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1 ABSTRACT 

Distributed optimization approaches are gaining more attention for solving power systems 

energy management functions, such as optimal power flow (OPF). Preserving information privacy 

of autonomous control entities and being more scalable than centralized approaches are two 

primary reasons for developing distributed algorithms. Moreover, distributed/ decentralized 

algorithms potentially increase power systems reliability against failures of components or 

communication links.  

In this dissertation, we propose multiple distributed optimization algorithms and convergence 

performance enhancement techniques to solve the OPF problem. We present a multi-level 

optimization algorithm, based on analytical target cascading, to formulate and solve a collaborative 

transmission and distribution OPF problem. This algorithm enables transmission and distribution 

system operators to solve their OPF subproblems in a parallel, yet collaborative manner, which 

would result in a more economical and reliable operating point for the whole power system.  

Motivated by observing the sensitivity of most augmented Lagrangian (AR)-based distributed 

algorithms to the choice of initial values of tuning parameters and the level of importance of each 

term in objective functions, a technique is proposed to balance convergence speed and accuracy 

of these types of distributed algorithms. A balancing coefficient is determined and incorporated 

into AR-based distributed OPF to, potentially, accelerate its speed and enhance its robustness to 

the choice of initial values.  

To further enhance the performance of AR-based distributed OPF algorithms, a prediction-

correction based asynchronous alternating direction of multipliers (A-ADMM) is proposed. This 

algorithm does not need synchronization of subproblems at each iteration, which means a 



vi 

 

computationally cheap subproblem no longer needs to wait for the most updated information of its 

computationally expensive neighbors. A second loop, which uses anomaly detection and learning 

techniques, is added to the proposed A-ADMM to reduce the impact of prediction error 

propagation, especially if subproblems are computationally heterogeneous with a significant level 

of asynchrony.
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CHAPTER 1. INTRODUCTION 

1.1 Background  

Energy management functions in power systems are undergone profound changes due to 

emerging new technologies, policies, and rules. The main focus of this study is on optimal power 

flow (OPF), which is an optimization problem whose objective function is to minimize generation 

cost (or other objective functions such as loss minimization) subject to system and components 

operational constraints. OPF is solved daily for various power system analyses, including for 

generation scheduling in a 5~15-minute basis.  

With the integration of distributed energy resources and the appearance of more autonomous 

control entities, some challenges come into play for formulating and solving the OPF problems. 

One of these challenges is to respect the information privacy of autonomous entities that are not 

willing to share their commercially sensitive information with other parties. Even is these control 

entities agree to share their data with an independent entity, a large-scale computationally 

expensive OPF should be formulated and solved. 

Distributed approaches have been proposed in the literature to solve OPF distributedly instead 

of a centralized manner (Molzahn, Dörfler et al. 2017, Kargarian, Mohammadi et al. 2016, Wang, 

Wang et al. 2017). In distributed optimization, a problem is decomposed into smaller subproblems, 

and, usually, iterative strategies are applied to coordinate subproblems and find the optimal 

solution of the whole problem. While various coordination strategies are presented in the literature, 

the main focus of this study is on augmented Lagrangian-based algorithms. In general, 

coordination strategies can be categorized into sequential and parallel. In sequential strategies, 

subproblems are solved sequentially; while an OPF problem is being solved, the rest should stay 
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idle. On the other hand, in the parallel strategies, subproblems can be solved simultaneously. 

Parallel approaches are more scalable than sequential strategies. 

Although various promising distributed optimization algorithms are presented in the literature, 

there are still several barriers (e.g., lack of scalability, required synchrony between subproblems, 

sensitivity to the choice of initial conditions, and sensitivity to communication failure and missing 

information) to real-world applications of distributed optimization not only in power systems but 

also in many other disciplines. There are critical needs to develop more efficient and reliable 

algorithms that bear a high convergence speed, scalability, robustness against initial conditions, 

and resilience against communication failures. 

1.2 Motivation and Literature Review 

1.2.1 Distributed Optimization for Collaborative TSO+DSO Management  

With the integration of distributed energy resources in distribution networks, active 

distribution grids have emerged with the capability of producing electricity locally for supporting 

loads. Active distribution grids can provide various services for a transmission system. 

Transmission and active distribution systems can cooperate to achieve a better grid performance 

in terms of, for instance, voltage stability and operational costs.  

The transmission system is operated by a transmission system operator (TSO), and distribution 

systems are controlled by a distribution system operator (DSO). Since the transmission and 

distribution grids are parts of an interconnected system, any decisions made by TSO (DSOs) affect 

DSOs’ (TSO’s) operation and decisions. On the other hand, TSO and DSOs are autonomous 

control entities with their own rules, policies, and objectives. While one entity aims at minimizing 

its costs, the objective of another entity might be reliability maximization with respect to its local 
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operational constraints. Furthermore, TSO and DSOs might compete with each other to achieve 

their objectives. Thus, although TSO and DSOs are parts of an interconnected system, they are 

unwilling to share their commercially sensitive data with other parties. A central scheduling 

framework, in which TSO and DSOs need to share all their information with a central control 

authority, may no longer be appropriate for the entire power system operation in the era of active 

distribution grids (Kar, Hug et al. 2014). Even if TSO and DSOs share their information with a 

central control authority and allow this entity to perform the decision-making, solving the resulting 

integrated large-scale optimization problem is challenging.  In addition, failures and cyber-attacks 

could have a devastating impact on the functionality of a centralized control approach.  

Joint operation and management of transmission and distribution systems have seen increased 

interest recently (Ferrante, Constantinescu et al. 2015, Kristov, De Martini et al. 2016). An iterative 

master-slave algorithm is presented in (Sun, Guo et al. 2015, Li, Guo et al. 2016, Li, Guo et al. 

2016) to manage power transmission and distribution systems collaboratively. In (Sun, Guo et al. 

2015), a heterogeneous decomposition is presented to solve an AC OPF problem for transmission 

and distribution systems. This decomposition approach solves first-order KKT conditions in a 

decentralized manner. DSOs and TSO solve their optimization problems sequentially. In 

(Kargarian and Fu 2014, Marvasti, Fu et al. 2014, Kargarian, Fu et al. 2016), we have presented a 

decentralized algorithm for collaborative day-ahead scheduling of TSO and DSOs. The 

coordination strategy is based on analytical target cascading (ATC), originally developed for 

multilevel distributed optimization of hierarchical complex engineering systems. References 

(Kargarian and Fu 2014, Kargarian, Fu et al. 2016) apply augmented Lagrangian block coordinate 

descent (AL-BCD), and (Marvasti, Fu et al. 2014) utilizes an exponential penalty function (EPF) 

formulation. Although AL-BCD and EPF formulations effectively coordinate TSO and DSOs, 
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their main drawback is their sequential solution procedure. In other words, at each iteration, TSO 

(DSOs) needs the updated values of shared variables received from DSOs (TSO) at the same 

iteration. This sequential scheme degrades the computational efficiency of distributed optimization, 

as the overall computational time is the summation of subproblems’ solution time. This 

computationally related issue has motivated us to develop a parallel ATC-based collaborative 

TSO+DSO approach in Chapter II.  

1.2.2 Distributed OPF and Scaling 

Various distributed optimization algorithms have been reported in the literature (Kar, Hug et 

al. 2014, Kargarian, Fu et al. 2015, Kargarian, Mohammadi et al. 2016, Manshadi and Khodayar 

2016, Malhotra, Binetti et al. 2017, Molzahn, Dörfler et al. 2017, Nguyen, Mohsenian-Rad et al. 

2017, Amini, Bahrami et al. 2018, Kargarian, Mehrtash et al. 2018, Zhang, Dehghanpour et al. 

2018). We focus on algorithms that have been utilized to solve steady-state problems such as OPF. 

In most algorithms, interdependencies between subproblems are modeled in the form of either 

coupling constraints or coupling variables. Primal decomposition algorithms are usually applied 

to solve problems with coupling variables, and dual decomposition algorithms are used to solve 

problems with coupling constraints (Palomar and Chiang 2006). References (Kargarian, 

Mohammadi et al. 2016, Molzahn, Dörfler et al. 2017, Wang, Wang et al. 2017) review distributed 

algorithms and their application on power systems. Six most popular algorithms, namely, 

alternating direction method of multipliers (ADMM) (Boyd, Parikh et al. 2011, Erseghe 2014), 

ATC (Mohammadi, Mehrtash et al. 2018), auxiliary problem principle (APP) (Baldick, Kim et al. 

1999), proximal message passing (EE236C), optimality condition decomposition (Hug-

Glanzmann and Andersson 2009, Ahmadi-Khatir, Conejo et al. 2013), consensus+innovation (Kar, 

Hug et al. 2014), and their application to OPF are discussed in (Kargarian, Mohammadi et al. 2016). 
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In (Wang, Wu et al. 2017), a consensus-based ADMM is proposed to solve OPF with demand 

response. An asynchronous ADMM is developed in (Guo, Hug et al. 2017) for AC OPF. Reference 

(Mhanna, Verbič et al. 2018) has proposed two accelerated subgradient methods and an adaptive 

penalty parameter to speed up the convergence of ADMM for application to OPF. Reference (Liu, 

Benosman et al. 2015) has presented a distributed OPF that uses a consensus algorithm to estimate 

optimization variables between neighboring nodes in a given network. ADMM and ATC are 

applied, respectively, in (Dall'Anese, Zhu et al. 2013) and (Malekpour and Pahwa 2017) to solve 

OPF in distribution systems. A multi-area OPF algorithm is introduced in (Lu, Liu et al. 2018) 

based on the distributed interior point method. Regional correction equations are converted into 

solving a parametric quadratic programming problem during each Newton-Raphson iteration. In 

(Costley and Grijalva 2012), the feasibility of fully-distributed OPF architectures for the power 

industry is explored. In (Huang, Chen et al. 2008), a distributed OPF algorithm is proposed based 

on the decomposition of KKT conditions of the centralized OPF. Distributed large-scale OPF with 

geographical network decomposition is discussed in (Guo, Hug et al. 2017). Augmented 

Lagrangian alternating direction inexact Newton method is applied in (Engelmann, Jiang et al. 

2019) to solve OPF. Initialization free distributed coordination is proposed in (Cherukuri and 

Cortes 2016, Yi, Hong et al. 2016) for economic dispatch.  

In augmented Lagrangian based distributed algorithms, such as ADMM and ATC, coupling 

constraints are penalized in the objective function and subgradient methods are used to update 

Lagrange multipliers (Hestenes 1969, Boyd, Parikh et al. 2011). Penalty parameters, step sizes, 

and initial values for variables play significant roles in convergence behavior and accuracy of 

results. If one selects these values improperly, ADMM and ATC may take many iterations to 

converge or even diverge. Appropriate step sizes and penalty parameters must be selected to ensure 
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that feasible and optimal results will be obtained. Although large step sizes and penalty parameters 

might increase the speed at the first few iterations, they may hinder convergence and cause losing 

optimality, oscillating around the optimal point, or divergence at the end. On the other hand, small 

step sizes and penalty parameters increase the chance of finding the optimal solution; however, 

they increase the number of iterations (Tosserams, Etman et al. 2006, Bertsekas 2014). Definition 

of small and large step sizes and penalty parameters is problem-dependent. A step size/penalty 

parameter might be small for a problem while being too large for another problem. 

Furthermore, appropriateness of step sizes and penalty parameters is correlated with the choice 

of initial values for variables. The combination of these three factors determines the level of 

importance of each term of the optimization objective function and affects the solution procedure. 

In distributed optimization, if penalty functions are dominant as compared to other cost functions, 

optimization pays more attention to reducing inconsistency of coupling constraints rather than the 

solution optimality. If one selects inconsistency of coupling constraints as stopping criteria, the 

coupling constraints will be satisfied after a couple of iterations (reach a feasible point) while the 

result is not optimal. In contrast, if other cost function terms dominate, optimization pays more 

attention to optimize each term of subproblems’ objective function locally and solely while the 

inconsistency of coupling constraints may vanish slowly. In other words, optimization finds the 

optimal point for each subproblem while they don’t have shared variables. 

Hence, the scaling and level of importance of each term in subproblems’ objective functions 

need to be carefully determined. It is highly desirable to design a distributed algorithm that is fast, 

accurate, and robust (i.e., less sensitivity to the choice of step sizes, penalty parameters, and initial 

values of variables) and can tolerate improper initialization without divergence. This is the 

motivation of our studies in Chapter III. 
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1.2.3 Synchronous and Asynchronous Distributed Optimization for Power 

Systems 

Various distributed optimization algorithms have been presented in the literature for power 

systems management. These algorithms are based on geographical, contingency scenario, 

uncertainty scenario, and temporal decomposition strategies (Conejo, Castillo et al. 2006, 

Malekpour, Pahwa et al. 2016, D. K. Molzahn, F. Dorfler et al. 2017, Amini, Bahrami et al. 2018, 

Kargarian, Mohammadi et al. 2018). Three main categories of algorithms exist in the context of 

distributed computing, namely, sequential, synchronous parallel, and asynchronous parallel. Most 

of the existing algorithms, including the classical ADMM, the classical ATC, and several variants 

of augmented Lagrangian relaxation are sequential in which optimization subproblems are solved 

sequentially (Chang, Xu et al. , Hur, Park et al. 2002, Boyd, Parikh et al. 2011, Dall'Anese, Zhu et 

al. 2013, DorMohammadi and Rais-Rohani 2013, Erseghe 2014, Kargarian, Fu et al. 2015, 

Kargarian, Mohammadi et al. 2016, Li, Guo et al. , D. K. Molzahn, F. Dorfler et al. 2017, Abraham 

and Kulkarni 2018, Bahrami and Amini 2018, Kargarian, Mohammadi et al. 2018, Mbuwir, 

Spiessens et al. 2020). These algorithms are applied to OPF, economic dispatch, and unit 

commitment problems (Conejo, Castillo et al. 2006, Kar, Hug et al. 2014, Li, Guo et al. 2016, D. 

K. Molzahn, F. Dorfler et al. 2017, Kargarian, Mohammadi et al. 2018). The main drawback of 

such approaches is their ample solution time and scalability. 

Parallel synchronous strategies, such as parallel variants of ADMM, parallel ATC, 

consensus+innovations (Kar, Hug et al. 2014), and APP (Kim and Baldick 2000), coordinate 

subproblems in a parallel manner and reduce the under-utilization of computation resources and 

decrease the solution time of each iteration as compared to that of sequential approaches (Cohen 

1980, Kim and Baldick 2000, Ahmadi-Khatir, Conejo et al. 2013, Dall'Anese, Zhu et al. 2013, 
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Erseghe 2014, Kar, Hug et al. 2014, Kargarian, Fu et al. 2015, Malekpour, Pahwa et al. 2016, 

Wang, Wu et al. 2016, Baroche, Pinson et al. 2019). Perfect synchrony among subproblems, 

however, is still a bottleneck. The synchrony requirement means that all subproblems must be 

solved once at each iteration, and information of shared variables must be exchanged between 

neighbors before starting the next iteration. While slower subproblems are still running, faster 

subproblems should stay idle until all subproblems are solved. Slower subproblem dictates the 

solution time of iterations. This limits the solution time and scalability enhancement, particularly 

if subproblems are computationally heterogeneous with considerably different computational 

costs. Power systems operation and management problems, such as geographically decomposed 

OPF, include considerably heterogenous subproblems.  

Some efforts have attempted to overcome shortcomings of synchronous parallel approaches 

by developing asynchronous parallel distributed optimization (Dwork, Lynch et al. 1988, Zhang 

and Kwok 2014, Peng, Xu et al. 2016). The concept of asynchronous parallel optimization is used 

in several disciplines (Chang, Hong et al. 2016, Kumar, Jain et al. 2016), but it is relatively new 

to the power system community (Aravena and Papavasiliou 2015, Guo, Hug et al. 2017, Ramanan, 

Yildirim et al. 2019). Asynchronous ADMM is becoming popular for power system optimization, 

e.g., OPF (Guo, Hug et al. 2017). Although asynchronous ADMM outperforms synchronous 

ADMM, it still has several limitations that degrade its scalability. The latest values of shared 

variables received from slower subproblems are used to continuously solve faster subproblems for 

several iterations instead of keeping fast subproblems in an idle mode. While it reduces 

unproductive time and under-utilization of computation resources, not much significant progress 

toward the optimal solution is observed after carrying out each iteration due to using un-updated 

values of share variables for several iterations. If updated information is not received from slower 
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OPF subproblems after several iterations, faster OPF subproblems should go to an idle mode until 

updated information is received from other subproblems. This is to avoid moving toward a 

suboptimal point or divergence.  

Mathematical models and optimization techniques may be developed to solve these problems. 

Although such techniques can be useful, their development is inherently challenging and complex. 

Instead, researchers can take advantage of developed approaches in other fields to devise hybrid 

algorithms for addressing asynchronous ADMM limitations. Machine learning is a research 

direction gaining tremendous attention in many disciplines, including power systems (Ardakani 

and Bouffard 2018, Mohri, Rostamizadeh et al. 2018, Baker and Bernstein 2019, 

Karagiannopoulos, Aristidou et al. 2019). By using historical or simulated datasets, machine 

learning tools can be applied to project behaviors of different phenomena that cannot easily be 

analyzed or solved within an acceptable timeframe by pure mathematical models. These features 

make regression and classification methods promising tools to solve the limitations of 

asynchronous ADMM. The main challenge is that solving distributed optimization is a sort of 

online data streaming in which data samples and their trend are obtained iteration by iteration until 

convergence. This makes applications of regression and classification methods to distributed 

optimization challenging.  

With the given motivation, in Chapter IV, we propose an asynchronous form of ADMM using 

a prediction-correction technique. In Chapter V, we will enhance the performance of this algorithm 

by adding an anomaly detection step to reduce the impact of prediction errors. 

1.3 Contribution and Organization 

In Chapter II, the power system is modeled as a system of systems in which TSO and DSOs 
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are autonomous entities with their local policies and rules. A collaborative two-level OPF is 

presented with respect to a) interdependencies of transmission and distribution systems and b) the 

information privacy of TSO and DSO. Interdependencies between TSO and DSOs are modeled by 

a set of hard constraints. Quadratic penalty terms are utilized to relax the hard constraints in the 

local objective of each entity. A technique is presented to make non-separable quadratic terms of 

augmented Lagrangian penalty functions separable. A parallel solution algorithm is presented with 

two loops: an inner loop to enhance the accuracy of the solution and an outer loop to force the 

algorithm to converge. At each iteration of the proposed parallel procedure, TSO (DSOs) needs 

the updated values of the shared variables received from DSOs (TSO) obtained at the previous 

iteration. Hence, compared with the sequential algorithm, the computational time of each iteration 

decreases. This can significantly improve the convergence speed as the number of levels increases. 

In Chapter III, we focus on ATC and its application for solving the OPF problem in a 

distributed manner. A technique is proposed to make a tradeoff between accuracy and speed of the 

ATC-based distributed OPF. A function is designed to determine a balancing coefficient 

depending on the choice of initial values for the coupling variables and penalty parameters. This 

coefficient is incorporated into the solution algorithm to automatically make a tradeoff between 

the convergence speed and solution accuracy by adjusting penalty terms with respect to cost 

functions. The proposed algorithm avoids a premature convergence if the initial conditions are 

selected inappropriately, and in particular, if penalty parameters are initialized to large values. The 

proposed function adjusts penalty parameters to enhance the convergence speed if they are 

initialized to small values. We name the proposed algorithm an accelerated, robust ATC (AR-

ATC) since it enhances the solution speed and makes it more robust against the choice of initial 

values. We analyze the performance of the proposed algorithm through mathematical justifications 
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and rigorous analytical and numerical justifications. Many cases are simulated to show the 

performance and effectiveness of the proposed AR-ATC to solve OPF in a distributed manner. 

In Chapter IV, we propose a prediction-correction based asynchronous ADMM (A-ADMM) 

to solve the OPF problem in a distributed manner. The objective is to reduce the unproductive time 

and the under-utilization of computation resources if OPF subproblems are computationally 

heterogeneous, which is the case in power systems. The proposed A-ADMM does not need 

synchronization of subproblems at each iteration, which means a computationally cheap 

subproblem no longer needs to wait for the most updated information of its computationally 

expensive neighbors. A momentum-based extrapolation method is proposed to predict missing 

information required by each subproblem based on the values of shared variables obtained over 

previous iterations. The extrapolation term projects the values of missing information at next 

iterations while the momentum term, i.e., the correction step, prevents the predicted values to 

become far from the possible solution and hence avoids divergence. In addition to predicting 

missing information, the values of shared variables at next iterations can be estimated before 

solving subproblems. This enhances the solution speed even if subproblems are homogeneous. 

Numerical results on various test systems show that the proposed A-ADMM considerably 

outperforms the classical synchronous parallel ADMM for solving the OPF problem. 

In Chapter V, we propose a learning-based double-loop asynchronous ADMM (LA-ADMM) 

to solve the OPF problem in a distributed manner. This algorithm is an extension of A-ADMM 

proposed in Chapter IV. In the case of high heterogeneity of subproblems or a considerable number 

of consecutive iterations with missing information, predictions of missing information may 

degrade LA-ADMM convergence performance because of prediction error propagation from one 

iteration to the next iteration. We develop an online steaming-based anomaly detection method 



12 

 

using the k-means classifier and add it in the algorithm to measure anomalies in predicted values 

of shared variables. This method works as a switch controller that activates an inner loop to reduce 

the propagating impact of shared variables prediction error on Lagrange multipliers, which have a 

critical impact on distributed optimization convergence behavior. 

In Chapter VI, the concluding remarks and future research directions are discussed.  
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2 CHAPTER 2. DIAGONAL QUADRATIC APPROXIMATION FOR 

DECENTRALIZED COLLABORATIVE TSO+DSO OPTIMAL POWER FLOW 

2.1 Introduction  

Collaborative operation of electricity transmission and distribution networks improves power 

system economics and reliability. However, this is a challenging problem given that transmission 

system operators (TSOs) and distribution system operators (DSOs) are autonomous entities that 

are unwilling to reveal their commercially sensitive information with other parties. This chapter 

presents a decentralized decision-making algorithm for collaborative TSO+DSO optimal power 

flow implementation. The proposed algorithm is based on analytical target cascading for multilevel 

hierarchical optimization in complex engineering systems. A local OPF is formulated for each 

TSO/DSO taking into consideration interactions between the transmission and distribution systems 

while respecting autonomy and information privacy of TSO and DSOs. The local OPF of TSO is 

solved at the upper-level of the hierarchy, and the local OPFs of DSOs are handled at the lower-

level. A diagonal quadratic approximation (DQA) and a truncated diagonal quadratic 

approximation (TDQA) are presented to coordinate local OPF problems in a parallel manner. The 

proposed collaborative TSO+DSO OPF is evaluated using a 6-bus system and the IEEE 118-bus 

test system, and promising results are obtained.  

Nomenclature 

A. Indices, Sets, and Parameters 

𝑎, 𝑏 Index for border buses in TSO side. 

𝑎′, 𝑏′ Index for border buses in DSOs side. 

𝑖, 𝑗  Index for subproblem 𝑗 in level 𝑖. 

𝑘  Outer loop iteration index. 

𝑙  Inner loop iteration index. 
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𝑓∗  Operating cost determined by the centralized algorithm. 

𝑓𝐴𝑇𝐶 Operating cost determined by the decentralized algorithm.  

𝑓𝑖𝑗  Operating cost function of subproblem 𝑗 located in level 𝑖. 

𝑔𝑖𝑗  Set of inequality constraints of subproblem 𝑗 located in level 𝑖. 

ℎ𝑖𝑗  Set of equality constraints of subproblem 𝑗 located in level 𝑖. 

𝑁𝑑  Number of DSO in level two. 

𝑃𝑙
∗  Power mismatch in tie-line 𝑙 determined by the centralized algorithm. 

𝑃𝑙
𝐴𝑇𝐶 Power mismatch in tie-line 𝑙 determined by the decentralized algorithm. 

𝑋  Set of variables. 

𝜋(. ) Penalty function. 

𝑃𝑚𝑖𝑠 Relative power mismatch in a tie-line. 

𝑟𝑒𝑙  Relative distance of the operating cost. 

 

B. Variables 

𝑟𝑖𝑗  Response of subproblem𝑗 in level 𝑖. 

𝑡𝑖𝑗  Targets of subproblem𝑗 in level 𝑖. 

𝑣𝑎  Voltage magnitude at bus 𝑎.  

𝛿𝑎  Voltage angle at bus 𝑎. 

�̃�∠𝛿 Voltage phasor corresponding to response variables. 

𝑣∠𝛿 Voltage phasor corresponding to target variables. 

𝛼, 𝛽 EPF penalty multipliers. 

𝛿𝑘,𝑙  Voltage angle in outer loop 𝑘 and in inner loop 𝑙. 

Г  Step size. 

𝜆, 𝑤 AL_BCD’s penalty multipliers.  

𝜆𝑖𝑗,𝛿
𝑇 , 𝑤𝑖𝑗,𝛿 DQA penalty multipliers related to voltage angle of subproblem𝑗 in level 𝑖. 

𝜆2𝑗,𝑣
𝑇 , 𝑤𝑖𝑗,𝑣 DQA penalty multipliers related to voltage magnitude of subproblem 𝑗 in level 𝑖. 
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𝜏  Tuning parameter. 

2.2 Contribution 

The contributions of this chapter are summarized as follows: 

• The power system is modeled as a system of systems (SoS) in which TSO and DSOs are 

autonomous entities with their local policies and rules. A collaborative two-level OPF is 

presented with respect to a) interdependencies of transmission and distribution systems 

and b) the information privacy of TSO and DSO. 

• Interdependencies between TSO and DSOs are modeled by a set of hard constraints. 

Quadratic penalty terms are utilized to relax the hard constraints in the local objective of 

each entity. A technique is presented to make non-separable quadratic terms of 

augmented Lagrangian penalty functions separable.  

• A fully parallel solution algorithm is presented, which has two loops: an inner loop to 

enhance the accuracy of the solution and an outer loop to force the algorithm to converge. 

At each iteration of the proposed parallel procedure, TSO (DSOs) needs the updated 

values of the shared variables received from DSOs (TSO) obtained at the previous 

iteration. Hence, compared with the sequential algorithm, the computational time of each 

iteration decreases. This can significantly improve the convergence speed as the number 

of levels increases. 
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2.3 Decentralized ATC-based OPF Implementation 

2.3.1 Dependency of TSO and DSO 

Assume that the transmission network is not connected to the active distribution grids. In this 

case (isolated mode), TSO and DSOs are capable of solving their local OPF problems completely 

independent from one another. However, this is not the case in reality since distribution grids are 

interconnected to transmission networks via one or more connection points. Consider the system 

shown in Fig. 1, which includes one TSO and two DSOs. The system has two levels. TSO is at the 

first level (upper-level), and DSOs are at the second level (lower-level). Control variables of buses 

𝑎 and 𝑎′ (i.e., voltage magnitudes and angles) couple TSO and DSO1. Both TSO and DSO1 are 

interested in controlling these coupling variables to improve their grid performance. Likewise, 

TSO and DSO2 are coupled via control variables of buses 𝑏 and 𝑏′. The coupling variables, i.e., 

{𝑣𝑎∠𝛿𝑎, 𝑣𝑎′∠𝛿𝑎′ , 𝑣𝑏∠𝛿𝑏 , 𝑣𝑏′∠𝛿𝑏′}, make decisions of TSO, DSO1, and DSO2 interdependent 

(note that active and reactive power flows in a tie-line are by-products of the voltage magnitudes 

and angles of ending terminals of the tie-line). Thus, coordination of the coupling variables is in 

great interest of TSO and DSOs. 

DSO1 DSO2

TSO
TSO level 

(level 1)

DSO level 

(level 2)

aav  bbv 

'' aav  '' bbv 
 

Figure 2.1 Interdependency of TSO and DSOs with coupling variables. 
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2.3.2 Characterization of Analytical Target Cascading 

The general concept of analytical target cascading (ATC) is similar to the auxiliary problem 

principle (APP) and alternating direction method of multipliers (ADMM) (Cohen 1980, Michelena, 

Park et al. 2003, Tosserams, Etman et al. 2006, Boyd, Parikh et al. 2011, DorMohammadi and 

Rais-Rohani 2012). The ATC procedure (which is suitable for multilevel management of complex 

engineering systems) first decomposes the system into a multilevel hierarchical structure (shown 

in Fig. 2.2) and recognizes parents and children. At the next step, penalty functions are introduced 

to model subproblems’ interdependencies. Whereas in APP and ADMM, the duality concept is 

applied, and penalty functions are introduced, and then the system is decomposed into several 

subproblems. As shown in Fig. 2.1, TSO in the upper-level is hierarchically connected to DSOs in 

the lower-level. Thus, ATC is a suitable method to solve the collaborative TSO+DSO operation in 

a decentralized manner. In ATC, subproblems (also called elements or autonomous systems) in 

the upper-levels are parents of subproblems in the lower-levels. Subproblems in the lower-levels 

are children of subproblems in the upper-levels. Although a child has only one parent, a parent 

could have multiple children. This hierarchical interconnection means that there is no loop in the 

ATC structure. This further implies that subproblems at the same level do not share any 

connection/information. If we assume the ATC structure as a graph, subproblems and tie-lines are, 

respectively, nodes and edges of the graph. 

By decomposing the system into parents/children, the dimensionality of each subproblem 

reduces. An iterative solution procedure can be applied to coordinate TSO and DSOs and 

determine the optimal solution of the SoS-based power system. In ATC, the coupling variables 

between two connected elements appear in the form of target variables and response copiers. TSO 

solves its OPF subproblem and propagates the target values down toward its children (i.e., DSOs). 
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Then, DSOs use the updated target values, solve their local OPF problems, and send the updated 

values of the response copiers back to TSO. The responses determined by the children define how 

close they are to the parent’s targets (Tosserams, Etman et al. 2006). 

To enforce the decentralized optimization problem to converge, a proper coordination strategy 

is required. Several methods have been proposed in the literature with different options to penalize 

the coupling variables into the objective functions. These options for selecting penalty terms and 

coordination strategies make ATC more flexible than ADMM and APP. Augmented Lagrangian 

block coordinate descent (AL-BCD) and exponential penalty function (EPF) are two popular ATC 

formulations that use coordination strategies with two loops, inner loop and outer loop. The penalty 

terms in these two methods are not separable, and thus the solution algorithm is a sequential 

procedure, as shown in Fig. 2.3. If no direct link exists among the subproblems in each level 𝑖, the 

subproblems (only those is level 𝑖) can be solved in parallel. 

The ATC structure converges to first-order optimality conditions if the problem is convex 

(Michelena, Park et al. 2003). Thus, ATC provides the optimal solution for a convex problem. As 

shown in the literature, ATC shows good performance for non-convex problems, such as AC OPF 

presented In this chapter (DorMohammadi and Rais-Rohani 2013, Kargarian and Fu 2014, 

Marvasti, Fu et al. 2014, Kargarian, Fu et al. 2016). In addition, as explained in the following 

sections, a set of convex penalty functions, such as a quadratic function, are added to the objective 

function. These convex penalty functions act as local convexifiers for the subproblems and 

mitigate the non-convexity of the parents’ and children’s subproblems.  The convergence and 

optimality of the decentralized algorithm, when applied to the studied problem, are demonstrated 

through several numerical simulations. 
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Figure 2.2 Decomposing a system into a multilevel hierarchical structure. 
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Figure 2.3 Solution procedure of AL-BCD and EPF algorithms. 

2.3.3 Hierarchical Two-Level TSO+DSO Operation 

In this section, we formulate the collaborative TSO+DSO OPF within the ATC framework. 

Consider that optimization (2.1) expresses a centralized OPF problem for the combined power 

transmission and distribution systems. 
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min
𝑋
𝐹(𝑋)                                                      (2.1) 

𝑠. 𝑡.  𝑔(𝑋) ≤ 0,      ℎ(𝑋) = 0 

where 𝑋 denotes all variables of the entire power system, 𝐹 is the overall objective function, 

and 𝑔 and ℎ represent all inequality and equality constraints. The power system has a two-level 

hierarchical structure (a simplified version of Fig. 2.2). Thus, within the ATC framework, we can 

rewrite (2.1) as follows: 

min
(𝑥𝑖𝑗,𝑡2𝑗)

𝑓11(𝑥11, 𝑡2𝑗) + ∑ 𝑓2𝑗(𝑥2𝑗 , 𝑡2𝑗)

𝑁𝑑+1

𝑗=2

                                   (2.2) 

                                                 𝑠. 𝑡.    𝑔𝑖𝑗(𝑥𝑖𝑗 , 𝑡2𝑗) ≤ 0 

ℎ𝑖𝑗(𝑥𝑖𝑗 , 𝑡2𝑗) = 0 

where subscript 𝑖𝑗  indicates subproblem 𝑗𝑡ℎ  in level 𝑖 , 𝑋 = {𝑥𝑖𝑗 , 𝑡2𝑗}, 𝑥𝑖𝑗  is local variables of 

subproblem 𝑗 in level 𝑖, and 𝑡2𝑗 represents the target variables. Note that in ATC, shared variables 

that couple TSO to DSOs (i.e., voltage of border buses, as discussed in Section II. A) appear in the 

form of target variables. Parameter 𝑁𝑑  is the number of DSO in level 2, 𝑓11  is the objective 

function of TSO, 𝑓2𝑗 is the objective function of DSO 𝑗 in level 2, and  𝑔𝑖𝑗 and ℎ𝑖𝑗 are compact 

representations of inequality and equality constraints of subproblem 𝑗 in level 𝑖. If 𝑡 is an empty 

set (𝑡 = {}), TSO and DSOs are isolated and can solve their local OPF subproblems completely 

separate from each other. However, if 𝑡 is non-empty (𝑡 ≠ {}), which is the case in the power 

systems, subproblems that share 𝑡 (an element of 𝑡) need to achieve an agreement on its value. 

To separate the TSO’s and DSOs’ OPF subproblems as well as the variables that are governed 

by each subproblem, response copiers are introduced. The response copiers are duplicates of the 

target variables. We consider that the target variables are the shared variables (voltage of border 
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buses) that are handled by TSO and the response copiers are the shared variables that are governed 

by DSOs. We can include the response variables, denoted generically by vector r, in (2.2) by 

enforcing a set of consistency constraints as: 

C:  𝑡2𝑗 − 𝑟2𝑗 = 0                                                                 (2.3) 

One consistency constraint is required for each target-response pair. We relax the consistency 

constraints in the objective function using a penalty term. 

min
(𝑥𝑖𝑗,𝑡2𝑗,𝑟2𝑗)

𝑓11(𝑥11, 𝑡2𝑗) + ∑ 𝑓2𝑗(𝑥2𝑗 , 𝑡2𝑗)

𝑁𝑑+1

𝑗=2

+ ∑ 𝜋(𝑡2𝑗 − 𝑟2𝑗)

𝑁𝑑+1

𝑗=2

                  (2.4) 

Now, we can completely separate the local OPF subproblems of TSO and DSOs. Let us 

represent the target variables by their common notations in power system communities, i.e., 𝑣∠𝛿. 

Also, �̃�∠𝛿 represents the response variables. The local OPF subproblem of TSO is: 

min
(𝑥11,𝛿2𝑗,𝑣2𝑗)

𝑓11(𝑥11, 𝛿2𝑗 , 𝑣2𝑗) + ∑ 𝜋(𝛿2𝑗 − 𝛿2𝑗) + 𝜋(𝑣2𝑗 − �̃�2𝑗)

𝑁𝑑+1

𝑗=2

                        (2.5) 

𝑠. 𝑡.    𝑔11(𝑥11, 𝛿2𝑗 , 𝑣2𝑗) ≤ 0  

       ℎ11(𝑥11, 𝛿2𝑗 , 𝑣2𝑗) = 0 

And the local OPF subproblem of DSO j is: 

min
(𝑥2𝑗,�̃�2𝑗,�̃�2𝑗)

𝑓2𝑗(𝑥2𝑗 , 𝛿2𝑗, �̃�2𝑗) + 𝜋(𝛿2𝑗 − 𝛿2𝑗) + 𝜋(𝑣2𝑗 − �̃�2𝑗)                 (2.6) 

𝑠. 𝑡.    𝑔2𝑗(𝑥2𝑗 , 𝛿2𝑗 , �̃�2𝑗) ≤ 0 
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           ℎ2𝑗(𝑥2𝑗 , 𝛿2𝑗 , �̃�2𝑗) = 0 

The OPF subproblem (2.5) ((2.6)) is formulated using the local information of TSO (DSO 𝑗) 

as well as its shared variables with DSOs (TSO). The generation cost function of each subproblem 

(i.e., 𝑓 ) is quadratic as 𝑓(𝑝)  =  𝑎 + 𝑏𝑝 + 𝑐𝑝2 . The equality constraints ℎ  and the inequality 

constraints 𝑔 of TSO and DSOs are as follows: 

ℎ: {
Nodal power balance equations          
Voltage angle of the reference bus = 0

 

𝑔: {
Generation capacity limits
Bus voltage limits                
Line flow limits                    

 

While TSO is allowed to decide about its local and target variables 𝑣∠𝛿 , each DSO 𝑗 

determines its local and corresponding response variables �̃�∠𝛿. That is, while 𝑣∠𝛿 is constant in 

the DSOs’ OPF subproblems, �̃�∠𝛿  is constant in the TSO’s OPF subproblem. In the ATC 

framework, TSO sends the target values 𝑣∠𝛿 down to DSOs, and each DSO sends its response 

values �̃�∠𝛿 back upward TSO. 

An iterative procedure needs to be implemented to enforce the difference between 𝑣 − �̃� and  

𝛿 − 𝛿 to zero and find the optimal solution of the entire two-level power system. Depending on 

the choice of the penalty function 𝜋(⋅), the iterative solution procedure could be implemented in a 

sequential or a parallel fashion. An algorithm in which the TSO and DSOs OPF subproblems are 

sequentially and iteratively solved is called block coordinate descent. The convergence of the 

algorithm is guaranteed in (Michelena, Park et al. 2003, Bertsekas 2005). This is independent of 

the choice of the penalty function since the constraint sets of TSO and DSOs are completely 

independent. 
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In (Kargarian and Fu 2014, Marvasti, Fu et al. 2014), we have applied AL-BCD and EPF 

methods to model the penalty function (𝜋). In AL-BCD, the penalty term is 

𝜆𝑇(𝑡 − 𝑟) + ‖𝑤 ∘ (𝑡 − 𝑟)‖2
2        𝑡 = {𝑣, 𝛿}, 𝑟 = {�̃�, 𝛿}                            (2.7) 

And in EPF, the penalty term is: 

   𝛼(e(𝑡−𝑟) − 1) + 𝛽(e(𝑟−𝑡) − 1)     𝑡 = {𝑣, 𝛿}, 𝑟 = {�̃�, 𝛿}                          (2.8) 

where 𝜆, 𝑤, 𝛼, and 𝛽 are penalty multipliers, and “∘” denotes the Hadamard product. Setting the 

penalty factor 𝑤  to a small value enhances the accuracy of the distributed algorithm, but it 

increases the number of iterations. A large 𝑤 potentially reduces the number of iterations, but it 

may degrade the accuracy of the results. Indeed 𝑤 should be set to a large enough value (this value 

is problem-dependent) to balance the cost function 𝑓 and the penalty function and make a trade-

off between the accuracy and speed (Bertsekas 1999). The penalty multipliers 𝜆, 𝛼, and 𝛽 should 

be initialized close to their optimal values. A user may utilize historical data (e.g., a hot start 

strategy) or its experience to initialize the penalty multipliers. 

Penalty functions (2.7) and (2.8) include non-separable terms. Thus, a sequential solution 

procedure (hierarchical and level by level, similar to Fig. 2.3) is required to solve the collaborative 

ATC-based TSO+DSO OPF. That is, in each iteration 𝑘, TSO (DSOs) needs to know the response 

(target) values of DSOs (TSO) in that iteration, i.e., 𝑟𝑘 (𝑡𝑘). Hence, when the TSO’s (DSOs’) OPF 

subproblem is being solved, the DSOs’ (TSO’s) OPF subproblems should stay idle (see (Kargarian 

and Fu 2014) for more details). This degrades the computational efficiency of the decentralized 

solution procedure. 
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2.4 Diagonal Quadratic Approximation Method for Parallel Solution 

It is highly desirable to solve the OPF subproblems in a parallel manner, as shown in Fig. 2.4, 

especially when multiple levels of hierarchy (e.g., TSO, DSO, and microgrid levels) and many 

subproblems exist. In this chapter, diagonal quadratic approximation (DQA) and truncated 

diagonal quadratic approximation (TDQA) are presented to parallelize the solution procedure of 

the collaborative ATC-based TSO+DSO OPF. In these two algorithms, a subproblem with the 

longest solution time determines the algorithms’ solution time in each iteration. In contrast, in a 

sequential algorithm, such as AL-BCD, the summation of TSO’s solution time and the longest 

solution time of DSOs determines the overall solution time of the algorithm. 
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Figure 2.4 Solution of OPF subproblems with parallel ATC coordination strategy. 

2.4.1 Diagonal Quadratic Approximation (DQA) 

The objective functions 𝑓, i.e., the generation cost functions, in TSO and DSO subproblems 

are convex functions. In addition, the local equality and inequality constraints of each subproblem 

are fully separable. In ATC, we have the flexibility to select the penalty term 𝜋(⋅) to relax the 

consistency constrains in the local objective functions. We have followed the concept of 

augmented Lagrangian and selected a combination of linear and quadratic penalty functions as in 
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(2.7). The augmented term, i.e., the quadratic term, improves the convergence performance 

compared with the ordinary Lagrangian function. In addition, this penalty term acts as a local 

convexifier and enhances the behavior of subproblems. However, this quadratic term of the 

augmented Lagrangian penalty function is not separable. We apply the diagonal quadratic 

approximation (DQA) method to make the augmented Lagrangian terms separable(Ruszczyński 

1995, Li, Lu et al. 2008). Consider the penalty function corresponding to the voltage angle. We 

expand its quadratic term as: 

‖𝛿𝑖𝑗 − 𝛿𝑖𝑗‖2
2
= ‖𝛿𝑖𝑗 ∘ 𝛿𝑖𝑗 + 𝛿𝑖𝑗 ∘ 𝛿𝑖𝑗 − 2(𝛿𝑖𝑗 ∘ 𝛿𝑖𝑗)‖                           (2.9) 

We use the first-order Taylor expansion for multiple variable scalar functions to linearize the 

cross term 𝛿𝑖𝑗 ∘ 𝛿𝑖𝑗 at the point (𝛿𝑖𝑗
𝑘−1, 𝛿𝑖𝑗

𝑘−1) [34, 35]. 

𝛿𝑖𝑗 ∘ 𝛿𝑖𝑗 ≅ 𝛿𝑖𝑗
𝑘−1 ∘ 𝛿𝑖𝑗 + 𝛿𝑖𝑗

𝑘−1 °𝛿𝑖𝑗 − 𝛿𝑖𝑗
𝑘−1 ° 𝛿𝑖𝑗

𝑘−1                          (2.10) 

where 𝛿𝑖𝑗
𝑘−1 and 𝛿𝑖𝑗

𝑘−1 are respectively targets and responses determined in the previous iteration 

𝑘 − 1 and are constant in the current iteration 𝑘. Thus, we can approximate the quadratic penalty 

term (2.9) as: 

‖𝛿𝑖𝑗 − 𝛿𝑖𝑗‖2
2
= ‖𝛿𝑖𝑗

𝑘−1 − 𝛿𝑖𝑗‖2
2
+ ‖𝛿𝑖𝑗 − 𝛿𝑖𝑗

𝑘−1‖
2

2
+ C                          (2.11) 

where C is a constant. The same Taylor expansion is implemented on the quadratic penalty term 

corresponding to voltage magnitudes. Now, the OPF problem of the entire two-level power system 

can reformulate as: 

min
(𝑥𝑖𝑗,𝛿,𝑣,�̃�,�̃�)

∑∑𝑓𝑖𝑗(𝑥𝑖𝑗 , 𝛿(𝑖+1)𝑗, 𝑣(𝑖+1)𝑗)

𝑗

𝑁𝑙

𝑖=1
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+ ∑ ∑(𝜆𝑖𝑗,𝛿
𝑇 (𝛿𝑖𝑗 − 𝛿𝑖𝑗)

𝑗𝑖∈𝑁𝑙,𝑖≠1

+‖𝑤𝑖𝑗,𝛿 ∘ (𝛿𝑖𝑗
𝑘−1 − 𝛿𝑖𝑗)‖2

2
+ ‖𝑤𝑖𝑗,𝛿 ∘ (𝛿𝑖𝑗 − 𝛿𝑖𝑗

𝑘−1)‖
2

2
) 

+ ∑ ∑(𝜆𝑖𝑗,𝑣
𝑇 (𝑣𝑖𝑗 − �̃�𝑖𝑗)

𝑗𝑖∈𝑁𝑙,𝑖≠1

+‖𝑤𝑖𝑗,𝑣 ∘ (𝑣𝑖𝑗
𝑘−1 − �̃�𝑖𝑗)‖2

2
+ ‖𝑤𝑖𝑗,𝑣 ∘ (𝑣𝑖𝑗 − �̃�𝑖𝑗

𝑘−1)‖
2

2
)            (2.12) 

where 𝑁𝑙 denotes the number of levels, which is two. This optimization problem is subject to all-

in-once constraints, i.e., all constraints of TSO and DSOs.  We now decompose (2.12). The local 

OPF subproblem of TSO in iteration 𝑘 of the ATC procedure is 

min
(𝑥11,𝛿,𝑣)

𝑓11(𝑥11, 𝛿22, 𝑣22, 𝛿23, 𝑣23, … , 𝛿2(𝑁𝑑+1), 𝑣2(𝑁𝑑+1))                                           (2.13) 

+ ∑ 𝜆2𝑗,𝛿
𝑇 𝛿2𝑗 + ‖𝑤2𝑗,𝛿 ∘ (𝛿2𝑗 − 𝛿2𝑗

𝑘−1)‖
2

2
+ ∑ 𝜆2𝑗,𝑣

𝑇 𝑣2𝑗 + ‖𝑤2𝑗,𝑣 ∘ (𝑣2𝑗 − �̃�2𝑗
𝑘−1)‖

2

2

𝑁𝑑+1

𝑗=2

𝑁𝑑+1

𝑗=2

 

subject to the local constraints of TSO (e.g., nodal power balance, line flow limits, etc.). The 

penalty term depends on the target variables 𝑣2𝑗∠𝛿2𝑗 while using the response values  �̃�2𝑗
𝑘−1∠𝛿2𝑗

𝑘−1 

determined by DSOs in the previous iteration 𝑘 − 1. TSO solves its local OPF problem and finds 

the target values. Likewise, the local OPF subproblem of each DSO 𝑗 is reformulated as 

min
(𝑥2𝑗,�̃�2𝑗,�̃�2𝑗)

𝑓2𝑗(𝑥2𝑗 , 𝛿2𝑗 , �̃�2𝑗) + 𝜆2𝑗,𝛿
𝑇 (−𝛿2𝑗) + 𝜆2𝑗,𝑣

𝑇 (−�̃�2𝑗) 

+‖𝑤2𝑗,𝛿 ∘ (𝛿2𝑗
𝑘−1 − 𝛿2𝑗)‖2

2
+ ‖𝑤2𝑗 ,𝑣 ∘ (𝑣2𝑗

𝑘−1 − �̃�2𝑗)‖2
2
           (2.14) 

subject to the local constraints of DSO 𝑗. The penalty term depends on the response variables 

�̃�2𝑗∠𝛿2𝑗 while using the target values 𝑣2𝑗
𝑘−1∠𝛿2𝑗

𝑘−1 determined by TSO in the previous iteration 

𝑘 − 1. Formulations (2.13) and (2.14) allow a parallel solution of the TSO’s and DSOs’ OPF 

subproblems since each subproblem needs the target/response values determined by other 
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subproblems in iteration 𝑘 − 1. The DQA coordination strategy is proven to converge and its 

convergence rate is discussed in (Ruszczyński 1995) and (Li, Lu et al. 2008). 

2.4.1.1 Parallel Solution Procedure of DQA 

Figure 5 illustrates the solution procedure of DQA to coordinate the OPF subproblems of TSO 

and DSOs. Although the problem’s structure has a hierarchical two-level form, the presented 

coordination strategy is a parallel procedure that allows a simultaneous solution of TSO’s and 

DSOs’ subproblems. The DQA solution strategy includes two loops, inner loop and outer loop. 

The inner loop updates the target and response values while the penalty multipliers are fixed. This 

improves the linearization. The inner loop stops when the difference between each target (response) 

determined in two consecutive iterations is less than a threshold. Indeed, the inner loop seeks to 

find the best targets and responses for a given set of multipliers. If the targets and responses are 

determined more precisely, the penalty multipliers are updated more accurately in the outer loop. 

If the penalty multipliers are updated more accurately, the algorithm takes fewer iterations to 

update the multipliers. Thus, although the inner loop increases the computational cost 

(corresponding to the inner loop iterations), it might reduce the number of outer loop iterations in 

which the multipliers are updated (i.e., the method of multipliers). The steps are discussed in details 

as follows: 

Step1: Set the initial value of local variables 𝑥 of each subproblem, target values {𝛿, 𝑣}, response 

copiers {𝛿, �̃�}, penalty multipliers 𝜆 and 𝑤, and parameters Г and 𝜏. Set the outer loop iteration 

index 𝑘 = 1 and the inner loop iteration index 𝑙 = 0. 

Step2: Increase the inner loop iteration by one, i.e., 𝑙 = 𝑙 + 1. Solve TSO’s and DSOs’ local OPF 

subproblems in parallel using targets and responses that are determined in the previous inner loop 
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iteration ( 𝑙 − 1), i.e., 𝛿𝑘−1,𝑙−1 and 𝛿𝑘−1,𝑙−1. Note that in the first iteration, the subproblems are 

solved using the initial values. 

Step3: Check the following inner loop convergence criterion 

max(‖𝛿𝑘,𝑙 − 𝛿𝑘,𝑙−1‖, ‖𝛿𝑘,𝑙 − 𝛿𝑘,𝑙−1‖, ‖𝑣𝑘,𝑙 − 𝑣𝑘,𝑙−1‖, ‖�̃�𝑘,𝑙 − �̃�𝑘,𝑙−1‖) ≤ 𝜖𝑖𝑛𝑛𝑒𝑟      (2.15) 

where 𝜖𝑖𝑛𝑛𝑒𝑟  is the stopping threshold of the inner loop. If differences between target (and 

response) values determined in the current and previous iterations are less than the acceptable 

threshold, then we should stop the inner loop, set 𝑋𝑘 = 𝑋𝑘,𝑙 (where 𝑋 = [𝑥, 𝛿, 𝑣, 𝛿, �̃�]), and go to 

Step 4; otherwise: 

𝑋𝑘,𝑙 = 𝑋𝑘,𝑙−1 + Г(𝑋𝑘,𝑙 − 𝑋𝑘,𝑙−1)                                     (2.16) 

where Г is the step size, which determines a value among the current solution and the previous one 

(i.e., if Г ≅ 0, the algorithm uses with the previous solution, and if Г ≅ 1 the algorithm uses with 

the current solution), and then go to Step 2. Note that we update the initial values of all local and 

shared variables. 

Step4: If max {‖𝛿𝑘 − 𝛿𝑘‖, ‖𝑣𝑘 − �̃�𝑘‖} ≤ 𝜖𝑜𝑢𝑡𝑒𝑟  (i.e., if the difference between each target-

response pair is less than the criterion), where 𝜖𝑜𝑢𝑡𝑒𝑟  is the outer loop stopping threshold, 

TSO+DSO OPF has converged and the optimal values are �̅�∗ = �̅�𝑘 , otherwise increase the outer 

loop iteration index by one (i.e.,  𝑘 = 𝑘 + 1) and set the inner loop index to zero (i.e., 𝑙 = 0) and 

update the penalty multipliers as follows: 

𝜆𝛿
𝑘 = 𝜆𝛿

𝑘−1 + 𝑤𝛿
𝑘−1 ∘ (𝛿𝑘−1 − 𝛿𝑘−1)                                  (2.17) 

𝜆𝑣
𝑘 = 𝜆𝑣

𝑘−1 + 𝑤𝑣
𝑘−1 ∘ (𝑣𝑘−1 − �̃�𝑘−1)                                  (2.18) 
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𝑤𝛿
𝑘 = 𝜏𝛿𝑤𝛿

𝑘−1                                                                      (2.19) 

𝑤𝑣
𝑘 = 𝜏𝑣𝑤𝑣

𝑘−1                                                                 (2.20) 

and then go to Step 2 (note that multipliers will be updated for every outer loop iteration). 

Parameter 𝜏  should be equal or large than one, i.e., 𝜏 ≥ 1  (DorMohammadi and Rais-Rohani 

2012). Depending on the optimization problem characteristics, a wide range of 𝜏 can be selected 

to reduce the computational cost and/or enhance the solution accuracy. Based on our experience, 

setting 𝜏 close to one provides an accurate solution while the computational burden is reasonable. 

Г ∈ (0,1) is the step size that affects the linearization accuracy of the second-order penalty 

term. A small Г leads to more accurate results, but it decreases the convergence speed. Parameters 

𝜖𝑜𝑢𝑡𝑒𝑟 and 𝜖𝑖𝑛𝑛𝑒𝑟 should be significantly smaller than Г; otherwise, the obtained solution might 

not be optimal. 

The ATC method is proven to converge to an accumulation point (i.e., the shared variables 

converge to a unique point) that satisfies the first-order optimality conditions of the local 

optimization problems. This accumulation point also satisfies the first-order optimality conditions 

of the original problem (Michelena, Park et al. 2003). In addition, (Ruszczyński 1995) provides 

the convergence proof and convergence rate of the diagonal quadratic approximation method when 

applied to separate subproblems of the augmented Lagrangian approach. It is worth to mention 

that the quadratic penalty terms act as local convexifiers and improves the performance of ATC 

when applied to non-convex problems. 

2.4.2 Truncated Diagonal Quadratic Approximation (TDQA) 

The collaborative ATC-based TSO+DSO optimal power flow converges when the optimal values 
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of Lagrange multipliers are found. As explained in the DQA solution procedure, the multipliers 

are not updated in the inner loop. The inner loop helps to improve linearization.  Each iteration of 

the outer loop, in which the multipliers are updated, might take many inner loops. Thus, the inner 

loop increases the computational effort. Obtaining a high accurate solution of the OPF 

subproblems in the inner loop is not necessary as the inner loop solution might not be the overall 

optimal solution. If we only solve the outer loop and update the Lagrange multipliers after every 

iteration, the multipliers move quickly toward the optimal values. Thus, we omit the inner loop 

and only consider the outer loop and update the Lagrange multipliers after every iteration. This 

single-loop coordination strategy is called truncated diagonal quadratic approximation (TDQA) 

(Ruszczyński 1995, Li, Lu et al. 2008). Note that one can consider the inner loop, but limiting its 

iterations with any extra criterion (in addition to DQA criterion) rather than allowing it to be able 

to go to infinity. This procedure is also TDQA as the inner loop is truncated compared with DQA. 

The solution procedure of the TSO+DSO operation with TDQA is summarized in the following 

pseudocode. It has a similar structure as DQA except that DQA has an inner loop to decrease the 

gap between targets and responses and then update multipliers while TDQA performs this only by 

the outer loop. In the case study section, we show that TDQA provides promising results for the 

collaborative TSO+DSO operation. Although the inner loop enhances the targets and responses 

accuracy over the course of iterations, it is not necessary for convergence. Indeed, updating penalty 

multipliers in the outer loop (which is based on the method of multipliers) guarantees the 

convergence of the ATC-based algorithm to the first optimality conditions. That is, TDQA might 

slightly increase error; however, its convergence is still ensured. 
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Figure 2.5 DQA solution algorithm. 

2.5 Numerical Results 

We implement the DQA and TDQA coordination strategies on a 6-bus and the IEEE 118-bus 

test systems. The numerical simulations show the efficiency and convergence of the ATC-based 

collaborative TSO+DSO algorithm, even for the non-convex OPF problems. All computations are 

carried out using the quadratic programming solver of Matlab on a 2.6GHz personal computer 

with 16GB of RAM.   

 

 



32 

 

 

Solution Algorithm of TDQA 

1: initialize 𝑋 = [𝑥, 𝛿, 𝑣, 𝛿, �̃�], 𝜆, 𝑤, and 𝜏 

2: while max (‖𝜹𝑘 − �̃�𝑘‖, ‖𝒗𝑘 − �̃�𝑘‖) ≤ 𝜖𝑜𝑢𝑡𝑒𝑟 , 𝑘 = 𝑘 + 1 do 

3:   Solve (3.13) and (3.14) in a parallel manner and determine 𝑋𝑘 

4:   Update 𝑋:  𝑋𝑘 = 𝑋𝑘−1 + Г(𝑋𝑘 − 𝑋𝑘−1) 

5:   Update multiplier 𝜆𝑘 and 𝑤𝑘 using (2.17)-(2.20) 

6: end while 
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Figure 2.6 Six-bus test system. 

2.5.1 6-Bus Test System 

The system topology is shown in Fig. 2.6. The transmission system includes six buses, seven 

transmission lines, and three generators. Two active distribution grids are connected to the 

transmission system. Active distribution grid one consists of nine buses, five loads, and two DGs. 

Active distribution grid two includes seven buses, four loads, and two DGs. The total load is 

256MW. The resistance of each distribution line is 40% of the line’s reactance.  The reactive power 
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limit of each generating unit is 60% of its active power limit. The reactive power consumption of 

each load is assumed to be 30% of its active power demand. The rest of the information is given 

in (Kargarian and Fu 2014). We study and analyze the following four cases: 

Case 1: Centralized OPF implementation considering a single operator for transmission and 

distribution networks 

Case 2: The proposed decentralized decision-making with respect to autonomy of TSO and DSOs 

Case 3: Sensitivity of the proposed collaborative TSO+DSO OPF to variation of input parameters 

Cases 4: Comparison between TDQA, APP, ADMM, and ALAD 

Case 1: We ignore autonomy and information privacy of TSO and DSOs and consider that the 

transmission and distribution networks are operated by the same operator using the centralized 

OPF method. Although this is not a realistic case since TSO and DSOs are autonomous, the 

centralized method provides the reference results that can be used to evaluate the performance of 

decentralized decision-making. Since the ratio of lines reactance to resistance is large in the 

transmission system, DC OPF is a reasonable approximation of AC OPF. Thus, DC OPF is used 

for TSO, whereas AC OPF is used for DSOs1. To model the reactive mismatch at border buses 

between TSO and DSOs, we consider voltage magnitude at transmission terminals equal to one, 

while the voltage magnitude at the distribution terminals can vary between 0.95 and 1.05 (note 

 

 

1 A user may deploy a linearized model of AC OPF. Since OPF is solved continually, in each time interval, the 

user can deploy results of the previous interval (i.e., a hot start) to linearize OPF around the operating point. Also, the 

user may convexify AC OPF using techniques such as semidefinite programing or second order cone programing 

Lavaei, J. and S. H. Low (2012). "Zero duality gap in optimal power flow problem." IEEE Transactions on Power 

Systems 27(1): 92-107, Kocuk, B., S. S. Dey and X. A. Sun (2016). "Strong SOCP relaxations for the optimal power 

flow problem." Operations Research 64(6): 1177-1196. 
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that since the voltage at the transmission terminal is close to one, the reactive mismatch in the tie-

line is not significant compare with the case that AC OPF is considered for TSO). The total 

operating cost of the system is $3,396. The operating costs of TSO, DSO1, and DSO2 are 

respectively $2,375, $351.7, and $669.3. The voltage phasors of buses that connect TSO to DSO1 

are 1∠ − 0.0293  and 0.998∠ − 0.0385, and the voltage phasors of buses that connect TSO to 

DSO2 are 1∠ − 0.0459and  1.0018∠ − 0.0797. 

Case 2: In this case, autonomy and information privacy of the three systems (i.e., TSO, DSO1, 

and DSO2) are taken into account, and each system is operated by an independent operator. We 

have considered the same operation horizon for TSO and DSOs, e.g., 5-minute intervals. The OPF 

problems are run for one snapshot, and it is assumed that the entities start solving their subproblems 

simultaneously. Note that even if the operation intervals of TSO and DSOs are not the same, to 

allow a collaborative operation, we can consider the operation horizon equal to the longest interval. 

TSO is the parent, and its children are DSOs 1 and 2. A tie-line connects the border bus b3 of the 

transmission system to the border bus b7 of ADG1, and another tie-line links the border bus b4 of 

the transmission system to the border bus b16 of ADG2. Thus, voltage of buses b3 and b7 are 

shared variables between TSO and DSO1, and voltage of buses b4 and b16 are shared variables 

between TSO and DSO2. TSO includes four target variables, and each DSO has two response 

variables. We analyze cold start and hot start conditions. 

Cold start: The initial values for targets/responses are set to zero, and the initial values of 

penalty multipliers/parameters are 𝜆0=1000, 𝑤𝛿
0=1500, 𝑤𝑣7,𝐴𝐷𝐺1

0 = 30, 𝑤𝑣16,𝐴𝐷𝐺2
0 = 10,  Г=0. 9, 

and 𝜏 = 1. For DQA, the inner and outer loops’ convergence thresholds are 𝜖𝑖𝑛𝑛𝑒𝑟 = 0.004 and 

𝜖𝑜𝑢𝑡𝑒𝑟 = 1.4 × 10
−4, respectively. Note that TDQA has only the outer loop with the convergence 

threshold of 𝜖𝑜𝑢𝑡𝑒𝑟 = 1.4 × 10
−4. The DQA coordination strategy converges after 33 outer loop 
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iterations, and the total number of executed inner loops is 40, whereas TDQA converges after 34 

iterations. Figure 2.7(a) shows the updating process of target-response pair corresponding to the 

voltage angles of bus 3 of TSO and bus 1 of DSO1 over the course of iterations (note that for DQA, 

we show the updating process over the course of overall iterations, i.e., inner and outer loops). The 

difference between each pair of target-response becomes smaller, and it is less than the 

convergence threshold in iteration 40 (34) of DQA (TDQA). Although in several iterations (e.g., 

iteration 18 in TDQA) a target and its corresponding response value might differ less than the 

stopping threshold, the algorithms stop when the differences between every pair of target-response 

become less than the stopping threshold. Although TDQA takes more (outer loop) iterations than 

DQA, it does not need the inner loop. Overall, DQA needs 40 iterations (sum of inner and outer 

loops iterations), six iterations more than TDQA. Although DQA needs more iterations than 

TDQA, it finds the solution more precisely, especially when lower 𝜖  is chosen. Figure 2.7(b) 

shows the average difference between the target-response values over the course of iterations. Note 

that for DQA, the updating process is shown over the course of overall iterations. The error decays 

faster in TDQA than DQA because while DQA tries to enhance the solution by repeating the inner 

loop with the fixed multipliers, TDQA seeks to improve the solution by updating the multipliers. 

This reduces the overall number of function evaluations and the computational time of TDQA 

(DQA and TDQA take respectively 3.97 and 3.62 seconds to converge); however, it might slightly 

increase the overall error. Table 2.1 shows the generation dispatch for the three systems. Since the 

stopping threshold is not zero, the dispatch results obtained from the centralized and decentralized 

algorithms are slightly different.  However, as shown in Table 2.2, the operating costs determined 

by the decentralized and decentralized algorithms are similar. The operating costs of TSO, DSO1, 

and DSO2 determined by DQA are $2,379.8, $ 350.8, and $669.3, and they are $2,378.3, $351.7, 
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and $ 669.3 when using TDQA. The total power system operating costs determined by DQA and 

TDQA are $3,399.9 and $3,399.3 that are almost the same as the cost obtained by the centralized 

OPF (i.e., $3,396). Note that the sensitivity of the solver and solution to changes in power 

generated by TSO’s and DSOs’ generators might be different since the cost functions and 

geographical locations of the units are different. Thus, although power dispatch of DSOs and TSO 

units are slightly different from the centralized results, both algorithms yield almost the same 

operating cost. 

To evaluate the performance of the proposed ATC-based TSO+DSO OPF in more detail, we 

formulate two convergence indices. The first index is the Euclidean norm of mismatch between 

the power flow in tie-lines connecting transmission system to active distribution grids (𝑃𝑙
𝐴𝑇𝐶) and 

the optimal value obtained by the centralized OPF (𝑃𝑙
∗): 

𝑃𝑚𝑖𝑠 = ‖
𝑃𝑙
∗ − 𝑃𝑙

𝐴𝑇𝐶  

𝑃𝑙
∗ ‖                                                    (2.21) 

The second index is the relative distance of the total cost determined by ATC (𝑓𝐴𝑇𝐶) from the 

optimal value determined by the centralized OPF (𝑓∗): 

𝑟𝑒𝑙 =
|𝑓∗ − 𝑓𝐴𝑇𝐶|

𝑓∗
                                                          (2.22) 

The values of the two convergence measures are zero at the optimal point. Hence, the closer 

these convergence measures get to zero, the better solution is obtained. Figure 2.8 shows 𝑃𝑚𝑖𝑠 and 

𝑟𝑒𝑙 values over the course of iterations. The values of the convergence measures decrease when 

more iterations are carried out. They are small enough upon the algorithm convergence. 
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Table 2.1 Power Output of Generating Units 

Algorithm 
TSO DSO1 DSO2 

G1 G2 G3 DG1 DG2 DG1 DG2 

Centralize 129.41 34.03 25 15 18 25 13.17 

Dec. (DQA) 126.65 37.07 25 14.91 18 25 13.17 

Dec. (TDQA) 127.93 35.72 25 15 18 25 13.17 

 

Table 2.2 Operating Cost Obtained by Different Algorithms 

Algorithm TSO DSO1 DSO2 Total cost 

Centralize $2,375 $351.7 $669.3 $3,396 

Dec. (DQA) $2,379.8 $350.8 $669.3 $3,399.9 

Dec. (TDQA) $2,378.3 $351.7 $ 669.3 $3,399.3 

 

Hot start: In practice, we usually have good initial values for the variables and penalty 

multipliers. For example, when we solve the OPF problem for interval 𝜔, we have the optimal 

results of interval 𝜔 − 1. We know that, in most cases, the OPF input parameters, e.g., power 

demand, vary slightly from interval 𝜔 − 1 to interval 𝜔. Thus, the solution of interval 𝜔 − 1 can 

be utilized to initialize the problem in interval 𝜔. This strategy is called a hot start. We can solve 

the problem faster and more precise by selecting appropriate initial values. We assume that the 

load changes 5% between intervals 𝜔 − 1 and 𝜔 and use the solution obtained in interval 𝜔 − 1 

to initialized the variables and penalty multipliers in interval 𝜔. Figure 2.8 shows the convergence 

measure for the hot start and cold start cases. 
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(a) 

 

(b) 

Figure 2.7 Target and response values corresponding to b3 of TSO and b7 of DSO1 and b) the 

average difference between targets and responses. 

 

While DQA and TDQA take 40 and 34 iterations using the cold start, they take 16 and 17 

iterations using the hot start, respectively. The 𝑟𝑒𝑙 index of cold start is 9 × 10−4, whereas it is 

1.06 × 10−4 using the hot start. Note that since we have good initial conditions (i.e., good guesses 

for target/response and penalty multipliers), DQA and TDQA behaviors are similar. 
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Figure 2.8 Convergence property of DQA- and TDQA-based collaborative OPF. 

 

A Full AC OPF: We have tested the proposed algorithm on a full AC OPF (i.e., AC OPF for 

TSO and AC OPF for DSOs). The initial values for targets/responses and multipliers are the same 

as the cold start strategy. We stop the algorithm after 60 iterations. The 𝑟𝑒𝑙 indices obtained from 

both approaches are shown in Fig. 2.9. The decentralized algorithm provides acceptable 𝑟𝑒𝑙 

indices. Note that the combination of DC OPF and AC OPF provides good results in the first few 

iterations; however, the 𝑟𝑒𝑙 index gradually goes down for the case of the full AC OPF (a user 

may run the algorithm more than 60 iterations to get a smaller 𝑟𝑒𝑙  index). The DC OPF 

approximation for TSO slightly increases the error (because of the linearization of AC OPF) but 

enhances the decentralized algorithm performance. The user may prefer to use such an 

approximation to get faster results from the decentralized algorithm. Note that using DC OPF for 

TSO and AC OPF for DSOs is aligned with the power industry. 
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Figure 2.9 The 𝑟𝑒𝑙 index for DC OPF+AC OPF and a full AC OPF. 

 

Case 3: To evaluate the convergence behavior of the proposed collaborative TSO+DSO OPF 

with respect to variations of DQA/TDQA parameters, we perform multiple sensitivity analyses. 

This provides a user with insights on how to initialize the algorithms’ parameters. We initialize 

𝜆0=1000, 𝑤𝛿
0 =1500, 𝑤𝑣7,𝐴𝐷𝐺1

0 = 30 , 𝑤𝑣16,𝐴𝐷𝐺2
0 = 10  and Г=0.9. We select various stopping 

thresholds as 5 × 10−4 , 1 × 10−4 , 5 × 10−5 , 1 × 10−5  and 5 × 10−6  and demonstrate the 

relative error and number of iterations in Fig. 2.10(a). By decreasing the stopping criteria, the 

relative error decreases  generally, but the number of iterations increases. One can select a small 

enough stopping threshold to make a trade-off between the stepped and error. When the stopping 

threshold is large, DQA’s error is slightly smaller than that for TDQA. However, for the small 

thresholds, the relative errors of TDQA and DQA are almost the same. Overall, comparing the 

error and number of iterations shows that TDQA has better performance than DQA. 

We set 𝜖𝑜𝑢𝑡𝑒𝑟 = 1.4 × 10
−4 , 𝜆0 =1000, 𝑤𝛿

0 =1500, 𝑤𝑣7,𝐴𝐷𝐺1
0 = 30 , 𝑤𝑣16,𝐴𝐷𝐺2

0 = 10 , and 

evaluate the convergence behaviors with respect to the step size Г. Parameter Г reflects the level 

of dependency of target-response variables in each iteration to their values obtained in the previous 

iteration. We vary Г in the range of {0.6, 0.7 … , 0.8, 0.99}. Figure 2.10(b) shows that, in general, 



41 

 

increasing Г decreases the number of iterations and computational time. For DQA and TDQA, the 

least number of iterations is obtained by setting Г= 0.9. DQA has more stability to variation of Г. 

This is because of the existence of the inner loop in which the algorithm seeks to reduce the error 

between the target and response values without updating the penalty multipliers. 

 

(a) 

 

(b) 

Figure 2.10. a) Iteration and rel index vs. stopping criterion, and b) iterations vs. Г. 

 

Setting different initial values for the penalty multipliers changes the speed of the algorithms 

and accuracy of the obtained results. We select different initial values for multipliers 𝜆 and 𝑤 and 

the step size Г and calculate the 𝑟𝑒𝑙 index. Figure 2.11 shows a contour plot of the 𝑟𝑒𝑙 index versus 
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variations of initial values of 𝜆, 𝑤, and Г. If 𝜆0=1000 and 𝑤𝛿
0=1000, setting the step size Г to 0.6 

provides the least error (𝑟𝑒𝑙 = 2.48 × 10−4 ) after and 51 iterations. If the user selects the 

parameter badly (e.g., 𝜆0=2500, 𝑤𝛿
0=2500), Г equal to 0.5 yields the relative error of 0.0054 within 

75iterations. Note that although we get the least 𝑟𝑒𝑙 with Γ = 0.6, 𝜆0=1000, and 𝑤𝛿
0=1000, it takes 

a relatively long time to converge. 

Case 4: We consider a full AC OPF and implement the proposed algorithm and three other 

methods, namely ADMM(Boyd, Parikh et al. 2011), APP(Kim and Baldick 1997), and ALAD 

(that is based on ATC)(Tosserams, Etman et al. 2006). We compare the TDQA-based TSO+DSO 

optimal power flow to OPF solved by the other three methods (Kargarian, Mohammadi et al. 2017). 

Although all these four methods are based on the augmented Lagrangian relaxation, TDQA and 

APP solve the problem in a fully parallel manner while ADMM and ALAD are sequential solution 

algorithms. This means that in iteration 𝑘  of ADMM and ALAD, DSOs cannot solve their 

subproblems without having the TSO’s shared variable values in iteration 𝑘, whereas in TDQA 

and APP, TSO and DSOs solve their subproblems in parallel as they need their neighbors’ shared 

variable values determined in iteration 𝑘 − 1. Each iteration of TDQA and APP takes around 0.1 

seconds while it is 0.16 seconds for ADMM and ALAD. That is, each iteration of TDQA (and 

APP) is generally faster than that in ALAD and ADMM. Figure 2.12 shows the 𝑟𝑒𝑙 index after 

100 iterations. All four methods converge to acceptable 𝑟𝑒𝑙 indices. APP takes many iterations for 

the 𝑟𝑒𝑙 index to go below an acceptable threshold, whereas the other three methods reach an 

acceptable threshold after the first few iterations. Since ALAD and ADMM are sequential 

algorithms and TDQA is a parallel one, the solution time of TDQA, in each iteration, is faster than 

that for ALAD and ADMM. In the simulations, we have tried to provide reasonable and fair 

conditions to compare the four algorithms. Although the TDQA algorithm shows a good 
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performance for the considered TSO+DSO OPF In this chapter, we cannot make a solid conclusion 

that which algorithm has a better overall performance. The performance of the algorithms depends 

on the type of the problem and initial values of variables and penalty multipliers/factors (refer to 

[3] for more details). 

 

Figure 2.11. Convergence measure 𝑟𝑒𝑙 versus initial values of multipliers and Г. 

 

Figure 2.12. Comparison between TDQA, APP, ADMM, and ALAD. 
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It should be noted that the considered OPF problem in this chapter has two levels. For problems 

with several levels of hierarchy, for instance, if TSO (level 1), DSOs (level 2), and microgrids 

(level 3) want to solve a collaborative OPF, the parallel solution algorithm, such as TDQA, is 

expected to be faster than the sequential one. 

2.5.2 IEEE 118-bus system 

Cold start: This test system comprises 31 autonomous systems: one TSO and 30 DSOs. The 

transmission system includes 118 buses, 186 lines, and 54 generators. Each active distribution grid 

consists of two generating units. We use a cold start, i.e., the initial values of the local variables of 

TSO and DSOs as well as targets/responses (i.e., shared variables) are set to zero. The initial values 

for penalty multipliers are selected as 𝜆0 =100, 𝑤0=100, Г=0.6, and the stopping thresholds are 

𝜖𝑖𝑛𝑛𝑒𝑟 = 0.2 and 𝜖𝑜𝑢𝑡𝑒𝑟 = 0.002. As shown in Table 2.3, the collaborative ATC-based TSO+DSO 

operation with the DQA coordination strategy converges after 66 outer loop and 122 inner loop 

iterations (around 2 seconds). If we use the TDQA coordination strategy, the algorithm takes 99 

iterations (only outer loop) to converge after less than 2 seconds). The overall operating cost of 

the system determined by DQA and DTQA is $5,115.6 and $5,120.6, respectively. To evaluate the 

accuracy of results, we ignore autonomy and information privacy of TSO and DSOs and solve the 

centralized OPF. The overall operating cost is $5,098.6. Although the error of DQA and TDQA is 

negligible, DQA is slightly more accurate. 

Hot start: Since in practice, we can use a hot start scenario, we are potentially capable of 

speeding up the convergence process. We choose appropriate initial values and run a hot start 

scenario. The results show that TDQA and DQA respectively take 11 and nine iterations to 

converge, which is much faster (almost ten times) than the cold start scenario. Figure 2.13 shows 
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the 𝑟𝑒𝑙 index over the course of iterations. 

 

Figure 2.13. 𝑟𝑒𝑙 index for the IEEE 118-bus system (cold and hot start scenarios). 

 

Table 2.3. TSO+DSO OPF for the IEEE 118-bus 

Algorithm Total cost Iteration 

Centralized TSO+DSO OPF $5,098.6 - 

Decentralized TSO+DSO OPF cold start 
DQA $5,116.5 92 

TDQA $5,120.6 98 

Decentralized TSO+DSO OPF hot start 
DQA $5,117.4 9 

TDQA $5,116.8 11 

 

2.6 Conclusion 

Power systems are being transformed into distributed energy infrastructures in which 

electricity is generated in transmission and distribution levels. This chapter presents a 

decentralized OPF algorithm for the collaborative management of transmission and distribution 

systems. The proposed algorithm is based on analytical target cascading (ATC) for multilevel 

hierarchical optimization. The OPF problem associated with TSO is formulated in the upper level 
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of the hierarchy while OPFs of DSOs are assigned to the lower level. As TSO and DSOs are 

autonomous systems, information privacy plays a critical role in joint management decisions. In 

the proposed framework, TSO and DSOs exchange only limited information, namely target and 

response (shared) variables. These entities do not need to reveal their commercially sensitive 

information to other parties. Two coordination strategies, namely DQA and TDQA, are presented 

to coordinate TSO and DSOs in a decentralized manner. DQA and TDQA allow parallel execution 

of local OPF problems (associated with TSO and DSOs). 

The numerical tests on a 6-bus and the IEEE 118-bus systems show the accuracy and 

convergence performance of our proposed ATC-based collaborative TSO+DSO OPF method. 

Although both DQA and TDQA coordination strategies provide promising results, the 

collaborative TSO+DSO operation with TDQA usually determines optimal results with almost the 

same accuracy as DQA while usually taking fewer iterations. Using a hot start scenario to initialize 

target/response pairs and multipliers enhances the solution speed of the proposed TSO+DSO 

operation algorithm, especially for large systems. 
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3 CHAPTER 3. ACCELERATED AND ROBUST ANALYTICAL TARGET 

CASCADING FOR DISTRIBUTED OPTIMAL POWER FLOW 

3.1 Introduction  

Distributed optimization algorithms are sensitive to the choice of initial values and the level of 

importance of each term in objective functions. If initial values, in particular, penalty parameters, 

are not set appropriately and the level of importance of objective terms are not balanced, the 

algorithm may converge slowly, oscillate around the optimal point, or diverge. This chapter 

presents an accelerated, robust analytical target cascading (AR-ATC) to solve optimal power flow 

(OPF) distributedly. A function is designed to determine a balancing coefficient with respect to 

initial values. Incorporating this coefficient in ATC makes a tradeoff between the convergence 

speed and solution accuracy by adjusting penalty terms with respect to generation cost functions. 

If multipliers are initialized to large values, the proposed function creates a balancing coefficient 

to avoid premature convergence or divergence. If multipliers are initialized to small values, the 

proposed function adjusts them to enhance the convergence speed. We name the proposed 

algorithm an accelerated, robust ATC since it enhances the solution speed and makes it more robust 

against initialization. Mathematical justifications and simulation studies are performed to analyze 

the effectiveness of AR-ATC. Potential applications of the proposed method to other distributed 

approaches such as ATC with exponential penalty functions and auxiliary problem principle (APP) 

is also studied numerically. 

Nomenclature 

Indices, Sets, Parameters, and Functions: 

𝑖, 𝑗    Index for subproblem 𝑗 at level 𝑖. 

𝑘    Index for iterations. 

𝑢    Index for generating units. 
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Ω𝑖𝑗    Set of generators in areas 𝑗 at level 𝑖. 

𝑎𝑢, 𝑏𝑢, 𝑑𝑢 Cost function coefficients of generating unit 𝑢. 

𝐷(𝜆)     Dual function. 

𝛻𝐷(𝜆)      Gradient of dual function. 

𝑓𝑖𝑗     Generation cost function of subproblem 𝑗 at level 𝑖. 

𝑓1, 𝑓2     Objective function of subproblems one and two. 

𝑓1
∗, 𝑓2

∗      Conjugate of 𝑓1 and 𝑓2. 

𝛻𝑓       Gradient of 𝑓. 

𝑔𝑖𝑗      Inequality constraints of subproblem 𝑗 at level 𝑖. 

ℎ𝑖𝑗       Equality constraints of subproblem 𝑗 at level 𝑖. 

𝜋      Penalty function. 

𝑆𝑃𝑖𝑗      Subproblem 𝑗 located at level 𝑖. 

𝛼      Balancing coefficient. 

𝛽      Constant coefficient. 

𝜆      Lagrange multipliers of ALAD.  

𝜆𝐴𝑅       Lagrange multiplier of AR-ALAD. 

𝐿      Lipschitz constant. 

𝜔      Penalty multipliers.  

𝑧⋆       Optimal value of z. 

 

Variables: 

𝑝𝑢      Power generated by unit 𝑢. 

𝑟𝑖𝑗      Response variables of subproblem 𝑗 at level 𝑖. 

𝑡𝑖𝑗      Target variables of subproblem 𝑗 at level 𝑖. 

𝑥      Set of all variables of the centralized problem. 

𝑥𝑖𝑗      Set of variables of subproblem 𝑗 at level 𝑖. 
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3.2 Contribution 

The contributions of this chapter are summarized as follows: 

• An accelerated, robust analytical target cascading is proposed to make ATC more robust 

to the tuning parameter.   

• A new function is designed to make a tradeoff between the convergence speed and 

solution accuracy by adjusting penalty terms with respect to generation cost functions. 

3.3 OPF in the Context of ATC 

Assume that a power system is divided into several areas. Depending on interconnections 

between the areas, each area is assigned to a level to create a multilevel hierarchical structure. 

These levels refer to computational levels that determine the sequence of solving OPF subproblems 

(SPs) corresponding to the areas (Tosserams, Etman et al. 2006, Kargarian, Mohammadi et al. 

2018). Although the application of ATC was successfully demonstrated to the OPF problem and 

many engineering problems (Tosserams, Etman et al. 2006, DorMohammadi and Rais-Rohani 

2013, Kargarian, Mohammadi et al. 2018), research on improving its convergence performance is 

ongoing. 

Consider the following compact centralized OPF problem. 

min𝑓(𝑥) =∑𝑎𝑢𝑝𝑢
2 + 𝑏𝑢𝑝𝑢 + 𝑑𝑢

∀𝑢

                                               (3.1) 

  𝑠. 𝑡    ℎ(𝑥) = 0                                                      

𝑔(𝑥) ≤ 0                                    

ℎ(𝑥) is the nodal power balance equations for the whole system, and 𝑔(𝑥) is limits of generators, 

line flows, and bus voltages. Without loss of generality and for the sake of explanation, we 
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decompose (3.1) into two OPF subproblems 𝑆𝑃11 and 𝑆𝑃22. 

𝑆𝑃11: 

min ∑ 𝑎𝑢𝑝𝑢
2 + 𝑏𝑢𝑝𝑢 + 𝑑𝑢

∀𝑢∈Ω11⏟                
𝑓11

+ 𝜋(𝑡22 − 𝑟22)                             (3.2) 

                         𝑠. 𝑡.      ℎ11(𝑥11, 𝑡22) = 0                                                       

        𝑔11(𝑥11, 𝑡22) ≤ 0                  

𝑆𝑃22: 

min ∑ 𝑎𝑢𝑝𝑢
2 + 𝑏𝑢𝑝𝑢 + 𝑑𝑢

∀𝑢∈Ω22⏟                
𝑓22

+ 𝜋(𝑡22 − 𝑟22)                           (3.3) 

                           𝑠. 𝑡.       ℎ22(𝑥22, 𝑟22) = 0                                                   

𝑔22(𝑥22, 𝑟22) ≤ 0 

𝑡22 are a copy of shared variables between 𝑆𝑃11 and 𝑆𝑃22 that are variables in 𝑆𝑃11 and known in 

𝑆𝑃22. 𝑟22 is another copy of shared variables that are variables in 𝑆𝑃22 and known in 𝑆𝑃11. For DC 

OPF, for instance, shared variables are voltage angles of tie-lines terminals connecting areas one 

and two. The mismatch between shared variables is forced by consistency constraints, 𝑐 = 𝑡22 −

𝑟22, that are relaxed in local objective functions by augmented Lagrangian penalty term 𝜋(𝑡22 −

𝑟22). In the ATC framework, different options exist for modeling 𝜋, and several coordination 

strategies can be applied to coordinate subproblems. We select quadratic penalty terms and ALAD 

coordination strategy (Tosserams, Etman et al. 2006, Boyd, Parikh et al. 2011). 

𝜋(𝑡 − 𝑟) = 𝜆†(𝑡 − 𝑟) + ‖𝜔 ∘ (𝑡 − 𝑟)‖2
2                               (3.4) 

The symbol † denotes transpose and ∘ is the Hadamard product. ALAD is a message-passing 

type synchronous distributed approach (Tosserams, Etman et al. 2006). It is a one-loop sequential 
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coordination strategy that solves upper-level subproblems, updates 𝑡, propagates 𝑡 toward lower-

level subproblems, solves lower level-subproblem given 𝑡 values, and updates 𝑟. If |𝑡 − 𝑟| < 𝜖, 

ALAD stops, otherwise, multipliers are updated according to the concept of the method of 

multipliers (Bertsekas 1999, Tosserams, Etman et al. 2006).  

𝜆𝑘+1 = 𝜆𝑘 + 2(𝜔𝑘)2(𝑡𝑘 − 𝑟𝑘)           ,         𝜔𝑘+1 = 𝛽𝜔𝑘                    (3.5) 

Penalty multiplier 𝜔 is used as the step size to update 𝜆, and 𝛽 is a constant term in the range 

of 𝛽 ≥ 1 (Bertsekas 1999, Tosserams, Etman et al. 2006). Selecting a large 𝛽 might endanger the 

convergence. We recommend selecting 𝛽  equal or close to one. We refer to (Kargarian, 

Mohammadi et al. 2018) for more details regarding formulating OPF in the context of ATC. 

3.4 Accelerated and Robust ALAD 

3.4.1 Intuitions for a Balancing Coefficient  

If 𝑡 and 𝑟 converge together very fast, the ALAD feasibility criteria are satisfied after a few 

iterations; however, it does not ensure the optimality of results. Incorporating a proper coefficient 

in the objective functions of subproblems to make a balance between penalty terms 𝜋 

(corresponding to feasibility) and generation cost functions 𝑓 (corresponding to optimality) can 

enhance the performance of ALAD. Intuitively, this is similar to a scaled form of gradient descent 

in which a coefficient is used to modify the step size and enhance the condition number (Bertsekas 

1999).  

Remark 1: The closer the condition number is to one, the faster gradient-based algorithms will 

be (Bertsekas 1999). 

Remark 2: For a two-dimensional problem, for instance, the closer the condition number is to 
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one, the closer the contour plot is to a circle. If the condition number is large, the contour plot will 

be elliptical, with one dimension being much more dominant (i.e., elongated) than another one. 

Remark 3: In augmented Lagrangian, setting penalty multipliers to large values increases the 

problem condition number and may cause ill-condition.  

3.4.2 ALAD with Balancing Coefficient 𝜶  

Consider two OPF subproblems that are linked via a shared variable2. 𝑓1 is the strictly convex 

cost function of subproblem one in level one, and 𝑓2  is the strictly convex cost function of 

subproblem two in level two (we drop the level index for brevity). Variable 𝑡 denotes the target of 

subproblem one, and 𝑟  is the response of subproblem two. Let us consider only consistency 

constraint 𝑐 = 𝑡 − 𝑟 = 0. The centralized problem can be formulated by minimizing 𝑓 = 𝑓1 + 𝑓2 

subject to 𝑐. We rewrite this problem as follows by adding an arbitrary coefficient 𝛼: 

min  (
1

𝛼
) 𝑓1 (𝑡) + (

1

𝛼
) 𝑓2(𝑟)                                                     (3.6) 

𝑠. 𝑡.      𝑡 − 𝑟 = 0                       

In the rest of this section, we investigate the impact of 𝛼 on ALAD’s behavior, Lipschitz 

continuity, and convergence rate. We also define some properties for an 𝛼 that can enhance the 

convergence performance of ALAD. We name the coordination algorithm with the coefficient 𝛼 

AR-ALAD to differentiate it with the classical ALAD. AR-ALAD and ALAD are the same if 𝛼 =

1. The augmented Lagrangian of (3.6) is as follows: 

 

 

2 Although the discussions in Section 3.4 are based on a convex form of OPF, we have shown in Sections 3.5 and 

3.6 that the proposed method can enhance the convergence performance of nonconvex nonlinear mathematical 

problems and AC OPF. 
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𝐿(𝑡, 𝑟, 𝜆𝐴𝑅) = min
𝑡,𝑟
(
1

𝛼
) 𝑓1 (𝑡) + (

1

𝛼
) 𝑓2(𝑟) + 𝜆𝐴𝑅(𝑡 − 𝑟) + 𝜔

2(𝑡 − 𝑟)2                        (3.7)  

where 𝑡 and 𝑟 are variables, and 𝜆𝐴𝑅 and 𝜔 are constant. The coordination strategy is based on the 

method of multipliers (Bertsekas 1999), and we have: 

𝑡+ = 𝑡𝑘+1 = argmin
𝑡

(
1

𝛼
) 𝑓1(𝑡) + 𝜆𝐴𝑅(𝑡 − 𝑟

𝑘) + 𝜔2(𝑡 − 𝑟𝑘)2⏟                
𝜋(𝑡−𝑟)

                         (3.8) 

𝑟+ = 𝑟𝑘+1 = argmin
𝑟

(
1

𝛼
) 𝑓2(𝑟) + 𝜆𝐴𝑅(𝑡

𝑘+1 − 𝑟) + 𝜔2(𝑡 𝑘+1 − 𝑟)2⏟                    
𝜋(𝑡−𝑟)

               (3.9) 

𝜆𝐴𝑅
𝑘+1 = 𝜆𝐴𝑅

𝑘 + 2𝜔2(𝑡𝑘+1 − 𝑟𝑘+1)                                                 (3.10) 

where 𝑡𝑘 and 𝑟𝑘 are target and response values achieved at iteration 𝑘. Based on Karush-Kahn-

Tucker (KKT) conditions, we calculate 𝑡𝑘+1 and 𝑟𝑘+1 as follows: 

(
1

𝛼
) 𝜕𝑓1(𝑡

𝑘+1) + 𝜆𝐴𝑅
𝑘 + 2𝜔2(𝑡𝑘+1 − 𝑟𝑘) = 0 → 𝜕𝑓1(𝑡

𝑘+1) = −𝛼𝜆𝐴𝑅
1/2
         (3.11) 

(
1

𝛼
) 𝜕𝑓2(𝑟

𝑘+1) − 𝜆𝐴𝑅
𝑘 − 2𝜔2(𝑡𝑘+1 − 𝑟𝑘+1) = 0 → 𝜕𝑓2(𝑟

𝑘+1) = 𝛼𝜆𝐴𝑅
𝑘+1       (3.12) 

where we define 𝜆𝐴𝑅
1/2

= 𝜆𝐴𝑅
𝑘 + 2𝜔2(𝑡𝑘+1 − 𝑟𝑘). At the optimal point, we have: 

𝜕𝑓1(𝑡
⋆) = −𝛼𝜆𝐴𝑅

⋆                                         (3.13) 

        𝜕𝑓2(𝑟
⋆) = 𝛼𝜆𝐴𝑅

⋆                                                                 (3.14) 

We conclude that 𝜆⋆ = 𝛼𝜆𝐴𝑅
⋆  where 𝜆⋆ is the optimal value of ALAD Lagrange multiplier. By 

implementing the conjugate duality on (3.13) and (3.14), we obtain: 

𝑡+ = −∇𝑓1
∗(𝛼𝜆𝐴𝑅

1/2
)                                                   (3.15) 

   𝑟+ = ∇𝑓2
∗(𝛼𝜆AR

+ )                                                             (3.16) 

To analyze how the algorithm moves toward optimality, we derive the conjugate dual of (3.7) as: 
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𝐷(𝜆) = −(
1

𝛼
) 𝑓2

∗(𝛼𝜆𝐴𝑅) − (
1

𝛼
) 𝑓1

∗(𝛼𝜆𝐴𝑅)                             (3.17) 

To obtain 𝜆𝐴𝑅
⋆ , we use gradient ascent and update 𝜆𝐴𝑅 iteratively as follows: 

𝜆𝐴𝑅
+ = 𝜆𝐴𝑅 + 𝜔

2𝛻𝐷(𝜆+)                               (3.18) 

Taking gradient of (3.17) and plugging (3.15) and (3.16) into that yields: 

𝛻𝐷(𝜆+) = −𝛻𝑓2
∗(𝛼𝜆𝐴𝑅

+ ) − 𝛻𝑓1
∗(𝛼𝜆𝐴𝑅

+ ) ≅ 𝑡+ − 𝑟+             (3.19) 

We can now rewrite (3.18) as: 

𝜆𝐴𝑅
+ = 𝜆𝐴𝑅 + 𝜔

2𝛻𝐷(𝜆+) =
𝜆

𝛼
+ 𝜔2(𝑡+ − 𝑟+)                         (3.20) 

We can maximize 𝐷(𝜆) or minimize −𝐷(𝜆). For ease of notation, we use �̂�(𝜆) = −𝐷(𝜆). 

�̂�(𝜆) is a strictly convex function. Based on gradient descent, we minimize �̂�(𝜆) as: 

𝛻�̂�(𝜆+) = 𝑟+ − 𝑡+                                                   (3.21) 

Assume that ∇�̂�(𝜆) is Lipschitz continuous and ∇�̂�(𝜆𝐴𝑅) ≤ 𝐿𝐴𝑅.  Incorporating 𝛼 results in 

𝐿𝐴𝑅 = 𝜙(𝛼) 𝐿  where 𝜙(𝛼)  is a monotonically increasing function. Based on convexity and 

Lipschitz properties, we have: 

�̂�(𝜆+) ≤  �̂�(𝜆) +  𝛻�̂�(𝜆) (
𝜆+

𝛼
 −
𝜆

𝛼
) +

1

2
𝜙(𝛼) 𝐿�̂�(𝜆) ‖

𝜆+

𝛼
 −
𝜆

𝛼
‖

2

 

= �̂�(𝜆) +  𝛻�̂�(𝜆)(𝜆 − 𝜔2𝛻�̂�(𝜆) −   𝜆) +
1

2
𝜙(𝛼)𝐿(𝜆 − 𝜔2𝛻�̂�(𝜆) −   𝜆)

2
 

= �̂�(𝜆) − ( 1 −
1

2
𝜙(𝛼)𝐿𝜔2)𝜔2 𝛻�̂�(𝜆)2        (3.22) 
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The minimum point will be achieved if �̂�(𝜆) decreases over iterations, i.e., �̂�(𝜆𝑘+1) ≤ �̂�(𝜆𝑘). 

To this end,  1 −
1

2
𝜙(𝛼)𝐿𝜔2 > 0  and 𝜔2  should be less than 1/(𝜙(𝛼)𝐿) . Selecting 𝜔2 =

1/(𝜙(𝛼)𝐿) satisfies this positivity condition. By plugging this 𝜔2 in (3.22), we have: 

�̂�(𝜆+)  ≤ �̂�(𝜆) −
1

2
𝜔2 𝛻�̂�(𝜆)2                                        (3.23) 

Since 
1

2
𝜔2 𝛻�̂�(𝜆)2 is always positive or zero, after some iterations, �̂�(𝜆) = �̂�(𝜆⋆) with 𝜆⋆ 

denoting the optimal value for 𝜆. This proves convergence. To find the convergence rate, setting 

𝜔2 = 1/(𝜙(𝛼)𝐿) in (3.22) and borrowing convex properties, we can rewrite (3.22) for 𝜆⋆ as: 

�̂�(𝜆+) ≤ �̂�(𝜆⋆) + ∇�̂�(𝜆) (
𝜆

𝛼
−
𝜆⋆

𝛼
) −

1

2
𝜔2 (∇�̂�(𝜆))

2

→ 

�̂�(𝜆+) − �̂�(𝜆⋆) ≤
1

2𝜔2
(2𝜔2∇�̂�(𝜆) (

𝜆

𝛼
−
𝜆∗

𝛼
) − 𝜔4∇�̂�(𝜆)2) → 

�̂�(𝜆+) − �̂�(𝜆⋆) ≤
1

2𝜔2
(
𝜆

𝛼
−
𝜆⋆

𝛼
)2 − (

𝜆

𝛼
− 𝜔2∇�̂�(𝜆) −

𝜆∗

𝛼
)
2

→ 

�̂�(𝜆+) − �̂�(𝜆⋆) ≤
1

2𝜔2
((
𝜆

𝛼
−
𝜆⋆

𝛼
)

2

− (
𝜆+

𝛼
−
𝜆⋆

𝛼
)

2

)                           (3.24) 

By adding summation over iterations, we have: 

∑�̂�(𝜆𝑖) − �̂�(𝜆⋆)

𝐾

𝑖=2

≤
1

2𝜔2
(∑(

𝜆𝑖−1

𝛼
−
𝜆⋆

𝛼
)

2

− (
𝜆𝑖

𝛼
−
𝜆⋆

𝛼
)

2𝐾

𝑖=2

)                  (3.25) 

We use 𝜆1 of ALAD as the initial value of the proposed method. To have a fair comparison 

with ALAD, we should start from 𝜆0. By plugging 𝜆0 in (3.25), using the telescopic sum, and after 

simplifications, we obtained the convergence rate as follows: 

(�̂�(𝜆𝑘) − �̂�(𝜆⋆)) ≤
1

2𝜔2𝑘
(‖𝜆0 −

𝜆⋆

𝛼
‖
2

2

)                                                    (3.26) 
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We conclude that AR-ALAD and ALAD have the same behavior when 𝜔2 = 𝛼𝜔𝐴𝑅
2  and 𝜆0 = 0. 

3.4.3 Required Properties of Balancing Coefficient 𝜶 

Expression (3.26) indicates that if 𝛼 > 1, AR-ALAD converges faster than ALAD. However, 

𝛼 ≫ 1 might endanger the Lipschitz continuity as 𝐿𝐴𝑅 = 𝜙(𝛼)𝐿 and 𝜙(𝛼) grows monotonically 

by increasing 𝛼. Since a large 𝛼 increases the Lipschitz constant, it limits the upper bound of 𝜔 as 

𝜔2 must be less than  1/(𝜙(𝛼)𝐿) to ensure the convergence of the augmented Lagrangian method 

(see (3.22)). If one selects 𝛼 < 1, it decreases the impact of 𝜔. Although it is effective to find 

accurate results, it slows the convergence rate. 

To demonstrate the effect of scaling on the Lipschitz continuity, we consider 𝑓1(𝑡) and 𝑓2(𝑟) 

to be quadratic functions. The dual function (3.17) is restated as: 

𝐷(𝜆) =
−
1
2
(b1 + 𝛼𝜆𝐴𝑅)

2a1
−1 −

1
2
(b2 − 𝛼𝜆𝐴𝑅)

2a2
−1

α
                                (3.27) 

where a1 and a2 are coefficients of quadratic terms and b1 and b2 are coefficients of linear terms 

of 𝑓1
∗ and 𝑓2

∗
, respectively. The Lipschitz of 𝐷(𝜆) is: 

𝐿 =
1

2
(−2𝑏1𝑎1

−1 + 2𝑏2𝑎2
−1 + 𝛼(−𝜆𝐴𝑅,1𝑎1

−1 − 𝜆𝐴𝑅,2𝑎1
−1 − 𝜆𝐴𝑅,1𝑎2

−1 − 𝜆𝐴𝑅,2𝑎2
−1))     (3.28)  

Based on (3.28), increasing 𝛼 increases 𝐿 monotonically. Also, based on (3.22), increasing 𝛼 

makes the 𝜔 selection bound tighter. In other words, increasing 𝛼 arbitrary for a specific 𝜔 will 

not improve the convergence performance and may endanger the convergence property. 

Furthermore, 𝛼 affects the condition number. A very small or very large 𝛼 may cause ill-condition. 

This is similar to the augmented Lagrangian relaxation concept in which selecting a large penalty 
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factor is desirable, but it may result in ill-condition and gradient descent based solvers may have 

difficulties to direct the solution toward the optimal point iteratively (Bertsekas 1999).  

3.5 Proposed Function to Calculate 𝜶  

Finding the optimal (or a good enough) value for balancing coefficient 𝛼  is not 

straightforward. This coefficient is problem dependent and its optimal value is unknown before 

solving a problem. For OPF, 𝛼 depends on the system configuration and condition, e.g., loading 

condition. In this section, we propose a function to determine a proper balancing coefficient 𝛼 that 

satisfies the required features mentioned in Section 3.4. The impact of this coefficient on the ATC-

based ALAD coordination strategy is investigated using a mathematical benchmark problem and 

DC OPF for a typical power system.  

3.5.1 Intuition Behind Proposed Function 

Consider solving a centralized two-variable optimization with gradient descent. If the contour 

of the objective function is circular, the algorithm converges to the optimal point after a few steps. 

Since at each iteration the gradient direction is orthogonal to the curve, if the contour becomes 

elongated, the pattern of search direction may become zigzag with small improvement after each 

iteration or go toward a wrong direction. Consider a simple illustrative example.  

min
𝑥,𝑦

𝑓(𝑥, 𝑦) = 𝑓1(𝑥) + 𝑓2(𝑦)                                                 (3.29) 

where     𝑓1(𝑥) = 𝑥
2 + 2𝑥  &  𝑓2(𝑦) = 0.03𝑦

2 + 0.05𝑦 

We analyze two models: the original unscaled problem and a scaled form of the problem. Since 

𝑓1 and 𝑓2 are in different orders, the contour plot of the unscaled problem is elongated as shown in 

Fig. 3.1a. Let us evaluate 𝑓1 and 𝑓2 after the first iteration and then scale the problem as follows: 
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min
𝑥,𝑦

𝑓(𝑥, 𝑦) = 𝑓1(𝑥) + 𝛼𝑓2(𝑦)                                         (3.30) 

where    𝛼 =
𝑓1(𝑥0)

𝑓2(𝑦0)
 

Assume an initial point with 𝑥0 = 8  and 𝑦0 = 8. To demonstrate the effect of scaling, we 

investigate two cases with large (0.8) and small (0.2) step sizes. Figures 3.1(a) and (b) demonstrate 

the gradient descent search after ten iterations with step size=0.8. For the unscaled problem, since 

the surface is elongated, gradient descent follows a zigzag path with a small improvement after 

each iteration. After ten iterations, the relative error of the objective function as compared to the 

optimal solution is 0.95. For the scaled problem with a more circular contour (see Fig. 3.1b), a 

good enough solution is obtained after several big jumps and the relative objective error becomes 

0.0092. A more detailed analysis of Fig. 3.1 shows that after several iterations 𝑥 becomes close to 

its optimal value while there is a small improvement in 𝑦. This is due to the unbalanced importance 

levels of 𝑓1(𝑥) and 𝑓2(𝑦) that makes the algorithm more sensitive to 𝑓1(𝑥). Hence, optimization 

pays more attention to minimizing 𝑓1(𝑥) than 𝑓2(𝑦).  

For the unscaled problem with small step size, gradient descent moves slowly toward the 

optimal point with more dominant attention to 𝑓1(𝑥) than 𝑓2(𝑦). After ten iterations, the obtained 

solution is far from the optimal point. The obtained 𝑥 value is good, but 𝑦 is still far from the 

optimal point. Finding the optimal solution of the unscaled problem takes many iterations. But, for 

the scaled problem, from the first iteration, the search direction is along to the optimal point and a 

high-quality solution is obtained after ten iterations. 

This scaling concept and the illustrative example provide us with intuitions to select the 

balancing coefficient 𝛼 for modifying   ALAD. In OPF, generation cost functions and penalty 

functions are not in the same order of magnitude since they have different natures. To make a 
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balance between generation costs and penalty terms, we borrow the scaling idea and propose a 

function to calculate balancing coefficient 𝛼. 

 

      (a)         (b)  

 

(c)      (d) 

Figure 3.1 Contour plot for a) unscaled (step size=0.8), b) scaled (step size=0.8), c) unscaled 

(step size=0.2) and d) scaled (step size=0.2) problem. 

 

3.5.2 Proposed Function 

In ALAD, each subproblem consists of two terms, cost function 𝑓 and penalty term 𝜋 . 

Although the goal is to minimize 𝑓, the impact of 𝜋 should not be neglected. Finding a good set 

of penalty multipliers to make a tradeoff between convergence speed, optimality, and feasibility is 
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not straightforward. In the proposed approach, arbitrary values are selected for 𝑡𝑖𝑗
0 , 𝑟𝑖𝑗

0, 𝜆0, and 𝜔0. 

The first iteration of the distributed algorithm is carried out to find 𝑥𝑖𝑗
1 , 𝑡𝑖𝑗

1 , and 𝑟𝑖𝑗
1 , and the 

balancing coefficient 𝛼 is calculated by (3.31). 

𝛼 = |
∑ ∑ 𝑓𝑖𝑗

1
∀𝑗 (𝑥𝑖𝑗

1 )∀𝑖

∑ ∑ 𝜋𝑖𝑗
1

∀𝑗 (𝑡𝑖𝑗
1 − 𝑟𝑖𝑗

1)∀𝑖

|                                              (3.31) 

where 𝑓𝑖𝑗
1 and 𝜋𝑖𝑗

1  are the values of cost function and penalty terms of subproblem 𝑖 in level 𝑗 at the 

end of iteration one. The basic idea is to make a balance between 𝑓 and 𝜋 at the beginning of 

iteration two. If 𝑓𝑖𝑗
1 ≫ 𝜋𝑖𝑗

1  the priority is given to 𝑓𝑖𝑗
1, and if 𝑓𝑖𝑗

1 ≪ 𝜋𝑖𝑗
1  the priority is given to 𝜋𝑖𝑗

1 . 

The balancing coefficient 𝛼, which equal or larger than zero, assigns roughly the same priority to 

𝑓 and 𝜋. Consider that penalty multipliers 𝜔 are set to large values. This yields 𝑓𝑖𝑗
1 ≪ 𝜋𝑖𝑗

1  and the 

proposed function produces an 𝛼 less than one to reduce the level of importance of  𝜋 and assign 

more weight to optimality (i.e., 𝑓). On the other hand, if penalty multipliers 𝜔 are initialized to 

small values, 𝑓𝑖𝑗
1 ≫ 𝜋𝑖𝑗

1  and the proposed function produces an 𝛼 larger than one to assign more 

weight to feasibility. We have investigated several alternatives for calculating an appropriate 

balancing coefficient and have observed that (3.31) is a suitable approach. Developing more 

sophisticated but efficient methods can be considered as future work. 

We name the proposed algorithm with balancing coefficient 𝛼 accelerated, robust ALAD (AR-

ALAD) as it enhances the convergence speed of ALAD, prevents obtaining suboptimal results, 

and reduces the possibility of divergence when inappropriate initial conditions are selected. The 

AR-ALAD coordination strategy is shown in the following Algorithm. 
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Algorithm ATC-based AR-ALAD coordination strategy  

1. initialize 𝑥, 𝑡, 𝑟, 𝜆, 𝜔, 𝛼 = 1   and 𝑘 = 0 

2. Solve all subproblems 𝑖𝑗 

3. Update 𝛼 = ∑ ∑ 𝑓𝑖𝑗
1

∀𝑗 (𝑥𝑖𝑗
1 )∀𝑖 /∑ ∑ 𝜋𝑖𝑗

1
∀𝑗 (𝑡𝑖𝑗

1 − 𝑟𝑖𝑗
1)∀𝑖  

4. while max (‖𝑡𝑘 − 𝑟𝑘‖) ≤ 𝜖 & |(𝑓𝑖𝑗
𝑘 − 𝑓𝑖𝑗

𝑘−1)/𝑓𝑖𝑗
𝑘−1| ≤ 𝜖, 𝑘 ← 𝑘 + 1 do 

5.     Solve 𝑓𝑖𝑗 + 𝛼𝜋𝑖𝑗 (or 
1

𝛼
𝑓𝑖𝑗 + 𝜋𝑖𝑗)  for each subproblem 𝑖𝑗 sequentially  

6:     Update multiplier 𝜆𝑘+1 = 𝜆𝑘 + 2𝜔2(𝑡𝑘 − 𝑟𝑘) & 𝜔𝑘+1 = 𝛽𝜔𝑘 

7: end while 

 

Remark 4: To consider the impact of penalty multipliers, initial values of variables, problem 

characteristics, and constraints, we use values obtained after running the algorithm for one iteration 

to calculate 𝛼. Our experience shows that this procedure provides a better 𝛼 than other possible 

approaches. 𝛼 varies with changing initial values of variables and penalty multipliers. 

The features of AR-ALAD are investigated using two illustrative examples, a nonlinear 

mathematical benchmark problem (the first problem on page 6 of (DorMohammadi and Rais-

Rohani 2013)), and DC OPF for a 22-bus power system . The mathematical problem includes four 

subproblems with quadratic cost functions and nonlinear constraints, and the power system is 

decomposed into two levels with one OPF subproblem in level one and two OPF subproblems in 

level two. We use several performance indices and statistical tests to analyze various features (i.e., 

robustness, acceleration, feasibility, and optimality) of AR-ALAD. 

3.5.3 Robustness 

A distributed algorithm should provide good results for different initial penalty multipliers. We 

call such a feature robust to penalty multipliers variation. To compare the robustness of AR-ALAD 
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with ALAD, we run F-test, principal component analysis (PCA), and an analysis to determine the 

bound in which the solution varies with respect to 𝜔.  

F-test is a statistical model that measures whether a group of variables are statistically (by 

observing mean values and variances) similar or different. In other words, it estimates the 

significance of a set of population-based on its average. F-test measurements can be carried out by 

analysis of variance or regression analysis (ANOVA) (Anscombe 1948). The most important 

factor in F-test is the P-value that demonstrates a big picture of a given dataset and determines the 

level of difference of data in that set. A typical threshold for P is 0.05, which means that if the P-

value is smaller than 0.05, all values in the given dataset are significantly different. When P is 

equal to one, elements of the dataset are roughly the same statistically. We implement F-test with 

respect to 𝜔. To generate the samples, we select ten different values for 𝜔 as {50, 60, 70, 80, 100, 

120, 130, 150, 180, 200}, run ALAD and AR-ALAD based DC OPF for 100 iterations for each 𝜔, 

and calculate the convergence index 𝑟𝑒𝑙 (see (2.22)) at each iteration. 

For the mathematical benchmark problem, we select different 𝜔 as {190, 230, 270, 310, 350, 

390, 430, 470}, run ALAD and AR-ALAD for 50 iterations, and calculate the 𝑟𝑒𝑙 index at each 

iteration. Figures 3.2 and 3.3 demonstrate F-test results. Red lines between blue boxes show the 

mean value of 𝑟𝑒𝑙 for a specific 𝜔, and black dashed lines depict the range of 𝑟𝑒𝑙. For both OPF 

and the mathematical benchmark problem, while 𝑟𝑒𝑙 of ALAD varies considerably by changing 

𝜔, AR-ALAD is less sensitive to the variation of 𝜔. A similar pattern is observed for the mean 

value of 𝑟𝑒𝑙. For OPF, the average of 𝑟𝑒𝑙 for AR-ALAD is close to zero, and its upper bound is 

less than 10%. It means that the algorithm is less dependent on 𝜔 and starts from a good 𝑟𝑒𝑙. F-

test is also used to measure similarities between the obtained results. The P-value for AR-ALAD 

is 0.9995 for OPF and one for the mathematical problem, while the P-value for ALAD is less than 
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1 × 10−8. It means that the 𝑟𝑒𝑙 index for different values of 𝜔 are almost the same for AR-ALAD, 

while the results are significantly different for ALAD. 

In the second test, PCA is used to measure correlations between the results of distributed DC 

OPF obtained for the 22-bus system. Eigenvalues of the correlation matrix demonstrate how much 

valuable information exists on each dimension. The larger an Eigenvalue is, the more sensitive the 

distributed optimization will be to the corresponding parameter. To generate samples, we change 

𝜔 from 100 to 200 with a step size of 10 and solve AR-ALAD and ALAD for 100 iterations for 

each 𝜔. 𝑟𝑒𝑙 and the mean value of the primal feasibility criterion (i.e., 𝑐 = |𝑡 − 𝑟|) are measured 

at each iteration. To consider the impact of 𝑟𝑒𝑙  and the mean value of primal feasibility 

simultaneously, we define 𝑒𝑟 = 𝑟𝑒𝑙 × 𝑐 and calculate the mean and variance of 𝑒𝑟 for each 𝜔. We 

create a three-axis dataset where axis one is the variance of 𝑒𝑟, axis two is the mean of 𝑒𝑟, and 

axis three is 𝜔. 

By using PCA, we measure the most irrelevant axis that has no important information. For 

instance, if 𝜔-axis gets the lowest Eigenvalue, that means by changing 𝜔 in the dataset, values on 

the two other axes do not change significantly. As shown in Table 3.1, PCA results for 𝑒𝑟 obtained 

by AR-ALAD demonstrates that the first Eigenvalue is near zero, which means that the impact of 

𝜔 on the results is negligible. On the other hand, for ALAD, the first Eigenvalue is not small, 

which means that the results are sensitive to the variation of 𝜔. 
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(a)                                                           (b) 

Figure 3.2 F-test for OPF solved by a) AR-ALAD and b) ALAD. 

 

  

                                         (a)                                                           (b) 

Figure 3.3 F-test for the mathematical problem solved by a) AR-ALAD and b) ALAD. 

   

Table 3.1 Eigenvalues for AR-ALAD and ALAD obtained from PCA test 

Eigenvalue AR ALAD ALAD 

Eigenvalue1 0.0001 0.0731 

Eigenvalue2 0.0174 0.4926 

Eigenvalue3 2.9825 2.4343 

 



65 

 

We implement another analysis to find a bound in which the 𝑟𝑒𝑙 index changes with variation 

of 𝜔. Figures 3.4 and 3.5 illustrate the relative error versus iterations for various values of 𝜔. 

Comparing the pointwise deviations shows that the 𝑟𝑒𝑙 values obtained from AR-ALAD vary 

slightly for a large range of 𝜔, and AR-ALAD has a tighter bound than ALAD. That is, AR-ALAD 

is more robust to the variation of 𝜔. 

3.5.4 Acceleration 

To find suitable penalty multipliers in terms of convergence speed, a naïve method is to run 

the algorithm multiple times and pick the best multipliers. However, this is time-consuming and 

inefficient. If the system condition changes, penalty multipliers need to be tuned again, especially 

when shared variables and cost function variables have different natures, which is the case in OPF 

as the cost function depends on power generations and shared variables are bus voltages. Based on 

our experience and analysis, the proposed algorithm not only enhances the robustness of ALAD 

but also outperforms in terms of convergence speed in most cases. Operators usually prefer 

selecting small penalty multipliers to ensure the convergence.  

  

                                     (a)                                                                          (b) 

Figure 3.4 Relative error versus iteration obtained by a) ALAD, and b) AR-ALAD using various 

values of ω (for the OPF problem). 
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                               (a)                                                                              (b) 

Figure 3.5 Relative error versus iteration obtained by a) ALAD, and b) AR-ALAD using various 

values of ω (for the mathematical benchmark problem). 

 

In this case, the balancing coefficient 𝛼 may become larger than one and helps to improve the 

convergence speed according to (3.26). Figure 3.6 depicts convergence processes for OPF and the 

mathematical benchmark problem with 𝜔 ∈ {50,1000}. Increasing the value of 𝜔 reduces the 

balancing coefficient value. For OPF with 𝜔 = 50 and 𝜔 = 1000, for instance, the balancing 

coefficient 𝛼 becomes 5.27 and 0.08. For the sake of comparison, 100 iterations are carried out. 

The 𝑟𝑒𝑙 indices obtained by AR-ALAD are less than those for ALAD. That is, the proposed AR-

ALAD provides a specific 𝑟𝑒𝑙 value after fewer iterations than that of ALAD. For instance, for 

OPF with 𝜔 = 50, while ALAD takes 100 iterations to reach 𝑟𝑒𝑙 = 1𝑒 − 5, AR-ALAD takes 75 

iterations to obtain the same 𝑟𝑒𝑙 value.  



67 

 

 

                                        (a)                                                                    (b) 

Figure 3.6 Relative error versus iteration for a) the OPF problem and b) the mathematical 

benchmark problem. 

 

3.5.5 Feasibility and Optimality  

The optimality (related to the objective function) and feasibility (related to consistency 

constraints satisfaction) are respectively measured by 𝑟𝑒𝑙 and the mean of violation of 𝑐 = 𝑡 − 𝑟. 

𝜔 is set to 50 and 1000. The indices obtained by AR-ALAD and ALAD are illustrated in Figs. 3.7 

and 3.8. Although for 𝜔 = 50 both 𝑟𝑒𝑙 and 𝑐 indices decrease gradually, their differences are less 

for AR-ALAD. In other words, both feasibility and optimality hold the same priority using AR-

ALAD. However, for 𝜔 = 1000, 𝑐 vanishes fast in ALAD while 𝑟𝑒𝑙 is large upon the converges. 

For instance, as shown in Fig. 3.8(b), the difference between c and 𝑟𝑒𝑙 is large. The obtained 

solution is feasible, but not optimal as ALAD pays more attention to 𝑐 rather than 𝑟𝑒𝑙. In contrast, 

AR-ALAD makes a balance between the cost function and penalty terms and prevents a premature 

converges. Both 𝑟𝑒𝑙 and 𝑐 indices decrease with almost the same pattern, and upon convergence, 

both feasibility and optimality are met. Comparing the results shows that using AR-ALAD does 

not degrade the feasibility and optimality by changing 𝜔.  
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   (a)                (b) 

Figure 3.7 Mean of violation of 𝑐 and 𝑟𝑒𝑙 versus iteration for the OPF problem: a) 𝜔 = 50 and 

b) 𝜔 = 1000. 

 

 

               (a)                      (b) 

Figure 3.8  Mean of violation of 𝑐 and 𝑟𝑒𝑙 versus iteration for the mathematical benchmark 

problem: a) 𝜔 = 50 and b) 𝜔 = 1000. 

 

3.6 Application of AR-ALAD to OPF  

The proposed AR-ALAD is applied to solve DC OPF, second-order cone OPF, AC OPF, and 

security-constrained DC OPF. Five test systems, including a 6-bus system, a 22-bus system, the 
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IEEE two-area RTS-96 system with 48 buses, the IEEE 118-bus system, and a 3450-bus system, 

are used. All systems and equipment characteristics are given in . Simulations are carried out on 

MATLAB Optimization Toolbox using a 2.6GHz personal computer with 16GB of RAM. The 

centralized OPF is solved to provide benchmark results for comparison purposes, and the 𝑟𝑒𝑙 index 

is calculated to measure the difference between the distributed OPF and the classical centralized 

OPF.  

3.6.1 DC OPF 

The classical ALAD and the proposed AR-ALAD are applied to solve DC OPF. The initial 

values are set as 𝑡0 = 𝑟0 = 0, 𝜆0 = 50, and 𝜔0 = 50. These penalty multipliers are neither small 

to slow the convergence speed nor large to result in converging to a suboptimal point or divergence. 

Hence, we can perform a fair comparison between ATC and AR-ATC. The stopping threshold is 

𝜖 =1e-4. Figure 3.9 shows the relative errors over the course of iterations. For all test systems, 

AR-ALAD outperforms in terms of the convergence speed and relative error. To reach a specific 

relative error, ALAD takes more iterations than AR-ALAD. ALAD takes eight (less than one 

second), 67 (more than three seconds), 205 (nine seconds), and 647 (128 seconds) iterations to 

converge to an error of 3e-11, 8e-4, 2e-4, and 3e-4 respectively for the 6-bus, 22-bus, 48-bus, and 

118-bus systems. In contrast, AR-ALAD takes six (less than one second), 51 (less than three 

seconds), 21 (two seconds), and 35 (13 seconds) iterations to converge to a relative error of 4e-16, 

3e-6, 1e-4, and 8e-3 respectively for the 6-bus, 22-bus, 48-bus, and 118-bus systems.  

Large System: We have also studied a very large case with 3450 buses. The shared variables 

are initialized to zero. The simulations are carried out for 40 iterations with a small, a medium, 
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and a large 𝜔0. The 𝑟𝑒𝑙 indices are shown in Fig. 3.10. The proposed AR-ALAD yields better 

results than those of ALAD for all studied cases.  

 

                                  (a)                                                          (b) 

 

                                  (c)                                                          (d) 

Figure 3.9  The rel index obtained by ALAD and AR-ALAD for a) the 6-bus, b) 22-bus, c) 48-

bus, and d) IEEE 118-bus test systems. 
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Figure 3.10 rel versus iterations for the 3450-bus system. 

Sensitivity Analysis: The 22-bus system is selected to perform a sensitivity analysis with 

respect to the variation of 𝜔. As shown in Fig. 3.11, ALAD takes fewer iterations with increasing 

𝜔; however, the relative error increases. Although by setting 𝜔 > 1000 primal feasibility is within 

an acceptable threshold, ALAD converges to unacceptable points with relative errors larger than 

100%. In contrast, AR-ALAD shows a stable convergence. The number of iterations and 𝑟𝑒𝑙 are 

almost constant. We conclude that selecting a small or moderate value for 𝜔 (e.g., 10 < 𝜔 < 100) 

and applying AR-ALAD results in obtaining a good convergence performance from the 

perspective of the number of iterations and relative error.  
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Figure 3.11 Number of iterations and relative error versus ω for the 22-bus system. 

 

3.6.2 AC OPF 

ALAD and AR-ALAD are carried out to solve a nonconvex AC OPF for the 22-bus test system. 

No relaxation, convexification, or linearization is implemented in this case. The initial values of 

shared variables (i.e., voltage magnitudes and angles of border buses) are set to zero, and four 

different initial values for Lagrange and penalty multipliers are selected as 𝜔0 = 𝜆0 =

{20, 200, 2000, 20000}. This wide range is selected to analyze the performance of AR-ALAD for 

small, medium, and large values of 𝜔0. Both ALAD and AR-ALAD based distributed AC OPF 

algorithms are run for 100 iterations. Although the considered problem is AC OPF that is nonlinear 

and nonconvex, the proposed algorithm still works for this problem. Figure 3.12 depicts the 

acceleration and robustness features of AR-ALAD. For the four values of penalty multipliers, AR-

ALAD provides more accurate results faster than ALAD. While ALAD does not provide good 

results for 𝜔0 = {20,20000}, AR-ALAD enhances the convergence performance significantly 

even for these two values of  𝜔0.  
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3.6.3 Security-Constrained DC OPF 

The 48-bus system is selected, and line outages are considered. The initial values of shared 

variables are set to zero and 𝜔0 = 𝜆0 = 50. The 𝑟𝑒𝑙 indices over 50 iterations are plotted in Fig. 

3.13. The 𝑟𝑒𝑙 obtained by AR-ALAD is always less than that of ALAD.  

 

Figure 3.12 The rel index obtained by ALAD and AR-ALAD for AC OPF. 

 

  

Figure 3.13 rel for security-constrained DC OPF for the 48-bus system. 
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While ALAD has a slow convergence, AR-ALAD reduces the error considerably at the first 

couple of iterations. The 𝑟𝑒𝑙 and mismatches of the consistency constraints after 50 iterations of 

ALAD are 3e-2 and 0.16, and they are, respectively, 3e-4 and 7e-3 for AR-ALAD. 

3.7 Application of Proposed Method to Other Coordination Algorithms 

To demonstrate the applicability of the proposed method on other coordination algorithms, 

we follow a similar procedure as of AR-ALAD to modify ATC with exponential penalty 

functions (EPF), APP, and Nesterov-based ADMM. 

3.7.1 AR-EPF to Solve OPF 

We refer to (DorMohammadi and Rais-Rohani 2013) for more details on EPF. The modified 

EPF with the balancing coefficient 𝛼 is called AR-EPF. The initial values are set as 𝑡0 = 𝑟0 = 0, 

𝜆0 = 50, and 𝜔0 = 50. The stopping threshold is set to 1e-5. Figure 3.14 shows the convergence 

measure 𝑟𝑒𝑙 and the primal feasibility measure over iterations for 6-bus, 22-bus, 48-bus, and 118-

bus systems. For all cases, AR-EPF shows much better performance as compared to EPF. While 

EPF takes 14 (more than one second), 106 (ten seconds), 52 (six seconds), 789 (421 seconds) 

iterations to converge respectively for the 6-bus, 22-bus, 48-bus,  and 118-bus systems, AR-EPF 

converges after 6 (one second), 68 (8 seconds), 25 (5 seconds),  and 550 (295 seconds) iterations 

for the same systems. The 𝑟𝑒𝑙 and feasibility measures obtained by AR-EPF are always below 

those indices obtained by EFP. 
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                                        (a)                     (b) 

  

       (c)                      (d) 

Figure 3.14 The rel and primal feasibility indices obtained by ALAD and AR-ALAD for a) 6-

bus, b) 22-bus, c) 48-bus, and d) IEEE 118-bus test systems. 

 

3.7.2 AR-APP 

Distributed OPF with APP is presented in (Baldick, Kim et al. 1999). The modified algorithm 

with balancing coefficient 𝛼 is called AR-APP. 300 iterations of the classical APP and AR-APP 

are carried out to solve DC OPF for the 48-bus and IEEE 118-bus systems. Figure 3.15 

demonstrates that the 𝑟𝑒𝑙 index obtained by AR-APP is less than that of the classical APP. 
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(a)                                   (b) 

Figure 3.15  The rel index obtained by APP and ARAPP for a) 48-bus system and b) IEEE 118-

bus system. 

 

3.7.3 ADMM and Nesterov-based ADMM 

The balancing coefficient 𝛼  is incorporated in ADMM and  Nesterov-based ADMM 

(Goldstein, O'Donoghue et al. 2014). The modified algorithms are named AR-ADMM and AR-

Nesterov-based ADMM. ADMM and AR-ADMM are used to solve DC OPF for the 48-bus system. 

Multipliers 𝜔0 and 𝜆0  are set to 100. Fig. 3.16 (a) shows the 𝑟𝑒𝑙 index. While ADMM reaches a 

𝑟𝑒𝑙 of 4e-4 after 50 iterations, this index is 3e-11 for AR-ADMM. We run both algorithms for 500 

iterations. The 𝑟𝑒𝑙 indices obtained by ADMM and AR-ADMM are 5e-10 and 33-11, respectively.  

Nesterov-based ADMM and AR-Nesterov-based ADMM are used to solve DC OPF for the 

22-bus system. We set multipliers 𝜔0 and 𝜆0 to 30 and terminate the algorithms after 500 iterations. 

The value of coefficient 𝛼 is calculated to be 14.97. Figure 3.16 (b) depicts that the 𝑟𝑒𝑙 index for 

AR-Nesterov-based ADMM is less than that for the classical Nesterov-based ADMM. At iteration 

500, AR-Nesterov-based ADMM provides a 𝑟𝑒𝑙 equal to 1e-7 while it is 1e-4 for the classical 

Nesterov-based ADMM. It shows that the proposed approach can enhance the performance of 
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algorithms with linear (e.g., ATC and APP) and superlinear convergence rates (Nesterov-based 

ADMM). 

 

 

(a)                                                            (b) 

Figure 3.16 rel versus iteration for a) the 48-bus system and b) the 22-bus system. 

 

3.8 Conclusion 

This chapter presents an accelerated, robust ATC and its application for solving OPF in a 

distributed manner. The proposed algorithm enhances the convergence performance of ATC and 

decreases its sensitivity to initial values of penalty multipliers and imbalance of cost terms in 

optimization objective functions by incorporating a balancing coefficient in objective functions of 

subproblems. The simulations show that the proposed AR-ATC with ALAD coordination 

strategies provides promising results for DC OPF, AC OPF, and security-constrained DC OPF. 

For cases with small 𝜔, AR-ATC reduces the number of iterations and the relative error, and for 

cases with large 𝜔, AR-ATC prevents converging to a suboptimal point or divergence. The best 

performance of AR-ATC is obtained when multipliers were set to moderate values. Although this 

is case dependent, the proposed algorithm works more effectively when multipliers are initialized 
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in the range of 10~50. The proposed algorithm is applied to ATC with EPF coordination strategy, 

APP, and Nesterov-based ADMM. The results showed that AR-EPF, AR-APP, and AR-Nesterov-

based ADMM outperform the classical forms.  

Some future research directions are developing more sophisticated approaches to find an 

optimal balancing coefficient, using different balancing coefficient for different subproblems, 

updating the balancing coefficient over iterations, and using historical information and learning 

approaches to find a good balancing coefficient. 
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4 CHAPTER 4. MOMENTUM EXTRAPOLATION PREDICTION-BASED 

ASYNCHRONOUS DISTRIBUTED OPTIMIZATION FOR POWER SYSTEMS 

4.1 Introduction  

Iterative distributed optimization algorithms usually need synchronization of subproblems at 

each iteration. An iteration index is defined, and subproblems are solved once at each iteration. 

This degrades the scalability of distributed optimization and under-utilization of computation 

resources, particularly if subproblems are heterogeneous. To address these limitations, this chapter 

proposes a prediction-correction based asynchronous alternating direction method of multipliers 

(A-ADMM). At the end of each iteration, a subproblem no longer needs to wait for the most 

updated information of its neighbors. A momentum-based extrapolation method is developed to 

predict missing information corresponding to shared variables values. A correction step is designed 

using momentum values to prevent the predicted values to become far from the possible solution 

and hence avoid divergence. These predictions are integrated into distributed optimization to allow 

subproblems to be solved continuously with no need for synchronization at each iteration. The 

proposed A-ADMM significantly reduces the unproductive time and the under-utilization of 

computation resources if subproblems are computationally heterogeneous and enhance the 

solution speed even if subproblems are homogeneous. The proposed A-ADMM is applied to solve 

the optimal power flow problem. Numerical results on various cases show the promising 

performance of A-ADMM. 

4.2 Contribution 

The main contributions of this chapter are summarized as follows: 

• An asynchronous ADMM is developed to solve OPF. The proposed A-ADMM, which 

uses the concept of prediction and correction, is computationally much more efficient 
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than the classical synchronous parallel ADMM. 

• A momentum-based extrapolation, which is inspired by the Nesterov technique for 

gradient descent (Nesterov 1983), is presented to predict the values of missing 

information while ensuring that the predictions are bounded and hence preventing A-

ADMM divergence even if missing information is observed in several consecutive 

iterations. 

• The prediction step of the proposed A-ADMM does not need a large dataset and works 

well, with negligible computation cost, from the first few iterations. 

4.3 Distributed OPF with Synchronous ADMM 

ADMM can be applied to solve various power system optimization problems. We explain the 

classical and the proposed ADMM algorithms in the context of OPF. 

4.3.1 Classical Sequential ADMM 

A typical OPF problem can be expressed by (4.1a)-(4.1i) (Zimmerman, Murillo-Sánchez et al. 

2011). The objective function is to minimize generation costs. Nodal power balance constraints 

are given by (4.1b) and (4.1c). Constraints (4.1d) and (4.1e) enforce line flow limits at two ending 

terminals of a line. The upper and lower bounds of generating units are imposed by (4.1f) and 

(4.1g). Inequalities (4.1h) and (4.1i) are bus voltage magnitude and angle limits. 

 

min 𝑓(𝑝) =∑𝑎𝑢𝑝𝑢
2 + 𝑏𝑢𝑃𝑢 + 𝑐𝑢

𝑢

                                                         (4.1𝑎) 
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𝑠. 𝑡. 

ℎ𝑝(𝑉, 𝜃, 𝑝𝑔) = 𝑃𝑏𝑢𝑠(𝑉, 𝜃 ) + 𝑃𝑑 − 𝑝𝑔 = 0                                              (4.1𝑏) 

 ℎ𝑞(𝑉, 𝜃, 𝑞𝑔) = 𝑄𝑏𝑢𝑠(𝑉, 𝜃) + 𝑄𝑑 − 𝑞𝑔 = 0                                              (4.1𝑐) 

𝑔𝑙𝑠(𝑉, 𝜃) = |𝐹𝑙𝑠(𝑉, 𝜃)| − 𝐹𝑚𝑎𝑥 ≤ 0                                                           (4.1𝑑) 

𝑔𝑙𝑟(𝑉, 𝜃) = |𝐹𝑙𝑟(𝑉, 𝜃)| − 𝐹𝑚𝑎𝑥 ≤ 0                                                           (4.1𝑒)                                                                                                                            

𝑝𝑢
𝑚𝑖𝑛 ≤ 𝑝𝑢 ≤ 𝑝𝑢

𝑚𝑎𝑥                   ∀𝑢                                                                (4.1𝑓) 

 𝑞𝑢
𝑚𝑖𝑛 ≤ 𝑞𝑢 ≤ 𝑞𝑢

𝑚𝑎𝑥                    ∀𝑢                                                                (4.1𝑔) 

𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖

𝑚𝑎𝑥                   ∀𝑖                                                                  (4.1ℎ) 

𝜃𝑖
𝑟𝑒𝑓
 ≤ 𝜃𝑖 ≤ 𝜃𝑖

𝑟𝑒𝑓
                      ∀𝑖                                                                  (4.1𝑖) 

where 𝑢 is the index for generating units, 𝑉𝑖 and 𝜃𝑖 voltage magnitude and angle of bus 𝑖, 𝑝𝑔 and 

𝑞𝑔 are active and reactive power generation, and 𝑃𝑑 and 𝑄𝑑 are active and reactive power demand. 

Although ADMM works for systems with multiple areas, for the sake of explanation, we consider 

that the system includes two connected areas 𝑖 and 𝑗, and (4.1) is decomposed into two coupled 

OPF subproblems, each pertaining to an area. The OPF subproblem of each area is to minimize 

local generation costs subject to its local equality and inequality constraints (Kargarian, 

Mohammadi et al. 2018). Consider that 𝑥𝑖 = {𝑝𝑖, 𝑞𝑖, 𝑉𝑖, 𝜃𝑖} and 𝑥𝑗 = {𝑝𝑗, 𝑞𝑗 , 𝑉𝑗 , 𝜃𝑗}𝑐 denote local 

variables of areas 𝑖 and 𝑗, and 𝑦 are shared variables appearing in both OPF subproblems. The 

shared variables vary depending on the considered OPF model, AC or DC, and the way that power 
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flow in tie-line connecting neighboring areas are modeled. We refer to (Kim and Baldick 2000, D. 

K. Molzahn, F. Dorfler et al. 2017, Kargarian, Mohammadi et al. 2018) for more details. 

𝑦 ∈ {𝑝𝑖𝑗, 𝑞𝑖𝑗 , 𝑉𝑖𝑗, 𝜃𝑖𝑗}                                                                      (4.2) 

where 𝑝𝑖𝑗 and 𝑞𝑖𝑗 refer to tie-line flows, and 𝑉𝑖𝑗 and 𝜃𝑖𝑗 denote the voltage magnitude and angle 

of ending terminal of tie-lines. In the context of ADMM, shared variables are duplicated to create 

two sets of variables 𝑦𝑖 and 𝑦𝑗, consistency constraint 𝑦𝑖 − 𝑦𝑗 = 0 is added in each subproblem 

(SP), and this constraint is then relaxed in the objective functions of 𝑆𝑃𝑖 and 𝑆𝑃𝑗 using a quadratic 

augmented Lagrangian function  (Boyd, Parikh et al. 2011, D. K. Molzahn, F. Dorfler et al. 2017, 

Kargarian, Mohammadi et al. 2018). 

𝐿𝑖(𝑥𝑖, 𝑦𝑖 , 𝜆) = min
𝑥𝑖,𝑦𝑖

∑ 𝑎𝑢𝑝𝑢
2 + 𝑏𝑢𝑃𝑢 + 𝑐𝑢

𝑢∈Ω𝑖

 + 𝜆(𝑦𝑖 − 𝑦𝑗) +
𝜌

2
 ‖𝑦𝑖 − 𝑦𝑗‖

2
                    (4.3) 

𝐿𝑗(𝑥j, 𝑦𝑗 , 𝜆) = min
𝑥𝑗,𝑦𝑗

∑ 𝑎𝑢𝑝𝑢
2 + 𝑏𝑢𝑃𝑢 + 𝑐𝑢

𝑢∈Ω𝑗

+ 𝜆(𝑦𝑗 − 𝑦𝑗) +
𝜌

2
‖𝑦𝑗 − 𝑦𝑗‖

2
                     (4.4) 

where Ω𝑖  and Ω𝑗  denote the set of generating units in areas 𝑖 and 𝑗, respectively. The classical 

ADMM, which is a sequential algorithm, solves the distributed OPF problem iteratively as follows 

(Boyd, Parikh et al. 2011): 

𝑥𝑖
𝑘+1, 𝑦𝑖

𝑘+1 = argmin 𝐿𝑖(𝑥𝑖, 𝑦𝑖, 𝑦𝑗
𝑘, 𝜆𝑘)                                             (4.5) 

𝑥𝑗
𝑘+1, 𝑦𝑗

𝑘+1 = argmin 𝐿𝑗(𝑥𝑗 , 𝑦𝑖
𝑘+1, 𝑦𝑗 , 𝜆

𝑘)                                         (4.6) 

𝜆𝑘+1 = 𝜆𝑘 + 𝜌(𝑦𝑖
𝑘+1 − 𝑦𝑗

𝑘+1)                                                             (4.7) 

where 𝑘 + 1 is the current iteration. The problem is solved to find 𝑦𝑖
𝑘+1 and then this value is used 

to solve for 𝑦𝑗
𝑘+1. Two criteria are checked for convergence.  

primal residual:  𝓈𝑘+1 = |𝑦𝑖
𝑘+1 − 𝑦𝑗

𝑘+1| < 𝜖   (4.8) 
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Figure 4.1 Proposed prediction-correction based asynchronous ADMM over the course of 

iterations. 

 

dual residual:  𝒹𝑘+1 = |𝑦𝑗
𝑘+1 − 𝑦𝑗

𝑘| < 𝜖     (4.9)                                                                                                                                 

Although ADMM is proven to work for convex problems, (Erseghe 2015) has reported its 

applicability for both DC OPF and non-convex AC OPF problems. 

4.3.2 Synchronous Parallel ADMM 

ADMM can be transformed into a parallel algorithm using the technique presented in (Wang, 

Wu et al. 2016, Mehrtash, Kargarian et al. 2019). 

𝑥𝑖
𝑘+1, 𝑦𝑖

𝑘+1 = argmin ∑ 𝑎𝑢𝑝𝑢
2 + 𝑏𝑢𝑃𝑢 + 𝑐𝑢

𝑢∈Ω𝑖

+ 𝜆 (𝑦𝑖
𝑘+1 −

𝑦𝑖
𝑘 + 𝑦𝑗

𝑘

2
) +

𝜌

2
‖𝑦𝑖

𝑘+1 −
𝑦𝑖
𝑘 + 𝑦𝑗

𝑘

2
‖

2

 

(4.10) 

𝑥𝑗
𝑘+1, 𝑦𝑗

𝑘+1 = argmin ∑ 𝑎𝑢𝑝𝑢
2 + 𝑏𝑢𝑃𝑢 + 𝑐𝑢

𝑢∈Ω𝑗

+ 𝜆 (
𝑦𝑖
𝑘 + 𝑦𝑗

𝑘

2
− 𝑦𝑗

𝑘+1) +
𝜌

2
‖𝑦𝑗

𝑘+1 −
𝑦𝑖
𝑘 + 𝑦𝑗

𝑘

2
‖

2

 

(4.11) 

𝜆𝑘+1 = 𝜆𝑘 + 𝜌(𝑦𝑖
𝑘+1 − 𝑦𝑗

𝑘+1)                                                              (4.12) 

Subproblems (4.10) and (4.11) are solved in parallel. This reduces the solution time 

significantly as compared to that of the classical sequential ADMM. As shown in Fig. 4.2.b, the 

idle time is reduced by replacing the classical sequential ADMM with the parallel synchronous 
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ADMM. In a certain time interval, more iterations of the parallel ADMM can be carried out, and 

the obtained solution might be better.  

4.4 Proposed Prediction-Correction Based Asynchronous ADMM 

Although synchronous parallel ADMM reduces the computational time, this algorithm still 

needs a perfect level of synchrony among subproblems and all subproblems must be solved once 

at each iteration. This results in possible long idle time, particularly if subproblems are 

heterogeneous with different computational burdens. Consider two subproblems and that 𝑇𝑖
𝑘 and 

𝑇𝑗
𝑘 are, respectively, the solution times of subproblems 𝑖 and 𝑗 at iteration 𝑘. If 𝑇𝑖

𝑘 ≫ 𝑇𝑗
𝑘 or 𝑇𝑖

𝑘 ≪

𝑇𝑗
𝑘, a long idle time will be observed at each iteration of the synchronous ADMM. This results in 

under-utilization of computation resources and increasing the overall solution time, particularly 

for large problems.  

To allow subproblems to be solved as many times as possible in a specific time interval and 

reduce the computational time of distributed optimization, we propose an asynchronous ADMM 

(A-ADMM). This algorithm eliminates the need for synchrony between subproblems and the 

unproductive time of the synchronous ADMM, as illustrated in Fig. 4.2.c. Each subproblem keeps 

updating its local and shared variables regardless of whether it has received any information from 

its neighboring subproblems or not. If a subproblem has not received information from its 

neighbors, we propose to predict the missing information and then solve the corresponding OPF 

subproblem.  
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Figure 4.2 The idle time for a) the classical sequential ADMM, b) parallel synchronous 

ADMM, and c) the proposed parallel asynchronous ADMM. 

 

4.4.1 Prediction-Correction Neighborhood  

The procedure of the proposed A-ADMM is illustrated in Fig. 4.2. A series of values is 

obtained for shared variables over the course of iterations. At the end of each iteration 𝑘 , if 

subproblem 𝑆𝑃𝑖, for instance, has not received 𝑦𝑗
𝑘 from its neighbor, the data series can be used to 

predict this missing information. 𝑆𝑃𝑖 is then solved at iteration 𝑘 + 1 using the predicted 𝑦𝑗
𝑘.  

Classical linear extrapolation can be used to project the values of shared variables at the current 

iteration using the values of shared variables obtained in two previous iterations. Consider Fig. 4.2 

where 𝑆𝑃𝑖 has not received 𝑦𝑗
𝑘 from 𝑆𝑃𝑗. Without this value, 𝑆𝑃𝑖 cannot be solved at iteration 𝑘 +

1. The linear extrapolation predicts the missing information, i.e., 𝑦𝑗
𝑘, required by 𝑆𝑃𝑖 as: 

�̂�𝑗
𝑘 = (𝑦𝑗

𝑘−1 − 𝑦𝑗
𝑘−2)𝑘 + 2𝑦𝑗

𝑘−2 − 𝑦𝑗
𝑘−1                                                 (4.13) 

where 𝑦𝑗
𝑘−1 and 𝑦𝑗

𝑘−2 are the shared variable values received from 𝑆𝑃𝑗  at iterations 𝑘 − 1 and 𝑘 −

2, respectively. �̂�𝑗
𝑘 is the predicted value for 𝑦𝑗 at iteration 𝑘.  
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Guideline for Using Classical Linear Extrapolation: Our observations show that this method 

works well for predicting missing information for up to one or two iterations if the distributed 

algorithm’s solution is far from the optimal results. If the solution is close to the optimal results, 

variations of shared variables are not significant, as shown in Fig. 4.3, and the classical linear 

extrapolation can be used to predict missing information for up to four or five consecutive 

iterations. Hence, we conclude that if the computational times of subproblems are considerably 

different, which leads to having missing information for several successive iterations, or if 

variations of shared variables are significant (the oscillatory region in Fig. 4.3 with several peaks 

and valleys), the classical linear extrapolation might not provide a good enough prediction for �̂�𝑖.  

Momentum-Extrapolation based Prediction: Inspired by the Nesterov technique for 

accelerating gradient descent (Nesterov 1983), we propose a momentum-based extrapolation 

predictor for distributed optimization if computational times of subproblems are considerably 

different or variations of shared variables are significant. The proposed momentum-based 

extrapolation is a prediction-correction approach that uses the accumulation of predictions and 

corrections. The momentum term, which is the slope trend of shared variables’ values from 

iterations one to 𝑘, adds a correction step to extrapolation and ensures that the predictions will be 

bounded even if missing information is observed in many consecutive iterations of ADMM. This 

is proven in the Appendix. By adding the momentum, predictions become more conservative as 

more iterations are carried out with missing information. As shown in Fig. 4.3, if a subproblem 

observes several iterations with missing information, the predicted values will become saturated 

to prevent large prediction errors while allowing a subproblem to be solved continuously. In the 

subsequent section, we will explain the detailed formulations of the momentum-based 

extrapolation in the context of asynchronous ADMM.   
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4.4.2 Momentum-Based Extrapolation to Formulate 𝑺𝑷𝒊   

We formulate a subproblem, 𝑆𝑃𝑖, using the momentum-based extrapolation and explain the 

ADMM solution procedure over iterations. Due to the difference of subproblems’ computational 

time, the number of iterations that 𝑆𝑃𝑖 is solved in a certain time span might be different than that 

of other subproblems. Hence, we assign an iteration index to each subproblem. 𝑘𝑖 is the iteration 

index for 𝑆𝑃𝑖. At iteration 𝑘𝑖 + 1, the OPF subproblem 𝑆𝑃𝑖 is as follows: 

 

Figure 4.3 Extrapolation vs. momentum-based extrapolation predictions. 

 

𝑥𝑖
𝑘𝑖+1, 𝑦𝑖

𝑘𝑖+1 = argmin ∑ 𝑎𝑢𝑝𝑢
2 + 𝑏𝑢𝑃𝑢 + 𝑐𝑢

𝑢∈Ω𝑖

+ 𝜆(𝑦𝑖
𝑘𝑖+1 −

𝑦𝑖
𝑘𝑖 + �̂�𝑗

𝑘𝑖

2
)

+
𝜌

2
‖𝑦𝑖

𝑘𝑖+1 −
𝑦𝑖
𝑘𝑖 + �̂�𝑗

𝑘𝑖

2
‖

2

                                                                         (4.14) 

where �̂�𝑗
𝑘𝑖  is the predicted value for 𝑦𝑗  if missing information is observed at the beginning of 

iteration 𝑘𝑖 + 1. A flag, 𝑓𝑙𝑖 , is introduced for each subproblem 𝑆𝑃𝑖  to determine whether 𝑆𝑃𝑖 

should use the actual latest values of shared variable 𝑦𝑗 or the predicted values. When 𝑆𝑃𝑖 receives 
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information from 𝑆𝑃𝑗 , the flag becomes 1; otherwise, 0. At the beginning of each iteration 𝑘𝑖 + 1, 

if the flag is one, the actual values of shared variables are used in (4.14) and the flag is set to 0; 

otherwise, the momentum-based extrapolation is implemented to predict �̂�𝑗
𝑘𝑖 . Assume that, for 

instance, flags corresponding to 𝑆𝑃𝑖  and 𝑆𝑃𝑗  are respectively 0 and 1, 𝑆𝑃𝑖  is solved with the 

predicted �̂�𝑗  and 𝑆𝑃𝑗  is solved with the actual 𝑦𝑖 . At the beginning of 𝑘𝑖 + 1  of 𝑆𝑃𝑖 , the 

momentum-based extrapolation is implemented to predict �̂�𝑗 as follows: 

𝑣𝑗
𝑘𝑖−1 = 𝜇𝑣𝑗

𝑘𝑖−2 + 𝜂(�̂�𝑗
𝑘𝑖−1 − �̂�𝑗

𝑘𝑖−2)                                                (4.15)                                                                                                                                     

�̂�𝑗
𝑘𝑖 = �̂�𝑗

𝑘𝑖−1 + 𝑣𝑗
𝑘𝑖−1                                                                              (4.16)                                                                                                                                                             

where 𝑣𝑗
𝑘𝑖−1 is the momentum term corresponding to shared variable values received from 𝑆𝑃𝑗 

from iteration one to iteration 𝑘𝑖 − 1 (𝑣𝑗
0 is zero). Parameters 𝜂 and 𝜇 are weight coefficients for 

extrapolation and momentum terms, respectively. A large 𝜂 may lead to increasing the oscillation 

of predicted values of �̂�𝑗  over iterations. The weight coefficient 𝜇 , which acts as a long-term 

damper, can make the prediction smoother and prevents overshoots and undershoots. Although 𝜇 

can mitigate fluctuations, it may not function effectively if 𝜂 is set to a large value. Parameters 𝜇 

and 𝜂 should be selected in a reasonable range. This is problem-dependent. If the algorithm is 

sensitive to prediction errors, we suggest selecting larger 𝜇 and smaller 𝜂. On the other hand, if 

the prediction errors within a bound do not affect distributed optimization significantly, we suggest 

setting a reasonably large extrapolation coefficient. Indeed, with changing the weight coefficients 

𝜇 and 𝜂, the level of conservativeness in predictions can be controlled. For instance, for a given 

problem, if a user wants to be too conservative, the coefficients can be set in a manner for A-

ADMM to use the latest received 𝑦𝑗  always as the predicted values. It should be noted that 

although a conservative prediction might prevent A-ADMM to have a good jump towards the 
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optimal solution, it still allows the algorithm to update the Lagrange multipliers that results in a 

small or medium jump towards the optimal solution after each iteration. We have discussed details 

of momentum and extrapolation parameters in the Appendix. Moreover, we have proved that if 𝜇 

and 𝜂 are selected properly, the predictions are always within a bound of the most updated true 

information. Figure 4.4 illustrates how the momentum-based extrapolation predicts �̂�𝑗
𝑘𝑖 using the 

data series obtained at previous iterations. The solid green and red arrows show, respectively, the 

momentum and extrapolation terms at iteration 𝑘𝑖, while dashed green and red arrows reflect these 

terms after incorporating their corresponding weight factors. The solid blue line represents the 

prediction of missing information. 
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Figure 4.4 Momentum-based extrapolation prediction at iteration 𝑘𝑖. 

If 𝑓𝑙𝑖
𝑘𝑖−1 is zero, predicted values are used to solve 𝑆𝑃𝑖 at iteration 𝑘𝑖. It means that 𝑆𝑃𝑖 moves 

one step forward while 𝑆𝑃𝑗 is still working to find its optimal solution. Assume that 𝑆𝑃𝑗 is solved, 

and 𝑓𝑙𝑖
𝑘𝑖 becomes one. Since 𝑆𝑃𝑗 was one step before 𝑆𝑃𝑖, using the most updated values to solve 

𝑆𝑃𝑖 at iteration 𝑘𝑖 + 1 may not be efficient. We suggest estimating the values of shared variables 
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received from 𝑆𝑃𝑗 to mimic the situation in which both OPF subproblems were at the same step. 

This would help 𝑆𝑃𝑖 to move towards the optimal solution faster. Therefore, to solve 𝑆𝑃𝑖 at each 

iteration 𝑘𝑖 + 1 , even if 𝑓𝑙𝑖
𝑘𝑖 = 1 , we use the momentum-based extrapolation to mimic the 

behavior of 𝑆𝑃𝑗. 

𝑣𝑗
𝑘𝑖−1 = 𝜇𝑣𝑗

𝑘𝑖−2 + 𝜂 (𝑦𝑗
(𝑘𝑖−1)

+

− �̂�𝑗
𝑘𝑖−2)                                            (4.17) 

�̂�𝑗
𝑘𝑖 = 𝑦𝑗

(𝑘𝑖−1)
+

+ 𝑣𝑗
𝑘𝑖−1                                                                       (4.18) 

where 𝑦𝑗
(𝑘𝑖−1)

+

 denotes the values of shared variables received from 𝑆𝑃𝑗 between iterations 𝑘𝑖 − 1 

and 𝑘𝑖. 

4.4.3 Discussions on Motivation Behind Momentum-Extrapolation Prediction 

The momentum-based extrapolation predictor, which is inspired by the Nesterov technique for 

gradient descent (Nesterov 1983), is developed for ADMM because of its following features. 1) 

This approach does not need a large amount of historical information for predicting missing 

information. A large data set is not available when not many ADMM iterations are carried out. 2) 

The tuning parameters can make the prediction flexible and well-suited for ADMM. 3) This 

approach is very computationally cheap, which makes it suitable for integration into distributed 

optimization without adding additional computation costs.  

4.4.4 Proposed Asynchronous ADMM Algorithm 

The prediction-based A-ADMM pseudocode is given below. Each subproblem will be solved 

continuously using the values predicted by the momentum-based extrapolation. At least two data 
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points are needed for predictions. Hence, up to the second iteration, the prediction steps are not 

implemented, and the most updated values of shared variables are used. 

Proposed A-ADMM Algorithm to Solve OPF 

1: Initialize 𝑥𝑖
0, 𝑦𝑖

0, 𝑦𝑗
0, 𝑓𝑙𝑖

0 = 1, 𝜆𝑖
0 = 𝜆𝑗

0, 𝜌, and 𝑘𝑖 = 0 

2: While max(|𝑦𝑖
𝑘𝑖 − �̂�𝑗

𝑘𝑖|, |�̂�𝑖
𝑘𝑗 − 𝑦

𝑗

𝑘𝑗|) < 𝜖 do  

3:     Repeat for each 𝑆𝑃𝑖 

4:          Predict �̂�𝑗
𝑘𝑖 of neighbor 𝑗 as follows 

5:          if 𝑓𝑙𝑖
𝑘𝑖 = 0    

𝑣
𝑗

𝑘𝑗−1 = 𝜇𝑣
𝑗

𝑘𝑗−2 + 𝜂(�̂�𝑗
𝑘𝑖−1 − �̂�𝑗

𝑘𝑖−2) 

�̂�𝑗
𝑘𝑖 = �̂�𝑗

𝑘𝑖−1 + 𝑣𝑗
𝑘𝑖 

6:           elseif 𝑓𝑙𝑖
𝑘𝑖 = 1 

𝑣𝑗
𝑘𝑖−1 = 𝜇𝑣𝑗

𝑘𝑖−2 + 𝜂(𝑦𝑗
(𝑘𝑖−1)

+

− �̂�𝑗
𝑘𝑖−2) 

�̂�𝑗
𝑘𝑖 = 𝑦𝑗

(𝑘𝑖−1)
+

+ 𝑣𝑗
𝑘𝑖−1 

7:           end 

8:           Restart 𝑓𝑙𝑖
𝑘𝑖 

9:           Update 𝑥𝑖 and 𝑦𝑖 by  

𝑥𝑖
𝑘𝑖+1, 𝑦𝑖

𝑘𝑖+1 = argmin ∑ 𝑎𝑢𝑝𝑢
2 + 𝑏𝑢𝑃𝑢 + 𝑐𝑢

𝑢∈Ω𝑖

+ 𝜆𝑖 (𝑦𝑖
𝑘𝑖+1 −

𝑦𝑖
𝑘𝑖 + �̂�𝑗

𝑘𝑖

2
) +

𝜌

2
‖𝑦𝑖

𝑘𝑖+1 −
𝑦𝑖
𝑘𝑖 + �̂�𝑗

𝑘𝑖

2
‖

2

 

10:          Send 𝑦𝑖
𝑘𝑖+1 to neighboring OPF subproblems 

11:         Update multipliers as 𝜆𝑖
𝑘𝑖+1 = 𝜆𝑖

𝑘𝑖 + 𝜌 (𝑦𝑖
𝑘𝑖 − �̂�𝑗

𝑘𝑖) 

12:         Set 𝑘𝑖 ← 𝑘𝑖 + 1 

13: end 
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4.5 Numerical Results and Discussions 

We implement the synchronous parallel ADMM and the proposed A-ADMM to solve DC OPF 

for a 22-bus system, the IEEE two-area RTS-96 system with 48 buses, and the IEEE 118-bus 

system, and AC OPF for the 48-bus and 118-bus systems. 

• Computational costs of OPF subproblems of the 22-bus and 118-bus systems are 

heterogeneous.  

• Computational costs of OPF subproblems of the 48-bus system are homogeneous.  

Simulations are carried out with MATLAB on a personal computer with a 2.6GHz CPU and 

16GB of RAM. Systems topology and characteristics are given in (2020). To analyze the 

performance of the proposed algorithm in detail, we have studied the impact of predictions, 

momentum-based extrapolation parameters, and penalty multipliers on the convergence 

performance of A-ADMM. Two convergence measures are used to analyze the results. The first 

index is the relative error between optimal generation costs obtained by centralized and A-ADMM 

algorithms (see (2.22)). The second index, which is a feasibility criterion, is the mean primal 

residual or the summation of all consistency constraints divided to the total number of shared 

variables (𝑛𝑠).  

𝓈𝑎𝑣𝑔
𝑘 =

∑ |𝑦𝑖
𝑘 − 𝑦𝑗

𝑘|

𝑛𝑠
                                                           (4.19) 

Note on Simulation Studies: To have a fair comparison between A-ADMM and ADMM, we 

have carried out both algorithms for the same number of iterations for each test case, except for 

simulations in Section IV.D, whose goal is to compare simulation time and the number of 
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iterations. We have considered the iteration counter of the slowest subproblem in A-ADMM since 

subproblems have different iteration counters. 

4.5.1 Impact of Prediction on Convergence Performance  

A-ADMM and ADMM are applied to solve DC OPF for the 48-bus system. It is discussed 

how predictions improve the performance of distributed optimization. The system has two zones. 

A DC OPF subproblem is formulated for each zone. Voltage angles of buses 7, 13, 23, 27, 39, and 

41 are shared variables whose initial values are set to zero. Tuning parameters are set as 𝜆0 = 100, 

𝜌 = 100 , 𝜂 = 0.2,  and 𝜇 = −0.8 . Figure 4.5a illustrates the values of shared variables 

corresponding to the voltage angle of bus seven (𝜃7) over the course of iterations. The blue and 

black solid/ dashed lines show the shared variable values determined by A-ADMM/ ADMM. Both 

algorithms converge to the same values and make differences between shared variables zero. Red 

lines are predictions at each iteration. These predictions make the behavior of A-ADMM smoother 

than that of ADMM. Fewer jumps are observed in values obtained by A-ADMM. Figure 4.5b 

shows the primal residual, (4.8), which vanishes much faster if A-ADMM is used. The 

convergence speed for A-ADMM is remarkably better than that of ADMM. For example, A-

ADMM’s error reaches 0.0036 after 25 iterations while ADMM reaches this gap after 50 iterations. 

4.5.2 Impact of Momentum-Extrapolation Parameters on A-ADMM 

To demonstrate the impact of prediction parameters on the convergence performance, A-

ADMM is implemented to solve DC OPF for the IEEE 118-bus system, which has three zones. 

Parameters 𝜆0 and 𝜌 are set to 100, and prediction parameters are varied as 𝜂 = {0.02, 0.25, 0.4} 

and 𝜇 = {−0.98,−0.75,−0.6}. By increasing 𝜂 and decreasing 𝜇, the momentum-extrapolation 

becomes less conservative and gives more weight to the trend of previous data. This increases the 



94 

 

risk of large prediction errors, especially at peaks and valleys. In contrast, by decreasing 𝜂 and 

increasing 𝜇, the algorithm becomes more conservative, and predictions do not become far from 

the previous points.  

 

(a) 

 

(b) 

Figure 4.5  a) Shared variable values and b) the primal residual over iterations. 

 

That is, predictions will be in a safe zone around the previous point. Figure 4.6 illustrates the 

predicted values for a shared variable (voltage angle of bus seven) and the 𝑟𝑒𝑙 index for different 



95 

 

values of 𝜂 and 𝜇. While larger 𝜂 makes predictions and the 𝑟𝑒𝑙 index less smooth, larger 𝜇 

results in smoother predictions and 𝑟𝑒𝑙. We suggest setting conservative training parameters for 

problems with many shared variables and tie-lines and selecting less conservative values for 

problems with a few shared variables. Observing Fig. 4.6, we conclude that 𝜇 = {−0.98, −0.75} 

and 𝜂 = {0.02, 0.25} are proper for this test system. 

 

 

(a) 

 

(b) 

Figure 4.6 a) Predictions for a shared variable and b) rel obtained by A-ADMM. 
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4.5.3 Optimality Gap and Primal Residual 

A-ADMM is applied to solve DC OPF for the 22-bus system, the 48-bus system, and the IEEE 

118-bus system. The 22-bus system includes a transmission system connected to two active 

distribution systems. The initial values for shared variables are set to zero, and 𝜆0 = 𝜌 = 100. For 

the 22-bus system, the 48-bus system, and the 118-bus system, {𝜇, 𝜂} are selected as {-0.7,0.3}, {-

0.8,0.2}, and {-0.97,0.03}, respectively. The 𝑟𝑒𝑙 and 𝓈𝑎𝑣𝑔 indices are shown in Figs. 7-9. After 

the same number of iterations, A-ADMM provides better 𝑟𝑒𝑙  (optimality criterion) and 𝓈𝑎𝑣𝑔 

(feasibility criterion).  

Due to the heterogeneity of computational burdens of OPF subproblems for the 22-bus and 

118-bus systems, there are subproblems that need to predict shared variables’ values for several 

iterations. In contrast, due to the homogeneity of computation costs of the OPF subproblems for 

the 48-bus system, these subproblems would observe missing information for, usually, not more 

than one or two iterations. The results illustrated in Figs. 7-9 show that A-ADMM outperforms the 

classical synchronous parallel ADMM under these two possible situations. A-ADMM and ADMM 

are the same under perfect homogeneity of computation costs of subproblems; however, such an 

ideal condition is almost not attainable in real-world problems.  
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Figure 4.7 The 𝑟𝑒𝑙 and 𝑠𝑎𝑣𝑔 indices over iterations for the 22-bus system. 

 

Figure 4.8 The 𝑟𝑒𝑙 and 𝑠𝑎𝑣𝑔 indices over iterations for the 48-bus system. 
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Figure 4.9 The 𝑟𝑒𝑙 and 𝑠𝑎𝑣𝑔 indices over iterations for the 118-bus system. 

 

4.5.4 Simulation Time and Iteration Comparison  

The desired 𝑟𝑒𝑙 index is set to 𝑟𝑒𝑙𝑡ℎ = 1𝑒 − 4, and A-ADMM and ADMM are implemented 

to solve DC OPF for the 22-bus and 48-bus systems. Parameters 𝜇 and 𝜂 are respectively set to 

−0.9 and 0.1, and 𝜆0 = 𝜌 = 500. Figure 4.10 and Table 4.1 show the results. A-ADMM reaches 

to the desired 𝑟𝑒𝑙 value much faster than ADMM. For the 22-bus system, A-ADMM takes 12 

iterations within 0.8 seconds, while ADMM needs 35 iterations and 1.1 seconds to achieve the 

desired 𝑟𝑒𝑙 value. For the 48-bus system, A-ADMM takes 95 fewer iterations and 70% less time 

than ADMM. 
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(a) 

 

(b) 

Figure 4.10 The 𝑟𝑒𝑙 index over iterations for a) 22-bus b) and 48-bus systems. 

 

Table 4.1 Operating Cost Obtained by Different Algorithms 

 22-Bus 48-Bus 

 ADMM A-ADMM ADMM A-ADMM 

Iterations 35 12 135 40 

Time (sec) 1.1 0.8 6.8 2.1 
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4.5.5 Multipliers Analysis 

The penalty multiplier 𝜌 has a significant impact on the convergence behavior of ADMM. 

Large 𝜌  values increase the solution speed while increasing the risk of finding a suboptimal 

solution or divergence. In contrast, a small 𝜌 enhances the chance of finding the optimal solution 

with the cost of slowing the convergence speed. We evaluate the impact of 𝜌 on A-ADMM using 

DC OPF for the 48-bus system and compare it with that of ADMM. Simulations are carried out 

for 𝜌 = {100,500,2000}, 𝜇 = −0.8, and 𝜂 = 0.2. To have a fair comparison, ADMM and A-

ADMM are implemented for 50 iterations. As illustrated in Figs. 11-13, for small, medium, and 

large values of 𝜌, A-ADMM works better than ADMM in terms of 𝑟𝑒𝑙 and 𝓈𝑎𝑣𝑔. The method 

presented in (Mohammadi and Kargarian 2020) can also be applied to adjust the value of 𝜌 and 

enhance the convergence performance of A-ADMM. 

4.5.6 AC OPF Analysis  

We have applied A-ADMM and ADMM to solve AC OPF for the 48-bus and 118-bus systems. 

A fictitious bus is added in the middle of each tie-line, and a pseudo generation is added to this 

bus. The bus and the pseudo generation are duplicated, and a copy is assigned to each neighbor. 

MATPOWER is used to solve AC OPF subproblems. The distributed optimization parameters are 

set as  𝜇 = −0.8, 𝜂 = 0.2, 𝜆0 = 0 and 𝜌 = 40  for the 48-bus system, and 𝜇 = −0.9, 𝜂 = 0.1, 

𝜆0 = 1 and 𝜌 = 0.2 for the 118-bus system. Figure 4.14 demonstrates the 𝑟𝑒𝑙 indices obtained by 

ADMM and A-ADMM. The algorithms are run for 60 iterations for the 48-bus system and 90 

iterations for the 118-bus system. The 𝑟𝑒𝑙 indices obtained by A-ADMM are always below those 

obtained by ADMM. It shows that A-ADMM outperforms the synchronous parallel ADMM. 



101 

 

 

Figure 4.11 The 𝑟𝑒𝑙 and 𝓈𝑎𝑣𝑔 indices over iterations for 𝜌 = 100. 

 

 

Figure 4.12 The 𝑟𝑒𝑙 and 𝓈𝑎𝑣𝑔 indices over iterations for 𝜌 = 500. 
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Figure 4.13 The 𝑟𝑒𝑙 and 𝓈𝑎𝑣𝑔 indices over iterations for 𝜌 = 2000. 

 

(a) 

 

 (b) 

Figure 4.14 The 𝑟𝑒𝑙 index for AC OPF on a) 48-bus and b) 118-bus systems. 
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4.6 Conclusion 

A momentum-extrapolation based asynchronous ADMM is proposed to solve OPF. A 

prediction-correction approach is designed to predict missing information within a neighborhood 

of the most updated values of shared variables. As compared to the classical synchronous parallel 

ADMM, the proposed A-ADMM reduces the unproductive time and under-utilization of 

computation resources if the computational burdens of OPF subproblems are heterogeneous. 

Simulation results on several test cases show the promising performance of the proposed 

algorithm for solving DC OPF and AC OPF. It is illustrated that A-ADMM outperforms ADMM, 

in particular, if the sizes of subproblems are heterogeneous. After the same number of iterations, 

A-ADMM provides smaller optimality and feasibility gap measures. Also, it is discussed that the 

values of penalty multipliers do not degrade the convergence behavior of the proposed algorithm. 

The extrapolation and momentum coefficients should be set properly to obtain good predictions 

and enhance the algorithm’s performance. If subproblems are heterogeneous, the momentum term 

should dominate to have more conservative predictions and prevent large prediction errors. 
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5 CHAPTER 5. LEARNING-BASED ASYNCHRONOUS DOUBLE-LOOP 

ADMM FOR OPTIMAL POWER FLOW 

 

5.1 Introduction   

Majority of existing distributed optimization algorithms are synchronous in which 

subproblems are solved once at each iteration upon receiving all shared variables information from 

their neighboring subproblems. This synchronization requirement degrades the scalability of 

distributed optimization and under-utilization of computation resources, especially if subproblems 

are computationally heterogeneous. Few recent efforts have attempted to develop asynchronous 

algorithms for power systems operation. Although these algorithms solve subproblems in a parallel 

asynchronous manner, they have difficulties in proceeding toward the optimal solution with 

reasonable steps after implementing each iteration since they use the latest information of 

neighboring subproblems to carry out future iterations. This also forces faster subproblems to go 

to an idle mode after a couple of iterations, until updated information is received from other 

subproblems. To address these limitations, we propose a learning-based double-loop asynchronous 

alternating direction method of multipliers (LA-ADMM) that i) has information prediction 

capability and ii) allows a significant level of asynchrony between subproblems. We develop a 

momentum-extrapolation based prediction-correction technique to predict missing information. 

Furthermore, we present an online streaming-based anomaly classification method to observe the 

performance of predicted data and control Lagrange multipliers update while proceeding with 

predictions and solving subproblems asynchronously. The proposed LA-ADMM is applied to 

solve the optimal power flow problem for several test systems. Promising results are obtained as 

compared to the classical synchronous ADMM and asynchronous ADMM without the anomaly 

switch control. 
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5.2 Contribution 

The main contributions of this chapter are summarized as follows: 

• A double-loop asynchronous ADMM is proposed, with a momentum-extrapolation 

prediction-correction step, to solve the OPF problem distributedly. 

• The designed prediction-correction step does not need large datasets and can be used at 

very early iterations with few available data points. In contrast, complex machine 

learning-based algorithms need a large dataset for predicting missing information, which 

makes them challenging to be used for predicting missing information in distributed 

optimization. 

• An inner loop is embedded to prevent prediction error propagation in the case of a high 

level of asynchrony of subproblems. The concept of the inner loop is used for sequential 

distributed optimization in (DorMohammadi and Rais-Rohani 2013, Mohammadi, 

Mehrtash et al. 2018); however, it is new in the context of asynchronous distributed 

optimization.  

• An anomaly detection switch is designed to control inner loop activation-deactivation 

automatically. Many efforts have attempted to develop anomaly detection techniques for 

online streaming (Zhang, Zhao et al. 2019); however, no effort has been reported in the 

literature on anomaly detection in the context of distributed optimization. 

5.3 Asynchronous ADMM (A-ADMM) 

Sequential and synchronous parallel ADMM optimal power flow algorithms are described in 

Chapter 4. Asynchronous parallel ADMM is presented recently in (Guo, Hug et al. 2017) to 
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remove the need for synchrony between OPF subproblems and enhance the computation efficiency 

of distributed optimization. At each iteration, the latest values of shared variables obtained in the 

previous iteration are used to allow OPF subproblems to be solved continuously instead of waiting 

for all other subproblems to be solved. Using the latest updated information makes asynchronous 

ADMM (A-ADMM) conservative, slows moving toward the optimal solution after carrying out 

each iteration, and restricts the allowable level of asynchrony between subproblems. 

5.4 Learning-based asynchronous ADMM 

We improve asynchronous ADMM by adding a prediction-correction step to the algorithm that 

forecasts shared variable values based on information obtained over the course of iterations. At the 

beginning of each iteration, an OPF subproblem checks whether it has received share variable 

values from its neighboring subproblems. If not, a regression-based technique is used to predict 

the values of shared variables (considered as missing information) and allow the corresponding 

OPF subproblem to be solved. An anomaly switch controller is designed to bypass error 

propagation impact on Lagrange multipliers if the number of consecutive iterations with missing 

information goes beyond few iterations; otherwise, inevitable prediction errors may be 

accumulated and degrade convergence performance or even divergence.  

 

5.4.1 LA-ADMM with Anomaly Detection and Inner Loop 

We have observed that the momentum-based extrapolation prediction-correction approach, 

presented in Chapter 4, works well for predicting missing values of shared variables for up to a 

few iterations. If no updates of actual shared variables are received beyond several iterations, even 

the correction step may not prevent ADMM from moving toward a point with low-quality results 
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or a suboptimal/infeasible point. We add a few steps to A-ADMM to avoid obtaining low-quality 

results if the level of asynchrony between OPF subproblems is large and missing information is 

observed in many consecutive iterations or if predicted values of missing information are not 

accurate enough. 

By observing the sensitivity of optimization to variation of multipliers 𝜆 and inspiring by 

analytical target cascading (Tosserams, Etman et al. 2006, DorMohammadi and Rais-Rohani 

2013), we modify the A-ADMM structure by adding a switch-controlled inner loop. Figure 5.1 

shows the structure of the proposed learning-based A-ADMM (LA-ADMM). The switch 

controller is an autonomous monitoring unit that decides whether to activate the inner loop or not 

by observing the prediction step performance. If the inner loop is activated, multipliers 𝜆 will not 

be updated while shared variables are updated/predicted iteratively. By doing so, the algorithm 

reduces the primal residual (3.6) for a given 𝜆, instead of updating 𝜆 in a wrong direction that may 

lead to divergence.  

Inner loop switch controller with unsupervised anomaly detection for online streaming: The 

switch controller works based on anomaly detection. We develop an algorithm that reads shared 

variables predicted by the momentum-based extrapolation    prediction-correction    approach and 

identifies whether there is an anomaly in the stream of predicted values. We use the total generation 

cost function of LA-ADMM (𝑓𝑖
𝐿𝐴−𝐴𝐷𝑀𝑀 ) at each iteration as an index to evaluate whether 

predictions cause a considerable error or not. The process of carrying out distributed optimization 

is similar to online steaming in which new data is obtained iteration by iteration. Thus, an anomaly 

detection technique is required that works for online streaming data even if not enough data is 

available at first few iterations. This requirement makes most machine learning techniques not 

applicable for anomaly detection when running distributed optimization iteratively. 𝑓𝐿𝐴−𝐴𝐷𝑀𝑀 is 
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updated at each iteration, and the number of iterations of LA-ADMM to convergence is problem-

dependent. This makes labeling the online stream of predicted shared variable values challenging.  
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Figure 5.1 Flowchart of the proposed LA-ADMM algorithm. 

We propose an unsupervised ground-up anomaly learner for online steaming that is suitable 

for distributed optimization applications. Such an effort has not been made in the literature. The 

proposed algorithm has two steps. In the first step, based on the 𝑓𝑖
𝐿𝐴−𝐴𝐷𝑀𝑀 curve obtained over 

the course of iterations 1 to 𝑘 − 1, we predict the generation cost function 𝑓�̃�
𝐿𝐴−𝐴𝐷𝑀𝑀

 at iteration 

𝑘. We then measure how much the severity of anomaly is in the current iteration as compared to 

previous iterations. To do so, we implement the following steps. 

• Step 1.1. Wavelet denoising: Denoising is widely used in image processing to reduce noise 

in pictures. Wavelet denoising splits data into low- and high-frequency categories. Most useful 
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information exists in low frequency. Data in the high-frequency category is filtered out to reduce 

noise and smoothen data. We use wavelet to detect noise, or anomaly, in the generation cost curve 

over the course of distributed optimization iterations.  

• Step 1.2. Moving average: The moving average function, usually named as smooth 

function, slides a window of size of five on the entire selected data and replaces each point with 

the mean value of the last five iterations. This is similar to a low pass filter. Large oscillations are 

mitigated using the moving average, while the trend of the curve will not deteriorate. Moving 

average is a smoothing technique in the time domain, whereas wavelet is in the frequency domain.  

• Step 1.3. Energy difference evaluation: Wavelet denoising removes high frequency, and 

moving average keeps low frequency and smoothens larger jumps. For further noise reduction, we 

carry out denoising and moving average several times until the energy difference between two 

signals becomes less than a threshold (e.g., 0.1%). Desired curve 𝑓�̃�
𝐿𝐴−𝐴𝐷𝑀𝑀

, which is without 

anomaly and noise, is obtained upon completion of this step. 

We calculate the relative energy difference between denoised 𝑓�̃�
𝐿𝐴−𝐴𝐷𝑀𝑀

 and original 

𝑓𝑖
𝐿𝐴−𝐴𝐷𝑀𝑀  as 𝜖 =

|𝑓�̃�
𝐿𝐴−𝐴𝐷𝑀𝑀

−𝑓𝑖
𝐿𝐴−𝐴𝐷𝑀𝑀|

𝑓𝑖
𝐿𝐴−𝐴𝐷𝑀𝑀 . As an example, Fig. 5.2 demonstrates 𝜖 for simulation 

on the IEEE two-area RTS 96 system. The relative energy difference between wavelet and moving 

average is set to 10% and 0.1%, and the obtained curves are denoted by denoised I and II, 

respectively. Denoised I, with less smoothened noise, is closer to the original data, whereas the 

curve of denoised II is smoother. The threshold is problems dependent and can be set by the user. 
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Figure 5.2 Comparison between 𝑓�̃�
𝐿𝐴−𝐴𝐷𝑀𝑀

 and 𝑓𝑖
𝐿𝐴−𝐴𝐷𝑀𝑀. 

In the second step, the severity of anomaly is measured. At each iteration, we use 𝑓𝐿𝐴−𝐴𝐷𝑀𝑀 −

𝑓𝐿𝐴−𝐴𝐷𝑀𝑀 as the anomaly measure and select the most recent 20 iterations to define the severity 

of anomaly. Anomaly measurement is a relative index, and selecting a single threshold to 

categorize the severity anomaly would degrade anomaly detection performance. We use k-means 

to categorize and sort anomaly to 𝜙 groups. Depending on which class the last iteration belongs 

to, we define how severe anomaly would be.  For example, if 𝜙 = 10 and classes larger than a 

certain threshold 𝜓 = 7 counted as severe anomalies, any score larger than seven means that the 

inner loop should be activated. Since the Lagrange multipliers have the most critical impact on 

ADMM convergence behavior, they will not be updated in the inner loop. This will prevent the 

propagation of shared variables prediction errors on Lagrange multipliers. The anomaly detection 

algorithm is explained in Algorithm. 
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Algorithm: Anomaly detection for distributed, iterative LA-ADMM  

1: Initialize 𝜙, 𝜓, and 𝑓𝐿𝐴−𝐴𝐷𝑀𝑀 

2: While 𝜖 < 0.001 do  

3:        𝜒 = denoising(𝑓𝐿𝐴−𝐴𝐷𝑀𝑀)    

4:        𝜒′ = smooth(𝜒) 

5:        𝜖 = ∑|𝜒 − 𝜒′|/∑|𝜒′|   

6:        𝑓𝑖
𝐿𝐴−𝐴𝐷𝑀𝑀

= 𝜒′  

7:        class = k-means (𝑓𝐿𝐴−𝐴𝐷𝑀𝑀 − 𝑓𝐿𝐴−𝐴𝐷𝑀𝑀, 𝜙) 

8:        if  𝜓 <class 

9:             activate inner loop  

10:      else 

11:          deactivate inner loop 

12:      end 

13: end 

 

5.5 Numerical results 

The classical ADMM and the proposed A-ADMM and LA-ADMM are implemented to solve 

the OPF problem for a 22-bus system, the IEEE two-area RTS 96 (48-bus) system, and the IEEE 

118-bus system, and the results are compared. The systems’ characteristics are given in (Kargarian, 

Fu et al.). To have comprehensive analyses, impacts of parameters and communication delay on 

the algorithms are investigated. The 𝑟𝑒𝑙 and 𝓈𝑎𝑣𝑔  indices (see (2.22) and (4.20)) are used for 

performance evaluation. The smaller 𝑟𝑒𝑙 and 𝓈𝑎𝑣𝑔 are, the better the obtained solution will be. 

Two possible conditions are studied in terms of the level of asynchrony of subproblems, low and 
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high asynchrony levels. All simulations are carried out on a personal computer with a 2.6 GHz 

CPU and 16 GB of RAM.  

5.5.1 Low Asynchrony Level  

The level of asynchrony of OPF subproblems is low, which means computational times of OPF 

subproblems are not significantly different. A subproblem would not observe missing information 

from its neighbors for more than a few iterations, e.g., 2~5 iterations. 

Impact of Momentum-based Extrapolation Parameters: The IEEE two-area RTS 96 system is 

used, and a DC OPF subproblem is formulated for each area. Shared variables are voltage angles 

of border buses 7, 13, and 23 in area one and those of buses 27, 39, and 41 in area two. Shared 

variables are initiated to zero. Tuning parameters is set as 𝜆0 = 100 and 𝜌 = 100, and two sets of 

momentum-based extrapolation parameters {𝜇, 𝜂} are selected as {−0.97,0.03} and {−0.7,0.3}. 

The number of anomaly groups is set to 𝜙 = 8. We have studied two cases with 𝜓 = 6 and 𝜓 =

5. The classical synchronous ADMM, A-ADMM and LA-ADMM are implemented and the 𝑟𝑒𝑙 

index is plotted in Fig. 5.3. The inner loop reduces small oscillations in LA-ADMM as compared 

to A-ADMM and enhances the asynchronous algorithm performance. During iterations 83-93 in 

Fig. 5.3.a, LA-ADMM has less fluctuations than that of A-ADMM. Moreover, as depicted in Fig. 

5.3.b, the inner loop prevents large prediction error propagation on 𝜆  due to having missing 

information in several consecutive iterations. Hence, LA-ADMM reaches more accurate results 

than that of A-ADMM.  

Impact of Penalty Parameter: The value of penalty multiplier 𝜌 affects convergence behaviors 

of ADMM, A-ADMM, and LA-ADMM. Large 𝜌  may increase the convergence speed while 
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increasing the risk of finding a suboptimal solution or divergence. In contrast, a small 𝜌 improves 

the chance of finding the optimal solution while the pace of convergence might be slow. 

We have set multipliers 𝜆 and 𝜌 to 200 and run ADMM, A-ADMM, and LA-ADMM for 325 

iterations. We have fixed 𝜇 and 𝜂  to −0.97 and 0.03 to have a fair comparison. The 𝑟𝑒𝑙 and 𝓈𝑎𝑣𝑔 

indices are depicted in Fig. 5.4. LA-ADMM and A-ADMM outperform ADMM in terms of 𝑟𝑒𝑙 

and 𝓈𝑎𝑣𝑔. We have set 𝜆 and 𝜌 to 700, which is relatively large, and have observed that prediction 

errors have more impact on convergence performance than the case with small multipliers. 

Comparing 𝑟𝑒𝑙 and 𝓈𝑎𝑣𝑔 indices in Fig. 5.5 shows that the proposed LA-ADMM with anomaly 

detection provides smaller indices than those of A-ADMM and ADMM. 

 

   

(a)       (b) 

Figure 5.3 𝑟𝑒𝑙 over the iteration for {𝜇, 𝜂, 𝜓} equal to a) {−0.7,0.3,6} and b) {−0.97,0.03,5}.  
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(a)      (b) 

Figure 5.4 a) 𝑟𝑒𝑙 and b) 𝓈𝑎𝑣𝑔 over iterations for relatively small multipliers. 

 

 

(a)       (b) 

Figure 5.5 a) rel and b) 𝓈𝑎𝑣𝑔 over iterations for relatively large multipliers. 

 

5.5.2 High Asynchrony Level  

If computational burden of subproblems is considerably heterogeneous and/or communication 

failure/delay happens, subproblems may observe a high level of asynchrony. Under this condition, 

subproblems may not receive updated values of shared variables from their neighbors for several 
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iterations, e.g., more than ten iterations. We simulate such a condition in this case and study the 

performance of A-ADMM and LA-ADMM. 

We have intentionally manipulated missing information patterns and have created a wide range 

of possible situations for the level of asynchrony. Figure 5.6 illustrates the idle time of subproblems 

of the IEEE 118-bus system. For the first subproblem, for instance, the maximum number of 

iterations with missing information is five. However, we have manipulated it to create cases with 

1~13 iterations with missing information. To simulate realistic yet more challenging conditions, 

we have used a significantly distorted communication delay pattern (compare blue and red patterns 

in Fig. 5.6).  

 

Figure 5.6 Designated flag for the 118-bus system for the first, second, and third subproblems. 

Inner Loop Performance: We have studied the behavior of 𝜆, 𝑟𝑒𝑙, and 𝓈𝑎𝑣𝑔 over the course of 

iterations using the IEEE 118-bus system. Figure 5.7 demonstrates the impact of inner loop on the 

𝑟𝑒𝑙 index. The solid red line and the dashed blue line depict 𝑟𝑒𝑙 of LA-ADMM and A-ADMM, 

respectively. The highlighted gray areas illustrate iterations in which the inner loop is activated. 

Wide/narrow gray areas indicate that more/less inner loop iterations are carried out at each outer 



116 

 

loop iteration. Both algorithms are carried out for 600 iterations. The inner loop enhances the 

behavior of 𝑟𝑒𝑙  index obtained by LA-ADMM and prevents large errors if oscillations are 

observed in predictions and anomaly is detected.  

To further analyze the impact of anomaly detection and inner loop on the convergence behavior, 

multiplier 𝜆1 corresponding to shared variable 𝜃33 (voltage angle of bus 33 that is shared between 

subproblems one and two) is illustrated in Fig. 5.8. Multiplier 𝜆1  obtained by LA-ADMM 

oscillates at the beginning and shows a smoother behavior by carrying out more iterations. This 

pattern is similar to that of the classical sequential ADMM, which has a desirable multiplier update 

pattern. Although A-ADMM works well at the beginning, large fluctuations are observed when 

more iterations are carried out. 

Performance Analysis Under Very High Level of Asynchrony: We study the performance of 

the proposed LA-ADMM under a very high level of asynchrony of subproblems that can be either 

because of extreme unbalance computational burden or information exchange failure. A 

prediction-only-based asynchronous algorithm would face challenges under such conditions due 

to probable significant prediction errors. We have applied A-ADMM and the proposed LA-

ADMM on the 22-bus system, the 48-bus system, and the IEEE 118-bus system. We have 

manipulated the level of asynchrony to create very high levels of asynchrony. The tuning 

parameters are set as 𝜇 = 0.97 , 𝜂 = −0.03 , 𝜆0 = 100 , 𝜌 = 100 , 𝜓 = 3 , and 𝜙 = 10 . The 

resultant 𝑟𝑒𝑙 indices for the three studied systems are shown in Figs. 5.9-11. The prediction-only-

based A-ADMM does not perform well because of considerable prediction errors due to not 

receiving the actual values of shared variables for many iterations. The prediction-anomaly 

detection-based LA-ADMM works well for the three systems, which have different levels of 

asynchrony of subproblems. Comparing the performance of the classical synchronous ADMM  



117 

 

and the proposed asynchronous LA-ADMM shows that both algorithms have roughly the same, 

good behaviors over the course of iterations. Note that the classical synchronous ADMM works 

well regardless of the level of asynchrony as this approach does not move forward until updated 

information is exchanged between all subproblems at each iteration (i.e., perfect level of 

synchrony). Thus, ADMM 𝑟𝑒𝑙  can be considered as a benchmark. Figures 5.9-11 show that 

although LA-ADMM is asynchronous, it provides 𝑟𝑒𝑙 indices that follow benchmark values over 

iterations.  

 

Figure 5.7 𝑟𝑒𝑙 over the course of iterations under high asynchrony level. 
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Figure 5.8 𝜆1 over the course of iterations under high asynchrony level. 

 

 

Figure 5.9 𝑟𝑒𝑙 over iterations for the 22-bus system under a very high level of asynchrony. 
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Figure 5.10 𝑟𝑒𝑙 over iterations for the 48-bus system under a very high level of asynchrony. 

 

 

Figure 5.11 𝑟𝑒𝑙 over iterations for the 118-bus system under a very high level of asynchrony. 
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5.6 Conclusion  

A learning-based asynchronous ADMM is proposed to solve the OPF problem in a distributed 

manner. The aim is to address some limitations of synchronous and asynchronous ADMM. The 

proposed LA-ADMM has a momentum-extrapolation based prediction-correction step and an 

anomaly bypass loop. While the prediction-correction step estimates the values of missing share 

variables, the anomaly switch controller prevents prediction error propagation on Lagrange 

multipliers. 

Various tests are implemented to solve OPF for three test systems and to analyze the 

performance of the proposed LA-ADMM. The results show that LA-ADMM outperforms 

synchronous and asynchronous parallel ADMM strategies, especially if the computational burden 

of subproblems are heterogeneous or missing information is observed in several consecutive 

iterations. 

  



121 

 

6 CHAPTER 6. CONCLUDING REMARKS AND FUTURE WORKS 

6.1 Concluding remark  

In this dissertation, several distributed optimization algorithms and techniques are proposed to 

solve the OPF problem in a distributed manner. In Chapter II, we present a decentralized OPF 

algorithm for the collaborative management of transmission and distribution systems. An ATC-

based multilevel hierarchical distributed optimization is proposed in which TSO’s OPF is in the 

upper level of hierarchy and OPFs of DSOs are in the lower level. DC OPF is used for TSO, and 

AC OPF is used for DSOs. TSO and DSOs exchange only limited information of boundary buses 

(i.e., voltage angles of transmission-side buses and voltage angles and magnitudes of distribution-

side buses) and are not required to reveal their commercially sensitive information to other parties. 

Two coordination strategies, namely DQA and TDQA, are presented to coordinate TSO and DSOs 

in a decentralized manner. DQA and TDQA solve local OPF problems associated with TSO and 

DSOs in parallel, which is more computationally efficient than sequential coordination strategies.  

In Chapter III, we present an accelerated and robust ATC and its application for solving OPF. 

The proposed algorithm enhances the convergence performance of ATC and decreases its 

sensitivity to initialization and imbalance of cost terms in optimization objective functions by 

incorporating a balancing coefficient in objective functions of subproblems. The balancing 

coefficient is calculated at the end of the first iteration. The simulations show that the proposed 

AR-ATC with ALAD and EPF coordination strategies provides promising results for DC OPF and 

AC OPF. We have also tested the proposed technique on APP and ADMM and found that their 

performance is enhanced after incorporating the balancing coefficient. The best performance of 

AR-ATC is obtained when multipliers are set to moderate values.  
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In Chapter IV, we propose momentum-extrapolation-based asynchronous ADMM. A 

prediction-correction approach is designed to predict missing information of shared variables 

within a neighbourhood of the most updated values of these variables. Our proposed A-ADMM 

reduces the unproductive time of computational resources significantly in comparison with 

classical parallel ADMM. Simulation results on several test cases show the promising performance 

of the proposed algorithm for solving DC OPF and AC OPF. It is illustrated that A-ADMM 

outperforms ADMM, in particular, if the sizes of subproblems are heterogeneous.  

In Chapter V, A learning-based asynchronous ADMM is proposed to address some limitations 

of A-ADMM developed in Chapter IV. The proposed LA-ADMM has an anomaly bypass loop. 

Although the prediction-correction step in A-ADMM predicts the missing values of share variables, 

it may have a large error after consecutive prediction. The anomaly switch controller prevents 

prediction error propagation on Lagrange multipliers. Various tests are implemented to solve OPF 

for three test systems and to analyze the performance of the proposed LA-ADMM. The results 

show that LA-ADMM outperforms synchronous and asynchronous parallel ADMM strategies, 

especially if the computational burden of subproblems are heterogeneous or missing information 

is observed in several consecutive iterations. 

6.2 Future Work 

The following suggestions are to extend the proposed distributed algorithms and techniques. 

• Finding an optimal value for the balancing coefficient to further enhance the 

convergence performance of distributed OPF 

• Implementing anomaly detection to enhance the performance of DQA 
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• Extending the proposed asynchronous learning-based ADMM by adding time series 

and machine learning techniques for predicting shared variable  

• Using a convex version of AC OPF, e.g., second-order cone programming, in the 

proposed asynchronous technique 

• Modeling uncertainties of renewable and load and outages of components in distributed 

OPF 

• Using graph clustering or learning approaches to partition a power system to achieve a 

high convergence rate of distributed algorithms when applied to OPF 

• Finding the best reference bus location to improve convergence performance of 

distributed OPF 

• Extending the proposed algorithms and techniques to nonconvex and mixed-integer 

problems, such as unit commitment  
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