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ABSTRACT 

Undesirable leakage from underground sedimentary formations is a matter of considerable 

concern due to implications for water resources contamination and greenhouse gas emissions. 

Leakage in underground formations can remain undetected for a long period. Pressure monitoring 

is a dynamic method that can be used for leakage detection and characterization. The pressure 

signals are affected by the hydraulic characteristics of the reservoir media and leakage pathways. 

Consequently, the pressure data can be interpreted to obtain information about the hydraulic 

characteristics of the system. Pressure interpretation is useful for early leakage detection, because 

the pressure signals travel fast in reservoir media. In this study, analytical methods are developed 

to investigate pressure variations in the systems of leaky well, leaky fault, and leaky caprock. 

Leakage characterization methods are presented based on the pressure interpretation. 

 

 

 

 

 

 

 

 

 

 



1 

 

CHAPTER 1. INTRODUCTION 

 Undesirable leakage from underground sedimentary formations is a matter of considerable 

concern due to implications for water resources contamination and greenhouse gas emissions 

(Benson & Orr, 2008; Birkholzer, Zhou, & Tsang, 2009a; Blackford et al., 2009; IPCC, 2005; 

Keating et al., 2013; Lu, Partin, Hovorka, & Wong, 2010; Pacala, 2003; Siirila, Navarre-Sitchler, 

Maxwell, & McCray, 2012). Leakage in underground formations can remain undetected for a long 

period. This work aims to provide an identification method for early detection of leakage from 

injection zone to overlying formations. 

Deep saline aquifers are used for underground disposal/storage of fluids. Leakage of the 

injected fluids from the injection formation may adversely affect underground environment, 

especially underground fresh water resources. The contamination can be a consequence of native 

fluid leakage as well as injected fluids (Damen, Faaij, & Turkenburg, 2006; Little & Jackson, 

2010). For instance, leakage of brine during CO2 injection into saline aquifers can affect the 

shallow resources of fresh water. CO2 can contaminate fresh water resources and may impact pH 

of the native fluids (e.g. brine) and can result in dissolution and movement of minerals (de Orte, 

Sarmiento, Basallote, Rodríguez-Romero, & Riba, 2014; Harvey et al., 2012). 

The existence of the naturally occurring potential leaky structures may not be a major 

problem during the natural accumulation of fluid in the reservoirs. However, the overpressure 

caused by injection operations would enhance the leakage risk (Rutqvist, Birkholzer, Cappa, & 

Tsang, 2007). Moreover, injection pressurization may be associated with induced seismicity that 

can be felt by the general population, and may cause damages (Ellsworth, 2013; Keranen, Savage, 

Abers, & Cochran, 2013). Induced seismicity can also damage the sealing capacity of existing 
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potential leakage pathways including wells, faults, and caprock (Cappa & Rutqvist, 2011; Wiprut 

& Zoback, 2000). 

Plugged and Abandoned (P&A) wells are examples of leakage pathways that may be 

conduit for fluid migration from confined permeable formations (Ebigbo, Class, & Helmig, 2007; 

Jordan & Carey, 2016; Watson & Bachu, 2009). Abandoned wells should be plugged according to 

standard regulations to prevent undesirable hydrodynamic connection between the sequential 

layers intersected by the well. Cementing materials used during the P&A process normally have 

very low permeability. However, the permeability can be changed by cement degradation over a 

long time. Further, the interfaces of cement, rock matrix and casing can be the weak points of 

leakage for a plugged well (Bachu & Bennion, 2009; Wojtanowicz, 2016). CO2 can make 

decomposition reaction with cement after flowing inside the cement matrix (Scherer & Huet, 

2009). In addition, the low pH brine caused by CO2 dissolution can corrode the sealing cement of 

abandoned wells. The acidified brine may affect the cement especially if the acid remains in 

contact with cement for several years (Scherer et al., 2015; Toews, Shroll, Wai, & Smart, 1995). 

Completion failure of the injection well can also be a reason for well leakage. 

Leaky caprocks and leaky faults are two other possible leakage pathways that can cause 

significant hydraulic connection between confined sedimentary formations (Annunziatellis et al., 

2008; Barton, Zoback, & Moos, 1995; Chen et al., 2013; Evans, Forster, & Goddard, 1997; 

Hermanrud & Bols, 2002; Leith, Kaarstad, Connan, Pierron, & Caillet, 1993; R. Sibson, 1977). A 

fault is a planar interface that can be permeable across and along the fault plane with different 

permeabilities in different directions. A fault generally consists of a low permeability core 

surrounded by high permeability damaged zones. The permeability of the damaged zone is 

controlled by the fractures induced during fault displacement (Agosta, Prasad, & Aydin, 2007; 
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Billi, Salvini, & Storti, 2003; Bruhn, Parry, Yonkee, & Thompson, 1994; Caine, Evans, & Forster, 

1996; Caine & Forster, 1999; Chester, Evans, & Biegel, 1993; Rawling, Goodwin, & Wilson, 

2001). In addition to leaky fault and well, leakage can occur through a permeable region in a 

seal/low-permeability caprock layer. The induced stress caused by overpressure can damage the 

caprock seal especially during the injection (Hermanrud & Bols, 2002; Ingram & Urai, 1999; 

Selvadurai, 2012; R. H. Sibson, 2003). 

As the speed of the pressure propagation is much higher than the leaky fluids, pressure 

monitoring has been considered as an early-detection method for undesirable leakage in 

underground storage (Sun & Nicot, 2012; Wiese, Zimmer, Nowak, Pellizzari, & Pilz, 2013). For 

leaky fault systems, Rahman, Miller, and Mattar (2003) presented an analytical solution for the 

fault leakage in a single layer reservoir considering distinct horizontal flow along the fault plane 

as well as cross-fault flow. Shan, Javandel, and Witherspoon (1995) introduced an analytical 

model to account for vertical leakage through a fault to an upper permeable zone. However, they 

ignored the pressure discontinuity across the fault. Zeidouni (2012) presented analytical solutions 

of two-layer and multi-layer systems, which demonstrated the pressure discontinuity across the 

fault during the vertical leakage. Zeidouni (2016) fully accounted for the lateral resistance of the 

fault in all layers of the multi-layer system. Several other studies have investigated the pressure 

variations of the fault leakage systems (Anderson, 2006; Chabora & Benson, 2009; Jha & Juanes, 

2014; Matthäi, Aydin, Pollard, & Stephen, 1998; Ochoa-González, Carreón-Freyre, Cerca, & 

López-Martínez, 2015).  

  In this study, we propose pressure interpretation methods for early detection of leakage 

from the injection zone to adjacent formations. In these methods, we identify specific types of 

leaky pathway by interpreting the pressure signals and estimate the leakage rate and location and 
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characteristics of those specific leaky pathways. Our approach to design characterization methods 

is analytical modeling of the corresponding physical models. Analytical modeling has advantages 

over the numerical approach. Numerical approaches are computationally more expensive than 

analytical methods. In addition, all the values of system properties are required for a single run of 

numerical simulation while the analytical solutions can investigate the systems with unknown 

parameter, especially with dimensionless groups. Therefore, the analytical approaches are useful 

for inverse modeling to estimate the unknown characteristics of the reservoir during the 

characterization methods. 

The estimated characteristics can be useful to do the reservoir studies and management 

considering the leakage, and evaluate the effect of leakage on the operations regarding the storage 

aquifers. It can also be useful to assess the environmental effects of leakage to adjacent formations 

and control the consequent contaminations to water resources and atmosphere and make decisions 

to reduce these damages. 

In chapter two, we propose analytical approach for spatial and temporal characterization 

of well leakage and its identification from leaky fault and leaky caprock. The characterization 

method is based on the above-zone pressure interpretation to distinguish the specific flow regimes. 

Leaky well is identified according to the late-time pressure response while fault and caprock 

leakage are identified by the early-time response. Since the early-time responses may not be 

detected from a far distance, the concept of radius of investigation is important for the early-time 

responses. The late-time response may not be useful to distinguish leaky well from fault leakage. 

We propose a method to decrease the arrival time of the pressure response from a linear source. 

In chapter three, we develop three analytical approaches for fault leakage characterization 

based on the injection zone pressure interpretation. In the first model, the fault conducts fluids to 
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a high permeability zone. In the second model, we consider the anisotropic permeability in the 

fault zone and the above-zone resistance to flow. In the third model, we evaluate the vertical 

extension of fault leakage to multilayer system of shallower formation. 

In chapter four, we propose periodic pressure method to evaluate inter-reservoir flow 

through a weakness in the sealing layer. Since the periodic tests maintain the early-time behavior 

during the test, the periodic pressure responses are useful for caprock characterization. Next, we 

propose a method to enhance the value of information in a periodic test. 
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CHAPTER 2. LEAKY WELL 

Above-zone (AZ) pressure has been recently investigated for inferring leakage pathway 

characteristics in leakage events from subsurface injection operations. The recorded pressure in 

the AZ should be purely related to leakage and therefore it can be safely inverted to deduce leakage 

characteristics. It is crucial to evaluate fluid leakage through abandoned wells to plan for further 

measurements of leakage prevention. However, the recorded AZ leakage signal may not be related 

to leaky well(s). Therefore, identification and spatial investigation of well leakage is required for 

leakage evaluation. In this chapter, we propose a pressure interpretation method for early detection 

of leaky pathways, applying two observation points in the AZ. We distinguish leaky well, fault 

and caprock based on their corresponding flow regime identification. We show that the pressure 

difference of the two observation wells can be applied as a proxy for unknown leakage rate, which 

is crucial for leakage identification as well as characterization. 

2.1. Introduction 

Several analytical models were introduced to quantify leakage through different types of 

pathways. Javandel, Tsang, Witherspoon, and Morganwalp (1988) developed an analytical 

solution to model pressure response to a leaky well in a multi-layer system. They considered an 

observation well in the injection layer and assumed pressure of the upper layer is constant 

throughout. Avci (1994) developed an analytical solution for well leakage to an upper layer 

considering the upper layer’s resistance to flow. Cihan, Zhou, and Birkholzer (2011) developed a 

multilayer analytical solution for leaky wells. Zeidouni and Vilarrasa (2016) introduced a real time 

solution for pressure perturbation due to a leaky well in a two-layer system separated by a 

confining layer. They proposed a method to locate the leaky well by considering three observation 

wells in the AZ. Zeidouni (2014) presented an analytical solution for well leakage in a laterally 
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bounded multilayer system. Analytical models were also developed to examine the other leaky 

pathways. Leakage through a low-permeability caprock is modeled as diffuse leakage (Cheng & 

Morohunfola, 1993; Cihan et al., 2011). Leaky faults are modeled as planar discontinuities in the 

reservoir (Anderson, 2006; Shan et al., 1995; Zeidouni, 2012, 2016). 

A primary step for leakage characterization is identification of the major leakage pathways 

and evaluation of their leakage potential. In this chapter, we first present a characterization 

procedure for leaky well system based on the AZ pressure. Location and leakage coefficient of the 

leaky well and the leakage rate are estimated considering two observation wells in the AZ. Next, 

we extend the leakage identification to distinguish the leaky caprock, leaky fault and leaky well 

according to the pressure response. The identification method is based on the diagnostic plots of 

the specific flow regimes. The identification and characterization procedures are applied to 

example problems for demonstration. 

2.2. Methodology 

Fig. 2.1 shows schematic of the leaky well physical model. The two-layer system is the 

same for the leaky fault and leaky caprock. In leaky fault system, the leaky well is replaced with 

the leaky fault. For the leaky caprock, there is a permeable region in the caprock layer instead of 

leaky well (Fig. 2.1). The leaky pathway connects the AZ to the injection zone while these zones 

are otherwise separated by the confining layer (caprock). In this study, the leakage problem is 

thought of as injection into the single-layer AZ through the leaky pathway. In order to identify the 

leakage by this approach, we need to apply deconvolution on the AZ pressure because the leakage 

rate is time variable. The main challenge is that the leakage rate is unknown and needs to be 

determined. Therefore, we need to know how we can apply deconvolution on the AZ pressure data 

with respect to the leakage rate, while the leakage rate is unknown. We introduce a proxy for 
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leakage rate, which can be applied instead of leakage rate for pressure deconvolution. Applying 

the deconvolution method, we propose a pressure interpretation method for leakage 

characterization and estimation of time variable leakage rate. 

 

Fig. 2.1. Schematic representation of the two-layer system with leaky well. 

This schematic applies for fault leakage system with the replacement of the leaky well 

with leaky fault. For leaky caprock system, the leaky well is removed and a weakness in the 

caprock should be considered. 

2.3. Focused well leakage  

In this section, we present a characterization method for the leaky well system. We consider 

the caprock as sealing and the only possible leakage pathway is the leaky well. The injection well 

is fully perforated in the injection zone and the injected fluid is considered identical to the initial 

fluid in the two layers. μ and B are viscosity and formation volume factor of the fluid and q is the 

injection rate. The observation well is located in the AZ at distance ρ from the leaky well. 

Permeability of the leaky well and radii of the injection well and leaky well are denoted by kl, rw, 

and rl, respectively. hl is leakage interval and R is the distance between the injection and leaky 

wells. k, ka, h, and ha are permeability and thickness of the injection and above zones. Subscript a 

denotes the AZ. Permeability is constant, homogeneous, and isotropic for each layer. Porosity (ϕ) 
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and compressibility (ct) of the two layers are identical, constant, and homogeneous. Both layers 

are considered infinite acting in horizontal directions. The initial pressure is uniform in the both 

injection and above zones. Zeidouni and Vilarrasa (2016) presented a real time analytical solution 

for the leaky well system (Equation 2.1). 

( )2 2
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( , ) ln ln

4 ( ) 4 4
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 (2.2) 

Δpa is pressure change of the AZ, ql(t) is leakage rate as a function of time, α is leakage coefficient 

of the leaky well, and κ is a constant that can represent the conductivity of the leaky well. η and ηa 

are the diffusivity coefficient of the injection and above zones. 
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(2.3) 

The pressure difference of two arbitrary points in the AZ (Δpa1 and Δpa2) based on this analytical 

solution is given by:  

( )2
1 1 2 2

1

( , ) ( , ) ln
2

a a l

a a

B
p t p t q t

k h


 

 

 
 −  =  

   
(2.4) 

where ρ1 and ρ2 are the distances between the leaky well and that arbitrary points. Equation (2.4) 

shows that the pressure difference of the two arbitrary points in the AZ (ΔPa1 - ΔPa2) is proportional 

to leakage rate at any given time (Equation 2.5).  

( ) ( )1 1 2 2( , ) ( , )a a lp t p t q t  −    
 

(2.5) 

Winestock and Colpitts (1965) proposed a simple deconvolution method for radial transient 

flow while the flow rate variations are smooth. In their method, the pressure is normalized by the 
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time variable rate. We applied this deconvolution method to derive the pressure changes of the AZ 

normalized by the leakage rate. Equation (6) is the line source solution for the above zone pressure 

applying the Winestock and Colpitts (1965) pressure normalization method. The leaky well is 

considered as a line source in the above zone. The above zone pressure is normalized with respect 

to the leakage rate in Equation (2.6). 

2

( ) 4
ln

4

aj a

l a a j

p t tB

q k h




 

  
= −  

  
      

(2.6) 

where j denotes the observation points 1 or 2. γ is Euler constant that is equal to 0.5772. Comparing 

Equations (2.5) and (2.6), we conclude that the pressure difference (ΔPa1 -ΔPa2) can be applied as 

a proxy of unknown leakage rate in the deconvolution method to interpret the AZ pressure. We 

can normalize the AZ pressure with respect to the difference of pressures measured at two 

observation wells in the AZ. Combining Equations (2.4) and (2.6), we obtain Equation (2.7): 

( ) ( )
2

1 2
1 1 2

1

( ) ( ) ( ) ln ln 2ln
4

a a a

a

e
P t P t P t t
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 
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(2.7) 

We refer to the left hand side of Equation (2.7) as the modified pressure ratio (MPR). The 

unknown leakage rate does not appear in Equation (2.7). The pressure variations of a single point 

in the AZ cannot be used to identify the radial flow regime, because the leakage rate is time 

variable. However, MPR represents deconvolved pressure and therefore can be applied for flow 

regime identification. In leaky well system, radial flow caused by well leakage in the AZ can be 

identified by zero-slope line on logarithmic derivative of MPR versus time on log-log plot. After 

identification of the well leakage, we work on the characterization method. Equation (7) illustrates 

that the semi-log plot of MPR versus time is a straight-line (Equation 2.8). 

( )lnMPR m t b= +
 

(2.8) 
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where m and b are slope and intercept of the straight line. Therefore, we can use the observation 

wells’ pressure data to find ρ1 and ρ2 by the straight-line fit of MPR versus time on the semi-log 

plot (Equations (2.9)-(2.10)). 

( )

1 2 b m

ae
  − −=

  
(2.9) 

0.5

2 1

me =   (2.10) 

We derive Equation (2.11) from Equation (2.4) to calculate the leakage rate (ql) using the 

observed pressure changes and the estimated distances. 

1 2

2

1

2 ( )

ln

a a a a
l

k h P P
q

B








 − 
=

 
 
    

(2.11) 

Next, we apply ρ1 and ρ2 to locate the leaky well. The two observation wells and the leaky 

well can be assumed as three corners of a triangle (triangle ABC in Fig. 2.2). The distance between 

the two observation wells is known and the lengths of the two other sides of the triangle are ρ1 and 

ρ2. In order to locate the leaky well, we also need to find the angles. According to the basics of the 

trigonometry, a triangle can be completely identified if the lengths of its three sides are known. 

Therefore, the leaky well can be located. The geometric process is based on the general relationship 

between the sides and angles of the triangles. For instance, in triangle ABC (Fig. 2.2): 

3 1 2 4sin( ) sin( ) sin( )

AB BC AC

   
= =

+   
(2.12) 

Equation (2.12) can be adapted for all triangles. The complete geometric procedure of locating the 

leaky well is explained in details in the Appendix 1. During this procedure, the distance of injection 

and leaky well (R) is also calculated, which is required to estimate the leakage coefficient of the 

leaky well. The geometrical approach is designed so that at least one of the three points (injection 

well and two leaky wells) is off the line connecting the other two points. C’ is the mirror-image 
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point of the leaky well, which is at same distances from the observation wells as C. However, the 

distance from the injection well to the mirror-image point (R’) is generally unequal to the distance 

from injection well to the leaky well ( R ≠ R’ ), because the injection well and the two observation 

wells are not located on a single straight-line. Therefore, the pressure changes of the observation 

wells would be different if the mirror-image point was the location of the leaky well. Using 

Equation (2.1), we can compare the pressure results of these two points (C and C’) and eliminate 

the second possible location. In addition, the leaky well may be located by comparing the 

calculated distances with those for nearby P&A wells in the field. Nevertheless, this geometrical 

approach is required, especially when there are several wells at the relatively identical distances in 

different directions, or if the information about the history of well trajectories for the entire field 

is not available. 

 

Fig. 2.2. Schematic representation of the wells in a horizontal plane 

In order to estimate the leakage coefficient of the leaky well (α), we need to expand the 

single layer (AZ) approach to both layers, because α represents the effective permeability of the 

leaky well. It can be investigated only by consideration of the hydraulic connection of the two 
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layers. We apply the real time analytical solution of Zeidouni and Vilarrasa (2016) given by 

Equations (1)-(3) to estimate α. 

We can directly calculate κ at each time by Equation (1) using estimated distances and 

leakage rate. The plot of κ versus time results in a horizontal line that would be the value of κ. 

Next, we calculate leaky well permeability (kl) and leakage coefficient (α) using Equations (2.2)-

(2.3). 

Identification of leaky well from leaky caprock and leaky fault  

As mentioned earlier, pressure change in the AZ is not necessarily related to focused 

leakage through a well. A local/regional weakness in the caprock and leaky fault are other 

possibilities that can lead to leakage and pressure changes in the AZ. If the observed pressure 

signals from the AZ are related to the other possible pathways, the pressure interpretation results 

are meaningless. Therefore, characterization of well leakage should be preceded by identification 

procedure to determine that leakage is actually caused by a focused wellbore leakage. Given the 

nature of flow for diffuse leakage and fault leakage events, we extend the pressure interpretation 

method to identify diffuse leakage and fault leakage from focused leakage. 

2.4. Identification of diffuse caprock leakage 

Fluids are often injected at lower temperature than the host injection zone in the subsurface. 

Injection of cooler fluids would make a cold region around the wellbore in the reservoir as well as 

caprock, which may lead to caprock damage (Vilarrasa, Olivella, Carrera, & Rutqvist, 2014). As 

a result, leakage may occur through a high-permeability region in the caprock close to the wellbore 

(Fig. 2.3). The leaky well causes radial flow in the AZ that can be recognized by the zero-slope 

logarithmic derivative curve (referred to as derivative hereafter). The caprock leakage would 

ultimately show radial flow at late time. However, the early time behavior of caprock leakage is 
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different from the well leakage. The early time flow regime caused by a permeable point in the 

caprock would be spherical flow (-1/2 slope line at pressure derivative curve), because the pressure 

pulses travel in three dimensions from a point source. However, the permeable region in the 

caprock layer provide regional leakage, which leads to spherical stabilization (-3/2 slope line). 

Similar to well leakage section, we need an alternative for unknown leakage rate to normalize the 

AZ pressure response. We extend the application of the pressure difference of the two observation 

points as a proxy for diffuse leakage rate. In identification section, we show that the AZ pressure 

derivative would reach the -3/2 slope line at early time, after deconvolution with respect to the 

time variable leakage rate.  

 Leaky well Leaky caprock Leaky fault 

(

a) 

 

(

b) 

Fig. 2.3. Geometry of leakage pathways in the two-layer system shown in (a) side view, and (b) 

top view. The dashed lines show leaky pathways and the gray color shows the caprock layer. The 

injection well is shown by black non-perforated section in the AZ and caprock and the dotted lines 

that show perforated section in the injection zone. 

2.5. Identification of fault leakage 

In this section, we extend the identification technique to fault leakage. Leaky fault is a 

planar structure that conducts fluid through the planar interface (horizontally and vertically). Fig. 

2.4 exhibits the schematic of fluid flow into the fault, inside the fault, and into the AZ. Fluid flow 

inside the fault would occur in three directions (x, y, and z) and fault permeability may be different 
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in the three directions (see kfx, kfy, and kfz in Fig. 2.4). A leaky fault consists of a low permeability 

core zone bounded by fractured damaged zone. The core zone is made of ground materials, because 

it has been the slippage location of the faulted system. Due to the low permeability of the core 

zone, fault permeability in perpendicular direction to the fault plane (kfx) may be less than the 

reservoir permeability. However, fault permeability could be significantly high parallel to the fault 

plane (kfy and kfz), due to the high permeability of the damaged zone. The planar interface and 

permeability anisotropy of the fault may result in linear flow regimes in the AZ. Later we show 

that, we can identify fault leakage based on the flow regime identification with the MPR. 

 

 

Fig. 2.4. Schematic representation of fault leakage from side view (x-z plane) and AZ top view (y-

x plane). Fault leakage shows linear flow geometry in the AZ indicated by red flow lines at the 

fault.  
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Results and discussion 

 In this section, we apply the leakage identification and characterization techniques 

discussed above. We provide an example problem for AZ pressure interpretation applying the well 

leakage characterization procedure. Next, examples for leakage identification of leaky caprock and 

leaky fault form the leaky well are presented.  

2.6. Well leakage example problem 

In this part, we interpret the AZ pressure data for focused leakage characterization. Fig. 2.5 

illustrates the synthetic pressure data of two observation points in the AZ of a two-layer system 

similar to the system shown in Fig. 2.1. The pressure data are obtained using a commercial 

numerical simulation software (CMG, 2015). There are three layers (Injection zone, caprock, and 

above zone) discretized to 300000 grid blocks. The maximum size of the grid blocks is 10000 

meter and local grid refinement has been done around the wells. The minimum size of the grid 

blocks is 0.25 meter. The porosity, permeability, total compressibility, fluid viscosity, and 

thickness of both zones (injection and above zones) are 0.1, 10-13 m2, 10-10 Pa-1, 0.0005 Pa.s, and 

100 m, respectively. The radius of injection well is 0.1 m and injection rate is 0.05 m3s-1. The 

corresponding MPR and the logarithmic derivative are shown in Fig. 1.5. The zero slope on the 

derivative curve corresponds to the radial flow regime in the AZ. Table 2.1 lists the input 

parameters for this example problem. The distance between the two observation wells is 110 m 

and distances between observation wells and the injection well are 99 m and 100 m. 

 

 

 

 



17 

 

Table 2.1. Properties of the example leaky well system 

Parameter Value Parameter Value 

kl (m2) 10-9 ct (1/Pa) 10-10 

R (m) 50 ϕ 0.1 

hl (m) 200 k (m2) 10-13 

rl (m) 0.3 h (m) 100 

μ (Pa.s) 0.0005 q (m3/s) 0.05 

cta (1/Pa) 10-10 rw (m) 0.1 

ϕa 0.1 ρ1 (m) 50 

ka (m2) 5×10-14 ρ2 (m) 100 

ha (m) 100 α 0.0225 

 

 

Fig. 2.5. Pressure changes of the observation wells, and the corresponding MPR and MPR 

derivative in log-log scale  

In order to characterize the leaky well, we apply the semi-log straight-line method for 

radial flow characterization. We plot the MPR versus time on a semi-log plot (Fig. 2.6). The 

fitted line and the corresponding equation are shown in Fig. 2.6. 
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Fig. 2.6. Semi-log plot of MPR. The radial flow is characterized by straight-line method 

Next, we can calculate the distances between the leaky well and the observation wells using 

Equations (2.9)-(2.10) applying slope and intercept of the fitted line (m = 0.764 and b = 4.597) in 

Fig. 2.6 which gives: 

1 48.6 = m ,  
2 93.6 = m 

Next, the leakage rate is calculated versus time using Equation (2.11). The estimated 

distances of the observation wells show almost four to seven percent error from the actual values. 

In spite of this error, the calculated leakage rate is very close to the actual rate because the solution 

is very sensitive to leakage rate (Fig. 2.7). 
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Fig. 2.7. Leakage rate through the leaky well (Estimated leakage rate is calculated with estimated 

location of the leaky well and the modified estimated leakage rate is calculated with the actual 

location of the leaky well) 

Next, we locate the leaky well by the geometric procedure explained in the Appendix 1. 

Following the procedure we can calculate the angles shown in Fig. 2.2: θ1=27.62, β1=28.39, 

θ2=56.88, θ4=4.98,  β4=48.35   

Angle β4 shows the deviation of the leaky well from the injection well (Fig. 2.2). Next, we 

estimate the distance R between the injection well and the leaky well: 

49.38  mR =  

The estimated location of the leaky well is shown in Fig. 2.8a. However, there is a second possible 

point (mirror-image point) with respect to the observation wells and calculated ρ1 and ρ2 (the gray 

point at Fig. 2.8a). The distance from the injection well to the mirror-image point can be calculated 

with the similar geometric procedure. 

127.2R =  m 

The mirror-image point is located at different distance from the injection well ( R΄≠R ). Therefore, 

it can be eliminated by comparing the actual above zone pressure response with the case that the 

leakage is occurring through the mirror-image point. We make this case by applying the estimated 
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parameters to Equation (2.1). The calculated distance between injection and leaky well (R) is 49.38 

m, which shows almost two percent error (The actual value is 50 m). Fig. 2.8 shows the estimated 

location of the leaky well compared to the actual location. 

 

Fig. 2.8. Estimated location of the leaky well (red solid circle) compared to the actual location 

(blue solid circle). The mirror-image point is shown by the gray solid circle. 

Although the estimated leakage rate is close to the actual value, we can still modify it to 

achieve higher accuracy. We can compare the estimated location of the leaky well with the 

locations of the existing abandoned wells in the field. If we find the leaking abandoned well, we 

can apply the actual location of the leaky well to modify the estimated leakage rate. In this 

example, we use R=50 m instead of 49.4 m as well as ρ1=50 m and ρ2=100 m (instead of ρ1=48.6 

m and ρ2=93.6 m) to calculate ql. Fig. 2.7 illustrates that the modified estimated leakage rate is 

closer to the actual leakage rate than the initially estimated leakage rate. 

After locating the leaky well, we can estimate the hydraulic characteristics of the leaky 

well. The estimated κ constant is 27.3. The calculated leakage coefficient is α=0.0217 by rl =0.3 

m, which shows almost four percent error from the actual value (α=0.0225). 
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2.6.1. Identification from diffuse leakage 

In this section, we show an example of AZ pressure response corresponding to caprock 

leakage to distinguish focused well leakage from diffuse caprock leakage. The spherical 

stabilization behavior of diffuse leakage at early time can be used to differentiate it from well 

leakage response, which is associated with radial flow. All the properties of the injection and above 

zones are identical to those given in the leaky well characterization example (Table 2.1). A high-

permeability weakness of 4×4 m2 is introduced in the caprock centered at the location of the 

injection well. The porosity and permeability of this region are 0.05 and 10-12 m2
, respectively. 

Numerical simulation results show that the simulated normalized pressure in the permeable region 

of the caprock layer is constant (results not shown here for brevity). Therefore, the permeable 

region of the caprock acts as a constant pressure boundary and causes spherical stabilization in the 

AZ. Fig. 2.9 illustrates the simulated pressure (CMG, 2015) in the AZ, which is normalized by the 

leakage rate. The derivative slope is -3/2 corresponding to the spherical stabilization of diffuse 

leakage. The number of grid blocks are 300000. The maximum size of the grid blocks is 10000 

meter and local grid refinement has been done around the well. The minimum size of the grid 

blocks is 0.1 meter. 
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Fig. 2.9. Pressure response of AZ at r=2.25 m normalized by the leakage rate. The -3/2 slope line 

on the derivative curve shows the spherical stabilization during the early time of diffuse leakage. 

 Two observation points are considered in the AZ: the first one is at the location of the 

injection well and the second one is located at 10-m distance from that the injection well. Fig. 1.10 

shows the MPR derivative of two observation points in the leaky caprock system. The negative 

slope of the derivative curve corresponding to the non-radial flow is the sign of diffuse leakage. If 

there was no upper boundary in the AZ (i.e. AZ thickness was infinite), spherical stabilization 

would have been fully established showing a -3/2 slope on the derivative plot. However, given the 

finite thickness of the AZ, the spherical stabilization may be terminated before being felt by the 

farther observation point. Therefore, a negative slope will be observed with magnitude less than 

3/2 (Fig. 2.10). 
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Fig. 2.10. MPR derivative of leaky caprock system. The negative slope line illustrates the diffuse 

leakage. 

2.6.2. Fault leakage identification 

In this section, we provide an example for identification of leaky fault using the 

deconvolution method. We simulated the two-layer fault system similar to Fig. 2.1 and replaced 

the leaky well with a vertically leaking fault. The properties of the fault system are identical to the 

properties that we used for leaky well and leaky caprock system (Table 2.1). Leaky fault acts as a 

discontinuity in the system with different permeabilities in three directions. kfx=10-18 m2
, kfy=10-9 

m2
, and kfz=10-11 m2

 are fault permeabilities in x, y, and z directions (see Fig. 2.4). Fig. 2.11 shows 

the MPR of the simulated pressure data of two observation points and the corresponding derivative. 

The 1/2 slope line of the derivative curve in Fig. 2.11 indicates the linear flow caused by the leaky 

fault. The distances of the two observation points are 50 m and 100 m from the leaky fault. 
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Fig. 2.11. MPR and the corresponding derivative for leaky fault system. The one-half slope line 

shows the linear flow of fault leakage. 

 Next, we investigate the minimum fault conductivity required to reach the linear flow 

during fault leakage to the AZ. We define fault conductivity in y-direction (see Fig. 2.4) as below: 

fy f

y

k w
α

kR
=

 
(2.13) 

where wf is the fault width and R is distance from the injection well to the fault. Therefore, 

αy is equal to 40 in Fig. 2.12. We simulated the fault system with different values of αy. Fig. 2.12 

illustrates that the linear flow of the fault leakage would occur when αy is 40. The derivative line 

slope is between zero and one-half for smaller values of αy. 
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Fig. 2.12. Effect of fault horizontal conductivity through the fault plane (αy) on the MPR of the 

two observation points in the AZ. The solid line is the MPR and the slotted line is its derivative 

(kfx=10-18 m2
 and kfz=10-11

 m
2). Other system properties are identical to Table 2.1. 

2.7. Increasing the radius of investigation in pressure testing 

Radius of investigation (ROI) is a basic concept in pressure transient analysis, which is 

applicable to estimate distance to a specific structure in the reservoir (e. g. a fault), drainage area, 

hydrocarbon in place, and examine multi-fractured horizontal wells. The concept of ROI is 

consistent for radial flow regime. However, there is not a reliable method to explain ROI for linear 

flow, yet. In this section, we present an approach to increase the ROI for a linear source. We aim 

to significantly reduce the duration of test for a linear source. This approach will be useful for 

distinguishing fault leakage from well leakage from large distances. The linear flow regime of 

fault leakage happens at early time. If the observation points are not close enough to the linear 

source, the early-time linear signature of fault leakage would end before being reached to the 

observation wells. Another important application of linear flow is multi-fractured horizontal wells. 

Due to the low permeability of the shale reservoirs, the linear flow regime last for a long time. 

Increasing the ROI can significantly reduce the duration of pressure testing for reservoir 

characterization. 
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We provide the solutions for a constant rate and constant pressure linear source. Next, we apply 

different conditions for the linear source by convolution method to increase ROI. 

2.7.1. Constant Rate 

Diffusivity equation: 

2

2

( , ) 1 ( , )p y t p y t

y t

  
=

 
 (2.14) 

Initial condition and boundary conditions: 

( ,0) 0p y = ,   
( , )w

f

p y t q B

y khx


= −


,   

( , )
0ep y t

y


=


 (2.15) 

Dimensionless variables: 
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Dimensionless form of the equation: 
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(2.18) 

Next, we apply Laplace transform to time: 
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Solution: 

1 2( , ) D Dy s y s

D Dp y s C e C e
−

= +  (2.20) 

Next, we apply boundary conditions: 

1 2

1
wD wDy s y s

sC e sC e
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−
− + = −  
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2.7.2. Constant Pressure 

Diffusivity equation: 
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(2.24) 

Next, we apply Laplace transform to time: 
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Solution: 

1 2( , ) D Dy s y s

D Dp y s C e C e
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= +  (2.26) 
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Next, we apply boundary conditions: 

1 2

1
wD wDy s y s
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−
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2.7.3. Using Duhamel’s theorem to relate constant-rate and constant-pressure solutions 

From superposition: 

pDu can be estimated using this equation to examine whether the constant rate solution 

was correct. Based on the constant rate solution: 

( )
( )
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eD wD
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eD wD
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Therefore:  
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 (2.32) 

This equation (as expected) is the same as the constant rate solution showing that solution was 

correct. We derive the constant pressure solution from the following convolution. 
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D wD Dup sq p=  (2.33) 

We calculate the well flow rate for constant pressure well: 

( )
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Cosh ( )
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eD wD
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D y eD wD
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We can apply qwD to obtain constant pressure solution from D wD Dup sq p= : 

( )
( )
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− − −
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 (2.35) 

This equation is the same as the constant pressure solution as expected. 

2.7.4. Increasing ROI for various injection functions 

In this section, we compare different wellbore conditions to investigate the arrival times of 

the pressure signals to the boundary of the closed system. We apply the equation D wD Dpp sp p=  to 

obtain rate normalized pressure (RNP). Figure below shows the RNP (solid line) and its derivative 

(slotted line) for the constant bottom-hole pressure condition. The arrival time is about tD=0.01.  
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Fig. 2.13. Rate normalized pressure and derivative for constant bottom-hole pressure 

Figure below shows that the arrival time is about tD=0.01 for linear bottom-hole pressure 

condition. 

 

Fig. 2.14 Rate normalized pressure and derivative for linear bottom-hole pressure 
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Next, we examine the logarithmic bottom-hole pressure condition and the arrival time is 

still about tD=0.01. 

 

Fig. 2.15. Rate normalized pressure and derivative for logarithmic bottom-hole pressure 

We aim to find a well pressure condition that increase the radius of investigation (ROI). 

Therefore, the arrival time should be shorter in the favorite condition. Next, we investigate the 

sinusoidal bottom-hole pressure (sin(ωt)). Figure 2.16 shows RNP of sinusoidal pressure for ω=1. 

0.1

1

10

100

1000

0.001 0.01 0.1 1 10

R
N

P
 a

n
d

 d
er

iv
at

iv
e

tD

RNP

Derivative



32 

 

 

Fig. 2.16. Rate normalized pressure and derivative for sinusoidal bottom-hole pressure (ω=1) 

Figure 2.17 shows RNP of sinusoidal pressure for ω=2. 

 

Fig. 2.17. Rate normalized pressure and derivative for sinusoidal bottom-hole pressure (ω=2) 

Fig. 2.18 shows RNP of sinusoidal pressure for ω=0.5. Results show that the arrival time 

for sinusoidal bottom-hole pressure is about tD=0.01. 
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Fig. 2.18. Rate normalized pressure and derivative for sinusoidal bottom-hole pressure (ω=0.5) 

Next, we investigate the quadratic function for bottom-hole pressure variations 

(pwD=a.tD
2+b.tD+c). Figure below shows RNP derivative for the quadratic pressure (b=1, c=1). 

Figure below shows that the arrival time is significantly shorter for larger values of a. 
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Fig. 2.19. Rate normalized derivative for quadratic bottom-hole pressure (b=c=1) 

Next, we modify the coefficients of function pwD(tD)=a.tD
2+b.tD+c to adjust them to field 

scale. The reservoir permeability, porosity, and thickness are 0.001 mD, 0.1, and 200 ft. Fluid 

viscosity is 2 cp, formation volume factor is 1.2 bbl/STB, and total compressibility is 6.89e-6 psi-

1. Figure below shows the bottom-hole pressure variations for b=c=0.0001. 
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Fig. 2.20. Quadratic bottom-hole pressure change 

Fig. 2.21 shows the RNP derivative for the quadratic bottom-hole pressure shown in above 

figure. The boundary dominated flow is stablished in less than 10 hrs for a=1. While the above 

figure shows that the bottom-hole pressure variations is less than 1000 psi for a=1 after 10 hrs. 

 

Fig. 2.21. Rate normalized pressure derivative for quadratic bottom-hole pressure (b=c=0.0001) 
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Next, we compare the quadratic pressure variations with the higher order function. Fig. 

2.22 shows the RNP derivative for 3rd order polynomial function (pwD(tD)=a.tD
3+ b.tD

2+c.tD+d), 

respectively. Figure 2.22 shows that the variations of a for 3rd order function (pwD(tD)=a.tD
3+ 

b.tD
2+c.tD+d) can reduce the arrival time but not as much as the quadratic function (Fig. 21). The 

blue curve in figure below shows that the arrival time is significantly reduced by increasing b 

coefficient (the coefficient of tD
2). Therefore, the best function to reduce the arrival time is the 

quadratic function. 

 

 

Fig. 2.22. Rate normalized pressure derivative for 3rd order polynomial bottom-hole pressure 

(b=c=0.0001) 

Next, we design a test with quadratic pressure variations with a=100, b=0.0001, and 

c=0.0001. Fig. 2.23 shows the pressure variations and flow rate of this case after 20 hrs of test. 

Figure below shows the bottom-pressure and production rate. The reservoir initial pressure is 

10000 psi. 
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Fig 2.23. Bottom-hole pressure and well flow rate for the example problem 

Fig. 2.24 shows that the arrival time is less than 0.1 hour. 

 

Fig. 2.24. RNP for example problem 

2.8. Summary 

 In this chapter, we proposed a characterization method for the focused leakage through a 

leaky well applying the pressure changes of two observation points in the AZ. Identification of 

focused well leakage, caprock, and fault leakage is performed based on the diagnostic log-log plot 

of pressure derivative versus time. Because of time variability of leakage rate, pressure response 

0

5

10

15

20

25

30

35

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2 4 6 8 10 12 14 16 18 20

F
lo

w
 r

at
e 

(s
tb

/d
ay

)

B
o

tt
o

m
-h

o
le

 p
re

ss
u
re

 (
p

si
)

Time (hr)

Pressure

Flow rate

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1

1E+2

0.01 0.1 1 10

R
N

P
 d

er
iv

at
iv

e 
(p

si
.d

ay
.b

b
l-1

)

Time (hr)



38 

 

deconvolution is required to enable using the pressure derivative for leakage identification. We 

applied deconvolution to the AZ pressure with respect to the leakage rate. We applied the pressure 

difference of the two observation points as a proxy of unknown leakage rate to design the 

deconvolution process. The consequent derivative curve for diffuse leakage shows spherical 

stabilization (-3/2 slope derivative line) while that for focused well leakage shows radial flow 

characterized by zero-slope derivative. The spherical stabilization may not be fully established 

because the pressure pulse reaches to the top boundary before reaching to the farther observation 

point. In such a case, the derivative slope line would show a negative slope lower than 3/2 in 

magnitude. Next, we extended the identification process to fault leakage. Results show that the 

leaky fault causes linear flow with one-half slope line. The one-half slope line would occur if the 

along-fault conductivity (αy) is sufficiently high. The derivative slope would be between zero and 

one-half for smaller values of αy. For leaky well characterization, we estimated the location of the 

leaky well with semi-log straight-line method. Results show that the estimated location is close to 

the actual location of the leaky well. Next, we calculated leakage rate and leakage coefficient of 

the leaky well, which are in good agreement with the actual values. The identification and 

characterization procedures in this study are fast and straightforward without the need for 

optimization procedures that can be computationally expensive. We showed that the quadratic 

pressure variations can significantly increase the radius of investigation from a linear source. This 

fact reduces the arrival time for identification of the linear source. 
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CHAPTER 3. LEAKY FAULT 

A fault is a potential pathway for fluid leakage, which can contaminate underground water 

resources. This chapter aims to develop an analytical method for fault leakage characterization 

both laterally and vertically using pressure transient analysis. In this chapter we develop analytical 

models to assess the pressure transient perturbations corresponding to production/injection 

from/into a reservoir with a leaky fault. Displacement of layers during the fault displacement may 

cause alteration of the reservoir properties across the fault. This alteration is accounted for by 

considering different properties on the two sides of the fault. The reservoir is divided into two 

regions separated by the fault, which are in hydraulic communication with one another and with 

the overlying/underlying permeable layers. 

3.1. Introduction 

A fault can cause a discontinuity in formation permeability distorting the fluid flow, and 

may act as a conduit to both lateral and vertical fluid flow. Fault zone permeability may be 

enhanced or reduced depending on the forces that cause the displacement of the layers and slip 

location through the fault plane (R. Sibson, 1977). Faults are generally composed of a core zone 

surrounded by a damaged zone. The permeability of the core zone is commonly low because this 

is the location of the slip that the original rock is ground. Compared to the core zone, the 

surrounding damaged zone’s permeability may be enhanced due to possible fractures (Caine et al., 

1996; R. Sibson, 1977). Analogous to the lateral permeability, the vertical permeability of a fault 

may be enhanced and the fault may be a vertical flow conduit (Maslia & Prowell, 1990). As an 

example, Bense and Person (2006) investigated the sealing and conductance behaviors of the 

Baton Rouge Fault in southern Louisiana and showed that the permeability of the fault is enhanced 

through the fault plane. They also found that the fault permeability is considerably low 
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perpendicular to the fault plane. The existence of faults in underground formations can cause inter-

formational fluid migration, particularly affecting water resources (Huntoon & Lundy, 1979). 

Stoessell and Prochaska (2005) showed that brine from deep saline aquifers migrated upward along 

the Baton Rouge Fault by several hundreds of meters.  

In this chapter, we investigate lateral and vertical characterization of leaky faults based on 

the pressure transient analysis (PTA). PTA is an applicable technique to characterize the hydraulic 

characteristics of the reservoirs, which is based on mathematical modeling of fluid flow in porous 

media. Many works have been done about pressure interpretation for leakage characterization. The 

main goal of this study is to present type curves for fault characterization and demonstrate how 

they can be used to uniquely determine the fault lateral and vertical conductivities. Analytical 

modelling of vertically and laterally leaking fault can be complex due to large number of variables 

related to properties of the fault, reservoir, and overlying/underlying zones connected to the 

reservoir by the fault. In obtaining the analytical solution, we build on an existing analytical 

solution by Zeidouni (2012). We also account for possible layer juxtaposition across the fault by 

assigning different reservoir properties to each side of the fault.  

Analytical models are especially useful because of their independence of time and space 

discretization, capability for quick implementation, providing an explicit relationship between the 

system properties/measurements, and less complex models requiring fewer input of data. Several 

mathematical methods were used to present analytical solutions for fluid flow in a system 

including a fault as a discontinuity. Integral transforms (Bixel, Larkin, & Vanpoollen, 1963), 

Laplace-Fourier transformation (Ambastha, McLeroy, & Grader, 1989), and Green’s function 

(Raghavan, 2010) are examples of the mathematical solution methods. Analytical approaches to 

modeling a faulted system are reviewed in the following. 
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Bixel et al. (1963) investigated the transient pressure behavior of a well located near a fault 

and proposed an analytical solution based on the integral transforms. Stewart and Gupta (1984) 

investigated interference testing in a reservoir including a non-sealing fault and introduced 

drawdown type curves using numerical simulation approach. The pressure discontinuity across the 

fault was shown by Yaxley (1987). He obtained an analytical solution for pressure transient 

behavior of a vertical non-sealing barrier. In his solution, the pressure interferences between wells 

separated by the fault were investigated for a reservoir with infinitely long dimensions and a 

constant-rate well. He presented type curves to calculate the conductivity of the fault from 

interference test, which may require long testing time. He suggested that a solution for drawdown 

at the active well can be useful to find the conductivity of the fault. The reservoir properties on 

both sides of the fault were assumed identical. Ambastha et al. (1989) assumed different reservoir 

properties at two sides of the fault and derived analytical solutions for pressure-transient behavior 

of a constant-rate well. They demonstrated that the results of the interference tests are influenced 

by the property contrasts of the composite system and the location of the observation well. Rahman 

et al. (2003) presented an analytical solution to the transient flow problem of a well located near a 

finite conductivity fault in a two-zone reservoir. The solution accounts for the transient flow within 

the fault. They concluded that the effect of transient flow in the fault can be negligible. 

Modeling of the vertical leakage through the fault to shallower zones has received attention 

more recently. Shan et al. (1995) incorporated the effect of vertical fluid leakage to an upper 

permeable zone and suggested an analytical model of vertical flow through the fault. However, 

they ignored the pressure discontinuity through the fault in the injection layer. Zeidouni (2012) 

presented analytical solutions of two-layer and multi-layer systems, which demonstrated the 

pressure discontinuity through the fault in presence of vertical leakage. Zeidouni (2016) extended 
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the multi-layer solution for a leaky fault by fully accounting for the lateral resistance of the fault 

in all layers. Many other works have been done to address fluid leakage from a target zone 

(Birkholzer, Zhou, & Tsang, 2009b; Ebigbo et al., 2007; Mosaheb & Zeidouni, 2017a, 2017b; 

Pruess, 2005; Shakiba & Hosseini, 2016; Zeidouni & Pooladi-Darvish, 2012). 

In this chapter, we develop two analytical methods for fault leakage characterization. First, 

we ignore the flow resistant of the above formation. In second model, we consider the resistance 

of the above formation as well as the anisotropic flow inside the fault zone. 

3.2. Fault leakage to a high permeability zone 

In the following, we first present the physical system followed by corresponding analytical 

model. The analytical solution is verified against numerical simulation results. The analytical 

solution is cast in the form of type curves to be used in fault characterization. Due to the large 

number of dimensionless groups obtained by the analytical solution, the system cannot be fully 

characterized using the type curves alone. Therefore, we present a computational optimization 

method in combination with type curves to fully characterize the reservoir-fault system. Our 

approach is based on estimating the dimensionless parameters that describe the hydraulic 

properties of the fault and the altered region on the other side of the fault. Finally, we apply our 

proposed method to two example problems to characterize leaky faults. 

3.2.1. Analytical model 

For the physical system to be modeled, the target zone is separated into two regions (region 

1 and region 2) by a vertical planar fault. Region 1 is on the side of the fault where the active well 

is located and region 2 is on the opposite side of the fault (Fig. 3.1). Because of possible 

displacement of the layers on the two sides of the fault plane, the thickness and reservoir properties 

of region 2 may be different from those of region 1. The reservoir properties are homogeneous and 
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isotropic at each region. The y-axis is horizontal and perpendicular to the x-axis. The active well 

is assumed to be a line source/sink and is perforated over the whole thickness of the reservoir at 

x=a and y=0 in the target zone. The reservoir is initially saturated with a single-phase fluid and 

the injected fluid is the same as the initial fluid. Both the upper zone and the target zone are infinite 

at both sides of the x and y axes. The fault plane is perpendicular to the x-axis, and it is located at 

x=0. The fault allows flow communications between region 1, region 2, and the upper zone. The 

horizontal and vertical permeabilities of the fault are considered constant. 

 

Fig. 3.1. Schematic representation of the physical model 

The diffusivity equations for regions 1 and 2 make a system of two linear differential 

equations. The pressure change of the upper zones is negligible because the flow capacity of that 

zone is assumed to be large. Equations (3.1)-(3.10) represent diffusivity equations of regions 1 and 

2 and the corresponding initial and boundary conditions: 
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where L is half thickness of the above zone. The system of partial differential equations 

and the corresponding initial and boundary conditions (Equations 3.1-3.10) are simplified to a 

system of ordinary differential equations using a combination of Laplace and Fourier transforms. 

Equations (3.11)-(3.12) state the sequence of applying Laplace and Fourier transforms to time and 

space domains: 

0
( , , ) [ ( , , )] ( , , ) stp x y s p x y t p x y t e dt


− =  = L   (3.11) 

. .( , , ) [ ( , , )] ( , , ) i yp x s p x y s p x y s e dy
+

−
 =  = F   (3.12) 
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where s and ω are Laplace and Fourier transform dummy variables, respectively. Equations 

(3.13)-(3.14) provide the final solution of the pressure distribution at region 1 and region 2, 

respectively in dimensionless form (the solution details are given in Appendix 2). The Laplace-

Fourier domain is shown by = on the pressure change (Equation (3.12) ) and dimensionless 

pressure (Equations 3.13-3.14). 

1 1
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wf, kfv, and kfh are the fault width, fault vertical permeability, and fault horizontal permeability, 

respectively (Fig. 3.1). α and αu are dimensionless horizontal and vertical conductivities of the 

fault and tD is dimensionless time. TD and ηD are flow capacity and diffusivity ratios, respectively. 

The solution must be inverted from the Laplace-Fourier domain to time-space domain. Analytical 

inversion of the solution to a closed-form solution in the time-space domain is difficult. Therefore, 

numerical Laplace and Fourier inversion methods are used to obtain the solution in time-space 
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domain. Stehfest algorithm (Stehfest, 1970) is used for Laplace inversion and the Inverse Discrete 

Fourier Transform (IDFT) is used for Fourier inversion.  

3.2.2. Verification of the analytical model 

The analytical solution is verified by comparison of spatial and temporal variation of the 

pressure with the numerical simulation results (CMG, 2015). There are three layers (Injection 

zone, caprock, and above zone) discretized to 300000 grid blocks. The maximum size of the grid 

blocks is 10000 meter and local grid refinement has been done near the well and the fault zone. 

The grid discretization is three dimensional. The minimum size of the grid blocks is 0.1 meter. We 

consider α=1, αu=0.12, TD=1, and ηD=1. According to the analytical model, these values of 

dimensionless parameters show the capability of fault for lateral and vertical leakage and alteration 

of the reservoir properties at region 2 due to displacement. In dimensional terms (corresponding 

to the dimensional values), the width of the fault is 0.1 m, the porosity is 0.2, total compressibility 

factor is 1×10-6 1/kPa, and rate of injection is 0.005 m3/s. The reservoir thickness and permeability 

of region 1 are 10 m and 10 mD, respectively. Fault lateral and vertical permeabilities are 0.01 mD 

and 5000 mD, respectively. The system specifications are given in Table 3.1. Fig. 3.2 exhibits the 

pressure distribution on the line drawn through the well perpendicular to the fault plane. The lateral 

pressure discontinuity is visible across the fault, which shows that the lateral permeability of the 

fault is less than the reservoir permeability. Fig. 2 illustrates that the analytical solution is in good 

agreement with the numerical simulation at both regions 1 and 2. If there is no lateral leakage, the 

pressure in region 2 remains constant (at initial pressure). Fluid leakage across the fault causes 

pressure changes in region 2. Therefore, the pressure gradient along region 2 shown in Fig. 3.2 

(from x=-100 to x=0) is a sign of lateral leakage through the fault. 



47 

 

 

Fig. 3.2. Validation of the spatial pressure distribution in the injection zone after 10 days. 

Fig. 3.3 illustrates good agreements of pressure and logarithmic pressure derivative 

(referred to as derivative hereafter) between analytical and numerical simulation. The verification 

of the pressure derivative is important because the characterization method to be presented later is 

based on the pressure derivative curves. 

Table 3.1 Reservoir properties 

Parameter Value Parameter Value 

Effective width of the fault (m) 0.1 Viscosity (cp) 0.5 

Lateral permeability of the fault (mD) 0.01 Injection rate (m3.s-1) 0.005 

Vertical permeability of the fault (mD) 5000 Porosity (fraction) 0.2 

Target zone thickness (m) 10 Total compressibility (1/kPa) 10-6 

Fault-well Distance (m) 100 fault vertical conductivity , αu 0.12 

Permeability of region 1 (mD) 10 fault lateral conductivity , α 1 

Permeability of region 2 (mD) 10 Diffusivity ratio , ηD 1 

Permeability of upper layer (mD) 10 Flow capacity ratio , TD 1 
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Fig. 3.3. Validation of temporal variation of well pressure and (logarithmic) pressure derivative 

with respect to time using numerical simulation 

3.2.3. Fault characterization 

In this section, type curves are introduced for characterization of the leaky fault modeled 

in previous sections. Type curves are generalized and adjusted in terms of dimensionless variables, 

which make them applicable to the corresponding system. Based on the analytical solution 

(Section 3), the reservoir-fault system can be characterized by four groups: Fault lateral and 

vertical conductivities, reservoir flow capacity ratio, and diffusivity ratio. These four groups are 

represented by dimensionless parameters: α, αu, TD, and ηD, respectively. We use the analytical 

model to provide type curves in terms of dimensionless parameters of the leaky fault system. Next, 

we present a characterization procedure based on the type curves.  

3.2.4. Type curves 

Fig. 3.4 illustrates the type curves corresponding to the leaky fault system in terms of fault 

lateral (α) and vertical (αu) conductivities for TD =ηD=1. In these curves, the variations of the 

dimensionless bottom hole pressure of the injection well and its derivative are illustrated. We refer 
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to type curves of Fig. 3.4 as the base type curves. The type curves are grouped for various values 

of αu. At each group, α varies from zero to infinity. The negative unit slope line of the logarithmic 

derivative curves in Fig. 3.4 shows the existence of the fault in the reservoir. Rahman et al. (2003) 

showed this negative unit slope line for different cases of fault leakage. The negative unit slope 

line would occur before appearance of flow resistance from the overlying/underlying zone unless 

the flow capacity of that zone is high enough. Using these type curves, hydraulic characteristics of 

the fault can be estimated with the well pressure data without detecting any resistance from the 

overlying/underlying zones.  

A well pressure data corresponding to unique values of α and αu would match with a unique 

type curve. In finding the matching type curve, αu is easier to obtain from late time pressure data 

while parameter α is easier to estimate using early time data. Implementing this technique of using 

the early time and the late time data separately can help in resolving the choice of intermediate 

values of α and αu. In other words, for two close values of αu, the two corresponding groups of 

type curves may be very close to one another at late time, but the two curves should deviate from 

each other at early time making it easy to recognize which one belongs to which group. If two 

curves of two different groups of αu are very close to each other at late time so that both match the 

given data, the early time curvature will be different for the two type curves and therefore, can be 

used to distinguish between them. In addition, two curves with too close values of α and different 

values of αu may be close to each other at the early time. Then, their late time deviation can be 

used to determine the correct type curve. In short, there is a unique type curve for each combination 

of αu and α which should be easy to distinguish from the other curves. In addition, the point when 

deviation from the radial flow (the zero-slope derivative line prior to reaching the fault) would 

commence are useful to find the best matching type curve. 
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Fig. 3.4. Type curves of the leaky fault system considering TD =1 and ηD =1 

In order to use these type curves, the well pressure data should be plotted versus time in 

the same scale as the type curves on a transparent plot. The resulting plot should be next moved 

horizontally and vertically (without rotation) to find the best match with the type curves to estimate 

α and αu. In addition to α and αu, region 1 permeability and fault-well distance can also be evaluated 

based on the radial flow prior to reaching the fault. By selecting an arbitrary match point, we get 

(pD)M, (Δp)M, (t)M, and (tD)M of that match point to calculate region 1 permeability (k) and fault-

well distance (a) based on Equations (3.19) and (3.20).  

D

M

pq
k

h p

  
=  

 
  (3.19) 

D M

t
a

t

 

=  
 

 (3.20) 
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One observation from these type curves is that 2 to 3 log-cycles of data may be required 

for identification of the fault characteristics. This implies that if the fault is felt after 1 hr test, 100 

to 1000 hrs of test may be required to enable characterizing of the fault.  

The type curves can be extended to determine TD and ηD as well. Fig. 3.5 illustrates the 

effect of TD and ηD on the pressure and pressure derivative for a fixed value of α (=0.1). The effect 

of TD and ηD is most visible at the lowest values of αu. Similar patterns are achieved for different 

values of α. 

 

Fig. 3.5. Effect of TD and ηD on the type curves 

Fig. 3.5 shows that by increasing αu, the sensitivity of the pressure derivative curve to the 

parameters TD and ηD will decrease. In the following, we introduce a procedure to estimate the 

dimensionless parameters. First, initial values of α and αu are estimated by the base type curves. 

Next, an optimization method is applied to find the accurate values of the dimensionless 

parameters using the initial values obtained from type curve analysis. We use the MATLAB built-

in optimization tool given by the fmincon optimization function. This function is based on a 
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sequential quadratic programming, which is a gradient-based algorithm (2015). Here, fmincon 

optimization is applied to minimize the square of the difference between well pressure data and 

the mathematical solution by changing the four dimensionless parameters. 

3.2.5. Characterization procedure 

In characterization procedure, first, we estimate the initial values of α and αu from the type 

curves. Next, we calculate the values of permeability and fault-well distances using Equations 

(3.19) and (3.20). In the optimization process, first, we use the late time pressure data to modify 

the estimated initial value of αu. We fix α, TD, and ηD at the initial values and modify αu to find the 

optimum value of αu starting with the estimated initial value. Next, we run the optimization process 

using the early time data to modify the value of α while the values of αu, TD, and ηD are fixed. After 

that, we apply the optimization process to modify α and αu simultaneously using the whole pressure 

data. 

As a final step, we apply the optimization process to modify the values of TD and ηD while 

α and αu are fixed. The initial values of TD and ηD can be considered equal to 1. This step is done 

by the late time data because TD and ηD have a negligible effect on the early time data. This 

sequential procedure improves the optimization process compared to optimizing all four 

dimensionless parameters simultaneously using the whole the pressure data. This optimization 

procedure can also be used in the case that TD=ηD=1 to remove the possible errors. In this case, the 

final step is not required. The characterization procedure is summarized in Fig. 3.6. 
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Fig. 3.6. Characterization procedure of the leaky fault system 

3.2.6. Results and discussion 

In this part, two examples are presented to estimate fault characteristics by the type-curve 

method using the procedure described in the previous section. 

Example 1: No alteration of reservoir properties across the fault 

In this example, we analyze the well pressure data of an injection well near a fault. The 

permeability, porosity, total compressibility, and thickness of the target zone at both sides of the 

fault are respectively 100 mD, 0.1, 10-6 1/kPa, and 10 m. The flow capacity of the upper zone is 

large enough compared to the injection zone. The injection rate is 0.005 m3.s-1 and fluid viscosity 

is 0.5 cp. Fig. 3.7 shows the synthetic well pressure data and pressure derivative of the first 

example in which α and αu are considered 1 and 0.3, respectively. These values correspond to 62 

D and 0.1 mD for vertical and horizontal permeabilities of the fault considering a 0.1-m wide fault. 

Fluid leakage through the fault can be inferred from the derivative curve. If the fault is sealing, the 

pressure derivative becomes zero-slope after departing from the zero-slope corresponding to initial 
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radial flow (Fig. 3.8). The late time horizontal line in Fig. 8 exhibits the pressure response of a 

sealing fault in which α and αu are equal to zero. 

The pressure data and the derivative are required on a plot with the same scale as the type 

curves for type-curve matching. Fig. 3.9 shows the type curve that best agrees with the pressure 

data. Corresponding values of α and αu are estimated for the fault. The estimated values of α and 

αu are 1 and 0.3, which are the true values used in generating our synthetic data. By selecting an 

arbitrary match point and using equations (3.19) and (3.20), the permeability of region 1 and the 

fault-well distance can be calculated as below:  

( ) 0.08D Mp = , ( ) 199  Mp kPa =  , ( ) 0.07D Mt = , ( ) 1000  Mt s=  (3.21) 

 100.5 mDD

M

pq
k

h p

  
= = 

 
  (3.22) 

( ) 100.2  mD M
a t t= =

  
(3.23) 

These values are in close agreement with the correct values (k=100 mD, a=100 m). 

 

Fig. 3.7 Pressure and pressure derivative for example 1 
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Fig. 3.8. Pressure and derivative response for a sealing fault, considering α = αu = 0. 

 

Fig. 3.9. Estimating α and αu with the base type curves for example 1 
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Example 2: Alteration of reservoir properties across the fault 

Fig. 3.10 shows the synthetic pressure data of an injection well near a fault in which α, αu, 

TD, and ηD are considered 0.02, 0.5, 0.1, and 0.1 respectively. The flow capacity of the upper zone 

is large in proportion to the injection zone. The reservoir properties and the formation thickness 

on region 2 are unknown. Therefore, we characterize the leaky fault while the reservoir properties 

of region 2 may not be identical to those of region 1. The injection rate is 0.005 m3.s-1, the viscosity 

is 0.5 cp, the porosity is 0.1, total compressibility is 10-6 1/kPa, and reservoir thickness is 20 m. 

First, we use the base type curves to find the initial values for α and αu. In this case, the pressure 

data curve may not accurately match with the type curves but we try to find the best match. The 

best match of the pressure data with the type curves is illustrated in Fig. 3.11. The estimated initial 

values of α and αu are 0.2 and 0.03 respectively. 

When TD≠1 and/or ηD≠1, the effects of TD and ηD on the pressure derivative curve appear 

after the arrival of the pressure pulse to the fault. Hence, variations of TD and ηD will not affect the 

early time pressure data. Thus, similar to example 1, we can select an arbitrary match point to 

estimate the fault-well distance and permeability of region 1 (Equations (3.24)-(3.26)). 

( ) 0.098D Mp = , ( ) 248  kPaMp =  ,  ( ) 1D Mt = , ( ) 10022  sMt =  (3.24) 

= 49.4 mDD

M

pq
k

h p

  
=  

 
  (3.25) 

( ) 100.1  mD M
a t t= =  (3.26) 



57 

 

 

Fig. 3.10. Pressure and derivative data for example 2 

 

Fig. 3.11. Estimation of α and αu with the base type curves for example 2 

Next, the optimization method is used to find the accurate values of the dimensionless 

parameters. We set the initial values of TD and ηD equal to one. The calculated permeability and 



58 

 

fault-well distance (k and a) are used to convert the well pressure data to dimensionless numbers. 

We apply optimization function to find the best match between the dimensionless pressure data 

and the analytical solution by modifying the four dimensionless parameters. Using the 

optimization method, the estimated values of the dimensionless parameters are α=0.5, αu=0.02, 

TD=0.1 and ηD=0.29. The estimated values of fault conductivities (α and αu) are true values 

corresponding to synthetic data. Generally, the effects of fault conductivities on the pressure 

derivative are more than the effect of diffusivity and flow capacity ratios. 

3.3. Anisotropic fault leakage 

The anisotropic nature of fault permeability is necessary to be honored when modeling 

flow through faults. The fault permeability can be categorized into three different permeabilities: 

across-fault, along-fault, and up-fault. Along-fault permeability is generally orders of magnitude 

larger than the across-fault permeability. 

3.3.1. Introduction 

Fault core properties affect the across-fault permeability. While, the along-fault 

permeability mainly depends on the fault damage zone properties (IEAGHG, 2016). Across-fault 

permeability is determined by the degree of juxtaposition accommodated by displacement as well 

as fault core flow resistance. If the sand interval is juxtaposed against a shale interval the across-

fault permeability will be negligible. If not, the fault flow resistance is traditionally evaluated using 

the shale smear factor (Lindsay, Murphy, & Walsh) or shale gouge ratio (Yielding, Freeman, & 

Needham, 1997). Along-fault permeability is primarily governed by the host zone properties. If 

shale is the host zone, the along-fault permeability may be higher than the host zone. In sand host 

zones the permeability of the damage zone may be higher or lower depending upon the nature of 

process and deformations. Up-fault permeability is governed by same parameters controlling the 
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damage zone along-fault permeability. In addition, compaction can decrease the permeability 

further making the ratio of up-fault to along-fault permeabilities less than 1. The up-fault 

permeability is also affected by the orientation of effective stress acting on the fault and its 

magnitude. The possible range for permeability across the fault is between 10-19 to 10-14 m2 

compared to 10-15 to 10-12 m2 for along-fault permeability (Manzocchi, Childs, & Walsh, 2010). 

Setting a lower limit to the up-fault permeability can be difficult because there may negligible 

vertical leakage potential through the fault. 

In this section, we introduce an analytical solution which accounts for fault’s anisotropic 

nature considering distinct across-, along-, and up-fault transmissibilities. The model enables 

evaluation of pressure response in the injection zone and above zone on both sides of the fault. In 

the following, the physical model is presented first. Next, the analytical model is set up for the 

physical model configuration by writing the relevant governing equations and corresponding initial 

and boundary conditions. Next, the analytical solution is derived through applying the combined 

Laplace and Fourier integral transforms. Then, the analytical solution is validated by comparing 

its results to those obtained through the numerical simulation. Type curves are provided in terms 

fault conductivities to demonstrate the ability of the solution for fault leakage characterization. 

The type curves are next utilized to characterize fault leakage for an example problem. 

3.3.2. Physical model description 

Fig. 3.12a shows the schematic representation of the faulted system. We consider 

horizontal flow across and along the fault plane as well as vertical leakage to the shallower 

formation. The fault divides each layer into two regions (region 1 and region 2). The injection well 

is located in region 1.  The fault consists of four regions (f1, f2, fa1, fa2) that conduct fluid in three 

directions (x, y, and z directions). Fig 3.12b illustrates hydraulic connections between the fault 
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regions as well as the reservoirs’ regions. Each region of the fault zone is in direct hydraulic 

connection with the adjacent region of injection/above zones (regions 1, 2, a1, and a2). q is the 

injection rate and μ is fluid viscosity. kfx, kfy and kfz are fault permeabilities in three directions. k 

and h are permeability and thickness of region 1 of the injection zone. Due to fault displacement, 

diffusivity and thickness of regions 2, a1, and a2 can be different from region 1. kj and hj are 

permeability and thickness of the altered zones (j=2, a1, and a2). 

(a) 

 

(b) 

 
Fig. 3.12. (a) Schematic representation of the physical model, (b) Directions of intra-fault and 

fault-reservoirs hydraulic connections on x-z coordinate  

3.3.3. Analytical model 

In this section, we derive an analytical solution of pressure variations in the system of the 

injection zone and above zone connected by the fault zone. The fault zone pressure variations are 
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important as it conducts the flow into the far distance in the reservoir. The fault is fed from the 

injection zone due to pressure gradients associated with injection operations on the side of the 

injection well. The pressure diffusivity equations are written for all regions in the injection zone 

and the above zone. The injection well is considered in region 1 introducing Dirac delta function 

(δ) in the corresponding diffusivity equation (Eq. 3.27). The governing diffusivity equations for 

the four regions of the injection zone (regions 1 and 2) and above zone (regions a1 and a2) are 

shown below. 

Injection zone:                  

2 2

1 1 1

2 2

1
( ) ( )

p p pq
x a y

x y kh t


 



    
+ + − =

  
  (3.27) 

2 2

2 2 2

2 2

2

1p p p

x y t

    
+ =

  
  (3.28) 

Above zone:  

2 2

1 1 1

2 2

1

1a a a

a

p p p

x y t

    
+ =

  
  (3.29) 

2 2

2 2 2

2 2

2

1a a a

a

p p p

x y t

    
+ =

  
  (3.30) 

where Δpj = p0 - pj. pj denotes the pressure of region j (j= 1, 2, a1, a2) and p0 is the initial 

pressure of the system. The diffusivity coefficient of region j of the reservoirs is defined as below 

(j= 1, 2, a1, a2 ). 

j

j

t

k

c



=   (3.31) 

The fault zone is divided into the four zones. Each zone of the fault is in the vicinity of 

the corresponding region of the injection zone (regions 1 and 2) or the above zone (regions a1 

and a2) (Fig. 3.12b). The pressure diffusion inside the fault at region f1 is given by:  
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2

1 1 2 1 1 11

2

( ,0, ) 1

/ 2 / 2 / 2 / 2

f fx f f fz f fa f

fy f fy f f fy f

p k p p k p p pp t yk

y k w x k w w k L L t

   −   −  
+ − − =

  
  (3.32) 

where ηf and wf are diffusivity coefficient of the fault zone and fault width.  The first term on the 

left-hand-side (LHS) of Equation (3.33) is the pressure diffusivity along the fault and the right-

hand-side (RHS) term is the accumulation term. The flow to/from region f1 to regions 1, f2, and 

fa1 are given by the second, third, and forth terms on the LHS respectively. Similarly, for regions 

f2, fa1, and fa2 we can write, respectively:  

2

2 1 2 2 2 22 2

2

2 2

( ,0, ) 1

/ 2 / 2 / 2 / 2

f fx f f fz f fa f

fy f fy f f fy f
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1 1 2 1 1 11 1
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fy f fy f f fy f

p k p p k p p pk p t y
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fy f fy f f fy f

p k p p k p p pk p t y

y k w x k w w k L L t
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  (3.35) 

The third term in LHS of Equations (3.32)-(3.35) include kfx that make the core zone 

permeability different from that of the damaged zone to fully honor the anisotropic fault structure. 

Next, we need to define initial and boundary conditions in order to solve the system of partial 

differential equations. We consider the initial uniform pressure (p0) is the system (Equation 3.36). 

1 2 1 2 1 2 1

2 0

(0, , ) (0, , ) (0, , ) (0, , ) (0, ) (0, ) (0, )

(0, )

a a f f fa

fa

p x y p x y p x y p x y p y p y p y

p y p

= = = = = =

= =
 (3.36) 

The whole system is assumed infinite acting in horizontal directions (Equation 3.37). 

1 2 1 2

1 2 1 2

1 2 1 2 0

( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , )

( , ) ( , ) ( , ) ( , )

a a

a a

f f fa fa

p t x y p t x y p t x y p t x y

p t x y p t x y p t x y p t x y

p t y p t y p t y p t y p

→ = → − = → = → −

= →  = →  = →  = → 

= →  = →  = →  = →  =

  (3.37) 

Equations (3.38)-(3.41) are boundary conditions that describe the hydraulic connections between 

the fault and the reservoir regions 1, 2, a1, and a2 respectively. 
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The dimensionless groups are defined below: 
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where L is the leakage interval, which is the vertical distance between the middle height of the 

injection zone and middle height of the above zone (L is identical for regions 1 and 2). In order to 

simplify the system of partial differential equations to the ordinary system of differential equations, 

we apply Laplace ( L ) and Fourier ( F ) transforms on time and y-direction variables (Equations 

(3.43)-(3.44)). 

0
( , , ) [ ( , , )] ( , , ) stp x y s p x y t p x y t e dt


− =  = L   (3.43) 

( , , ) [ ( , , )] ( , , ) i yp x s p x y s p x y s e dy
+

−
 =  = F     (3.44) 

ω and s are Fourier and Laplace Variables, respectively. The bar and = signs denoted the Laplace 

and Laplace-Fourier domains, respectively. The solution for pressure variations of the system in 

the Laplace-Fourier domain is shown below. 
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Combining Equations (3.45)-(3.48) with the boundary conditions (Equations 3.38-3.41), 

the coefficients C1 through C4 are calculated by solving the following system of linear algebraic 

equations for the coefficient vector C. 

H.C=F (3.50) 
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The superscript T indicated the vector transpose. The details of the solution derivation are 

explained in the Appendix 3. We apply numerical Laplace inversion (Stehfest, 1970) and 

numerical Fourier inversion to obtain the solution in the time–space domain. 

3.3.4. Validation 

In this section, we validate the analytical solution of the anisotropic fault system with the 

numerical simulation using the CMG-IMEX (CMG, 2015). The simulated system is large enough 

to keep the infinite acting behavior during the test. Local grid refinement has been used near the 

wellbore as well as the fault. Fig. 3.13 a shows the CMG physical model from top view. Fig. 3.13 

b demonstrates top view of the well and fault locations in the injection zone and the local grid 

refinement near the wellbore as well as near the fault. The total number of grids are 1080000 

(nx=600, ny=600, nz=3) and the duration of the simulation is two hours for one-minute time step.  

Fig. 3.13c shows the pressure profile in the injection zone which shows good agreement between 

the analytical solution and the numerical results. The pressure discontinuity is obvious across the 

fault. Table 3.2 shows the values of the system properties. The rock and fluid properties are 

assumed identical in the four regions of the injection and above zones. 

Table 3.2. Values of the system properties 

Parameter Value Parameter Value 

kfx (m2) 10-14 ka2 (m2) 10-14 

kfy (m2) 10-11 L1 (m) 25 

kfz (m2) 10-13 L2 (m) 25 

wf (m) 1 h (m)    20 

a (m) 100 h2 (m)        20 

ϕ 0.1 ha1 (m) 20 

ct (1/Pa) 10-9 ha2 (m) 20 

k (m2) 10-14 q (m3/s) 0.01 

k2 (m2) 10-14 μ (Pa.s) 0.0005 

ka1 (m2) 10-14   
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Fig. 3.13. (a) Physical model on x-y coordinate for the numerical simulator, (b) Location of well 

and fault in the injection zone on x-y coordinate for the numerical simulator, (c) Comparison of 

the analytical (dots) versus numerical (lines) pressure distribution in the injection zone at different 

times 

In addition to the pressure profile, we validate the pressure derivative as the pressure 

derivative is required for leakage characterization. Figs. 3.14 illustrates good agreements between 

analytical and numerical results. 
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Fig. 3.14. Injection-zone pressure derivative validation. 

3.3.5. Results and discussion 

In this section, we show the ability of the analytical solution for leaky fault characterization 

by providing type curves based on the derivative curves. Next, we apply the type curves to an 

example problem for anisotropic leaky fault characterization. 

Effect of fault conductivities on the pressure response 

We show the effect of fault conductivities (αx, αy, αz) on the pressure derivative at the active 

well. Figs. 3.15-3.17 show the effect of αx, αy, and αz respectively on the injection well’s pressure 

derivative. Considering the definition of the dimensionless pressure, the 0.08 (=1/4π) is the value 

of the derivative for the early-time radial flow.  

Fig. 3.15 shows the effect of αx on the derivative curves while αy= αz= 1. αx = 0 illustrates 

the same derivative horizontal line (derivative= 0.08) after the early time radial flow, which 

indicates that the fault acts as a partially sealing fault. The derivative did not drop because the 

vertically-leaking fault exposes the semi-infinite injection zone to another semi-infinite reservoir 

volume of the region 1 of the above zone. For αx > 0, the derivative curves would ultimately reach 
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0.04 at the late time, which is half of the early time radial derivative. This value is a sign of the 

vertical hydraulic connection in the fault zone which indicates fault leakage in x-, y-, and z- 

directions simultaneously. It can be inferred form Fig. 3.15 that the late time radial flow (derivative 

= 0.04) would be delayed by decreasing αx. 

 
Fig. 3.15. Effect of αx on pressure derivative (αy=1, αz=1, ηfD=1000, ηfD=1000, wfD=0.001, LD=1) 

Fig. 3.16 shows the impact of y on the injection well’s pressure derivative while αx=0.1 

and αz= 1. It is evident that the derivative curves reach a valley after the early-time radial flow. 

The valley would become deeper by increasing the along-fault conductivity αy. Also, increasing 

y delays the arrival of late-time 0.04 derivative value. 
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Fig. 3.16. Effect of αy on pressure derivative (αx = 0.1, αz = 1, ηfD=1000, wfD=0.001) 

Fig. 3.17 shows the effect of vertical conductivity of the fault az on the pressure derivative 

curves for fixed x=0.1 and y=1. The late time derivative value is equal to its early-time for 

vertically sealing fault (αz=0). However, it is half of the early-time value for vertically leaking fault 

(αz > 0). 
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Fig. 3.17. Effect of αz on pressure derivative (αx=0.1, αy=10, ηfD=1000, wfD=0.001) 

Fault leakage characterization 

Fig. 3.18 shows the type curves of the combined effects of αx, αy, and αz on the derivative 

curves. The leaky fault type curves are classified into three main categories. The first category is 

the sealing fault that shows the doubled derivative compared to the early time radial flow 

(derivative=0.16, the blue curve in Fig. 3.18). The second category is the partially-sealing fault 

(black curves in Fig. 3.18) that are conductive only across the fault (αx = 0, αz ≠ 0) or upward (αx 

≠ 0, αz = 0). In this category, the late time derivative value equals the early-time radial flow value 

(=0.08). The third category of type curves show the derivative curves of leaky faults (red curves 

in Fig. 3.18) that are conductive both across the fault and upward. In this category, the late time 

radial flow derivative is half of the early time derivative (derivative= 0.04). We do not show the 

values of fault conductivities in Fig. 3.18 for brevity and to assist the reader to focus on the three 

main categories (shown by blue, black, and red curves). 
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Fig. 3.18. Type curves for anisotropic fault characterization applying pressure derivative of the 

injection well (ηD2 = ηDa1 = ηDa2 =1, ηDf =1000, wfD=0.001, LD=1). 

In order to differentiate the type curve groups based on the variations of αx, αy, and αz, we 

show the three categories of type curves in separate curves. Fig. 3.19 shows the type curves of 

sealing faults that confine the fluid flow inside region 1 of the injection zone. 
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Fig. 3.19. Type curves for faults that are sealing upward and across the fault (ηD2 = ηDa1 = ηDa2 =1, 

ηDf =1000, wfD=0.001, LD=1). 

Fig. 3.20 shows type curves of partially sealing faults that conduct fluid across or up the 

fault. Either of these conductivities results in the same late time derivative representative of radial 

flow. Considering this similar response, it may be difficult to distinguish between these two types 

of partially sealing faults by the injection zone pressure response alone especially if data is noisy.  
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Fig. 3.20. Type curves for Partially-sealing faults (ηD2 = ηDa1 = ηDa2 =1, ηDf =1000, wfD=0.001, 

LD=1). 

Fig. 3.21 illustrates the type curves of leaky faults that conduct fluid into the other side of 

the fault as well as the above zone. As explained before, the most important sign of a leaky fault 

is the late–time value of derivative (1/8π), which is half of the early-time radial flow before the 

leakage response. 

Figs. 18-21 show that the type curves with the same values of αy would merge at early-time 

of fault leakage response. In addition, Fig. 3.21 shows that the curves with the same values of αx 

and αy merge at late-time before the late-time radial flow response. 
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Fig.3.21. Type curves for Leaky faults (ηD2 = ηDa1 = ηDa2 =1, ηDf =1000, wfD=0.001, LD=1). 

It can be inferred from Figs. 3.18-3.21 that fault conductivities (αx, αy, and αz) can be 

estimated by the pressure derivative type curves. The pressure derivative curves derived by the 

analytical solution are unique for each combination of fault conductivities (αx, αy, and αz). 

Therefore, the unique values of αx, αy, and αz can be estimated by the pressure variations applying 

the analytical solution. For all types of faults, the first thing that occur after the early-time radial 

flow is the effect of αy that typically appear by a valley. The valley would become deeper by 

increasing the value of αy. For small values of αy, the valley would alter to a hump that would be 

bigger as αy got smaller values. For sealing fault, αy can easily be estimated as it is the only 

unknown conductivity (Fig. 3.18).  For non-sealing faults (Figs. 3.19-3.20), αy can be estimated 

by early-time merge of the derivative curves. 

After estimation of αy, we explain the estimation of αx and αz. As explained before, for 

partially sealing fault, it is difficult to distinguish between the across fault and vertical leakage 
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based on the active well pressure response (Fig. 3.19). However, if we know the types of the 

partially sealing fault (αx = 0 or αz = 0), the type curves of Fig. 3.19 are useful to estimate the other 

nonzero across fault conductivity (αx) or vertical conductivity (αz), applying the middle-time 

derivative effect. 

In spite of the partially sealing faults, αx and αz can be distinguishable if significant across-

fault and vertical leakage occur through a leaky fault. For leaky faults (Fig. 3.21), αx can be 

estimated by the late-time merge before the late-time radial flow. αz can also be estimated by the 

middle-time effect after estimation of αx. In this characterization procedure, the sequential 

estimation of fault conductivities is vital (αy by the early-time merge → αx by the late time merge 

→ αz by the middle time merge). 

Effects of fault displacement 

Fault displacement may result in non-identical thickness and diffusivity at two sides of the 

fault both in the injection zone and the above zone. In order to evaluate the effect of fault 

displacement, we investigate the effects of transmissibility ratio (TDj), diffusivity ratio (ηDj), 

thickness ratio (hDj), Leakage interval ratio (LD), and fault thickness (wfD). on the pressure 

response. Fig. 3.22 shows that the variation of ηDj, hDj, LD, and wfD would not affect the estimation 

of fault conductivities (Base case: TD2 =TDa1 = TDa2 =ηD2 = ηDa1 = ηDa2 = hD2 =hDa1 =hDa2 =1, ηDf 

=1000, αx= 0.1, αy= 1, αz= 0.1, LD=1, and wfD=0.01). 
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(a) 

 

(b) 

 

(c) 

 
 

Fig. 3.22. (a) Effect of dimensionless fault width and leakage interval ratio on pressure derivative 

of injection well, (b) Effect of thickness ratios on pressure derivative of the active well, (c) Effect 

of diffusivity ratios on pressure derivative of injection well  

Leakage rate 

After estimation of fault conductivities, we can calculate the leakage rate applying the 

estimated fault parameters to Equation (28). Fig. 3.23 shows the effect of up-fault conductivity on 

the leakage rate. The ultimate leakage rate is half of the injection rate, because the fluid flow has 

been divided between two layers with identical transmissivity (TD2 = TDa1 = TDa2=1). 
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Fig. 3.23. Effect of up-fault conductivity on the leakage rate (TD2 = TDa1 = TDa2 =ηD2 =ηDa1 =ηDa2 

=hD2 =hDa1 =hDa2 =1, ηDf =1000, wfD=0.01, αx=1, αy=1) 

Example problem 

In this section, an example problem is provided for fault characterization. Numerical 

simulation data is given with the following values of the system properties: permeability of the 

injection zone and the above zone is 10-14
 m2. Fault zone permeabilities are kfx=2.5×10-17,   

kfy=2×10-11, and kfz=6.25×10-14 m2. Fault-well distance is 20 m, fluid viscosity is 0.0005 Pa.s, and 

total compressibility is 10-9 Pa-1. Therefore, the values of fault conductivities are αx=1, αy=10, and 

αz=1. Fig. 3.24 shows the type curve matching for the pressure derivative of the injection well. The 

green curve is the derivative of the injection well pressure data. This match shows αx=1, αy=10, 

and αz=1 which are equal to the actual values. Although the early-time radial flow is missed in the 

pressure data, the shape of the derivative curve is clearly distinguishable between the type curves 

(Fig. 3.24). 

Next, we estimate k and a applying a match point between the two curves. We choose an 

arbitrary match point on the plots that shows Δp’=2021.6 kPa and t=0.1 day on the pressure data 

plot and pD’=0.08 and tD=0.2 on the type curves. Next, we calculate k and a. The estimated k and 

a are 9.9×10-15 m2
 and a=92.5 m that are close to the actual values. 
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Fig. 3.24. Type curve matching for leaky fault characterization. 

3.4. Fault leakage extension to multiple shallower formations 

In this section, we propose an analytical solution for fault leakage into multiple overlying 

layers. The vertical fault intersects the sequential layers and divides each layer into two regions. 

The diffusivity equations are written for all regions of the connected layers. The fault structure is 

considered by a low permeability core surrounded by high permeability damaged zones. In 

addition, three directional flow is considered inside the fault zone. The system of equations is 

solved using Fourier and Laplace transforms. Applying the solution, fault leakage is investigated 

in three directions and the vertical extension of fault leakage into shallower formations is 

evaluated. 

In the following, we explain the physical model and assumptions as well as the governing 

equations for fluid flow in the layers and the fault zone. Next, the system of equations is solved in 
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Laplace-Fourier domain. Finally, the solution is applied to a multi-layer system to show its 

potential and demonstrate its ability to determine effect of fault leakage. 

3.4.1. Methodology 

Fig. 3.25 shows the physical model of a leaky fault in a multi-layer system. The bottom 

layer is the injection zone and layers 1 to N are shallower permeable formations intersected by the 

fault. k and k2 are the permeabilities of the injection zone at both sides of the fault and h is thickness 

of the injection zone. kaj and haj are permeability and thickness of the above formations at both 

sides of the fault (for j=1, 2, …, 2N). The leaky fault can conduct fluid in three directions (x, y, 

and z). kfx, kfy, and kfz are fault permeabilities in three directions. We assume fault permeabilities 

kfx and kfy are homogeneous along the fault plane in all layers. The vertical permeability of the fault 

may be defferent from a layer to another. 

 

Fig. 3.25. Schematic of fault leakage in the multilayer system  
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In order to develop the analytical model, we need to write the diffusivity equations for all 

of the reservoir regions as well as the fault zone. Fault zone pressure is different at each 

reservoir/fault interface, therefore, we need to write separate flow equations for different parts of 

the fault zone connected to each reservoir region. In this model, we assume identical reservoir 

properties and thicknesses for all layers. Equations (1)-(8) show the diffusivity equations for 

reservoir regions: 
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For the last layer (n=N): 
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For each reservoir region we write a diffusivity equation of fluid flow in fault zone: 

For the last layer: 
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In order to solve the diffusivity equations of the multiple layers (Equations 1-8), we need 

reservoir-fault boundary conditions (Equations 17-22): 
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− − + − =

  
 (3.66) 

2

4 1 2 2 2 2 4 42

2

2 2

2( ,0, ) 1

/ 2 / 2

fa fx fa fa fz f fa fz fa fa faa

fy f fy f f fy fy fy

p k p p k p p k p p pp t yk

y k w x k w w k h L k h L t

   −   −   −  
− + + − =

    
(3.67) 
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/ 4
f

f

p t ykh kh
p t y p t y

x w 


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
 (3.71) 

( )1
1 1

( ,0, )
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/ 4

a
fa a

f

p t ykh kh
p t y p t y

x w 


− =  − 


 (3.72) 

( )2
2 2

( ,0, )
( , ) ( ,0, )

/ 4

a
fa a

f

p t ykh kh
p t y p t y

x w 


=  − 


 (3.73) 

For the last layer (n=N): 

( )(2 1)

(2 1) (2 1)

( ,0, )
( , ) ( ,0, )

/ 4

a N

fa N a N

f

p t ykh kh
p t y p t y
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−

− −
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
 (3.74) 

( )(2 )

(2 ) (2 )

( ,0, )
( , ) ( ,0, )

/ 4

a N

fa N a N

f

p t ykh kh
p t y p t y

x w 


− =  − 


 (3.75) 

Next, we convert the governing equations to dimensionless form. The dimensionless groups are 

defined below: 

Dj j

kh
p p

q
=     (for j= 1, 2, a1, a2, f1, f2, fa1, fa2, …, fa(2N-1), fa(2N)), 

2D

t
t

a


=  

(3.76) 

fx

x

f

k a

kw
 = ,  

2

fy f

y

k w

ka
 = ,  

2

fz f

z

k aw

khL
 = ,  

f

fD

w
w

a
= ,  f

Df





=  

where a is distance between well and fault and L is the distance between the middle height of the 

sequential layers. Equations (24)-(29) state diffusivity equations of reservoir zones in 

dimensionless form. 

2 2

1 1 1

2 2
( 1) ( )D D D

D D

D D D

p p p
x y

x y t
 

  
+ + − =

  
 (3.77) 

2 2

2 2 2

2 2

D D D

D D D

p p p

x y t

  
+ =

  
 (3.78) 
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 (3.79) 

2 2

2 2 2

2 2

Da Da Da

D D D
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x y t

  
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  
 (3.80) 

For the Nth layer: 

2 2

(2 1) (2 1) (2 1)

2 2

Da N Da N Da N

D D D

p p p

x y t

− − −  
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  
 (3.81) 

2 2

(2 ) (2 ) (2 )

2 2

Da N Da N Da N

D D D

p p p

x y t

  
+ =

  
 (3.82) 

Next, we convert the fault-zone diffusivity equations to dimensionless form: 

2

1 11
1 2 1 12

2( ,0, )1 1
( ) ( )

Df DfxD D D z
Df Df Df Dfa

D y D y y Df D
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 (3.83) 

2
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 (3.85) 
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
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 (3.86) 

For all other nth layers other than the last layer: 
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For the last layer: 
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(3.89) 
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 (3.90) 

In order to convert the system of PDEs to ODEs, we apply Fourier-Laplace transforms to time 

and space (y-direction) variables. For reservoirs: 

2
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2
22

22
0D

D

D

p
A p

x


− =


 (3.92) 
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
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For all other nth layers other than the last layer: 
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For the last layer: 
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For fault zone:
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where 
2 2 24A s = +   and 

2 2 24f DfA s  = + . The solution for pressure variations in multilayer 

system is given below. 
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1 1
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− − −
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DAx
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(3.108) 

1 3
DAx

Dap C e
−

=  ,
2 4

DAx

Dap C e=  

3 5
DAx

Dap C e
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=  ,
4 6

DAx

Dap C e=  

. 

. 

. 

. 

. 

. 

(2 1) 2 1
DAx

Da N Np C e−

− −=  , (2 ) 2
DAx

Da N Np C e=  

Coefficients C1-C2N are functions of reservoir and fault properties calculated by solving the 

following system of linear algebraic equations for the coefficient vector C. 
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H.C = F (3.109) 

where: 
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 1 2 2 2

T

NC C C C +=  (3.112) 

 

where H dimension is (2N+2)×(2N+2) and F dimension is (2N+2)×1. d1, d2, m1, and m2 are defined 

below. 
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 (3.113) 

We apply numerical Fourier-Laplace transforms to convert the solution to time-space domain. 
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3.4.2. Results and discussion 

In this section, we show the capability of the model to assess fault leakage to shallower 

formations as well as up-, across-, and along-fault fluid flow. In addition, the pressure response of 

the shallower formations is evaluated. 

Fig. 3.26 shows the pressure derivative of the injection well response for different number 

of layers. It can be inferred that the vertical extension of fault leakage can be detected by the value 

of the ultimate derivative. The ultimate derivative of two-, three-, and four-layer systems are one-

half, one-third, and one-quarter of the initial radial flow. In single layer system, there is no vertical 

leakage and the ultimate derivative is identical to the initial derivative. 

 

Fig. 3.26. Pressure derivative of the injection well for different number of layers 

In above cases, we assumed that the transmissivity of all layers are identical. The effect of 

transmissivities must be considered if the transmissivities are not identical. Equation (60) below 

shows the effect of transmissivity ratios on the ultimate derivative (Dua). 
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D is value of the derivative for initial radial flow, which is equal to 0.08 (1/4π). The value 

of Dua shows the vertical extension of fault leakage to the shallower layers. For example, we 

consider a fault leakage system with the sequential permeable layers by the following 

transmissivity ratios: TD2=0.5, TDa1=0.5, TDa2=0.5, TDa3=0.25, TDa4=0.25, TDa5=0.25, and 

TDa6=0.25. If fault leakage is extended into the third layer, Dua is equal to 0.67D. If the leakage has 

reached to the fourth layer, Dua is equal to 0.57D. 

In this following, we provide an example problem for a fault leakage system with an 

injection layer and four shallower layers. The reservoir diffusivity is 10 m2/s, porosity is 0.3, 

compressibility is 10-9 pa-1, and fluid viscosity is 1 cp. Fault-well distance is 100 m, kfz=100 mD, 

and kfx=1 mD. The fault permeabilities and reservoir rock and fluid properties are similar to the 

multilayer example problem from Zeidouni (2016). Thicknesses of the layers are 40 m with 10 m 

impermeable layers in between. Fig. 3.27 shows the pressure responses of the above layers (n=1, 

2, 3, 4) on a semi-log plot. The pressure is observed at 100 m far from the fault at region 1 of each 

layer. The along-fault permeability is identical to the reservoir permeability (kfy=k=450 mD) for 

black curves (first case). The time that the pressure change reaches 1 psi (~7 kPa) for layers 1 and 

2 are less than a day, for layer 3 is one day, and for layer 4 is 22 days. For the second case, we 

evaluate the effect of the along-fault permeability on the pressure responses of the above layers 

for kfy=450 D (The brown curves). The pressure build-up of all layers for the second case is less 

than the first case. In this case, the times that the pressure of the layers reaches 1 psi are less than 

one day for layers 1 and 2, two days for layer 3, and 33 days for layer 4. 

In the second case where kfy=450 mD, fault allows for significant fluid flow along the fault 

plane that engages more reservoir volume to storage which was not engaged in the first case 
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(kfy=0.450 mD). The along-fault fluid flow reduces the risk of fault reactivation that may happen 

by pressure build-up. 

 

Fig. 3.27. Pressure response of the shallower formations in a five-layer system 

Next, we investigate the effect of fault leakage on a production case. We assume same 

number of layers and reservoir properties as the above example problem. The active well is 

producing from the bottom reservoir that leads to fault migration from the four above zone aquifers 

to the production layer. We investigate the production for the following cases: (i) kfy=0.450, (ii) 

kfy=450, (iii) No fault. Fig. 3.28 shows that fault fluid flow reduces the pressure drawdown 

comparing to the no fault case. The pressure drawdown for no fault case is about 790 kPa after 1 

years of production. However, it reduces to 757 kPa and 683 kPa for kfy=0.450 and kfy=450, 

respectively. The fluid flow from the above aquifers supports the reservoir pressure during the 
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production that reduces the reservoir pressure decline. In addition, the along-fault fluid flow 

engages more reservoir volume to the production that also leads to less pressure drawdown. 

 

Fig. 3.28. Pressure drawdown of the production well 

Fig. 3.29 illustrates the pressure derivative of the production well for the three cases. The 

horizontal line in Fig. 3.29 shows that the radial flow is not distracted in the no fault case. However, 

the pressure derivative significantly decreases due to aquifer support caused by the fault leakage. 

The early-time hump of the red curve shows the across-fault resistance to flow as the across fault 

permeability is significantly low (Fig. 3.29). This early-time rise in pressure derivative causes the 

temporary rise in pressure drawdown at early-time comparing to the no-fault case (Fig. 3.28). The 

high along-fault permeability prevents this early time hump in pressure derivative (blue curve in 

Fig. 3.29). 
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Fig. 3.29. Pressure derivative of the production well 

3.5. Summary 

In this chapter, we present a type-curve based method to characterize a vertically and 

laterally leaking fault using pressure data. In order to develop the type curves, we present an 

analytical solution to evaluate the pressure response corresponding to injection/production near a 

leaky fault. For the first model, we neglect the resistance to flow by overlying/underlying 

permeable layers connected to the reservoir by the fault. The reservoir is divided into two regions 

at each side of the fault plane. In addition, the reservoir properties on the two sides of the fault are 

considered non-identical. The analytical solution was verified against the numerical simulation 

results. The model was next cast in the form of type curves to characterize lateral and vertical 

leakage through the fault and the reservoir properties on the two sides of the fault. 

For the second model, an analytical solution is derived for anisotropic fault leakage to a 

shallower formation in which, the three-directional flow is considered inside the fault zone. The 

analytical solution is validated with the numerical results and good agreement is observed. Results 

show that the pressure response is distinctly sensitive to the fault conductivities. Type curves are 
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provided from pressure derivative curves based on the variations of fault conductivities. Type 

curves are classified into three categories: (1) sealing fault, (2) vertically-sealing and laterally-

leaking fault, and (3) vertically-leaking fault. In the first category, the derivative value of the late-

time horizontal line is doubled after the early-time radial flow. In the second category, the late 

time derivative value is equal to the derivative on the early-time radial flow. In the third category, 

the late time derivative is half of the early time derivative value. Type curves are grouped based 

on the variations of fault conductivities in three directions. The across-fault conductivity can be 

grouped by the early-time merge of the pressure derivative values. The derivative curves of 

identical values of along-fault conductivity would merge at the late time before reaching to the 

ultimate steady state radial flow 

For the third model, an analytical approach is proposed to investigate the pressure 

perturbation of fault leakage in a multilayer system. The leaky fault intersected the sequential 

permeable layers that are otherwise confined by impermeable layers. The system of diffusivity 

equations is written and solved for all of the permeable layers as well as the fault zone and the 

anisotropic fluid flow is considered in the fault. This model is capable to estimate the pressure 

variations of all layers during the leakage occurrence considering that the fault-zone pressure is 

different in vicinity of different permeable layers. The effect of fault leakage is investigated for 

injection and production cases. 
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CHAPTER 4. LEAKY CAPROCK 

Thin shale layers isolating productive intervals in a reservoir have important implications 

for reservoir development and EOR strategies. In addition, weaknesses in caprocks overlying 

injection intervals may adversely affect the safety of fluid injection approaches including gas 

storage, waste water disposal, and CO2 geological storage. Even low permeability of a caprock 

overlying the injection zone can be very important by allowing for pressure dissipation out of the 

reservoir. In this work, we apply harmonic pressure testing method to characterize a caprock 

overlying a given injection zone. A periodic flow rate pulse is disseminated from the injection 

well. The pressure pulses traveled through the caprock are observed in the above zone. The 

hydraulic characteristics of the low permeability caprock are estimated applying the analytical 

solution based on the above zone pressure amplitude. The caprock diffusivity is found to be in 

acceptable agreement with the true value. It is shown that the harmonic pulse testing is useful to 

characterize the intra/inter reservoir low permeability layers (caprocks). 

4.1. Introduction 

Existence and characteristics of low-permeability thin/thick zones isolating permeable 

layers from other permeable zones in multilayered system and/or from those out of a reservoir are 

highly important for reservoir development. Presence of even thin shale layers in a multilayer 

reservoir can determine if cross flow between layers may occur.  

Cheng and Morohunfola (1993) and Cihan et al. (2011) derived analytical solutions for 

caprock leakage from an injection layer to adjacent formations. Dejam and Hassanzadeh (2018) 

presented a three dimensional model for caprock diffuse leakage. These models are based on the 

conventional pressure modeling methods in which the active well is at constant rate or constant 

pressure conditions. 
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Extending conventional well testing methods, harmonic (periodic) well testing can be 

applied for reservoir characterization. The periodic pressure signals from an active well travel 

through the media and the signals are observed at a passive well nearby. Pulse testing is an 

oscillatory method of evaluating inter-connection of two wells to estimate the reservoir properties 

in between (Fokker, Borello, Serazio, & Verga, 2012; Johnson, Greenkorn, & Woods, 1966). In 

conventional well testing methods, the noise produced from the active wells are normally strong, 

because the active wells cause significant flow streams in the reservoir (Renner & Messar, 2006). 

In periodic well testing, the noise effects are minimized in comparison with conventional methods 

that require mobilization of significant amount of fluid. The signal-to-noise ratio (SNR) is 

improved by applying Fourier transform on the pressure data (Knabe & Wang, 2011). Unlike 

conventional drawdown test where constant rate constraint is strictly required, constant rate over 

each flow period is not necessary for harmonic interpretation because rate fluctuations mainly 

affect the high frequency components, which are relevant to the near wellbore (Fokker, Borello, 

Verga, & Viberti, 2017; Hollaender, Hammond, & Gringarten, 2002). In addition, there is no need 

to shut in the well during the test nor it is needed to know the well rate history for pressure analysis 

(Hollaender et al., 2002). Kuo (1972) showed that if the well boundary condition is periodic, the 

induced pressure signal through the reservoir would be periodic with the same frequency. Many 

works have been done on reservoir characterization by periodic pressure testing (Fokker & Verga, 

2011; Knabe & Wang, 2011; Rosa & Horne, 1997; Shakiba & Hosseini, 2016; Shakiba, Hosseini, 

& Sepehrnoori, 2017; Sun, Lu, & Hovorka, 2015).  

In this chapter, we provide an analytical solution for a system of two layers separated with 

a low permeability caprock in between. The analytical solution is in frequency domain and the 

injection rate is periodic. The solution can give the periodic signals in the injection zone, above 
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zone, and low permeability layer. We characterize the low permeability caprock using the 

analytical solution. We provide an example problem to show the application of the characterization 

method. 

4.2. Methodology 

The physical model consists of the injection and above zones and the caprock layer in 

between (Fig. 4.1). The caprock layer is low permeability and the injection well is perforated in 

the middle of the injection zone. The thicknesses of the injection zone, caprock, and above zone 

are h, hc, and ha, respectively. Subscripts a and c denotes caprock and above zone. η, ηc, and ηa are 

the diffusivity coefficients of injection zone, caprock and above zone respectively. The injection 

pulse is disseminated from the injection well and travels through the caprock to the above zone. 

The diffusivity equations are written for the three layers. Fourier transform is applied to solve the 

system of diffusivity equations. In this analytical solution the time variable is converted to 

frequency domain by the Fourier transform. The injection well is perforated at (x=0, y=0, z=zw). 

 

Fig. 4.1. Schematic representation of the physical model 
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4.3. Mathematical modeling  

The system of diffusivity equations for injection zone, caprock, and the above zone is as 

below. For the injection zone: 

2 2 2

2 2 2

1
( ) ( ) ( ) ( )

p p p p
x y z q t

x y z kh t

   
+ + + =

   


  


 

(4.1) 

where q(t) is the injection rate. δ is the Dirac-delta function, which is applied on the space 

parameters to specify the injection well location. The injection rate q(t) is considered as a square 

pulse, which includes sequential injection and shut in periods. Equation (4.2) shows the square 

pulse injection rate. 

( )1

0

0

1 3 2 1
( )

4 2

j
n

j

t
q t q j

T

−

=

 − +  
=  − −       


 

(4.2) 

where T is period of each cycle. Equation (4.2) shows that the injection rate is q0 during the first 

half of each cycle and q0/2 during the second half. This equation can be modified to model any 

rate change over a given pulse. n is the number of injection cycles. П is the box function (Equation 

4.3). 

1 1
1         - t

( ) 2 2

 0       otherwise    

t
 

 =  (4.3) 

For caprock layer: 

2 2 2

2 2 2

1c c c c

c

p p p p

x y z t

   
+ + =

   
 

(4.4) 

For above zone: 

2 2 2

2 2 2

1a a a a

a

p p p p

x y z t

   
+ + =

   
 

(4.5) 

Equation (6) shows the initial and boundary conditions of the system. 
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(4.6) 

We convert the equations to dimensionless form for brevity of the solution. The dimensionless 

groups are defined in Equation (4.7). 
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2
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y

l
, =D

z
z

l
 (4.7) 

Equations (4.8)-(4.12) show the system of diffusivity equations and boundary conditions in 

dimensionless form. 

2 2 2

2 2 2
( ) ( ) ( ) ( )D D D D

D D D D D

D D D D

p p p p
x y z q t

x y z t

   
+ + + =

   
  

 

(4.8) 

( )1

0

1 3 2 1
( )

4 2

j
n

D
D D

j D

t
q t j

T

−

=

 − +  
=  − −       


 

(4.9) 



99 

 

where 
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(4.12) 

We transform the system of equations and boundary conditions into the Fourier domain to 

derive an analytical solution. The Fourier transform is defined in Equation (4.13a). F(s) is Fourier 

transform of function f(t). We apply the Fourier transform on time (t) and space (x and y) domains 

(Equation (4.13b)). 

2( ) ( )F πists f t e dt

+

−

−

= 
 

(4.13a) 

2 2 2( , , , ) ( , , , ) D D Dπiξx πiωy πist

D D D D D D D D D Dp s ξ ω z p t x y z e e e dx dy dt

+ + +

− − −

− − −

=   
 

(4.13b) 

The system of equations in Fourier domain is given by: 
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where: 
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(4.21) 

Equations (4.22)-(4.24) show the solution in frequency domain. 
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h is Heaviside function given by: 
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(4.25) 

In order to apply the analytical solution, we use numerical Fourier inversion to revert the 

solution to x and y space domain. However, we keep the time variable in frequency domain. The 

observed pressure should be converted into Fourier domain using discrete Fourier transform 

(Equation (4.26)). 

1
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ist

j

j
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−

=
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

 
(4.26) 

N is number of the pressure data and Δt is sampling time interval. 

4.4. Results and discussion 

In this section, we compare the analytical solution with the numerical simulation and 

provide an example problem for caprock characterization. 

4.4.1. Validation 

System properties are given in Table 4.2. The value of the compressibility can be in order 

of 10-10 for permeable layer and caprock (Lei, Cao, McPherson, Liao, & Chen, 2019; Mbia et al., 

2014). The simulated above zone pressure response and injection flow rate are shown in Fig. 4.2a. 

The pressure is recorded at point zD=1.0525. For simplicity, we assumed that the injection rate is 

zero at the second half of each injection cycle.  
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Table 4.1. Values of the system properties 

Parameter Value Parameter Value 

k (m2) 50×10-15 ϕa 0.1 

kc (m2) 5×10-16 ct (1/Pa) 10-10 

ka (m2) 10×10-15 q0 (m3/s) 0.023 

h (m) 100 μ (Pa.s) 0.0005 

hc (m) 5 T(s) 7200 

ha (m) 100 n 12 

ϕ 0.1 l (m) 100 

ϕc 0.1 zw (m) 50 

 

The simulated data is converted into the frequency domain. The analytical solution and 

numerical simulation results are compared in Fig. 4.2b in terms of amplitude of the above zone 

pressure signals versus frequency. In order to compare the curves, we evaluate the amplitudes only 

at harmonic frequencies (the spikes in the curves). The background in the amplitude curves may 

not match due to the numerical artifacts and the non-zero trend in the pressure data. The resolution 

of space discretization also may cause difference between the analytical and numerical results in 

the background data points, but still the match is good at harmonic frequencies. In the next section, 

we show that the analytical solution is accurate enough to evaluate the system properties. 
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(a) 

 

(b) 

 

Fig. 4.2. (a) Injection rate and above zone pressure response (b) Amplitude of above zone pressure 

response for analytical solution against numerical simulation 

4.4.2. Example problem 

In this section, we present an example problem of pulse testing for caprock 

characterization. We simulated the two-layer system shown in Fig. 4.1. The rock and fluid 

properties are given in Table 4.2 except for the caprock permeability, which is 2×10-16 m2. Fig. 4.3 

shows the injection rate and above zone pressure response observed from a point in the above zone 

close to the caprock surface (zD =1.0525). 
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Fig. 4.3. Above zone pressure response for example problem 

We use Discrete Fourier transform to calculate the amplitude of the above zone pressure 

of Fig. 4.3 in the frequency domain. Next, we compare the above zone response with the analytical 

solution to estimate the caprock diffusivity. We modified the caprock diffusivity in the analytical 

solution to match the amplitude of the above zone pressure response (Fig. 4.4). Fig. 4.4 shows that 

the amplitude of pressure response in the above zone varies as a function of caprock diffusivity. 

Higher caprock diffusivity coefficients lead to stronger signals observed at the above zone. In a 

tight caprock with a low diffusivity coefficient, most of the pressure signal is attenuated as it travels 

through the media. Moreover, based on this figure, the dimensionless diffusivity ratio matched by 

the analytical solution is 0.004, which is very close to that of the above zone. 
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Fig. 4.4. Estimation of caprock diffusivity using the amplitude of above zone pressure response 

 The other properties of the system may not be known with certainty for the caprock 

characterization. We assess the effect of uncertainty in other parameters in estimation of caprock 

diffusivity ratio. In the example problem, the above zone diffusivity ratio (ηaD) is 0.2. We use ηaD 

with 50 percent error in analytical solution for caprock characterization. Fig. 4.5 shows the 

analytical pressure amplitude for ηaD=0.1and 0.3 resulting in estimated ηcD=0.0023 and 0.00495 

respectively. 
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Fig. 4.5. Effect of 50% error in the above zone diffusivity ratio on estimating the caprock 

diffusivity ratio  

Uncertainty in location of well perforations with respect to the caprock can effect the 

estimated ηcD. In the example problem zwD is equal to 0.5. Fig. 4.6 shows the estimated ηcD 

considering 50% error in zwD. For zwD=0.25 and 0.75, the estimated ηcD is 0.0055 and 0.0022 

respectively. These estimations show that uncertainty in ηaD and zwD may lead to significant error 

in estimated ηcD. 

 

Fig. 4.6. Effect of 50% error in zw on estimating the caprock diffusivity ratio 
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4.5. Optimal duty cycle to maximize value of information in periodic test 

We propose an approach to increase the value of information gained from the pressure 

response during the harmonic pressure testing. Optimizing the pick to pick difference of the 

periodic pressure response can reduce reservoir disturbance during the periodic pressure test. 

( ) ( )
( )

2

2

, ,D D D D D D

D

D D
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t x
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Green function G(xD, tD) is the impulse response of the differential equation. 
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Boundary conditions: 
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i

i

p t p

p t x p

=

+ =
 (4.32) 

( ) ( ) ( )
2

2
,D D D D

D D

G x t x q t
t x


  

− = 
  

 (4.33) 

( ) 0 Djm t

D mq t q e




−

=  (4.34) 

0

2

T


 =  

T: Period 

τ: Injection/production duration 

(4.35) 
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D
T


=  : Duty cycle 

We provide the solution in Fourier series form. 

( ) ( ) 0, Djm t

D D D m Dp x t u x e




−

=  (4.36) 

( ),m m D Du q G x t=  (4.37) 

( ) 0

2

2

1
Djm t

m Dq q t e
T







−

−

=   (4.38) 

Therefore: 

( ) Sincmq D mD=  (4.39) 

where: ( )
( )Sin

Sinc
x

x
x




=  

( ) ( ) ( )0

1

2  Sinc CosD D

m

q t D D mD m t


=

= +  (4.40) 

In order to calculate the pick to pick ripple (PPR), we consider the cumulative effect of 

the first and second harmonics.  

( ) ( ) ( ) ( ) ( ) ( )0 0 0 02 2

0 1 1 2 2, D D D Dj t j t j t j t

D D Dp x t u x u x e u x e u x e u x e
   − −

− −= + + + +  (4.41) 

( ) ( ) ( ) ( ) 0 02

0 1 2, 2 D Dj t j t

D D Dp x t u x u x e u x e
 

= + +  (4.42) 

( ) ( )0 02

1 2
D Dj t j t

z u x e u x e
 

= +  (4.43) 

z is a complex number and ϕz is the phase angle of z. Therefore: 

( ) ( ) ( )0, 2 CosD D D zp x t u x z = +  (4.44) 

 

Therefore, pick to pick ripple of the pressure response is equal to 2|z|. 
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( )0 0
2 22 *

1 2 1 2 1 2 02 2 2 CosD Dj t j t

DPPR u e u e u u u u t
  = + = + +  (4.45) 

( ) ( )1 1 0 0, 2  Sinc( ) ,D Du q G x D D x = =  (4.46) 

( ) ( )2 2 0 0, 2  Sinc(2 ) ,2D Du q G x D D x = =  (4.47) 

( )
( )0

1

0

1
2  Sinc( )

x
u D D e

 

 

−
=  (4.48) 

( )
( )02

2

0

1
2  Sinc(2 )

2

x
u D D e

 

 

−
=  (4.49) 

In order to optimize PPR, we neglect the term ( )0Cos Dt . 

2 2

1 2PPR u u= +  (4.50) 

( ) ( )
0 0

2 2

2 4

0 0

Sinc( ) Sinc(2 )
2

2

x xD D
PPR D e e

 

 

− −
= +  

0
PPR

D


=


 

(4.51) 

Optimum Duty cycle can be calculated by solving equation 4.54. 

PPR=0.5 

4.6. Summary 

In this chapter, we applied pressure pulse testing method for characterization of low 

permeability caprock. We derive an analytical solution for diffuse caprock leakage from an 

injection zone to the above zone. The analytical solution is based on the harmonic testing method 

in which the injection flow rate is a periodic rate. The solution can be modified to model any rate 

change over a given pulse. The analytical solution is verified with numerical simulation results. 

The analytical solution is derived in frequency domain. In order to compare the above zone 

pressure with analytical solution, we use discrete Fourier transform to transform the pressure 
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response to frequency domain. In an example problem, we estimated the diffusivity of the caprock 

using the analytical model.  
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CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS 

5.1. Conclusions 

In this study, we proposed pressure interpretation methods to identify the undesirable 

leakage from the underground storage layers to shallower formations. In chapter 2, we proposed 

an analytical approach to identify leaky well from fault or caprock leakage. The identification 

method is based on the normalization of the above zone pressure response against the unknown 

leakage rate. Applying the above zone pressure, we can identify leaky well, fault, and caprock 

based on the specific flow regimes. The flow regime of each leaky pathway can be detected in the 

above zone, because the leakage pressure signals in that zone are not combined with other signals. 

However, in the injection zone, the leakage signals are combined with the strong injection signals. 

Results show that the leaky fault causes linear flow with one-half slope line. The one-half slope 

line would occur if the along-fault conductivity (αy) is sufficiently high. The derivative slope would 

be between zero and one-half for smaller values of αy. The consequent derivative curve for diffuse 

leakage shows spherical stabilization (-3/2 slope derivative line) while that for focused well 

leakage shows radial flow characterized by zero-slope derivative. The spherical stabilization may 

not be fully established because the pressure pulse reaches to the top boundary before reaching to 

the farther observation point. In such a case, the derivative slope line would show a negative slope 

lower than 3/2 in magnitude. The identification and characterization procedures in this study are 

fast and straightforward without the need for optimization procedures that can be computationally 

expensive. The linear flow of the fault leakage can only be detected at early time and will convert 

to radial at late time. Therefore, the fault leakage linear flow cannot be seen from a far observation 

point. We proposed a method to increase the radius of investigation of pressure signals from a 

linear source. We showed that the quadratic pressure variations can significantly increase the 
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radius of investigation from a linear source. This fact reduces the arrival time for identification of 

the linear source. 

In chapter 3, we proposed analytical approaches to characterize fault leakage by 

interpreting the active well pressure signals. We proposed three fault leakage models: 1-fault 

leakage to a high permeability zone, 2- anisotropic fault leakage, 3- multilayer fault leakage. 

In the first model, we used the optimization method in combination with the type curves to identify 

system properties. The type curves were used to find the initial values of unknown parameters. 

Applying the optimization method, very accurate values of αu and α were estimated by modifying 

the initial values. As αu increased, the sensitivity of the pressure response to TD and ηD was reduced. 

However, for low values of αu, the well pressure data were considerably sensitive to TD and ηD. 

The sensitivity of this range of pressure data on flow capacity and diffusivity ratios (TD and ηD) is 

less than that to the fault vertical and lateral conductivities. This work shows that the pressure data 

prior to reaching the flow resistance of the overlying/underlying zone can be enough to estimate 

hydraulic characteristics of the leaky fault. 

In the second fault model, the effect of vertical conductivity is visible during the middle-

time response. Therefore, fault conductivities can be estimated by the early-time, middle-time, and 

late-time pressure response of the active well. Fault displacement may have a little effect on the 

estimation of the vertical conductivity of the fault. The value of the vertical conductivity can be 

verified by another observation point that can be the location of the injection well in the above 

zone. An example problem is provided for fault leakage characterization for which the estimated 

parameters are found to be identical to the actual values. 

In the third fault model, the along-fault permeability significantly affects the pressure 

response of the shallower formations. The pressure changes of the injection zone and shallower 
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zone decrease by increasing the along fault permeability. Therefore, the along-fault flow can 

reduce risk of fault reactivation that may occur during the injection operation. In production cases, 

fault leakage provides support from the adjacent formations to reduce the reservoir pressure 

decline. We conclude that the assumption of anisotropic fluid flow inside the fault zone is crucial 

for fault leakage evaluation.  

In chapter 4, we proposed periodic pressure interpretation method for caprock 

characterization. The periodic method is necessary for caprock leakage because the spherical flow 

regime ends and early-time after the pressure signals reach to the top boundary of the system. In 

this three-dimensional model, the analytical solution is significantly faster than the numerical 

simulation. To evaluate the above zone response, we must only consider the amplitude at the 

harmonic frequencies (periodic spikes). Results show that the pressure amplitude curves of the 

analytical solution is useful to characterize the caprock, because the above zone pressure amplitude 

is very sensitive on caprock diffusivity. Next, the characterization method is evaluated considering 

uncertainty in other system properties. Considering significant uncertainty in other system 

properties, the error in estimated caprock diffusivity ratio is less than the error of the above zone 

diffusivity ratio or error in the injection well distance from the caprock. In order to enhance the 

value of the information in a periodic test, we optimized the duty cycle to maximize the pick to 

pick ripple of the periodic pressure response that shows the 50% optimum duty cycle.  

5.2. Recommendations 

5.2.1. Well leakage 

The leaky well signals are very weak in the injection zone comparing to the signals 

disseminated from the injection wells. Also, both injection and leakage signals are from similar 

sources (line source) that lead to similar pressure responses. Therefore, it is difficult to distinguish 
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leakage signals by the injection zone pressure signals. However, fault act as a plane source that 

disseminates strong leakage signals comparing to the injection wells. An identification method 

that can clearly distinguish injection from leaky well signals will considerably reduce the leakage 

identification costs. Further, identification of leaky wells signals from fault leakage using the 

injection zone responses is a tougher challenge that will lead to a comprehensive method for 

leakage characterization. This characterization method requires no observation well in the 

shallower formations. Moreover, leakage characterization by the injection signals is more 

preventive than above-zone identification to avoid consequent environmental contamination 

and/or economic losses. This method can be done with conventional pressure methods. However, 

periodic testing is more suitable to distinguish weak leakage signals from the injection signals. 

5.2.2. Fault leakage 

The multilayer leaky fault solutions presented in this dissertation are provided in the 

Laplace-Fourier domain. A simpler real-time solution is useful to understand the fault leakage 

system at early time, middle time, and late time considering the time as an explicit parameter. It is 

important to obtain the variation of leakage rate versus time by a fast real-time solution. A 

suggestion for simplification is to apply no resistance to flow from the upper layers for the 

multilayer system considering the actual structure of the fault. If the total transmissivity of the 

above layers is large enough, the calculated leakage rate would be close to the actual value. In 

addition, the flow geometries and sequential flow regimes can be explicitly investigated in all 

layers by a solution in the full space domain. 

Fault permeability may not be constant during the injection operation. A sealing fault can 

be reactivated by reaching the threshold pressure and starts conducting fluid to the adjacent zones. 

A combination of the multilayer fault model with fault reactivation is useful for early detection of 
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previously sealing faults that start to conduct fluid. This early detection is helpful to prevent 

induced seismicity as well as significant fault leakage. 

Experimental study is necessary to investigate the applications of anisotropic fault leakage. 

Sand pack set up is a practical method to design a lab experiment for fault leakage. In a multilayer 

system, the sequential layers of sands can be isolated by sealing materials. A vertical (or deviated) 

cut can provide the fault zone that should be filled with appropriate grain sizes to reach the 

anisotropic fluid flow in the fault zone. Fault core and the damaged zone can be made by fine and 

coarse grains, respectively. It is not required to cross all layers to provide the active well in the 

bottom layer. The injection well can be designed by setting specific valves in the bottom layer 

sand pack connected to a pump. The system of sequential layers should be created in a strong 

container with high pressure and thick material. 

5.2.3. Caprock leakage 

The above-zone periodic test for caprock leakage characterization can be developed to 

characterize other types of leakage pathways. This can be achieved by distinguishing the specific 

flow regimes. Considering the fact that the spherical flow of the caprock leakage would be 

eliminated after the early time of leakage, the periodic test is more appropriate to distinguish 

caprock leakage from other types of leaky pathways. In addition, the periodic flow regime 

identification can be extended to linear flow and radial flow. Therefore, the sequential flow 

regimes can be detected during the leakage occurrence to detect other types of leaky pathways. 

These methods must be more complex than normal flow regime identification methods because 

the leakage rate is an unknown parameter, which decreases the degree of freedom. 

There is a large area of caprock weakness in diffusive leakage cases that faces the injected 

fluid at the early time of injection. Therefore, multiphase leakage can be important for diffusive 
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leakage. A two-phase model is required to investigate the effect of native fluid on the pressure 

signals detected in the above zone. Further, the above zone pressure signals can be interpreted to 

evaluate the condition and location of the native fluid plume in the above zone. 
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APPENDIX 1. GEOMETRICAL CALCULATIONS OF LOCATING THE LEAKY 

WELL 

 

In this section, we show how to locate the leaky well when we know the distances between 

the observation wells (d) and the leaky well. ρ1 and ρ2 can be calculated by the proposed method. 

The three wells (leaky well and observation wells) form a triangle (see triangle ABC in Fig. 2.2). 

Three sides of the triangle are ρ1 and ρ2 and d. We can find location of the leaky well by finding 

angles of the triangle based on the relationships between sides and angles in the triangles (see 

Equation (2.12)). Therefore, we can provide the following system of equations (Equations (A1.1)-

(A1.2)) for triangle ABC (Fig. 2.2). 

1
ˆ.sin( ) .sin( )AC BC B =  (A1.1) 

3
ˆ.sin( ) .sin( )AC AB B =   (A1.2) 

where │AC│=ρ1, │BC│=ρ2, and │AB│=d. The term sin (θ3) is identical to sin (θ1+B), which 

should be replaced to solve the system of equations (Equations A1.3–A1.4). 

1
ˆ.sin( ) .sin( )AC BC B =   (A1.3) 

1
ˆ ˆ.sin( ) .sin( )AC B d B + =   (A1.4) 

Angles θ1 and B can be calculated by the above system of equations. Therefore, we can 

completely locate the leaky well. Next step is to calculate distance between the injection well and 

the leaky well. First, we should find the angle β1. We form the same system of equations for 

triangle ABD (Equations A1.5–A1.6). 

2 2
ˆ.sin( ) .sin( )AD A AB + =   (A1.5) 

2
ˆ.sin( ) .sin( )AD A BD =   (A1.6) 
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Angles θ2 and A can be calculated by the above system of equations. Then, we can find the 

distance between the injection well and the leaky well (R) by solving the following system of 

equations (Equations A1.7–A1.8). We have already calculated angles B and θ2. θ4 is equal to B-θ2. 

4 4.sin( ) .sin( )BC CD =   (A1.7) 

4 4 4.sin( ) .sin( )BD BC  = +   (A1.8) 

where │CD│=R. 
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APPENDIX 2. MATHEMATICAL SOLUTION OF FAULT LEAKAGE TO THE HIGH-

PERMEABILITY ZONE 

 

We present the system of differential equations in dimensionless form for generality and 

convenience. The system of differential equations of regions l and 2 and the corresponding 

boundary conditions (Equations 2.1-2.10) are converted to dimensionless form using Equations 

(1.15)-(1.17). 

Region 1: 

2 2

1 1 1

2 2
( 1) ( )D D D

D D

D D D

p p p
x y

x y t
 

  
+ + − =

  
 (A2.1) 

1( , ,0) 0D D Dp x y =  (A2.2) 

1( , ,0) 0D Dp x  =   (A2.3) 

1( , , ) 0D D DP y t+ =
  

(A2.4) 

1
1 2 1

(0, , )
( (0, , ) (0, , )) ( (0, , ))D D D

D D D D D D u D D D

D

p y t
p y t p y t p y t

x
 


= − +


  (A2.5) 

Region 2: 

2 2

2 2 2

2 2

1D D D

D D D D

p p p

x y t

  
+ =

  
 (A2.6) 

2 ( , ,0) 0D D Dp x y =   (A2.7) 

2 ( , , ) 0D D Dp x t =   (A2.8) 

2 ( , , ) 0D D Dp y t− =   (A2.9) 

2
2 1 2

(0, , )
( (0, , )) ( (0, , ) (0, , ))D

D u D D D

D

p y t
T p y t p y t p y t

x
 


+ = −


  (A2.10) 

To solve the system of differential equations, the method of Laplace and Fourier transforms 

is used. Applying the transforms, the system of partial differential equations in time-space domain 
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is converted into a system of ordinary differential equations in Laplace-Fourier domain that can 

be solved. Then, the solutions should be converted back to the time domain using Laplace-Fourier 

inverse transforms. The Laplace transform of the function PD is defined as below: 

0
( , , ) [ ( , , )] ( , , ) st

D D D D D D D D D D Dp x y s p x y t p x y t e dt


−= = L   (A2.11) 

where s is the Laplace transform variable. First, the Laplace transform is applied into the 

time domain. 

Region 1: 

2 2

1 1
12 2

1
( 1) ( )D D

D D D

D D

p p
x y sp

x y s
 

 
+ + − =

 
 (A2.12) 

1( , , ) 0D Dp x s =   (A2.13) 

1( , , ) 0D Dp y s+ =   (A2.14) 

1
1 2 1

(0, , )
( (0, , ) (0, , )) ( (0, , ))D D

D D D D u D D

D

p y s
p y s p y s p y s

x
 


= − +


  (A2.15) 

Region 2: 

2 2

2 2
22 2

D D
D

D D D

p p s
p

x y 

 
+ =

 
  (A2.16) 

2 ( , , ) 0D Dp x s =   (A2.17) 

2 ( , , ) 0D Dp y s− =   (A2.18) 

2
2 1 2

(0, , )
( (0, , )) ( (0, , ) (0, , ))D D

D u D D D D D D

D

p y s
T p y s p y s p y s

x
 


+ = −


  (A2.19) 

The Fourier transform of function Dp  is defined as below: 

. .( , , ) [ ( , , )] ( , , ) i t

D D D D D D D Dp x s p x y s p x y s e dt
+

−
= = F   (A2.20) 
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where ω is the Fourier parameter. Second, the Fourier transform is applied into the space domain 

(yD) and the ordinary system of differential equations and corresponding boundary conditions in 

the Laplace-Fourier domain is obtained: 

Region 1: 

2
21

1 12

1
( 1)D

D D

D

d p
A p x

dx s
− = − −   (A2.21) 

1( ) 0Dp + =   (A2.22) 

1
1 2 1

(0)
( (0) (0)) ( (0))D

D D u D

D

p
p p p

x
 


= − +


  (A2.23) 

Region 2: 

2
22

2 22
0D

D

D

d p
A p

dx
− =   (A2.24) 

2 ( ) 0Dp − =   (A2.25) 

2
2 1 2

(0)
( (0)) ( (0) (0))D

D u D D D

D

p
T p p p

x
 


+ = −


  (A2.26) 

where A1=ω2+s and A2=ω2+s/ηD. The solution in Laplace-Fourier domain is as below. 

Region 1: 

( )1

1 1

1

2
D D

x A Ax

Dp e C e
sA

− − −
= +  (A2.27) 

0 1 1 1 0 1 2 0 1( ) ( )uC A C A C C C C C − = + − + +
  

(A2.28) 

Region 2: 

2

2 2
DA x

Dp C e=  (A2.29) 

2 2 2 0 1 2( )D uT C A C C C C + = + −
 

(A2.30) 
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where 1

0 1(1 (2 ))
A

C sA e
−

= . C1 and C2 are unknown constants, which must be calculated by 

combining the equations (A2.28) and (A2.30). The solutions for dimensionless pressure of regions 

1 and 2 in Laplace-Fourier domain are: 

1 1

2
1 (1 )1 1 1 2 2 2

1 2

1 1 1 1 2 2 2

21

2 2
D D

A x A xu u u D D D u
D

u u u D D D u

A A A A T A T A T
p e e

sA A A A A T A T A T

     

     

− − − + + − − + − −
= + 

+ + + + + + 
  (A2.31) 

1 2( )

2 2

1 1 1 2 2 2

1

2
DA A x

D

u u u D D D u

p e
s A A A A T A T A T



     

− + 
=  

+ + + + + + 
 (A2.32) 
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APPENDIX 3. ANALYTICAL SOLUTION OF ANISOTROPIC FAULT LEAKAGE 

In this section, we show the details of the analytical solution. We converted the system of 

partial differential equations into the dimensionless form. The dimensionless groups are defined 

by Equation (16). Equations (A3.1)-(A3.8) shows the system of differential equations for injection 

zone, above zone, and fault zone in dimensionless form. Injection zone and above zone: 

2 2

1 1 1

2 2
( 1) ( )D D D

D D

D D D

p p p
x y

x y t
 

  
+ + − =

  
  

(A3.1) 

2 2

2 2 2

2 2

2

1D D D

D D D D

p p p

x y t

  
+ =

  
  

(A3.2) 

2 2

1 1 1

2 2

1

1Da Da Da

D D Da D

p p p

x y t

  
+ =

  
  

(A3.3) 

2 2

2 2 2

2 2

2

1Da Da Da

D D Da D

p p p

x y t

  
+ =

  
  

(A3.4) 

Fault zone: 

2

1 11
1 2 1 12

( ,0, )1 1
( ) ( )

2

Df fDxD D D
Df Df z Df Dfa

D y D y Df D

p pp t y
p p p p

y x t




  

 
+ − − − − =

  
  (A3.5) 

2

2 22
1 2 2 22 2

( ,0, )1 1
( ) ( )

2

Df DfxD D D z
Df Df Df Dfa

y D y D Df

p pp t y
p p p p

y x L t

 

  

 
− + − − − =

  
 (A3.6) 

2

1 11
1 2 1 12

( ,0, )1 1
( ) ( )

2

Dfa DfaDa D D x
Dfa Dfa z Df Dfa

D y D y Df D

p pp t y
p p p p

y x t




  

 −
− − − + − =

  
 (A3.7) 

2

2 22
1 2 2 22 2

( ,0, )1 1
( ) ( )

2

Dfa DfaDa D D x z
Dfa Dfa Df Dfa

y y D Df D

p pp t y
p p p p

y x L t

 

  

 
− + − + − =

  
 (A3.8) 

Next, the initial and boundary conditions are converted to the dimensionless form. 

Initial condition: 
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1 2 1 2 1

2 1 2

( , ,0) ( , ,0) ( , ,0) ( , ,0) (0, )

(0, ) (0, ) (0, ) 0

D D D D D D Da D D Da D D Df D

Df D Dfa D Dfa D

p x y p x y p x y p x y p y

p y p y p y

= = = =

= = = =
  (A3.9) 

Boundary conditions: 

1 2 1 2

1 2 1 2

( , , ) ( , , ) ( , , ) ( , , )

( , ) ( , ) ( , ) ( , ) 0

D D D D D D D D Da D D D Da D D D

Df D D Df D D Dfa D D Dfa D D

p t x y p t x y p t x y p t x y

p t y p t y p t y p t y

→ = → = → = →

= → = → = → = → =
  

(A3.10) 
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In order to convert the system of partial differential equations into a system of ordinary 

differential equations, we apply Laplace ( L ) and Fourier ( F ) transforms on time and y-direction 

variables (Equations (A3.15)-(A3.16)). 

0
( , , ) [ ( , , )] ( , , ) stp x y s p x y t p x y t e dt


− =  = L   (A3.15) 

( , , ) [ ( , , )] ( , , ) i yp x s p x y s p x y s e dy
+

−
 =  = F   (A3.16) 

where ω and s are Fourier and Laplace Variables. The system of ordinary differential equations 

in the Laplace-Fourier domain is shown below. 
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Next, we convert Equations (5)-(8) to dimensionless form: 
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Boundary conditions in Laplace-Fourier domain: 
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Next, we derive the solution in the Laplace-Fourier domain: 
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Combining Equations (A3.21)-(A3.24) with the boundary conditions (Equations A3.25-

A3.29), the coefficients C1-C4 are calculated by the system of linear equations shown in Equation 

(3.53). 
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