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Abstract 

This study explores the application of data-driven modeling and prediction in reservoir 

characterization and simulation using seismic and petrophysical data analyses. Different aspects 

of the application of data-driven modeling methods are studied, which include rock facies 

classification, seismic attribute analyses, petrophysical properties prediction, seismic facies 

segmentation, and reservoir dimension reduction.  

The application of using petrophysical well logs to predict rock facies is explored using 

different data analytics methods including decision tree, random forest, support vector machine 

and neural network. Different models are trained from a set of well logs and pre-interpreted rock 

facies data. Among the compared methods, the random forest method has the best performance in 

classifying rock facies in the dataset. 

Seismic attribute values from a 3D seismic survey and petrophysical properties from well 

logs are collected to explore the relationships between seismic data and well logs. In this study, 

deep learning neural network models are created to establish the relationships. The results show 

that a deep learning neural network model with multi-hidden layers is capable to predict porosity 

values using extracted seismic attribute values. The utilization of a set of seismic attributes 

improves the model performance in predicting porosity values from seismic data.  

This study also presents a novel deep learning approach to automatically identify salt bodies 

directly from seismic images. A wavelet convolutional neural network (Wavelet CNN) model, 

which combines wavelet transformation analyses with a traditional convolutional neural network 

(CNN), is developed and demonstrated to increase the accuracy in predicting salt boundaries from 

seismic images. The Wavelet CNN model outperforms the conventional image recognition 

techniques, providing higher accuracy, to identify salt bodies from seismic images.  



 

x 

 

Besides, this study evaluates the effect of singular value decomposition (SVD) in dimension 

reduction of permeability fields during reservoir modeling. Reservoir simulation results show that 

SVD is valid in the parameterization of the permeability field. The reconstructed permeability 

fields after SVD processing are good approximations of the original permeability values. This 

study also evaluates the application of SVD on upscaling for reservoir modeling. Different 

upscaling schemes are applied on the permeability field, and their performance are evaluated using 

reservoir simulation.  
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Chapter 1. Introduction 

This research covers topics in the application of data-driven modeling in reservoir 

characterization and simulation. It explores the possibility of creating statistical models that co-

relates various data types including seismic data, well logs, and rock facies. The effectiveness of 

using SVD for dimension reduction of permeability field is also evaluated. 

1.1 Background 

Development in data acquisition technologies in the oil & gas industry has created significant 

amount of data in different types, including seismic, well logs, petrophysical properties, rock facies, 

and seismic facies. It is of great significance to explore the relationships between different 

datatypes to understand whether it is possible to use one data type to predict another. If this is 

possible, it reduces the amount of human effort and capital expenditure in collecting various types 

of data during hydrocarbon exploration and production.  

Among the various types of subsurface data, well log data is a commonly used data source 

that helps geologists and engineers understand subsurface properties. After collecting well log data 

from the well bore in the subsurface, rock facies are interpreted by geologists based on the well 

log responses. It typically takes large amount of time and human efforts to interpret the rock facies. 

Thus, it is of great significance to look for the statistical relationship between well log data and 

interpreted rock facies to see whether well log data can be used to predict rock facies using data-

driven modeling methods. 

Seismic data is also among one of the common data types in the industry. A three dimensional 

(3D) seismic survey provides large amount of data about the subsurface properties. It enables a 3D 

display of geologic features and promotes more comprehensive analyses on the subsurface data. 
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3D seismic data interpretation provides a 3D view of the formations and structures in the 

subsurface and enables deeper understanding about the reservoir geometry and structure.  

Moreover, seismic attribute values can be extracted from a 3D seismic survey and can help 

provide a quantitively understanding about subsurface properties. Seismic attribute analysis  has 

been proved to be a useful geophysical method that can be used to identify subsurface features 

such as faults and fracture zones (Khair, 2012). These attributes can be automatically calculated 

by computer prior to human interpretation. This saves lot of time and work. It also helps 

characterize reservoir properties and identify structures in deep formations where seismic 

resolution is low. With larger amount of available 3D seismic data, it is worthwhile to explore the 

relationship between these seismic attributes and petrophysical properties from well logs. Data-

driven models can be created to quantify these relationships. 

After a seismic survey is conducted, the collected and processed seismic data can be viewed 

as seismic images. These seismic images can be used by geologist to interpret geologic features in 

the subsurface, including formations, structures, seismic facies, etc. Salt body is one of the 

common subsurface features that can be identified on seismic images. It is important to accurately 

determine the location and size of salt bodies to better understand the subsurface properties by 

interpretation of seismic images. For a 3D seismic survey conducted on a large study area, this 

processes typically take a lot of human efforts and hours to manually interpret seismic facies. Thus, 

it is of great significance to explore the usage of data-driven modeling in automatically predicting 

these seismic facies directly from seismic images. The predicted results will be a good reference 

for geologists and engineers to better understand subsurface properties and can reduce human 

efforts and costs. 
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During reservoir modeling, dimension reduction is important to reduce the size of reservoir 

models in order to save computational time for reservoir simulation. With reduced dimension, 

more realizations can be simulated for models with different parameter values to better 

characterize uncertainty for reservoir simulation.  

Upscaling is an important step for reservoir modeling. Its goal is to substitute a heterogeneous 

model that consists of high-resolution fine grid cells with a lower resolution reduced-dimensional 

homogeneous model using averaging schemes. The benefit of upscaling in reservoir simulation is 

that it efficiently saves simulation time, and effectively preserves key features of data for flow 

simulations. The critical issue in upscaling is the selection of an appropriate scheme to effectively 

represent properties for the fine grid cells.  

Singular Vector Decomposition (SVD) method is a matrix decomposition method. It has been 

used for different applications including image processing and facial recognition. It is worthwhile 

to evaluate the application of SVD in dimension reduction of the permeability field for reservoir 

modeling.  

1.2 Motivation and Objective  

With the development of computational power and data acquisition techniques, data-driven 

modeling has been used in many different fields to create automatic workflows that can make 

predictions to assist decision making processes. Utilization of these data-driven models has 

significantly increased the efficiency in performing various tasks in different applications (Porumb 

et al., 2020; Bangaru et al., 2020). One big area of its application is computer vision, which is to 

enable computers to be able to interpret the visual world using data-driven models trained from 

large amount of existing data.  
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One specific example for the application of data-driven modeling methods that is very 

common in our daily life is image recognition.  In the example shown in figure 1.1, the input is a 

pixel image of a camera in a self-driving car. The program, or the trained model, can automatically 

identify the major features in the image, which include vehicles, streets, sidewalks, pedestrians, 

etc. Predictions are made at all pixels in the original image. These predicted results help the 

program make decisions to drive the vehicle with less human control. The model is not yet perfect, 

but there has been significant amount of research and projects being conducted in this area to 

improve the effectiveness and efficiency of the model.  

  

Figure 1.1. An example of using data-driving modeling for developing self-driving vehicles 

(CVPR workshop on autonomous driving, 2018). 

Another example is in health care. Figure 1.2 shows an example that uses the signal of a single 

heartbeat to detect hear failure. It is an example of a classification problem. The input is signal 

from individual heartbeats. The output is the classification result predicting the input signal to be 

a normal heartbeat or a congested heart failure.  

After training from heartbeat signals and pre-determined labels, the model is capable to 

automatically predict heartbeat signals from new patients to be a normal heartbeat or a congested 
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heart failure. The model has shown a nearly 100% percent accuracy, which provides useful 

information to assist human interpretation processes.  

 

 
Figure 1.2. An example of using data-driving modeling for heartbeat signal analyses (Porumb et 

al., 2020). 

With the wide use of data-driven modeling methods in various fields nowadays, it is 

worthwhile to explore the use of data-driving modeling in the oil and gas industry. Thanks to the 

various types and large numbers of available data in the industry, together with the recent 

developments of data analytics algorithms, there exists a great protentional to use data-driven 

modeling and prediction to explore the inter-relationships between different data types in the 

industry.  

Well logs and rock facies data can be collected to explore their relationships. Data-driven 

models can be created between these two data types, and well logs can be used to predict rock 
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facies using the established data-driven models. This will reduce the amount of human work in 

interpreting rock facies from well logs. 

The relationship between seismic attributes and petrophysical properties can be studied. Since 

seismic data is collected at the reservoir scale and is available at every location of the seismic 

survey, this relationship can be used to estimate the petrophysical and reservoir properties at all 

locations in the reservoir. It can also be utilized to predict petrophysical properties in other newly 

less explored areas.  

During oil and gas exploration operations, after running and collecting seismic surveys, 

seismic attribute values can be extracted, and it can used to estimate petrophysical properties using 

the established relationships between seismic attribute values and petrophysical properties. In this 

case, only a smaller number of wells need to be logged to verify the estimated petrophysical 

properties. If the predicted values match the well log data, then the model can be used to estimate 

petrophysical properties in other locations within the reservoir. This reduces the cost of performing 

additional well logging operations in the field.   

Seismic images, together with interpreted seismic facies can be used to train a deep learning 

convolutional neural network model to explore their relationships. The model can be used to help 

predict seismic facies automatically from seismic images. Subsurface features such as salt bodies 

can be identified from the trained model. This can save a lot of human efforts from the manual 

interpretation of seismic images. 

In order to save reservoir simulation time, reservoir dimension reduction is a necessary step 

in creating a coarse grid reservoir model for reservoir simulation. Since SVD has been proved to 

be effective in imaging compression, the effect of SVD on dimension reduction of reservoir 

petrophysical properties can be evaluated for reservoir modeling. Different cases with different 
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SVD schemes can be created in order to evaluate its effectiveness in dimension reduction. By 

comparing the simulation results of different cases, the effectiveness of SVD in dimension 

reduction can be evaluated. 

This research creates a comprehensive workflow for reservoir characterization and reservoir 

simulation using data-driven modeling methods. It explores the possibility to establish the 

relationships between different subsurface data types. Well log data is used to predict rock facies. 

Petrophysical properties in the reservoir can be estimated by exploring the relationship between 

seismic attribute values and these petrophysical properties. Seismic images can be used to 

automatically identify seismic facies through trained data-driven models. Besides, SVD is 

performed on the reservoir permeability field to evaluate its effectiveness in dimension reduction 

of reservoir parameters.  

1.3 Workflow 

Figure 1.3 shows the workflow and the research methodology for each step. The whole 

process includes two parts; the upper part represents the process of exploration the relationships 

between different data types including well logs, seismic attributes and facies. The lower part 

represents the process to evaluate the performance of SVD on dimension reduction of the 

permeability field for reservoir modeling.  
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Figure 1.3. Workflow and research methods for each step. The upper part represents the process 

of exploring the relationships between different data types. The lower part represents the process 

to evaluate the use of SVD on dimension reduction. 

In the first part, various datatypes are collected in order to explore the relationships using 

data-driven modes. Well logs and rock facies data are collected and imported into data-driven 

models to look for the relationship between these two data types. Different data analytics models, 

including decision tree, random forest, support vector machine and artificial neural network, are 

created using Python to evaluate each model’s performance. Evaluation metrics, which include 

accuracy, precision, recall, and F-1 score, are calculated for each method to compare their 

prediction performance. 
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Seismic attributes and petrophysical data are also compiled and imported into data analytics 

models to explore the possibility of using seismic attributes to predict petrophysical properties. 

The seismic and well log data is collected from the Teapot dome 3D seismic survey. Petrel is used 

as the reservoir modeling tool to extract the seismic attribute values, and to co-relate the seismic 

attribute values with the well log data. Deep learning neural network models are created in Python 

using the TensorFlow library.  

Besides, seismic images and interpreted salt images are imported into CNN models to explore 

the possibility of creating an automatic segmentation tool that can help identify salt bodies from 

seismic images. The application of a novel Wavelet CNN model is introduced and evaluated for 

its performance in identifying salt bodies. 2D seismic images of the subsurface and pre-interpreted 

salt bodies are collected from TGS Geophysical Survey. The trained model takes seismic images 

as the input and can automatically create an output image with predictions of salt bodies. The 

output predicted image has the same dimension with the input seismic image. Python and 

TensorFlow library are used as the tools to create the Wavelet CNN model. 

In the second part, SVD is performed on the reservoir permeability field to evaluate the effects 

of SVD on reservoir dimension reduction. MATLAB is used as the tool to perform the SVD 

processing on the permeability field, as well as the reconstruction process. When performing SVD 

on a parameter, the parameter matrix can be decomposed and represented by the product of three 

separate matrices, U, S, and V. Different numbers of singular values can be used in S during the 

reconstruction of the original parameter matrix.  

After the reconstruction of the parameter matrix, reservoir simulation is performed for both 

the original and the reconstructed parameter values to evaluate whether SVD processing is valid 

for reservoir dimension reduction. A two-phase flow reservoir model was created in C++ and CMG 
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for reservoir simulation. Reservoir models with different SVD processed permeability fields are 

simulated in order to evaluate the effectiveness of SVD processing in reservoir dimension 

reduction. 
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Chapter 2. Data-Driven Classification of Rock Facies Using Petrophysical 

Well Logs 

This chapter explores the application of using petrophysical well logs and different data 

analytics methods to automatically classify rock facies. Well logging is a commonly used tool to 

understand subsurface properties. However, the interpretation of well logging data may take a 

significant amount of time. Thus, it is worthwhile to explore the statistical relationship between 

well logging responses and the interpreted rock facies. This helps create a workflow to 

automatically interpret rock facies from well logging responses.  

2.1 Introduction 

During hydrocarbon exploration and production, it is of great significance to understand the 

rock facies in the subsurface to target the potential hydrocarbon zones. Well logging is a very 

powerful tool to characterize rock facies and properties in the subsurface. There are many different 

types of logging methods. Some are passive methods, and others are active methods. Giving the 

fact that a hydrocarbon well is usually thousands of feet, there is huge amount of data generated 

during a single well logging operation. Thus, it typically takes a lot of human time and effort to 

manually interpret and validate all the well logs. Moreover, an oil field usually contains dozens or 

hundreds of wells during exploration and production. So, there is tremendously amount of well 

log data that needs to be interpreted. Thus, it is meaningful to use data-driven modeling methods 

to find the statistical relationship between the well logging responses and the different rock facies. 

This saves time and human effort for geologists and petroleum engineers. 

In order to explore the relationship between well logging responses and the rock facies,  a set 

of well logs and corresponding rock facies data are collected. Correlation plots are created to 

visualize the relationship between each well logging responses. Various data-driven models 

including decision tree, random forest (RF), support vector machine (SVM) and artificial neural 
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network (ANN) models are trained and tested to establish the relationship between well logging 

responses and rock facies. 

The whole process contains three steps. In the first step, data that contains well logs and pre-

interpreted rock facies is collected and pre-processed. Various types of well log data can be 

collected to increase the dimension of dataset. For each sample data point in the dataset, the 

location of the pre-interpreted rock facies needs to match the location of well log values. Besides, 

dataset that has missing values needs to be pre-processed. The data points with missing values may 

be removed, or their values can be estimated based on the values of other relevant data points or 

features.  

In the second step, correlation plots are created to visualize the relationships between each 

well logging responses. Correlation matrix can be created to quantitatively describe the 

interrelationships between each input feature.  

The third step is to create the data-driven models to make predictions. Categorical models 

that uses different algorithms can be established for rock facies classification using well logs. 

Evaluation metrics, which include accuracy, precision, recall, and F-1 score, can be used to 

compare the model performance. 

2.2 Literature Review 

Facies classification is a fundamental step for reservoir modeling. Accurate understanding of 

facies plays a significant role in improving the characterization of reservoir properties during oil 

and gas exploration and production (Xiong et al., 2010; Liu et al., 2017; Liu et al., 2020). It helps 

geologists and engineers to have better understanding about the geological, petrophysical, and 

reservoir properties.  
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The vigorous development of data-driven modeling methods has attracted lots of attention in 

the oil and gas industry (Sebtosheikh and Salehi, 2015; Xie et al., 2018). Different methods are 

studied and utilized in various applications including well log interpretation, seismic signal 

analysis, and seismic interpretation (Zu et al., 2018; Chen et al., 2018; Qu et al., 2019, Lopez et 

al., 2020). The inter-relationship between various input data and the output data have been 

explored using different data analytics approaches (Cracknell and Reading, 2014).  

Zhao and others (2014) used a Proximal Support Vector Machines (PSVM) model in order 

to separate limestone and shale in a Barnett Shale gas field. Li and Zhang (2016) explored the 

application of data-driven models to predict sand, shale, and sand/shale mix from well logs. 

Different data analytics algorithms including logistic regression, gaussian discriminant analysis, 

random forest, and support vector machine were tested and compared in order to find the model 

that has the best predicting result.  

Liu and others (2020) developed a Multikernal Relevance Vector Machine to improve the 

accuracy of lithology identification using a set of inverted elastic attributes. Their method 

preserves advantages of the regular Support Vector Machine algorithms and implements the 

optimizing processes with Bayesian analyses. Their results show advantageous properties 

including better generalization and accuracy in identification of rock facies comparing to 

traditional methods.  

Kim et al. (2018) developed random forest models to assist seismic facies classification aided 

by stratigraphical interpretation and well logs. Their model also determines the importance of each 

input feature in classifying seismic facies. This helps select the important features and reduce the 

amount of computational power in establishing more complex models afterwards. Lopez et al. 

(2020) developed different data-driven models, including least-squares polynomial approximation, 
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random forest and support vector machine, to help differentiate lithology types including sand, silt 

and clay. Their results show that the data-driven models are valid to distinguish different lithology 

types using data from electrical resistivity and seismic wave velocity values. Results also show 

that the predicted lithology from the random forest model has a better statistically correlation with 

the actual lithology for their study. 

2.3 Methodology 

Thanks to the development of data-driven modeling methods, there are numerous data-driven 

theories and techniques that are available to be used by scientists and engineers in various fields.  

Based on the different objectives of different data-driven models, they can be categorized into two 

major types; supervised learning, and unsupervised learning.  

Supervised learning is performed by feeding training data which has input variables and 

output variables. The main objective of a supervised learning model is to look for the relationship 

between the input variables and the output variables from the data (Kotsiantis 2007). These 

relationships can be linear or highly non-linear and are usually explored though the optimization 

of cost functions. One common cost function is the mean squared error, which is the average 

squared difference between the predicted results from the trained model and the true results. By 

establishing the relationship between the input variables and the output variables, new data can be 

input into the trained model to predict the values of the output variables.  

Unsupervised learning is another type of data-driven algorithm that can be used to explore 

the relationship between input variables without the labeled output variables (Figueiredo and Jain, 

2002). The commonly used unsupervised learning method includes clustering analysis, and 

principle component analyses (PCA). These methods aim to look for the inner patterns between 

the input variables and can be used for grouping samples in different categories.  
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In this study, different models are created using different data-driven algorithms, including 

decision tree, random forest (RF), support vector machine (SVM), and artificial neural network 

(ANN). These models are evaluated to select the one that performs the best in classifying rock 

facies.   

2.3.1 Decisions Tree 

A tree structure has many analogies in various fields in the real life. During a decision-making 

process, the decision tree model can be utilized to visually demonstrate the decision-making steps. 

The decision tree method is also commonly used in data-driven modeling in many different fields, 

including both classification and regression problems.  

A decision tree model has an opposite direction to a real tree structure. Figure 2.1 displays 

the structure of a decision tree with its root on the top (Safavian and Landgrebe, 1991).  Each circle, 

which represents an internal node, is based on where the tree structure splits into more branches. 

The end of the tree structure that doesn’t split further is called the leaf or the decision. They 

represent the different labels or classes in data-driven models (Safavian and Landgrebe, 1991; 

Friedl and Brodley, 1997). 

At each conditional node, the algorithm calculates the cost for each split using a cost function. 

The node that has the lowest cost is selected as the root node. After the root node is selected, the 

tree splits at the root and the algorithm looks for the nodes at lower levels. A maximum depth 

value, which represents the maximum distance from the top of the structure to the bottom, can be 

preset to determine when the splitting stops.  



 

16 

 

 
Figure 2.1. An illustration of the structure of a decision tree model (Safavian and Landgrebe, 

1991). 

2.3.2 Random Forest 

Random forest, which is an ensemble data-driven modeling method, consists of large 

numbers of single decision trees (Liaw and Wiener, 2002; Pal, 2005). Each decision tree forms a 

sub-model and makes a prediction. The random forest model considers the prediction result from 

each single decision tree and determines the final output of the model by taking the prediction that 

has the maximum occurrence.  

During training processes, a randomly selected group of data points are used to train each 

single decision tree. These groups of data points are selected with replacement, meaning that some 

data points may be used to train different decision trees multiple times. Besides, the selection of 

features in each single decision tree is also random. It means that a randomly selected sub-group 

of features is used to construct each single decision tree. By considering predictions from large 

amount of randomly created independent decision trees trained from randomly selected group of 

data points, the random forest model helps reduce bias of the model and increase the model 

performance.  
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Figure 2.2 illustrates the structure of a random forest model (Yiu, 2019). There are totally 

nine single decision trees in the illustration. These nine trees are formed with random combinations 

of input features. Each tree is trained with randomly selected number of data points. These single 

decision trees predict either 1 or 0. Among these nine trees, there are six trees predicting 1 and 

three trees predicting 0. Thus, the output of the random forest model is 1 by taking the majority 

voting from all the nine single trees.  

 
Figure 2.2. An example of the structure of a random forest model (from Yiu, 2019). 

2.3.3 Support Vector Machine 

Support vector machine (SVM) is a commonly used data analytics method. It is widely used 

for classification problems and can be used for regression tasks as well. The goal of the SVM 

method is to look for hyperplanes that can be used to separate all the samples in the N-dimensional 

space, in which N represents the dimension of input variables (Suykens and Vandewalle, 1999; 

Fung and Mangasarian, 2005).  
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As shown in figure 2.3, in order to distinguish the two different classes of samples, there 

exists many different hyperplanes that can be selected. The goal of the SVM algorithm is to select 

the best hyperplane that has the largest margin between two classes (as shown figure 2.4). This 

helps provide stronger reinforcement to the model so that future samples can be predicted by the 

model with higher confidence.  

      
Figure 2.3. Illustration of the possible hyperplanes that could be chosen to separate two classes 

of data points (Gandhi, 2018). 

Hyperplanes can be considered as boundaries that separates all input data samples. The data 

points that locate on two sides of the hyperplane can be classified into different groups. The 

dimension of the hyperplane that differentiate the input data depends on the dimension of the input 

features. As shown in figure 2.3 and 2.4, the dimension of the input data is two, and the optimal 

hyperplane is a line that separates the two classes. In other cases, if the dataset has the dimension 

of three, the hyperplane is a plane. If the input data has larger dimension more than three, which 

is the common situation, the hyperplane is difficult to visualize or imagine. 
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Figure 2.4. Illustration of the optimal hyperplane and support vectors (Gandhi, 2018). 

Support vectors represent for sample points that locate close to the hyperplane, which help 

establish the model. The algorithm utilizes these support vectors to determine the location of the 

optimal hyperplane by maximizing the margin between the datapoints belonging to different 

classes. A loss function is used to help maximize the margin. It searches the optimal hyperplane 

that separates different classes. 

2.3.4 Artificial Neural Network 

Artificial neural networks are initially inspired by the biological neural network inside animal 

brains (Zupan and Gasteiger, 1993; Jain et al., 1996). These neural network systems can learn from 

collected data or examples to improve performance of certain tasks. Artificial neural networks 

have a broad range of applications for both classification and regression problems.  

Neural network systems can be considered as simple math functions that defines the 

relationship between input variables (X) and output variables (Y). Giving the dataset that contains 

both X and Y, the neural network model can be trained to look for the relationship between X and 

Y. This relationship can be used to make predictions on new values of X.  
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More specifically, a neural network model includes several components, the input layer, the 

hidden layers, and the output layer. The input layer contains the input variables. The number of 

input layer consists of X1, X2, …, Xm, which represents the input variables and can pass values 

from the training dataset to the next hidden layer.  

The hidden layers are layers of neurons that are between the input layer and the output layer. 

They can transfer information from the neurons in the previous layer to the neurons in the next 

layer. The number of the hidden layers in a model is changeable and can be optimized based on 

specific dataset for different tasks.  

Based on the number of hidden layers in the structures of the model, neural network models 

can be categorized into two different types; a single layer neural network or a multi-layer neural 

network. The major difference between a single layer versus a multi-layer neural network model 

is that a multi-layer neural network has more than one hidden layer. A multilayer neural network 

is also called a deep learning neural network since it has more than one hidden layer, and can be 

used to model complex non-liner relationships.  

Figure 2.5 and 2.6 shows the structure of a single hidden layer and a multi-layer neural 

network model. In both figure 2.5 and 2.6, each layer contains several neurons which receive input 

signals from previous layers and can be transmitted to next layers. This resembles the transmitting 

of neural signals in animal brains. The importance of the transmitting relationship can be 

descripted as the weights between the input variables and each neuron. 
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Figure 2.5. Structure of a single hidden layer artificial neural network model. Circles represent 

for input variables, neurons and output variables (Li, 2019). 

 
Figure 2.6. Structure of a multi-layer artificial neural network model (Li, 2019). 

Figure 2.7 shows a single neuron unit inside the hidden layer. The neuron applies a non-linear 

function to the weighted sum of inputs to produce a final output. This non-linear function is called 

the activation function f. Commonly used activation functions includes ReLU, Sigmoid, Tanh, etc 

(Li, 2019).  

The output layer of a neural network model contains the output neurons, which are included 

the last layer of a neural network model. They receive information from neurons in the previous 

hidden layer and perform computations to transfer data that passes from the previous layer to the 

final output variables (Y).  
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Figure 2.7. The structure of a single neuron. f represents the activation function. It applies a non-

linear function to the weighted sum of inputs to produce an output (Li, 2019). 

The training process of a neural network system is to look for the optimal values of the 

weights. These values from weights, together with the number of hidden layers and the number of 

neurons, define the trained neural network model. By calculation these values, the relationship 

between X and Y can be quantitatively established.  

During the training process, there are many different activation functions that can be used 

based on the objects of each specific problem. A commonly used activation function is rectified 

linear unites (ReLU). Its function and derivative function are shown as follows. Figure 2.8 shows 

the plots for the function and its derivative. It is a non-linear function and provides good 

performance for neural network models. It is computationally efficient since it contains relatively 

simple math equations. 

R(z) = {
z, for z > 0
0, for z ≤ 0

 

R′(z) = {
1, for z > 0
0, for z < 0
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Figure 2.8. Illustration of the ReLU function and the derivative form (Li, 2019). 

 Sigmoid function is another commonly used activation function for neural network models. 

It is a non-linear function. The Sigmoid function and its derive function are shown as follows. 

Figure 2.9 shows their plots. Both the sigmoid function and its derivative are continuous. It has a 

fixed output range to be between 0 and 1. 

S(z) =  
1

1 + 𝑒−𝑧
 

S′(z) =  
1

1 + 𝑒−𝑧
∙ (1 −

1

1 + 𝑒−𝑧
)  

Tanh is another commonly used activation function. The Tanh function and derivative 

function are shown as follows. Figure 2.10 shows their plots. It is a non-linear function and has a 

continuous derivative form. It also has a fixed bound like the Sigmoid function. However, the 

output range is zero-centered from -1 to 1, which is larger than the Sigmoid function.  

tanh(z) =  
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
 

tanh′(z) = 1 − tanh (𝑧)2 
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Figure 2.9. Illustration of the Sigmoid function and the derivative form (Li, 2019). 

        
Figure 2.10. Illustration of the Tanh function and the derivative form (Li, 2019). 

2.3.5 Model Evaluation 

After a data-driven model is created, it is important to use evaluation metrices to evaluate the 

model performance. In a pattern recognition or classification problem, each item in the total 

population has a true label and a predicted label. As shown in figure 2.11, the relevant elements 

refer to the elements that are positive in reality, and the selected elements are these that are 

predicted to be positive by the model.  
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Because both the actual label and the prediction label have two different situations to be either 

positive or negative, there are totally four different situations that can happen regarding the results 

of the predicted label and the actual label. Firstly, If the predicted label and the actual label are 

both positive, this can be considered as a true positive prediction (TP). Secondly, if the predicted 

label and the actual label are both negative, this can be considered as a true negative prediction 

(TN). Thirdly, if the predicted label is positive but the actual label is negative, this can be 

considered as a false positive (FP) prediction. Fourthly, if the predicted label is negative but the 

actual label is positive, this can be considered to be a false negative (FP) prediction.  

Ture positive and true negative predictions are correct predictions since the predicted values 

match their actual values. On the contrary, both false positive and false negative predictions can 

be counted as false predictions since their predicted values do not match the actual values.  

 

Figure 2.11. Illustration of predicted values and actual values (Chris, 2019). 
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Take a medical screening test that predicts whether a person has a disease or not for example, 

each person provides a data point in the dataset, and either has or does not have the disease in 

reality. The relevant elements refer to the people who have the disease in reality.  

By taking the test, it predicts whether the patient has or does not have the disease. The selected 

element refers to these who are predicted to have the disease by the test. If the outcome of the test 

is positive, the test predicts the patient has the disease. If the outcome is negative, it predicts the 

patient does not have the disease. For each patient, the result may or may not be correct based on 

each person’s real situation. There are totally four different cases:  

True positive case: the person has the disease and the test predicts positive; 

True negative case: the person does not have the disease and the test predicts negative; 

False positive case: the person does not have the disease and the test predicts positive; 

False negative case: the person has the disease and the test predicts negative.  

Based on the number of different predictions for a test, there are a variety of parameters that 

can be utilized to evaluate models’ performance, including accuracy, precision, recall, and 

specificity, etc.  

Accuracy represents the fraction of the total amount of correct predictions among all the 

samples. Figure 2.12 shows the common parameters including precision, recall, and specificity. 

Precision, which is also called positive predictive value, represents the portion of the true positive 

predictions in all selected elements (all positive predictions). Recall, which is also called sensitivity 

or true positive rate, represents the portion of true positive predictions among all relevant elements 

(all positive data points in reality). Specificity, which is called the true negative rate, represents 

the fraction of true negative predictions among the un-relevant elements (all negative samples in 

reality).  
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Figure 2.12. Illustration of recall, precision, and specificity (Tran, 2016). 

Besides, F1 score is a parameter that considers both precision and recall. It is calculated from 

the harmonic average of both precision and recall. The equations for the above parameters are 

shown as follows. 

Accuracy =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  

Recall =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1 = 2 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
  

2.4 Dataset 

The dataset of this study is from Society of Exploration Geophysicists 

(https://github.com/seg). The origin of the dataset is from Dubois et al. (2007). The dataset 

contains seven features that come from seven different well logs from the Panoma gas field in the 
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Kansas state, United States. The dataset also contains a facies label that is pre-interpreted by 

geologists. There are totally 2783 observations.  

The dataset contains seven variables. They are all created by well logging tools during logging 

operations as the tools travel from the bottom of the well to the surface ground. The dataset 

contains Gamma ray log (GR), which measures the amount of naturally emitted gamma radiation 

from the formation, can help differentiate lithology. Resistivity log (ILD_log10) is another log 

type contained in the dataset. It measures the electrical resistivity of the formation. The dataset 

includes Photoelectric effect log (PE) that measures photoelectric absorption ability of the 

formation and can be related to the minerality of the formation. The dataset also contains porosity 

logs including average neutron-density porosity log (PHIND) and Neutron-density porosity 

difference (DeltaPHI). In addition, the dataset includes a categorical parameter, Nonmarine/marine 

index (NM_M), to indicate whether it is nonmarine or marine environment. Besides, the depth 

information is included in the Relative position (RELPOS) log. 

The dataset contains a total of nine different rock facies. They are represented by numbers 

from 1 to 9 in table 2.1. As showing in table 2.1, facies 2, 3, 6, and 8 have more than 300 

observations, and the rest have less than 200 observations. Figure 2.13 shows the distribution for 

the number of samples for each label.   
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Table 2.1. Nine different rock facies in the dataset. 

Facies 

Labels 
Facies Name Number of observations Adjacent Facies 

1 Nonmarine sandstone 170 2 

2 Nonmarine coarse siltstone 649 1,3 

3 Nonmarine fine siltstone 498 2 

4 Marine siltstone and shale 177 5 

5 Mudstone 198 4,6 

6 Wackestone 391 5,7,8 

7 Dolomite 81 6,8 

8 Packstone-grainstone 458 6,7,8 

9 Phylloid-algal bafflestone 161 7,8 

The last column in table 2.1 is the adjacent facies. This column is added since the facies in 

the dataset aren't discrete. In fact, it is common that facies gradually mix with one another. Some 

samples have adjacent facies that are very close to each other. Mislabeling within these adjacent 

facies are expected to happen. Thus, information for the adjacent facies is added in the last column 

for each facies. 
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Figure 2.13. Distribution of number of each rock facies in the dataset. 

The statistics of the five numerical features are shown as follows. It contains information for 

the count, mean, standard deviation (Std), minimum (Min), 25th percentile, 50th percentile 

(median), 75th percentile, and maximum (Max) values for each feature. 

Table 2.2. Statistics of the input features. 

Feature 

Name 
Count Mean Std Min 25% 50% 75% Max 

GR 2783 66.25 31.61 13.25 46.08 65.54 80.71 361.15 

ILD_log10 2783 0.64 0.24 -0.03 0.50 0.63 0.81 1.48 

DeltaPHI 2783 3.75 5.05 -21.83 1.30 3.58 6.50 18.50 

PHIND 2783 13.12 7.39 0.55 8.17 11.90 16.14 84.40 

PE 2783 3.81 0.89 0.20 3.20 3.60 4.40 8.09 
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The five numerical features are normalized using the following equation. The statistics after 

normalization are shown in table 2.3. After normalization, the mean of each feature becomes zero, 

and the standard deviation becomes one.   

x ← 
𝑥 − 𝑚𝑒𝑎𝑛(𝑥)

𝑠𝑡𝑑(𝑥)
  

Table 2.3. Statistics of the input features after normalization. 

Feature 

Name 
Count Mean Std Min 25% 50% 75% Max 

GR 2783 0.00 1.00 -1.68 -0.64 -0.02 0.46 9.33 

ILD_log10 2783 0.00 1.00 -2.77 -0.61 -0.07 0.69 3.45 

DeltaPHI 2783 0.00 1.00 -5.07 -0.49 -0.03 0.54 2.92 

PHIND 2783 0.00 1.00 -1.70 -0.67 -0.16 0.41 9.65 

PE 2783 0.00 1.00 -4.03 -0.68 -0.23 0.66 4.80 

A correlations plot is created for the normalized numerical features to show the overall 

relationship for each input feature. As showing in Figure 2.14, ILD_log10 (resistivity) and PE 

(Photoelectric effect) have a weak positive relationship. In contrast, PHIND (average neutron-

density porosity) and PE (Photoelectric effect) show a negative relationship. The diagonal part of 

figure 2.14 shows the distribution of each feature. 

Figure 2.14 also indicates that only by plotting these features on a scattered plot is not enough 

to understand the relationships among all the features, since the co-relationship between each 

single feature is not strong. Thus, data-driven models that are established from more numbers of 

features are needed to better characterize the complex non-linear relationship between all the 

features. 
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Figure 2.14. Correlation plot for the input features after normalization. 

Figure 2.15 shows the correlation matrix between the input features. Red color represents a 

positive relationship, blue color represents a negative relationship. As consistent to the 

correlationship in figure 2.14, ILD_log10 (resistivity) and PE (Photoelectric effect) have a weak 

relationship. PHIND (average neutron-density porosity) and PE (Photoelectric effect) show a 

negative relationship. 
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Figure 2.15. Correlation between each variable. Red color represents a positive relationship. Blue 

color represents a negative relationship.    

2.5 Results 

The dataset is split into a training set and a testing set. The models are trained using 80% of 

the total data points and the rest 20% are used for testing. All four models are evaluated based on 

their performance on the testing set to select the best model.  

The testing accuracy for each model are shown in table 2.2. Both the facies accuracy and the 

adjacent facies accuracy are used to compare the model performance. Among the four models, the 

random forest method has overall the best performance. It has the highest testing accuracy as 0.691 

for the facies, and the second highest testing accuracy as 0.921 for the adjacent facies. Decision 

tree has the second highest testing accuracy for facies as 0.618 and the third highest accuracy for 

adjacent facies as 0.903. SVM has the third highest testing accuracy for facies as 0.585 and the 

highest testing accuracy for adjacent facies as 0.926. Neural network has relatively lowest accuracy 

for both the facies and the adjacent facies as 0.553 and 0.895 respectively.  
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Table 2.4. Testing accuracy for each model. 

Method Accuracy for Facies Accuracy for Adjacent Facies 

Decision Tree 0.618 0.903 

Random Forest 0.691 0.921 

SVM 0.585 0.926 

Neural Network 0.553 0.895 

Figure 2.16 shows the confusion matrix for the predicted facies and actual facies from the 

random forest model results. The diagonal part shows the number of correct predictions. Dark blue 

color represents a higher number indicating the model is performing good for that particular class. 

Overall, the diagonal boxes have the largest number for each row and column meaning that the 

model is generally performing well for most classes.  

In figure 2.16, there exist boxes that are neighboring to the diagonal boxes and they also have 

slightly dark colors, indicating that there are misclassified labels for the adjacent facies. This is 

because facies in the dataset aren't discrete, and gradually blend into one another. Thus, it is 

common for facies to be predicted as their neighboring facies. Figure 2.17 shows the normalized 

confusion matrix for the predicted facies and actual facies from the random forest model results. 

The diagonal part shows the percentage of correct prediction for each label.  

Figure 2.18 and shows the confusion matrix for the predicted adjacent facies and actual 

adjacent facies from the random forest model results. The diagonal boxes have larger values than 

these in figure 2.16, meaning that there are more correct predictions. This is because neighboring 

predictions are considered to be correct predictions in this situation. Figure 2.19 shows the 

normalized confusion matrix for the predicted adjacent facies and actual adjacent facies from the 

random forest model results. The diagonal boxes also show larger values than these in figure 2.17, 

which is due to the same reason. 
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Figure 2.16. Confusion matrix for the predicted facies and actual facies from the random forest 

model results. The diagonal boxes show the number of correct predictions.  

 
Figure 2.17. Normalized confusion matrix for the predicted facies and actual facies from the 

prediction results of the random forest model. 



 

36 

 

 
Figure 2.18. Confusion matrix for the predicted adjacent facies and actual adjacent facies from 

the prediction results of the random forest model. 

 
Figure 2.19. Normalized confusion matrix for the predicted adjacent facies and actual adjacent 

facies from the prediction results of the random forest model. 
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Evaluation metrics are calculated for each facies from the prediction results of the random 

forest model. Table 2.3 shows the precision, recall, and F1-score for each label.  Figure 2.20 shows 

the plot for these evaluation metrices. The last row in table 2.3 shows the total precision, recall 

and F-1 score to be 0.72, 0.72, and 0.71 respectively. 

Table 2.5. Evaluation metrics for each facies from the random forest model results. 

Facies 

Labels 
Facies Name 

Adjacent 

Facies 
Precision Recall F1 score 

1 Nonmarine sandstone 2 0.88 0.77 0.82 

2 Nonmarine coarse siltstone 1,3 0.76 0.84 0.8 

3 Nonmarine fine siltstone 2 0.71 0.65 0.68 

4 Marine siltstone and shale 5 0.61 0.82 0.7 

5 Mudstone 4,6 0.66 0.48 0.56 

6 Wackestone 5,7,8 0.6 0.62 0.61 

7 Dolomite 6,8 0.91 0.59 0.71 

8 Packstone-grainstone 6,7,8 0.7 0.72 0.71 

9 Phylloid-algal bafflestone 7,8 0.82 0.91 0.86 

Total na na 0.72 0.72 0.71 

 
Figure 2.20. Evaluation metrics for each facies from the random forest model predictions. 
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Evaluation metrics are also calculated for the adjacent facies from the prediction results of 

the random forest model. Table 2.4 shows the precision, recall, and F1-score for each adjacent 

facies. Figure 2.21 shows the plot for these evaluation metrices. The last row in table 2.4 shows 

the total precision, recall and F-1 score to be 0.92. 

It is also noticed that the precision, recall and F1-score for the adjacent facies in table 2.4 are 

higher than these for the facies in table 2.3. This is because neighboring predictions are considered 

to be correct predictions in this situation. 

Table 2.6. Evaluation metrics for each adjacent facies from the random forest model results. 

Facies 

Labels 
Facies Name 

Adjacent 

Facies 
Precision Recall F1 score 

1 Nonmarine sandstone 2 0.95 0.97 0.96 

2 Nonmarine coarse siltstone 1,3 0.98 0.98 0.98 

3 Nonmarine fine siltstone 2 0.93 0.93 0.93 

4 Marine siltstone and shale 5 0.7 0.85 0.77 

5 Mudstone 4,6 0.89 0.8 0.84 

6 Wackestone 5,7,8 0.97 0.88 0.92 

7 Dolomite 6,8 1 0.76 0.87 

8 Packstone-grainstone 6,7,8 0.87 0.92 0.9 

9 Phylloid-algal bafflestone 7,8 0.92 1 0.96 

Total na na 0.92 0.92 0.92 
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Figure 2.21. Evaluation metrics for each adjacent facies from the random forest model 

predictions. 

2.6 Discussion 

It is important to evaluate the model performance using a combination of evaluation metrics 

including accuracy, precision, recall, and F1 score. Accuracy represents the portion of correct 

predictions among all labels. A higher number means that there are a greater number of correct 

predictions. Precision (positive predictive value) represents the fraction of true positive among the 

selected elements (all positive predictions). Recall (sensitivity or true positive rate) represents the 

fraction of true positive among the relevant elements (all positive samples in reality). There are 

cases when two models may have similar accuracy. Thus, it is important to combine accuracy, 

precision, and recall to select the optimal model.  

Particularly in cases such as medical tests, the amount of false negative is an important factor 

to be considered. A false negative prediction represents the case that the model predicts a patient 

that is positive in reality to be negative, thus may result in delay of diagnostics and treatment. Even 
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a small increase of the number or percentage of false negative predictions may significantly affect 

the model performance. In these cases, recall (sensitivity or true positive rate), which is the fraction 

of true positive among the relevant elements (all positive samples in reality) needs to be considered 

to evaluate the model’s effectiveness, because it considers the prediction results for all relevant 

elements including both true positive and false negative predictions. 

Besides, the models are trained from the dataset collected from the Hugoton and Panoma gas 

fields (Dubois et al., 2007). So far, the trained models are evaluated using testing data collected in 

the same field. In order to acquire a model that can be applied to more areas, new data can be 

added to the model to re-train the model to explore more general relationships between well logs 

and rock facies. 

2.7 Conclusion 

This chapter describe the application of using petrophysical well logs and different data 

analytics models to automatically classify rock facies. Four different types of models, which 

include decision tree, random forest, support vector machine and neural network, are created to 

find the best model in predicting rock facies from well log values.  

Among the four models, random forest method has overall the best performance for this 

dataset. It has the highest testing accuracy as 0.691 for the facies classification. The testing 

accuracy is 0.921 for the adjacent facies classification, which is the second highest. It was slightly 

less but very close to the highest accuracy of classifying adjacent facies from the support vector 

machine method, which is 0.926. However, the accuracy for classifying facies from the support 

vector machine model is 0.585, which is much less than that of the random forest. So, the random 

forest method has overall the best performance among the four tested models for this dataset.   
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For all the four different methods, the testing accuracy and evaluation metrics including 

precision, recall and F-1 score for the adjacent facies classification are higher than these for the 

facies classification. This is because neighboring predictions are considered to be correct 

predictions for the classification results of adjacent facies. 

Future work may include adding more types of well logs to further increase the prediction 

accuracy. More data points and more data analytics methods may also be tested to see whether 

they can help increase the model performance in classifying rock facies using well logs. 
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Chapter 3. Predicting Petrophysical Properties Using Seismic Attributes and 

Artificial Neural Networks 

This chapter explores the application of using data-driven modeling methods to establish the 

statistical relationships between seismic attribute values from a 3D seismic survey and 

petrophysical properties from well logs. Artificial neural network models are created to explore 

the relationship between these two data types. Such relationships and models can be used for the 

optimization of exploration and production operations. 

3D seismic data can be used to extract various seismic attribute values at all locations within 

the seismic survey. Well logs provide accurate constraints on the petrophysical values along the 

wellbore. Artificial neural network models are utilized to establish the statistical relationships 

between seismic attributes and petrophysical data. Since seismic data are at the reservoir scale and 

are available at every sample cell of the seismic survey, these relationships can be used to estimate 

the petrophysical properties at all locations inside the seismic survey.  

In this study, the Teapot dome 3D seismic survey is selected to extract seismic attribute values. 

A set of instantaneous seismic attributes, including curvature, instantaneous phase, and trace 

envelope, are extracted from the 3D seismic volume. Deep learning neural network models are 

created to establish the relationships between the input seismic attribute values from the seismic 

survey and petrophysical properties from well logs. Results show that a deep learning neural 

network model with multi-hidden layers is capable of predicting porosity values using extracted 

seismic attribute values from 3D seismic volumes. Utilization of a subset of seismic attributes 

improves the model performance in predicting porosity values from seismic data. 
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3.1 Introduction 

A 3D seismic survey provides information about the subsurface. There are many attributes 

that can be calculated from 3D seismic data. For example, curvature measures the extent of 

deviation away from a straight line (Robert, 2001, Chopra and Marfurt, 2007). Curve lines have 

greater values of curvature, and strait lines’ curvature values are zero. Most Positive Curvature 

(MPC) measures the speed of the positive change of slope on a plane. MPC can be used to highlight 

bumps in seismic reflections, and it can be used to detect fractures (Khair et al., 2012). As it shown 

in figure 3.1, different geologic features have different curvature values. An anticline has a positive 

curvature value, and a syncline has a negative curvature value. MPC is also related to Most 

Negative Curvature (MNC), which is another seismic attribute that can be calculated. It highlights 

sags and synclines.  

 
Figure 3.1. Different geologic features have different curvatures. Anticlines have positive 

curvature values, and synclines have negative curvature values. From Robert, 2001. 

Figure 3.2 shows a case study which uses seismic attribute to identify a major fault and other 

fracture zones (Khair et al., 2012). In this study, the MPC and MNC attributes were calculated and 

the result clearly displays the existence of structural features including major faults and several 

fracture networks. Fault population and trace information is collected from the curvature attribute 
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maps. Regional stress information is determined from fault population analyses, and it matches 

the regional stress field in the area (Khair et al., 2012).  

 
Figure 3.2. Use most positive (left) and most negative (right) curvature attributes to identify fault 

zones. From Khair et al., 2012. 

Usually, a function may be used to describe a relationship. For example, for the equation 

Y=F(X) in which X is the input and F is the function, Y is the output. Typically, when we know 

X as the input, and F as the function, we can look for Y. This can be considered as a forward 

modeling problem. In the industry, there is a similar situation. As shown in figure 3.3, when a 

geologic model is created, we know the formations boundaries and the structures. If we know the 

physics of how seismic wave propagates in the subsurface, a synthetic seismic response can be 

created. This is a forward modeling problem.  

In the second case, when we have Y as the output and the inverse relationship F-1, X can be 

estimated. This is considered as an inverse modeling problem. In the industry, when a seismic 

survey is conducted, seismic inversion can be performed to estimate the formations boundaries 

and structures in order to create the geologic model.  
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In the third case, if there is X and Y, the relationship between X and Y which is F can be 

explored. This process can be called data-driven modeling. We look for relationship using input 

and output data via data analytics, or machine learning. This is called data-driven modeling.  

In this study, seismic attribute values are extracted from a 3D seismic survey to explore the 

relationship between these seismic attribute values and petrophysical properties from well logs. 

Data-driven models are created to quantify these relationships. Because seismic data is collected 

at every grid cell within the seismic survey, it is available at every location inside the reservoir. 

Thus, this established relationship between seismic attribute values and petrophysical properties 

can be used to estimate the petrophysical properties at all locations in the reservoir. This 

significantly reduces the cost of running additional well logging operations in the field. 

 
Figure 3.3. Illustration of inverse and forward modeling between geologic models and seismic 

responses (Abokhodair, 2008). 
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3.2 Literature Review 

Encouraged by the technological improvement in data collection and the increased 

computational power, data-driven modeling has become an emerging technique in the oil and gas 

industry. Recently it has been increasingly explored in many aspects including reservoir modeling, 

optimization of drilling and completion design, production prediction, etc. It has been used in 

drilling engineering to improve drilling performance and efficiency (Chen et al., 2019; Yin et al., 

2020; Luo et al., 2020). It also has been used in the optimization of completion parameters for 

unconventional resources (Schuetter et al., 2015; Mishra and Lin, 2017; Schuetter et al., 2018; 

Wang and Chen, 2016). 

Understanding subsurface properties is significant in reservoir modeling and characterization. 

Research has been conducted to better characterize subsurface properties including petrophysical 

properties, reservoir properties, fracture properties, etc. (Zhou et al., 2014; Wang et al., 2018, 2019; 

Huang et al., 2018; Feng et al., 2019; Yang et al., 2020; Wei et al., 2020). The application of data-

driven modeling has been used to better characterize petrophysical properties (Li and Zhang, 2016, 

Liu et al., 2020). Existing research also has been conducted to improve efficiency for well log 

interpretation (Roy et al., 2013, Zhao et al., 2014, Wrona et al., 2018). 

3D seismic data provides important information about the subsurface. Combining with data-

driven modeling methods, 3D seismic data  has been used to better characterize subsurface 

properties such as faults and fracture properties. Zhang and others (2014) used data-driven 

modeling methods for automatic fault detection from seismic traces. Udegbe and others (2018) 

used amplitude-based statistics for seismic fracture identification. They verified the methods for 

identifying discrete fractures by combining both 3D seismic data and full-bore micro-image well 
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log data. Di and Gao (2017), Zheng and others (2014) have used 3D seismic data and machine 

learning techniques for fault detection and extraction.  

One advantage of 3D seismic data is that it is collected and available at every grid within the 

seismic survey. Thus, it can provide information at every location inside the reservoir. In this study, 

3D seismic data and well log data are analyzed to build the relationship of seismic attribute values 

and petrophysical and reservoir properties. The model uses 3D seismic data to predict porosity 

values from the well log. Since 3D seismic attribute values are at all locations of the seismic survey, 

which is usually conducted in a relatively large scale. The established model can be utilized to 

estimate these properties at all sample cells of the reservoir. 

3.3 Methodology 

3.3.1 Seismic Attribute Analyses 

There are many attributes that can be created from seismic data. Table 3.1 and 3.2 lists the 

common curvature attributes and rock-solid attributes that can be generated from seismic data 

(Holdaway, 2014).  

Table 3.1. List of common curvature attributes (Holdaway, 2014). 
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Table 3.2. List of common rock-solid attribute (Holdaway, 2014). 

 

In this study, three instantaneous attributes were extracted from the seismic volume, including 

curvature, instantaneous phase, and trace envelope.  

Curvature represents the radius of a circle that is tangent to a curve or a surface for a 3D 

problem. Mathematically, it can be simply represented by the following equation: 

𝐾 =
𝑑𝜔

𝑑𝑆
 =  

1

𝑟
  

Where K represents the curvature, and r represents the radius of the circle that is tangent to a 

surface or a curve. Figure 3.4 shows an illustration to determine the curvature on a curve. Curvature 

is a useful seismic attribute in quantifying the change of seismic amplitude. It helps improve the 

visualization of large-scale subsurface features. It can be used to identify discontinuities such as 

fault edges, fractures, channels, etc.  
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Figure 3.4. Illustration of the curvature attribute (Robert, 2001). 

Instantaneous phase is a seismic attribute that is related to the propagation phase of the 

seismic wave front. The equation to calculate instantaneous phase can be shown as: 

𝜙(𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛 ( 
𝐼𝑚 𝐹(𝑡)

𝑅𝑒 𝐹(𝑡)
 ) 

Where F(t) is the seismic trace, Re F(t) and Im (Ft) are the real part and imaginary part of the 

complex trace. Instantaneous phase is useful in indicating lateral continuity, calculating the phase 

velocity, and visualizing bedding stratigraphy.  

Trace envelope is also called instantaneous amplitude. It is a function of the real part and 

imaginary part of seismic trace. It can be calculated as 

𝐸(𝑡) =  √(𝑅𝑒 𝑠(𝑡))2 + (𝐼𝑚 𝑠(𝑡))2 

Where Re s(t) represents the real part of the analytic trace S(t), and Im s(t) represents the 

imaginary part of the analytics trace. Trace envelope is useful in locating major subsurface features. 

It is a good indicator of bright spots in the subsurface since it is related to acoustic impedance 

contrast. It also helps identify unconformities, as well as changes in lithology, faulting, and 

depositional environment.  
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3.3.2 TensorFlow 

This study uses artificial neural network to find the relationship between seismic data and 

petrophysical data. TensorFlow is used as the library to perform neural network analyses. 

TensorFlow is an open-source software library that is capable to process large amount of data. It 

was developed after DistBelief, which was Google’s first generation of deep learning neural 

network algorithm. TensorFlow is the second generation of neural network system and released to 

be an open-source software library in November 2015. It is a cross platform software library and 

can run on various operation systems and platforms. It also can run on multi CPU and GPU serves 

and can reduce the running time.  

With the strong capabilities of processing large amount of data, TensorFlow has been widely 

used in various fields to analyze data with high dimensions. It has been applied in speech 

recognition, text identification, sound classification, image processing and classification, computer 

vision, and any many other fields. In this study, TensorFlow is used to build the multi-layer neural 

network models to explore the relationships between seismic attribute values and petrophysical 

properties.  

3.4 Dataset 

3D seismic data is accessed from the Teapot Dome 3D Seismic Survey, 2007, which includes 

2D and 3D Seismic, well log, core images, and GIS data. 3D seismic data and well log data are 

imported into a geologic model in Petrel. Seismic data is originally imported in the time domain 

and was converted into the depth domain so that seismic data and well log data can be correlated 

together.  

When compiling the data that is used for training the neural network model, a single-point or 

multi-point convolution method can be used. This method is introduced in Hampson et al., 2001. 
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As showing in the figure 3.5 below, there are two different types of data compiling methods. Figure 

3.5.a represents the method of using one seismic value as the input variable to correlate with the 

well log value. In figure 3.5.b, instead of using only one seismic data as the input data, five seismic 

amplitude values are compiled as the input variables and are correlated to one well log value. The 

utilization of multi-point convolution is to increase model performance, since the well log value 

can be affected by rock properties in its surrounding zones. In additional, Zhang and others (2018) 

compared the method of using one seismic value to correlate with one well log value with the 

method of using ten seismic values to correlate with one well log value. Their results showed that 

the model with ten seismic input variables can help improve the model performance in predicting 

lithology using seismic amplitude data.  

 
Figure 3.5. Two ways of data compilation. Figure 3.5a represents the case of correlating one 

seismic value to one well log value. Figure 3.5b represents the 5-point convulsion method, which 

uses five seismic values to correlate one well log value. (Hampson et al., 2001) 

In this study, the 10-point convolution method is used to better address the impact of 

surrounding rocks on the log responses. A total of 26713 samples from four wells are collected to 

train the neuron network model. Four different cases were tested to compare the impact of adding 

different seismic attributes. The base case contains 10 seismic amplitude values as the 10 input 

variables. The second case contains 20 input variables which consists of 10 seismic amplitude 

values and 10 additional curvature attribute variables. The third case contains 30 input variables, 
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in which 10 additional instantaneous phase attribute values are added. The fourth case contain 40 

input variables, which consists of 10 additional trace envelope amplitude variables and the 30 input 

variables from case 3. The output variable is neutron porosity log values for all four cases.  

3.5 Results 

The four datasets were compiled and fit into the deep learning neural network separately. In 

each case, the data was randomly split into a training set with 80% of the total amount of sample, 

and a testing set with 20% of the total amount of sample. The algorithm trains the model based on 

the values of the input variable and optimize the cost functions to find the best fit model. Figure 

3.6 and 3.7 shows the change of Mean Absolute Errors (MAE) and Mean Squared Errors (MSE) 

with increasing epoch values. MAE and MSE values reach to the steady values around 300 epochs.  

 
Figure 3.6. Mean absolute error during the training process of the neural network model. The 

total epoch number is 300. 
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Figure 3.7. Mean square error during the training process of the neural network model. The total 

epoch number is 300. 

After the optimal model is found, the testing dataset is input into the model to calculate the 

parameters that can be used to evaluate the model performance. These evaluation parameters 

include Mean Absolute Error (MAE), Mean Squared Error (MSE), and Coefficient of 

Determination (R2).  Table 3.3 shows the calculated MAE, MSE, and R2 for four cases. These 

values are plotted in figure 3.8 and 3.9. As showing in table 3.3, figure 3.8 and 3.9, the model 

performance increases from case 1 to case 4, meaning that adding more seismic attributes improves 

the model performance in predicting porosity values.  

Table 3.3. MAE, MSE, and R2 for four cases 
 MAE MSE R2 

Case 1 0.0324 0.0017 0.2783 

Case 2 0.0209 0.0007 0.6517 

Case 3 0.0180 0.0006 0.6936 

Case 4 0.0161 0.0005 0.7775 
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Figure 3.8. Calculated values of MAE and MSE for each case. 

 
Figure 3.9. Calculated value of R2 for each case. 

Figure 3.10 shows the scattered plot of the predicted values with the true values for four 

different cases. Subplot a, b, c, and d are for case 1, 2, 3, and 4 respectively. In subplot a, the 

relationship between the predicted value and the actual value is not clear. With increased number 

of seismic attributes and increased number of input variables, it shows stronger co-relationship 

between the predicted value with the actual value. It indicates that the prediction accuracy is 

increased by adding more seismic attributes. 
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Figure 3.10. Plots of predicted values with true values for each case. Figure a, b, c, and d are for 

case 1, 2, 3, and 4 respectively. 

After the model has been trained, the model was used to predict neutron porosity on two 

separate wells to compare the prediction results. The prediction results are show in the figure 3.11. 

Overall, there is a good match between the predicted values and the actual values. The predicted 

values show a similar trend with the change of porosity values on the actual log curves.  
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Figure 3.11. Plots of predicted values with true values for wells. Figure a and b represents cases 

for two wells. 

It is noticed that the predicted values change less frequently compared to the values on the 

actual log. The regional variances on the predicted values are also smaller than that on the actual 

log. It could be because the input data was taken from a range of input values at surrounding zones, 

rather than from a single location or a smaller zone. In other words, the predicted value could be a 

smoothed estimation from each sample’s neighboring zone, such that the predicted value has a 

relatively smaller regional variance than the actual log.  

3.6 Discussion 

In this study, seismic attributes are extracted from the 3D seismic survey to predict the neutron 

porosity well log values. Neuron porosity is the only porosity log that is available in most wells in 

the study area. Thus, it is used to co-relate the seismic attribute data.  

Generally, there are different types of porosity logs, including density porosity, neutron 

porosity, and sonic porosity. Density porosity log measures the electron density of a formation. 
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The logging tool contains a device that emits gamma ray into the formation. The gamma ray 

interacts with the formation electrons and then scatters. The returned gamma ray from the 

formation can be collected by the detector inside the tool. The amount of returned gamma rays 

indicates the bulk density of the formation, which can be used to estimate the porosity using a 

mass-balance relationship.  

The neutron log mainly measures amount of hydrogen in a formation. The logging device 

contains a source that emits neutrons into the formation. The emitted neutrons interact with nuclei 

of the formation and lose energy. When a neutron collides with a hydrogen atom, there is maximum 

neutron energy loss since a neutron has similar mass with a hydrogen atom. Thus, maximum 

energy loss happens when the formation contains large amount of hydrogen. The porosity of a 

formation can be related to the amount of hydrogen since the pore volumes contains fluid such as 

water and hydrocarbon, which contains high concentration of hydrogens.  

Besides, acoustic well logs also can be used to evaluate porosity since sonic velocity is 

different for formation fluid and rock. If there exists pore space in the formation that contains fluid, 

it takes more time for the acoustic signal to travel from the transmitter to the receiver in the logging 

tool. Thus, the acoustic velocity, or the transit time of acoustic signal from the transmitter to the 

receiver, can be used to estimate porosity values.   

Given the fact that different porosity values are estimated from different measurements of the 

properties of rocks and fluids, it is worthwhile to explore the possibility of creating the 

relationships between seismic attributes with different porosity types. Particularly, both seismic 

attributes and sonic porosity are related to the acoustic wave propagation properties of rocks and 

fluids in the subsurface. The model between seismic attributes and sonic porosity can be explored 

and may exhibit a stronger co-relationship. 
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3.7 Conclusion 

In summary, deep learning neural network models are created to build the relationship 

between the input seismic attribute values from the seismic survey and petrophysical properties 

from well logs. Four different cases with different types of seismic attributes are created to 

compare the impact of each seismic attribute on the model performance.  

The results show that a deep learning neural network model with multi-hidden layers can be 

used to predict porosity values using extracted seismic attribute values from 3D seismic volumes. 

The model has higher accuracy in predicting porosity values with more seismic attribute values 

being added.  

In future studies, more attributes can be added to evaluate their impacts on the predictive 

accuracy. Different combinations of seismic attributes may be tested to understand the impact of 

each seismic attribute on the model performance. Different types of convolution methods may be 

explored to look for the best number of vertical points in the seismic trace that can be compiled to 

corelate the well log value. For instance, five-point, seven-point, or fifteen-point convolution 

methods can be explored to see which method shows the best performance in predicting porosity 

values.  
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Chapter 4. Enhanced Automatic Segmentation of Salt Bodies from Seismic 

Images Using Wavelet Convolutional Neural Networks  

Seismic images provide important information about the subsurface geological features. After 

a seismic survey, the raw seismic data can be processed and displayed as seismic images, which 

can be used by geologists to make interpretations about subsurface features. Important subsurface 

features such as salt bodies, formation boundaries, and faults can be interpreted by geologists. 

However, manual interpretation takes significant amount of human efforts and time to interpret 

large volumes of 3D seismic surveys. Manual interpretation may also bring subjective bias to the 

interpreted results.  

This chapter explores the method in automatically identifying salt bodies from seismic images 

using a novel convolution neural network (CNN) combined with wavelet transformation analyses. 

Traditional CNN models use max pooling or mean pooling as the pooling layers. However, there 

exists limitations for these two pooling methods, which may result in loss of details of the original 

input.  

This study combines wavelet transformation with CNN and applies it for the task of 

identifying salt bodies from seismic images. Adding wavelet analysis to the CNN model is 

expected to increase the model performance by using information from both the low-pass filters 

and the high-pass filters to the CNN model. The results show that the wavelet convolution neural 

network (Wavelet CNN) model has a better performance by incorporating wavelet transformation 

compared to traditional models. The model has a higher testing accuracy in identifying salt bodies. 

This novel technique of integrating wavelet analysis with conventional CNN, can be expanded for 

other geophysical interpretations to automatically identify other geologic features in the subsurface.  
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4.1 Introduction 

Salt body is one of the common subsurface features. Figure 4.1 shows an illustration of a salt 

dome in the subsurface. There exist oil reservoirs around the salt body since salt provides a good 

sealing for hydrocarbons. Thus, accurate identification of salt bodies helps determine the location 

of oil reservoirs in the subsurface and is also significant in evaluating reservoir qualities.  

Salt bodies identification from 2D or 3D seismic images is one of the major challenges in the 

oil and gas industry. Recent technologies have been used to improve the interpretation of salt 

bodies from seismic images (Jones and Davison, 2014). However, even with advanced seismic 

imaging methods, accurate determination for the location and property of salt bodies is still 

difficult. Significant amount of processing and interpretation are needed to precisely locate salt 

bodies in the subsurface.   

 
Figure 4.1. Illustration of a salt dome in the subsurface (Singh, 2012). 

This study explores the method in establishing an automatic workflow for the segmentation 

of salt bodies from seismic images. A novel convolution neural network combined with wavelet 
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transformation analyses is used to predict locations of salt bodies. This is expected to increase the 

accuracy and efficiency for the automatic identification of salt bodies from seismic images.   

4.2 Literature Review 

Recently, development in data acquisition technologies in the oil and gas industry has created 

significant amount of subsurface data including seismic, well logs, and petrophysical data in order 

to have a better understand about the subsurface (Wang et al., 2012; Ildstad and Bormann, 2017; 

Zhao et al., 2018, Huang and Chen, 2019; Wang et al., 2018, 2019). Data-driven modeling methods 

have been used and proven to be effective in modeling complex nonlinear relationships using these 

different of data types (Udegbe et al., 2018, Zhang et al., 2018, Zhou et al., 2017). Meanwhile, 

research has been conducted to use automatic and semi-automatic workflows to process seismic 

data, and to explore the relationships between seismic data and other data types in the subsurface. 

These helps increase the speed of seismic interpretation and reduce the human bias from manual 

interpretation of seismic data (Zhu, 2005; Wu, 2016; Xie et al, 2017; Wrona et al., 2018; Yu et al., 

2018). Besides, existing research also have been conducted to increase the efficiency and 

effectiveness in identifying salt bodies from seismic images (Pitas and Kotropoulos, 1992; 

Waldeland et al., 2018; Wang et al., 2018).  

With the development of deep learning techniques, numerous methods have been developed 

for both supervised and unsupervised seismic data processing using deep learning neural networks 

(Hegazy and AlRegib, 2014; Wang et al., 2018; Roy et al., 2018). The development of 

convolutional neural networks (CNN) has brought impressive progress in various fields, and there 

exist studies that explore the use of CNN in seismic imaging (Waldeland et al., 2018; Karchevskiy 

et al., 2018).  
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Although CNN has shown improved accuracy and efficiency in seismic image recognition 

and segmentation (Waldeland et al., 2018; Karchevskiy et al., 2018), the relative small amount of 

public interpreted seismic data affects the predictive performance of the current deep learning 

CNN models since CNN prefers relatively large amount of input image data to train the model. 

The complexity of subsurface geologic features also requires the trained model to have enough 

capability of identifying geophysical structures from various subsurface features in seismic images. 

Thus, a robust model is needed to be able to identify subsurface features from the complex 

background in the subsurface.  

In this study, a novel deep learning CNN-based method that combines wavelet transformation 

with a traditional CNN is proposed. Existing studies have explored the application of wavelet 

transformation in texture identification and classification (Fujieda et al., 2017; William 2017; 

Fujieda et al., 2018; Liu et al., 2019). However, its application for seismic image interpretation 

hasn’t been tested, and therefore is the objective of this study, which is to explore the method in 

automatically identifying salt bodies from seismic images using a novel convolution neural 

network combined with wavelet transformation analyses. 

4.3 Methodology 

This study presents a novel deep learning approach to automatically identify salt bodies 

directly from seismic images. A wavelet convolutional neural network (Wavelet CNN) model, 

which combines wavelet transformation analyses with a traditional convolutional neural network, 

is developed and demonstrated to increase the accuracy in predicting salt bodies from seismic 

images.  



 

63 

 

4.3.1 Convolution Neural Network 

A convolution neural network model is used to predict seismic facies from seismic images. 

A convolution neural network is a type of deep learning neural network. It has been widely used 

in image recognition such as digit and human facial recognition, texture classification, and image 

segmentation.  

Within each convolution neural network model, there are different types of hidden layers, 

which consists of convolution layers, pooling layers and fully connected layers. As showing in 

figure 4.2, the input is a pixel image. The value for each pixel goes through the convolution layers, 

max pooling layers, second convolution layers, second max pooling layers and fully connected 

layers. The benefit of convolution neural network is its efficiency and effectiveness in analyzing 

images.  

 
Figure 4.2. Illustration of the structure of a convolution neural network. The input is a pixel 

image. The output is predicted numbers (Saha, 2018). 

Figure 4.3 shows the illustration of convolution and pooling layers in CNN (Fujieda et al., 

2018). The convolution layer calculates a weighted sum of values from the previous layer. The 



 

64 

 

element that is used to perform the convolutional operation is called the kernel or filter. The model 

is not limited to only one convolution layer and can include multiple convolution layers for 

modeling complex problems.  

The convolution operation can be expressed using the equation below (Fujieda et al., 2018). 

In the equation, yi represents the output of the convolution layer, and xj represents the input to the 

convolution layer, j represents the weights. 

𝑦𝑖 = ∑ 𝜔𝑗𝑥𝑗
𝑗∈𝑁𝑖

 

The above equation can be rewritten as the following equation using the convolution operator 

*, the input x, output y, and weights w (Fujieda et al., 2018).  

𝐲 = 𝐱 ∗ 𝐰 

The function of the pooling layer is to decrease the dimension size of the previously 

convolved feature. As shown in figure 4.3, the output of the pooling layer has a reduced size 

comparing to its previous layer (Fujieda et al., 2018). This helps reduce the computational power 

that is needed to process the input data by reducing the dimension of the data from the previous 

layer.  

Besides reducing the spatial size of the previous layer, the pooling layer is also effective in 

extracting information from important features that are positional or rotational invariant (Saha, 

2018). This helps increase the effectiveness and efficiency of the model training process. 
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Figure 4.3. Illustration of convolution and pooling layers in CNN. (a) Convolution layers 

compute a weighted sum of the values from the previous layer. (b) Pooling layers reduce the size 

of the previous layer and perform down sampling (Fujieda et al., 2018). 

The function of pooling layer can be represented by the below equation (Fujieda et al., 2018). 

In the equation, yi represents the output of the pooling layer, and xpj+k represents the input to the 

pooling layer, p represents the support of pooling. 

𝑦𝑖 = 
1

𝑝
 ∑𝑥𝑝𝑗+𝑘

𝑝−1

𝑘=0

 

The above equation can also be rewritten by the following equation using the convolution 

operator *, input x, output y, and the averaging filter p (Fujieda et al., 2018).  

𝐲 = (𝐱 ∗ 𝐩) ↓ p 

Combining k and p into a generalized form of convolution network, the convolution and 

pooling processing can be represented by the following equation using the convolution operator *, 

input x, output y, and the averaging filter p (Fujieda et al., 2018). 

𝐲 = (𝐱 ∗ 𝐤) ↓ p 

The generalized weight k is defined as 
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k = w with p = 1 (convolution layer) 

k = p with p > 1 (pooling layer) 

k = w*p with p > 1 (convolution followed by pooling). 

There are two types of commonly used pooling layers in a convolution neural network: 

maximum pooling and average (mean) pooling. As shown in figure 4.4, a maximum pooling layer 

outputs the maximum value from all the pixels that are covered by the kernel from the input image. 

In contrast, an average pooling layer outputs the average value of all the pixel values that are 

covered by the kernel from the input image. 

Besides, the maximum pooling layer can serve as a noise suppressant during model training 

process (Saha, 2018). By taking the maximum values in the areas covered by the kernel, it reduces 

the noisy activations and helps denoising during the pooling operations.  

 
Figure 4.4. Illustration of maximum and average pooling layers in a convolution neural network 

model (Saha, 2018). 

4.3.2 U-Net 

U-Net is one type of convolutional neural network that was originally developed for 

biomedical image segmentation (Ronneberger, 2015). Its main idea is to add up-sampling layers 

to traditional down-sampling layers in a conventional convolutional neural network. The objective 
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is to increase the resolution of the output so that the output can have the same dimension with the 

input.  

Figure 4.5 shows an illustration of a U-Net model. It consists of a down-sampling path (on 

the left side) and an up-sampling path (on the right side). The down-sampling path is similar as the 

typical structure of a traditional conventional neural network model, which contains different 

levels of convolution layers and pooling layers. At each level, there are two convolution layers and 

one pooling layer to reduce the dimension from the previous layers.  

In the up-sampling path, the model contains up-convolution layers that are used to increase 

the dimension of the output layer. After running the same levels of up-sampling processes, the 

final output of the model has the same dimension as the input layer. Totally, there are 23 

convolutional layers in the U-Net model. 

As shown in figure 4.5, the input of the model can be a pixel image, the output of the model 

is a segmented image with the same dimension. The model trains from the input image and pre-

segmented masks and can make pixel-wised predictions on new input images. This is useful and 

significant to perform image segmentation tasks.  
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Figure 4.5. Illustration of a U-Net model (Ronneberger, 2015). The input of the model can be a 

pixel image, the output of the model is a segmented mask with the same dimension. 

4.3.3 Wavelet Convolution Neural Network 

This study introduces a new Wavelet CNN model that combines wavelet transformation with 

CNN and applies it in identifying salt bodies from seismic images. Traditional CNN model uses 

max pooling or mean pooling as the pooling layers. However, there exist several limitations for 

these two pooling methods (William and Li, 2018). For instance, figure 4.6 shows an original pixel 

image of a linear feature. After mean pooling, the intensity of the black line is reduced. After max 

pooling, it is even filtered out. These two traditional pooling methods may result in loss of details 

of the original image.  
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Figure 4.6. Limitations of mean pooling and max pooling for conventional CNN. Traditional 

max pooling and mean pooling may result in loss of details of the original image (William and 

Li, 2018).  

Instead of using max pooling or mean pooling, this study utilizes Harr wavelet transformation 

as the pooling method in order to reduce the size of input. Previous studies have utilized Harr 

wavelet transformation for image compression to reduce image size (Lo et al., 2003, Qureshi and 

Deriche, 2016). Harr wavelet transformation is a type of discrete wavelet transformation, which 

can be shown as follows. 

𝑊ψ[𝑗 + 1, 𝑘] =  ℎψ[−𝑛] ∗ 𝑊𝜑[𝑗. 𝑛] |𝑛=2𝑘,𝑘≤0 

𝑊𝜑[𝑗 + 1, 𝑘] =  ℎ𝜑[−𝑛] ∗ 𝑊𝜑[𝑗. 𝑛] |𝑛=2𝑘,𝑘≤0 

The Harr wavelet’s function can be represented as the follows: 

ψ(t) =  

{
 
 

 
 1     0 ≤ 𝑡 <

1

2

−1     
1

2
≤ 𝑡 < 1

0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    

The Harr wavelet’s scaling function can be described as follows: 

φ(t) =  {
  1      0 ≤ 𝑡 < 1
   0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Figure 4.7 and figure 4.8 shows an illustration of the first level wavelet transformation.  There 

are four components for the output of the first level wavelet transformation, which contains the 
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approximation, horizontal, vertical, and diagonal components. The approximation component is 

similar to the original image and is also called the “a” component or LL component, in which L 

represents for the low-pass filter. The other three components show edge features of the original 

image. The diagonal component is also called the “d” component or HH component, in which H 

represents for the high-pass filter. The horizontal component is also called the “h” or the LH 

component. The vertical component is also called the “v” or HL component. 

In figure 4.8, the vertical component effectively saves the vertical features such as the vertical 

edges of the tall building in the right part of the image. The horizontal component effectively saves 

the horizontal features such as the horizontal edges of the houses on the right part of the image. 

These three components effectively save edge features of the input image and may be used for 

feature extraction applications.  

 
Figure 4.7. Illustration of the first level wavelet transformation. There are four components for 

the output of the first level wavelet transformation, which contains the approximation, 

horizontal, vertical, and diagonal components. 
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Figure 4.8. Illustration of four components after the first level wavelet transformation. The 

approximation component is similar to the original image. The other three components show 

edge features of the original image. 

Figure 4.9 shows an example for the outputs of  three levels of wavelet transformation. At 

each level, the wavelet transformation produces four sets of coefficients corresponding to the four 

possible combinations of the wavelet transformation filters on the two separate axes. For 

subsequent levels of transformation, only the approximation coefficients (the lowpass sub-band) 

are further decomposed. 
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Figure 4.9. Illustration of wavelet transformation for three levels. For subsequent levels of 

transformation, only the approximation coefficients (the lowpass sub-band) are further 

decomposed. 
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Figure 4.10 shows another example of a line feature after the first level wavelet 

transformation. The vertical component in the lower left part effectively saves vertical edges of 

the line feature. Figure 4.11 shows an additional example of three-level wavelet transformation on 

several linear features. It is noticed that the vertical component, horizontal component, and 

diagonal component effectively capture feature edges of the input image. This indicates that these 

three high-pass filter components of wavelet transformed outputs may be useful for edge 

identification.   

 
Figure 4.10. Illustration of a vertical line feature after first level wavelet transformation. The 

vertical component in the lower left part effectively saves vertical edges of the line feature. 
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Figure 4.11. Illustration of linear features after three levels of wavelet transformation. The 

vertical component, horizontal component, and diagonal component effectively capture feature 

edges of the input image. 
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Existing research has shown that traditional CNN models that use max pooling or mean 

pooling may result in loss of details of the original image (William and Li, 2018). To address these 

limitations of conventional CNN models, this study utilizes wavelet transformation as the pooling 

method instead of using max pooling or mean pooling. Figure 4.12 shows the major difference 

between a conventional CNN and Wavelet CNN (Fujieda et al., 2017). The red arrows indicate the 

pooling layers for a conventional CNN, which only uses low-pass filters. This is similar to only 

taking the low-pass filtered information (approximation component) from the output of wavelet 

transformation and thus may lose important information from the high-pass filters, including the 

horizontal, vertical, and diagonal components.  

The Wavelet CNN model uses both the high-pass filter and the low-pass filter to construct 

the pooling layers (Fujieda et al., 2017). In other words, both the approximation component (low-

pass filter), and the rest horizontal, vertical and diagonal components (high-pass filters) are used 

to save filtered information in the model. This is expected to help save important edge information 

during pooling operations.  

 
Figure 4.12. Illustration of the high-pass and low-pass filters in CNNs (Fujieda et al., 2017). The 

red arrows indicate the pooling layers for a conventional CNN, which only uses low-pass filters. 

The Wavelet CNN model uses both the high-pass filter and the low-pass filter. 

Figure 4.13 shows the structure of the Wavelet CNN model. A U-Net model is utilized as the 

base model. There are four levels of wavelet transformation that are performed to reduce the 
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dimension of the output from the previous layer and save the important features from both high-

pass and low-pass filters.  

 
Figure 4.13. Structure of the Wavelet CNN model. A U-Net model is utilized as the base model. 

There are four levels of wavelet transformation that are performed to reduce the dimension of the 

output from the previous layer. Image is modified from Ronneberger, 2015. 

4.4 Dataset 

The dataset of the study was collected by TGS-NOPEC Geophysical Company (TGS) and 

was provided in a competition organized by TGS and Kaggle. The dataset consists of 2D seismic 

image slices, which are displayed as grayscale images showing the subsurface features including 

formations, structures, and facies. The images provided in the dataset contain randomly cropped 

101101 small size seismic images from the original seismic survey. The goal is to create an 

automatic workflow, which trains from given seismic images and masks, and can be used to predict 

locations of salt bodies from seismic images.  

The dataset contains 4000 images and masks. The inputs of the model are 2D seismic images. 

The outputs are pre-interpreted salt body masks. Figure 4.14 shows two sample input and output 
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images in the dataset. In each mask, white color represents pre-interpreted salt bodies, and black 

color represents non-salt areas. 

 
Figure 4.14. Input images and output masks of the model. The inputs are 2D seismic images. The 

outputs are masks with pre-interpreted salt bodies. 

4.5 Results 

Figure 4.15 shows an illustration of a sample original seismic image in the left, as well as its 

wavelet transformed image on the right (approximation component). The size of the approximation 

component is reduced in half.  

         
Figure 4.15. Illustration of the original and wavelet transformed seismic image. 

We compared a total of four cases to evaluate the effect of combining wavelet transformation 

analyses with CNN. First three cases are to test whether a direct wavelet transformation on the 

original input images affect the model performance. For case 1, an original U-Net model is trained 

on the original given images form the dataset. For case 2, an original U- Net model is trained only 
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on the wavelet transformed images (approximation component). For case 3, an original U-Net 

model is trained on the combination of the original and the wavelet transformed images 

(approximation component).  

The dataset is split into a training set and a testing set, each with 80% and 20% of total samples. 

Figure 4.16 shows the testing accuracies for the first three cases. Case 1 has the highest accuracy 

to be 0.939 and case 2 has the lowest accuracy to be 0.929. The accuracy for case 3 is between 

case 1 and case 2 as 0.934.  

Since the accuracy for the original U- Net trained on the approximation component of wavelet 

transformed images (case 2) is not improved comparing to case 1 with the same model trained on 

the original images, it indicates that simply changing the training images to be approximation 

component of wavelet transformed images does not improve the model performance. Adding the 

approximation component of wavelet transformed images to the dataset (case 3) also does not 

increase the test accuracy. 

We interpret the reason to be that the wavelet transformed images in case 2 and 3 are 

approximations of the original images, meaning that there is no new information added to the 

model only by training the model with added approximation component of wavelet transformed 

images. Thus, training a traditional U-Net model using the approximation component of wavelet 

transformed images does not improve the model performance.  
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Figure 4.16. Plot of the testing accuracy during training for case 1, 2, and 3. 

For case 4, the model performance was evaluated on four different sub-cases. Each sub-case 

uses a different pooling method including max pooling, average pooling, mixed pooling and 

wavelet pooling. Mix pooling was performed by taking two levels of max pooling, and additional 

two levels of average pooling.  

Figure 4.17 shows the comparison of the testing accuracy for the four sub-cases. Figure 4.18 

shows the training accuracy at each epoch for sub-case 1 (with max pooling) and sub-case 4 (the 

Wavelet CNN model). The testing accuracy for the original U-Net with max pooling (sub-case 1) 

is 0.939 after training for 28 epochs. The accuracies for mean (sub-case 2) and mixed (sub-case 3) 

pooling are 0.941 and 0.942 respectively. The Wavelet CNN model (sub-case 4) shows 0.949 

testing accuracy after 35 epochs, which performs the best among all four models. 
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Figure 4.17. Comparison of the testing accuracy for the U-Net model with max pooling, mean 

pooling, mixed pooling and the Wavelet CNN model. The Wavelet CNN model has the highest 

testing accuracy among the four models. 

 
Figure 4.18. Comparison of the testing accuracy for the U-Net model with max pooling, mean 

pooling, mixed pooling and the Wavelet CNN model. The Wavelet CNN model shows 0.949 

testing accuracy after 35 epochs, which has the highest testing accuracy. 

Figure 4.19 shows predicted results from the model. The left column shows the original input 

seismic image. The black line represents the pre-interpreted salt boundaries. The second column 
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shows the masks. The third and fourth column display the predicted boundaries of salt bodies. 

They show that the trained model is capable to identify the boundaries of salt bodies from seismic 

images.  

 

 
Figure 4.19. Predicted salt bodies from the trained model. The left column shows the original 

input seismic image. The second column shows the mask. The third and fourth columns show the 

predicted boundaries of salt bodies. 

4.6 Discussion 

This study used Harr wavelet to perform a 2D wavelet transformation on the input images. 

Harr wavelet is a common type of discrete wavelet transformation method that can be used for 

image compression and edge detection. Harr wavelet transformation is computationally efficient 

since it only involves linear transformation during the process. Besides Harr wavelet, other wavelet 

transformation methods may also be tested in the future work to perform the pooling operation in 

the CNN model.  

The model was trained from seismic images and masks with pre-interpreted salt bodies. The 

masks contain only black and white colors (with values of zero and one) representing two classes 



 

82 

 

as salt body and non-salt. Besides using the Wavelet CNN model for salt bodies segmentation, the 

model can also be used for predicting other subsurface seismic facies using seismic images as the 

input.  

If a new model needs to be created for the sake of segmenting more seismic facies other than 

salt, masks with more facies needs to be interpreted from the seismic images. The model that is 

trained from the input seismic images and output masks with more labels can be used to predict 

segmented seismic facies maps for more numbers of facies. 

4.7 Conclusion 

This study combines wavelet transformation with CNN and applies it for the task of 

identifying salt bodies from seismic images. The Wavelet CNN model uses all four components 

from the output of wavelet transformation to construct the pooling layers. It saves important 

information from the high-pass and low-pass filters during pooling operations.  

The results show that the Wavelet CNN model demonstrates improved performance as 

compared to conventional methods that use max and mean pooling. The Wavelet CNN model 

shows 0.949 testing accuracy after 35 epochs, which performs better than the other models. By 

utilizing multi-levels wavelet transformation as the pooling layers, the input image size is reduced 

with the key edge features being preserved, resulting in improved prediction accuracy in 

segmenting salt bodies from seismic images.  

In the future work, this novel technique of integrating wavelet transformation with 

conventional CNN, can be expanded to other study areas to validate its application in different 

scenarios. Datasets with more interpreted subsurface features can be added to train the Wavelet 

CNN model that can identify more geologic features in the subsurface. Besides, different wavelet 
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transformation methods, and CNN structures with different combination of pooling layers can be 

tested to explore their impacts on the model performance in automatic segmentation of salt bodies.  
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Chapter 5. Evaluation of Singular Value Decomposition (SVD) on Dimension 

Reduction of Permeability Field for Reservoir Modeling 

This chapter evaluates the effect of singular value decomposition (SVD) in dimension 

reduction of permeability field for reservoir modeling. A two-phase flow reservoir model was 

created using data from the SPE tenth comparative solution project. Simulation results show that 

SVD is valid in the parameterization of permeability values. The reconstructed permeability 

matrices using certain amount of singular values are good approximations of the original 

permeability values. Simulation results using SVD processed permeability field are similar to that 

using the original values.  

SVD is then applied on the upscaled permeability values to evaluate the effectiveness on 

upscaling. Simulation results were compared between the base case, upscaled case, and SVD 

upscaled case. The simulation results did not show a significant improvement in the accuracy of 

predicting oil production by applying SVD on the upscaled permeability values. It could be 

because the reconstructed permeability matrix has the same size before and after the SVD 

processing, thus the model accuracy and efficiency are not significantly improved. 

5.1 Introduction 

Dimension reduction is an important step for reservoir modeling. It reduces the size of a 

reservoir model to save computational time. Parameterization of the petrophysical properties, 

which is a dimension reduction method, has been used to remove redundancy of the reservoir 

parameters and can assist history matching (Jafarpour and McLaughlin, 2008). It transforms the 

original parameter field into lower dimension and expedite history matching processes. 

Upscaling, or homogenization, is to substitute a heterogeneous model that consists of high-

resolution fine grid cells with a lower resolution reduced-dimensional homogeneous model using 

averaging schemes. The benefit of upscaling in reservoir simulation is that it saves simulation time, 
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and effectively preserves key features of data for flow simulations. The critical point in upscaling 

is the selection of an appropriate scheme to effectively represent properties for the fine grid cells 

(King, 2007, Preux, 2016). 

Singular Vector Decomposition (SVD) is a matrix decomposition method. It has been used 

in various applications such as image compression and facial recognition. Figure 5.1 shows the 

application of SVD in image compression (Gibiansky, 2013). The original image is the full rank 

tiger in the upper left corner of figure 5.1. It can be represented by a matrix with the same size as 

the pixel dimension of the image.  

After SVD, different numbers of singular values can be used to approximate the original 

matrix during the reconstruction process. In figure 5.1, the rest lower rank images use less amount 

of singular values to reduce the storage. It shows that, as the number of singular values decreases, 

the reconstructed images are less alike to the original image. But reconstructed images with less 

numbers of singular values take less storage space, and thus achieve the goal for image 

compression (Cao, 2006).  

More specifically, the original size of the image in figure 5.1 is 500800 pixels. It can be 

represented by a matrix with the dimension of 500800. After SVD processing, it can be 

decomposed and represented by the product of three separate matrices, U, S, and V, with the 

dimension of 500500, 500500, 500800. S is a diagonal matrix that contains all the singular 

values in its diagonal part. When performing SVD to reconstruction the original image, only a 

small portion of the singular values may be used to reduce the storage. The lower right figure is 

the rank-3 image, meaning that it only uses 3 singular values. Thus, the dimension of U, S, V 

matrices becomes 5003, 33, and 3800. The product of U, S, V still creates a 500800 image, 
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but the amount of values that needs to be stored is significantly reduced. So, SVD has been proved 

to be valid for the purpose of image compression and storage reduction. 

 
Figure 5.1. An example of the application of SVD in image processing. The top left figure 

represents the full-rank image. The rest lower rank images use less amount of singular values to 

reduce storage, while preserving key features from the full-rank image (Gibiansky, 2013). 

SVD also has been used in noise attenuation. Figure 5.2 shows an illustration for a 2515 

image that has a noisy background. By performing SVD on the original image, the matrix that 

represents the original image can be decomposed and represented by the product of three separate 

matrices, U, S, and V with the dimension of 2515, 1515, 1515. Instead of using all 15 singular 

values, only using three singular values in S can generate the reconstructed image shown in the 

right part of figure 5.2. The background of the improved image (right) has less noise comparing to 

the original image (left).  
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Figure 5.2. An example of the application of SVD in noise reduction. The left figure represents 

the original image with a noisy background. The right figure is the SVD processed image with 

only three singular values used. The background has less noise after SVD (Austin, 2009). 

Existing research has used SVD to compress images. Thus, it is worthwhile to explore the 

use of SVD in reducing dimension of reservoir parameters. This chapter studies the application of 

SVD in dimension reduction of the permeability field for reservoir modeling. Both the effects of 

SVD in permeability parameterization and upscaling is analyzed.  

5.2 Literature Review  

During reservoir modeling, dimension reduction is significant to reduce the model size to 

improve the efficiency of reservoir simulation and history matching. Reduction of the model 

dimension can be achieved by parameterization of the petrophysical values. The output of the 

parameterized field is a representation of the original field with a lower dimension. Previous 

studies (Jafarpour and McLaughlin, 2008; Jafarpour, 2013) explored the application of an 

ensembled Kalman filter together with discrete cosine transformation in parameterization of 

permeability field for history matching. Their results show that parameterization of the 

permeability field is effective in eliminating redundancy during history matching and results in 

additional computational savings. 
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Besides, upscaling is an important step for dimension reduction during reservoir modeling. It 

converts highly detailed geological models to simulation grids with a lower dimension. Its 

objective is to use a coarse grid model to represent a fine grid model, thus to reduce simulation 

time. Christie (1997) summarized the techniques for upscaling, such as pressure-solver methods, 

and renormalization methods. He also pointed out that one of the main limitations of upscaling is 

that it usually has no indication of whether the upscaled value provides a good or bad 

approximation and whether the assumptions made in deriving the answer hold. Reservoir 

simulation needs to be performed in order to verify the effectiveness of upscaling. 

Salazer and others (2007) evaluated the effectiveness of different permeability upscaling 

techniques including static and dynamic upscaling. The static upscaling includes arithmetic, 

harmonic and geometric averages. The dynamic upscaling processes can be categized into two 

different types; one-phase upscaling and two-phase upscaling. One-phase upscaling process only 

considers the upscaling of the distribution of the permeability values. On the contrary, two-phase 

upscaling process considers both the distribution of the permeability values and the relative 

permeability curve.  

SVD has shown to be effective in image compression and facial recognition. Cao (2006) 

applied SVD to digital image processing. They tested different singular values and evaluated the 

compression results by compression ratio and quality measurement. Their results indicated that 

SVD has the advantage of providing a good compression ratio, and effectively saves digital image 

storage space. Among their tests, they found that some of images are quite simple so that only a 

small number of singular values are enough to obtain the approximation. However, some complex 

images need to use more values to maintain their quality.  
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SVD also has been used for signal denoising and enhancement. Bekara and Baan (2007) 

applied SVD processing to improve the signal-to-noise ratio for seismic data and their results 

showed positive signal enhancement by performing SVD on seismic data. Jha and Yadava (2011) 

explored the utilization of SVD in signal denoising for surface acoustic wave (SAW) sensors. The 

denoising process is performed by apply SVD on the original signal, and only using a few singular 

values to reconstruct the original signal. Their methods show that SVD is valid in removing noise 

from the sound sampling devices, as well as the delivery system.  

5.3 Methodology  

5.3.1 Singular Value Decomposition 

This study evaluates the application of SVD in dimension reduction of permeability field for 

reservoir modeling. The process of SVD can be described as: 

M = USVT                        (5.1) 

where M is the original matrix, U is a unitary matrix after SVD whose columns are the vectors 

u1 and u2, S is a diagonal matrix whose entries are σ1 and σ2, which are the singular values, and V 

is a unitary matrix whose columns are v1 and v2.  

Taken image compression as the example, an image can be represented by a matrix with the 

size of the pixel numbers of the image. After conducting SVD on the matrix of the image, the 

matrix can be represented by the sum of several matrices with the rank of one as follows: 

A=σ1μ1v
T

1+σ2μ2v
T

2+...+σrμrv
T

r                 (5.2) 

After SVD, it is possible to determine how many numbers of singular values that are needed 

to approximate the original matrix. Different SVD schemes can be applied to reconstruct the 

original matrix. The reconstructed matrix and the original matrix can be compared to evaluate the 

effects of SVD. 
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5.3.2 Reservoir Simulation 

After the reconstruction of the permeability values, reservoir simulation is performed using 

the reconstructed values to see whether the SVD performance is valid in dimension reduction. In 

this project, a two-phase flow IMPES simulator is used for reservoir simulation. It uses Mass 

conversation and Darcy’s equation shown in Equation 5.3 and Equation 5.4 as follows (Chen, 

2007). 

𝜕(𝜑𝜌𝛼𝑆𝛼)

𝜕𝑡
= −𝛻 ∙ (𝜌𝛼𝒖𝛼 + 𝑞𝛼)  𝛼 = 𝑤, 𝑜.                 (5.3)  

𝒖𝛼 = −
1

𝜇𝛼
𝒌𝛼(𝛻𝑃𝛼 − 𝜌𝛼℘ 𝛻𝑧)  𝛼 = 𝑤, 𝑜.                (5.4) 

The simulator is based on block centered grid system using IMPES method. The IMPES 

pressure equation is shown in Equation 5.5, and saturation equation is shown in Equation 5.6 in 

the appendix A. 

The pressure and saturation have spatial discretization forms that are shown in Equation 5.7 

and Equation 5.8 in the appendix A. The pressure is solved fully implicitly using Gauss-

elimination that is shown in in Equation 5.7. The saturation for two-phase reservoir simulator is 

solved explicitly by using Equation 5.8.  

In this study, 2D reservoir simulation models were created and permeability values are 

imported from the SPE tenth comparative solution project. The results are presented in three parts. 

Part one is the application of SVD in parameterization of permeability field for an example 

problem that contains channel features. Part two is the application of SVD in parameterization of 

permeability values for the SPE tenth dataset. Part three is to evaluate the application of SVD in 

upscaling for the SPE tenth dataset. 

In part three, three cases with different upscaling procedures are created in order to compare 

their results. Case 1 represents the base model, which has 2010 grid blocks. In case 2, 
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permeability values are upscaled in the x direction, such that the number of grid blocks is reduced 

to 1010. In case 3, permeability values are upscaled in both the x and the y direction, meaning 

that grid blocks are reduced to 105.  

During upscaling, the permeability values of two neighboring blocks are averaged to get the 

new upscaled permeability value for the new upscaled block. After upscaling, SVD is performed 

for the upscaled permeability values via MATLAB. When performing SVD on the parameters, the 

matrix is decomposed and can be represented by the product of three separate matrices, U, S, and 

V. Different numbers of singular values are truncated in S for different levels of SVD processing. 

After SVD processing, these matrices are utilized for the reconstruction of the original 

permeability matrix.  

After reconstruction of the permeability field for each SVD scheme, reservoir simulation is 

conducted for each case to evaluate whether the reconstructed permeability matrices are good 

approximations to the original permeability matrix. Production profile and oil rates are compared 

for each SVD processed case with the base case.  

5.4 Results 

In this section, 2D reservoir simulation models are created to evaluate the effects of SVD on 

dimension reduction of the permeability field. The results are presented in three parts described 

below.  

Part one is the application of SVD in parameterization of permeability field for an example 

problem that contains channel features. The dimension of the permeability field is 100100. There 

are two major channels that has high permeability values than the surrounding background areas. 

SVD is performed on the permeability field to test whether it can save the major features from the 

input.  
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Figure 5.3 shows the original 100100 permeability field. The yellow parts represent the high 

permeability channels and the purple areas represent low permeability background. SVD is 

performed on the 100100 permeability matrix. Figure 5.4 shows the plot for the singular values 

and the cumulative energy versus different numbers of singular values. As shown in the right plot 

of figure 5.4, using 60 out of 100 singular values preserves more than 95% of the cumulative 

energy. Using 40 singular values preserves 90% of the cumulative energy. 

 
Figure 5.3. Distribution of permeability values for an example problem that contains channel 

features. The dimension of the permeability field is 100100. There are two major channels that 

has high permeability values than the surrounding background areas. 
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Figure 5.4. Plot of singular values and cumulative energy for the 100100 permeability field. 

Figure 5.5 shows the reconstructed permeability fields using different numbers of  singular 

values k = 80, 60, 40, 20, 10 and 5. The reconstructed field effectively saves the major channel 

features even with small numbers of singular values being used. The lower left plot uses ten 

singular values (k = 10) and the two channels are still distinguishable. This shows that SVD 

effectively saves the main features from the original permeability field.  
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Figure 5.5. Example of the reconstructed permeability field using different levels of SVD 

processing. From upper left to lower right: k = 80, 60, 40, 20, 10 and 5. 

The second part is to evaluate the application of SVD in parameterization of permeability 

field for the SPE tenth dataset. Figure 5.6 shows the distribution of the original permeability values 

of the reservoir model. The dimension is 10020. High permeabilities zone represents highly 

conductive fluvial channel features.  
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SVD is then performed on the permeability matrix and less amount of singular values are 

used to reconstruct the original permeability matrix. The total number of singular values is 20. In 

figure 5.7 and figure 5.8, 15 and 10 singular values are used to reconstruct the original matrix. The 

major channels are visible using smaller amount of singular values in both figure 5.7 and figure 

5.8, meaning that the SVD processed permeability matrices are good representations of the original 

permeability values. 

 
Figure 5.6. Distribution of permeability (kx) for the original 10020 model. High permeabilities 

zone represents channel features. The data is from the SPE tenth comparative solution project. 

 
Figure 5.7. Distribution of the reconstructed permeability matrix using 15 singular values. The 

major channels are still visible using smaller amount of singular values. 
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Figure 5.8. Distribution of the reconstructed permeability matrix using 10 singular values. 

Figure 5.9 shows the plot for the singular values and the cumulative energy versus different 

numbers of singular values. As shown in the right plot of figure 5.9, using 15 singular values 

preserves 93% of the cumulative energy. Using 10 singular values preserves 80% of the cumulative 

energy. 

 
Figure 5.9. Plot of singular values and the cumulative energy. There are 20 total singular values. 
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Reservoir simulation is conducted to evaluate whether the reconstructed permeability 

matrices are good approximations of the original permeability matrix. In the reservoir model, an 

injection well locates at the left side of the model, and a production well locates at the right side 

of the model.  

Figure 5.10 shows the permeability distribution in CMG. Figure 5.11 shows the distribution 

of oil flux. Red arrows indicate the magnitude and direction of oil flux vectors.  

 
Figure 5.10. Distribution of permeability in CMG. Red color represents grid blocks with high 

permeability values. 
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Figure 5.11. Distribution of oil flux in CMG. Red arrows indicate the magnitude and direction of 

oil flux vectors. 

Figure 5.12 and figure 5.13 show the cumulative oil production and oil rate for different 

permeability matrices reconstructed using different numbers of singular values (k). They show that 

the overall trend for the oil production is preserved by using reconstructed permeability matrices, 

indicating that SVD is valid in the parameterization of permeability values. When using more than 

15 singular values to reconstruct the permeability values, the simulated oil production profile is 

similar to the original case using the original permeability values.  
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Figure 5.12. Cumulative oil production for different permeability matrices reconstructed by 

different numbers of singular values. 

 
Figure 5.13. Oil rate for different permeability matrices reconstructed using different numbers of 

singular values. 

Part three is to evaluate the application of SVD in upscaling. There are three sub cases created 

to evaluate the effects of SVD on upscaling. The first case is the base model, which has 2010 

grid blocks. The second case is to upscale permeability in the x direction, which has 1010 grid 

blocks. The third case upscales in both x and y direction and it has 105 grid blocks. 
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Figure 5.14 shows the distribution of the permeability value for the original 2010 model 

(case 1). Yellow blocks have higher permeability values, and blue indicates lower permeability 

values. It is shown from the distribution that there exist linear features that have relatively higher 

permeability values, which represent fluvial or channelized environment. 

Figure 5.15 plots the distribution of the permeability value for the upscaled 1010 model. 

Upscaling was performed by taking the average permeability value for two adjacent grid blocks in 

the x direction from case 1.  

Figure 5.16 shows the distribution of the permeability value for the upscaled 105 model. 

Upscaling was performed by taking the average permeability value for adjacent grid blocks in both 

the x and y direction from case 1.  

 
Figure 5.14. Distribution of permeability (kx) for the original 2010 model (case 1). The data is 

from the SPE Tenth Comparative Solution Project. 
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Figure 5.15. Distribution of permeability (kx) for the upscaled 1010 model (case 2). Upscaling 

was performed by taking the average permeability value for two adjacent grid blocks in the x 

direction from the original model (case 1). 

 
Figure 5.16. Distribution of permeability (kx) for the upscaled 105 model (case 3). Upscaling 

was performed by taking the average permeability value for two adjacent grid blocks in the x and 

y direction from the original model (case 1). 

A reservoir simulator is developed using the IMPES method and is based on block centered 

grid system. There is one injection well at the (3,3) block and one production well at the (18,8) 

block.  

Figure 5.17 shows the distribution of oil saturation after simulation for 10 years for the 

original model with the dimension of 2010 (case 1). Oil saturation was lower around the injector 
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and higher around the producer. Figure 5.18 shows the distribution of pressure distribution after 

10 years for the original model (case 1). Pressure is relatively higher near the injector and lower 

near the producer. 

 
Figure 5.17. Distribution of oil saturation (So) at each grid block after simulation for 10 years for 

the original model with the dimension of 2010 (case 1). 

 
Figure 5.18. Distribution of pressure at each grid block after simulation for 10 years for the 

original model with the dimension of 2010 (case 1). 
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Figure 5.19 and figure 5.20 show the distribution of oil saturation and pressure after 10 years 

for case 2. The overall pattern for oil saturation and pressure are similar to these in case 1 (figure 

5.17 and figure 5.18). Oil saturation was relatively lower around the injector and higher around 

the producer. There exists relatively higher pressure around the injector, and lower pressure near 

the producer.  It is also noticed that, since the resolution in case 2 was lower than the resolution in 

case 1, the distribution patterns are less smooth than these in case 1. 

 
Figure 5.19. Distribution of oil saturation (So) at each grid block after simulation for 10 years for 

the original model with the dimension of 1010 (case 2). 
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Figure 5.20. Distribution of pressure at each grid block after simulation for 10 years for the 

original model with the dimension of 1010 (case 2). 

Figure 5.21 shows the cumulative oil production for case 1 and case 2. Figure 5.22 shows a 

zoomed-in view for the change of cumulative oil production during the later time (2400 days to 

3600 days) of the simulation. Figure 5.23 shows the oil rate for case 1 and case 2. In all three 

figures from 21 to 23, the orange line represents the case for the base 2010 model (case 1). The 

light blue line represents the case for the upscaled case (case 2). The rest three lines represent the 

three cases where SVD were performed in case 2, among which different numbers of singular 

values were truncated. SVD 1, SVD 2, and SVD 3 represent the cases where the minimum one, 

two and three singular values were truncated respectively.  

As shown in figure 21 to 23, the cumulative oil production and oil rate for the upscaled case 

are similar to the base model, which means that the upscaling scheme is a relatively good 

representation of the original model. However, there is not much difference for the upscaled case 

and the three cases where SVD is performed; the cumulative oil production profile for the SVD 1 

and the upscaled case is similar. SVD 2 and 3 shows slight worse performance than SVD 1.  
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Figure 5.21. Cumulative oil production for 10 years for case 1 and 2. The orange line represents 

the base model. The green line represents the upscaled model. The rest three lines represents the 

SVD cases with 1, 2, and 3 singular values being truncated.  

 
Figure 5.22. A zoomed in view for the cumulative oil production from 6 to 10 years for case 1 

and 2. 
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Figure 5.23. Oil rate for 10 years for case 1 and 2. 

Figure 5.24 shows the comparison of the cumulative oil production for case 1 and case 3. 

Figure 5.25 shows a zoomed in view for change of cumulative oil change during the later time 

(2400 days to 3600 days) of the simulation. Figure 5.26 shows the oil rate for case 1 and case 3. 

Similar patterns are shown in figure 5.21 and 5.24. However, the upscaled model in case 3 (figure 

5.24) is less accurate than that for case 2 (figure 5.21). This is within our expectation since case 3 

has a much lower resolution.  

There is also not much difference for the oil production and oil rate for the upscaled case and 

the three SVD cases from figure 5.24 to 5.26. In other words, the oil production and oil rate trend 

for the 105 upscaled model and the three SVD cases were similar. 
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Figure 5.24. Cumulative oil production for 10 years for case 1 and 3. The orange line represents 

the base model. The green line represents the upscaled model. The rest three lines represents the 

SVD cases with 1, 2, and 3 singular values being truncated. 

 
Figure 5.25. A zoomed in view for the cumulative oil production from 6 to 10 years for case 1 

and 3. 
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Figure 5.26. Oil rate for 10 years for case 1 and 3. 

The reason that SVD does not show significant improvement in the accuracy of the simulation 

could be SVD processing does not reduce the size of the permeability matrix. Even though some 

singular values are truncated, and less total amount of singular values are used, the reconstructed 

permeability matrix still have the same size as the original permeability matrix. Thus, SVD did not 

significantly change the model accuracy. 

Simulation time is collected for all cases to compare the model efficiency (Table 1). The base 

model (case 1) with 2010 grid bocks runs for 676.3s to simulate production for 10 years. In case 

2, upscaling in the x direction reduced the simulation time to be about 20% of case 1. Continuously 

upscaling in the y direction (case 3) also reduced the simulation time to be about 20% of case 2. 

Within case 2 and case 3, there is not much difference in the simulation time for applying SVD on 

the upscaled permeability. 
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In the future work, more complex models will be tested in to further test the effect of SVD 

on upscaling. The number of grid bocks can be increased. Additional layers can be added to the 

reservoir model as well. 

Table 5.1. Summary of simulation time for each case. 

 
Grid Size SVD Processing Time (s) 

Case 1 20*10 NA 676.3 

Case 2 

10*10 NA 132.2 

10*10 Drop 1 singular value 121.8 

10*10 Drop 2 singular values 125.1 

10*10 Drop 3 singular values 131.2 

Case 3 

10*5 NA 21.7 

10*5 Drop 1 singular value 21.22 

10*5 Drop 2 singular values 18.34 

10*5 Drop 3 singular values 20.31 

5.5 Discussion 

Here we compared SVD processing on the log scale. Three additional cases were compared 

to evaluate whether performing SVD in the log scale helps save the major features from the original 

input. The results are show in below figures. Figure 5.27 shows the distribution of permeability 

after using 60 singular values to reconstruct the original permeability field. Figure 5.28 shows the 

distribution of reconstructed permeability values after SVD processing on log scale of the 

permeability field with k = 60. 

Comparison of 5.27 and 5.28 shows that the range of permeability values in figure 5.28 is 

significantly increased. This is due to the amplification of values during the reconstruction of 

permeability values after SVD processing.  
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Figure 5.29 and 5.30 shows the plot of singular values and the cumulative energy for different 

numbers of singular values for SVD on the original scale versus the log scale. The trend for regular 

SVD processing on the original permeability field is similar to that on the log scale. 

 
Figure 5.27. Distribution of permeability values after SVD with k = 60. 

  

 
Figure 5.28. Distribution of permeability values after SVD on log scale of permeability, k = 60. 
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Figure 5.29. Plot of singular value and cumulative energy after SVD. 

 
Figure 5.30. Plot of singular value and cumulative energy after SVD on the log scale of 

permeability. 



 

112 

 

Figure 5.31 to figure 34 shows the results for evaluating SVD on the log scale using the SPE 

tenth data. Figure 5.31 shows the distribution of permeability after using 15 singular values to 

reconstruct the original permeability field. Figure 5.32 shows the distribution of reconstructed 

permeability values after SVD processing on log scale of permeability values with k = 15. 

Comparison of 5.31 and 5.32 shows that the range of permeability values in figure 5.32 is 

increased. This is also because of the amplification of values during the reconstruction of 

permeability values after SVD processing.  

Figure 5.33 and 5.34 shows the plot of singular values and the cumulative energy for different 

numbers of singular values for SVD on the original scale versus the log scale. The trend for regular 

SVD processing on the original permeability field is similar to that on the log scale, meaning that 

SVD on the log scale does not improve the effectiveness of SVD for parameterization of 

permeability fields. 

 
Figure 5.31. Distribution of permeability values after SVD with k = 15. 
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Figure 5.32. Distribution of permeability values after SVD on the log scale with k = 15. 

 

 
Figure 5.33. Plot of singular value and cumulative energy after SVD. 
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Figure 5.34. Plot of singular value and cumulative energy after SVD on the log scale of 

permeability. 

5.6 Conclusion 

This study evaluates the effect of singular value decomposition (SVD) in parameterization 

and upscaling on the SPE tenth comparative solution project. Simulation results show that SVD is 

valid in the parameterization of permeabilities. The reconstructed permeability matrices using 

certain amount of singular values are good approximations of the original permeability values. 

Simulation results using the reconstructed permeability matrices are similar to these using the 

original permeability values.  

SVD is then applied on the upscaled permeability value. Reservoir simulation is performed 

for different cases with different numbers of singular values being used. Simulation results were 

compared between the base case, upscaled case, and SVD upscaled case. The effectiveness and 

efficiency of SVD on upscaling in reservoir simulation is evaluated.  
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The reservoir simulation results did not show a significant improvement in the accuracy of 

predicting oil production by applying SVD on the upscaled permeability values. Comparing to the 

results from the upscaled cases, the SVD processed cases also did not show improvement of model 

efficiency. It is speculated that the reconstructed permeability matrix has the same size before and 

after the SVD processing, thus the model accuracy and efficiency are not significantly improved. 

Future work may increase number of blocks, or layers to see whether it works with reservoir 

simulation models in larger scales. Different upscaling techniques may also be explored to select 

the best upscaling scheme, and the effect of SVD on various upscaling schemes can be further 

evaluated. 
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Chapter 6. Conclusions and Recommendations 

In this research study, a comprehensive workflow is developed to utilize data-driven 

modeling for reservoir characterization and reservoir simulation. Several different data-driven 

studies explore the possibility to create the relationships among different datatypes and datasets in 

this research work. Well logs are used to predict rock facies. Petrophysical and reservoir properties 

in the reservoir can be estimated using the built relationship between seismic attribute values and 

reservoir properties. Seismic images can also be used to predict seismic facies. Lastly, Singular 

Value Decomposition (SVD) is explored for the reservoir permeability field with reduced 

dimensional parameterization to evaluate its effectiveness in understanding reservoir connectivity.  

The first study explores the application of using petrophysical well logs and different data 

analytics models to automatically classify rock facies. Four different types of models, which 

include decision tree, random forest, support vector machine and neural network, are created to 

look for the best model to predict rock facies from the corresponding well log values.  

Among the four models, random forest (RF) method showed the overall best performance. It 

has the highest testing accuracy  (0.691) for classifying the facies. The testing accuracy is 0.921 

for the adjacent facies, which is the second highest among all the methods studied. It was 

comparable to the predictive accuracy of adjacent facies from the support vector machine (SVM) 

method (0.926). However, the accuracy for classification of facies from the support vector machine 

model is 0.585, which is lower than the random forest predictive accuracy.   

Future work may include adding different types of well logs to further increase the prediction 

accuracy. More samples and more data analytics methods may also be tested to see whether they 

can help increase the model performances. 
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In the second study, deep learning neural network models are created to build the relationships 

between the input seismic attribute values from the seismic survey and petrophysical properties 

from well logs. Four different cases with different types of seismic attributes are created to 

compare the influence of each seismic attribute on the model predictive performance. The results 

show that a deep learning neural network model with multi-hidden layers can be used to predict 

porosity values using extracted seismic attribute values from 3D seismic volumes. The model has 

higher accuracy in predicting porosity values as more seismic attribute values are added. In future 

studies, more attributes can be added to evaluate their impacts on the predictive accuracy. 

Third study explores machine learning (ML) method in automatically identifying salt bodies 

from seismic images. A novel wavelet convolutional neural network (Wavelet CNN) method that 

combines wavelet transformation with CNN is introduced and applied for the task of identifying 

salt bodies from seismic images. The Wavelet CNN model uses all four components from the 

output of wavelet transformation to construct the pooling layers. It saves important information 

from the high-pass and low-pass filters during pooling operations.  

The results show that the Wavelet CNN model can improve classification performance as 

compared to conventional CNN models that use max and mean pooling layers. The Wavelet CNN 

model has 0.949 testing accuracy after 35 epochs, which performs consistently although only 

marginally better than the other models. By utilizing multi-level wavelet transformation as the 

pooling layers, the input image size is reduced without losing the key features, resulting in 

improved computational efficiency and prediction accuracy.  

This novel technique of integrating wavelet transformation with conventional CNN, can be 

expanded for other geophysical interpretations to automatically identify other geologic features in 
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the subsurface. Different wavelet transformation methods, and different combinations of pooling 

layers can also be tested.  

The last study evaluates the effectiveness of singular value decomposition (SVD) in 

parameterization and upscaling for reservoir properties using the data from the SPE tenth 

comparative solution project. Reservoir simulation results show that SVD is valid in the reduced 

parameterization of permeability fields. The reconstructed permeability fields using only a select 

number of singular values are good approximations of the original permeability values. Predicted 

oil production profiles from reservoir simulation results using the reconstructed permeability 

matrices are also similar to those obtained using the original permeability values. However, current 

simulation results do not show any significant improvement in the predictive accuracy of oil 

production rates by applying SVD on the upscaled permeability values. It is speculated that the 

reconstructed permeability matrix has similar dimensionality before and after the SVD processing, 

thus the model accuracy and efficiency are not significantly improved. 

Future research work with SVD could increase number of blocks, or layers in reservoir 

description to identify if it is justified for reservoir simulation models at larger scales. Different 

upscaling strategies could also be explored to select the best upscaling scheme, and the 

effectiveness of SVD on various upscaling schemes can be evaluated. 
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Appendix A. Supplemental Equations for Chapter 5 

This appendix list equations that are used in the methodology part of Chapter 5. The reservoir 

simulator is based on block centered grid system using IMPES method (Chen, 2007). The IMPES 

pressure equation is shown in Equation 5.5, and saturation equation is shown in Equation 5.6. 
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The pressure and saturation have spatial discretization form shown in Equation 5.7 and 

Equation 5.8. The pressure is solved fully implicitly using Gauss-elimination in Equation 5.7. The 

saturation for two-phase reservoir simulator is solved explicitly by using Equation 5.8. 
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2
,𝑗,𝑘

𝑛 (𝑝𝑐 𝑖,𝑗,𝑘
𝑛 −𝑝𝑖−1,𝑗,𝑘

𝑛 ) −

𝑇
𝑤,𝑖,𝑗+

1

2
,𝑘

𝑛 (𝑝𝑐 𝑖,𝑗+1,𝑘
𝑛 −𝑝𝑐𝑖,𝑗,𝑘

𝑛 )+𝑇
𝑤,𝑖+

1

2
,𝑗,𝑘

𝑛 (𝑝𝑐 𝑖,𝑗,𝑘
𝑛 −𝑝𝑐 𝑖,𝑗−1,𝑘

𝑛 ) −

𝑇
𝑤,𝑖,𝑗,𝑘+

1

2

𝑛 (𝑝𝑐 𝑖,𝑗,𝑘−
𝑛 𝑝𝑐 𝑖,𝑗,𝑘+1

𝑛 )+
𝑤,𝑖,𝑗,𝑘−

1

2

𝑛 (𝑝𝑐 𝑖,𝑗,𝑘−
𝑛 𝑝 𝑐 𝑖,𝑗,𝑘−1

𝑛 ) −

(𝑇𝑤𝛾̅𝑤)1,𝑖+1
2
,𝑗,𝑘

𝑛 (𝑧𝑖+1,𝑗,𝑘
𝑛 −𝑧𝑖,𝑗,𝑘

𝑛 )+(𝑇𝑤𝛾̅𝑤)1,𝑖−1
2
,𝑗,𝑘

𝑛 (𝑧𝑖,𝑗,𝑘
𝑛 −𝑧𝑖−1,𝑗,𝑘

𝑛 ) −

(𝑇𝑤𝛾̅𝑤)1,𝑖,𝑗+1
2
,𝑘

𝑛 (𝑧𝑖,𝑗+1,𝑘
𝑛 −𝑧𝑖,𝑗,𝑘

𝑛 )+(𝑇𝑤𝛾̅𝑤)1,𝑖,𝑗±,𝑘
𝑛 (𝑧𝑖,𝑗,𝑘

𝑛 −𝑧𝑖,𝑗−1,𝑘
𝑛 ) −

(𝑇𝑤𝛾̅𝑤)1,𝑖,𝑗,𝑘+1
2

𝑛 (𝑧𝑖,𝑗,𝑘+1
𝑛 −𝑧𝑖,𝑗,𝑘

𝑛 )+(𝑇𝑤𝛾̅𝑤)1,𝑖+1
2
,𝑗,𝑘

𝑛 (𝑧𝑖,𝑗,𝑘
𝑛 −𝑧𝑖,𝑗,𝑘−1

𝑛 ) + 𝑄𝑤𝑖,𝑗,𝑘
𝑛                                  (5.8) 
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Appendix B. Description of Python Script for Chapter 2 

The python script of this chapter is uploaded into a GitHub repository. The link to the GitHub 

repository can be found  at https://github.com/mwzhouxu/Data-Driven-Modeling-and-Prediction-

Using-Seismic-and-Petrophysical-Data-Analyses. Several python libraries were used in this 

chapter including scikit-learn, pandas, numpy, matplotlib, etc. The python scikit-learn library is 

used to create the data-driven models for this study. The script for creating the models are shown 

as follows.  

 

Since this chapter is a classification task, a confusion matrix is calculated to visualize the 

relationship of the prediction results versus the actual results. The python scikit-learn library is 

used to create the confusion matrix. The normalized confusion matrix is created by normalizing 

each row of the confusion matrix by the total number of each class. After creating the confusion 

https://github.com/mwzhouxu/Data-Driven-Modeling-and-Prediction-Using-Seismic-and-Petrophysical-Data-Analyses
https://github.com/mwzhouxu/Data-Driven-Modeling-and-Prediction-Using-Seismic-and-Petrophysical-Data-Analyses
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matrix, the evaluation metrics including the precision, recall, and F-1 score are calculated using 

the following script. 
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Appendix C. Description of Python Script for Chapter 3 

The python script for chapter 3 is uploaded to the same GitHub repository as Appendix B. 

The python TensorFlow library is used to create the artificial neural network model. Both the 

training and the testing data are normalized by their mean and standard deviation before being 

imported to the model. The dataset is split into a training and a testing set with 80% and 20% of 

the total sample points. 

 

The python script for the model is shown as follows. The neural network model includes four 

levels of hidden layers with additional three drop out layers for regularization. The loss function 

of the model is mean squared error and the evaluation metrics includes mean absolute error and 

mean squared error. 
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During the training process, the training curves that show the change of mean absolute error  

and mean squared error at each epoch can be created. Since this is a regression model, the model 

predicts a numerical value for each sample. After the training is complete, the mean absolute error, 

mean squared error, and the coefficient of determination (R2) can used to evaluate the model 

performance. The scripts are shown as follows.  
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Appendix D. Description of Python Script for Chapter 4 

The python script for chapter 4 is uploaded to the same GitHub repository as Appendix B. 

The python TensorFlow library is used to create the wavelet convolutional neural network model. 

Part of the script is accessed and modified from GitHub repositories of Patole (2019) and Menon 

(2019). The python scripts for importing the libraries and tools are shown as follows.  

 

 

The script for the Wavelet CNN model is shown below. A U-net model is utilized as the base 

model. There are four levels of wavelet transformation that are performed to reduce the dimension 

of the output from the previous layer and save the boundary information from both high-pass and 

low-pass filters. For each level, there are four output components, which contains the 

approximation, horizontal, vertical, and diagonal component. The approximation component is 

similar to the original image. The other three components show edge features of the original image. 

For each 2D input image, the wavelet transformation is performed on both the x axis and y axis of 

the input data to perform a 2D wavelet transformation.  
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The loading of the input and output data are shown in the following scripts. The dataset 

contains 4000 images and masks. The inputs of the model are 2D seismic images, which are 

displayed as grayscale images showing the subsurface features. The outputs are pre-interpreted 

salt body masks. In each mask, white color represents pre-interpreted salt bodies, and black color 

represents non-salt areas. 

The original seismic images provided in the dataset are randomly cropped 101101 small size 

seismic images from the original seismic survey. These images and masks are reshaped to be 

128128 before training the model. 
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After loading the 4000 images and masks,  the whole dataset is split into a training and testing 

set using 90% and 10% of the total image data. Parameters for early stopping is pre-set to stop the 

training process once the accuracy becomes stable. A dynamic learning rate is used to expedite the 

training process. The scripts for data splitting and training the model are shown in the below 

section. 

After the model is trained, it is used to make predictions for salt bodies from new input seismic 

images. The original seismic images, original interpreted masks, and predicted masks can be 

compared to visualize the predicted results of the model.   
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