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Asymptotic Notation

We use the following standard asymptotic notation:

• We write f(x) ⇠ g(x) if limx!1
f(x)
g(x) = 1.

• We write f(x) = O (f(x)), or equivalently f(x) ⌧ g(x), if lim sup
x!1

f(x)
g(x) is

bounded from above. We write f(x) = ! (g(x)) if f(x) � g(x).

• We write f(x) = o (g(x)) if limx!1
f(x)
g(x) = 0.

• We write f(x) ⇣ g(x) if f(x) ⌧ g(x) and g(x) ⌧ f(x).
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Abstract

Our main results are asymptotic zero-one laws satisfied by the diagrams of uni-

modal sequences of positive integers. These diagrams consist of columns of squares

in the plane; the upper boundary is called the shape. For various types of unimodal

sequences, we show that, as the number of squares tends to infinity, 100% of shapes

are near a certain curve—that is, there is a single limit shape. Similar phenomena

have been well-studied for integer partitions, but several technical di�culties arise

in the extension of such asymptotic statistical laws to unimodal sequences. We

develop a widely applicable method for obtaining these limit shapes, based in part

on a method of Petrov. We also mention a few notable corollaries—for example, we

obtain a limit shape for so-called “overpartitions” by a simple DeSalvo-Pak-type

transfer.

To aid in the proof of these limit shapes, we prove an asymptotic formula for the

number of partitions of the integer n into distinct parts where the largest part is at

most t
p
n for fixed t. Our method follows a probabilistic approach of Romik, who

gave a simpler proof of Szekeres’ asymptotic formula for distinct parts partitions

when instead the number of parts is bounded by t
p
n. The probabilistic approach is

equivalent to a circle method/saddle-point method calculation, but it makes some

of the steps more intuitive and even predicts the shape of the asymptotic formula,

to some degree.

Finally, motivated by certain problems concerning Rogers-Ramanujan-type iden-

tities, we give combinatorial proofs of three families of inequalities among certain

types of integer partitions.

vi



Chapter 1: Introduction

A partition of an integer n is a way of writing n as a sum of positive integers:

Definition 1.1. A partition � of an integer n is a multi-set of positive integers

{�1, . . . ,�`}, whose parts satisfy

�1 � �2 � · · · � �` � 1 and
`X

j=1

�j = n.

The size of � is denoted |�| = n.

(See [2], §1.1.) For example, the partitions of 4 are 4, 3 + 1, 2 + 2, 2 + 1+ 1 and

1+1+1+1. The study of these simple combinatorial objects, a vast subject in its

own right, has developed in tandem with many areas of mathematics and physics.

In representation theory, each partition of n leads to an irreducible representation

of the symmetric group Sn. In statistical mechanics, limit shapes for partitions

describe the limiting distribution of energy levels in ideal gas. And in number

theory, various generating functions related to partitions, old and new, have been

important examples of automorphic forms.

Visually, a partition �may be represented by its Ferrer’s diagram, in which parts

are displayed as rows of dots. For example, the Ferrer’s diagram of the partition

5 + 3 + 2 + 2 is the array below.

• • • • •
• • •
• •
• •

An important involution on partitions of n is conjugation, which is performed on

the Ferrer’s diagrams by reflecting about the 45 degree diagonal starting at the

1



top left dot. Equivalently, the columns of a Ferrer’s diagram form the conjugate

partition. Thus, the conjugate of 5 + 3 + 2 + 2 is 4 + 4 + 2 + 1 + 1.

Generating functions have long been used to obtain both combinatorial and

asymptotic information about partitions. These are typically given as basic1 hy-

pergeometric series. For example, if P denotes the set of all (unrestricted) parti-

tions, then the generating function for p(n), the number of partitions of n, may be

written in any of the following forms:

P (q) :=
X

�2P

q|�| =
X

n�0

p(n)qn =
Y

k�1

1

1� qk
, where q 2 C and |q| < 1.

For convenience, we have set p(0) = 1 which includes the “empty partition of 0”

as a member of P . The combinatorial proof of the above is to expand each factor

in the product as a geometric series. Identities between these q-series may lead to

identities between certain types of partitions, and it is often easier to manipulate

the entire q-series rather than to show a direct combinatorial connection between

types of partitions.

In this thesis, we study some combinatorial and asymptotic statistical properties

of partitions as well as unimodal sequences, a related generalization.

1.1 Limit Shapes for Unimodal Sequences

Much is known about the asymptotic behavior of various statistics for partitions.

For example, one can ask, what is the average size of the largest part in partitions

of n? Erdős and Lehner showed that it is roughly A
p
n log(A

p
n) for 100% of

partitions of n in the asymptotic limit, where A =
p
6

⇡
. In fact, they found that the

largest part obeys the following extreme value distribution.

1Here, “basic” means to base-q, in contrast to (regular) hypergeometric series.
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Theorem (Theorem 1.1 of [24], reformulated). Let Pn denote the set of partitions

of n and let Pn be the uniform probability measure on Pn. Then

lim
n!1

Pn

✓
� 2 Pn :

�1 � A
p
n log(A

p
n)

A
p
n

 x

◆
= e�e

�x
.

Note that, due to conjugation of partitions, the above is also the distribution for

the number of parts in partitions of n.

Comparatively less is known about the asymptotic behavior of statistics for

unimodal sequences, objects closely related to partitions in that summands are

allowed to increase and then decrease:

Definition 1.2. A unimodal sequence � = {�j}sj=1 of size n is a multi-set of

positive integers that sum to n, whose parts satisfy:

� : 0 < �1  · · ·  �k�1  �k � �k+1 � · · · � �s > 0 and
sX

j=1

�j = n.

(1.1)

The peaks of � are �k and any other parts equal to �k.

For example, the unimodal sequences of size 4 are 4, 3+1, 1+3, 2+2, 2+1+1,

1 + 2 + 1, 1 + 1 + 2, and 1 + 1 + 1 + 1. Stanley’s survey [38] collects a variety of

unimodal sequences arising throughout mathematics—in combinatorics, geometry,

Lie algebras, finite groups, and more.

Similar to Ferrer’s diagrams of partitions, the diagram of a unimodal sequence �

is the set of adjacent columns of unit squares in the plane, where the j-th column

has �j squares. To fix a centering of a diagram, we will always choose to place the

left-most peak vertex on the y-axis2. In [11], the author studied the asymptotic

behavior of the shape, '(�), which is the top border of the diagram of �.

To compare diagrams of size n ! 1 to a fixed curve, it is convenient to rescale

them to have area 1, so let us define the renormalized shape e'(�) to be the shape

2Our results hold regardless of which peak vertex we fix as the center.
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e'(�)

�3p
20

5p
20

4p
20

Figure 1.1. Diagram and renormalized shape for � = (1, 2, 4, 5, 5, 2, 1) of size 20.

obtained from '(�) by rescaling both the x- and y-axes by 1p
n
when the size of �

is n (see Figure 1.1).

Roughly, the question we want to answer is the following: What are the typical

shapes of diagrams of size n, as n ! 1? Here, “typical” will mean “under the

uniform probability measure on diagrams of size n”. It turns out that, for the types

of unimodal sequences we consider, there is a single limit shape.

This type of striking 0-1 law has been well-studied for integer partitions. In [25],

Fristedt introduced a probabilistic model to make a deep study of the limiting

behavior of partitions. This machinery was subsequently used by Vershik in [41]

to state many types of limit shapes that were finally proved in [22]. For more

information on the history of limit shapes for partitions, see Sections 1 and 12 of

[21]. We discuss and apply Fristedt’s methodology to solve a di↵erent problem in

Section 3.1.2.

For unrestricted partitions of size n, the limit shape is

y = fp(x) = �
p
6

⇡
log

⇣
1� e�

⇡p
6
x

⌘
. (1.2)

Note that this can be symmetrized as e
⇡p
6
x+e

⇡p
6
y = 1, which respects conjugation.

An “elementary” proof (one that does not require measure theory) that (1.2) is

4



the limit shape for partitions was given by Petrov in [35], and we will utilize his

approach.

A di↵erent type of problem was recently solved by DeSalvo and Pak, who found

conditions under which partition bijections allow for the transfer of limit shapes

[21]. We will see one result of this type in Section 2.4.

Following the notation of Bringmann and Mahlburg in [16], let S (n) denote

the set of (unrestricted) unimodal sequences of size n, and denote its cardinality

by s(n). Let D(n) denote the set of strongly unimodal sequences of size n, and

denote its cardinality by d(n); these have the added requirement that all of the

inequalities in (1.1) are strict. Finally, let Dm(n) denote the set of semi-strict

unimodal sequences of size n, and denote its cardinality by dm(n); here, we require

that there be a single peak and that the inequalities to the left of it in (1.1) are

strict.

For a function f(x), let N✏(f) denote the set of points in the plane whose hori-

zontal distance from y = f(x) is at most ✏, together with ✏ neighborhoods of the

x- and y-axes. (The latter components of N✏ are necessary to account for vertical

and horizontal asymptotes of functions.)

Theorem 1.3 (Strongly Unimodal Sequences). Let ✏ > 0 be arbitrary and let

fd(x) :=

8
>><

>>:

�
p
6
⇡
log

⇣
e�

⇡p
6
x � 1

⌘
if x 2

h
�

p
6

⇡
log(2), 0

⌘
,

�
p
6
⇡
log

⇣
e

⇡p
6
x � 1

⌘
if x 2

⇣
0,

p
6

⇡
log(2)

i
.

Then

lim
n!1

1

d(n)
·# {� 2 D(n) : e'(�) ⇢ N✏(fd)} = 1. (1.3)

We can show that
R
R fd(x)dx = 1 using the dilogarithm function, Li2(z), defined

for z 2 C \ (�1,�1) by the integral

Li2(z) := �
Z

z

0

log(1� w)

w
dw,

5



taking the principal branch of the complex logarithm. We also have the Taylor

expansion Li2(z) =
P

n�1
z
n

n2 for |z|  1, and hence Li2(1) =
⇡
2

6 and Li2(�1) = �⇡
2

12 .

(See [1], §27.7, where f(x) = Li2(1� x).)

Thus,

Z

R
fd(x)dx = 2

Z p
6

2 log 2

0

�
p
6

⇡
log

⇣
e

⇡p
6
x � 1

⌘
dx =

12

⇡2

Z 2

1

log(t� 1)

t
dt

=
12

⇡2
(�Li2(1� t)� log(t� 1) log t)

���
2

t=1
= �12

⇡2
Li2(�1) = 1.

Integrals of the other functions below are similarly evaluated in terms of Li2(z).

Theorem 1.4 (Unrestricted Unimodal Sequences). Let ✏ > 0 be arbitrary and let

fs(x) :=

8
>><

>>:

�
p
3

⇡
log

⇣
1� e

⇡p
3
x

⌘
if x < 0,

�
p
3

⇡
log

⇣
1� e�

⇡p
3
x

⌘
if x > 0.

Then

lim
n!1

1

s(n)
·# {� 2 S (n) : e'(�) ⇢ N✏(fs)} = 1.

Remark 1.5. The limit shape of Theorem 1.4 also holds for “unimodal sequences

with summits”, which are distinguished from unrestricted unimodal sequences by

designating one peak as the “summit”. These were called “stacks with summits” in

[16], and the number of unimodal sequences with summits was denoted by ss(n).

In particular, we have ss(n) ⇠ s(n) (see [16]). It is straightforward to repeat our

proof of Theorem 1.4 for unimodal sequences with summits with very little change.

Remark 1.6. It is not surprising that the limit shapes for unrestricted and strongly

unimodal sequences are made of two halves of the limit shapes for unrestricted and

distinct parts partitions (see [41], Th. 4.4 and Th. 4.5). In particular, each half of

the limit shape for unrestricted unimodal sequences is the curve (1.2) scaled down

so that the area beneath it is 1
2 .

6



fd(x) fu(x) fdm(x)

Figure 1.2. Respective limit shapes for strongly, unrestricted and semi-strict unimodal
sequences

Theorem 1.7 (Semi-strict Unimodal Sequences). Let ✏ > 0 be arbitrary and let

fdm(x) :=

8
>><

>>:

� 2
⇡
log

�
e�

⇡
2 x � 1

�
if x 2

⇥
� 2

⇡
log 2, 0

�
,

� 2
⇡
log

�
1� e�

⇡
2 x
�

if x > 0.

Then

lim
n!1

1

dm(n)
·# {� 2 Dm(n) : e'(�) ⇢ N✏(fdm)} = 1.

Remark 1.8. We observe that the left-half of fdm(x) is the limit shape for distinct

parts partitions scaled so that the area beneath it is 1
3 ([41], Th. 4.5), while the right

half is the limit shape for unrestricted partitions scaled so that the area beneath it

is 2
3 . We discuss the appearance of these constants further in Section 2.4.

Our proofs of the main results are structured as follows. Following a method

of Petrov ([35], §6), we will obtain limit shapes for the left and right halves “in

isolation”, showing that as n ! 1, 0% of left (resp. right) halves of shapes are not

in an ✏ neighborhood of some left (resp. right) limit shape. For Theorem 1.3, this

is enough to complete the proof. However, for Theorems 1.4 and 1.7, we will need

to analyze peaks more closely; we will show that, on average, peaks are !(
p
n), so

that a degenerate “completely flat” limit shape does not occur. To show this, we

require the asymptotic formula stated in the next Section and proved in Chapter

3.

7



1.2 Partitions into Distinct Parts with Bounded Largest Part

To complete the proof of Theorem 1.7 in Chapter 3, we require an asymptotic

formula for the number of partitions of n into distinct parts where the largest part

is bounded by t
p
n for fixed t. To the best of our knowledge, the author’s work in

[10] is the first occurrence of such an asymptotic formula.

Let q(n) denote the number of distinct parts partitions of n. These numbers are

easily seen to be generated by the following infinite product:

X

k�0

q(n)xn =
Y

k�1

(1 + xk).

Pioneering work of Hardy and Ramanujan used the modular properties of the

infinite product to obtain an asymptotic series for q(n) (and similar enumerations)

after representing these coe�cients as contour integrals around the origin ([27],

§7.1). The main term in Hardy and Ramanujan’s asymptotic series is

q(n) ⇠ 1

4 4
p
3n

3
4

e
⇡p
3

p
n. (1.4)

The circle method is now often used as an umbrella term for the asymptotic analysis

of contour integrals, including Hardy-Ramanjuan’s method and its many variants,

as well as certain cases of the saddle-point method. For an exposition of Hardy,

Ramanujan, and Rademacher’s original work, see [2] Ch. 5-6 and for the saddle-

point method, see [26] Ch. VIII.

A more recent approach to these asymptotic statistics, begun by Fristedt in [25]

and used by Romik in [36], is to reformulate the proof using probability theory.

This can make some of the steps more intuitive. We explain these ideas further in

Section 3.1.

8



Let t > 0 be fixed. We study a restriction of q(n) defined as the coe�cient of xn

in the following generating function:

qt(n) := Coe↵ [xn] Qt,n(x), where Qt,n(x) :=
Y

kt
p
n

(1 + xk).

Thus, qt(n) is the number of distinct parts partitions of n with largest part is at

most t
p
n. The smallest possible largest part in a distinct parts partition of n is

k, where

1 + 2 + · · ·+ (k � 1) =
k(k � 1)

2
< n  k(k + 1)

2
.

Thus, we ignore the range t 
p
2, where often qt(n) = 0, and consider only t >

p
2.

We prove the following asymptotic formula for qt(n). Here and throughout, b↵c

denotes the greatest integer less than or equal to ↵ and {↵} := ↵� b↵c.

Theorem 1.9. Let t >
p
2. Define � : (

p
2,1) !

⇣
�1, ⇡

2
p
3

⌘
implicitly as a

function of t so that

1 =

Z
t

0

ue��u

1 + e��u
du. (1.5)

Let

B(t) := 2�+t log
�
1 + e��t

�
and An(t) :=

e
�t
2 + e�

�t
2

2 (1 + e��t){t
p
n}

r
�0(t)

⇡t
. (1.6)

Then

qt(n) ⇠
An(t)

n3/4
eB(t)

p
n.

The oscillatory factor
�
1 + e��t

��{t
p
n}

is present because t
p
n is not always an

integer. Numerically, this oscillation is also reflected in qt(n), which appears to be

non-increasing for t close to
p
2.

Remark 1.10. We record properties of the functions �(t), B(t) and A(t) := An(t)·
�
1 + e��t

�{tpn}
in Section 3.2. In particular, we show that � and B are strictly

9



increasing, and we show that �(t), B(t) and A(t) tend to ⇡

2
p
3
, ⇡p

3
and 1

4 4p3
, respec-

tively, as t ! 1. Thus, Theorem 1.9 is consistent with Hardy and Ramanujan’s

asymptotic formula, and (1.4) could be recovered if we were allowed to take t ! 1.

Remark 1.11. It has been shown that the largest part of a typical distinct parts

partition of n is c
p
n log n for some c ([25], Thm. 9.4), so that our qt(n) counts

(asymptotically) 0% of distinct parts partitions of n. In fact, since B(t) is strictly

increasing to ⇡p
3
, it follows that qt(n) = o (q(n)) for any fixed t. Thus, Theorem 1.9

too implies that 0% of partitions of n have largest part at most t
p
n, as n ! 1.

Szekeres found an asymptotic formula for distinct parts partitions when instead

the number of parts is at most t
p
n ([39], [40]). When parts are allowed to repeat,

bounding the number of parts and bounding the size of the largest part give the

same enumeration function due conjugation. But here, when parts are distinct,

these two notions are di↵erent.

Szekeres’ proof in [40] is based on the saddle-point method, and later Romik [36]

recast and simplified this proof using Fristedt’s probabilistic machinery [25]. Al-

though equivalent to a circle method calculation, Romik’s proof motivates some of

the more technical steps in the proof and even predicts the shape of the asymptotic

formula, to some degree. Our proof here closely follows Romik.

1.3 Partition Inequalities

Our motivation for proving inequalities among types of partitions of n stems, ulti-

mately, from the Rogers-Ramanujan identities. These have been intensely studied

and generalized since their first appearance and feature surprising connections to

a�ne Lie algebras. We refer the reader to [31], §1.1 for a brief summary of these

connections. To state the Rogers-Ramanujan identities, we use the standard q-

Pochhammer symbol,

10



(a; q)n :=
n�1Y

j=0

�
1� aqj

�
, (a; q)1 := lim

n!1
(a; q)n, and

(a1, . . . , ar; q)n := (a1; q)n · · · (ar; q)n.

By convention, an empty product equals 1. The Rogers-Ramanujan identities are

as follows.

RR1 :
X

n�0

qn
2

(q; q)n
=

1

(q, q4; q5)1
,

RR2 :
X

n�0

qn
2+n

(q; q)n
=

1

(q2, q3; q5)1
.

(See [2], Ch. 7.) The identity RR1 may be interpreted as an equality of certain

partition generating functions, giving that the number of partitions of n such that

the gap between successive parts is at least 2 equals the number of partitions of

n into parts congruent to ±1 (mod 5). Similarly, RR2 gives that the number of

partitions of n such that the gap between successive parts is at least 2 and 1 does

not occur as a part equals the number of partitions of n into parts congruent to

±2 (mod 5).

1.3.1 Ehrenpreis Problems

For two q-series f(q) =
P

n�0 anq
n and g(q) =

P
n�0 bnq

n, we write f(q) ⌫ g(q)

if an � bn for all n. By the above combinatorial interpretation of the Rogers-

Ramanujan identities (or by simple algebra) it follows that

X

n�0

qn
2

(q; q)n
�
X

n�0

qn
2+n

(q; q)n
⌫ 0. (1.7)

Thus, the Rogers-Ramanujan identities imply the following inequality, which is far

from obvious.

1

(q, q4; q5)1
� 1

(q2, q3; q5)1
⌫ 0. (1.8)

11



At the 1987 A.M.S. Institute on Theta Functions, the problem was posed by Leon

Ehrenpreis to provide a proof of (1.8) that did not reference the (heavy-handed)

Rogers-Ramanujan identities. (See [5], §1.)

Solutions to Ehrenpreis’ Problem have been given in various ways. In the course

of proving (1.8), Andrews and Baxter [5] were led to a new “motivated” proof

of the Rogers-Ramanujan Identities themselves; “motivated proofs” were subse-

quently given for infinite families of Rogers-Ramanujan type identities in [20], [29]

and [32]. Recalling the combinatorial interpretation of the products, (1.8) may be

interpreted as a partition inequality—namely, that there are more partitions of n

into parts congruent to ±1 (mod 5) than into parts congruent to ±2 (mod 5). Un-

der this interpretation, a direct combinatorial proof of (1.8) was provided by Kadell

[28], who constructed an injection between these types of partitions. Later, An-

drews developed the Anti-telescoping Method for showing positivity in di↵erences

of products like (1.8) [4].

We make use of injections and Andrews’ Method of Anti-telescoping to prove sev-

eral partition inequalities. The motivation for our first partition inequality comes

from an “Ehrenpreis Problem” for recently conjectured sum-product identities of

Kanade-Russell to be described further below.

Our first result extends the following theorem of Berkovich and Garvan, who

generalized (1.8) to an arbitrary modulus.

Theorem (Theorem 5.3 of [7]). Suppose L � 1 and 1  r < M

2 . Then

1

(q, qM�1; qM)L
� 1

(qr, qM�r; qM)L
⌫ 0

if and only if r - (M � r).

Our extension is independent of the modulus.

12



Theorem 1.12. Let a, b, c and M be integers satisfying 1 < a < b < c and

1 + c = a+ b. Then if a - b,

1

(q, qc; qM)L
� 1

(qa, qb; qM)L
⌫ 0 for any L � 0.

Note that we do not necessarily assume a, b, c  M . Translated into a partition

inequality, Theorem 1.1 says that there are more partitions of n into parts of the

forms Mj + 1 and Mj + c than there are partitions of n into parts of the forms

Mj + a and Mj + b, where 1  j  L.

1.3.2 McLaughlin’s Two-Variable Inequalities

Partition inequalities with a fixed number of parts were considered by McLaughlin

in [33]. Answering two of McLaughlin’s questions, we give combinatorial proofs of

finite analogues of Theorems 7 and 8 from [33].

Theorem 1.13. Let a, b and M be integers satisfying 1  a < b < M

2 and

gcd(b,M) = 1. Define c(m,n) by

1

(zqa, zqM�a; qM)L(1� qLM+a)
� 1

(zqb, zqM�b; qM)L
=:

X

m,n�0

c(m,n)zmqn.

Then for any L, n � 0, we have c(m,nM) � 0. If in addition M is even and a is

odd, then we also have c
�
m,nM + M

2

�
� 0 for every n � 0.

Note that we do not necessarily make the assumption gcd(a,M) = 1 that is in

[33]. While these partition inequalities hold only for n in certain residue classes

(mod M), Theorem 1.13 is a strengthening of Theorem 1.12 for these n. The

following is a distinct parts analogue.

Theorem 1.14. Let a, b and M be integers satisfying 1  a < b < M

2 and

gcd(b,M) = 1. Define d(m,n) by

(�zqa,�zqM�a; qM)L
�
1 + zqLM+a

�
� (�zqb,�zqM�b; qM)L =:

X

m,n�0

d(m,n)zmqn.

13



Then for any L, n � 0, we have d(m,nM) � 0. If in addition M is even and a is

odd, then we also have d
�
m,nM + M

2

�
� 0 for every n � 0.

Remark 1.15. Taking the limit as L ! 1 in Theorems 1.13 and 1.14 recovers

McLaughlin’s original partition inequalities.

1.4 Structure of the Thesis

In Chapter 2, we prove Theorems 1.3, 1.4 and 1.7. We then state several conse-

quences of these limit shapes in Section 2.4.

Chapter 3 contains the proof of Theorem 1.9 which is required to complete the

proof of Theorem 1.7 in Chapter 2. The proof is outlined in Section 3.1, where

we motivate a Fristedt-type probabilistic model and state three propositions that

together imply Theorem 1.9. In Section 3.2 we record some properties of the func-

tions �(t), B(t) and A(t), including those mentioned in Remark 1.10. Section 3.4

provides the proofs of two technical lemmas; these could be useful in similar asymp-

totic analysis and may be of independent interest.

Chapter 4 contains the proofs of Theorems 1.12, 1.13 and 1.14. In Section 4.4, we

apply these theorems and Andrews’ Method of Anti-telescoping to solve Ehrenpreis

Problems for conjectures of Kanade-Russell.

In Chapter 5, we conclude by reviewing our results and by speculating on possible

future work.
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Chapter 2: Limit Shapes

For the proofs of Theorems 1.3, 1.4 and 1.7, we will need one more definition. A

renormalized shape e'(�) consists of line segments that meet at 90� corners, which

we will call vertices, but we will exclude the top two corners at the peaks from this

set, as well as the points on the x-axis (see Figure 2.1). Let V`(�) be the set of left

vertices of e'(�) and let Vr(�) be the set of right vertices (see Figure 2.1). For fixed

✏ and large n, we clearly have e'(�) ⇢ N✏(f) if and only if

V`(�) [ Vr(�) ⇢ N✏(f).

2.1 Proof of Theorem 1.3

We will find it easier to analyze the left part of the shape after translating into the

first quadrant. Let

fd(x) := fd

 
x�

p
6

⇡
log(2)

!
= �

p
6

⇡
log

⇣
2e�

⇡p
6
x � 1

⌘
for x 2

"
0,

p
6

⇡
log(2)

!
.

We will also make use of the inverse function for fd, namely

gd(y) :=

p
6

⇡

⇣
log(2)� log

⇣
1 + e�

⇡p
6
y

⌘⌘
for y 2 [0,1).

V`(�) Vr(�)

e'(�)

Figure 2.1. Renormalized shape, e'(�); left vertices, V`(�); and right vertices, Vr(�), for
the unimodal sequence � = (1, 1, 1, 2, 4, 5, 5, 4, 1).
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Let V`(�) be the left vertices after translating e'(�) to the right by
p
6

⇡
log(2). We

want to show a left limit shape for the left half of diagrams, in the sense that

lim
n!1

1

d(n)
·#

�
� 2 D(n) : V`(�) 6⇢ N✏(fd)

 
= 0. (2.1)

We estimate the above count using the following inequalities:

# {� 2 D(n) : V`(�) 6⇢ N✏(fd)}


X

a<
p
2n

#

⇢
� 2 D(n) :

1p
n
(a, b) 2 V`(�),

����gd
✓

bp
n

◆
� ap

n

���� > ✏

�
(2.2)

 2
X

a<
p
2n

#

⇢
� 2 D(n) : � has exactly a left parts  b,

����gd
✓

bp
n

◆
� ap

n

���� > ✏

�
.

(2.3)

(2.2) follows from the definition of N✏, and (2.3) is easy to see geometrically.

After multiplying (2.3) by 1
d(n) , we will show that each summand is e�C

p
n+o(

p
n),

where C > 0 is independent of a. It then follows that

lim
n!1

1

d(n)
·#

�
� 2 D(n) : V`(�) 6⇢ N✏(fd)

 
 lim

n!1

p
2n · e�C

p
n+o(

p
n) = 0,

so (2.1) holds.

Now, d(n) appears as the n-th coe�cient in D(q), so clearly

d(n)  q�nD(q) for q 2 (0, 1). (2.4)

The following Lemma shows that we can choose q depending on n that concen-

trates the mass of D(q) in the single term d(n)qn, in the sense that after taking

a logarithm, (2.4) becomes an asymptotic. We elaborate further on these ideas in

Section 3.1.1.

Lemma 2.1. There exists a unique c > 0 such that for q = e�
cp
n , we have

log
�
q�nD(q)

�
⇠ log d(n) =

2⇡p
6

p
n+ o(

p
n).
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Proof. Recall that log d(n) ⇠ 2⇡p
6

p
n. (See [16], Table 1.) Theorem 4.3 of [15] states

that D(e�t) ⇠ 1
4e

⇡2

6t as t ! 0+. Letting t = cp
n
, we see that

log
⇣
ec

p
nD

⇣
e�

cp
n

⌘⌘
⇠
✓
c+

⇡2

6c

◆p
n.

We take c = ⇡p
6
, and the lemma is proved.

Throughout we let c := ⇡p
6
and q = e�

cp
n . We will use Lemma 2.1 in the form

q
�nD(q)
d(n) ⇠ eo(

p
n).

Using standard combinatorial techniques, the generating function D(q) is ob-

tained by summing over peaks as

D(q) :=
X

n�0

d(n)qn =
X

n�0

qn+1
nY

j=1

(1 + qj)2.

Here, the two products generate the partitions to the left and right of the peak

n+1. Similarly, the number of � 2 D(n) with exactly a left parts at most b is the

coe�cient of zaqn in

X

m>b

qm+1
mY

j=1

(1 + qj)2
Y

jb

1 + zqj

1 + qj
. (2.5)

The latter product has the e↵ect of replacing the original factor 1 + qj generating

a left part j  b with 1 + zqj. Written as above, we see that the latter product

is independent of m, and therefore may be factored out. Hence, by the principle

used in (2.4) and by Lemma 2.1, we how have

{� 2 D(n) : � has exactly a left parts  b}  q�nD(q)

d(n)
z�a

Y

jy
p
n

1 + zqj

1 + qj

=: eo(
p
n) · eU(⌧), (2.6)

where we have set b = y
p
n and z = e⌧ for ⌧ 2 R and y � 0, and

U(⌧) := �⌧a+
X

1jy
p
n

⇣
log(1 + e⌧�c

jp
n )� log(1 + e�c

jp
n )
⌘
.
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Note that U(0) = 0, thus to get exponential decay in (2.6), we must have ⌧ 6= 0.

Taking derivatives, we have

U 0(⌧) = �a+
X

1jy
p
n

e⌧�
cjp
n

1 + e⌧�
cjp
n

; U 00(⌧) =
X

1jy
p
n

e⌧�
cjp
n

⇣
1 + e⌧�

cjp
n

⌘2 .

Let ⌃0
y
and ⌃00

y
denote the two sums directly above. Then multiplying by 1p

n
, we

get Riemann sums for the following integrals:

1p
n
⌃0

y
!

Z
y

0

e⌧�ct

1 + e⌧�ct
dt =

1

c

�
log(1 + e⌧ )� log(1 + e⌧�cy)

�
, (2.7)

and

1p
n
⌃00

y
!

Z
y

0

e⌧�ct

(1 + e⌧�ct)2
dt =

1

c

✓
e⌧

1 + e⌧
� e⌧�cy

1 + e⌧�cy

◆
. (2.8)

Let � > 0. The integrands in (2.7) and (2.8) are monotonically decreasing func-

tions of t; hence from integral comparison, we have, for |⌧ | < � and y 2 [0,1),

����
1

c

�
log(1 + e⌧ )� log

�
1 + e⌧�cy

��
� 1p

n
⌃0

y

���� <
1p
n
· e�

1 + e�
,

and ����
1

c

✓
e⌧

1 + e⌧
� e⌧�cy

1 + e⌧�cy

◆
� 1p

n
⌃00

y

���� <
1p
n
· e�

(1 + e�)2
.

Thus the convergence in (2.7) and (2.8) is uniform in y 2 [0,1) and |⌧ | < �.

Using Taylor’s Theorem, we now have

U(⌧)  ⌧U 0(0) +
⌧ 2

2
sup
|�|<�

|U 00(�)|

⇠ ⌧
p
n

✓
� ap

n
+

1

c

�
log(2)� log(1 + e�cy)

�
+O(⌧)

◆

= ⌧
p
n

✓
� ap

n
+ gd(y) +O(⌧)

◆
,

where, because of uniformity in (2.8), O(⌧) does not depend on y. Thus, choosing

⌧ small in absolute value and positive or negative as needed, we get that U(⌧) 

�C
p
n for some C > 0 that holds for all

⇣
ap
n
, y
⌘
with

���� ap
n
+ gd(y)

��� � ✏. Using

this in (2.6), we obtain (2.1).
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Thus, fixing bottom left vertices at �
p
6

⇡
log(2),

lim
n!1

1

d(n)
·# {� 2 D(n) : V`(�) ⇢ N✏(fd)} = 1,

and by symmetry, we can (only) say

lim
n!1

1

d(n)
·# {� 2 D(n) : Vr(�) ⇢ N✏(f

⇤
d
)} = 1,

where f ⇤
d
is fd with its right-half translated by some amount x0. Hence,

lim
n!1

1

d(n)
·# {� 2 D(n) : V`(�) [ Vr(�) ⇢ N✏(f

⇤
d
)} = 1,

but since the diagrams have area 1 and ✏ may be made arbitrarily small, we must

have x0 = 0. Thus, finally,

lim
n!1

1

d(n)
·# {� 2 D(n) : V`(�) [ Vr(�) ⇢ N✏(fd)} = 1,

and this implies Theorem 1.

2.2 Proof of Theorem 1.4

For the proof of Theorem 1.4, we need to estimate a slightly di↵erent product,

and again we will want to do our manipulations in the first quadrant. Once we

have left and right limit shapes, gluing them together will only be valid once we

know that, for 100% of stacks as n ! 1, peaks occur with multiplicity o(
p
n). We

show that this follows from a well-known asymptotic for partitions with restricted

largest part.

Throughout the proof let c := ⇡p
3
and q = e�

cp
n . This c is the constant needed

in the following lemma, an analogue of Lemma 2.1.

Lemma 2.2. There exists a unique c > 0 such that for q = e�
cp
n , we have

log
�
q�nS (q)

�
⇠ log s(n) =

2⇡p
3

p
n+ o(

p
n).
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Proof. Recall that S (q) =
Q

m�1
1

(1�qm)2 · L(q). From the well-known transforma-

tion of the Dedekind ⌘-function ([6], Th. 3.1), one has

log
Y

m�1

1

1� e�mt
⇠ ⇡2

6t
.

By Wright Lemma 2 [43] we have logL(e�t) ⇠ log 1
2 . Letting t = cp

n
, we have

log
⇣
e�c

p
nS

⇣
e�

cp
n

⌘⌘
⇠
✓
c+

⇡2

3c

◆p
n.

We take c = ⇡p
3
, minimizing the term on the right, and the lemma is proved.

Let fs(t) be the left-half of fs translated right into the first quadrant as follows

fs :


0,�1

c
log

�
1� e�c✏

�◆
7! [✏,1), fs(x) = �1

c
log

�
1� ecx(1� e�c✏)

�
.

We will also make use of the inverse for fs which is

gs : [✏,1) 7!

0,�1

c
log

�
1� e�c✏

�◆
, gs(y) :=

1

c
log

✓
1� e�cy

1� e�c✏

◆
.

By Lemma 2.2, an upper bound for the proportion of the number of stacks of

size n with a left parts that lie in [✏
p
n, y

p
n], is

q�nS (q)

s(n)
z�a

Y

✏
p
njy

p
n

1� qj

1� zqj
=: eo(

p
n) · eU(⌧), (2.9)

where z = e⌧ for ⌧ 2 R and

U(⌧) := �⌧a+
X

✏
p
njy

p
n

⇣
log(1� e�c

jp
n )� log(1� e⌧�c

jp
n )
⌘
.

We find the derivatives

U 0(⌧) = �a+
X

✏
p
njy

p
n

e⌧�
cjp
n

1� e⌧�
cjp
n

; U 00(⌧) =
X

✏
p
njy

p
n

e⌧�
cjp
n

⇣
1� e⌧�

cjp
n

⌘2 .

Let ⌃0
y
and ⌃00

y
denote the two sums directly above. Then multiplying by 1p

n
, we

get Riemann sums for the following integrals:

1p
n
⌃0

y
!

Z
y

✏

e⌧�ct

1� e⌧�ct
dt
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=
1

c

�
� log(1� e⌧�c✏) + log(1� e⌧�cy)

�

=
1

c
log

✓
1� e⌧�cy

1� e⌧�c✏

◆
, (2.10)

and

1p
n
⌃00

y
!

Z
y

✏

e⌧�ct

(1� e⌧�ct)2
dt =

1

c

✓
e⌧�c✏

1� e⌧�c✏
� e⌧�cy

1� e⌧�cy

◆
. (2.11)

Let � > 0. From integral comparison and monotonicity of the integrand, it is easy

to see that, for |⌧ | < � and y 2 [✏,1),

����
1

c

�
� log(1� e⌧�c✏) + log

�
1� e⌧�cy

��
� 1p

n
⌃0

y

���� <
1p
n
· e��c✏

1� e��c✏
,

and
����
1

c

✓
e⌧

1� e⌧�c✏
� e⌧�cy

1� e⌧�cs

◆
� 1p

n
⌃00

y

���� <
1p
n
· e��c✏

(1� e��c✏)2
.

Thus the convergence in (2.10) and (2.11) is uniform in y 2 [✏,1) and |⌧ | < �.

Using Taylor’s Theorem, we now have

U(⌧)  ⌧U 0(0) +
⌧ 2

2
sup
|�|<�

|U 00(�)| ⇠ ⌧
p
n

✓
� ap

n
+

1

c
log

✓
1� e�cy

1� e�c✏

◆
+O(⌧)

◆

⇠ ⌧
p
n

✓
� ap

n
+ gs(y) +O(⌧)

◆

where, because of uniformity in (2.11), O(⌧) does not depend on y. Thus, when
���� ap

n
� gs(y)

��� � ✏, we conclude, as in the proof of Theorem 1.3, that

lim
n!1

1

s(n)
·#{� 2 S (n) : V`(�) 6⇢ N✏(fs)} = 0.

By symmetry, we can also say that

lim
n!1

1

s(n)
·#{� 2 S (n) : Vr(�) 6⇢ N✏(f

⇤
s
)} = 0,

where f ⇤
s
is fs with its right-half translated by some t0. We cannot, however, use

an area argument to immediately conclude that t0 = 0.
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For strongly unimodal sequences, the fact that parts on either side are distinct

and the total area is one forced a limit shape from the negative result that on

average 0% of left (resp. right) halves of diagrams are not near a left (resp. right)

limit shape. But we do not have this forcing in this case because of peaks. For

example, if peaks are at most t
p
n on average where t is fixed, then the vertical

asymptotes are not approached in the limit shape. Thus, we show that, indeed,

“all of the limit shape is used,” in the sense that peaks are !(
p
n) on average.

Lemma 2.3. Let t > 0 be an arbitrary fixed constant. If k = t
p
n and sk(n)

denotes the number of unimodal sequences of size n in which peaks are size at most

k, then

lim
n!1

sk(n)

s(n)
= 0.

From this we can conclude that peaks are !(
p
n) on average, and hence occur

with multiplicity o(
p
n) on average. Thus, “gluing” left and right limit shapes

together at the origin is valid.

Proof of Lemma 2.3. Let Sk(n) denote the set of stacks of size n in which peaks

have size k. Let Pk(n) denote the set of partitions of n into parts  k. Let sk(n)

and pk(n) be the cardinality of these sets, respectively. Then we have an injection

Sk(n) ,!
n[

m=0

Pk(m)⇥ Pk(n�m), (2.12)

given by cutting a stack � 2 Sk(n) in half directly right of the left-most peak.3

Thus, we may write

3We can be more precise about the image in (2.12), but we will not need to be.
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sk(n) 
nX

m=0

pk(m)pk(n�m)

 2
X

0m✏·n

pk(m)pk(n�m) +
X

✏·nm(1�✏)n

pk(m)pk(n�m)

=: 2⌃1 + ⌃2

(2.13)

for some ✏ = ✏(t) 2 (0, 1) to be specified later. Asymptotics for pk(n) when

k = t
p
n were given first by Szekeres [40], reformulated and reproved by Canfield

[17] and later by Romik [36]. From Romik’s formulation,

pk(n) ⌧ eH(t)
p
n,

where

H(t) = 2↵(t)� t log
�
1� e�t↵(t)

�

↵ :[0,1) !

0,

⇡p
6

◆
defined by ↵(t)2 = Li2

�
1� e�t↵(t)

�

We now show that ↵ : [0,1) !
h
0, ⇡p

6

⌘
is strictly increasing; in particular, ↵(t)

is well-defined as above. One finds

↵0(t) =
t↵(t)

2(et↵(t) � 1)� t2
.

The numerator is positive for t > 0, so it remains to show that the denominator is

positive for t > 0. We will actually show

t2

et↵(t) � 1
< 1, for t > 0. (2.14)

Following Canfield ([17], Comment 19), we have

↵(t)2 = Li2
�
1� e�t↵(t)

�

= �
Z 1�e

�t↵(t)

0

log(1� z)

z
dz
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=

Z
t↵(t)

0

u

eu � 1
du (substituting z = 1� e�u)

> t↵(t) · t↵(t)

et↵(t) � 1
. (since the integrand is increasing)

From this, (2.14) follows, so ↵ is strictly increasing. Next, it may be checked that

H 0(t) = � log
�
1� e�t↵(t)

�
> 0, so that H is strictly increasing. Furthermore, we

have

lim
t!1

H(t) = lim
t!1

2↵(t) = ⇡

r
2

3
.

Returning to (2.13), we may write any m 2 [✏n, (1 � ✏)n] as sn for some s 2

[✏, 1� ✏]. Thus,

⌃2 ⌧ n exp

 
p
n sup

s2[✏,1�✏]

✓p
sH

✓
tp
s

◆
+
p
1� sH

✓
tp
1� s

◆◆!
.

Since H is strictly increasing to ⇡
q

2
3 , for any fixed t, ✏ and all s 2 [✏, 1� ✏], there

is a B = B✏,t < ⇡
q

2
3 such that H

⇣
tp
s

⌘
, H

⇣
tp
1�s

⌘
 B. Hence, we may bound

the above by

n exp

 
p
n sup

s2[✏,1�✏]

�p
s · B +

p
1� s · B

�
!

= n exp
⇣p

n ·
p
2 · B

⌘
.

Now,

2⌃1 ⌧ npk(b✏nc)pk(n) ⌧ n exp

 
p
n

 
p
✏H

✓
tp
✏

◆
+ ⇡

r
2

3

!!
.

Since H is bounded, we may choose ✏ = ✏(t) so that

C :=
p
✏H

✓
tp
✏

◆
+ ⇡

r
2

3
< ⇡

2p
3
.

Thus, altogether we have

sk(n)  nsk(n) ⌧ n2 exp
�p

n · C
�
+ n2 exp

⇣p
n · B

p
2
⌘
,

where C,B
p
2 < ⇡ 2p

3
. Recalling that s(n) ⇠ 1

23·33/4·n5/4 e
⇡

2p
3

p
n ([43], Th. 2), we

have finished the proof of Lemma 2.3.

By our earlier observations, the the proof of Theorem 1.4 is now complete.
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2.3 Proof of Theorem 1.7

Here, the derivations of left and right limit shapes are similar, respectively, to those

in Sections 2.1 and 2.2. Thus, in this section we content ourselves to proving an

analogue of Lemmas 2.1 and 2.2 and to showing that peaks are !(
p
n) on average;

as in Section 2.2, this is necessary to avoid the possibility of a degenerate limit

shape.

As required by our technique, the next lemma shows that there is a choice of q

so that

q�nDm(q)

dm(n)
= eo(

p
n).

Lemma 2.4. There exists c > 0 such that for q = e�
cp
n , we have

log
�
q�nDm(q)

�
⇠ log dm(n) = ⇡

p
n+ o(

p
n).

Proof. By equation (3.3) and Theorem 1.3 of [16], we have log dm(n) ⇠ ⇡
p
n, and

log
⇣
ec

p
nDm

⇣
e�

cp
n

⌘⌘
⇠
✓
c+

⇡2

4c

◆p
n.

We take c = ⇡

2 , and the lemma is proved.

With Lemma 2.4 in hand, we may derive left and right limit shapes as in Sections

2.1 and 2.2, respectively. Thus, the proof will be completed by the following lemma,

which shows that peaks are !(
p
n) on average.

Lemma 2.5. Let t > 2 be an arbitrary fixed constant. If k = t
p
n and dmk(n)

denotes the number of stacks of size n in which the peak is at most k, then

lim
n!1

dmk(n)

dm(n)
= 0.

Remark 2.6. Since t1  t2 implies dmt1
p
n(n)  dmt2

p
n(n), the conclusion of

Lemma 2.5 holds with any t � 0.
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Proof of Lemma 2.5. Let Qk(n) and qk(n) be, respectively, the set and number

of distinct-parts partitions of n whose largest part is at most k. As in Section 2.2,

we define a map

Dm,k(n) ,!
n[

m=0

Pk(m)⇥ Qk(n�m), (2.15)

by sending the peak and left parts to a distinct partition, and by sending the right

parts to an unrestricted partition. Thus,

dmk(n) 
X

m✏n

(qk(m)pk(n�m) + qk(n�m)pk(m))

+
X

✏nm(1�✏)n

qk(m)pk(n�m)

=: ⌃1 + ⌃2. (2.16)

We complete the proof by citing Theorem 1.9, proved in Chapter 3, which in a

weak form states

qk(n) ⌧ eB(t)
p
n,

for k = t
p
n for fixed t >

p
2. We also show in Section 3.2 that B(t) is a strictly

increasing function with limt!1 B(t) = ⇡p
3
. For m 2 [✏n, (1 � ✏)n], we will write

m = sn, for s 2 [✏, 1� ✏]. Thus, as in Section 2.2,

⌃2 ⌧ n exp

 
p
n sup

s2[✏,1�✏]

✓p
sH

✓
tp
s

◆
+
p
1� sB

✓
tp
1� s

◆◆!

⌧ n exp

 
p
n · C sup

s2[✏,(1�✏)]

⇣p
2s+

p
1� s

⌘!
,

where C < ⇡p
3
. Thus,

⌃2 ⌧ n exp
⇣p

n · C
p
3
⌘
= o

�
⇡ exp(

p
n)
�
.

Now,

⌃1 ⌧ nqk (b✏nc) pk(n) + nqk(n)pk (b✏nc))
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⌧ n exp

 
p
n

 
p
✏B

✓
tp
✏

◆
+ ⇡

r
2

3

!!
+ n exp

✓p
n

✓
⇡p
6
+
p
✏H

✓
tp
✏

◆◆◆
,

where we have used the asymptotic formulas for p(n) and q(n) ([2], Th. 6.2). Since

H is bounded, we may choose ✏ = ✏(t) so that ⌃1 ⌧ o (exp(⇡
p
n)) .

Finally, since dm(n) ⇠ 1
16ne

⇡
p
n ([16], Th. 1.3), we have dmk(n) = o(dm(n)) as

required.

This concludes the proof of Theorem 1.7.

2.4 Some Consequences of Theorems 1.3, 1.4 and 1.7

The most natural consequences of our limit shapes concern the structure of uni-

modal sequences of size n at the scale of
p
n. For example, Theorem 1.3 implies the

following corollary concerning the number of parts in strongly unimodal sequences.

Corollary 2.7. Let ✏ > 0 be arbitrary. The number of parts of 100% of strongly

unimodal sequences of size n as n ! 1 lies in the interval

p
n

 
2

p
6

⇡
log 2� ✏, 2

p
6

⇡
log 2 + ✏

!
.

We leave the statement of similar corollaries to the reader.

Recall that the rank of a semi-strict unimodal sequence is the number of parts to

the right of the peak minus the number of parts to the left of the peak. Bringmann–

Jennings-Sha↵er–Mahlburg proved that the limiting distribution of this statistic is

a point mass with mean
p
n logn
⇡

([14], Prop. 1.2 part (3)). Theorem 1.7 anticipates

this result, as follows.

After Theorem 1.7, we see that a typical semi-strict unimodal sequence of size

n is made up of a distinct parts partition of size roughly n

3 and an unrestricted

partition of size roughly 2n
3 . It follows from Theorem 1.7 that this distinct parts

partition has roughly
p
6

⇡
log(2)

p
n parts. Recalling Theorem 1.1, a typical partition

of size m has roughly
p
3

⇡
p
2

p
m logm parts. Hence, we should expect the limiting
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rank of 100% semi-strict unimodal sequences to be

p
3

⇡
p
2

r
2n

3
log

✓
2n

3

◆
�

p
6

⇡
log(2)

p
n ⇠

p
n log n

⇡
,

as proved in [14] using the Method of Moments.

Theorem 1.7 also leads to a limit shape for overpartitions, combinatorial objects

having many similarities to classical partitions. As defined in [19], an overpartition

is a partition in which the last occurrence of a part may (or may not be) marked. For

example, the overpartitions of size 3 are (3), (3), (2, 1), (2, 1), (2, 1), (2, 1), (1, 1, 1),

(1, 1, 1). We denote the set of overpartitions of size n by P(n) with cardinality

p(n).

From [3] equation 1.7, we have the generating function identity

1 + q

q

X

n�1

dm(n)qn =
Y

j�1

1 + qj

1� qj
=
X

n�0

p(n)qn,

thus dm(n+1)+dm(n) = p(n). We now give a short bijective proof of this equality

and use it to derive a limit shape for overpartitions. If � 2 Dm(n), let the peak

and parts to its left be marked. If � 2 Dm(n + 1), let only the parts to its left be

marked and subtract 1 from the peak.

If we plot diagrams for overpartitions as Vershik does for partitions in [41]—in

the first quadrant as weakly decreasing columns of squares and without distinguish-

ing marked parts—then our bijection leads to a map between diagrams of semi-

strict unimodal sequences and a transfer of limit shapes. Since dm(n+1) ⇠ dm(n),

it is easy to see that a limit shape for overpartitions is obtained immediately

by adding horizontal components of the limit shape for semi-strict unimodal se-

quences.
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1

1

Figure 2.2. fp(x), the limit shapes for overpartitions (in blue) and fp(x), the limit shape
for unrestricted partitions (in red)

Corollary 2.8 (Overpartitions). Let ✏ > 0 be arbitrary and let (g)�1 denote the

inverse function of g, so

fp(x) : =

 ✓
� 2

⇡
log

�
1� e�

⇡
2 x
�◆�1

�
✓
� 2

⇡
log

�
e�

⇡
2 x � 1

�◆�1
!�1

=
2

⇡
log

✓
1 + e�

⇡
2 x

1� e�
⇡
2 x

◆
.

Then

lim
n!1

1

p(n)

�
� 2 P(n) : e'(�) ⇢ N✏(fp)

 
= 1.

If we represent marked parts in a diagram by shading the top square, we see that

conjugation is also an involution on overpartitions. Thus, y = fp(x) is symmetric

in x and y, as expected.

Remark 2.9. In [18], Corteel-Hitczenko proved that the expected weight of over-

lined parts is asymptotic to n

3 . In view of Theorem 1.7 and the map between semi-

strict unimodal sequences and overpartitions, we obtain the following refinement:

For any ✏ > 0 and “for 100% of overpartitions as n ! 1”, the total weight of

marked parts lies between n

3 � ✏
p
n and n

3 + ✏
p
n.
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Chapter 3: Distinct Parts Partitions with Bounded Largest

Part

3.1 Proof Outline and Probabilistic Model

Throughout this chapter x will be a positive real number. We prove Theorem 1.9

through three propositions. Proposition 3.1 anticipates the asymptotic behavior

of log qt(n) through classical saddle-point bounds, while Propositions 3.2 and 3.3

complete the proof using Fristedt’s probabilistic machinery.

3.1.1 Saddle-point Bounds

This section elaborates further on the ideas behind Lemmas 2.1 and 2.2 that will

be used here also. Again, we begin with the trivial inequality,

qt(n)  x�nQt,n(x). (3.1)

As explained in the book of Flajolet and Sedgewick ([26], p. 550), the right-hand

side of (3.1), as a function of x 2 (0,1) has positive second derivative with respect

to x and tends to +1 when x ! 0 and x ! 1. Thus, there is a unique saddle-

point x = xn on the positive real axis for the function |z�nQt,n(z)| of a complex

variable z. In fact, x will approach 1 as n ! 1, from below when t > 2 and

from above when t < 2. As in Lemmas 2.1 and 2.2, we expect that this x actually

satisfies

log qt(n) ⇠ log
�
x�nQt,n(x)

�
,

and we will ultimately prove that this is the case. But for now, we ascertain an

upper bound for qt(n) by finding the asymptotic behavior of the right-hand side

of the above.
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More explicitly, we will set x = e�
yp
n for y 2 R and write

log
�
x�nQt(x)

�
=

p
nfn(y), where fn(y) := y +

1p
n
logQt(x).

One computes

f 0
n
(y) = 1� 1

n

X

kt
p
n

kxk

1 + xk
, (3.2)

so that the saddle-point occurs at (or very near) x when f 0
n
(y) ⇠ 0. We will show

in Proposition 3.2 that this is accomplished by choosing y = �; indeed, the sum in

(3.2) is just a Riemann sum for the integral (1.5) defining �. With � in hand, an

application of Euler-MacLaurin summation leads to the following.

Proposition 3.1. With x = e�
�p
n , we have

log
�
x�n

n
Qt,n(xn)

�
= B(t)

p
n� log

�
1 + e��t

�
{t
p
n}+ log

 r
1 + e��t

2

!
+ o(1),

(3.3)

where B(t) is as defined in Theorem 1.9.

As observed above, Proposition 3.1 implies log qt(n) ⌧ B(t)
p
n, but we will see

later that the two are actually asymptotic.

3.1.2 Probabilistic Model

From probability theory we will require the elementary notions of expectation,

variance and distribution of discrete random variables, as well Fourier inversion of

characteristic functions (which in this context is equivalent to an application of

Cauchy’s Theorem from complex analysis). We will also mention central and local

limit theorems. All of these topics are covered in most standard probability texts;

for instance see [9].

We now repair the inequality (3.1) by introducing a certain probability measure

depending on x as

Px(N = k) =
qt(k)xk

Qt,n(x)
, so that qt(n) = x�nQt(x)Px(N = n). (3.4)

31



We define Px and the random variable N below. As in section 3.1.1, we will even-

tually choose x = e�
�p
n . At any rate, Px(N = n)  1 and we will see that it does

not a↵ect the exponential part of the asymptotic for qt(n).

Our probability measure Px is similar to the ones introduced by Fristedt [25],

who invented an early variant of a Boltzmann model for partitions and used it

to prove many far-reaching results on the structure of partitions. When applied

to partitions, Boltzmann sampling algorithms select partitions of size roughly n,

roughly uniformly and in nearly linear time, assuming n is large. (See [23] for more

on Boltzmann sampling for combinatorial structures.)

Following Fristedt, we define a probability measure Px on the set of partitions �

generated by Qt,n by setting

Px(�) :=
x|�|

Qt,n(x)
,

where |�| is the size of the partition �, i.e. the sum of its parts. Here, Px depends on

n, but we will refrain from notating this because x will depend on n as in Section

3.1.1.

Let {Xk}t
p
n

k=1 be random variables giving the multiplicity of k in a partition �.

Since our partitions have distinct parts, Xk is Bernoulli and one computes

Px(Xk = 0) =
1

1 + xk
and Px(Xk = 1) =

xk

1 + xk
.

It is also straightforward to show that the Xk’s are independent under Px. Now set

N :=
P

kt
p
n
kXk, a random variable representing the size of a partition. Using

independence, its expectation and variance under Px are

Ex(N) =
X

kt
p
n

kxk

1 + xk
, �2

n
:= Varx(N) =

X

kt
p
n

k2xk

(1 + xk)2
. (3.5)
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Figure 3.1. Plots of Px(N = k) when t = 3 and n = 400 (red), 900 (blue) and 1600
(purple), generated using Maple.

Returning to (3.2), we see that f 0
n
(y) ⇠ 0 if and only if Ex(N) ⇠ n, so the

choice y = � ensures that the expectation of N is asymptotically n under Px with

x = exp
⇣
� �p

n

⌘
. Thus, we prove the following.

Proposition 3.2. With x = exp
⇣
� �p

n

⌘
, we have

Ex(N) = n+O(
p
n), (3.6)

and

�2
n
= Varx(N) =

t

(1 + e�t)�0(t)
n

3
2 +O(n). (3.7)

In fact, we will show that N�n

�n
is asymptotically normally distributed under Px

(see Figure 1), and so a sort of central limit theorem holds for the Xk. Heuristically,

this suggests that Px(N = n) ⇠ 1p
2⇡�n

, as follows: N takes only integer values, so

we expect

Px(N = n) = Px

✓
�1

2
 N � n  1

2

◆
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= Px

✓
� 1

2�n

 N � n

�n

 1

2�n

◆

⇡ 1p
2⇡

Z 1
2�n

� 1
2�n

e�
u2

2 du

⇠ 1p
2⇡�n

.

Since qt(n) = x�nQt,n(x)Px(N = n), the above local limit theorem, together with

Proposition 3.1, implies Theorem 1. Our final proposition is a formal statement of

the asymptotic normality of N�n

�n
together with the above heuristic.

Proposition 3.3. With x = exp
⇣
� �p

n

⌘
, we have

lim
n!1

Px

✓
N � n

�n

 v

◆
=

1p
2⇡

Z
v

�1
e�

u2

2 du, for v 2 R. (3.8)

Moreover,

Px(N = n) ⇠ 1p
2⇡�n

. (3.9)

The proof of Proposition 3.3 proceeds via Fourier inversion of the characteristic

function for N ; it is here that the circle method is hidden and here that we need

our most technical estimates.

3.2 The Functions �(t), B(t) and A(t).

In this section, we prove the claimed limits in Remark 1.10 and record some ad-

ditional properties of the functions �(t), B(t) and A(t) := An(t)
�
1 + e��t

�{tpn}
.

Here and in later sections, we require properties of the dilogarithm function, Li2(z),

which we defined in Section 1.1. (See also [1], §27.7, where f(x) = Li2(1� x).)

Proposition 3.4. The function � = �(t) satisfies the following properties.

(a) We have 8
>>>>>><

>>>>>>:

�(t) < 0 if
p
2 < t < 2,

�(t) = 0 if t = 2

�(t) > 0 if t > 2.
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(b) � is well-defined by (1.5); in particular, � is strictly increasing with

�0(t) =

8
>><

>>:

�t

2(1+e�t)�t2
for t 6= 2,

3
2 for t = 2.

(3.10)

(c) The following limits hold:

lim
t!

p
2
+
�(t) = �1 lim

t!1
�(t) =

⇡

2
p
3
. (3.11)

Proof. If t > 2, then we must have �(t) > 0, for if not,

1 =

Z
t

0

u

1 + e�u
du >

1

2

Z
t

0

udu =
t2

4
,

which leads to the contradiction 2 > t. A similar argument proves the remaining

statements in part (a).

For t 6= 2, we rewrite (1.5) as

�2(t) =

Z
�(t)t

0

u

1 + eu
du, (3.12)

and take the derivative of both sides to get

�0(t) =
�t

2(1 + e�t)� t2
, for t 6= 2.

To find �0(2), we use the first two terms of the Taylor series for the integrand in

(3.12) to write

�2 =
�2t2

4
� �3t3

12
+O

�
�5t5

�
,

for t near 2 (so � near 0). This implies

� =
3

t
� 12

t3
+O(�3t2),

and thus by L’Hospital’s Rule,

�0(2) = lim
t!2

�(t)

t� 2
= lim

t!2

3
t
� 12

t3
+O(�3t2)

t� 2
= lim

t!2

�3

t2
+

36

t4
=

3

2
.
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We see that �0(t) > 0 for t > 2 by observing

1 =

Z
t

0

u

1 + e�u
du >

1

1 + e�t

Z
t

0

udu =
1

1 + e�t
· t

2

2
. (3.13)

A similar argument shows that �0(t) > 0 for
p
2 < t < 2 also. Thus, part (b) is

proved.

The first limit in (3.11) is easy to see, for

1 =

Z
t

0

u

1 + e�u
du 

Z
t

0

udu =
t2

2
,

and thus as t !
p
2
+
, we must have �(t) ! �1. We evaluate the second limit in

(3.11) by expressing the integral in (3.12) in terms of the dilogarithm. Thus, (3.12)

implies that for t > 2, we have

�(t)2 =

Z
t�(t)

0

u

1 + eu
du = Li2(1� e��(t)t)� 1

2
Li2(1� e�2�(t)t). (3.14)

Hence, limt!1 �(t)2 = ⇡
2

6 � ⇡
2

12 , so limt!1 �(t) = ⇡

2
p
3
, and part (c) is proved.

Proposition 3.5. The function B(t) in (1.6) is strictly increasing, and we have

the following limits for B(t) and A(t) := An(t)
�
1 + e��t

�{tpn}
:

lim
t!1

B(t) =
⇡p
3

and lim
t!1

A(t) =
1

4 4
p
3
.

Proof. We compute

B0(t) = 2�0(t)� te��(t)t

1 + e��(t)t
(�0(t)t+ �(t)) + log

�
1 + e��(t)t

�

= �0(t)

✓
2� t2e��(t)t

1 + e��(t)t

◆
� �(t)te��(t)t

1 + e��(t)t
+ log

�
1 + e��(t)t

�

= log
�
1 + e��(t)t

�
.

Thus, B(t) is a strictly increasing function, and one easily sees that limt!1 B(t) =

⇡p
3
.
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Finally, we can rewrite A(t) using �0(t) found in (3.10), and get

A(t) =
1

2

vuut
�(t) (1 + e��(t)t)

⇡
⇣
2� t2

1+e�(t)t

⌘ ,

from which it is clear that limt!1 A(t) = 1
4 4p3

.

3.3 Proofs of Propositions 3.1, 3.2 and 3.3

Recall that x depends on n and � as x = e�
�p
n . In the proofs of Propositions 3.1

and 3.3, we will need to separate the cases x > 1, x < 1 and x = 1, which after

Proposition 3.4 correspond to
p
2 < t < 2, t > 2 and t = 2, respectively. With this

in mind, we define

�(t) := ��(t), for
p
2 < t < 2, (3.15)

so that �(t) > 0 and x�1 = e�
�p
n < 1.

It is also necessary to account for the fact that t
p
n is not always an integer.

Thus, we define

tn :=
bt
p
ncp
n

= t� {t
p
n}p
n

, (3.16)

so that tn
p
n 2 N, and a sum over k  t

p
n is really a sum from k = 1 . . . tn

p
n.

Also, we may replace any di↵erentiable function f(tn) with f(t) + o(1). We will

often do this below when f(tn) is part of the constant term.

Proof of Proposition 3.1. Case 1: t > 2. The first iteration of Euler-MacLaurin

summation ([34], Appendix B) picks o↵ the claimed main term and constant term:

logQt (x)

=
tn

p
nX

k=1

log
⇣
1 + e

��kp
n

⌘

=

Z
t
p
n

1

log
⇣
1 + e

��up
n

⌘
du�

Z
t
p
n

tn
p
n

log
⇣
1 + e

��up
n

⌘
du

+
1

2

⇣
log

⇣
1 + e

��p
n

⌘
+ log

�
1 + e��tn

�⌘
�
Z

tn
p
n

1

�p
n
e�

�p
n
u

1 + e�
�p
n
u

✓
{u}� 1

2

◆
du
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=

p
n

�

Z
�t

�p
n

log
�
1 + e�v

�
dv �

p
n

�

Z
�t

�tn

log
�
1 + e�v

�
dv

+
1

2
log

⇣
1 + e

��p
n

⌘
+

1

2
log

�
1 + e��t

�
+ o(1)�

Z
�t

�p
n

e�v

1 + e�v

✓⇢p
nv

�

�
� 1

2

◆
du

=

p
n

�

⇣
Li2

�
�e��t

�
� Li2

⇣
�e�

�p
n

⌘⌘
� {t

p
n} log

�
1 + e��t

�

+
1

2
log

⇣
1 + e

��p
n

⌘
+

1

2
log

�
1 + e��t

�
+ o(1)�

Z
�t

�p
n

e�v

1 + e�v

✓⇢p
nv

�

�
� 1

2

◆
dv.

(3.17)

The latter integral is o(1) because it is the product of an L1 function and a bounded

oscillating function—as in the proof of the Riemann-Lebesgue Lemma, we prove

this first when e
�v

1+e�v is replaced by a step function, then we approximate e
�v

1+e�v in

L1 by step functions. For the rest of the expression, we apply the following identity

for the dilogarithm ([1], 27.7.6):

Li2(�x) = �⇡2

12
+ Li2(1� x)� 1

2
Li2(1� x2)� log x · log(1 + x). (3.18)

Thus, recalling (3.14), we obtain the following from (3.17), applying the relevant

Taylor series for the logarithm and dilogarithm:

p
n

�

✓
�2 + t� log

�
1 + e��t

�
� Li2

⇣
1� e�

�p
n

⌘
+

1

2
Li2

⇣
1� e�

2�p
n

⌘

� �p
n
log

⇣
1 + e�

�p
n

⌘◆
+

1

2
log

⇣
1 + e

��p
n

⌘
+

1

2
log

�
1 + e��t

�
+ o(1)

=
p
n
�
� + t log

�
1 + e��t

��
� 1 + 1� log(2) +

1

2
log(2) +

1

2
log

�
1 + e��t

�
+ o(1)

=
p
n
�
� + t log

�
1 + e��t

��
+ log

 r
1 + e��t

2

!
+ o(1).

Combining this with log (x�n) = �
p
n proves Proposition 3.1 when t > 2.

Case 2:
p
2 < t < 2. We first write

log
�
x�nDt,n(x)

�
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= ��
p
n+

tn
p
nX

k=1

log
⇣
1 + e

�kp
n

⌘

= ��
p
n+

tn
p
nX

k=1

✓
�kp
n
+ log

⇣
1 + e�

�kp
n

⌘◆

= ��
p
n+

�tn(tn
p
n+ 1)

2
+

tn
p
nX

k=1

log
⇣
1 + e�

�kp
n

⌘

= �
p
n

✓
t2
n

2
� 1

◆
+

�tn
2

+
tn

p
nX

k=1

log
⇣
1 + e�

�kp
n

⌘

= �
p
n

✓
t2

2
� 1

◆
� �t{t

p
n}+ �t

2
+

tn
p
nX

k=1

log
⇣
1 + e�

�kp
n

⌘
+ o(1). (3.19)

We then analyze the sum with Euler-MacLaurin summation as before:

tn
p
nX

k=1

log
⇣
1 + e�

�p
n

⌘

=

p
n

�

⇣
Li2(�e��t)� Li2(�e�

�p
n )
⌘
+

1

2
log

⇣
1 + e�

�p
n

⌘
+

1

2
log(1 + e��t)

� {t
p
n} log(1 + e��t) + o(1). (3.20)

This time we rewrite (1.5), the integral definition for � = ��, to get

�2 =

Z
t�

0

u

1 + e�u
du = �⇡2

12
+

�2t2

2
+ �t log(1 + e��t)� Li2(�e��t). (3.21)

We then apply this and the dilogarithm identity (3.18) to get the following from

(3.20), in a manner similar to Case 1:
p
n

�

✓
�2

✓
t2

2
� 1

◆
+ �t log(1 + e��t)� Li2(1� e�

�p
n ) +

1

2
Li2(1� e�2 �p

n )

� �p
n
log(1 + e�

�p
n )

◆
+

1

2
log(1 + e��t)� {t

p
n} log(1 + e��t) + o(1)

=
p
n

✓
�

✓
t2

2
� 1

◆
+ t log(1 + e��t)

◆
+ log

r
1 + e��t

2

� {t
p
n} log(1 + e��t) + o(1).

Combining with (3.19), we have the following expression for log (x�nDt,n(x)):

p
n
�
�
�
t2 � 2

�
+ t log(1 + e��t)

�
+ log

r
1 + e��t

2
+

�t

2
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� {t
p
n}

�
�t+ log(1 + e��t)

�
+ o(1)

=
p
n
�
�2� + t log(1 + e�t)

�
+ log

r
1 + e�t

2
� {t

p
n} log(1 + e�t) + o(1).

Replacing �(t) with ��(t) completes the proof when
p
2 < t < 2.

Case 3: t = 2. Here, we have � = 0 and x = 1, and so

x�nD2,n(x) = 2tn
p
n = 22

p
n�{2

p
n} = e2 log 2

p
n�log 2{2

p
n},

as required.

Proof of Proposition 3.2. The proof when t = 2 (and so x = 1) is straightforward.

Now let t 6= 2. We need only recognize the Riemann-Sums:

Ex(N) =
X

kt
p
n

k
e�

�kp
n

1 + e�
�kp
n

= n
X

kt
p
n

kp
n

e�
�kp
n

1 + e�
�kp
n

· 1p
n

= n

✓Z
t

0

ue��u

1 + e��u
du+O

✓
1p
n

◆◆

= n+O(
p
n),

by (1.5). We calculate the variance similarly, using integration by parts to evaluate

the integral. We also use the fact that e
�u

(1+e�u)2 = e
u

(1+eu)2 . Thus,

Varx(N) =
X

kt
p
n

k2 e
��kp

n

⇣
1 + e�

�kp
n

⌘2

= n
3
2

X

kt
p
n

✓
kp
n

◆2 e
��kp

n

⇣
1 + e�

�kp
n

⌘2 · 1p
n

= n
3
2

✓Z
t

0

u2e��u

(1 + e��u)2
du+O

✓
1p
n

◆◆

=
n

3
2

�3

Z
�t

0

u2eu

(1 + eu)2
du+O (n)
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=
n

3
2

�3

0

@� u2

1 + eu

�����

�t

0

+ 2

Z
�t

0

u

1 + eu
du

1

A+O(n)

=
n

3
2

�3

✓
� �2t2

1 + e�t
+ 2�2

◆
+O(n).

by (3.12). Combining and recalling (3.10) finishes the proof.

The proof of Proposition 3.3 is the most technical and will require the following

two lemmas.

Lemma 3.6. Let

fx(s) := log

✓
1 + eisx

1 + x

◆
� is

x

1 + x
+

s2

2

x

(1 + x)2
. (3.22)

There exists a constant c > 0 such that for any x 2 (0, 1) and any s 2 R, we have

|fx(s)|  c
x|s|3

(1� x)3
.

Lemma 3.7. Let ✏ 2
�
0, 12

⇤
and let k↵k denote the distance between ↵ and the

nearest integer. Then

inf
✏
n↵ 1

2

X

kn

kk↵k2 � n.

We append the proofs of these lemmas to Section 3.4. The proof of Lemma 3.6 is

similar to the proof of Lemma 1 in [36]. Roth and Szekeres [37] proved Lemma 3.7

for 1
2n  x  1

2 when {k} is replaced by a much more general sequence, but with

a weaker lower bound.

Proof of Proposition 3.3. To determine the asymptotic behavior of Px(N = n), we

will apply Fourier inversion to the characteristic function for N :

�x(s) := Ex(e
isN) =

X

k�0

Px(N = k)eisk =
1

Dt,n(x)

X

k�0

�
Coe↵[xk]Dt,n(x)

�
xkeisk

=
Dt.n(xeis)

Dt,n(x)
.
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Note that �x depends on n, although we refrain from notating this. We have

Px(N = n) =
1

2⇡

Z
⇡

�⇡

�x(s)e
�insds =

1

2⇡�n

Z
⇡�n

�⇡�n

�x

✓
u

�n

◆
e�i

nu
�n du. (3.23)

We break up this integral as
 Z

|u| �np
n
v0

+

Z

�np
n
v0|u|⇡�n

!
�x

✓
u

�n

◆
e�i

nu
�n du, (3.24)

where v0 is a su�ciently small constant, depending on t and chosen below. Note

that �n ⇣ n
3
4 , so �np

n
! 1. We show that the integral on the right in (3.24) tends

to 0, while for the left integral we show that, pointwise in u,

lim
n!1

�x

✓
u

�n

◆
e�i

nu
�n = e�

u2

2 . (3.25)

We then show that for some A0 > 0, the integrand �x

⇣
u

�n

⌘
is dominated by

e�A
0
u
2 2 L1(R). Thus, applying the Dominated Convergence Theorem,

lim
n!1

Z

|u| �np
n
v0

�x

✓
u

�n

◆
e�i

nu
�n du =

Z

R
e�

u2

2 =
p
2⇡, (3.26)

which when combined with (3.23) proves that Px(N = n) ⇠ 1p
2⇡�n

. A similar

application of the Dominated Convergence Theorem also implies (3.8), since the

characteristic function of N�n

�n
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⇣
eiu

N�n
�n

⌘
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⇣
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u
�n

N

⌘
e�iu

n
�n = �x

✓
u

�n

◆
e�iu

n
�n .

To carry out this plan, we separate the cases t > 2,
p
2 < t < 2 and t = 2.

Case 1: t > 2. Recalling the expectation and variance in (3.5), Proposition 3.2

implies

log

✓
�x

✓
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◆
e�i
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�n

◆
= log

⇣
Qt(xe

i
u
�n )

⌘
� log (Qt(x))� i
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�n
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X
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p
n
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!
� i
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+
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◆
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where fxk is as in Lemma 3.6. Using Proposition 3.2 and Lemma 3.6, we have

������
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◆������
 cu3
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⌘
,

since the integral converges. This proves (3.25).

Next, we find a dominating function in the range |u|  �np
n
v0. Here, we will set

v :=
p
n

�n
u, so |v|  v0. Recognizing Riemann sums, the following holds for such v

uniformly.
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The Taylor series for Li2(z) about z = �e��(t)t is

Li2
�
�e��t

�
+log

�
1 + e��t

� �
ze�t + 1

�
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e��t

1 + e��t
� log

�
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�
.

Substituting z = �e��t+ivt, we obtain the following:
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1� eivt

�

� 1

2

✓
e��t

1 + e��t
� log

�
1 + e��t

�◆ �
1� eivt

�2
+O(v3)

= Li2
�
�e��t

�
� it log

�
1 + e��t

�
v

+

 
t2 log

�
1 + e��t

�

2
+

t2

2
· e��t

1 + e��t
�

t2 log
�
1 + e��t

�

2

!
v2 +O(v3)

= Li2
�
�e��t

�
� it log

�
1 + e��t

�
v +

1

2
· t2

1 + e�t
v2 +O(v3). (3.29)

Also, note that
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v2 +O(v3). (3.30)

Thus, from (3.29) and (3.30), we choose v0 small enough so that the dominating

term for the real part of (3.28) is
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where we used the dilogarithm identity (3.18) with the alternate definition of �

given in (3.14). By (3.13), this is �A
p
nv2 for some A > 0. Hence, for some A > 0,

�����x

✓
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◆���� ⌧ e�A
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for |v|  v0.

This implies
����x

⇣
u
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⌘��� ⌧ e�A
0
u
2
for some A0 in the required range. Thus, (3.26)

is proved.
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For the remaining range, �np
n
v0  |u|  ⇡�n, we will use the substitution w := u

�n

and bound �x (w) for
v0p
n
 |w|  ⇡. Following the analysis of Roth and Szekeres

([37], p. 253), we write

����
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�
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.

Note that the expression on the far left is positive almost everywhere; therefore,

0 < 2xk(1�cos(wk))
(1+xk)2 < 1 almost everywhere. Thus, it is safe to expand the logarithm

as follows.
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Since v0p
n
 |w|  ⇡, the latter is ⌧ �
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n
. This implies that the right integral in (3.24) tends to 0, so Proposition

3.3 is proved for t > 2.
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where Lemma 3.6 was used as before to show that the sum is o(1). This proves

(3.25).

To find a dominating function in the range |u|  �np
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v0, we once again set v :=
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n

◆���� .

Thus, we may perform an analysis similar to Case 1 with � ! � and conclude that

the dominating part of Re
⇣
log �x

⇣
vp
n

⌘⌘
is

p
n(�v)2

✓
1

�
· 1
2
· t2

1 + e�t
+

t log (1 + e��t)

�2
� 1

�3
Li2

�
�e��t

�
� 1

�3
· ⇡

2

12

◆
.

We now apply the identity (3.18) for the dilogarithm with (3.21) to get

p
n
v2

�

✓
t2

2 (1 + e�t)
+ 1� t2

2

◆
=

p
n
v2

�

✓
2 (1 + e��t)� t2

2 (1 + e��t)

◆

=
p
nv2

✓
�t2

�0(t) · 2 (1 + e�t)

◆
,

which is negative by Proposition 3.4. Thus, as in Case 1,
����x

⇣
u

�n

⌘��� ⌧ e�A
0
u
2
for

some A0 in the required range, so (3.26) is proved.

As in Case 1, a similar application of Lemma 3.7 to �x�1(�w) shows that the

right integral in (3.24) tends to 0, so Proposition 3.3 is proved for
p
2 < t < 2.

Case 3: t = 2. For fixed u in the range |u|  �np
n
v0, where v0 will be specified

below, we write

�1

✓
u

�n

◆
e�i

un
�n =

Y

k2
p
n

1 + eik
u
�n

2
· e�i

un
�n =

Y

k2
p
n

cos

✓
k

u

2�n

◆
· ei

u
�n

⇣
n� tn

p
n(tn

p
n+1)

2

⌘
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=
Y

k2
p
n

cos

✓
k

u

2�n

◆
+ o(1),

since

tn
p
n(tn

p
n+ 1)

2
=

t2
n
n

4
+O(

p
n) = n+O(

p
n).

Note that, over the summation range, k = O(
p
n) uniformly, so k

�n
= O

⇣
1
4p
n

⌘

uniformly. Thus, the following holds for fixed u, where v0 is chosen so that the

logarithms below are defined:

log

✓
�1

✓
u

�n

◆
e�i

un
�n

◆
=

X

k2
p
n

log

✓
cos

✓
k

u

2�n

◆◆
+ o(1)

=
X

k2
p
n

log

✓
1� k2 u2

4�2
n

+O

✓
1

n

◆◆
+ o(1)

=
X

k2
p
n

✓
�k2 u2

4�2
n

+O

✓
1

n

◆◆
+ o(1)

= �u2 · t3
n
n

3
2

4�2
n
· 3 + o(1)

= �u2

2
+ o(1),

since �2
n
⇠ 2

3n
3
2 by Propositions 3.2 and 3.4. This proves (3.25).

To find a dominating function in the range |u|  �np
n
v0, we write vp

n
:= u

�n
once

again, and we choose v0 small so that the logarithms below are defined. Thus,

Re

✓
log �1

✓
vp
n

◆◆
=

X

k2
p
n

log cos

✓
v

k

2
p
n

◆

= 2
p
n

Z 1

0

log cos (vw) dw +O({2
p
n}) +O

✓
1p
n

◆

=
2
p
n

v

Z
v

0

log cos(w)dw +O(1).

It is not di�cult to calculate the following Taylor series about v = 0 (the knowledge

that the function is even is helpful):

1

v

Z
v

0

log cos(w)dw = �1

6
v2 +O(v4).

47



Thus, choosing v0 small enough, we have Re
⇣
log �1

⇣
vp
n

⌘⌘
⌧ e�A

p
nv

2
for some

A, which implies
����1

⇣
u

�n

⌘��� ⌧ e�A
0
u
2
for some A0 in the required range for u, so

(3.26) is proved.

Applying Lemma 2 as in Case 1, one can bound �1(w) for w = u

�n
in the required

range, and show that the right integral in (3.24) tends to 0. This proves Proposition

3.3 for t = 2.

3.4 Bounding Logarithmic Series: Proofs of Lemmas 3.6 and 3.7

This section completes the proof of Theorem 1.9 (and hence the proof of Theorem

1.7) by proving Lemmas 3.6 and 3.7.

Proof of Lemma 3.6. The proof is very similar to Lemma 1 in [36]. For |s|  1�x

2 ,

we have

log

✓
1 + xeis

1 + x

◆
=
X

j�1

1

j

�
(�x)j � (�x)jeisj

�

= �
X

j�1

(�x)j

j

X

k�1

(is)kjk

k!

= �
X

k�1

(is)k

k!

X

j�1

(�x)jjk�1, (3.31)

where swapping the order of summation in (3.31) is valid due to absolute conver-

gence for

|s|  1�x

2 . Indeed,

�����
X

k�1

(is)k

k!

X

j�1

(�x)jjk�1

����� 
X

k�1

sk

k

X

j�1

xj
n(n+ 1) · · · (j + k � 2)

(k � 1)!

X

k�1

x

k

✓
s

1� x

◆k

,

which converges.

Note that the k = 1 and k = 2 terms in (3.31) are, respectively,

�is
X

j�1

(�x)j = is
x

1 + x
and

s2

2

X

j�1

(�x)jj = �s2

2

x

(1 + x)2
.
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Thus, by (3.31), we obtain

|fx(s)| 
X

k�3

|s|k

k!

X

j�1

jk�1xj


X

k�3

x

k

✓
|s|

1� x

◆k

 x|s|3

3(1� x)3
· 1

1� |s|
1�x

 2x|s|3

3(1� x)3
.

For |s| � 1�x

2 , we have

�����i
x

1 + x
s+

1

2

x

(1 + x)2
s2
���� 

x|s|3

(1� x)|s|2 +
x|s|3

(1� x)2|s|  (4 + 2)
x|s|3

(1� x)3
,

so it remains to prove that for |s| � 1�x

2 ,

����log
✓
1 + xeis

1 + x

◆����  c0
x|s|3

(1� x)3
,

for some c0 > 0. For |s| � 1
4 , we have

����log
✓
1 + xeis

1 + x

◆���� 
X

m�1

xm

m

��1� eism
��

 �2 log(1� x)

 2
x

1� x

 2 · 43 x|s|3

(1� x)3
.

Finally, for 1�x

2  |s|  1
4 (which implies x � 1

2 and |s|
1�x

� 1
2), we have

����log
✓
1 + xeis

1 + x

◆���� 
����log

✓
1 +

x

1 + x
(eis � 1)

◆����


��log

�
1 + ie

s
2S
��� ,

where S = x

1+x
· 2 sin

�
s

2

�
satisfies

|S|  x|s|
1 + x

 x|s|
1� x

 4
x|s|3

(1� x)3
.
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The left-most inequality above implies |S|  1
4 . Thus,

��log
�
1 + ie

s
2S
���  |S|

1� |S| 
4

3
|S|  4

3
· 4 x|s|3

(1� x)3
,

and we are done.

Proof of Lemma 3.7. Let fn(↵) :=
P

kn
||k↵||2. We prove first that

inf
1
2n↵ 1

2

fn(↵) � n. (3.32)

The extension of (3.32) to the range
⇥
✏

n
, 12
⇤
for ✏ 2

�
0, 12

⇤
follows from

inf
✏
n↵ 1

2n

fn(↵) =
X

kn

k2 ✏
2

n2
� n.

Now, note that fn(↵) is piecewise a parabola of the form

X

kn

k2

✓
↵� `k

k

◆2

, gcd(`k, k) = 1.

Thus, we see by taking the derivative of f that its minimum in
⇥

1
2n ,

1
2

⇤
occurs

at a rational number (or possibly more than one). Therefore, it su�ces to show

that there is a constant c, independent of n, such that fn(↵) � cn for all rational

↵ 2
⇥

1
2n ,

1
2

⇤
. In what follows, we will be rather wasteful with our estimates, but for

clarity we will produce explicit constants at each step.

Naturally,

fn

✓
1

2

◆
�
jn
2

k1
4
� n

16
.

Now let ↵ = a

b
with gcd(a, b) = 1 and 3  b  n. For each j 2 [1, b� 1], we have

#{k  n : ka ⌘ j (mod b)} �
jn
b

k
.

Thus,

fn(↵) =
X

kn

���k
a

b

���
2

� 2 ·
X

j<
b
2

jn
b

kj2

b2
� 2 ·

jn
b

k 1

b2
b3

2 · 6 · 23 � 1

96
n.
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Now assume b > n, gcd(a, b) = 1, and 1
2n  a

b
 1

2 . If
b

2  na < b, then clearly

fn(↵) =
X

kn

���k
a

b

���
2

� a2

b2

X

kn
2

k2 � 1

22n2

n3

2 · 6 · 23 =
n

384
.

Now assume n
b
a

� 1 and note that a generates the additive group (mod b).

Partition the set {ka}n
k=1 into subsets between multiples of b as

⇢
a, 2a, . . . ,

j b
a

k
a

�
[
⇢
(
j b
a

k
+ 1)a, . . . , (2

j b
a

k
+ ⌘2)a

�
[ . . . ,

where the ⌘j 2 {0, 1}. There are at least
j

n

b b
a c

k
� 1 such sets, and each contains

a sequence of

j
b
a

k

2 � 1 elements that are at least a, 2a, . . . ,

j
b
a

k

2 a, respectively.

Hence, we have

fn(↵) �
j n

b b

a
c

k X

j

j
b
a

k

2

j2a2

b2
� n

2
j
b

a

k a
2

b2

j
b

a

k3

2 · 6 · 23 � n

768
,

since b

a
� 2 implies a

b

j
b

a

k
� 1

2 . Thus, (3.32) is proved and with it, Lemma 3.7.
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Chapter 4: Partition Inequalities

4.1 Notation

In this Chapter, we will use frequency notation to refer to partitions, where � =
�
. . . , 2f2 , 1f1

�
means that � contains exactly fi parts equal to i. For example,

(52, 2, 13) is the partition 5 + 5 + 2 + 1 + 1 + 1.

Recall that the M-modular diagram of a partition � = {�1, . . . ,�`} is a mod-

ification of the Ferrer’s diagram, wherein each �j is first written as Mq + r for

0  r < M, and then is represented as a row of q M ’s and a single r at the end of

the row. (See [2], p. 13.) These r’s we will refer to as ends or r-ends. For example,

the 10-modular diagram of � = (532, 46, 36, 16, 11, 1) has three 6-ends, two 3-ends

and two 1-ends:

10 10 10 10 10 3

10 10 10 10 10 3

10 10 10 10 6

10 10 10 6

10 6

10 1

1

We will also speak of attaching and removing a column from an M -modular

diagram. These operations are best defined with an example:
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10 10 10 10 10

10 10 10 10 10

10 10 10 10

10 10 10

10 10 10

10 10 10

10

[|{z}
attach

the column

10

10

10

�!

10 10 10 10 10 10

10 10 10 10 10 10

10 10 10 10 10

10 10 10 "
10 10 10

10 10 10

10

10 10 10 10 10

10 10 10 10 10

10 10 10 10

10 10 10

10 10 10

10 10 10

10 "

\|{z}
remove

the column

10

10

10

10

10

10

�!

10 10 10 10

10 10 10 10

10 10 10

10 10

10 10

10 10

10

We shall only attach or remove columns consisting entirely of M ’s, and it is easy

to see that these operations preserve M -modular diagrams.

4.2 Proof of Theorem 1.12

We provide a combinatorial proof via injection that is nearly identical to that

of Theorem 5.1 in [7], but we highlight a technical di↵erence that arises in the

general version. In keeping with [7], we let ⌫j = ⌫j(�) denote the number of parts

of � congruent to j (mod M). (The modulus never varies and will be clear from

context.)

Proof. First let L = 1. We will prove the general case as a consequence of this one.

For each n, we seek an injection

'1 :
�
(ak, b`) ` n : k, ` � 0

 
,!

�
(1k, c`) ` n : k, ` � 0

 
.
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Let d :=gcd(a, b). Explicitly, '1 is as follows:

'1

�
ak, b`

�
=

8
>>>>>><

>>>>>>:

�
1`+a(k�`), c`

�
if k � `, (Case 1)

�
1k+b(`�k), ck

�
if ` > k and a

d
- (`� k), (Case 2)

�
1k+1+b(`�k�1)�a, ck+1

�
if ` > k and a

d
| (`� k). (Case 3)

This definition can be motivated by noting that each pre-image consists either of

k pairs (a, b) and k � ` excess a’s, or of ` pairs (a, b) and ` � k excess b’s. (There

can also be no excess.) The pairs are mapped as (a, b) 7! (1, c). The excess a’s or

b’s are treated by the following cases.

Case 1. For the k � ` excess a’s, (a) 7! (1a).

Case 2. For the `� k excess b’s, (b) 7! (1b).

Case 3. For all but the last two excess b’s, (b) 7! (1b). For the last two b’s,

(b2) 7! (1b�a+1, c).

Note that in Case 3 there are at least two excess b’s, for if not, a

d
= 1 and then

a | b,

a contradiction. Also, by hypothesis, b > c

2 , so that 2b > c.

Let (1⌫1 , c⌫c) be a partition in the image of '1. The cases are separated as follows:

Case 1. a | (⌫1 � ⌫c),

Case 2. a - (⌫1 � ⌫c) and b | (⌫1 � ⌫c),

Case 3. ⌫1 � ⌫c ⌘ �b (mod a) and ⌫1 � ⌫c ⌘ �a (mod b).

This concludes the proof for L = 1.

Now let L � 2. Again we define an injection

'L : {� ` n : �j 2 {a, b, . . . , LM + a, LM + b}}
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,! {� ` n : �j 2 {1, c, . . . , LM + 1, LM + c}} .

Let � be a partition in the left set. Then � consists of the triple

�
�(a),�(b), (a

k, b`)
�
,

where �(a) is the M -modular diagram obtained by subtracting a from every part

of the form Mj + a; �(b) is defined similarly. We apply '1 to (ak, b`) and reattach

the 1-ends and c-ends based on the case into which (ak, b`) falls.

Case 1: k � `. Attach the 1-ends to �(a) and the c-ends to �(b). The map '1

guarantees exactly #�(b) c-ends. Likewise, there are at least as many 1-ends as

there are parts of �(a); any excess 1’s are attached as parts to �(a). The required

image of � is then the union of these two partitions.

Cases 2 and 3: ` > k. Attach the 1-ends to �(b) and the c-ends to �(a) as before.

'1 guarantees at least #�(a) c-ends. In Case 2 we are guaranteed at least #�(a)

1-ends because b > 1 implies

k + b(`� k) > `.

In Case 3, a

d
> 1 implies `� k > 1, so

k + 1 + b(`� k � 1)� a = `+ (b� 1)(`� k � 1)� a � `,

and we are guaranteed at least #�(a) 1-ends.

Given the image of �, we may clearly recover �(a) and �(b) based on its 1-ends

and c-ends and the fact that '1 is an injection. Thus, 'L is an injection.

Remark 4.1. The condition a - b in Theorem 1.12 is necessary to avoid cases like

1

(q, q5; q6)L
� 1

(q2, q4; q6)L
,
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in which the coe�cient of q4 is �1.

Remark 4.2. If we had copied the proof of Theorem 5.1 in [7] exactly, then the

conditions “a

d
|” and “a

d
-” would be replaced by “a |” and “a -”. But this is not

an injection because Case 2 is only correctly separated from the other two when

gcd(a, b) = 1. For example, this direct version of Berkovich-Garvan’s map gives:

8
>><

>>:

47, 64

44, 66
�! (116, 94), instead of our

8
>><

>>:

47, 64

44, 66
�!

8
>><

>>:

116, 94

17, 95
.

In the first example, the partitions fall into cases 1 and 2. The second example

corrects the overlap and places the partitions into cases 1 and 3.

We demonstrate the injection of Theorem 1.12 with an example.

Example 4.3. Here, (n,M,L, a, b, c) = (52, 10, 2, 4, 6, 9). Numbers above arrows

indicate the case into which a pre-image falls.

163, 4
3! 113, 92, 1

162, 14, 6
3! 19, 112, 9, 12

162, 62, 42
3! 112, 93, 13

162, 45
1! 192, 114

16, 142, 42
1! 19, 112, 111

16, 14, 63, 4
3! 19, 11, 92, 14

16, 14, 6, 44
1! 19, 11, 9, 113

16, 66
2! 11, 141

16, 64, 43
3! 11, 94, 15

16, 62, 46
1! 19, 92, 115

16, 49
1! 19, 133

143, 6, 4
1! 113, 9, 110

142, 64
3! 192, 9, 15

142, 62, 43
1! 112, 92, 112

142, 46
1! 112, 130

14, 65, 42
3! 19, 93, 16

14, 63, 45
1! 11, 93, 114

14, 6, 48
1! 11, 9, 132

68, 4
2! 9, 143

66, 44
3! 95, 17

64, 47
1! 94, 116

62, 410
1! 92, 134

413
1! 152

4.3 Proofs of Theorems 1.13 and 1.14

We begin by recalling the main steps in McLaughlin’s proof of Theorem 7 from

[33]; our proof is based on a combinatorial reading. First, Cauchy’s Theorem ([2],
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Th. 2.1) is used with some algebraic manipulation to write, for fixed m,

X

n�0

c(m,n)qn =
X

0k<
m
2

M |m�2k

qkM

(qM ; qM)m�k(qM ; qM)k

⇥
�
qa(m�2k) + q(M�a)(m�2k) � qb(m�2k) � q(M�b)(m�2k)

�
.

It then happens that the factor in parentheses is equal to

qa(m�2k)
�
1� q(b�a)(m�2k)

� �
1� q(M�b�a)(m�2k)

�
.

But the conditions on a, b andM that lead to the conditionM | (m�2k) in the sum

imply that both factors above are canceled in 1
(qM ;qM )m�k

. This gives nonnegativity.

The key steps in the proof are the decomposition of the sum over k and the

nonnegativity of

(1� qr)(1� qs)

(q; q)n
for 1  r < s  n.

Both of these have simple combinatorial explanations, which we employ with M -

modular diagrams to piece together a proof of Theorem 1.13. Our proof naturally

leads to the finite versions with any L � 1 instead of 1. The proof of Theorem

1.14 is then a slight modification.

Proof of Theorem 1.13. Let P(n,m, j, A) denote the set of partitions of n into m

parts congruent to ±j modulo M such that the largest part is at most A. (We have

suppressed the modulus M from the notation.) Let Pk(n,m, j, A) be the subset of

partitions � 2 P(n,m, j, A) with either ⌫j(�) = k or ⌫M�j(�) = k.

Clearly, we have the disjoint union P(n,m, j, A) =
F

0km
2
Pk(n,m, j, A). Thus,

to show

P(nM,m, b, LM � b) ,! P(nM,m, a, LM + a),

we may provide injections

'k : Pk(nM,m, b, LM � b) ,! Pk(nM,m, a, LM + a)
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for each k 2 [0, m2 ].

Each � 2 P(nM,m, b, LM � b) consists of a triple

�
�(b),�(M�b), (b

⌫b , (M � b)⌫M�b)
�
,

where �(b) is the M -modular diagram with ⌫b nonnegative parts created by remov-

ing the b-ends. The M -modular diagram �(M�b) is defined analogously by removing

the (M � b)-ends.

When k = m

2 , we simply map

'm
2

�
�(b),�(M�b), (b

m
2 , (M � b)

m
2 )
�
:=

�
�(b),�(M�b), (a

m
2 , (M � a)

m
2 )
�
.

The required partition is then obtained by reattaching the a-ends to �(b) and

reattaching the (M � a)-ends to �(M�b).

Now assume k < m

2 . Note that

0 ⌘ nM ⌘ b⌫b(�)� b⌫M�b(�) (mod M), (4.1)

which implies ⌫b(�) � ⌫M�b(�) ⌘ 0 (mod M) because gcd(b,M) = 1. Thus, we

assume without loss of generality that M | (m� 2k).

Let y := (b�a)(m�2k)
M

and z := (M�b�a)(m�2k)
M

. These are positive integers.

Case 1: ⌫M�b(�) = k. There are k pairs of (b,M � b) and m � 2k excess b’s. We

map

'k

�
�(b),�(M�b), (b

m�k, (M � b)k)
�
:=

0

BBBBBBB@

�(b) [

2

664

M
...

M

3

775

| {z }
y rows

,�(M�b), (a
m�k, (M � a)k)

1

CCCCCCCA

=:
�
�0
(b),�(M�b), (a

m�k, (M � a)k
�
.
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Here �0
(b) is the M -modular diagram formed by attaching the above column to �(b).

Note that a < b < M implies 0 < y < m � k, so that �0
(b) is still an M -modular

diagram with m� k nonnegative parts.

To obtain the required partition, attach the a-ends to �0
(b) and the (M �a)-ends

to �(M�b). It is evident that there are m parts. Size is preserved, as

|�0
(b)|+ |�(M�b)|+ (m� k)a+ k(M � a)

= |�(b)|+My + |�(M�b)|+ a(m� 2k) + kM

= |�(b)|+ (b� a)(m� 2k) + |�(M�b)|+ a(m� 2k) + kM

= |�(b)|+ |�(M�b)|+ b(m� 2k) + kM

= |�|.

Moreover, it is clear that the operations are reversible, so that, within Case 1,

'k is an injection.

Case 2a: ⌫b(�) = k and �(M�b) does not contain a column of height y.4 There are

k pairs of (b,M � b) and m� 2k excess (M � b)’s. We map

'k

�
�(b),�(M�b), (b

k, (M � b)m�k)
�
:=

0

BBBBBB@
�(b),�(M�b) [

2

664

M
...

M

3

775

| {z }
z rows

, (am�k, (M � a)k)

1

CCCCCCA

=:
�
�(b),�

0
(M�b), (a

m�k, (M � a)k
�
,

where �0
(M�b) is defined by attaching the above column. Note again that b, a < M

2

implies 0 < z < m� k, so that �0
(M�b) is still an M -modular diagram with m� k

nonnegative parts. Furthermore, b�a 6= M� b�a, so �0
(M�b) still does not contain

a column of height y.

4Or equivalently, the y-th part of �(M�b) equals the (y + 1)-st part.
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To obtain the required partition, attach the a-ends to �0
(M�b) and the (M � a)-

ends to �(b). It is evident that there are m parts. Size is preserved, as

|�(b)|+ |�0
(M�b)|+ (m� k)a+ k(M � a)

= |�(b)|+ |�(M�b)|+Mz + a(m� 2k) + kM

= |�(b)|+ |�(M�b)|+ (M � b� a)(m� 2k) + a(m� 2k) + kM

= |�(b)|+ |�(M�b)|+ (M � b)(m� 2k) + kM

= |�|.

Moreover, it is clear that the operations are reversible, so that, within Case 2a, 'k

is an injection.

Case 2b: ⌫b(�) = k and �(M�b) contains a column of height y.5 In this case we send

�
�(b),�(M�b), (b

k, (M � b)m�k)
�
7!

0

BBBBBBB@

�(b),�(M�b) \

2

664

M
...

M

3

775

| {z }
y rows

, (ak, (M � a)m�k)

1

CCCCCCCA

=:
�
�(b),�

0
(M�b), (a

k, (M � a)m�k
�
,

where �0
(M�b) is defined by removing the above column. As before, we still may

consider �0
(M�b) an M -modular diagram with m� k nonnegative parts.

To obtain the required partition, attach the a-ends to �(b) and the (M �a)-ends

to �0
(M�b). It is evident that there are m parts. Size is preserved, as

|�(b)|+ |�0
(M�b)|+ ka+ (m� k)(M � a)

= |�(b)|+ |�(M�b)|�My + kM + (M � a)(m� 2k)

= |�(b)|+ |�(M�b)|� (b� a)(m� 2k) + kM + (M � a)(m� 2k)

5Or equivalently, the y-th part of �(M�b) is strictly greater than the (y + 1)-st part.
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= |�(b)|+ |�(M�b)|+ (M � b)(m� 2k) + kM

= |�|.

Moreover, it is clear that the operations are reversible, so that, within Case 2b, 'k

is an injection.

Let
�
�(a),�(M�a), a⌫a , (M � a)⌫M�a

�
lie in the image of 'k. Then cases are sepa-

rated as follows.

Case 1: ⌫a > ⌫M�a and �(a) contains a column of height y.

Case 2a: ⌫a > ⌫M�a and �(a) does not contain a column of height y.

Case 2b: ⌫a < ⌫M�a.

Finally, note that in each case 'k adds at most M to the largest part of what

becomes �(a), so indeed 'k maps Pk(nM,m, b, LM � b) into Pk(nM,m, a, LM +a)

as required. This completes the proof of the first statement.

When M is even and a is odd, we can use exactly the same injections, assuming

because of (4.1) that m� 2k ⌘ M

2 (mod M). We note that gcd(b,M) = 1 implies

that b is also odd, so y and z are still integers.

Remark 4.4. We note that the extra factor 1
(1�qLM+a) in the left term of Theorem

1.13 is necessary. For example, in

1

(zq2, zq5; q7)2
� 1

(zq3, zq4; q7)2
,

the coe�cients of z7q70, z13q70, z16q70, and z18q70 are all negative.

The proof of Theorem 1.14 is similar, but now cases are determined by columns

that occur twice.
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Proof of Theorem 1.14. We define injections '0
k
to be the same as 'k, except that

in Cases 2a and 2b we condition on whether or not a partition contains two columns

of height y. This ensures that '0
k
preserves distinct parts partitions:

Case 1. Note that �(b) is a distinct parts partition into m�k nonnegative parts (so

0 occurs at most once). As such, �(b) must contain a column of height y. (Recall

that y < m� k.) Attaching another such column means that �0
(b) still has distinct

nonnegative parts. Attaching the ends as above also preserves distinct parts.

Case 2a. Again attaching the column to �(M�b) preserves distinct parts because

z < m � k. The fact that M � b � a 6= b � a implies that �0
(M�b) still does not

contain two columns of height y.

Case 2b. Since �(M�b) contains two columns of height y, removing one such column

preserves distinct parts.

Cases are separated as follows.

Case 1: ⌫a > ⌫M�a and �(a) contains two columns of height y.

Case 2a: ⌫a > ⌫M�a and �(a) does not contain two columns of height y.

Case 2b: ⌫a < ⌫M�a.

This concludes the proof.

Remark 4.5. Unlike in Theorem 1.13, it appears that the extra factor
�
1 + qLM+a

�

in the left term of Theorem 1.14 is often not needed for nonnegativity. A compu-

tational search up to M  12, L  20 and nM  250 reveals that for

X

m,n�0

d0(m,n)zmqn := (�zqa,�zqM�a; qM)L � (�zqb,�zqM�b; qM)L,

we have some d0(m,nM) < 0 only when (a, b,M) = (1, 2, 5).
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In fact, we can condition on more than just 2 columns to prove the following

new result.

Proposition 4.6. Let d � 0, 1  a < b < M

2 and gcd(b,M) = 1. Let p(d)(n,m, j, A)

denote the number of partitions of n into m parts congruent to ±j (mod M), whose

parts are at most A such that the gap between successive parts is greater than dM .

Then for all n,m � 0,

p(d)(nM,m, a, LM + a) � p(d)(nM,m, b, LM � b).

If in addition a is odd, then we also have

p(d)
✓
nM +

M

2
,m, a, LM + a

◆
� p(d)

✓
nM +

M

2
,m, b, LM � b

◆
.

Substituting d = 0 and d = 1 gives Theorems 1.13 and 1.14 respectively.

Proof. Let � =
�
�(b),�(M�b), (b⌫b , (M � b)⌫M�b)

�
be a partition counted by

p(d)(nM,m, b, LM � b). Then the M modular diagrams �(b) and �(M�b) are parti-

tions into nonnegative multiples on M such that the di↵erence in successive parts

is at least (d + 1)M . Our injections '(d)
k

are the same as before, except that we

condition in cases 2 or 3 on whether or not �(M�b) contains d+2 columns of height

y.

4.4 Applications to Kanade-Russell’s Conjectures

In [31], Kanade and Russell conjectured several new Rogers-Ramanujan-type product-

sum identities—three arising from the theory of a�ne Lie algebras, and several

companions. Bringmann, Jennings-Sha↵er and Mahlburg were able to prove many

of these [13], and they reduced the sum-sides of the four conjectures below from

triple series to a single series. Here, KRj is Identity j in [31], and Hj(x) is the sum

side as denoted in [13].
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KR4 : H4(1) =
1

(q, q4, q5, q9, q11; q12)1
,

KR4a : H5(1) =
1

(q, q5, q7, q8, q9; q12)1
,

KR6 : H8(1) =
1

(q, q3, q7, q8, q11; q12)1
,

KR6a : H9(1) =
1

(q3, q4, q5, q7, q11; q12)1
.

The pairs of sum-sides, (H4(1), H5(1)) and (H8(1), H9(1)), are composed of two

generating functions for partitions that satisfy the same set of gap conditions, but

H5 and H9 have an additional condition on the smallest part (see [31]). Hence, as

with the Rogers-Ramanujan sum-sides, we have the inequalities

H4(1)�H5(1) ⌫ 0 and H8(1)�H9(1) ⌫ 0,

which, if the conjectures are true, imply the following result.

Proposition 4.7. The following inequalities hold.

1

(q, q4, q5, q9, q11; q12)1
� 1

(q, q5, q7, q8, q9; q12)1
⌫ 0, (4.2)

1

(q, q3, q7, q8, q11; q12)1
� 1

(q3, q4, q5, q7, q11; q12)1
⌫ 0. (4.3)

Proof. (4.3) is an immediate consequence of Theorem 1.12, since for every L � 0,

1

(q, q8; q12)L
� 1

(q4, q5; q12)L
⌫ 0.

Multiplying both sides by the positive series 1
(q3,q7,q11;q12)1

and taking the limit as

L ! 1 finishes the proof of (4.3).

Andrews’ Anti-telescoping Method [4] works seamlessly to show (4.2). Define

P (j) := (q, q4, q11; q12)j and Q(j) := (q, q7, q8; q12)j,
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and note that the following implies (4.2):

1

P (L)
� 1

Q(L)
⌫ 0 for all L � 0. (4.4)

Now we write

1

P (L)
� 1

Q(L)
=

1

Q(L)

✓
Q(L)

P (L)
� 1

◆

=
1

Q(L)

LX

j=1

✓
Q(j)

P (j)
� Q(j � 1)

P (j � 1)

◆

=
LX

j=1

1
Q(L)

Q(j�1)P (j)

✓
Q(j)

Q(j � 1)
� P (j)

P (j � 1)

◆
,

whose j-th term is

(1� q12j�11)q12(j�1)

(q12j�11, q12j�5, q12j�4; q12)L�j+1(q, q4, q11; q12)j
⇥
�
�q7 � q8 + q4 + q11

�

=
(1� q12j�11)q12(j�1)

(q12j�11, q12j�5, q12j�4; q12)L�j+1(q, q4, q11; q12)j
⇥ q4(1� q3)(1� q4). (4.5)

The terms (1� q4) and (1� q12j�11) are cancelled in the denominator, and we can

write 1�q
3

1�q
= 1 + q + q2. Hence, (4.5) is nonnegative for every j, proving (4.4) and

then (4.2).

Another pair of identities in [31] with an Ehrenpreis Problem set-up is the fol-

lowing.

KR5 : H6(1) =
1

(q2; q4)1

Y

n�0

�
1 + q4n+1 + q2(4n+1)

�
,

KR5a : H7(1) =
1

(q2; q4)1

Y

n�0

�
1 + q4n+3 + q2(4n+3)

�

Both identities were proved in [13], and there is an obvious injection proving

1

(q2; q4)1

Y

n�0

�
1 + q4n+1 + q2(4n+1)

�
� 1

(q2; q4)1

Y

n�0

�
1 + q4n+3 + q2(4n+3)

�
⌫ 0,

namely, sending each (4n+ 3) to the pair (4n+ 1, 2).
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Finally, we discuss the Ehrenpreis problems among KR1, KR2 and KR3. These

were proved in [13], and their respective sum-sides were denoted H1(x), H2(x) and

H3(x). Using the methods of [31], we have found slightly di↵erent conditions for

the partitions enumerated on the sum-side:

1. No consecutive parts are allowed.

2. Odd parts do not repeat.

3. Even parts appear at most twice.

4. We have (�j,�j+1,�j+2) /2 {(2k, 2k, 2k + 2), (2k, 2k, 2k + 3), (2k + 1, 2k +

3, 2k + 5), (2k � 2, 2k, 2k)} for any j and k.6

Note that our fourth condition is changed slightly from Kanade and Russell’s in

[31], page 5. The sum-side of KR2 has the further restriction that the part 1 may

not appear, and in the sum-side of KR3, the parts 1, 2 and 3 may not appear.

Hence, H1(1) ⌫ H2(1) ⌫ H3(1) and it follows from Theorem 1.1 of [13] that

1

(q, q4, q6, q8, q11; q12)1
⌫ (�q3,�q9; q12)1

(q2, q4, q8, q10; q12)1
⌫ 1

(q4, q5, q6, q7, q8; q12)1
.

The inequality between the far left and right products is a consequence of The-

orem 5.3 of [7], but a direct proof of the other two inequalities remains open.

6As in [31], we have written parts in increasing order.
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Chapter 5: Conclusion

5.1 Asymptotic Statistics for Unimodal Sequences

The methods of Chapter 2 for deriving limit shapes of unimodal sequences seem

to be widely applicable, and one could readily apply them to derive limit shapes

for the other types of unimodal sequences described by Bringmann and Mahlburg

in [16]. It may also be profitable to further explore DeSalvo-Pak-type transfer of

limit shapes related to other unimodal sequences.

While limit shapes give very strong results “at the level of
p
n”, we still under-

stand very little of the structure of unimodal sequences in comparison to partitions.

The probabilistic methods of Fristedt [25] and Chapter 3 seem to not easily extend

to unimodal sequences because often the generating functions involved cannot be

written as products, which is what leads to independence in the Xk’s. It would be

interesting to develop methods that circumvent these apparent di�culties.

5.2 Partition Inequalities

As we pointed out in the introduction, the inequality

1

(q, q4; q5)1
� 1

(q2, q3; q5)1
⌫ 0

was the start of Andrews-Baxter’s “motivated proof” of the Rogers-Ramanujan

identities [5]. They defined G1 := (q, q4; q5)�1
1 and G2 := (q2, q3; q5)�1

1 , and then

recursively

Gi :=
Gi�2 �Gi�1

qi�2
, for i � 3. (5.1)
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They then observed computationally that Gi = 1+
P

n�i
gi,nqn ⌫ 0. Thus, as i !

1 the coe�cient of qn in Gi is eventually 0. This was their “Empirical Hypothesis,”

and proving it leads easily to a new proof of the Rogers-Ramanujan identities.

Note that, starting from the sum-sides of G1 and G2, the recursive definition

(5.1) and the Empirical Hypothesis are completely natural. For example, if RR

denotes the set of gap-2 partitions, then by the Rogers-Ramanujan Identities,

G1 �G2 =
X

�2RR
�31

q|�| = q

0

BB@1 +
X

�2RR
�j�3

q|�|

1

CCA ,

and so

G2 �G3 =
X

�2RR
�j�2
�j32

q|�| = q2

0

BB@1 +
X

�2RR
�j�4

q|�|

1

CCA ,

and so on.

For KR4, KR4a, KR6 and KR6a, we can expect the more complicated condi-

tions on the sum-sides to lead to more complicated recurrences. For example, the

recurrence below was shown for KR4 ([13], equation 4.2).

H4(x) = (1 + xq)H4(xq
2) + xq2(1 + xq3)H4(xq

4) + x2q6(1� xq4)H4(xq
6).

Combinatorial proofs of the above and the similar recurrences in [13] may give

insight into an “Empirical Hypothesis” forKR4,KR4a,KR6 andKR6a. Indeed, the

techniques for “motivated proofs” have been expanded to accommodate identities

with gap-conditions more complicated than those of RR, notably in [20], [29] and

[32]. At the very least, it would be profitable to expand the techniques behind

“motivated proofs,” especially if they could be applied to asymmetric products

like those of Kanade-Russell.
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