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ABSTRACT 
 
Eastern oysters (Crassostrea virginica) provide valuable ecosystem services and support a 
productive commercial industry in the northern Gulf of Mexico. Declining abundance from water 
quality changes and other factors drives development of management and restoration strategies 
focused on a comprehensive, metapopulation approach. Identifying oyster resource zones based 
on water quality combined with selective breeding of oysters adapted to specific conditions 
provides strategies to support aquaculture development and ensure resilient oyster populations 
and high production. Using 2015-2019 satellite-derived continuous salinity and temperature data 
for coastal Louisiana, this work created maps defining oyster resource zones supportive of (1) 
broodstock sanctuary reefs, (2) productive reefs during dry and (3) wet years, and (4) off-bottom 
aquaculture development. Unique salinity regimes occurred across estuaries, with high salinity 
variation critically limiting broodstock sanctuary areas. Further, these maps suggest 
consideration of offshore areas for aquaculture development and identify a need to shift 
restoration areas down-estuary due to up-estuary freshening. Accounting for variable water 
quality conditions over time acknowledges temporally variable reef success as individual 
populations in different zones will thrive in different years, thus promoting overall oyster 
persistence and production long-term. Reef persistence and oyster production would also benefit 
from ensuring oyster populations within zones or identified for use in aquaculture are uniquely 
adapted to decreasing salinities. A second study assessed unique Louisiana oyster populations 
from assumed low-salinity areas for population-specific low salinity tolerance. Progeny of these 
populations were grown at an intermediate (10-20) and low salinity (<8) field site for twelve 
months, tracking growth, mortality, and condition. While oyster growth was similar between 
populations, one population experienced low mortality (<20%) compared to the other three (40-
70%) at the low salinity site. The identification of populations tolerant to low salinity would 
facilitate the use of stocks specifically suited to areas where they will be grown, promoting 
restoration, development of aquaculture, and industry interests. Together, these two 
approaches could help maximize oyster restoration and harvest through the selective breeding 
and placement of adapted populations in areas identified to typically experience a given 
condition, both within traditional oyster areas and in areas predicted to support future 
production and aquaculture. 
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CHAPTER 1. INTRODUCTION 
 
The eastern oyster, Crassostrea virginica, is a critical estuarine species that supports ecosystems 
and commercial industries along the Atlantic and Gulf coasts of the United States. Oysters 
provide critical ecosystem services including water filtration, shoreline stabilization, carbon 
sequestration, and habitat provision as well as support over 45% of the commercial oyster 
production in the USA (Shumway 1996, Coen et al. 2007, LDWF 2019). Despite their importance, 
oyster populations are declining globally (Beck et al. 2011). Possible reasons for this decline 
include overharvesting, increased prevalence of disease, and habitat destruction, but a primary 
source of oyster decline in Gulf of Mexico estuaries specifically is the occurrence of increasingly 
variable water quality conditions (NRC 2004, Beck et al. 2011, Beseres Pollack et al. 2012). 
 
Eastern oysters reside in estuaries which are naturally spatially and temporally variable. 
Influenced by both marine and terrestrial inputs, estuaries create a gradient of water quality 
conditions ranging up-estuary to down-estuary (Dugas and Roussel 1983, Dekshenieks et al. 
1993). This gradient can fluctuate over time when riverine input and precipitation are greater in 
some years compared to others, creating relatively “wet” or “dry” conditions (Melancon et al. 
1998). Additionally, increased freshwater inputs from changing climate patterns, and consequent 
long-term water quality changes, are predicted for the northeastern Gulf of Mexico creating 
more intense and extreme conditions in the near future (Keim and Powell 2015). Further, coastal 
land loss mitigation strategies such as riverine diversions may deposit additional freshwater into 
specific estuaries, causing further changes to oyster habitat (DWH NDRA 2017). 
 
This current and projected increase in water quality variability, particularly in salinity, is especially 
relevant to oysters. As osmoconformers, oysters regulate osmolytes through intracellular and 
extracellular regulation of fluids, changes in cell volume, and through closure of their shells under 
extreme water quality conditions (Shumway 1996). Therefore, increased salinity variability is 
detrimental to oysters because it is energetically costly to constantly osmoconform (Lavaud et al. 
2017) and, while shell closure can be maintained for several days without harm, it reduces 
feeding rates and will weaken the individual causing mortality over long time periods (Shumway 
1996). Several water quality conditions including temperature, turbidity, chlorophyll-a 
concentration, and dissolved oxygen are critical to oyster growth and survival, but in Louisiana, 
salinity is the most locally critical influencing water quality condition for oysters (Heilmayer et al. 
2008, Rybovich et al. 2016, Casas et al. 2018). 
 
Oysters are generally tolerant to a large range of water quality conditions, with optimum 
conditions promoting fast growth and low mortality. Eastern oysters can survive a wide salinity 
range from 5 – 40 with Louisiana populations showing optimal growth and lowest mortality in 
ranges between 10.7 – 16.1 (Shumway 1996, Lowe et al. 2017). As salinity decreases, oysters may 
have reduced growth from decreased feeding, with extreme events resulting in mortality, while 
higher salinities may result in increased mortality from predation or disease (Shumway 1996, 
McCarty et al. 2020). Oysters are traditionally farmed along the estuarine salinity gradient to 
allow for production in wet, dry, and average condition years (Melancon et al. 1998), as wet, dry 
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and average condition years are reflected in shifting salinities up or down estuary. This approach, 
used for decades by oyster farmers, acknowledges that not all locations will be productive for 
oysters every year, and relies on the metapopulation connectivity of oyster resources within 
specific estuaries, and can be expanded to restoration activities and aquaculture development. 
Rather than focusing on single reefs or sites, this framework acknowledges this spatial and 
temporal variation in water quality conditions result in shifting production and resource zones 
for oysters. 
 
While metapopulation connectivity enables oyster reefs to remain linked and productive along 
the estuarine salinity gradient despite temporally changing conditions, there is also evidence that 
some discrete oyster populations are better able to tolerate low salinity than others. This 
population specific adaptation may allow for the strategic placement of oyster populations 
tolerant to lower salinity in areas that more often experience those conditions to assist in reef 
persistence over time. This identification of specific oyster populations may be most effective if 
used by the oyster aquaculture industry on the Louisiana coast. Development of low salinity 
tolerant population broodstock able to  survive and grow in low salinity areas would improve the 
ability of oysterfishers to maintain crops along the estuarine salinity gradient and improve the 
chances of some oysters being viable in all years despite variable conditions. With continued high 
market demand and declining oyster abundance, the aquaculture industry is developing rapidly 
in this region. 
 
The concept of metapopulation connectivity as a management tool and population specific 
adaptation as  a mechanism of improving oyster survival and productivity for both restoration 
and commercial production were examined in this work through two studies. The second chapter 
of this thesis outlines the development of a method to identify static zones of oyster suitability 
based on local salinity conditions known to impact oyster growth and survival across the 
Louisiana coast over time. Coastwide salinity and temperature profiles were generated and then 
filtered based on five salinity condition thresholds to determine discrete areas suitable to oyster 
metapopulations across Louisiana estuaries with varying freshwater input over time. The third 
chapter of this thesis explores the potential for low salinity adaptation of discrete oyster 
populations for their use in both restoration and aquaculture placement and development across 
the Louisiana coast. Identification of populations tolerant to lower salinity can facilitate their use 
as broodstock to support aquaculture, restoration, and management. Through a combination of 
these two studies, we explore the critical relationship between oysters and low salinity exposure 
over time to identify specific means of combating the pervasive challenges of decreasing salinity 
averages and increasing salinity variability in Gulf of Mexico estuaries. 
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CHAPTER 2. DEFINING OYSTER RESOURCE ZONES FOR RESTORATION, FISHERIES 
AND AQUACULTURE IN COASTAL LOUISIANA 

 
2.1. INTRODUCTION 
 
Across the northern Gulf of Mexico (nGoM), the eastern oyster, Crassostrea virginica, provides 
vital ecosystem services and supports over 45% of eastern oyster production in the United States 
(LDWF 2019, NMFS 2020). Eastern oysters provide unique hard-bottom habitat, water filtration, 
carbon sequestration, coastline stabilization, increased landscape diversity, and benthic-pelagic 
coupling to estuarine ecosystems (Coen et al. 2007, Beck et al. 2011, Grabowski et al. 2012, La 
Peyre et al. 2014). Despite their ecological and commercial importance, eastern oyster 
populations are declining globally (Beck et al. 2011). This decline is caused by extensive 
overharvesting, disease, shoreline alteration, changes in freshwater flows, and changing climate 
conditions (NRC 2004, Beck et al. 2011, Beseres Pollack et al. 2012). In the face of these declines, 
many states are investing in oyster reef restoration as a component of coastal restoration and 
land loss mitigation and are calling for development of a reef network with areas for sanctuary 
or broodstock reefs (Lipcius et al. 2008, Lipcius et al. 2015, DWH NDRA 2017). In addition, the 
nGOM is  investing heavily in off-bottom aquaculture to grow oysters for harvest with seed 
produced from hatcheries to address the challenges faced by on-bottom oyster leases (Maxwell 
et al. 2008, Walton et al. 2013, Frank-Lawale et al. 2014, Campbell and Hall 2019). Research to 
find strategic locations to place these restoration reefs and off-bottom aquaculture is critical to 
ensure the success of these strategies. 
 
Eastern oysters occur over a large latitudinal range and can tolerate wide ranges of water quality 
conditions (Casas et al. 2018). In Louisiana, salinity and temperature are the primary water 
quality variables impacting eastern oyster survival (Dugas and Roussel 1983, Heilmayer et al. 
2008, Rybovich et al. 2016). Eastern oysters can survive temperatures ranging -2 – 36°C 
throughout their geographical range, but Louisiana populations have exhibited optimal growth 
within 20 - 26°C (Shumway 1996, Lowe et al. 2017). Eastern oysters can survive a wide salinity 
range from 5 – 40 with Louisiana populations showing optimal growth and lowest mortality in 
ranges between 10.7 – 16.1 (Shumway 1996, Lowe et al. 2017). Both salinity and temperature 
vary up-estuary to down-estuary and sessile organisms, such as the eastern oyster, are inherently 
susceptible to these changing conditions (Melancon et al. 1998, Lowe et al. 2017). As a result, 
Louisiana oyster farmers have traditionally maintained leases along the natural gradient allowing 
for productive on-bottom operation in wet, dry, and average condition years (Melancon et al. 
1998). With predicted long-term changes in critical water quality parameters (Keim and Powell 
2015), more intense and extreme conditions may threaten eastern oysters in nGoM in the near 
future. 
 
In estuarine environments, high spatial and temporal variability from both terrestrial and marine 
influences affect critical water quality parameters, impacting ecosystem functioning and fisheries 
production (Dugas and Roussel 1983, Dekshenieks et al. 1993). Temporal variability arises from 
seasonal, annual, and long-term climatic cycles (Orlando et al. 1993). For example, water quality 
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conditions in nGoM are impacted by the El Niño Southern Oscillation, which creates lower than 
average up-estuary salinities (Orlando et al. 1993, Kennedy et al 2007). Spatial variability in 
estuaries across the nGoM results from differences in riverine input, basin geomorphology, 
coastal land loss, and restoration activities (Orlando et al. 1993). For example, variation in 
freshwater river inputs from the Mississippi, Atchafalaya, and Pearl rivers in Louisiana result in 
some estuaries with high salinity but low nutrients and others with low and variable salinity but 
high nutrients (Skylar et al. 1998). Additional variability from climate change including sea level 
rise and increased precipitation and runoff may exacerbate these effects (Keim et al. 2011, Keim 
and Powell 2015). These numerous sources of variability cause individual estuaries to experience 
water quality changes in different directions and magnitudes, resulting in unique estuarine 
environments across Louisiana. As a result, management of ecosystems and fisheries requires 
consideration of local conditions and how local populations of organisms can adapt (Mulholland 
et al. 1997, Bible et al. 2017). 
 
Numerous habitat suitability indices (HSI) models have been developed to inform locally specific 
management of oyster resources and placement of restoration projects (Cake 1983, Soniat et al. 
2013, Denapolis 2018, Theuerkauf et al. 2019). HSI’s vary from models using a few to fifteen 
parameters to assess habitat suitability for oysters and have been used for environmental impact 
assessments (Cake 1983), to assess changes from proposed restoration (Soniat et al. 2013), and 
to inform restoration site placement (Theuerkauf et al. 2019). HSI models have also been 
implemented in geospatial frameworks and developed as web-based platforms (Beseres Pollack 
et al. 2012, Beseres Pollack et al. 2019, Wickliffe et al. 2019).  
 
However, to identify locations for sustainable oyster metapopulations, conditions over multiple 
years and across the spatial gradient must be considered to account for variation of water quality 
conditions over time (Lipcius et al. 2015). Melancon et al. (1998) suggested a set of oyster 
resource zones for Barataria and Terrebonne estuaries in Louisiana based on long-term salinity 
patterns and input from oyster farmers. This approach responds to not only the spatial and 
temporal variation within an estuary but incorporates metapopulation connectivity between 
oyster reefs as well. Recent studies suggest that recognition of oyster population connectivity 
and focus on development of sanctuaries and aquaculture improves maintenance of oyster 
resources (Lipcius et al. 2008, Lipcius et al. 2015, DWH NDRA 2017). A spatial tool to identify 
areas (zones) differentially suitable for aquaculture, restoration for sites suitable across wet or 
dry years, and for sanctuary or broodstock would critically inform an approach to manage oysters 
as metapopulations (Theuerkauf et al. 2019). 
 
Increased focus on restoration, conservation, and development of off-bottom oyster aquaculture 
requires increased focus on marine spatial planning. This spatial planning for oyster resilience 
and production requires determining suitable habitat conditions, largely driven by salinity in this 
region, for oysters to thrive. The objective of this study is to define zones based on the last 5-
years (2015-2019) environmental conditions in estuaries across Louisiana to determine areas 
where a network of oyster reefs would survive and be most productive over time. Specifically, 
this work aims to develop a coastwide map identifying four distinct oyster resource zones to 



5 
 

support decision making related to the selection of locations for aquaculture operations, reef 
restoration, and broodstock sanctuaries.  
 
2.2. METHODS 
 
Oyster resource zones were defined based on five-year salinity parameters relevant to oyster 
survival in coastal Louisiana. Salinity and temperature (°C) from continuous data recorders and 
satellite-derived data were used to generate coastwide profiles that were then filtered based on 
condition thresholds. The filtered water quality data was used to define areas across estuaries 
suitable to oyster conditions with varying freshwater inputs over time. 
 
2.2.1. Study area 
 
The study area for this analysis was defined using the Louisiana basin boundaries (CPRA 2017) 
(Figure 2.1.), extended 5 km from the coastline, and manually simplified in order to extend the 
boundary beyond the state territorial waters out into the Gulf of Mexico. The Louisiana coast is 
composed of multiple estuaries, which vary in freshwater river influence, tidal exchange, and 
magnitude of salinity variability (Orlando et al. 1993, Solis and Powell 1999) (Figure 2.1.). The 
eastern half of the state is dominated by the Mississippi River Delta while the western half 
consists of the Chenier Plains and many estuarine lakes. These estuaries represent a large range 
of spatially and temporally varying conditions resulting from differing riverine inputs, basin 
morphology, and management. 
 

 
Figure 2.1. Louisiana basin boundaries as defined by the Coastal Protection and Restoration Authority. 
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2.2.2. Zone definition 
 
Four oyster resource zones were defined to identify areas that would support (1) development 
of broodstock spawning sanctuaries, (2) restoration of oyster reefs across areas supportive of 
oyster growth, survival, and reproduction, and (3) aquaculture operations. Key variables that 
could inform the zones were identified (Table 2.1.) for potential inclusion in the zone definitions, 
however, due to lacking data availability, only water coverage, salinity, and season (temperature 
(°C)) were used in defining the zones (Table 2.2.). 
 
Table 2.1. Water quality parameters considered to generate oyster 
resources zones in coastal Louisiana. 

Variable Measure 

Land/water coverage Presence/absence of water 
Salinity Seasonal mean, variation, min, max 

Water temperature °C Seasonal mean, variation, min, max 
Turbidity Annual mean 

Chlorophyll-a Annual mean 
Exposure (fetch + wind) Seasonal mean 

Adjacent land use Level of impact; accessibility 

 
The four zones identified covered both aquaculture, and potential restoration sites, including 
broodstock sanctuary zones, dry, and wet year restoration zones.  The Aquaculture Zone was 
designed to capture conditions best suited for high oyster growth and low mortality, while 
disregarding concerns for reproduction (based on assumption that seed would come from 
hatcheries) and predation at high salinity (as oysters would be grown in baskets). The Broodstock 
Sanctuary Zone was designed to optimize reef establishment and long-term persistence with a 
focus on spawning month mean salinity, annual mean salinity, and low annual salinity variation. 
The Restoration Dry and Restoration Wet Zones were designed for optimum reef survival, 
growth, and reproduction during years with lower or higher than average freshwater inputs into 
estuaries. These zones would contain oyster populations that may recruit and reproduce only 
once every few years but still allow some to survive through the years in between.  
 
Accounting for conditions in dry and wet years was based on zones described by Melancon et al. 
(1998). A dry year, with lower-than-average freshwater input, results in higher inshore salinities 
providing conditions for optimal oyster growth, survival and reproduction at more inshore sites 
during these years; a wet year, with higher-than-average freshwater input, results in lower 
offshore salinities providing conditions for optimal oyster growth, survival and reproduction at 
more offshore sites during these years (Figure 2.2.). To define these zones, annual mean salinity, 
annual salinity variation, spawning season salinity, and summer and winter minimum salinity 
were defined for each zone explicitly (Table 2.2.).  The aquaculture zone was defined by salinities 
that generally support high oyster growth, low mortality, and assumed aquaculture stock would 
be hatchery produced. 
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Figure 2.2. Salinity conditions within an estuary in dry, wet, and average years. Yellow areas would be included in the Dry Restoration 
Zone, red areas would be included in the Broodstock Sanctuary Zone, blue areas would be included in the Wet Restoration Zone 
and green areas would be an example of areas included in the Aquaculture Zone. 

 
2.2.3. Coastwide data acquisition 
 
We obtained daily inshore salinity and temperature (°C) data from continuous data recorders 
maintained by the state of Louisiana Coastwide Reference Monitoring System (CRMS, CPRA 2020) 
and the United States Geological Survey (USGS 2020) (Figure 2.3.). Offshore data were obtained 
from the Hybrid Coordinate Ocean Model for salinity (GODAE 2020) and the National 
Oceanographic and Atmospheric Administration (NOAA) Optimum Interpolation Sea Surface 
Temperature dataset for temperature (NOAA 2020) (Figure 2.3.). CRMS and USGS data were 
accessed by public online websites databases, HYCOM and NOAA data were derived from remote 
sensing raster coverage and accessed through the data catalog of Google Earth Engine, an online 
computing platform for geospatial analysis using Google’s infrastructure. From all sources, daily 
salinity and temperature means were obtained for January 1, 2015 through December 31, 2019. 
There were thirty-two dates that did not contain data in the HYCOM dataset; the salinity mean 
for these days was estimated by averaging the means of the two surrounding dates. 
 
In order to compare the 5-year data set used for these maps to a longer historical timeframe, six 
locations with continuous long-term data recorders available were identified: Calcasieu Lake, 
Vermilion Bay, Terrebonne Bay, Barataria Bay, Breton Sound, and Biloxi. Monthly salinity means 
for 2002 – 2019 were compared to monthly salinity means for 2015 – 2019 to identify differences 
in short-term versus long-term salinity trends (USGS 2020). The data was adjusted to directly 
show the disparity between the two data sets (salinity anomaly). The longer 2002 – 2019 
timeframe was not used to develop oyster resource zones in this study due to a focus on 
developing maps reflective of current estuarine conditions and a lack of long-term, coastwide 
daily data to inform the spatial interpolations. 
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Table 2.2. Environmental conditions included in oyster resource zone definition. Time is defined as the number of 
months and/or years out of the relevant time period required to meet the zone conditions.  Spawning months are 
defined as Apr-Nov, summer is defined as Jun-Sep, and winter is defined as Dec-Feb for each year in the analysis. 

  
Spawning 

months mean 
salinity 

 
Minimum 

monthly summer 
mean salinity 

 
Minimum 

monthly winter 
mean salinity 

 Annual mean 
salinity 

 Annual salinity 
variation 

    Value Time   Value Time   Value Time   Value Time   Value Time 

Broodstock 
Sanctuary 

Zone 

 ≥12 

2+/8 
months 
for 3/5 
years 

 ≥8 
16+/20 
summer 
months 

 ≥8 
12+/15 
winter 
months 

 8-16 
4/5 

years 
 1SD ≤ 

4.416 
4/5 

years 

                

Dry 
Restoration 

Zone 

 ≥12 

1+/8 
months 
for 1/5 
years 

 ≥2 
16+/20 
summer 
months 

 ≥2 
12+/15 
winter 
months 

 4-12 
3/5 

years 
 1SD ≤ 

8.832 
3/5 

years 

                

Wet 
Restoration 

Zone 

 ≥12 

1+/8 
months 
for 1/5 
years 

 ≥5 
16+/20 
summer 
months 

 ≥5 
12+/15 
winter 
months 

 12-20 
3/5 

years 
 1SD ≤ 

8.832 
3/5 

years 

                

Aquaculture 
Zone 

      ≥8 
16+/20 
summer 
months 

  ≥8 
12+/15 
winter 
months 

  ≥12 
4/5 

years 
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Figure 2.3. Salinity: locations of 457 CRMS and 27 USGS data recorders and 392 approximate data locations from remote sensing 
raster coverage (HYCOM) for 2015-2019 for a total of 876 data points. Temperature °C: locations of 462 CRMS and 27 USGS data 
recorders and 45 approximate data locations from remote sensing raster coverage (NOAA) for 2015-2019 for a total of 534 data 
points. 

 
2.2.4. Spatial layer development 
 
Interpolations for full spatial coverage across the study area were generated in ArcGIS v.10.7 
using the spline with barriers technique with a 500 m resolution. The spline technique estimates 
values using a mathematical function to create the smoothest possible surface curve that passes 
through the input points exactly. Barriers included levees, impoundments, and basin boundaries 
affecting hydrologic flow to prevent interpolation across hydrologic boundaries (Figure 2.4.; 
DeMarco et al. 2018). We interpolated daily salinity and temperature means to create daily raster 
surfaces for the Louisiana coast from 1/1/2015 through 12/31/2019. Interpolations were 
uploaded into Google Earth Engine where daily salinity and temperature data were used to 
calculate monthly means, annual means, and annual standard deviation per pixel. Each pixel in 
the raster surface is 250,000 m2 (500 m-sided square) which was selected to maximize spatial 
resolution while minimizing processing time. 
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Figure 2.4. Location of hydrologic barriers used to define oyster resource zones. 

 
2.2.5. Zone generation 
 
Monthly and annual salinity values generated in Google Earth Engine were filtered to include 
appropriate ranges and thresholds for five variables for each of the four oyster resource zones. 
Each of the five variables (spawning month mean salinity, minimum monthly summer mean 
salinity, minimum monthly winter mean salinity, annual mean salinity, and annual salinity 
variation) were defined with a salinity value and a time component to represent the relevant 
salinity required and for the time which is was required for.  Due to large temporal salinity 
variation in Louisiana estuaries, the time component was added to the zone definitions to allow 
for sufficient, less-restrictive coverage. 
 
Spawning month mean salinity represents the Louisiana oyster spawning season (April – 
November), and specifies the amount of time during that season each year of 2015 – 2019 that 
the minimum monthly mean salinity of 12 is observed. The minimum monthly summer mean 
salinity represents the lowest mean salinity allowable per month for oyster survival in Louisiana 
summer months (June – September) for all five years combined. The minimum monthly winter 
mean salinity represents the same but for Louisiana winter months (December – February). The 
annual mean salinity variable represents the range of mean yearly salinity allowable for some or 
most years from 2015 – 2019. The annual salinity variation variable represents the maximum 
standard deviation allowable for some or most years from 2015 – 2019. The standard deviation 
threshold was calculated based on the five-year standard deviation mean for the entire Louisiana 
coast area (SD = 2.208) and multiplied by a factor of 2 or 4 to allow sufficient area to be included 
in the zones. 
 
Once filtered to each zone’s specifications, the five variables were stacked to create multi-
variable oyster resource zones that include all relevant, zone-specific salinity criteria. Overlapping 
zone coverage was mapped to show the full range of oyster suitability across the Louisiana coast. 
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Coverage (km2) was calculated in ArcGIS for each zone using the Calculate Geometry tool and 
simplified to two significant figures. 
 
2.3. RESULTS 
 
Salinity and temperature along the Louisiana coast are highly spatially and temporally variable. 
This variation is what allows for variable oyster survival under different freshwater input 
scenarios. Quantifying this variation has facilitated the definition of discrete oyster resource 
zones for use in oyster restoration, production, and aquaculture. 
 
2.3.1. Environmental data 
 
Five-year mean salinity from 2015 – 2019 across the Louisiana coast ranged from 0 to 34.7 with 
increasing salinity moving down-estuary and offshore, mapped up to 5 km (Figure 2.5., Panel A.). 
Five-year mean salinity standard deviation ranged from 0 to 6.5, with differences in variation 
evident across the coast, by estuary. Specifically, higher variation was seen in Calcasieu, 
Barataria, Breton Sound, and Biloxi basins (Figure 2.5., Panel B.). 
 

 
Figure 2.5. Louisiana coast salinity profile from years included in oyster resource zone definition. Panel A: mean annual salinity 2015-
2019. Panel B: mean annual salinity standard deviation 2015-2019. 
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Five-year mean temperature from 2015 – 2019 across the Louisiana coast ranged from <20°C to 
25°C with temperature increasing slightly moving offshore (Figure 2.6., Panel A.). Five-year mean 
temperature standard deviation ranged from 0 to 8°C with highest variation around the 
Mississippi River Delta (Figure 2.6., Panel B.). 
 

 
Figure 2.6. Louisiana coast temperature (°C) profile from years included in oyster resource zone definition. Panel A: mean annual 
temperature 2015-2019. Panel B: mean annual temperature standard deviation 2015-2019. 

 
Comparison of salinity means at six continuous data recorders with daily data from 2002-2019 to 
their salinity means from 2015-2019 indicated that the years for zone development were 
generally fresher than the long-term salinity at critical oyster resource locations (Figure 2.7.). 
 
2.3.2. Oyster resource zones 
 
The four oyster resource zones span the Louisiana coast and depict predicted areas of optimum 
oyster performance based on water quality conditions (Figure 2.8.). The four zones combined 
cover 18,000 km2 of water bottom out of 37,000 km2 total within our study area. The least 
prevalent zone was the Broodstock Sanctuary Zone accounting for 1,100 km2. In general, the 
Broodstock Sanctuary Zone occurred where the Dry and Wet Restoration Zones overlap and  
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Figure 2.7. Monthly salinity means of most recent five years (2015-2019) compared to the past eighteen years (2002-2019) at six 
critical oyster resource locations along the Louisiana coast. Salinity anomaly represents the 2002-2019 mean salinity minus the 2015-
2019 salinity mean. Negative values indicate the salinity mean was lower in 2015-2019 compared to the 2002-2019 mean. Salinity 
data used are daily means taken from USGS recorders: 08017118 – Calcasieu River at Cameron, LA; 07387040 – Vermilion Bay near 
Cypremort Point, LA; 07381349 – Caillou Lake (Sister Lake) SW of Dulac, LA; 073802512 – Hackberry Bay NW of Grand Isle, LA; 
07374526 – Black Bay near Snake Island near Pointe-A-La-Hache, LA; 300722089150100 – Mississippi Sound near Grand Pass. 

 
represented a smaller range of water quality conditions. The Dry Restoration Zone accounted for 
3,600 km2 and covered up-estuary areas across the coast, including areas that would be fresher 
in an average year (Figure 2.8.). The Wet Restoration Zone accounted for 4,000 km2 and covered 
down-estuary areas across the coast, including areas that would be saltier in an average year 
(Figure 2.8.). The largest area was covered by the Aquaculture Zone, accounting for 9,600 km2, 
due to less restrictive water quality conditions (Figure 2.8.). 
 
Zone representation has a general gradient pattern from inshore to offshore estuary, changing 
from Dry Restoration Zone, to Broodstock Sanctuary Zone, to Wet Restoration Zone, to 
Aquaculture Zone with areas of overlap between each (Figure 2.9.). Aquaculture Zone overlaps 
with many of the other zones due to its less restrictive water quality requirements (Figure 2.9.). 



14 
 

Existing reefs and cultch plants were captured within these layers and largely exist within the Dry 
Restoration Zone (Figure 2.9.). 
 

 
Figure 2.8. Oyster resource zones across coastal Louisiana based on mean salinity parameters from 2015-2019 separated to show 
all areas included within each zone. A: Broodstock Sanctuary Zone, B: Dry Restoration Zone, C: Wet Restoration Zone, D: Aquaculture 
Zone. 

 

 
Figure 2.9. Oyster resource zones across coastal Louisiana based on mean salinity parameters from 2015-2019 including overlapping 
resource areas. Areas identified by the Louisiana Department of Wildlife and Fisheries as existing reefs and for cultch plants are 
included. 
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2.4. DISCUSSION 
 
Increased investment in oyster restoration for both conservation and harvest requires broad 
resource-level planning. There is extensive area supportive of oyster production across coastal 
Louisiana (up to 18,000 km2), limited potentially by water bottom type and competing uses 
including shipping and oil. The identification of broad resource zones within this area provides a 
means to ensure successful planning critical to the maintenance and advancement of oyster 
restoration and commercial productivity. Based on coastwide water quality data, we predicted 
areas to support oyster broodstock sanctuaries, restoration sites, and aquaculture development. 
The development of these oyster resource zones for coastal Louisiana (1) identifies unique 
estuarine salinity signatures with salinity variation playing a critical role in determining sanctuary 
areas, (2) identifies a potential shift in oyster restoration areas with changing freshwater inputs 
from management and climate change, (3) highlights the mismatch between static single reef 
management and shifting optimal oyster zones, and (4) suggests potential areas for offshore 
aquaculture development. 
 
These coastwide salinity maps show trends of an increasing salinity gradient moving offshore in 
all estuaries, estuary-specific salinity variation, and mean five-year salinities as fresher than the 
previous 18 years. The fresher years captured in these data (2015 – 2019) may have shifted the 
Dry and Wet Restoration zones further down-estuary; a slight down-estuary shift can be seen in 
comparison to maps generated in Barataria and Terrebonne estuaries in 1998 (Melancon et al. 
1998). This down-estuary shift in these fresher years may explain why existing mapped reefs 
provided by LDWF are all located in the Dry Restoration Zone and have had lower than average 
production during these years (LDWF 2018, LDWF 2019, LDWF 2020). The salinity interpolations 
matched Louisiana Department of Wildlife and Fisheries (LDWF) discrete data (Supplementary 
Figure B) with the largest incongruence actually showing higher predicted salinities for 2019 than 
were observed by LDWF, suggesting that the zones created may not reflect the full scope of 
freshening within the estuaries (Figure A.2.). Additionally, increased precipitation and runoff are 
predicted in the Gulf of Mexico region in future years (Keim et al. 2011, Keim and Powell 2015) 
suggesting that the zones determined in this study may represent future conditions more 
accurately than they would with inclusion of longer-term historic data. In addition to mean 
salinity decreases in the future, more salinity extremes and higher variation are predicted, 
emphasizing the importance of including salinity variation in the zone definition. 
 
Salinity variation, measured by annual standard deviation, critically limited the Broodstock 
Sanctuary Zone, which covered only 6% of the identified area suitable for oysters. Previous 
studies and models indicate that variation likely plays a critical role in the overall success and 
population dynamics of eastern oysters but is rarely accounted for in habitat suitability models 
(Livingston et al. 2000, La Peyre et al. 2014, La Peyre et al. 2015). Salinity variability plays a large 
role in the energetic cost’s oysters face as osmoconformers (Lavaud et al. 2017). Eastern oysters 
regulate osmolytes through intracellular and extracellular regulation of fluids, changes in cell 
volume, and through closure of their shells under extreme water quality conditions (Shumway 
1996). Therefore, oysters are susceptible to salinity variation, over both long and short time 
periods, because it is energetically costly to constantly osmoconform (McCarty et al 2020). Given 
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predictions of increasing variability and extreme storm events, and that salinity variability is 
detrimental to oyster persistence, the idea of static broodstock sanctuary reefs is imperfect and 
must incorporate temporally dynamic water quality conditions. 
 
Local oyster populations exist as part of a larger metapopulation, dependent on the persistence 
and success of nearby reefs (Lipcius et al. 2015). At any given time, suitable habitat for oysters 
may shift between different zones, as defined within this study. Dry Restoration areas may 
provide suitable oyster habitat for the oyster metapopulation during drier, high salinity years, 
while Wet Restoration areas may provide suitable habitat to ensure overall oyster persistence 
during wetter, low salinity years. This suggests a possible need for investment into reefs in the 
Wet Restoration Zone to preserve reef connectivity as current reefs are mostly up-estuary. 
Conservation and restoration science have demonstrated that connectivity of populations 
promotes species persistence and conserves ecological functions (D'Aloia et al. 2019). For 
management and restoration of oyster resources, this involves moving away from single reef 
management and accounting for variable water quality conditions to allow for temporally 
variable reef success (Kininmonth et al. 2010, Gerber et al. 2014, Spiecker et al. 2016, D'Aloia et 
al. 2019) (DWH NDRA 2017). Including both permanent (ie. Broodstock Sanctuary Zone) and 
dynamic (ie. Dry and Wet Restoration zones) conservation areas would encompass a larger range 
of conditions and facilitate oyster persistence over time (D'Aloia et al. 2019). 
 
Similar to HSI’s, salinity was the primary driver of the zones developed in these maps (Cake 1983, 
Denapolis 2018, Theuerkauf et al. 2019) but other factors such as food availability, temperature, 
suspended sediments, and hypoxia may help further refine zones. For example, area around the 
Mississippi River Delta is generally not suitable oyster habitat due to high suspended sediments, 
so the identification of Broodstock Sanctuary area there would likely be removed with the 
addition of a turbidity or sedimentation threshold. Increasing periods of hypoxia may also be 
problematic for suitable areas identified down-estuary and offshore, particularly if occurring for 
extended periods of time or if moving into up-estuary areas (Hagy and Murrell 2007, Rabalais 
and Turner 2019). However, a down-estuary suitability shift can be seen under high freshwater 
input scenarios demonstrated by modeled oyster production under scenarios of climate change 
and river diversions, further supporting that investment in the Wet Restoration Zone may be 
critical (Wang et al. 2017). Although these and other variables may become increasingly relevant, 
these zones overlap with prior outputs of HSI’s across estuaries (Cake 1983, Soniat et al. 2013) 
and match well with a similar mapping effort in Barataria-Terrebonne estuaries, with a slight but 
overlapping down-estuary shift in suitability (Melancon et al. 1998). A further understanding of 
relationships between oyster population dynamics and environmental factors, along with 
increasing availability of daily data to support coastwide interpolations remains critical to better 
defining these zones. 
 
Further development is also needed for off-bottom aquaculture in the region. The Aquaculture 
Zone defined in this study is extensive, and accounts for approximately 50% of the identified area 
suitable for oysters. However, it is often outside areas generally considered for oyster 
aquaculture, suggesting a need to examine the current approach to aquaculture site selection, 
and for local buy-in to considering more off-shore sites. Offshore oyster aquaculture exists in 
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other regions (ie. New Zealand, Southern California; Cheney et al. 2010) but the Gulf of Mexico 
faces  frequent and extreme severe weather challenges that must be considered. Technology 
modifications to address these challenges (ie. sinking baskets) plus the inclusion of logistics such 
as water depth, distance from shore, and use of the nearby waterways should be considered for 
aquaculture development, but we currently lack data for these parameters (Theuerkauf et al. 
2019). Offshore areas in Vermilion-Teche and Terrebonne basins in the Gulf of Mexico, where 
extensive oyster reefs were historically present before being mined, may be promising for 
aquaculture operations if these considerations are accounted for. 
 
2.5. CONCLUSION 
 
With competing uses for restoration funding and expenses associated with oyster reef 
restoration and aquaculture establishment in the Gulf of Mexico, guidance on site selection 
provides critical data to ensure continued production and persistent oyster populations. A move 
away from single reef or site planning, and towards spatial planning, and managing oysters with 
both permanent and dynamic reefs, would better reflect and account for how metapopulations 
persist particularly within highly variable habitats.  This spatial planning can further be aided 
through other restoration techniques including seeding reefs with low salinity adapted 
broodstock (Swam et al. 2020), use of supplementary hatchery produced seed especially in 
broodstock sanctuary areas, and long-term evaluation of current restoration efforts (LeBlanc et 
al. 2020). The use of a combination of these suggestions to inform management based on the 
maps developed in this study would promote efficient and effective restoration and aquaculture 
system establishment. 
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CHAPTER 3. ASSESSMENT OF UNIQUE LOUISIANA OYSTER POPULATIONS FOR 
ADAPTATION TO LOW SALINITY 

 
3.1. INTRODUCTION 
 
The eastern oyster, Crassostrea virginica, is an estuarine keystone species found along the 
Atlantic coast and in the Gulf of Mexico (Casas et al. 2018a). They are a critical economic resource 
in many coastal regions with Louisiana production comprising 34% of the nations’ and 55% of the 
Gulf of Mexico’s landings (LDWF 2019). Oysters are experiencing drastic population declines from 
overharvesting, habitat destruction, and increased disease prevalence (NRC 2004, Beck et al. 
2011, Beseres Pollack et al. 2012). To balance high market demand with declining abundance, 
aquaculture production has become increasingly popular (Maxwell et al. 2008, Walton et al. 
2013, Frank-Lawale et al. 2014, Campbell and Hall 2019). 
 
Aquaculture systems are dependent on the suitability of local water conditions for their product 
because they are fixed in place. Conditions including temperature, salinity, dissolved oxygen, 
chlorophyll-a, turbidity, and wave exposure influence oyster growth and survival (Rybovich et al. 
2016, Casas et al. 2018a). The two most important interacting conditions for oysters in Louisiana 
are temperature and salinity (Dugas and Roussel 1983, Heilmayer et al. 2008, Rybovich et al. 
2016). Louisiana oysters survive in temperatures between 20°C and 26.3°C (Lowe et al. 2017), 
although oysters can be found in waters with average temperatures between -2°C and 36°C 
(Shumway 1996). The optimal salinity for wild, on-bottom Louisiana oyster growth and survival 
is between 10.7 – 16.1 (Lowe et al. 2017) but oysters can survive a wide salinity range from 5 – 
40 (Shumway 1996). Overall, salinity is the most critical environmental factor impacting the 
success of natural oyster populations and oyster aquaculture systems (McCarty et al. 2020).  
 
Although aquaculture systems require stable conditions, estuaries in the Gulf of Mexico (GOM) 
are variable and face further salinity changes. Climate models predict increased precipitation and 
runoff in the southeastern United States and more frequent extreme events causing increased 
exposure to both general and acute low salinity (Dugas and Roussel 1983, Mulholland et al. 1997, 
Keim and Powell 2015). Increasingly low salinities will be experienced along the northeastern 
GOM, but Louisiana estuaries face additional low salinity events from land loss management 
which involves large-scale river diversions into estuaries (CPRA 2017, LDWF 2019). Decreasing 
salinity across oyster producing locations may lead to increased mortality of natural oyster 
populations, traditional oyster leases, and aquaculture systems within these areas (Das et al. 
2012, Lavaud et al. 2021). 
 
Salinities outside of oyster tolerance ranges both high and low can cause major physiological 
stress to oysters. When exposed to low salinity, oysters’ physiological and behavioral responses 
as osmoconformers include the regulation of osmolytes through intracellular and extracellular 
regulation of fluids, changes in cell volume, and through closure of their shells under extreme 
water quality conditions (Shumway 1996, Lavaud et al. 2017). Shell closure can be maintained for 
several days without harm, but over a long period of time, reduced feeding rates will limit growth 
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and weaken the oyster causing mortality (Shumway 1996). While low salinity environments pose 
these physiological challenges for oysters, they offer refuge from predation and disease and 
would allow for farming in areas affected by increasing freshwater, creating an opportunity for 
aquaculture system development in previously unconsidered areas if these low salinity 
challenges can be overcome (La Peyre et al. 2003, McCarty et al. 2020). 
 
One management strategy to address increased freshwater and low salinity events while 
maintaining high oyster production and ensuring oyster persistence is to locate and specifically 
farm oyster populations with low salinity tolerance. Oysters exist across a gradient of 
environmental conditions through their large latitudinal range, including salinity, and there has 
been some evidence for genetic subpopulations or population-specific adaptation to local 
conditions (Barber et al. 1991, Dittman et al. 1998, Burford et al. 2014). In Louisiana estuaries 
specifically, mean salinity from 2015 – 2019 ranged from 0 – 34.7, increasing with distance from 
shore (Swam et al. in review).  Additionally, mean annual salinity standard deviation for 2015 – 
2019 ranged from 0 – 6.5, differentiating by estuary (Swam et al. 2021). Within the Gulf of 
Mexico, studies have shown differential growth and survival between populations depending on 
the parent’s site of origin when transplanted to a different grow-out location (Leonhardt et al. 
2017, Miller et al. 2017). A recent study using east coast oyster populations also found evidence 
of heritability for the trait of low salinity tolerance (McCarty et al. 2020).  
 
Oysters exist in many Louisiana estuaries that differ significantly in salinity means and variation. 
While public oyster grounds exist in areas which have historically experienced optimal salinity 
conditions for on-bottom oyster production and supported highly productive oyster reefs, 
significant oyster resources have persisted outside of these areas. As these areas represent a 
range of salinity regimes, uniquely adapted populations may exist that can support the selection 
of oyster populations likely to survive freshwater events and future low salinity conditions. This 
study compares the performance of three oyster populations that exist in areas of Louisiana 
estuaries suspected to frequently have lower than optimal salinity conditions for oyster growth 
and survival, by comparing the growth, mortality, and condition of their progeny at a low and 
high salinity site to a control population. Identifying oyster populations tolerant of low salinity 
can help in developing broodstock to support aquaculture and management, especially in the 
increasingly fresh Gulf of Mexico estuaries. 
 
3.2. METHODS 
 
This field study quantified growth (mm mo-1), mortality (%), Perkinsus marinus infection (%), and 
body condition of  four Louisiana oyster populations when exposed to different salinities. One 
population was from a highly productive region which served as our control. Three populations 
were suspected to be from low salinity regions, with two in areas that receive high river input 
potentially contributing to salinity regimes experienced by present oyster reefs. 
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3.2.1. Oyster collection sites 
 
C. virginica used in this study were the progeny of oysters collected from four sites along the 
Louisiana coast: Calcasieu Lake, Sabine Lake, Pass a Loutre, and Point Au Fer (Figure 3.1.). Natural 
reefs exist across these locations, which represent a wide range of environmental conditions and 
riverine influence (Figure 3.2.). 
 

 
Figure 3.1.Locations of original broodstock collection sites and sites of progeny grow out field experiment (Grand Isle, LA and 
LUMCON in Cocodrie, LA). Zoomed panels depict the collection site and chosen associated daily data recorder. Calcasieu Lake values 
were obtained from USGS recorder 08010795 (daily data; highest correlation to LDWF monthly data at collection site R2 = 0.7583, 
10-year mean salinity difference was 0.2). Sabine Lake values were obtained from CRMS recorder 0684-H01 (daily data; highest 
correlation to LDWF twice-monthly data directly at collection site R2 = 0.5774, 10-year mean salinity difference was 5.6). Pass a Loutre 
values were obtained from CRMS recorder 0161-H01 (daily data nearest to collection site, LDWF data was infrequent but pictured 
for reference). Point Au Fer values were obtained from CRMS recorder 6304-H01 (daily data, nearest to collection site). 

 
Calcasieu Lake is an estuarine lake located at the southern end of the Calcasieu River Basin that 
experiences freshwater inflow from the Calcasieu River, consists of 58,260 acres of water bottom 
with oyster reefs, and supports extensive oyster harvesting (LDWF 2019). In Calcasieu Lake,  
according to USGS recorder representing this site, the range of monthly mean salinities from 
2009 – 2019 was 8.7 – 17.5 with daily salinities ranging from 0.1 – 29.0 and will be used as a 
control to compare to untested populations (Figure 3.1.) (USGS 08010795 – North Calcasieu Lake 
near Hackberry, LA, U.S.A). 
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Sabine Lake is a fresher estuarine bay located at the southern end of the Sabine River Basin that 
experiences freshwater inflow from the Neches and Sabine rivers, consists of 55,057 acres of 
water bottom with oyster reefs only in the southernmost portion of the lake, and supports 
minimal oyster harvesting (there has been no oyster season in Sabine Lake since the early 1960s) 
(LDWF 2019). In Sabine Lake, according to USGS recorder representing this site, the range of 
monthly mean salinities from 2009 – 2019 was 4.7 – 11.1 with daily salinities ranging from 0.2 – 
25.6 (Figure 3.1.) (CRMS0684-H01, LA, U.S.A.). 
 

 
Figure 3.2. Estimated mean monthly salinity (±1 SEM) at broodstock origin locations from 2009 – 2019 (n=10 for each month). 

 
Pass a Loutre is an area on the eastern side of the Mississippi River Delta that experiences 
freshwater inflow from the Bohemia Spillway, Caernarvon and Bayou Lamoque freshwater 
diversion structures and main-stem river distributaries and consists of nearby intermittent public 
oyster reefs enhanced through the placement of cultch material on suitable water bottoms 
(LDWF 2019). At the Pass a Loutre stock collection site, the range of monthly mean salinities from 
2009 – 2019 was 0.3 – 5.1 with daily salinities ranging from 0.1 – 23.9 (Figure 3.1.) (CRMS0161-
H01, LA, U.S.A.). At Pass a Loutre, there is some evidence of a possible salt wedge allowing oyster 
reefs to persist at monthly mean salinity ranges of 9.2 – 17.1 rather than 0.3 – 5.1 but this is 
currently unknown (Figure 3.3.) (LDWF Mouth of Pass a Loutre). 
 
Point Au Fer is a primarily open water brackish system that experiences freshwater inflow from 
the Atchafalaya and Vermilion rivers, consists of nearby public oyster seed grounds that 
experience extensive oyster mortalities except in years with reduced freshwater from the 
Atchafalaya River and, therefore, support intermittent oyster harvests (LDWF 2019). At the Point 
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Au Fer stock collection site, the range of monthly mean salinities from 2009 – 2019 was 0.1 – 0.5 
with daily salinities ranging from 0.1 – 10.3 (Figure 3.1.) (CRMS6304-H01, LA, U.S.A.). 
 
3.2.2. Oyster spawning 
 
In April 2019, approximately 200 market-sized oysters were collected from each of the four sites 
and transported to the Michael C. Voisin Louisiana Sea Grant Oyster Research Farm located in 
Grand Isle, LA. Oysters were placed in baskets suspended on an adjustable long-line system 
nearshore (ALS, BST Oyster Co., Cowell, South Australia). In summer and early fall 2019, 
individuals from each broodstock were kept in controlled conditions and exposed to an increase 
in water temperature to induce natural spawning at the Louisiana Sea Grant Oyster Research 
Hatchery in Grand Isle, LA (Table 3.1.) (Wallace et al. 2008). Once individual oysters (both male 
and female) had spawned, gametes were combined to form larvae (Wallace et al. 2008). Larvae 
were fed algae and allowed to grow in aerated tanks until they developed an eyespot and were 
large enough to set (>290 µm) on microcultch to promote single oysters (Wallace et al. 2008). 
Once large enough for mesh baskets, the progeny of individuals from the four stocks were placed 
in color-coded baskets by stock, moved to a long-line system adjacent to the hatchery, and 
allowed to grow until the start of this experiment in December 2019. 
 

 
Figure 3.3. Estimated mean monthly salinity (2009 – 2019) of salinity data collected bi-monthly by hand-held meter at top and 
bottom of the water column nearest oyster broodstock collection site (LDWF Mouth of PAL, n=207) compared to the nearest 
continuous salinity data recorder to the oyster broodstock collection site (CRMS0161-H01n=3407). 

 
 



23 
 

Table 3.1. Number of males and females spawned at Grand Isle 
oyster hatchery to produce progeny of populations. 

  Males Females 

Calcasieu Lake 3 5 

Sabine Lake 9 9 

Pass a Loutre 13 13 

Point Au Fer 17 15 

 
3.2.3. Oyster grow out sites 
 
In December 2019, progeny from the four spawned broodstocks were deployed in oyster baskets  
suspended on long-line systems at two sites with one representing a lower salinity, upper estuary 
environment and the second representing a higher salinity, lower estuary environment. Four 
baskets of 100 oysters each were deployed at each site for the four broodstocks (4 populations x 
4 baskets x 2 sites x 100 oysters). Baskets were placed on the long line in a randomized block 
design to account for unmeasured variation from water movement. 
 
3.2.4. Water quality 
 
Daily mean salinity and temperature from December 2019 through November 2020 were 
obtained for the Grand Isle grow out site from USGS continuous data recorder (Barataria Pass at 
Grand Isle, LA; 073802516). Missing data points were filled in from a second USGS continuous 
data recorder (Barataria Bay near Grand Terre Island, LA; 291929089562600), which had a 
correlation of R2 = 0.8797 to the original daily dataset. Data from the same period for the 
LUMCON grow out site was obtained from a continuous data recorder at LUMCON. Interval 
salinity and interval temperature (averages between sampling dates) were compared to quantify 
differences in environmental conditions between the two grow out sites over the twelve-month 
study period. 
 
3.2.5. Mortality 
 
At each monthly sampling from December 2019 through November 2020 the number of live and 
dead oysters in each bag were recorded, dead oysters were discarded, and interval mortality was 
calculated as [interval percent mortality = (# dead / # total) * 100]. Cumulative percent mortality 
was then calculated as [cumulative mortality = (# dead / # total) * (100-previous sampling 
cumulative mortality) + (previous sampling cumulative mortality)]. A multiple linear regression 
analysis was used to explore causal connections between interval mortality and interval salinity, 
interval temperature, and interval initial shell height of all stocks combined and each stock 
separately. 
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3.2.6. Growth 
 
At each monthly sampling shell height, the distance from shell umbo to distal edge, was 
measured for a random subset of 25 oysters per cage (La Peyre et al. 2013). Initial average shell 
height of each stock is summarized in Table 2. Monthly interval growth rate was calculated and 
standardized to a 30-day month as [interval growth = (change in height from previous sampling) 
/ (days since previous sampling) * 30]. Mean interval growth rate was calculated using [(height 
from completion of experiment – height from start of experiment) / (days of experiment 
duration) * 30]. A multiple linear regression analysis was used to explore causal connections 
between interval growth and interval salinity, interval temperature, and interval initial shell 
height of all stocks combined and each stock separately. 
 
3.2.7. Perkinsus marinus infection intensity 
 
In October 2020, near the completion of this study, fatal sampling of five oysters per cage of each 
population was conducted to assess Perkinsus marinus infection intensity and body condition 
index. The infection intensity of P. marinus of individual oysters was measured as the number of 
parasites per gram of oyster tissue following protocols outlined in Fisher and Oliver (1996) and 
updated by La Peyre, et al. (2019). Infection prevalence (%) indicates the number of infected 
oysters out of the total number of oysters sampled (infected + uninfected). 
 
Table 3.2. Mean (± standard error) shell height at start of 
experiment (Dec 2019). 

  Grand Isle LUMCON 

Calcasieu Lake 23.1 ± 0.6 22.1 ± 0.7 
Sabine Lake 11.3 ± 0.3 10.8 ± 0.3 

Pass a Loutre 17.0 ± 0.4 17.3 ± 0.4 
Point Au Fer 16.9 ± 0.4 16.4 ± 0.4 

 
3.2.8. Condition index 
 
Condition index was calculated as [CI = (dry tissue weight) / (whole wet oyster weight) – (shell 
wet weight * 100)] (Casas et al. 2017, Casas et al. 2018a). For each oyster, a 10mL aliquot of 
oyster homogenate created for P. marinus infection intensity was dried at 65°C for 48 hours and 
the total dry weight was calculated based on the total volume of oyster homogenate (La Peyre 
et al. 2003). The condition index value reflects the physiological and nutrition status of an 
individual as it assesses its use of the available internal space for somatic and gonadal tissue 
growth (Casas et al. 2018a). 
 
3.2.9. Statistical analyses 
 
All statistical analyses were conducted using R v.3.6.3 (R Core Team, 2020). A p-value of <0.05 
was used to determine significance for all tests.  Results from daily salinity and temperature data 
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were analyzed using an independent t-test to compare sites. Cumulative mortality at the end of 
the study were compared using a series of chi-square analyses using the Bonferroni adjustment 
on p-values to assess differences between stocks at each site. Interval mortality of all stocks 
combined and each stock individually at both sites were analyzed using a multiple linear 
regression using interval salinity and interval temperature as predictor variables. Mean annual 
growth rate (mm mo-1) for each stock at both sites was analyzed using a two-factor ANOVA (site, 
stock) followed by a Tukey post-hoc test. Interval growth of all stocks combined and each stock 
individually at both sites were analyzed using a multiple linear regression using interval salinity, 
interval temperature, and interval initial shell height as predictor variables. Interval initial shell 
height is defined as the average shell height at the start of each sampling interval. P. marinus 
infection intensity and condition index near the end of the experiment (October 2020) were 
compared using a two-factor ANOVA (site, stock) followed by a Tukey post-hoc test. 
 
3.3. RESULTS 
 
Several significant differences in growth and mortality of four oyster broodstocks were found 
throughout the duration of this experiment. 
 
3.3.1. Water quality 
 
Daily mean salinity at Grand Isle was significantly higher than mean daily salinity at LUMCON in 
Cocodrie, LA (p < 0.001, Figure 3.4.). During the study (Dec 12, 2019- Nov 19, 2020), the Grand 
Isle, LA site had a mean daily salinity of 16.8 ± 0.32 SEM with a range of 4.8 – 29.9. The Louisiana 
Universities Marine Consortium (LUMCON) site had a mean daily salinity of 8.7 ± 0.24 SEM with 
a daily range of 1.2 – 19.0. Salinity generally decreased from December through April, increased 
from April through September, and plateaued from September through December at both sites 
(Figure 3.4.). 
 
Daily temperature followed expected seasonal trends and was within expected ranges for this 
region with no difference found between grow out sites (p = 0.6, Figure 3.4.). Grand Isle, LA had 
a mean annual temperature of 23.7 ± 0.3 SEM with a daily range of 10.7 – 32.5.  LUMCON had a 
mean annual temperature of 23.9 ± 0.31 SEM with a daily range of 9.9 – 32.6. Temperature 
generally increased from December through June, plateaued from June through August, and 
decreased from August through December at both sites (Figure 3.4.). 
 
3.3.2. Mortality 
 
At the study’s completion, significant differences in cumulative mortality were only found 
between stocks at LUMCON (p < 0.001). At this site, the cumulative mortality of the Point Au Fer 
stock was significantly higher than the cumulative mortality of Calcasieu Lake and Sabine Lake 
stocks (Figure 3.5.), and the cumulative mortality of the Pass a Loutre stock was significantly 
higher than the Sabine Lake stock. 
 



26 
 

 
Figure 3.4. Daily water salinity and temperature (°C) from December 12, 2019 to November 19, 2020 from continuous recorders at 
LUMCON (DeFelice Marine Center Environmental Monitoring Station Data, 2019 & 2020) and Grand Isle (USGS Barataria Pass at 
Grand Isle, LA with missing data points filled in using USGS Barataria Bay near Grand Terre Island, LA). 

 

 
Figure 3.5. Cumulative mortality (%) of oysters from Calcasieu Lake, Sabine Lake, Pass a Loutre, and Point Au Fer stock populations. 
Different letters denote statistical differences (sites analyzed separately). 

 
For all stocks combined, a significant regression equation with an R2 of 0.25 was found (Table 
3.3.). Significant regression equations were also found for each stock individually with R2 ranging 
from 0.20 to 0.38 (Table 3.3.). 
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Table 3.3. Regression results examining interval mortality as a function of interval salinity and 
interval temperature, for all stocks combined, and by individual population, over experiment 
duration without interaction. 

  
All 

Stocks 
Calcasieu 

Lake 
Sabine 
Lake 

Pass a 
Loutre Point Au Fer 

Interval salinity 0.07 0.14 0.15 0.28 0.13 
Interval temperature 0.89* 0.75* 0.48* 1.13* 1.51* 
Interval initial shell height -0.17* -0.17* -0.11* -0.27* -0.31* 
Intercept -12.10* -9.23 -7.97* -16.39* -20.42* 
Df 316 76 76 76 76 
Adj. R2 0.25 0.26 0.20 0.25 0.38 
F-statistic 36.7* 10.46* 7.59* 9.85* 17.36* 

*indicates significance 
p<0.05      

 
3.3.3. Growth 
 
There was a significant site by stock interaction for mean growth rate from beginning to end of 
the experiment duration (p = 0.002). Average interval growth was significantly higher at Grand 
Isle than at LUMCON for all stocks (p < 0.001). At Grand Isle, only the Point Au Fer stock had a 
significantly higher growth rate from the Calcasieu Lake and Sabine Lake stocks (p = 0.007 and p 
= 0.03 respectively). 
 
For all stocks combined, a significant regression equation with an R2 of 0.45 was found (Table 
3.4.). Significant regression equations were also found for each stock individually with R2 ranging 
from 0.37 to 0.51 (Table 3.4.). 
 
Table 3.4. Regression results examining interval growth as a function of interval salinity, interval 
temperature, and interval initial shell height over experiment duration without interaction. 

  
All 

Stocks 
Calcasieu 

Lake 
Sabine 
Lake 

Pass a 
Loutre 

Point Au 
Fer 

Interval salinity 0.34* 0.28* 0.35* 0.39* 0.37* 
Interval temperature 0.15* 0.07 0.20* 0.17* 0.16* 
Interval initial shell height -0.04* -0.02 -0.06* -0.05* -0.03 
Intercept -2.21* -0.33 -3.17* -2.85* -3.08* 
Df 316 76 76 76 76 
Adj. R2 0.45 0.37 0.41 0.49 0.51 
F-statistic 89.04* 16.43* 19.58* 25.94* 28.52* 

*indicates significance, 
p<0.05      
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3.3.4. Perkinsus marinus infection intensity 
 
At the completion of the experiment in November 2020, stocks at LUMCON had significantly 
lower prevalence and intensity of P. marinus infection than stocks at Grand Isle (p < 0.001, Figure 
3.6.). There were no significant differences detected between stocks at either site (p = 0.09, 
Figure 3.6.). 
 
There were more uninfected oysters for all stocks at LUMCON compared to Grand Isle. There 
were also instances of moderately and highly infected oysters at Grand Isle for all stocks, which 
did not occur at LUMCON (Figure 3.7.). 
 

 
Figure 3.6. Infection intensity of oysters (log10 parasites g-1) from Calcasieu Lake (CL), Sabine Lake (SL), Pass a Loutre (PAL), and Point 
Au Fer (PAF) stock populations. Only infected oysters are included. Different letters denote statistical differences at both sites. For 
each boxplot, the black circle indicates mean, whiskers represent first and fourth quartiles, the box represents second and third 
quartiles, and the horizontal line represents the median. 

 
3.3.5. Condition index 
 
At the completion of the experiment in November 2020, there was a significant site by stock 
interaction on the condition index of oysters (p < 0.001). There were no significant differences in 
condition index between the four stocks at Grand Isle but at LUMCON, the Calcasieu Lake stock 
had a significantly lower condition index than the stocks from Sabine Lake, Pass a Loutre, and 
Point Au Fer (Figure 3.8.). 
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Figure 3.7. Percentage of oysters from Calcasieu Lake (CL), Sabine Lake (SL), Pass a Loutre (PAL), and Point Au Fer (PAF) stock 
populations with no Perkinsus marinus infection, with light (<10,000 parasites per g wet tissue), moderate (10,000 – 500,000 
parasites per g wet tissue), and heavy (>500,000 parasites per g of wet tissue) infection sampled in October 2020 at both sites. 

 

 
Figure 3.8. Condition index of oysters from Calcasieu Lake (CL), Sabine Lake (SL), Pass a Loutre (PAL), and Point Au Fer (PAF) stock 
populations sampled in October 2020 at Grand Isle and LUMCON, Louisiana (±1 SEM). Different letters denote statistical differences 
at both sites. 
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3.4. DISCUSSION 
 
Progeny of four unique Louisiana oyster populations were assessed for phenotypic adaptation to 
low salinity. The most significant differences between populations in our study were their 
mortalities at the low salinity site, specifically between June and September, during peak summer 
temperatures (>29°C) and following months with low salinity (<8). Observed differential mortality 
between populations suggests that discrete populations of oysters can be better suited to low 
salinity areas or events, potentially through population-specific tolerance to a given conditions. 
This adaptation can be exploited for the selection of broodstock better suited to specific 
conditions to facilitate efficient aquaculture and management. 
 
Significant differences in mortality between populations at the low salinity site largely occurred 
between June and September, a period characterized by high temperatures (30.1 ± 0.16) and low 
salinity (7.3 ± 0.45). Both high temperatures and low salinities have been shown to be lethal to 
oysters, especially when occurring together (Shumway 1996, Rybovich et al. 2016). In this study, 
the Sabine Lake oysters had significantly lower mortality at the low salinity site compared to the 
other  populations. The three test populations used in this experiment (Sabine Lake, Pass a 
Loutre, and Point Au Fer) were selected due to their suspected exposures to low salinity, with 
the hypothesis that population performance would reflect how well exposure conditions 
matched site of origin conditions. Based on available data, the Sabine Lake site of origin had the 
closest matching salinity regime to the low salinity site used in this study, and oysters from this 
site had significantly lower cumulatively mortality compared to the other sites. This suggests that 
lower mortality could be due to local adaptation to the low salinity, explained by decreased 
environmental difference between the site of origin and the testing site.  
 
The Pass a Loutre and Point Au Fer populations were suspected to be from low salinity sites based 
on data from their nearest continuous data recorders. However, the nearest data recorders are 
located on the marsh surface and may not accurately reflect salinity at the bottom of the water 
column if there is stratification in these areas. Both sites exist in locations that receive large 
amounts of riverine input, with Pass a Loutre being located at the mouth of the Mississippi River 
and Point Au Fer being located at the mouth of the Atchafalaya River. While Louisiana estuaries 
are generally described as shallow, well-mixed estuaries, it is possible that high river inflow in 
some locations results in some stratification, with nearby marshes being flooded with freshwater 
while bottom waters are more influenced by marine waters (Laevastu & Hela 1970).  Evidence to 
support this for at least one location comes from discrete data collection at Pass a Loutre, which 
records a surface and bottom water mean salinity difference of 4.7 (higher on bottom at 7.7) 
over 32 years with that difference being greater in summer (6.1 higher on bottom) compared to 
the other three seasons (LDWF Pass a Loutre discrete water quality data 4/13/2021). This 
seasonal salinity difference can be explained by the increased freshwater flow from the 
Mississippi River due to snow melt in the spring and from generally higher precipitation. 
Temperature stratification often accompanies salinity stratification in estuaries due to thermal 
heating on the surface (Laevastu & Hela 1970) and, although not significantly demonstrated in 
the monthly dataset available (LDWF Pass a Loutre discrete water quality data 4/13/2021), 
plausible lower mean temperatures at the Pass a Loutre and Point Au Fer sites of origin could 
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have possibly affected their mortality at higher experimental temperatures. While Louisiana has 
a large network of marsh-based continuous data recorders (i.e., CPRA 2020), increased 
monitoring of open-water areas, including bottom water salinity and temperature would help 
better inform oyster management. 
 
Mean growth rate was lowest at the low salinity site between June and August, coinciding with 
highest temperatures and lowest salinity experienced through the experiment duration. Since all 
populations had equal access to resources (i.e., food) within sites, individuals from all populations 
that could withstand mortality-inducing events were able to maintain size or continue growing, 
albeit at lower rates. Regressions of interval growth rates found salinity to be a significant 
predictor variable for all four populations. Lowered salinity can cause reduced oyster feeding 
through both extended valve closures to water quality stressors and through changes in food 
quality and availability (Shumway 1996, Riekenberg et al. 2015, Casas et al. 2018b). 
 
In contrast to growth results, oysters at the low salinity site had a higher condition index than the 
high salinity site, but in all cases, condition index was relatively high (> 10), and it is unlikely that 
the small difference impacted overall oyster survival (Casas et al. 2017). Condition index indicates 
how well an oyster uses its’ shell cavity for tissue growth, reflects overall health status, and 
estimates meat quality (Haven 1960, Lawrence and Scott 1982, Mann 1992).  Condition index is 
often decreased after gametogenesis, which is reduced, or delayed with lower salinity (< 10) 
which could explain some of the lowered condition index at the higher salinity site (Butler 1949, 
Loosanoff 1953).   
 
Although they present physiological challenges to oysters, low salinity sites are a refuge for 
mortality from Perkinsus marinus infection, which has been shown to have limited or delayed 
development at lower salinities (Chu and La Peyre 1993, La Peyre et al. 2003, Ragone Calvo and 
Burreson 2003, Bushek et al. 2012, McCarty et al. 2020). This is likely reflected in our study both 
through lower infection prevalence and lighter infection intensity when infected at the low 
salinity site compared to the high salinity site, although both sites tended to have overall light to 
moderate infection intensities. With higher mortalities seen at the site with lighter infection, we 
concluded that infection was not a leading cause of differing mortality between populations seen 
in this study. Further, infection intensity high enough to cause mortality (>500,000 parasites per 
g wet tissue) did not occur in a majority of individuals in this experiment (La Peyre et al. 2019). 
 
3.5. CONCLUSION 
 
Overall, our findings are supportive of the idea of population-specific adaptation of oyster 
populations to low salinity. Oysters found in Sabine Lake indicate tolerance to low salinity based 
on exposure at their site of origin, and we should continue assessing other populations along the 
Louisiana coast in low-salinity areas for similar adaptation. Although untested in this study 
specifically, there is likely a genetic component to low salinity tolerance in oysters (Eierman and 
Hare 2014, McCarty et al. 2020). In this study, the use of progeny oysters rather than the parents 
collected at our sites of origin suggest a genetic component as well, and the underlying genetic 
mechanisms of this adaptation should be explored further. Adaptation to low salinity is a useful 
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consideration for aquaculture as the progeny from adapted oysters could generate seed for use 
on oyster leases  affected by low salinity events (freshwater runoff, sediment diversions, etc.) 
and for aquaculture farms to be set up in lower salinity areas of the coast. This potential would 
be best capitalized upon with the identification of other low-salinity tolerant oyster populations 
to ensure genetic diversity in broodstocks used for seed development. 
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CHAPTER 4. SUMMARY AND CONCLUSIONS 
 
Eastern oysters are a critical estuarine species that have major impacts on the ecosystems and 
industries that rely on their production and survival. Due to rapidly freshening estuaries in the 
Gulf of Mexico, oyster populations have been declining for decades and novel management 
strategies would help restore them. The studies outlined here explored two such strategies 
specifically aimed at ensuring resilient oyster populations and high production in the face of 
lower salinities and increasing variability across Louisiana estuaries. 
 
This work emphasizes the importance of using a comprehensive, metapopulation approach to 
designing oyster management and restoration strategies. Some oyster populations can exist 
independently from others, but if reefs are near one another, they are reproductively connected. 
This connection is what allows connected oyster populations to persist through periods with 
adverse water quality conditions (i.e., if one reef experiences optimal conditions while another 
experiences sub-optimal conditions, gametes from the reef able to reproduce at that time can 
repopulate the other reefs for the next year when optimal conditions may shift location). This 
work spatially mapped open-water areas with salinities matching oyster habitat needs and used 
these maps to identify oyster resource zones across the Louisiana coast which, together, enable 
the movement away from single reef management to management and restoration of oyster 
resources as an integrated set of reefs. This oyster zone identification is the first step towards a 
spatial management approach to use both constantly and variably productive oyster reefs by 
including both permanent and dynamic conservation areas to promote long-term sustainable 
oyster populations and restoration projects. 
 
This work also highlights the probability of discrete oyster populations to be uniquely adapted to 
local water quality conditions. This study specifically explored the potential for increased 
tolerance to low salinity in several Louisiana populations, identifying one population which 
outperformed the other tested populations.  While breeding oysters with the ability to tolerate 
low salinity, other potential adaptations are plausible and should be explored further. If more 
adapted populations can be identified, this adaptability of specific oyster populations to local 
conditions could facilitate the strategic placement of adapted broodstock to areas experiencing 
a certain adverse condition for generic oysters. This would promote the persistence of oysters 
through variable conditions, which would then continue to repopulate other nearby reefs to 
maintain the larger metapopulation over time. 
 
These two approaches could, together, help maximize the efficacy of oyster restoration efforts 
and harvest through the selective breeding and placement of adapted populations in areas 
identified to typically experience a given condition. This combined approach can be additionally 
maximized through the parallel development of oyster aquaculture in Louisiana. Adapted oyster 
populations could be matched to aquaculture grow out sites with similar conditions as their sites 
of origin to promote viability across a range of possible water quality conditions. Oyster 
production and restoration would benefit from novel strategies to restore native oyster 
populations and increase the efficacy of oyster harvest, especially considering continued 
abundance declines, persistent market demand, and coastal land loss. Continued research 
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targeted at selective breeding of oysters to match existing and predicted future conditions may 
be valuable in ensuring oysters are able to adapt to quickly changing water quality in this region. 
Further, acknowledging reef connectivity and moving from single-reef management and 
restoration will promote long-term oyster reef and production sustainability despite temporally 
variable water quality conditions.  
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APPENDIX A. SUPPLEMENTARY FIGURES FOR CHAPTER 2 
 
These figures provide supporting evidence for the oyster resource zones developed in the second 
chapter of this thesis. The oyster resource zones were conceptually based on maps created by 
Melancon et al. (1998), which mapped similar dry, wet, wet-dry, and high salinity zones in 
Barataria and Terrebonne estuaries in coastal Louisiana. Figure A.1. depicts the comparison 
between these original maps and the maps generated in this study. Figure A.2. depicts the linear 
relationship and regression equation between the LDWF physically sampled salinity and 
temperature data across coastal Louisiana (not included in the coastwide interpolations) and the 
interpolation predicted values, showing a reasonably high correlation of salinity and a high 
correlation of temperature. 
 

 
A.1. Oyster resource zones across coastal Louisiana based on mean salinity parameters from 2015-2019 separated to show all areas 
included within each zone overlaid with extents of zones from Melancon and Barras maps (1998). A: Broodstock Sanctuary Zone, B: 
Dry Restoration Zone, C: Wet Restoration Zone, D: Aquaculture Zone. 

 

 
A.2. Validation of salinity and temperature interpolation outputs using in situ Louisiana Department of Wildlife and Fisheries water 
quality data for comparison (not used in interpolation generation). 
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APPENDIX B. SUPPLEMENTARY FIGURES FOR CHAPTER 3 
 
The figures included in this appendix visually showcase data supporting the claims made in 
chapter 3 of this thesis. Interval water quality conditions were used to generate linear regressions 
to show the effect of conditions on oyster interval growth and interval mortality (Fig. B.1., Fig. 
B.2., Fig. B.3.). While interval growth calculations were used to assess growth rate of oyster 
populations throughout this experiment, mean shell height can show the general size comparison 
between populations (Fig. B.4). Finally, oyster growth 
 

 
B.1. Interval salinity and temperature (°C) from December 12, 2019 to November 19, 2020 from continuous recorders at LUMCON 
(DeFelice Marine Center Environmental Monitoring Station Data, 2019 & 2020) and Grand Isle (USGS Barataria Pass at Grand Isle, 
LA with missing data points filled in using USGS Barataria Bay near Grand Terre Island, LA). Intervals are based on sampling dates. 

 

 
B.2. Mean interval mortality (%) of oysters from Calcasieu Lake Sabine Lake, Pass a Loutre, and Point Au Fer stock populations (±1 
SEM).  
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B.3. Mean interval growth rates (mm mo-1) of oysters from Calcasieu Lake Sabine Lake, Pass a Loutre, and Point Au Fer stock 
populations (±1 SEM). 

 

 
B.4. Mean shell height (mm) of oysters from Calcasieu Lake Sabine Lake, Pass a Loutre, and Point Au Fer stock populations (±1 SEM). 
Different letters denote statistical differences. 
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