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Abstract 

Broaching is defined as the uncontrolled release of hydrocarbons to ocean seafloor after a 

loss of subsurface well control event. Failed attempts to cap the offshore wells undergoing worst 

case discharge may lead to hydraulic fracture initiation and subsequent propagation, leading to 

renewed release of hydrocarbon to the seafloor. During the capping stack shut-in process, pressure 

build-up will occur along the wellbore, exposing locations of possible fracture initiation to 

overpressurized fluid, such as directly below the casing shoe, and critical points along the well 

casing. Shall there be enough build-up pressure to exceed the minimum horizontal stress in an 

exposed layer, a fracture will initiate and may propagate as energy is provided from the movement 

of fluids in the wellbore. This can lead to a severe environmental impact on marine ecology if the 

fracture broaches to the seafloor. A quintessential example of fracture broaching during post-

blowout is the Santa Barbara Channel Alpha Well 21 blowout in 1969 which resulted in an oil slick 

discovered near the discharging well. To help evaluate the possibility of such an event occurring in 

offshore waters of the Gulf of Mexico, numerical modeling is performed on a hypothetical case 

study using deepwater parameters examining the propagation of a “longitudinal” (i.e., parallel to 

the axis along the center of the wellbore) fracture during the containment or capping shut-in period. 

A workflow is developed for Worst Case Discharge (WCD) calculation, assessment of fracture 

initiation, propagation, and broaching during the capping shut-in period, and relief well heavy-mud 

injection strategy. A transient wellbore model accurately captures the fracture properties as they 

grow in height and length. The results of this study show that the growth of a fracture initiated from 

the side of the wellbore is sensitive to depth of the casing shoe where the fracture had initiated, 

young’s modulus of overburden rocks, and the duration of the preceding discharge period. In 
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addition, sufficient mud density, and pump rate are needed to compensate the oil column and 

successfully kill the main wellbore.
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1. Introduction 

Nearly 11 years have passed since the 2010 BP Deepwater Horizon MC 252-1 incident, 

claiming 11 lives, and releasing approximately 4.2 MMSTB of oil in the Gulf of Mexico (GoM) 

Oceanic Continental Shelf (OCS) region (Buchholz et al., 2016). This catastrophic event led 

government, industry, and researchers to recognize the possibility of a similar disaster occurring 

again. As drilling activities are progressively moving towards high temperature and high pressure 

(HTHP) deepwater reservoirs, wells at these depths undergoing a blowout may be vulnerable to 

unsuccessful capping attempts. According to the Bureau of Ocean Energy Management (BOEM), 

worst case discharge (WCD) is defined as the single highest daily flow rate of liquid hydrocarbon 

during a blowout event. In the unfortunate event of a failed subsurface containment system 

following a WCD period, an underground blowout may occur allowing hydrocarbons to migrate 

through the geological media leading to seafloor broaching. Figure 1 shows examples of the 

qualitative ranking of the potential to broach using different favorable and unfavorable failure 

pathways described by the geoscientists of BOEM. Significant advances in subsea well control 

response and oil remediation have resonated based on learnings from the Macondo disaster; 

nevertheless, limited research has addressed the possibility of a broaching event resulting from a 

well containment failure. (Hickman et al., 2011) analyzed wellhead pressure, investigated 

geological risks, and geophysical data monitoring and acquisition during shutting in the Macondo 

well. (Bjerstedt et al., 2020) studied the impact of overburden layers’ permeability and the 

reservoir saturation levels for water, oil, and gas on broaching traveltime. Research areas on Source 

Control and Containment Equipment (SCCE) such as the impact of subsea capping stack on the 

blowout source and the process of regaining well control by drilling a relief well need improved 

understanding. Mitigating these risks is crucial, given the significant environmental impact such 
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an incident may cause; therefore, modeling wellbore capping failures post-blowouts is necessary 

to determine the key factors leading to broaching. The GoM region is of major interest owed to its 

active rich oil exploration and production activity, which is why the focus of this study is on typical 

stacked geological patterns found in the GoM OCS region. According to the Bureau of Safety and 

Environmental Enforcement (BSEE), 91 percent of total U.S. oil and gas production occur in the 

GoM OCS region with 20 percent of WCD volume and rate calculations happening in deepwater 

(Buchholz et al., 2016).    

 
 

Figure 1. 1. Diagram showing examples of qualitative ranking BOEM geoscientists have 

conducted on favorable and unfavorable pathways leading to broaching of hydrocarbons 

(Bjerstedt et al., 2020) (reprinted by permission of the AAPG whose permission is required for 

further use). 

1.1. Background 

A WCD is an event could be associated with drilling and completions, workover, and even 

production operations (Willson, 2012). Kill attempts to regain control of the well include but are 

not limited to installing equipment on the failed blowout preventer (BOP), open pipe, or lower 

marine riser package (LMRP), as well as drilling a kill well laterally to intersect the uncontrolled 
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flowing well to dynamically bring the well under control by injecting high-density mud. During 

an event of loss of well control, one of the well intervention response plans of shutting in the well 

defined by the government and facility owners’, involves positioning a capping stack on the spill 

source to cease hydrocarbon flow until the well is successfully plugged by drilling a relief well. 

Indicated in this study, under certain circumstances (extremely high WCD > 200,000 STB/day and 

imperfect cement jobs or casing collapse locations), wellbore pressure buildup may result in 

pressure exceeding fracture initiation pressure (𝑝𝑖) in a geologic layer. Fluids injected into the 

fracture provided by the high-energy reservoir will work to advance the fracture tip shall there be 

enough propagation pressure. The fracture(s) can propagate upward through the geological media 

and potentially broach into the seafloor or a shallow formation where they may be contained. Upon 

fracture initiation, the discharge fluid will exhibit a flowrate higher than the fluid loss rate into the 

formation during which new fracture pathways continue to expand and grow. The fracture will 

stop growing when the fluid pressure in the fracture minus the formation pore pressure (net 

pressure) becomes equal to 𝑆ℎ𝑚𝑖𝑛 (or closure stress also known as the minimum horizontal stress) 

(Kholy et al., 2019). Using a robust numerical simulator, stress/strain relationships are coupled 

with fluid flow relationships creating a complex fracture mesh topology, evaluating fracture 

properties, and computing new crack pathways at each time-step. The introduced three-

dimensional fracture geometry assumes linearly elastic solid behavior in response to pressure 

changes in the crack face. Initial simulation runs will consider a two-dimensional (2D) planar 

longitudinal fracture.  
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Figure 1. 2. Comparison of wellbore integrity state a) in a blowout condition compared to b) a 

damaged wellbore where in a potential critical point along the wellbore (shown at casing shoe) a 

fracture has initiated due to high wellbore pressure (modified after Zaki et al., 2015). 

 

Several reasons can lead to the possibility of fracture initiation along a wellbore following 

a WCD scenario; 

1. Fluid flow in an uncontrolled blowout will cause a significant rise in pressure along the 

wellbore walls, causing a large pressure differential to occur in any casing having a 

confined annulus between it and the formation. Internal wellbore pressure will be 

drastically lower than the adjacent hydrostatic pressure located externally to the casing 

resulting in a casing collapse. Consequently, the failed casing point may allow hydrocarbon 

leakage and after successful capping shut-in, pressure build-up may surpass𝑝𝑖, leading to 

fracture initiation (Zaki et al., 2015). 
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2. In the case of a poor cement job, a void (microannulus) will exist between the formation 

and the external side of the casing. Subsequently, providing a potential leaky pathway for 

the overpressurized hydrocarbons to flow after exiting the well and initiate a fracture in the 

formation. 

3. Assuming no casing collapse and perfect cement integrity, a fracture may also originate in 

the open-hole section close the last/deepest positioned casing. 

Moreover, a fracture will initiate and tend to propagate for a certain period of time. 

Propagation of fractures can provide a pathway for hydrocarbon fluids to broach into the seafloor 

causing a major ecological disaster. Classic examples of unsuccessful capping attempts resulting 

in seafloor broaching is the 1969 Union Oil’s Channel Alpha Well 21 blowout and oil spill in Santa 

Barbara, California. In the Macondo well, concerns regarding the collapsed rupture disks in the 

16-in” drilling liner surfaced as an oil slick approximately 2 miles of the well was detected by 

numerous spill response vessels only 2 days after capping shut-in (Bjerstedt et al., 2020). However, 

further analyses postulated that the oil slick was due to a natural fault in the basin. Figure 1.3 shows 

the location of the rupture disks in the well design and lithology section based upon analysis of 

data acquired during drilling. 
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Figure 1. 3. Schematic of BP 001 Macondo Well design and lithologic section based upon 

analysis of data acquired during drilling. Red lines show possible flow paths of hydrocarbons 

that may have occurred during the blowout. An underground blowout may have formed with a 

possible propagating fracture as shown at the 16” linear due to a raptured disk (reprinted by 

permission of PNAS whose permission is required for further use). 
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Following the Macondo disaster, significant advances in WCD estimation and evaluation 

of wellbore integrity have been published while limited reviews were performed on the possibility 

of broaching due to capping shut-in. BOEM requires that for every permit to drill an offshore well, 

the facilities operator must provide a blowout scenario in the initial plan. One of the main 

drawbacks of the required blowout scenario is that it suffers from evaluating the impact of shutting 

in the well and the duration upon which a relief well should be drilled before failure of containment 

takes place. The blowout plan is limited to only provide estimations of WCD calculations, 

availability, type, and capabilities of subsea capping stack as well as the nearest capable rig of 

drilling a relief well. Table 1.1 provides the blowout scenario required by BOEM as referenced by 

NTL 2010 – N06a. 

Table 1. 1. Required blowout scenario by BOEM as referenced in NTL 2010 - N06a. 

1) Blowout Scenario 

a) Estimated flow rate (STB/day) 

b) Maximum duration of blowout (days) 

c) Total volume of spill (STB) 

d) Discussion of potential bridging 

e) Discussion of likelihood for surface intervention to stop blowout 

2) Relief Well 

a) Identification of rig type capable of drilling a relief well in a timely manner 

b) Rig package constraints 

c) Estimated time to drill a relief well, including: 

I. Time to acquire a rig (days) 

II. Time to move rig onsite (days) 

III. Drilling time (days) 

d) Statement whether the possibility of using a nearby platform was considered, 

if feasible 

(table cont’d.) 



8 

 

3) Others 

a) Measures to enhance ability to prevent a blowout 

b) Measure to reduce the likelihood of a blowout 

c) Measure to enhance ability to conduct effective and early intervention in the 

event of blowout 

d) Arrangements for drilling relief wells 

e) Any other measures 

 

Furthermore, BSEE provides operators with current and periodically updated Code of 

Federal Regulations (CFR) with information regarding oil and gas drilling, lease planning, well 

design, well control, well completion, workover rig regulations, production operations, and 

plugging and abandonment. Provided under the name “Oil and Gas and Sulphur Operations in the 

Outer Continental Shelf” and referred to as (30 CFR 250), these plans and requirements, include 

minimum BOP system capabilities, and well control regulations. Table 2.1 provides complete list 

with subparts, numbering, and titles as of January 27th, 2021. 

Table 1. 2. Subparts of 30 CFR 250 by BSEE. 

Subpart CFR Numbering Subpart Title 

A §250.101 General 

B §250.200 Plans and Information 

C §250.300 Pollution Prevention and Control 

D §250.400 Oil and Gas Drilling Operations 

E §250.500 Oil and Gas Well-Completion Operations 

F §250.600 Oil and Gas Well-Workover Operations 

G §250.700 Well Operations and Equipment 

H §250.800 Oil and Gas Production Safety Systems 

I §250.900 Platforms and Structures 

J §250.1000 Pipelines and Pipeline Rights-of-Way 

K §250.1150 Oil and Gas Production Requirements 

L §250.1200 
Oil and Gas Production Measurement, 

Surface Commingling, and Security 

M §250.1300 Unitization 

(table cont’d.) 
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Subpart CFR Numbering Subpart Title 

N §250.1400 Outer Continental Shelf Civil Penalties 

O §250.1500 Well Control and Production Safety Training 

P §250.1600 Sulphur Operations 

Q §250.1700 Decommissioning Activities 

R §250.1800 **Reserved 

S §250.1900 
Safety and Environmental Management 

Systems (SEMS) 

 

As operators continue to explore for recoverable hydrocarbon resources, offshore oil and 

gas drilling is advancing into deepwater prospects. More challenges emerge to drillers as narrower 

drilling margins are expected, increasing the possibility of a kick events leading to blowouts. 

Although the probability of a blowout occurring with spill volume over 1 MMSTB or more is only 

0.6 percent (Buchholz et al., 2016), the likelihood is likely to increase as we move into deepwater 

and ultra-deepwater HTHP wells. It is essential to model such wellbore failure occurrences to 

enhance our understanding of wellbore integrity, well control and mitigation efforts, and assess 

the possibility of broaching post-blowout capping. 
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Figure 1. 4. Two potential fluid paths that may occur during an uncontrolled flow of 

hydrocarbons scenario. a) Flow through the production casing. b) Flow through the seal 

assembly (modified after Bartlit et al., 2011). 

 

1.2. Research Hypotheses and Objectives 

The objective of this work is to investigate fracture initiation and fracture growth through 

porous media caused by excess wellbore pressure buildup resulting from containment system 

“capping stack” shut-in. A novel workflow is designed for WCD estimation, evaluation of fracture 

initiation and growth post shut-in, and relief well mud injection strategy for a successful kill. A set 

of loss of well control situations will be assessed to investigate the possibility of fracture initiation, 

upward propagation in the geologic media, and potential broaching into seafloor.  
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The secondary goals are to evaluate and quantify the factors influencing fracture growth 

and potential for broaching during post-blowout capping shut-in. These factors would include 

different scenarios of casing shoe depth, cement job integrity, variation in reservoir pressure, and 

geomechanical rock properties such as young’s modulus. Other factors would incorporate longer 

periods of WCD discharge period, and relief well intervention time.    

1.3. Thesis Outline 

This thesis is divided into five chapters. Chapter 1 presents a brief introduction of the 

problem, research hypotheses and objectives, and motivation of this research. Chapter 2 consists 

of the literature review related to current WCD workflow, killing methods including capping shut-

in types and relief well drilling in deepwater, occurrences of broaching events, and fracture criteria 

and height containment following well capping. Chapter 3 describes the proposed workflow, 

governing equations used in the simulator, base case model description, sensitivity analyses to be 

conducted to evaluate broaching, as well as the detailed methodology used for modeling the WCD 

period, shut-in period, and relief well injection strategy. Chapter 4 presents the results and 

discussion for the different scenarios and case studies described in Chapter 3. Lastly, Chapter 5 

describes the conclusions and recommendations for future work. Appendix A introduces the 

workflow used for the base case model. Appendix B displays the permissions for published work 

used in this research. 
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2. Literature Review 

2.1. Overview 

To study and understand the problem at hand, two main terms commonly used throughout 

this paper are defined; WCD and Broaching. First and foremost, BOEM defines WCD as the single 

highest daily flow rate of liquid hydrocarbon during an uncontrolled wellbore flow event (SPE 

Report, 2015). The continuous uncontained release of fluids (oil, gas and water) from the well 

source into the environment, either through a BOP, open-pipe, or LMRP is known as a well 

blowout. An oil spill is a consequence of a blowout event. Table 2.1 shows the top 5 largest spilled 

volumes over the duration of the blowout in offshore blowouts occurring in the US. 

Table 2. 1. Top five US largest offshore well blowouts, ordered by volume (Buchholz et al., 2016). 

Well Date 
Duration 

(days) 
Region 

Total Discharge 

Volume (STB) 

Deepwater Horizon 

MC252 
4/20/2010 84 GoM 4,200,000 

Alpha Well 21 

Platform A 
1/28/1969 11 Pacific 80,000 – 100,000 

Main Pass Block 42 2/10/2970 30 GoM 65,000 

ST-26B 12/1/1970 N/A GoM 53,000 

Greenhill Timbalier 

Bay 251 
9/29/1992 14 GoM 11,500 

 

Published reviews of past blowout occurrences and their killing methods are mostly on 

shallow water drilled wells, which are not representative of current and future deepwater wells, 

the main focus of this thesis. The Union Oil Santa Barbara Well 21 in 1969 and the Gulf of Mexico 

British Petroleum (BP) Deepwater Horizon MC252 Well 001 in 2010 blowouts are quintessential 

examples of deepwater oil spills with significant oil volume over the duration of the spill. In the 

wake of the Macondo accident, significant number of research focusing on WCD rate and volume 

calculation has emerged (Liu et al., 2015; Cordoba, 2018). 
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In response to a blowout incident, planned regulations for SCCE procedures intended to 

stop or divert the uncontrolled hydrocarbons from wellhead to a containment vessel, include 

subsea capping stack installation as a containment system. Moreover, conditions of the wellbore 

may result in casing collapse to occur along weak casing points in the preceding discharge period 

prior to capping shut-in. Failure at the referenced casing point(s) may allow hydrocarbon leakage 

and with enough build-up pressure to exceed the exposed formation fracture initiation pressure 

during the shut-in process, a fracture will initiate leading to an underground blowout. Provided 

that an adequate energy from the reservoir to the wellbore exists, fracture propagation driven by 

the hydrocarbons flowing from the damaged wellbore to the fracture tip will allow for further 

fracture encroachment (Zaki et al., 2015). Bowman (2012) discussed the effects of WCD on casing 

design while Wu (2013) considered improvements on casing designs to withstand extreme WCD 

scenarios. Waltrich et al., (2019) investigated two-phase flow in large diameter pipes under worst 

case discharge scenario. An underground blowout may ultimately result in broaching. Secondly, 

according to Bjerstedt et al., (2020), broaching is defined as the uncontrolled discharge of 

hydrocarbons at the seafloor after subsurface well containment failure. Zaki et al., (2015) 

examined the potential for leak pathways from casing to seafloor along geological media after the 

well is capped. Michael and Gupta (2020) analyzed geomechanics of fluid driven fracture initiation 

and the impact of depleted reservoirs on propagation. Furthermore, to successfully kill the well 

after it has been capped, a kill well, also known as a relief well, is drilled at a safe distance adjacent 

to the discharging wellbore. The relief well is designed to intersect the main wellbore at a certain 

point so that high-density mud can be injected into the incident wellbore to ensure sufficient 

hydrostatic mud column compensates the oil column and successfully stop the reservoir from 

delivering hydrocarbons into the wellbore (IOGP, 2020). After this process is completed and 
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adequate downhole pressure is achieved, cement plugs are placed in the borehole through the relief 

well to prevent migration of fluids up the wellbore and between distinct geological layers. This is 

followed by a plugging and abandonment (PA) operation. Lage et al., 2016 assesses relief well 

planning post-WCD and capping. 

2.2. Offshore Killing Methods 

It is important to mention that surface, shallow and deepwater well killing or intervention 

methods are different in terms of SCCE operations. Several methods are deployed to bring the well 

under control; a static kill method known as the weighted mud involves pumping mud through 

coiled tubing via a gate valve from the capping stack into the existing well’s metal casing pipes. 

The injected mud would then force the hydrocarbons back down the annulus into the reservoir. 

This process is then followed by cement injection to seal the well (API RP 16ST). Other methods 

involve shutting-in the well by just installing and positioning a subsea capping stack over the BOP, 

open-pipe, or LMRP. Depending on conditions of the BOP or the riser pipe, a containment dome 

may be lowered on the vicinity of the leak to contain and separate the escaping fluid into the 

environment and divert it into a floating vessel (Andreussi, H.P., and De Ghetto, G., 2013). Figure 

2.1 shows killing methods used for blowout occurrences in shallow marine wells. According to 

Willson, 2012, natural causes, such as reservoir depressurization (depletion), water breakthrough 

from exposed water-bearing formations, wellbore instability and collapse, cavings transport, and 

even bridging at choke points by sands and formation solids transported with the hydrocarbons are 

more likely to be encountered in shallow water than in deepwater. Self-killing methods such as 

bridging and reservoir depletion are less likely to occur in deepwater wells due to the inherent 

higher pressures and more prolific oil reservoirs encountered (Willson, 2012). Therefore, this 



15 

 

research focuses on evaluating kill attempts using methods such capping shut-in and relief well 

drilling more likely to occur in deepwater HTHP wells. 

 

Figure 2. 1. Percentage of well kill methods for OCS in shallow depth blowouts (produced with 

data taken from Skalle et.al, 1999). 

 

For activities in both shallow water (< 500 ft) and deepwater (≥ 500 ft), BSEE requires an 

oil spill and response plan (OSRP) from operators of the oil and gas wells. The OSRP determines 

the procedures and spill response resources necessary to respond in an adequate timeframe to the 

facilities’ WCD (Buchholz et al., 2016). This plan would include the type of subsea capping 

equipment accessible in case of a spill event and the deployment time after initial blowout given 

potentially minor delays such as slightly unfavorable weather conditions, government approval, 

and near-wellhead subsurface debris removal (Buchholz et al., 2016). It is important to note that, 

BSEE and BOEM, conduct analysis of likelihood of broaching in the event of a failed capping 

system only after a capping system has failed the well containment screening tool (WCST), which 
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is processed after a blowout has occurred, such as in the case of the Macondo well (Bjerstedt et 

al., 2020). The process of broaching analysis at potential failure point in the wellbore, led by 

BOEM geoscientists can be very time-consuming (up to more than 3 months) per Bjerstedt et al. 

(2020). If the analysis concluded that broaching is likely to occur, BSEE would require a cap and 

flow system and rig capable of drilling a relief well on standby; otherwise, a cap only system would 

be used. BSEE and BOEM indicate that operators must specify and estimate the duration of days 

required to move and deploy at least one suitable rig to the WCD location to complete drilling a 

relief well operation and successfully stop flow of oil to the environment. Refer to Table 1.1 for 

required blowout scenario by BOEM as referenced in NTL 2010 - N06a. 

2.3. Workflow for WCD Calculation 

As part of the OSRP for shallow or deepwater OCS, BSEE requires that each operator 

conduct its own WCD calculation for every well to be drilled. A WCD scenario calculation should 

include highest daily flow rate of liquid hydrocarbon during an uncontrolled wellbore flow event, 

daily discharge rates, and total volume discharged into the environment over the duration of the 

spill. Equation 1 illustrates how the total volume of spill is calculated using daily flow rates 

obtained from nodal analysis or numerical simulations. 

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑝𝑖𝑙𝑙 (𝑆𝑇𝐵) = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒 (
𝑠𝑡𝑏

𝑑𝑎𝑦
) ∗ 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑝𝑖𝑙𝑙 (𝑑𝑎𝑦𝑠)   (1) 

In a recent analysis, BSEE identified 288 loss of well control situations occurring between 

1956 and 2010, concluding that only 8 scenarios involve a WCD of oil into the environment 

(Herbst, 2014). Figure 2.2 presents the percentage of each loss of well control incident occurring 

between 2006 and 2013.  
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Figure 2. 2. Loss of well control incidents by type from 2006 to 2013 (produced from data taken 

from Buchholz et al., 2016). 

 

The workflow adapted in this study is based on Cordoba (2018) which outlines detailed 

steps for modeling WCD under extreme conditions using nodal analysis and reservoir simulation 

following SPE 2015 report guidelines. Figure 2.3 shows the workflow used to model WCD using 

conventional nodal analysis. The novelty of this approach is that it can easily be replicated using 

other software packages like MS Excel (Cordoba, 2018).  The workflow was validated by the 

specialized reservoir simulator REVEAL by Petroleum Experts (PETEX), which is the reservoir 

simulator utilized in this study. 
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Figure 2. 3. Workflow proposed by Cordoba (2018) for modeling WCD scenarios under extreme 

blowout conditions using conventional nodal analysis approach (starting from top left to bottom 

right, flowchart constructed from information taken from Vasquez Cordoba, 2018). 

 

2.4. Occurrences of Broaching 

The 2010 BP Macondo disaster has made the industry become aware of the risk of 

containment failure and consequently broaching of hydrocarbons. Broaching studies have received 

wide attention in the past decade as operators have switched to the possibility of broaching 

occurring during the capping shut-in period (Hickman et al., 2012; Bjerstedt et al., 2020). In such 

a situation, a hydraulic fracture would initiate along critical points in the casing and have the 

propensity to propagate upward until it is either arrested by a shallower containment layer(s) or 

broach to the seafloor (Zaki et al., 2015; Elnoamany et al., 2020). In the latter case, additional 

disaster would emerge as more hydrocarbons can flow through the fracture. Broaching of an 

underground blowout can release significant amounts of hydrocarbons into the seafloor, which 

would be very time-consuming and costly to observe, and extremely hard to stop contain. As far 
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as the author’s knowledge, no research has attempted to exploit methods and ways to mitigate and 

stop hydrocarbons encroaching to the seafloor via fracture broaching. Broaching of fluids is likely 

to occur several hundred feet and up to miles from the capped wellhead (McNutt, 2012). The 1969 

Santa Barbara blowout (Easton RO, 1972), the 2008 Tordis, North Sea incident (Eidvin and 

Overland, 2009), and the 1974 and 1979 Campion Field, Brunei blowouts (Tingay et al, 2005) are 

prime examples of broaching events (Hickman et al., 2012). According to McNutt, 2012 while a 

fracture can broach several miles away from the wellhead, a broach can occur much closer to the 

wellhead such as in the case of the Macondo well, leading to severe wellhead stability and 

possibility of soft-sediment erosion in the annulus region. Recently, remote operating vehicles 

used to explore the ocean seafloor for seep and slick oil locations have observed multiple seep 

locations near the Macondo wellhead. Several geologists have concluded that broaching far from 

the wellhead has occurred in the Macondo incident, however BOEM’s water-bottom seismic 

anomaly mapping program concluded that this is a result of natural seepage in the basin. 

Moreover, oil and gas wells are not the only wells susceptible to broaching, wells related 

to surface broaching as well as extensive cratering are associated with steam flood operations in 

heavy oil reservoirs (Energy Resources Conservation Board, 2010) and geothermal energy wells 

(Bolton et al, 2009), which have been reported in literature and have been suggested to be involved 

in the Lusi mud eruption in East Java (Davis et al, 2010; Sawolo et al, 2010). 

2.5. Fracture Initiation, Propagation and Closure in Porous, Permeable Media 

Tensile, “Mode I” fractures “open” by doing work against the least compressive stress 

𝑆ℎ𝑚𝑖𝑛 (minimum horizontal stress) in the subsurface (Michael, 2016). The work required for rock 

tensile failure can be provided by fluid pressure. Fluid-driven fracturing and height containment 

in layered media was researched by numerical modeling (Simonson et al., 1978; Zhang et al., 2007; 
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Liu et al., 2015; Yue, 2017), laboratory-scale experiments (Teufel and Clark, 1984; Wu et al., 

2008; Ispas et al., 2012), and field-scale mineback studies (Warpinski, 1982; Fisher and Warpinski, 

2012). (Van Eekelen, 1982; Bhardwaj et al., 2016) used a three-dimensional hydraulic fracture 

propagation model, which quantified the impact of operational parameters such as the in-situ stress 

profile, critical rock intensity, and well architecture in unconventional reservoirs on fracture height 

growth. (Usman, 1988; Fisher and Warpinski, 2012; Yue, 2017) addressed fracture height growth 

estimation related to the mechanical and interface properties of the layers present. (Elnoamany et 

al., 2020) investigated through numerical modeling fracture propagation following capping shut-

in examining geomechanical properties such as in-situ stress and Young’s modulus contrast 

between sand and shale layers. The complexity of the fracture geometry is primarily controlled by 

the well trajectory, in-situ stress state, fluid injection rate and properties, layers’ geomechanics, 

and pre-existing natural fracture system. In general, most of the work from literature focused on a 

controlled fluid-driven fracture propagation. 

During post-blowout capping shut-in procedures, wellbore pressure increases. At the 

weakest point along the casing wall, when the wellbore pressure 𝑝𝑤 becomes equal to the 

breakdown pressure 𝑝𝑏𝑝 of the rock exceeding 𝑝𝑖, a crack(s) is created where a fracture(s) may 

start to grow. In other words, the formation will break when the hydrocarbons exert enough 

pressure to exceed the formations fracture gradient (FG). Figure 2.4 illustrates this scenario in a 

hydraulic fracture scenario compared to an uncontrolled fluid-driven fracture. In a conventional 

fracture treatment, hydraulic fracturing fluid is injected at a steady rate. At the point of injection, 

pressure will increase linearly as a function of time until it begins to leak into the rock formation 

shown by a deviation from linearity. Determined by leak-off testing, the leak-off pressure (LOP) 

is the pressure at which this leakage begins (Fu, 2014). Despite fluids leaking-off, pressure will 
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continue to increase until the rock eventually breaks down at fracture breakdown pressure 𝑝𝑏𝑝 with 

fracture(s) forming. The fracture is extended, propagating further into the formation by injecting 

fluids at FPP ≈ LOP. On the other hand, in a broaching scenario where an uncontrolled fracture 

initiation and propagation occur, unsteady and perhaps increasing or decreasing hydrocarbon 

injection will take place depending on the energy supplied by the reservoir and the near-by system 

(faults). The pressure profile against time at the fracture tip will behave differently and follow a 

curved path until fracture closure pressure (FCP) is met or a confining layer is encountered. When 

the reservoir pressure stabilizes, movement of fluids in the wellbore ceases and subsequently 

injection into the fracture, the fracture’s net pressure starts to reduce, and closure begins. The 

fracture closure stress is approximately equal to the minimum principal stress, 𝑆ℎ𝑚𝑖𝑛, for vertical 

wells (Michael, 2016). 

 
 

Figure 2. 4. Pressure profile against time, expected in a typical hydraulic fracturing stimulation 

treatment, compared to the event of fracturing during post-blowout capping (dotted line) in a 

finite reservoir (modified from Zoback, 2007). 
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Several studies throughout the years proposed different equations for measuring 

breakdown pressures (Hubbert and Willis, 1957; Hoek and Brown, 1980). Haimson and Fairhurst 

(1967) developed analytical models for the stresses near a pressurized wellbore, considering 

infiltration of injected fluid into the porous-permeable rock medium. The suggested equation for 

fracture initiation for longitudinal fracture initiation at θ = 0° is shown in equation 8 in the 

governing equations (section 3.2).  

In 1951, Horner analytically solved the pressure build-up for single step “hard” shut-in 

(equation 13 in section 3.2). Matthews and Russell (1967) developed an expression for multi-step 

“soft” shut-in strategy, of 𝑁 steps, 𝑞𝑖 = 𝑞 (1 −
𝑖

𝑁
), where 𝑖 = 1, 2, 3, … 𝑁, is replaced in Horner’s 

equation.  Upon initiation, flow equation will be used to enable fluid flow calculations inside the 

fracture, as well as the leak-off rates. Calculation of leak-off rates will be dependent on the pressure 

distribution along the fracture walls (REVEAL user guide, 2020). Rock mechanics equation 

(stress/strain) are coupled with flow equations to solve for the fracture width and bottom hole 

pressure. The stress intensity at the fracture tip is calculated and if it exceeds the critical stress 

intensity of the rock, then the fracture will continue to propagate. Iterations on fracture shape are 

performed on the flow and rock mechanics equation until the tip’s stress intensity is equal to the 

rock’s critical stress intensity. Once this criterion is met, fracture propagation stops. The stress 

intensity at the tip is dependent on the net pressure inside the fracture. Critical stress intensity of 

the overburden rocks populated in the models are obtained from several geomechanical rock 

properties datasets for the GoM region. 

2.6. Fracture Height Assessment 

Cormack et al. (1983) predicted the vertical (height) variation of fractures in multi-layer 

formations with varying interface and mechanical properties. Chuprakov et al. (2017) examined 
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continued hydraulic fracturing propagation growth in stratified geologic media following a shut-

in for well treatment. Zaki et al. (2015) investigated fracture broaching and containment resulting 

from a hypothetical WCD case in GoM, simulating a casing failure event resulting in fluid-driven 

fracture growth in different lithostratigraphic sequences of layers, while also addressing well 

design and casing shoe displacement on fracture containment. A more recent analysis of fracture 

initiation and broaching was performed by mimicking fracture initiation following Union Oil’s 

blowout and subsequent oil spill in 1969 in Santa Barbara, California (Michael and Gupta, 2019). 

All aforementioned literature indicated that fracture geometry is rather complex. Fracture 

geometry dimensions (height, length, and width) are predominantly controlled by heterogeneities 

in the in-situ stress state, geomechanical properties (Young’s Modulus, Poisson’s Ratio), and 

bedding plane interface attributes. Most of the literature on fracture propagation behavior is limited 

to hydraulic fracturing fluid properties subjected to controlled low fluid injection rate with very 

limited discussion on fracture growth differences in uncontrolled fluid-driven fracture growth post-

blowout capping period. Many questions remain unanswered on fundamental fracture growth 

behavior following extreme WCD conditions (deepwater HTHP GoM reservoir fluid properties, 

high flow rates > 300 MSTB/day, and complex wellbore trajectory). 

To unravel the objectives of this thesis, a three-dimensional (3D) mathematical model 

describing the fracturing process will be used. 3D models allow fracture height to vary with 

injection rate while including the vertical components of fluid flow (Gidley et al., 1989).  

In this work, fluid flow equations are coupled with rock mechanics (stress/strain) to 

generate a fixed fracture topology using a numerical finite-element model, which analyzes the 

fracture properties and computes the propagation pathway at each time-step. Once the fracture is 

generated, a finite-element (FE) grid is introduced, with triangular sub-elements and quadrilateral 
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boundary elements. The FE fracture grid is coupled to the 3D finite-difference (FD) main grid 

composed of hexahedral elements. A 2D plane with fracture widths defined over this plane is 

approximated by the FE grid introduced. Fluid injected (hydrocarbons) into the fractures are 

assumed to flow between two parallel plates (porous walls), which is recommended for modelling 

propagation. The difference between the pressure of the fluid inside the fracture and the pore fluid 

pressure of the rock, along with the time elapsed since the fracture walls have been first exposed 

to the fluid (hydrocarbons), determines the rate of leak-off through the crack face (Gidley et al., 

1989). 
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3. Proposed Workflow for Post-WCD Capping Shut-in 

After loss of well control in an offshore well, hydrocarbons will flow from the BOP, open-

pipe or LMRP for the discharge period until it has been shut-in by positioning a capping stack over 

the wellhead followed by a successful plugging through a relief well. Pressure build-up along 

critical points of the wellbore may exceed fracture initiation and subsequently fracture propagation 

pressure which will cause a fracture to grow in the geological media, propagating through the 

layers and potentially broach into the seafloor. A relief well can be drilled laterally to the blowing 

well intersecting the main wellbore as a well control mechanism to successfully kill the well and 

perform PA. Figure 3.1 displays the well containment and response workflow for bringing a well 

under control. It is evident from the current workflow that there is no rule on when a relief well 

should be drilled. The objectives for establishing this workflow are to: 

I. evaluate conditions under which fracture initiation may take place, 

II. fracture propagation may occur,  

III. broaching scenarios may be evaluated, 

IV. determine timing for drilling a relief well  

The novelty of this work over previous work is that the full cycle of wellbore blowout, 

fracture initiation and propagation, possibility of broaching, and relief well drills is captured. 
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Figure 3. 1. Well containment and response workflow (modified after Buchholz et al., 2016). 

 

The next subsection describes the modeling process designed to assess possible broaching 

scenarios. Steps (1-3, 5-6) used in the process are advised from PETEX. 

 

3.1. Modeling Process 

1. (Optional) Initialize the model with drilling mud in the completion. 

2. Simulate WCD following a blowout with WHP corresponding discharging well 

pressure owed to hydrostatic column of seawater, or atmosphere if above sea level. 

3. Forecast WCD rates and volumes for discharge period.  
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4. Mimic capping shut-in with wellhead (WH) boundary condition as fixed rate = 0 

STB/day if single-step shut-in, or declining fixed rate occurring over incremental 

steps until WH rate = 0 STB/day, observe fracture initiation and growth if any. 

5. Initialize high-density kill mud injection through the relief well and allow fluid 

movement in incident wellbore (flow through WH). 

6. Shut-in main well and relief well to stabilize the reservoir and wellbore pressures.  

In reality, step 6 would contain cement plug injection through relief well followed by shut-

in in both main wellbore and relief well. Cement plugging is not modeled as part of this process. 

The modeling process described above will be implemented in the base case model and several 

case studies described in Section 3.3 will be developed to assess the impact of varying the period 

of some steps (Step 3: well capping period and step 4: relief well intervention period) on fracture 

initiation and broaching. Section 3.2 defines the base case model upon which the valuation is 

conducted in this study. 

3.2. Governing Equations 

The governing equations used to achieve the objectives of this study are divided into three 

categories: the reservoir performance, the transient wellbore model, and the criteria for fracture 

initiation, and propagation following pressure build-up in wellbore. 

Reservoir Performance 

Darcy’s law is used to describe the transport equation for fluid flow in porous medium. 

Equation 2 used by the solver, describes in oilfield units the Darcy velocity for each phase. The 

negative sign implies that the phase flow occurs from high to low pressure. 

                                                     𝑞𝑝 = −6.3266
𝑘𝑘𝑟𝑝

𝜇𝑝
∇ (𝑃𝑤 + 𝑃𝑐𝑝 −

𝜌𝑝ℎ

144
)                                         (2) 
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where  𝑞𝑝 is darcy velocity (ft/d), 𝑘 is rock permeability (D), 𝑘𝑟𝑝 is phase relative permeability, 

𝜇𝑝 is the phase viscosity (cp), 𝜌𝑝 is the phase density (lb/ft3), ℎ is the depth (ft), 𝑃𝑤 is the water 

phase pressure (psi), 𝑃𝑐𝑝 is the phase capillary pressure (psi). 

Transient Wellbore Model 

A transient wellbore model is essential to achieve the objectives of this study. The transient 

wellbore model enables time-dependent pressures and flow rates to be calculated. The steady-state 

assumption cannot be used for investigating the wellbore abrupt shut-in process (Al-Safran and 

Brill, 2017), as well as the fast (transient) liquid slugging shall they occur with heavy-weight kill 

mud injection. The transient wellbore model provides an accurate calculation of the wellbore 

pressure build-up occurring during the capping period. Due to proprietary reasons, PETEX does 

not publish their precise equations and solution techniques. REVEAL honors the full mass balance 

laws and fluid properties (PVT) (Bird et al., 2002), while chemical reactions for mass generation 

effects are considered negligible (Houston PETEX, personal communication, March 15, 2021). 

Flow properties are calculated along the length of the well and across the length. All forms of heat 

transfer (conduction, convection, radiation) are accounted for in the vertical and radial directions 

(Houston PETEX, personal communication, March 15, 2021). Our model, neglects 

compressibility, inertia, or accumulation since their effects on this type of modeling are negligible. 

The steady-state fluid flow options are incorporated in the transient wellbore model. Pressure loss 

calculations along the wellbore are modeled using the empirical multi-phase flow correlation, 

Petroleum Experts 2, PE2 (Houston PETEX, personal communication, March 15, 2021).  

Fracture Initiation 

In 1967, Haimson and Fairhurst derived equation 3 for a longitudinal fracture initiation 

from a vertical wellbore under normal faulting stress state (𝑆𝑣 > 𝑆𝐻𝑚𝑎𝑥 > 𝑆ℎ𝑚𝑖𝑛)propagating in a 
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direction perpendicular to 𝑆ℎ𝑚𝑖𝑛. Initiation occurs when 𝑝𝑤 > 𝑝𝑖 where 𝑝𝑤  is the wellbore pressure, 

𝑝𝑖 is fracture initiation pressure, 𝑝𝑝 is the formation pore pressure and T is the tensile stress of the 

rock, 

                                                       𝑝𝑖 =
𝑆𝐻𝑚𝑎𝑥 −  3 𝑆ℎ𝑚𝑖𝑛  +  𝐴 𝑝𝑝 −  𝑇

𝐴 − 2
                                              (3) 

 

where 𝐴 is the Biot’s poroelastic constant expressed as 

                                                                            𝐴 =  (
1 − 2𝑣

1 − 𝑣
) 𝛼𝐵                                                             (4) 

 

and 𝛼𝐵 is the Biot’s poro-elastic coefficient calculated as 

 

                                                                           𝛼𝐵 =  (1 −
𝑐𝑔

𝑐𝑏
)                                                                  (5) 

 

where 𝑐𝑔 is the matrix grain compressibility, 𝑐𝑏 is the bulk matrix compressibility. The Biot’s 

poroelastic constant 𝐴 depends on 𝑣, the formations’ Poisson’s ratio, and 𝛼𝐵, Biot’s poroelastic 

coefficient. 

Equation 6 describes the single-step “abrupt” shut-in build-up equation developed by 

Horner in 1951. 

                                              𝑝𝑤𝑠 = 𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 162.6
𝑞𝜇𝑜𝐵𝑜

𝑘ℎ
log (

𝑡𝑝 + ∆𝑡

∆𝑡
)                                           (6) 

 

where 𝜇𝑜 is the viscosity of oil, 𝐵𝑜 is the oil formation factor, 𝑡𝑝 is time since production started, 

∆𝑡 post-capping time, 𝑞 flow rate prior to shut-in, 𝑘 average permeability of reservoir, and ℎ the 

net pay zone thickness. 
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To obtain the critical WCD rate upon which a fracture will initiate following an abrupt 

shut-in process given by Equation 7 after Michael and Gupta (2019),  𝑝𝑤𝑠 from Equation 13 will 

be replaced with the expression for 𝑝𝑖 from Equation 3. 

                                          𝑞𝑐𝑟𝑖𝑡 =
𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 3𝑆ℎ𝑚𝑖𝑛 + 𝑆𝐻𝑚𝑎𝑥 + 𝑝𝑝 − 𝑇

162.6
𝑞𝜇𝑜𝐵𝑜

𝑘ℎ
log (

𝑡𝑝 + ∆𝑡
∆𝑡

)

                                              (7) 

 

 

Fracture Propagation 

The initiated fracture is introduced as a finite-element grid. The internal pressure and width 

at different nodes within the fracture are related by equation 8 (REVEAL user guide, 2020; Almarri, 

2020). 

                             (𝑃 − 𝜎)(𝑥, 𝑧) =  
𝐺

4𝜋(1 − 𝑣)
∫ [

𝜕

𝜕𝑥
(

1

𝑅
)

𝜕𝑤𝑓

𝜕𝑥′
+

𝜕

𝜕𝑧
(

1

𝑅
)

𝜕𝑤𝑓

𝜕𝑧′
] 𝑑𝑥′𝑑𝑧′                   (8) 

                                                                𝑅 = √(𝑥 − 𝑥′)2 + (𝑧 − 𝑧′)2                                                      (9) 

where R is radius of the fracture, 𝑤𝑓 is the fracture width, 𝐺 is the shear modulus and related to 

Young’s Modulus 𝐸  and Poisson’s ratio 𝑣 by:   

                                                                               𝐺 =
𝐸

2(1 − 𝑣)
                                                              (10) 

The fracture will propagate when the critical width, 𝑤𝑐, defined at a fixed distance, a, from 

the fracture tip is attained provided that the rock’s critical stress intensity 𝐾𝐼𝑐 is equal to the tip’s 

stress intensity. Equation 11 describes the relationship (REVEAL user guide, 2020; Almarri, 2020). 

                                                                         𝑤𝑐 =
4𝐾𝐼𝑐(1 − 𝑣)

𝐺
√

𝑎

2𝜋
                                                   (11) 

where a is defined as a small distance from the fracture tip. The propagation criteria is met when 

𝑤𝑓 >  𝑤𝑐. 
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Flow inside the fracture is idealized as a laminar flow of an incompressible Non-Newtonian 

fluid. Flow equations inside the fracture assume to flow between two parallel porous plates relating 

the fracture leak-off rate, the flow rate, and pressure inside the fracture. Equation 12 relates the 

leak-off rate inside the fracture with the internal flow and pressure of the fracture (REVEAL user 

guide, 2020; Almarri, 2020). 

                     − ∫
𝑤𝑓

2

12𝜇
∇2 (𝑃 −

𝜌ℎ

144
) 𝑑𝑉 + ∫ 𝑀(𝑃 − 𝑝𝑝)𝑑𝐴 +

∫ 𝑤𝑓𝑑𝐴 − 𝑉0

∆𝑡𝑓
− 𝑄𝑓                     (12) 

where 𝜇 is the fluid viscosity, 𝜌 is the fluid density,  𝑝𝑝 is the pore pressure at far field, ∆𝑡𝑓is the 

time increment, 𝑀 is the mobility connection factor, and 𝑄𝑓 is the flow rate inside the fracture. 

Coupling between each process described above and their solution method are shown in figure 3.2. 

 

Figure 3. 2. Coupling workflow of the reservoir, geomechanics, and fracture models and solution 

method for each (modified after Almarri, 2020). 
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3.3. Base Case Model Description 

A static, multi-layer model will be developed using typical deepwater (8,000 ft water 

depth) GoM parameters. Overburden layers composed of stacked shale and reservoir layers are 

assumed as fully water saturated. Figure 3.3 displays the 3D model consisting of 36 x 36 x 120 (a 

total of 155,520) grid cell spanning an area of 1 squared mile with 100 ft of each block in the 

vertical direction. A 95/
8 in (ID = 8.5 in) casing will be set at true vertical depth (TVD) of 19,400 

ft (11,400 ft below seafloor) from the rotary table (RT) with no post drilling restrictions. The 

average reservoir depth is around 11,800 ft. Typical GoM casing design schematic, porous media 

petrophysical, and geomechanical are replicated in the model. A tartan grid is used to generate a 

log scale meshing appropriate for capturing the physics near the wellbore. The outer boundary 

condition of the model is set as a constant pressure boundary with infinite acting aquifer support. 

Rock compressibility, Poisson’s ratio, young’s modulus values of sandstones and shales are 

assumed to be constant throughout the systems’ layers. In this model, a void in cement-rock 

interface is modeled as a microannulus in the 13.625” intermediate casing (shown in Figure 3.6). 

The microannulus introduced between the cement and the drilled region is approximately 0.003 

in. An initially closed bi-wing fracture with 1-ft dimensions (half-height and length) will be 

introduced and modeled using the parallel plate method. Fluid flow inside an isolated, single 

fracture is often modeled as having a smooth, parallel plates (Philipp et al., 2013). Fluid flow inside 

the fracture including oil rates broached to the seafloor are included in the results, however, despite 

their importance, are not thoroughly discussed as flow inside an uncontrolled fracture is not well-

understood by literature and not an objective in this study (Faybishenko et al., 2000; Berkowitz, 

2002). Following fracture initiation, the fracture height and length which are the main dependent 

variables, will be monitored with time. Table 3.1 summarizes the parameters for this model. The 
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blowout duration is set as 30 days followed by 10 days of capping abrupt shut-in, afterwards, 30 

days of kill mud injection through the relief well, lastly, 20 days of main wellbore and relief wells 

shut-in. Figure 3.4 displays the side lateral for the purpose of simulating a relief well intersecting 

the main wellbore around 10,100 ft below seafloor, approximately 1500 ft above the reservoir. 

Results have shown that the pressure at the shoe has exceeded the fracture gradient resulting in an 

initiated fracture at the casing shoe. Upon initiation, hydrocarbon fluids are supplied into the 

initiated fracture, resulting in a decrease in wellbore pressure and more movement of hydrocarbons 

occurring from the reservoir into the wellbore as the fracture propagates. If the net pressure inside 

the fracture generates stress intensity at the fracture tip greater than the critical stress intensity of 

the rock, fracture propagation criterion is met and the fracture will keep growing. A quite strong 

reservoir is designed for this study, aiming to model HTHP deepwater GoM wells approximately 

3,000 psi overpressured, for this reason, the reservoir supplies significant amount of hydrocarbons 

into the wellbore following the fracture initiation period. Figure 3.6 through 3.11 shows the relative 

permeability curves for the sandstone reservoir, oil pressure-volume-temperature (PVT) properties 

such as gas-oil ratio (GOR), oil formation volume factor (FVF), and oil viscosity as a function of 

pressure, porosity relationships for sandstone and shale layers, and minimum horizontal stress 

compared to pore pressure as a function of depth below seafloor. 

Table 3. 1. Base model reservoir and overburden layers’ properties. 

Property (units) Value 

Absolute depth of OWC (bellow RT), ft 11,600 

Seafloor pressure, psia 3,720 

Depth of reservoir, ft 11,600 

Formation type Sandstone 

Pay zone, ft 400 

Permeability, mD 375 

Porosity, unitless 0.20 

(table cont’d.) 
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Property (units) Value 

Water saturation, unitless 0.25 

Average formation temperature, ºF 178 

Average formation pressure, psia 12,120 

Young’s Modulus (sands), psi 2x106 

Young’s Modulus (shales), psi 3.2x106 

Poisson’s ratio (sands), unitless 0.25 

Poisson’s ratio (shales), unitless 0.35 

Biot’s poroelastic coefficient 0.8 

Thermo elastic coefficient, 1/ºF 1x105 

Overburden stress, psi/ft 0.82 

Maximum horizontal stress, psi/ft 0.779 

Minimum horizontal stress, psi/ft 0.7134 

 

The workflow discussed in section 3.1 will be applied to the following model. Steps 1 – 5 

list the procedures applied to simulate WCD, WH capping abrupt shut-in, and kill mud injection 

through a relief well. Examination of any fracture growth and potential broaching to seafloor will 

be studied during the capping period (step 3). The time and boundary condition dedicated for each 

procedure is highlighted in red. 

1. Run for 1 hour with a low WHP to initiate the blowout (WHP = 3,720 psia) 

2. Forecast for 30 days to model the well in a blowout situation (WHP = 3,720 psia) 

3. Simulate for 10 days to model single-step “abrupt” capping shut-in, and observe 

any fracture growth (Main wellbore with 1 STB/day as fixed rate). 

4. Inject high-rate high-density mud injection (105 lb/ft3 kill mud density) for 30 days 

through the relief/kill well (initial 20 days with 70,000 STB/day, followed by 5 

days with 40,000 STB/day, then lastly 5 days with 20,000 STB/day).  

5. Run for 20 days (main wellbore is shut-in with no mud injection). 
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Figure 3. 3. Model meshing designed with incident well shown in the center (yellow line). 
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Figure 3. 4. A side lateral for the purpose of simulating a relief well intersecting the main 

wellbore around 10,100 ft below seafloor, approximately 1500 ft above the reservoir. 

Incident Wellbore 

Relief Well 
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Figure 3. 5. Casing design schematic utilized for the base case model. Fracture 5 is located 2.5 

feet below the 13.625” intermediate casing shoe. 
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Figure 3. 6. Relative permeability curves for modeling multiphase flow in the reservoir rock. 

Blue line is Krw, the relative permeability of water, while green is Krow. the relative 

permeability of oil. 

 
 

Figure 3. 7. Reservoir PVT properties: gas-oil ratio (GOR) as a function of pressure. 
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Figure 3. 8. Reservoir PVT properties: oil formation volume factor (FVF) as a function of 

pressure. 

 
 

Figure 3. 9. Reservoir PVT properties: oil viscosity as a function of pressure. 
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Figure 3. 10. Porosity relationships between shales and sandstones layers with depth below 

seafloor. 
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Figure 3. 11. Initial pore pressure and minimum horizontal stress (𝑆ℎ𝑚𝑖𝑛) as a function of depth. 

The discharging reservoir is 3,000 psi over-pressured. 
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3.3. Validation 

To validate the mathematical algorithms and equations used in the numerical simulation, a 

comparison with an exact analytical solution is performed. Horner’s build-up equation for abrupt 

single-step shut-in (equation 6) and equation 3 for fracture initiation are utilized for this purpose. 

Initiation pressure for the numerical solution occurred at a wellhead pressure of 8,046 psia, while 

initiation pressure with the analytical solution calculated at a wellhead pressure is of 8,033 psia. A 

0.16 percent match is present between the numerical and analytical solution indicating the 

reliability of the designed model. To further validate the wellbore build-up pressure using the 

transient well bore model, comparison between different well models is included in figure 3.13. 

Discussion on the transient and steady-state models are included in section 4.10. 

 
 

Figure 3. 12. Well head capping pressure comparison between the transient numerical solution 

“estimate” and the steady-state analytical solution “exact”. 
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Figure 3. 13. Capping stack build-up pressure comparison using transient and stead-state well 

models. 
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Figure 3. 14. WHP comparison using different transient wellbore for the multiphase flow 

during capping shut-in. 
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2. Microannulus between the 26” conductor casing and drill region (Section 4.2) 

3. Microannulus between the 20” surface casing and drill region (Section 4.3) 

4. Casing collapse at the 16” drilling liner (Section 4.4) 

5. Perfect cement integrity (Section 4.5) 

6. Young’s Modulus contrast between sandstone and shale layers (Section 4.6) 

7. Variation in reservoir over pressurization (Section 4.7) 

8. Total blowout duration (Section 4.8) 

9. Relief well intervention period (Section 4.9) 

10. Steady-state and transient well bore model (Section 4.9) 

Despite the recent advances in WCD calculations and to the best of the author’s knowledge, 

previous research has failed to address the possible issues that may arise in certain well blowout 

scenarios. The uniqueness of this study goes beyond computing the highest blowout rate (WCD), 

total discharge volume, profile for flow rate decline, and duration of flow period (until well 

capping). The study further evaluates widely known techniques and practices, such as subsea 

capping stack shut-in and dynamic relief well drilling engineers would execute for bringing a well 

under control after a blowout has occurred. Traditional nodal analysis and wellbore models for 

calculating WCD rates have been used extensively; however, the procedure of regaining control 

of the well using either capping shut-in or a kill well is a transient phenomenon and hence, 

conventional steady state models cannot be utilized to address the requirements stated in the 

objectives (Bendiksen et al., 1991). A fully transient wellbore model is developed and deployed 

for the purpose of this problem. The transient wellbore modelling is fully coupled to the reservoir 

providing the ability to model crossflow, well shut-in and start-up, well kick off, bullheading and 

injection, and transient flowline response (REVEAL user guide, 2020), a specialized reservoir 
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simulator REVEAL from PETEX is used to perform the complex physics-based procedure. The 

following subsections describe the modeling process of each step stated in the workflow (section 

3.1).  

3.5. WCD Calculation 

In this study, we adapted the WCD workflow described by Vasquez Cordoba (2018), which 

prescribes an integrated reservoir-wellbore nodal analysis assessment for WCD modeling. The 

workflow is further validated with reservoir simulation. A deepwater drilling scenario is presented. 

Figure 3.13 illustrates a lithology with one formation susceptible to WCD. Multiple stacked 

patterns of alternating non-producing water-bearing sandstones and shales and oil-bearing 

sandstone reservoirs commonly encountered while drilling the GoM OCS are incorporated in the 

base case model. In accordance with SPE 2015 report on estimating WCD rates, the wellbore has 

no post-drilling restrictions (such as tubing string) with reservoirs discharging into the open-hole 

section of the wellbore. Bridging is assumed to not be expected during the duration of the blowout. 

A typical deepwater well drilling plan is incorporated in the model reflecting GoM casing designs. 

The discharge point is at seafloor assuming failure or disconnection of the riser pipe from the BOP 

system, with the boundary condition as constant pressure due to the hydrostatic seawater column 

acting above the wellhead. An open-hole (uncased) section extending several hundred feet above 

the reservoirs is presumably considered as an unexpected influx is encountered while drilling. The 

reservoirs are assumed to be under steady-state constant pressure boundary conditions with infinite 

acting aquifers. Local GoM geothermal and stress gradients, geomechanical, porosity and 

permeability properties are populated throughout the model. PVT data utilized in the model were 

obtained from deepwater GoM core laboratory experiments donated by GeoMark Research, Ltd. 

The reservoirs are discharging into the main wellbore over some specified duration until the well 
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has been capped. Cross flow of fluids is allowed between different layers. The first schedule (60 

minutes in this study) initializes the model to stabilize and fill the pipes with blowout hydrocarbons 

and appropriate flow rates (REVEAL user guide, 2020). The next schedule is then used to forecast 

the WCD production for the duration of the spill. The following section discusses the capping 

stack shut-in process and boundary condition adapted to perform the objectives of this study. 
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Figure 3. 15. Typical deepwater wellbore schematic showing one formation susceptible to WCD 

(modified after SPE Report, 2015). 
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3.6. Capping Shut-in 

Two widely used systems of mechanically integrated devices are typically used for subsea 

containment system; cap and flow system (multi-step “soft” shut-in) and cap only system (single-

step “abrupt” shut-in). This study focuses on the use of single-step “abrupt” shut-in cap only 

system. The capping stack is positioned on top of the wellhead or failed blowout preventer to cease 

the uncontrolled flow of fluids into the environment (Bratslavsky and SolstenXP, 2018). The ‘cap 

only’ capping stack acts in a single-step mechanism completely shutting off the flow of 

hydrocarbons. On the other hand, the “cap and flow” system acts in a multi-step closure 

mechanism and momentarily redirects the hydrocarbons to enable closure of the wellbore, 

followed by closure of the diverter outlets (Bratslavsky and SolstenXP, 2018). Figure 3.14 

compares the ‘cap only’ to the ‘cap and flow’ subsea capping system. The cap and flow mechanism 

redirects the flow of hydrocarbons through flexible pipes to offshore vessels. 

 

 

Figure 3. 16. Subsea containment systems “capping stacks”. a) Cap only system. b) Cap and flow 

system (modified after Wood Group Kenny, 2016). 

a) b) 



50 

 

To model this intervention technique, the boundary condition at the top of seafloor is set at 

fixed rate of 0 STB/day following the preceding blowout period (WHP = seafloor hydrostatic 

pressure). Depending on the current energy state of the reservoir, during this period, wellbore 

pressure significantly rises. Subsequently, it can take a few days depending on the diffusivity of 

the reservoir for the reservoir pressures to stabilize. In this time, movement of fluids in the wellbore 

still occurs (liquid slugs produced/changing liquid levels) until the reservoir pressure stabilizes 

(PETEX Newsletter, 2016). Under certain wellbore conditions, such as in the presence of a micro-

annulus due to poor cement jobs and casing collapse due to large pressure differential between 

internal annulus region and external side of casing, leakage of fluids may occur. This leakage 

creates a flow path of hydrocarbons that under intensive annulus pressure build-up due to trapped 

annulus fluids, may allow a fracture to initiate. Shall there be enough energy supplied to the 

initiated fracture by the movement of fluids from the reservoir into the wellbore and then the 

damaged wall region, extension of the fracture may occur. After several days, hydrocarbons may 

broach into the seafloor if the propagated fracture have reached the top layer below the seafloor. 

In general, once a fracture initiates and starts propagating, it releases pressure from the capping 

stack and the WHP decreases. However, the behavior depends on the strengths of the reservoir 

(energy source) and the fracture inlet/wellbore damage (energy outlet). In some cases, the width 

of the fracture may be small while the length and height are increasing, which makes the tubing 

control the volume of discharge and consequently WHP. On the other hand, if the fracture size is 

large, it will deliver more fluids and hence control the volume in the tubing, and consequently the 

WHP. Therefore, it is a balance of the strength of the energy source (reservoir) and the outlet 

(wellbore damage) that controls the behavior of the volume of fluids in the tubing and the WHP at 

capping.  
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3.7. Relief Well Injection Strategy 

Once the period of blowout and capping shut-in is simulated, high density kill mud (105 

lb/ft3) is injected through a relief well drilled laterally to the main wellbore. The intent of drilling 

a relief well is to intersect the main wellbore at some pre-determined depth below the seafloor 

(Bruist, 1972). The main purpose of drilling a relief well is to permanently kill the discharging 

well by pumping heavy weight kill mud, followed by injecting cement to plug in the wellbore to 

prevent any further fluid movement. Essentially, the operation of drilling a relief well involves 

casings and cement design just as any other drilling operation. The downside of drilling a relief 

well resides in the precision directional drilling techniques, and the associated additional time 

required to find a rig capable of accomplishing this.  

Moreover, a relief well consists of a multi-step mud injection process. Heavy weight kill 

mud is injected with different declining injection rates over a certain period of days or weeks until 

cemented. This is typically done until the mud has displaced the hydrocarbon filled wellbore and 

the reservoir has ceased producing fluids into the open-hole section. Sufficiently high-density mud 

should be used to build a heavy column of liquid enough to replace and stop the reservoirs from 

further producing oil into the incident wellbore. Injecting very high-density mud is not optimum 

as it would introduce unphysical surface pressures (PETEX Newsletter, 2016). To simulate this 

complex process, the boundary condition at the wellhead of the main lateral is set as the pressure 

exerted by the hydrostatic column of seawater, assuming the facilities operator has completely re-

opened the diverter valves to allow circulation of heavy mud along with any other associated fluid. 

This process is done for all declining injection rates until the cement plug is injected into the 

wellbore. In this study, three injection rates from the secondary relief well will be used during the 

total injection period. Depending on the density of the kill mud, injection rates will at least 
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compensate the produced hydrocarbon rate to effectively stop production from the reservoir 

(PETEX Newsletter, 2016). High density kill mud of 300,000 ppm equivalent to 105 lb/ft3 is used 

throughout this study. 

Drilling a relief well is a complex time-consuming process that requires high resolution at-

the-bit magnetometer equipment to determine the precise location of intersecting the well. The 

magnetometer allows for accurate measurement of the distance and direction to the existing main 

wellbore (Robinson and Vogiatzis, 1972). A lateral hole is introduced by drilling into the casing 

or open-hole section at a point above the reservoir to allow injection of kill mud. An optimum size 

of the hole is designed for this purpose, a small hole can generate a large friction pressure loss 

while injecting the mud compared to a very large hole, which would take longer to be drilled 

(PETEX Newsletter, 2016). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



53 

 

4. Results and Discussion 

This chapter represents the results of the numerical study and analyzes what they signify 

in relation to the pre-stated hypotheses. Eight case studies are performed to investigate the impact 

of microannulus resulting from voids in cement-rock interface at different casing shoe depth, 

young’s modulus contrast between the shale and sandstone layer’s, variation in reservoir pressure, 

extended total discharge period until capping, and intervention time of relief well drilling. Table 

4.1 lists casing design properties used across various models. 

Table 4. 1. Casing design specifications and fracture name associated. 

Casing Type Depth (ft) ID (inches) Fracture Name 

36” Structural Pipe 200 30.875 - 

26” Conductor Casing 1,500 22 Fracture 2 

20” Surface Casing 3,000 18.375 Fracture 3 

16” Drilling Liner 5,000 14.75 Fracture 4 

13.625” Intermediate Casing 8,000 12.25 Fracture 5 

11.875” Intermediate Liner 11,400 10.625 - 

10.625” Open-hole section 600 10.625 Fracture 6 

Relief Well 10,100 6  

 

4.1. Base Case Model Results 

After a period of 3.825 days following wellbore abrupt capping shut-in, fracture initiation 

was observed along the 0.0003” void introduced in the cement-rock interface where the fracture is 

set as initially closed. The initiated fracture propagates for 5 days until it is contained in the 

geologic media. In this model, the depth of the fracture is around 8000 ft located at the 13.625” 

intermediate casing shoe reaching a maximum upward height and length of approximately 4,336 

ft and 4,450 ft, respectively. Once the reservoir pressure starts to stabilize, movement of fluids in 

the wellbore stops, no more fluid is injected into the fracture, and the fracture reaches it maximum 

growth. The fracture’s net pressure starts to reduce, the width of the fracture decreases, and closure 
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begins. Located at its maximum upward height of 3,550 below seafloor, the fracture will not broach 

during the well capping period investigated in this study. A sensitivity study to investigate the 

impact of well capping period on fracture growth is conducted in section 4.9. Following the 

capping shut-in duration, the well is successfully killed as drilling mud is injected from the relief 

well with enough density (105 lb/ft3) to compensate and cease the movement of oil from the 

reservoir into the wellbore. This is shown by a decrease in oil rate to 0 STB/day as mud is injected 

(Figure 4.5). Sufficient kill mud density and injection rate are required for a successful kill 

operation. An insufficient mud density will result in liquid slugs occurring as mud, oil, gas, and 

water are simultaneously flowing in the wellbore. Figure 4.1 describe full process of the workflow 

applied to the base case model. The first period initiates the blowout (oil rate profile in red), 

followed by period where the WH is shut-in while allowing movement to occur in the wellbore 

(WH pressure build-up shown in green), followed by a period of high-density kill mud injection 

through the relief well (purple line shows mud injection strategy), then finally complete shut-in of 

both relief well and main well. Figure 4.8 through 4.11 shows the displacement of kill mud density 

in the wellbore at successive time-steps. Quantitative results are shown in table 4.1. 
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Figure 4. 1. Wellhead oil rate and pressure with time. The three doted black lines separate the 

four modeling steps described in the workflow. Blowout (WCD) is modeled for 30 days, 

followed by capping shut-in in incident wellbore for 10 days, then mud is injected at three 

different rates from the relief well for a total period of 30 days, this is lastly followed by the last 

period which is composed of 20 days of incident wellbore shut-in and no mud injection from the 

relief well. 
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Figure 4. 2. Fracture 5 height and length shown against wellbore block pressure where the 

fracture has occurred. 

 

Figure 4.2 and 4.3 shows the fracture height and length compared to the wellbore block 

(black line) where the fracture initiates.  The wellbore pressure significantly drops as the fracture 

starts to propagate vertically (shown at 36 days in figure 4.3). This suggests that the fracture 

initially grows laterally before vertical propagation takes place. Lateral fracture growth does not 

impact wellbore pressure in this case. Vertical growth occurs 20 hours after the fracture has 

initiated. As the fracture starts propagating through the geologically stacked sandstones and shales, 

oil from reservoir and the damaged wellbore starts moving into the fracture increasing the 

fracture’s net pressure and stress at tip. Since the fracture does not broach into the seafloor, the oil 

would remain in the fracture after reservoir stabilization is reached. Cumulative oil flowing into 

the fracture is reported in table 4.1. Figure 4.6 and 4.7 displays a cross-section and top view of the 

model showing the fracture location 4 days after initiation.  
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Figure 4. 3. Fracture 5 pressure drops as the fracture starts propagating. Substantial drop appears 

as the fracture grows in height. 
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Figure 4. 4. Fracture 5 pressure at wellbore with oil rate flowing into the fracture shown against 

time. 
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Figure 4. 5. Reduction in produced oil from the reservoir into the wellbore as kill-mud is injected 

through the relief well. The mud density with the optimal injection rate compensates the 

produced oil and ceases flow 6 hours after injection through lateral hole. 
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Figure 4. 6. Schematic cross section of the model with wellbore shown in center. Fracture 5 

growth after 4 days of abrupt capping shut-in. Fracture shading shows the fluid velocity inside 

the fracture. Warmer regions indicate areas of high fluid velocity. 
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Figure 4. 7. Top view of the model. Straight black line shows the propagating fracture 

approximated on a 2D plane. The perpendicular blue line is a top view of the relief well 

intersecting the main wellbore. 
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Figure 4. 8. Fluid density shown in wellbore before kill mud is injected through the relief well at 

40.16 days. Wellbore is filled with low density hydrocarbons shown by the colder colors. 
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Figure 4. 9. Fluid density shown in wellbore after kill mud injection through relief well at 40.26 

days. Wellbore fluid density increases as high-dense kill mud fills the wellbore. Yellower 

regions indicate areas where less dense fluid (hydrocarbons) is still present. 
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Figure 4. 10. Fluid density shown in wellbore after kill mud injection through relief well at 40.42 

days. Kill mud has successfully displaced the hydrocarbons and filled the wellbore. 

 

Table 4. 2. Base Case Model Results (Fracture 5 @ 13.625” Intermediate Casing). 

Property Value 

WCD, STB/day 230,450 

Total Discharge Volume, MMSTB 6.12 

Period of fracture initiation post capping, days 3.86 

Fracture depth, ft below seafloor 7,997.5 

Maximum fracture length, ft 4,712 

Maximum fracture height, ft 4,299 

Cumulative oil rate flowing into fracture, STB 27,453 

Broach into seafloor? No 
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4.2. Conductor Casing Leak 

The following model assess the integrity of the 26” conductor casing (second casing) and 

the possibility of a fracture initiating at the casing shoe location located 1,500 ft below seafloor. 

The model simulates a continuously connected microannulus along the wellbore from the 11.875” 

intermediate liner to the 26” surface casing resulting from a void in the cement-casing interface 

from an imperfect cement job. The width of the microannulus is 0.0003” modeled as a confined 

annulus between the cement and the drilled region. The fracture initiates only 0.13 days after 

capping and broaches to the seafloor approximately 1 day after. This rapid growth is supported by 

the low permeability, low porosity, layers’ pore pressure, and in-situ stress states near the seafloor. 

At this depth, the fracture toughness exceeds the rock critical stress intensity of all overburden 

rocks resulting in fracture propagation and eventually broaching to the seafloor. Figure 4.12 

displays the rate oil flowing into the fracture. Thousands of barrels are spilled in the ocean at a rate 

of 2,750 STB/day. Figure 4.11 shows the wellhead oil rate, capping build-up pressure, and relief 

well kill mud injection rates.  
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Figure 4. 11. Well head oil rate, capping shut-in pressure, and relief well injection rates as a 

function of time. The fluctuations shown in red is due to transient liquid slugs in the incident 

wellbore. 
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Figure 4. 12. Pressure at wellbore where the fracture has initiated and oil rate flowing into the 

fracture. Oil rate in the fracture displays an increase with time owed to the fracture broaching to 

the seafloor. 
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Figure 4. 13. Fracture pressure at wellbore with height and length shown as a function of time. 
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Figure 4. 14. Graphical illustration of the propagating fracture 2 at the 26” surface casing 

broaching into the seafloor close to the well head. Fracture shading shows the fluid velocity 

inside the fracture. 

 

Table 4. 3. Model Results (Fracture 2 @ 26” Conductor Casing). 

Property Value 

Period of fracture initiation post capping, days 0.17 

Fracture depth, ft below seafloor 1,497.5 

Maximum fracture length, ft 1,492.5 

Maximum fracture height, ft 1,627 

Cumulative oil rate flowing into fracture, STB 25,689 

Broach into seafloor? Yes 

 

4.3. Surface Casing Leak 

In this model, hydrocarbon leakage through the confined annulus (microannulus) is only 

allowed between the open-hole section, up the 11.625”, 13.625”, 16” and the 20” surface casing. 

The location of the casing shoe is approximately 3000 ft below seafloor at the 20” surface casing. 

For this model, the fracture initiates 6 hours after capping shut-in is performed. The fracture 
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initiates after the wellbore block (where the fracture 3 is set) pressure exceeds the layer’s 𝑝𝑖 due 

to the void being filled with accumulated hydrocarbons. The fracture, provided by a substantial 

amount of oil, propagates through the layers and eventually broaches to the seafloor 48 hours after 

initiation. The fracture continues to deliver oil into the seafloor through the broached fracture at a 

steady rate of approximately 2,500 STB/day. 

 
 

Figure 4. 15. Well head oil rate, capping pressure, and relief well injection rates as a function of 

time for fracture 3 at 20” surface casing shoe location. Significant drop in wellhead pressure is 

due to fracture initiation 3,000 ft below wellhead. 
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Figure 4. 16. Fracture 3 pressure at wellbore and oil rate shown with time. Significant oil is 

supplied into the fracture resulting in a drop in wellbore pressure. 
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Figure 4. 17. Fracture 3 height and length. The rise in oil rate shown in figure 4.16 is due to the 

rapid fracture growth occurring upon initiation, evident here. 
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Figure 4. 18. Graphical representation of fracture 3 initiating at 20” surface casing shoe location 

upon broaching into the seafloor. 

 

Table 4. 4. Model Results (Fracture 3 @ 20” Conductor Casing). 

Property Value 

Period of fracture initiation post capping, days 0.29 

Fracture depth, ft below seafloor 2,997.5 

Maximum fracture length, ft 2,816 

Maximum fracture height, ft 2,997.5 

Cumulative oil rate flowing into fracture, bbl 142,987 

Broach into seafloor? Yes 

 



74 

 

4.4. Drilling Liner Casing Collapse 

The following model assess the integrity of the 16” drilling liner and the possibility of a 

fracture initiating at the casing shoe location located 5,000 ft below seafloor. This model assumes 

that the casing collapse has occurred in the preceding blowout period pre-capping shut-in. 

Substantial drop in wellbore pressure takes place as the fluids are released to the seafloor through 

the BOP, open-pipe, LMRP. The large differential pressure between the internal side of the casing 

where the fluids flow and the external side where the formation is present is the main cause of 

casing collapse. In this study, casing collapse is modeled as a 5-foot long casing break where the 

fluids are allowed to escape the wellbore and enter the annulus region between the cement and the 

formation. Fracture 4 is placed in the center of the casing break. The fracture initiates 0.15 days 

after capping shut-in, this is shown by a slight drop in wellhead and fracture pressure as the fracture 

stars propagating in the geological media. Fracture 4 propagates for a period of time until 

eventually reaching the seafloor causing a significant amount (spike) of oil to be spilled into the 

ocean which is then followed by a steady rate of broaching oil around 2,500 STB/day. This is 

evident by the sharp fall in wellhead and fracture pressure at the wellbore block (shown in Figure 

4.19 and 4.20). Enough energy is supplied to the fracture tip through the escaped hydrocarbons 

causing the fracture to propagate and ultimately broach to the seafloor.   
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Figure 4. 19. Well head oil rate, capping (WH) pressure, and relief well injection rates as a 

function of time for fracture 4 at 16” drilling liner shoe location. 
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Figure 4. 20. Fracture 4 pressure at wellbore and oil rate into the fracture shown with time. 

Significant oil is supplied into the fracture resulting in a drop in wellbore pressure. 
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Figure 4. 21. Fracture 4 height and length. The rise in oil rate shown in figure 4.20 is due to the 

rapid fracture growth occurring upon initiation. 
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Figure 4. 22. Fracture 4 shown broaching into the seafloor 1.5 days after initiating. The fracture 

length exceeds the dimensions of the model resulting in fracture growing in the external grid 

blocks. 

 

Table 4. 5. Model Results (Fracture 4 @ 16” Drilling Liner). 

Property Value 

Period of fracture initiation post capping, days 0.89 

Fracture Depth, ft below seafloor 4,497.5 

Maximum fracture length, ft 4,837 

Maximum fracture height, ft 4,497.5 

Cumulative oil rate flowing into fracture, bbl 35,826 

Broach into seafloor? Yes 
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4.5. Perfect Cement in Casings 

In this case study, we assume perfect casing cement integrity with no voids in the cement-

rock interface and no casing collapse has occurred. The aim is to investigate if a fracture will 

initiate and propagate after the last casing shoe location. The 11.875” intermediate liner is set at a 

depth of 11,400 ft, approximately 200 ft above the oil water contact. The fracture is modeled as an 

initially closed fracture, 2.5 ft below the casing (11,402.5 ft below the seafloor). Results indicate 

that at this depth, the pressure build-up is not high enough to exceed FIP, therefore no fracture 

initiation and subsequent propagation is observed. This is evident by a straight line in the fracture 

length and height in figure 4.24. The wellhead pressure continues to build-up as the reservoir is 

stabilizing. 

 
 

Figure 4. 23. Well head oil rate, mud rate injection, and well head pressure for the perfect casing 

integrity case study. 
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Figure 4. 24. Fracture pressure at wellbore block shown with height and length. No fracture 

initiated; hence straight line is shown. 
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4.6. Young’s Modulus Contrast 

The objective of this study is to determine the effects of extreme discharge rates (>200,000 

STB/day) on crack propagation behavior at the reference fracture initiation depth below casing 

shoe. A shale layer, upon which the initially closed fracture is set, will be examined under various 

young’s modulus, E contrast. Multiple runs with different contrast in sandstone and shale, Young’s 

Moduli, 𝐸𝑠𝑠 and 𝐸𝑠ℎ respectively, are performed. 𝐸𝑠ℎ values ranging from 2×105
 to 7×106 psi are 

populated distinctively throughout each shale layer while 𝐸𝑠𝑠  is kept constant at 2×106 psi. Figures 

4.25 and 4.26 summarize the results of the performed simulations. Results show that high 

shale/sandstone Young’s modulus ratios (𝐸sh/𝐸ss) are found to suppress fracture height and length. 

Fractures will tend to initiate faster as low Young’s Modulus is encountered in the geological 

media. High Young’s modulus will result in fracture propagation occurring in a slower rate than 

in a low Young’s modulus layers. A fracture initiating in shale layers having Esh of 7×105 psi will 

occur 6 hours later as opposed to the shale layer having a Esh of 2×105 psi. On the other hand a 

shale layer having Esh a magnitude higher at 2×106 psi similar to the sandstone layers in this case, 

would occur almost 42 hours as opposed to the layer having 2×105 psi. 



82 

 

 

Figure 4. 25. Fracture height variation against time for four different 𝐸𝑠ℎvalues. 
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Figure 4. 26. Fracture length variation against time for four different 𝐸𝑠ℎ values. 
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4.7. Reservoir Overpressure Variation 

Geopressured basins can occur naturally and they are found mostly in sedimentary 

formations. They are typically encountered in the GoM region (Wys, 1992). Geologic over 

pressurization in stratigraphic layers is caused by the inability of connate pore fluids to escape as 

the surrounding mineral matrix due to, for example, an impermeable (such as shale) sealing layer 

that have compacted in a very high rate over the porous sandstone (Speight, 2019).  In addition, 

over pressurization may also be a result of enhanced or improved recovery activities like water or 

gas injection (Zaki et al., 2015). While pressures approach hydrostatic gradients in some systems 

(0.465 psi/ft in this study), over pressured systems will exceed the hydrostatic gradient and even 

approach overburden pressure (shown in base case model figure 3.10), resulting in an abnormally 

over-pressured reservoir for their depth (Speight, 2019).  To assess the impact of reservoir over-

pressurization on fracture initiation due to capping shut-in, three runs were made with 1,000 psi 

increments from normal pressure under lithostatic gradient at the depth of the reservoir. Pore-

pressure under normal lithostatic gradient is around 9,115 psi. Results indicated that over-

pressurization of 2,000 psi or less is not adequate for fracture initiation, only at 3,000 psi over-

pressurization is fracture initiation observed. The 3,000 psi over-pressured model is the base case 

model described in section 3.2 with results in section 4.2. 
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Figure 4. 27. Reservoir over-pressure variation with fracture height as the dependent variable. 
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4.8. Total Discharge Duration 

The aim of this model is to identify the effects of the preceding WCD period on the 

possibility of fracture initiation and propagation when the well is capped. A longer period of 

discharge means more produced fluids are discharged into the environment and less hydrocarbon 

reserves. Less hydrocarbons due to the declined pressure in the reservoir would be supplied to the 

wellbore, resulting in a lower build-up pressure. In some cases, the build-up pressure resulting 

from pro-longed WCD periods may not be enough to initiate a fracture and broach to seafloor. 

Furthermore, optimal and suboptimal source control timeframe will be modeled. According to 

BSEE, an optimal source control time frame is identified as the shortest time taken to mobilize and 

apply the containment equipment on the discharging well given minor delays such as adverse 

weather conditions, government approval, and near-wellhead subsurface debris removal. On the 

other hand, a sub-optimal source control timeframe may arise due to severe weather conditions 

such as hurricanes and storms, equipment delays due to maintenance or other reasons, excessive 

debris to be removed near wellhead, excessive delay in government approvals, failed attempts in 

containment, containment mechanical failures, and excessive volatile organic compounds (VOCs) 

near and above the wellhead till surface. Results indicate that the mid-point (40 days) and the sub-

optimal (60 days) timeframe until well capping do not have any impact on fracture height or length 

growth, while the optimal period (20 days) only shortened the maximum fracture height by 100 

feet before further growth. Figures 4.28 and 4.29 show the results of the case study.  

Table 4. 6. Proposed periods for assessing impact of well capping timeframes. 

Model 
Well Capping “A” as 

optimal 

Well Capping “B” as 

mid-point 

Well Capping “C” as 

sub-optimal 

Well Capping Time 

Frame (days) 
20 40 60 
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Figure 4. 28. Fracture height with time for different well blowout periods. 

 

Figure 4. 29. Fracture length with time for different well blowout periods. 
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4.9. Intervention Time 

The objective of this case study is to research the influence of intervention time on fracture 

growth and potential broaching. Intervention time discussed here is referred to the time of relief 

well intersection to the incident wellbore. Intervention time for a relief well is dependent on various 

factors. Common circumstances that may hinder the relief well intervention time process may 

include but are not limited to the following: extended government regulations, severe weather 

conditions (hurricane and/or storms), insufficient rigs, and narrow drilling margin. For this model, 

20 days capping period will be utilized before high density kill mud is injected through a relief 

well. Results illustrates that no impact of the extended relief well intervention period exists on 

fracture height and length growth. This is due to the fracture reaching its maximum growth prior 

to the additional 10 days period. Most of the fractures presented in the study reach their maximum 

dimensions in the first 5 days after abrupt shut-in capping.  

 

Figure 4. 30. Fracture height with time for different relief well intervention periods. 
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Figure 4. 31. Fracture length with time for different relief well intervention periods. 
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available commercial software’s. We hope that this workflow helps oil and gas engineers avoid 

the catastrophic consequences of WCD and broaching scenarios. 

4.10. Steady-State and Transient Wellbore Models 

The pressure behavior along the wellbore during multiphase flow in a vertical wellbore 

will differ depending on the terms included in the transient model. In this study, we observe the 

impact of using different wellbore models on fracture initiation, fracture travel-time, and final 

propagating height and length. The steady-state (developed) approach is presented and compared 

against various unsteady-state flow models in the wellbore. The accumulation, compressibility, 

and inertial terms are accounted for individually and as all in the comparison. For a steady-state 

condition, the pressure, velocity, and temperature at a certain location along the wellbore are 

constant over time (Al-Safran and Brill, 2017). The transient flow wellbore model is essential if 

sudden changes in fluid rate and pressure exceed the system capacity (Al-Safran and Brill, 2017). 

Known as time-dependent flow, the transient flow is defined as short-term, time-averaged flow 

variables such as pressure, velocity, and mass, vary with time at a specific location in the system 

(Al-Safran and Brill, 2017). A transient condition ends with a new steady-state condition. For our 

base case model and sensitivity studies, the transient flow condition is used without the 

accumulation, compressibility, and inertial terms. The accumulation term captures changing flow 

regime such as pipeline slugging, riser instability at low rates with changing tubular area or angle 

(REVEAL user guide, 2020). The inertial term is needed for rapid changes in momentum (e.g., 

water hammer at very short time scales) and is not relevant in most cases (REVEAL user guide, 

2020). The compressibility term is important when changes in fluid compressibility occurs such 

as in the case of energy storage and release (e.g., surge volumes, closing valves etc. in compressible 

fluids) (REVEAL user guide, 2020). Inertia and compressibility work together to create 
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compression waves, surge volumes when e.g., chokes are changed. Closure relations are used such 

that the same result in transient and steady-state wellbore models is evaluated. This is important 

as this allows Reveal to use the same flow correlations for steady state and transient wellbore 

calculations. The closure relations give the same holdup calculated for steady state and transient 

models when conditions are stable (Houston PETEX, personal communication, March 15, 2021). 

The acceleration term is included however as noted this is generally small when calculated the 

pressure dop along the wellbore. Figures 4.32 and 4.33 show the result of this case study. The 

steady-state approach delays fracture initiation compared to the transient wellbore models by 

approximately 3.14 days (8.4% difference) and alters the fracture travel-time. As shown in the 

figures, the steady-state approach predicts a final fracture height and length within 2.75% and 

5.75% difference, respectively, compared to the transient wellbore models once the transient 

wellbore have themselves stabilized. The “Transient Only”, “Transient with Accumulation”, and 

“Transient with Inertia” terms conclude similar initiation pressure, fracture travel-time and final 

fracture height and length. When the “Transient with Compressibility” term is added, the final 

fracture height increases by 360 ft and length decreases by 90 ft. The results indicate that if we 

were to drill a relief well on the 38th day for the problem at hand, the prediction of fracture height 

and length from the steady-state model would be significantly different from those of the transient 

models, thus underscoring the impact of transient wellbore models over steady-state models for 

prediction of fracture properties during propagation. 

Results for the multiphase flow run (figure 3.34 and 3.35) are slightly different than for a 

single-phase oil. While almost all five transient wellbore models predict final fracture height and 

length within 1.1% and 2% respectively, fracture travel time are significantly different. For 

example, if drilling engineers were to drill a relief well on the 35th day after blowout, fracture 
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height and length prediction from the transient with inertia wellbore model would be 988 ft, and 

995 ft respectively, while prediction from the transient with accumulation wellbore model would 

predict a 100 ft and a 90 ft fracture height and length. The five transient wellbore models predict 

fracture initiation on average 2.8 days after capping (1% difference between the models), however 

fracture travel time differs as shown by the different propagation time taking place.   

 

Figure 4. 32. Fracture height comparison using different wellbore models for transient and 

steady-state conditions. Capping shut-in appeared 30 days after blowout. 
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Figure 4. 33. Fracture length comparison using different wellbore models for transient and 

steady-state conditions. 

 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

34 35 36 37 38 39 40 41 42

F
ra

ct
u
re

 L
en

g
th

 (
ft

)

Time (days)

Comparison of different wellbore models (Steady-state and Transient)

Transient Only (Base Case) Transient with Accumulation Transient with Inertia

Transient with Compressibility Transient All Terms Steady-State



94 

 

 
 

Figure 4. 34. Fracture height comparison for the multiphase flow model. 
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Figure 4. 35. Fracture length comparison for the multiphase flow model. 
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5. Conclusions, Recommendations, and Future Work 

The objective of this study is to assess the propagation of fractures initiated during post-

blowout capping, evaluating potential broaching scenarios for offshore well through fracture 

height growth. Based on numerical modeling performed on a deepwater case study, the following 

conclusions are drawn: 

• Fracture initiation and propagation is possible after wellbore abrupt capping shut-in. 

• Fracture broaching into seafloor is mainly dependent on casing shoe depth. 

• Assuming perfect casing integrity, fracture growth and hence broaching time are sensitive 

to reservoir properties and dimensions with pressure depletion during post-blowout 

discharge playing a major role in fracture propagation after capping. 

• Presence of a microannulus between the cement and surrounding rock formation interface 

increases the chances of seafloor broaching and leads to fracture initiation. 

• Fractures initiating deeper than or equal to 8,000 feet below seafloor will not exhibit 

broaching into the seafloor in the timeframe investigated in this study and the 6-months 

regulatory period. 

• The deeper the fracture, the less likely it is to broach. Fractures occurring at or below 4,500 

feet are more likely to initiate, propagate and eventually broach. 

• Young’s modulus contrast between layer’s affect fracture initiation time post shut-in, 

maximum fracture height and length, as well as travel time of the fracture to broach. High 

shale/sandstone Young’s modulus ratios (𝐸sh/𝐸ss) are found to suppress fracture growth. 

Low Young’s modulus will result in a fracture initiating at a lower formation breakdown 

pressure and vice versa. 
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• Fractures occurring near the seafloor may have an adverse effect on oil rate broaching 

into the fracture, as well as relief well mud injection rates and density. 

• Relief well intervention period may or may not have an impact on fracture growth. In our 

case, no influence is shown. 

Broaching analysis is necessary for effective containment of fracture fluid flow. An 

appropriate wellbore model, used in this study as the transient wellbore is essential to capture the 

time-dependent properties for accurate fracture initiation and propagation prediction. The 

workflow used in this study can be employed for assessing any loss of well control situation 

leading to a blowout scenario, evaluation of fracture initiation and growth with time following 

capping shut-in and investigate successful well control through kill mud injection by a relief well. 

Detailed analysis of wellbore shut-in post blowout is essential prior to capping installation and is 

suggested to be included in BSEE and BOEM well design permit with the WCD scenario to be 

conducted by facilities’ operator. The designed workflow will help operators determine the timing 

of drilling a relief well prior to fracture initiating from the sides of the wellbore. 

In this regard, future broaching analyses studies post-blowout should focus on the impact 

of multi-step “soft” aka incremental shut-in on fracture initiation and propagation. Fluid flow 

inside the fracture and spill volume resulting from broached fractures into seafloors should be 

researched. Different stratigraphy of the geological media needs to also be addressed such as 

existing salt domes, nearby faults, naturally fractured porous media, rock and fluid compressibility, 

and variation in in-situ stress state. 
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Appendix A. Schedule for WCD, Well Capping, and Relief Well 

Injection 

 

section schedule 

  #WCD Initialization (60 minutes) 

 

  timestep initial 0.1    ! days 

  timestep max_dt 1    ! days 

 

  restart_file off 

 

  inject well WCD type gen_liquid   0   713    ! fraction scf/STB 

  inject well WCD pressure 3720 temperature 100     ! psia deg F 

  inject well WCD component Mud concentration  0    ! ppm 

  inject well WCD rperm standard 

  well WCD transient_flow on inertia_flow off accumulation_flow off compressible_flow off 

  fracture WCDFrac5 update timesteps 1 

 

  for time 60    ! minutes 

 

then 

 

  #WCD Duration (30 days) 

 

  timestep max_dt 1    ! days 

 

  restart_file off 

 

  inject well WCD type gen_liquid   0   713    ! fraction scf/STB 

  inject well WCD pressure 3720 temperature 100     ! psia deg F 

  inject well WCD component Mud concentration  0    ! ppm 

  inject well WCD rperm standard 

  well WCD transient_flow on inertia_flow off accumulation_flow off compressible_flow off 

  fracture WCDFrac5 update timesteps 1 

 

  for time 43200    ! minutes 

 

then 

 

  #Well Capping Period (10 days) 

 

  timestep initial 0.1    ! days 

  timestep max_dt 1    ! days 

 

  restart_file off 
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  inject well WCD type gen_liquid   0   713    ! fraction scf/STB 

  inject well WCD rate 1 temperature 100     ! STB/day deg F 

  inject well WCD component Mud concentration  0    ! ppm 

  inject well WCD rperm standard 

  well WCD transient_flow on inertia_flow off accumulation_flow off compressible_flow off 

  fracture WCDFrac5 update timesteps 1 

 

  for time 14400    ! minutes 

 

then 

 

  #Kill Mud Injection through Relief Well at 30,000 stb/day (20 days) 

 

  timestep initial 0.1    ! days 

  timestep max_dt 1    ! days 

 

  restart_file off 

 

  inject well WCD type water 

  inject well WCD pressure 3720 temperature 60     ! psia deg F 

  inject well WCD component Mud concentration  0    ! ppm 

  inject well WCD rperm standard 

  well WCD source tubing liq_rate 70000 temperature 60 wc 1 gor 0 md 20100 lateral 2    ! STB/day 

deg F fraction scf/STB feet 

  well WCD source composition     300000    ! ppm 

  well WCD transient_flow on inertia_flow off accumulation_flow off compressible_flow off 

  fracture WCDFrac5 update timesteps 1 

 

  for time 28800    ! minutes 

 

then 

 

  #Kill Mud Injection through Relief Well at 20,000 stb/day (10 days) 

 

  timestep initial 0.1    ! days 

  timestep max_dt 1    ! days 

 

  restart_file off 

 

  inject well WCD type water 

  inject well WCD pressure 3720 temperature 60     ! psia deg F 

  inject well WCD component Mud concentration  0    ! ppm 

  inject well WCD rperm standard 

  well WCD source tubing liq_rate 40000 temperature 60 wc 1 gor 0 md 20100 lateral 2    ! STB/day 

deg F fraction scf/STB feet 

  well WCD source composition     300000    ! ppm 
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  well WCD transient_flow on inertia_flow off accumulation_flow off compressible_flow off 

  fracture WCDFrac5 update timesteps 1 

 

  for time 7200    ! minutes 

 

then 

 

  #Kill Mud Injection through Relief Well at 10,000 stb/day (10 days) 

 

  timestep initial 0.1    ! days 

  timestep max_dt 1    ! days 

 

  restart_file off 

 

  inject well WCD type water 

  inject well WCD pressure 3720 temperature 60     ! psia deg F 

  inject well WCD component Mud concentration  0    ! ppm 

  inject well WCD rperm standard 

  well WCD source tubing liq_rate 20000 temperature 60 wc 1 gor 0 md 20100 lateral 2    ! STB/day 

deg F fraction scf/STB feet 

  well WCD source composition     300000    ! ppm 

  well WCD transient_flow on inertia_flow off accumulation_flow off compressible_flow off 

  fracture WCDFrac5 update timesteps 1 

 

  for time 7200    ! minutes 

 

then 

  #Shut-in period, capped well and no mud injection (20 days) 

 

  timestep initial 0.1    ! days 

  timestep max_dt 1    ! days 

 

  restart_file off 

 

  inject well WCD type water 

  inject well WCD rate 0 temperature 60     ! STB/day deg F 

  inject well WCD component Mud concentration  0    ! ppm 

  inject well WCD rperm standard 

  well WCD source tubing liq_rate 0 temperature 60 wc 1 gor 0 md 20100 lateral 2    ! STB/day 

deg F fraction scf/STB feet 

  well WCD source composition     300000    ! ppm 

  well WCD transient_flow on inertia_flow off accumulation_flow off compressible_flow off 

  fracture WCDFrac5 update timesteps 1 

 

  for time 28800    ! minutes 

end 
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Appendix B. Permissions for Published Work 

Published permissions for various figures used throughout the chapters (1, 2, 3, and 4) are 

provided in this appendix. Permission for Figure 1.1 Diagram showing examples of qualitative 

ranking BOEM geoscientists have conducted on favorable and unfavorable pathways leading to 

broaching of hydrocarbons, below is the evidence. 
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Permission for Figure 1.3 BP 001 Macondo Well design and lithologic section were 

provided by PNAS the publisher, below is the evidence. 
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