0.02



            DetrendedPhliveNoise(i) = PhFit2Data(i);
        else
            DetrendedPhliveNoise(i) = DetrendedPhliveNoise(i);
        end
    end
end

mintlive = min(tlive);
tlive = tlive'-mintlive;
mintdead = min(tdead);
tdead = tdead'-mintdead;

%Create normalized time series so that live and dead cell samples can 
be
%plotted together (for comparison of magnitude and phase data for each
%collection of data)
for i = 1:length(tlive)
    tlivenorm(i) = tlive(i)/max(tlive)*100;
end
for i = 1:length(tdead)
    tdeadnorm(i) = tdead(i)/max(tdead)*100;
end

%Plot data
figure(1)
%subplot(2,2,1)
p1 = plot(tlive,MagFit4,tlive,DetrendedMagliveNoise);
%title('Impedance Magnitude of Live Cells');
xlim([0 25])
ylim([-20 80])
a = get(gca,'XTickLabel');
set(gca,'XTickLabel',a,'fontname','Helvetica','fontsize',32)
set(gca,'XTickLabelMode','auto')
b = get(gca,'YTickLabel');
set(gca,'YTickLabel',b,'fontname','Helvetica','fontsize',32)
set(gca,'YTickLabelMode','auto')
p1(1).LineWidth = 2;
p1(1).Color = [0.4660, 0.6740, 0.1880];
p1(2).Color = [0.4660, 0.6740, 0.1880, 0.7];
xlabel('Time (s)')
ylabel('Impedance Magnitude (Ohms)')
legendMaglive = legend('Signal Detection Algorithm Output','Detrended 
Raw Impedance Signal');
%legendMaglive.FontSize = 22;
%legendMaglive.Location = 'northwest';
export_fig /Users/jasoneades/Desktop/FIG5A.eps -RGB -Painters 
-transparent
figure(2)
%subplot(2,2,3)
p2 = plot(tlive,PhFit2,tlive,DetrendedPhliveNoise);



%title('Impedance Phase of Live Cells');
xlim([0 25])
ylim([-0.10 0.02])
a = get(gca, 'XTickLabel');
set(gca,'XTickLabel',a,'fontname','Helvetica','fontsize',32)
set(gca,'XTickLabelMode','auto')
b = get(gca,'YTickLabel');
set(gca,'YTickLabel',b,'fontname','Helvetica','fontsize',32)
set(gca,'YTickLabelMode','auto')
p2(1).LineWidth = 2;
p2(1).Color = [0.4660, 0.6740, 0.1880];
p2(2).Color = [0.4660, 0.6740, 0.1880, 0.7];
xlabel('Time (s)')
ylabel('Impedance Phase (Degrees)')
legendPhlive = legend('Signal Detection Algorithm Output','Detrended 
Raw Impedance Signal');
%legendPhlive.FontSize = 22;
legendPhlive.Location = 'southeast';
export_fig /Users/jasoneades/Desktop/FIG5C.eps -RGB -Painters 
-transparent
figure(3)
%subplot(2,2,2)
p3 = plot(tdead,MagFit1,tdead,DetrendedMagdeadNoise);
%title('Impedance Magnitude of Dead Cells');
xlim([0 25])
ylim([-20 80])
a = get(gca,'XTickLabel');  
set(gca,'XTickLabel',a,'fontname','Helvetica','fontsize',32)
set(gca,'XTickLabelMode','auto')
b = get(gca,'YTickLabel');
set(gca,'YTickLabel',b,'fontname','Helvetica','fontsize',32)
set(gca,'YTickLabelMode','auto')
p3(1).LineWidth = 2;
p3(1).Color = [0.6350, 0.0780, 0.1840];
p3(2).Color = [0.6350, 0.0780, 0.1840, 0.7];
xlabel('Time (s)')
ylabel('Impedance Magnitude (Ohms)')
legendMagdead = legend('Signal Detection Algorithm Output','Detrended 
Raw Impedance Signal');
%legendMagdead.FontSize = 22;
%legendMagdead.Location = 'northwest';
export_fig /Users/jasoneades/Desktop/FIG5B.eps -RGB -Painters 
-transparent
figure(4)
%subplot(2,2,4)
p4 = plot(tdead,PhFit3,tdead,DetrendedPhdeadNoise);
%title('Impedance Phase of Dead Cells');
xlim([0 25])
ylim([-0.10 0.02])
a = get(gca,'XTickLabel');



set(gca,'XTickLabel',a,'fontname','Helvetica','fontsize',32)
set(gca,'XTickLabelMode','auto')
b = get(gca,'YTickLabel');
set(gca,'YTickLabel',b,'fontname','Helvetica','fontsize',32)
set(gca,'YTickLabelMode','auto')
p4(1).LineWidth = 2;
p4(1).Color = [0.6350, 0.0780, 0.1840];
p4(2).Color = [0.6350, 0.0780, 0.1840, 0.7];
xlabel('Time (s)')
ylabel('Impedance Phase (Degrees)')
legendPhdead = legend('Signal Detection Algorithm Output','Detrended 
Raw Impedance Signal');
%legendPhdead.FontSize = 22;
legendPhdead.Location = 'southeast';
export_fig /Users/jasoneades/Desktop/FIG5D.eps -RGB -Painters 
-transparent

% order = 3;
% framelen = 11;
% 
% MagdeadSG = sgolayfilt(DetrendedMagdead,order,framelen);
% PhdeadSG = sgolayfilt(DetrendedPhdead,order,framelen);
% MagliveSG = sgolayfilt(DetrendedMaglive,order,framelen);
% PhliveSG = sgolayfilt(DetrendedPhlive,order,framelen);
% 
% figure(3)
% subplot(2,2,1)
% p1 = plot(tlive,MagliveSG,tlive,DetrendedMaglive);
% title('Impedance Magnitude of Live Cells by Savitzky-Golay 
Filtering');
% a = get(gca,'XTickLabel');
% set(gca,'XTickLabel',a,'fontsize',20)
% set(gca,'XTickLabelMode','auto')
% b = get(gca,'YTickLabel');
% set(gca,'YTickLabel',b,'fontsize',20)
% set(gca,'YTickLabelMode','auto')
% p1(1).LineWidth = 3;
% p1(1).Color = [1.0, 0, 0];
% p1(2).Color = [1.0, 0, 0, 0.7];
% xlabel('Time (s)','FontSize',26)
% ylabel('Impedance Magnitude (Ohms)','FontSize',26)
% subplot(2,2,2)
% p2 = plot(tlive,PhliveSG,tlive,DetrendedPhlive);
% title('Impedance Phase of Live Cells by Savitzky-Golay Filtering');
% a = get(gca, 'XTickLabel');
% set(gca,'XTickLabel',a,'fontsize',20)
% set(gca,'XTickLabelMode','auto')
% b = get(gca,'YTickLabel');
% set(gca,'YTickLabel',b,'fontsize',20)
% set(gca,'YTickLabelMode','auto')



% p2(1).LineWidth = 3;
% p2(1).Color = [1.0, 0, 0];
% p2(2).Color = [1.0, 0, 0, 0.7];
% xlabel('Time (s)','FontSize',26)
% ylabel('Impedance Phase (Degrees)','FontSize',26)
% subplot(2,2,3)
% p3 = plot(tdead,MagdeadSG,tdead,DetrendedMagdead);
% title('Impedance Magnitude of Dead Cells by Savitzky-Golay 
Filtering');
% a = get(gca,'XTickLabel');  
% set(gca,'XTickLabel',a,'fontsize',20)
% set(gca,'XTickLabelMode','auto')
% b = get(gca,'YTickLabel');
% set(gca,'YTickLabel',b,'fontsize',20)
% set(gca,'YTickLabelMode','auto')
% p3(1).LineWidth = 3;
% p3(1).Color = [0, 0, 1.0];
% p3(2).Color = [0, 0, 1.0, 0.7];
% xlabel('Time (s)','FontSize',26)
% ylabel('Impedance Magnitude (Ohms)','FontSize',26)
% subplot(2,2,4)
% p4 = plot(tdead,PhdeadSG,tdead,DetrendedPhdead);
% title('Impedance Phase of Dead Cells by Savitzky-Golay Filtering');
% a = get(gca,'XTickLabel');
% set(gca,'XTickLabel',a,'fontsize',20)
% set(gca,'XTickLabelMode','auto')
% b = get(gca,'YTickLabel');
% set(gca,'YTickLabel',b,'fontsize',20)
% set(gca,'YTickLabelMode','auto')
% p4(1).LineWidth = 3;
% p4(1).Color = [0, 0, 1.0];
% p4(2).Color = [0, 0, 1.0, 0.7];
% xlabel('Time (s)','FontSize',26)
% ylabel('Impedance Phase (Degrees)','FontSize',26)

assignin('base','Rsq1',Rsq1)
Rsq1(Rsq1>0)
assignin('base','Rsq2',Rsq2)
Rsq2(Rsq2>0)
assignin('base','Rsq3',Rsq3)
assignin('base','Rsq4',Rsq4)

%---------------------------------------------------------------------
--------------------------------
%Below catches errors and returns the error and values for i, j, k, 
and l
%in loops

catch exception
    disp(exception.identifier);



    disp(exception.message);
    disp(exception.stack.line);
    i
    j
    k
    l
end

end



function [ ] = MixedSample ( )
%This code processes sample data for live and dead cells mixed in one
%sample

try

clear
clc

t = xlsread('Sample_Data','Mixed_2MHz','A950:A1350');
M = xlsread('Sample_Data','Mixed_2MHz','B950:B1350');
P = xlsread('Sample_Data','Mixed_2MHz','C950:C1350');

[pM,sM,muM] = polyfit(t,M,10);
[pP,sP,muP] = polyfit(t,P,10);

PolyValM = polyval(pM,t,[],muM);
PolyValP = polyval(pP,t,[],muP);

DetrendedM = M - PolyValM;
DetrendedP = P - PolyValP;

DetrendedPInv = zeros(length(t)-1,1);
x = zeros(length(t)-1,1);
yM = zeros(length(t)-1,1);
yP = zeros(length(t)-1,1);
MFit = zeros(length(t),1);
MFitData = zeros(length(t),1);
PFit = zeros(length(t),1);
PFitInv = zeros(length(t),1);
PFitData = zeros(length(t),1);
PFitDataInv = zeros(length(t),1);

DetrendedPInv = DetrendedP.*-1;

VectorLength = 80;
PeakInterval = 50;
RSquareLimM = 0.15;
RSquareLimP = 0.15;
i = 1; j = 1;
%order = 3; framelen = 79;

while i <= length(t)-VectorLength
    x = t(i:i+VectorLength-1);
    yM = DetrendedM(i:i+VectorLength-1);
    fitOptionsM = fitoptions('gauss1','Lower',[0 0 0],'Upper',[1000 
1000 1000]);
    [fitfM,gofM] = fit(x,yM,'gauss1',fitOptionsM);
    RsqM = gofM.rsquare;
    if RsqM > RSquareLimM



        MFit(i:i+VectorLength-1) = fitfM(x);
        MFitData(i:i+VectorLength-1) = yM;
        [maxMFit,LocM] = max(abs(MFit(i:i+VectorLength-1)));
        [maxMFitData,LocMData] = 
max(abs(MFitData(i:i+VectorLength-1)));
        iNew = i + LocMData;
        iDataNew = i + LocMData;
        LocMMin = max(i,iNew-PeakInterval);
        LocMDataMin = max(i,iDataNew-PeakInterval);
        LocMMax = iNew+PeakInterval;
        LocMDataMax = iDataNew+PeakInterval;
        xNew = t(LocMDataMin:LocMDataMax);
        yMNew = DetrendedM(LocMDataMin:LocMDataMax);
        [fitfMNew,gofMNew] = fit(xNew,yMNew,'gauss1',fitOptionsM);
        MFit(i:LocMMin) = 0;
        MFit(LocMMin:LocMDataMax) = fitfMNew(xNew);
        if LocMMax < i+VectorLength-1
        MFit(LocMMax:i+VectorLength-1) = 0;
        end
        MFitData(i:LocMMin) = DetrendedM(i:LocMMin);
        MFitData(LocMDataMin:LocMDataMax) = yMNew;
        if LocMDataMax < i+VectorLength-1
        MFitData(LocMDataMax:i+VectorLength-1) = 
DetrendedM(LocMDataMax:i+VectorLength-1);
        end
        MFitNoise(i:i+VectorLength-1) = 0;
        i = LocMDataMax;
    else
        %[pMNoise,sMNoise,muMNoise] = polyfit(x,yM,6);
        %PolyValMNoise = polyval(pMNoise,x,[],muMNoise);
        %MFitData(i:i+length(yM)-1) = yM-PolyValMNoise;
        %MFitData(i:i+length(yM)-1) = 
sgolayfilt(MFitData(i:i+length(yM)-1),order,framelen);
        MFit(i:i+length(yM)-1) = 0;
        MFitData(i:i+length(yM)-1) = DetrendedM(i:i+length(yM)-1);
        MFitNoise(i:i+length(yM)-1) = DetrendedM(i:i+length(yM)-1);
        i = i + VectorLength-1;
    end
    i = i + 1;
end

MFit(i:length(t)) = 0;
MFitData(i:length(t)) = DetrendedM(i:length(t));
MFitNoise(i:length(t)) = DetrendedM(i:length(t));

while j <= length(t)-VectorLength
    x = t(j:j+VectorLength-1);
    yP = DetrendedPInv(j:j+VectorLength-1);
    fitOptionsP = fitoptions('gauss1','Lower',[-1000 -1000 
-1000],'Upper',[1000 1000 1000]);



    [fitfP,gofP] = fit(x,yP,'gauss1',fitOptionsP);
    RsqP = gofP.rsquare;
    if RsqP > RSquareLimP
        PFitInv(j:j+VectorLength-1) = fitfP(x);
        PFitDataInv(j:j+VectorLength-1) = yP;
        [maxPFit,LocP] = max(abs(PFitInv(j:j+VectorLength-1)));
        [maxPFitData,LocPData] = 
max(abs(PFitDataInv(j:j+VectorLength-1)));
        jNew = j + LocPData;
        jDataNew = j + LocPData;
        LocPMin = max(j,jNew-PeakInterval);
        LocPDataMin = max(j,jDataNew-PeakInterval);
        LocPMax = jNew+PeakInterval;
        LocPDataMax = jDataNew+PeakInterval;
        xNew = t(LocPDataMin:LocPDataMax);
        yPNew = DetrendedPInv(LocPDataMin:LocPDataMax);
        [fitfPNew,gofPNew] = fit(xNew,yPNew,'gauss1',fitOptionsP);
        PFitInv(j:LocPMin) = 0;
        PFitInv(LocPMin:LocPDataMax) = fitfPNew(xNew);
        if LocPMax < j+VectorLength-1
        PFitInv(LocPMax:j+VectorLength-1) = 0;
        end
        PFitDataInv(j:LocPMin) = DetrendedPInv(j:LocPMin);
        PFitDataInv(LocPDataMin:LocPDataMax) = yPNew;
        if LocPDataMax < j+VectorLength-1
        PFitDataInv(LocPDataMax:j+VectorLength-1) = 
DetrendedPInv(LocPDataMax:j+VectorLength-1);
        end
        j = LocPDataMax;
    else
        %[pPNoise,sPNoise,muPNoise] = polyfit(x,yP,6);
        %PolyValPNoise = polyval(pPNoise,x,[],muPNoise);
        %PFitDataInv(j:j+length(yP)-1) = yP-PolyValPNoise;
        %PFitDataInv(j:j+length(yP)-1) = 
sgolayfilt(PFitDataInv(j:j+length(yP)-1),order,framelen);
        PFitInv(j:j+length(yP)-1) = 0;
        PFitDataInv(j:j+length(yP)-1) = 
DetrendedPInv(j:j+length(yP)-1);
        PFitNoise(j:j+length(yP)-1) = DetrendedPInv(j:j+length(yP)-1);
        j = j + VectorLength-1;
    end
    j = j + 1;
end

PFitInv(i:length(t)) = 0;
PFitDataInv(i:length(t)) = DetrendedPInv(i:length(t));
PFitNoise(i:length(t)) = DetrendedPInv(i:length(t));

MFitNoise = MFitNoise(:);



PFitNoise = PFitNoise(:);

PFit = PFitInv.*-1;
PFitData = PFitDataInv.*-1;

for i = 1:length(t)
    if MFit(i) < 0
        MFitNoise(i) = DetrendedM(i);
    end
end
for i = 1:length(t)
    if PFit(i) > 0
        PFitNoise(i) = DetrendedP(i);
    end
end

IncM = floor(length(MFitData)/5);
IncP = floor(length(PFitData)/5);

tM = t(1:IncM);
tP = t(1:IncP);

[pMNoise,sMNoise,muMNoise] = polyfit(tM,MFitNoise(1:IncM),5);
[pPNoise,sPNoise,muPNoise] = polyfit(tP,PFitNoise(1:IncP),5);

PolyValMNoise = polyval(pMNoise,t(1:IncM),[],muMNoise);
PolyValPNoise = polyval(pPNoise,t(1:IncP),[],muPNoise);

DetrendedMNoise(1:IncM) = MFitNoise(1:IncM) - PolyValMNoise;
DetrendedPNoise(1:IncP) = PFitNoise(1:IncP) - PolyValPNoise;

tM = t(IncM:IncM*2);
tP = t(IncP:IncP*2);

[pMNoise,sMNoise,muMNoise] = polyfit(tM,MFitNoise(IncM:IncM*2),5);
[pPNoise,sPNoise,muPNoise] = polyfit(tP,PFitNoise(IncP:IncP*2),5);

PolyValMNoise = polyval(pMNoise,t(IncM:IncM*2),[],muMNoise);
PolyValPNoise = polyval(pPNoise,t(IncP:IncP*2),[],muPNoise);

DetrendedMNoise(IncM:IncM*2) = MFitNoise(IncM:IncM*2) - PolyValMNoise;
DetrendedPNoise(IncP:IncP*2) = PFitNoise(IncP:IncP*2) - PolyValPNoise;

tM = t(2*IncM:IncM*3);
tP = t(2*IncP:IncP*3);

[pMNoise,sMNoise,muMNoise] = polyfit(tM,MFitNoise(2*IncM:IncM*3),5);
[pPNoise,sPNoise,muPNoise] = polyfit(tP,PFitNoise(2*IncP:IncP*3),5);

PolyValMNoise = polyval(pMNoise,t(2*IncM:IncM*3),[],muMNoise);



PolyValPNoise = polyval(pPNoise,t(2*IncP:IncP*3),[],muPNoise);

DetrendedMNoise(2*IncM:IncM*3) = MFitNoise(2*IncM:IncM*3) - 
PolyValMNoise;
DetrendedPNoise(2*IncP:IncP*3) = PFitNoise(2*IncP:IncP*3) - 
PolyValPNoise;

tM = t(3*IncM:IncM*4);
tP = t(3*IncP:IncP*4);

[pMNoise,sMNoise,muMNoise] = polyfit(tM,MFitNoise(3*IncM:IncM*4),5);
[pPNoise,sPNoise,muPNoise] = polyfit(tP,PFitNoise(3*IncP:IncP*4),5);

PolyValMNoise = polyval(pMNoise,t(3*IncM:IncM*4),[],muMNoise);
PolyValPNoise = polyval(pPNoise,t(3*IncP:IncP*4),[],muPNoise);

DetrendedMNoise(3*IncM:IncM*4) = MFitNoise(3*IncM:IncM*4) - 
PolyValMNoise;
DetrendedPNoise(3*IncP:IncP*4) = PFitNoise(3*IncP:IncP*4) - 
PolyValPNoise;

tM = t(4*IncM:IncM*5);
tP = t(4*IncP:IncP*5);

[pMNoise,sMNoise,muMNoise] = polyfit(tM,MFitNoise(4*IncM:IncM*5),5);
[pPNoise,sPNoise,muPNoise] = polyfit(tP,PFitNoise(4*IncP:IncP*5),5);

PolyValMNoise = polyval(pMNoise,t(4*IncM:IncM*5),[],muMNoise);
PolyValPNoise = polyval(pPNoise,t(4*IncP:IncP*5),[],muPNoise);

DetrendedMNoise(4*IncM:IncM*5) = MFitNoise(4*IncM:IncM*5) - 
PolyValMNoise;
DetrendedPNoise(4*IncP:IncP*5) = PFitNoise(4*IncP:IncP*5) - 
PolyValPNoise;

[TFMNoise,LMNoise,UMNoise,CMNoise] = filloutliers(DetrendedMNoise,0);
[TFPNoise,LPNoise,UPNoise,CPNoise] = filloutliers(DetrendedPNoise,0);

DetrendedMNoise = TFMNoise;
DetrendedPNoise = TFPNoise;

DetrendedMNoise(length(DetrendedMNoise)+1:length(t)) = 0;
DetrendedPNoise(length(DetrendedPNoise)+1:length(t)) = 0;

for i = 1:length(t)
    if MFit(i) > 1
        if MFitData(i) > -5
            DetrendedMNoise(i) = MFitData(i);
        else
            DetrendedMNoise(i) = DetrendedMNoise(i);



        end
    end
end
for i = 1:length(t)
    if PFit(i) < -0.001
        if PFitData(i) < 0.02
            DetrendedPNoise(i) = PFitData(i);
        else
            DetrendedPNoise(i) = DetrendedPNoise(i);
        end
    end
end

MFit = normalize(MFit,'range');
MFitData = normalize(MFitData,'range');
PFit = normalize(PFit,'range');
PFitData = normalize(PFitData,'range');
PFit = PFit'-1;
PFitData = PFitData'-1;

figure(1)
subplot(2,1,1)
p1 = plot(t,MFitData,t,PFitData);
a = get(gca,'XTickLabel');  
set(gca,'XTickLabel',a,'fontsize',20)
set(gca,'XTickLabelMode','auto')
b = get(gca,'YTickLabel');
set(gca,'YTickLabel',b,'fontsize',1420)
set(gca,'YTickLabelMode','auto')
p1(1).LineWidth = 2;
p1(1).Color = [0, 0, 1.0, 0.7];
p1(2).LineWidth = 2;
p1(2).Color = [1.0, 0, 0, 0.7];
xlabel('Time (s)','FontSize',20)
ylabel('Impedance','FontSize',20)
legend('Impedance Magnitude Detrended Raw Signal','Impedance Phase 
Detrended Raw Signal')
subplot(2,1,2)
p2 = plot(t,MFit,t,PFit);
a = get(gca,'XTickLabel');  
set(gca,'XTickLabel',a,'fontsize',20)
set(gca,'XTickLabelMode','auto')
b = get(gca,'YTickLabel');
set(gca,'YTickLabel',b,'fontsize',20)
set(gca,'YTickLabelMode','auto')
p2(1).LineWidth = 2;
p2(1).Color = 'b';
p2(2).LineWidth = 2;
p2(2).Color = 'r';
xlabel('Time (s)','FontSize',20)



ylabel('Impedance','FontSize',20)
legend('Impedance Magnitude (Ohms) - Signal Detection Algorithm 
Output','Impedance Phase (Degrees) - Signal Detection Algorithm 
Output')

catch exception
    disp(exception.identifier);
    disp(exception.message);
    disp(exception.stack.line);
    i
    j
end

end
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