
Louisiana State University Louisiana State University

LSU Scholarly Repository LSU Scholarly Repository

LSU Doctoral Dissertations Graduate School

May 2020

Predictive Modeling of Asynchronous Event Sequence Data Predictive Modeling of Asynchronous Event Sequence Data

Jin Shang

Follow this and additional works at: https://repository.lsu.edu/gradschool_dissertations

 Part of the Artificial Intelligence and Robotics Commons, Databases and Information Systems

Commons, Longitudinal Data Analysis and Time Series Commons, Statistical Models Commons, and the

Theory and Algorithms Commons

Recommended Citation Recommended Citation
Shang, Jin, "Predictive Modeling of Asynchronous Event Sequence Data" (2020). LSU Doctoral
Dissertations. 5250.
https://repository.lsu.edu/gradschool_dissertations/5250

This Dissertation is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It
has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU
Scholarly Repository. For more information, please contactgradetd@lsu.edu.

https://repository.lsu.edu/
https://repository.lsu.edu/gradschool_dissertations
https://repository.lsu.edu/gradschool
https://repository.lsu.edu/gradschool_dissertations?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F5250&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F5250&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F5250&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F5250&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/822?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F5250&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/827?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F5250&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F5250&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/gradschool_dissertations/5250?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F5250&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

PREDICTIVE MODELING OF ASYNCHRONOUS EVENT
SEQUENCE DATA

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in

The Department of Computer Science

by
Jin Shang

B.S., University of Science and Technology of China, 2013
M.S., University of Science and Technology of China, 2016

August 2020

Copyright ©2020

Jin Shang

All Rights Reserved

ii

To my Mom and Dad.

iii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude and appreciation to my advisor, Dr. Mingxuan

Sun, for not only continuously supporting my study and related research but also her visionary,

inspiring, and insightful guidance. I would also like to thank my committee members, Dr. Kon-

stantin Busch, Dr. Jian Zhang, Dr. Hongchao Zhang and Dr. Boryung Ju for their valuable

discussions and constructive suggestions on my dissertation.

I am grateful to my colleagues: Zihan Zhou, Qing Wang, Qing Chen, Changbin Li, Fei Li,

Guangyue Xu, Zhongzhu Peng, and Alimire Nabijiang for discussions about research and study.

I would also like to thank Dr. Nina Lam, Zheye Wang, Kejin Wang and Volodymyr Mihunov

in the Department of Environmental Sciences for active discussions and close collaborations on

the research project. I have great memories and experiences at NewsBreak during my summer

internship. I would like to appreciate my mentor Dr. Ke Zhou for bringing me to to many new

fields, which greatly broadens the horizon of my research.

Finally, I want to thank my parents for their love and great support throughout my life.

iv

TABLE OF CONTENTS

ACKNOWLEDGMENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . ix

CHAPTER
1 INTRODUCTION . 1

1.1 Motivation . 1
1.2 Research Problems and Contributions . 1
1.3 Literature Survey . 4
1.4 Organizations . 6

2 LOCAL LOW-RANK HAWKES PROCESSES . 8
2.1 Introduction . 8
2.2 Model . 9
2.3 Parameter Estimation and the Algorithms . 15
2.4 Distance Measure, Kernel Calculation, and Anchor Point Selection 24
2.5 Experiments . 25

3 GEOMETRIC HAWKES PROCESSES . 37
3.1 Introduction . 37
3.2 Model . 38
3.3 Experiment and Results . 53

4 FAIRNESS-AWARE GRAPH CONVOLUTIONAL POINT PROCESSES 61
4.1 Introduction . 61
4.2 Background . 62
4.3 Model . 66
4.4 Learning and Optimization . 72
4.5 Convergence and Complexity . 75
4.6 Experiment and Results . 77

5 LIST-WISE FAIRNESS CRITERION FOR POINT PROCESSES 84
5.1 Introduction . 84
5.2 Motivation . 86
5.3 List-wise Fairness Criterion . 89
5.4 Learning . 99
5.5 Experiment . 101

6 CONCLUSIONS. 110
6.1 Summary. 110

v

6.2 Discussions and Future Research Directions . 111

REFERENCES . 112

VITA . 120

vi

LIST OF TABLES

2.1 Key notation. 10

2.2 Dataset description. 26

2.3 Average performance with different numbers of anchor points by
the global algorithms on IPTV, Yelp, and Reddit datasets. 32

2.4 Copenetic correlations of different distance metrics with different
methods for computing distance between clusters in Hierarchical
Clustering on IPTV dataset. 34

2.5 Average performance with different strategies of anchor point se-
lection on IPTV dataset. 35

2.6 Average performance with different numbers of anchor points by
global and parallel algorithms on IPTV dataset. 36

3.1 Key notations. 39

3.2 Test loss with respect to different graph propagation models on
IPTV dataset. 59

3.3 Average prediction performance comparison on IPTV, Yelp, and
Reddit datasets. 59

4.1 Key notations. 63

4.2 Dataset description. 77

4.3 Average prediction performance comparison on IPTV, Yelp, and
Reddit datasets. 80

4.4 Average prediction performance comparison of different propaga-
tion models on IPTV dataset. 80

4.5 The fairness performance of different metrics on IPTV dataset. 81

5.1 Example for ranking fairness. 88

5.2 Dataset description. 103

5.3 Average prediction performance before and after adding list-wise
fairness penalties. 107

vii

LIST OF FIGURES

2.1 Prediction accuracy on IPTV (top row), Yelp (middle row), and
Reddit (bottom row). 29

2.2 Test loss with respect to different combination methods of item fea-
tures on IPTV dataset. 30

2.3 Test loss versus smoothing kernel bandwidth on IPTV dataset. 32

3.1 Testing loss with respect to different graph inputs, different number
of neighbors, and architectures on IPTV data. 55

3.2 Test loss with respect to different combination methods of item fea-
tures on IPTV dataset. 57

3.3 Test loss with respect to different kernels on IPTV dataset. 58

4.1 Trade-off between prediction and fairness of IPTV and LinkedIn datasets. 82

5.1 Convergence of the algorithm on Portland dataset. 103

5.2 The NDCG@50 for different racial groups before and after adding
list-wise fairness penalties. 106

5.3 Fairness-accuracy curves for list-wise and list-sum fairness. 107

5.4 Case study for Hispanic/Latino population. 108

5.5 Case study for White population. 109

viii

ABSTRACT

Large volumes of temporal event data, such as online check-ins and electronic records of

hospital admissions, are becoming increasingly available in a wide variety of applications in-

cluding healthcare analytics, smart cities, and social network analysis. Those temporal events are

often asynchronous, interdependent, and exhibiting self-exciting properties. For example, in the

patient’s diagnosis events, the elevated risk exists for a patient that has been recently at risk. Ma-

chine learning that leverages event sequence data can improve the prediction accuracy of future

events and provide valuable services. For example, in e-commerce and network traffic diagnosis,

the analysis of user activities can be used to predict and control dynamic user traffic demand to

improves risk response efficiency. In this work, we investigate and design novel point process-

based models and learning algorithms to analyze dynamic event sequence data from various

aspects. (1) We first propose local low-rank Hawkes processes to capture the mutual influences

between sequences of multiple event types. (2) We then develop geometric Hawkes processes to

integrate geometric structures to point processes based on graph convolutional recurrent neural

networks to improve prediction accuracy. (3) We introduce several novel fairness metrics to pe-

nalize the event likelihood function in order to tackle the challenge of data bias and the amplified

through self-excitation in point processes. (4) We also propose a novel list-wise fairness crite-

rion for point processes that can efficiently evaluate the ranking fairness in event prediction, and

present a strict definition of the unfairness consistency property of a fairness metric.

ix

CHAPTER 1
INTRODUCTION

1.1 Motivation

With the fast development of modern communications, networks and mobile devices, mil-

lions of people around the world generate huge volumes of event data every day in a wide variety

of domains including social networks, business directory service, job market, and TV systems.

These event data are usually asynchronous, interdependent and exhibiting self-exciting proper-

ties, which contains a series of events with time stamp, marks and optionally high-dimensional

features. For example, in some business directory services like Yelp, we post our feedback to

the business which is likely to trigger or be triggered by other people’s feedback. The feedback

of a user can be viewed as a series of asynchronous interdependent events, and the content of

feedback as well as the user or business profiles can be transformed into some high-dimensional

features.

Modeling and analysis of these event sequence data by machine learning can improve the

prediction accuracy of future events and provide valuable services, for instance, making business

more profitable. However, traditional temporal analysis methods usually fail to tackle the prob-

lem of asynchronous event sequences, since they contain discrete events seemingly ”randomly”

distributed in the continuous-time domain. Thus, not only the order of events but also the time in-

tervals between them are crucial for describing the mutual influences between sequences, which

increases the difficulty of modeling and analysis. Fortunately, we can achieve this goal with the

help of temporal point processes theory.

1.2 Research Problems and Contributions

The main interests of our research lie in designing novel point process-based models and

learning algorithms to analyze dynamic event sequence data from various aspects. Specifically,

We investigate three challenging research problems:

• User-item Interaction Modeling. Hawkes processes have become very popular in mod-

eling multiple recurrent user-item interaction events that exhibit mutual-excitation properties in

1

various domains. Generally, modeling the interaction sequence of each user-item pair as an inde-

pendent Hawkes process is ineffective since the prediction accuracy of future event occurrences

for users and items with few observed interactions is low. On the other hand, multivariate Hawkes

processes (MHPs) can be used to handle multi-dimensional random processes where different di-

mensions are correlated with each other. However, an MHP either fails to describe the correct

mutual influence between dimensions or become computational inhibitive in most real-world

events involving a large collection of users and items.

To tackle this challenge, the Chapter 2 we propose local low-rank Hawkes processes to model

large-scale user-item interactions, which efficiently captures the correlations of Hawkes processes

in different dimensions. In addition, we design an efficient convex optimization algorithm to es-

timate model parameters and present a parallel algorithm to further increase the computation

efficiency. Extensive experiments on real-world datasets demonstrate the performance improve-

ments of our model in comparison with the state of the art.

• Incorporating Geometric Structure. Hawkes processes are popular for modeling corre-

lated temporal sequences that exhibit mutual-excitation properties. Existing approaches such as

feature-enriched processes or variations of Multivariate Hawkes processes either fail to describe

the exact mutual influence between sequences or become computational inhibitive in most real-

world applications involving large dimensions. Incorporating additional geometric structure in

the form of graphs into Hawkes processes is an effective and efficient way for improving model

prediction accuracy.

In Chapter 3, we propose the Geometric Hawkes Process (GHP) model to better correlate in-

dividual processes, by integrating Hawkes processes and a graph convolutional recurrent neural

network. The deep network structure is computational efficient since it requires constant param-

eters that are independent of the graph size. The experiment results on real-world data show that

our framework outperforms recent state-of-art methods.

• Balancing Performance and Fairness. Point processes are very popular in modeling self-

exciting user-item interaction events such as online check-ins, job-seeking events, and electronic

2

records of hospital admissions. Although current studies are promising in improving event pre-

diction accuracy, there are still critical research challenges due to data sparsity and imbalances

with respect to certain event groups. Firstly, the prediction accuracy for each user-item pair

may decrease when there are insufficient interaction events. Secondly, unfair predictions may be

generated due to data bias and can be amplified through self-excitation.

In Chapter 4, we propose a novel graph convolutional point process framework that incorpo-

rates dynamic coevolutionary feature embedding into the geometric structure to tackle data spar-

sity. We also introduce several novel fairness metrics to penalize the event likelihood function

to enforce fairness. These fairness metrics all enjoy convexity and permitting efficient optimiza-

tion as regularizers. Extensive experiments on real-world datasets demonstrate that our method

improves event prediction over baselines and controls the balance between accuracy and fairness

effectively.

• List-wise Fairness Criterion. Many types of event sequence data exhibit triggering and

clustering properties in space and time. Point processes are widely used in modeling such event

data with applications such as predictive policing and disaster event forecasting. Although cur-

rent algorithms can achieve significant event prediction accuracy, the historic data or the self-

excitation property can introduce biased prediction. For example, hotspots ranked by event haz-

ard rates can make the visibility of a disadvantaged group (e.g., racial minorities or the commu-

nities of lower social economic status) more apparent. Existing methods have explored ways to

achieve parity between the groups by penalizing the objective function with several group fairness

metrics. However, these metrics fail to measure the fairness on every prefix of the ranking.

In Chapter 5, we propose a novel list-wise fairness criterion for point processes, which can

efficiently evaluate the ranking fairness in event prediction. We also present a strict definition

of the unfairness consistency property of a fairness metric and prove that our list-wise fairness

criterion satisfies this property. Experiments on several real-world spatial-temporal sequence

datasets demonstrate the effectiveness of our list-wise fairness criterion.

3

1.3 Literature Survey

1.3.1 Local Low-rank Matrix Completion with Kernel Smoothing

Local low-rank matrix completion with kernel smoothing [51] has been applied to matrix

factorization, in which the observed ratings are formulated as a matrix and simulated with sev-

eral local mappings. Each local mapping is assumed to be low-rank and the missing ratings are

reconstructed with a non-parametric regression of those mappings. Previous work [51] mainly

focuses on two-dimensional matrix factorization without the temporal dimension. It enforces the

low-rank assumption by explicitly decomposing a matrix to the product of two low-rank matri-

ces. Variations of matrix completion methods [52, 53, 78] are widely applied in recommender

systems.

1.3.2 Temporal Point Process

Point processes have been widely used in various applications such as predictive policing [63,

62] and predicting recurrent online user behaviors [19, 83, 89]. High dimensional intertwined

stochastic processes have been introduced to capture coevolutionary dynamics in [25, 84, 79]

to achieve promising performance. Specifically, additional features such as user features, item

features, and user-item interaction features are embedded dynamically into the intensity of point

processes. However, the prediction accuracy of future event occurrences usually decreases for

users and items with very few observed interactions.

1.3.3 Hawkes Process

Hawkes processes [35] can be used in a variety of applications such as inferring granger

causality [87], modeling patient records in smart health [89], and predicting online social ac-

tivities [97]. For example, a multi-dimensional Hawkes process has been proposed by Zhou et

al. [97] to learn the social event diffusion in sparse low-rank networks. A multivariate Hawkes

process has further been proposed by Farajtabar et al. [24] to capture both endogenous and ex-

ogenous event intensities in social network events. Limitations of the multivariate Hawkes pro-

cess such as the computational inefficiency for modeling real-world events have been studied

in [22, 45, 32].

4

For modeling collections of user-item interactions, Du et al. [20] assume that sequences of

all user-item pairs are independent and the coefficients of all these point processes have low rank

structure. A co-evolutionary latent feature process [84] has been further proposed to construct in-

terdependent Hawkes processes by taking advantage of additional features such as user features,

item features, and interaction features between users and items. Those features are globally em-

bedded to Hawkes processes.

1.3.4 Geometric Deep Learning

Recently, geometric deep learning becomes promising because the convolutional framework

can be applied on non-Euclidean data, e.g, graphs, to extract important features. Some studies

such as [67] focus on the vertex domain. However, it’s hard to define an appropriate neighbor

for each vertex and the extracted features sometimes are not representative especially on high

dimensional data structure. Another way is to formulate graph convolutional on spectral do-

main [8, 18, 44, 65], which is more widely used in recently research works.

The first version of Graph Convolutional Network (GCN) [8] contains n convolutional kernel

parameters, which is not only computationally prohibitive but also lacks spatial localization. To

solve these problems, ChebyNet [18] uses Chebyshev polynomial localized filters to replace the

diagonal matrix, which reduces the computation complexity from O(n2) to O(n). Based on this

type of framework, a lot of studies [44, 65] apply GCN to several specific tasks such as text

classification, traffic forecasting, and matrix completion.

1.3.5 Fairness in Machine Learning.

Machine learning and artificial intelligence (AI) systems exhibit bias due to a number of

factors including the human bias in training data and the design of algorithm models [3]. It is

also well known that machine learning and AI algorithms may reproduce and even amplify human

biases and social inequities especially in applications involving feedback loops such as predictive

policing [39, 62]. There are many definitions of fairness such as group parity [9], equalized odds

[34, 94], individual fairness [21], and counterfactual fairness [71]. Group parity and its variations

are widely applied in classification and regression tasks [42, 92, 7].

5

The impact of imposing fairness constraints to machine learning and AI is dependent on the

specific domain datasets, the specific fairness definition, and the prediction algorithms. Most of

the models and algorithms proposed to improve fairness fall into three categories: pre-processing

[96, 57], optimization at training time [42, 94, 10], and post-processing [26, 34]. Generally,

training time optimization, which is domain-specific, can achieve good performance on accuracy

and fairness measures and offers the flexibility to balance the trade-off between accuracy and

fairness measures.

Recent studies have focused on the fairness problem of ranking. Specifically, a fairness

measure is proposed in [90] to compare the distributions between two demographic groups at

several prefixes with a discount factor based on an inverse logarithmic function. However, the

definition of ranking fairness is heuristic with no rigorous proof and only preliminary results are

demonstrated. An auditing framework is proposed [46] to measure search engine bias. The work

focuses on auditing ranking algorithms to identify the sources of bias rather than generating a

fair ranking list. A recent work [95] presents a ranked group fairness criterion based on the

statistical hypothesis testing. The method can adjust a ranking list so that a minimal number of

instances in protected groups must appear in the top-k list to guarantee a fair criterion. However,

this post-processing algorithm and the training of ranking function are independent and thus the

adjustment is limited. A variation of group parity is proposed in [62] for top-K crime hotspots

prediction. The fairness loss is integrated into the likelihood of event occurrences and the model

parameters are penalized so as to balance the trade-off between accuracy and fair loss. However,

the fairness metric does not guarantee group parity at any point in the ranked list.

1.4 Organizations

The remainder of this research proposal is organized as follows. In Chapter 2, we propose

local low-rank Hawkes processes to capture the mutual influences between sequences of multi-

ple event types. In Chapter 3, we present geometric Hawkes processes to integrate geometric

structures to point processes based on graph convolutional recurrent neural networks to improve

prediction accuracy. Then in Chapter 4, we introduce several novel fairness metrics to penal-

6

ize the event likelihood function in order to tackle the challenge of data bias and the amplified

through self-excitation in point processes. Finally in Chapter 5, we propose a novel list-wise

fairness criterion for point processes that can efficiently evaluate the ranking fairness in event

prediction, and present a strict definition of the unfairness consistency property of a fairness

metric. Chapter 6 concludes this dissertation and discusses future research directions.

7

CHAPTER 2
LOCAL LOW-RANK HAWKES PROCESSES

2.1 Introduction

Hawkes processes have become very popular in modeling recurrent user-item interaction

events that exhibit mutual-excitation properties in various domains [97, 24]. For example, Hawkes

processes can be used to model user behaviors in online services, where the interaction of a user

with an item such as visiting a website or watching a movie may trigger future interactions with

other correlated items. Recent approaches [20, 86] treat the event occurrences of each user-item

pair as a point process and predict the next occurrence of user-item interaction based on previous

interactions. Accurate modeling user-item interactions may have significant economic impact on

online platforms such as revenue boost due to targeted advertising.

Formally, the Hawkes process for modeling an interaction sequence of a single user-item pair

(u, i) can be characterized by parameters such as a base intensity and a self-exciting coefficient

that captures the influence of each previous event. Intuitively, m-by-n Hawkes processes can be

used to model interaction sequences for m users and n items, where the base intensities and the

self-exciting coefficients are represented as m-by-n matrices, respectively. Since users and items

can usually be grouped into a limited number of clusters, we can assume that each parameter

matrix has a low-rank structure. However, the prediction accuracy of future event occurrences for

users and items with few observed interactions is low since the point processes are independent of

each other [20]. In fact, only a few recurrent events such as purchases are observed for a majority

of pairs of users and items in many large-scale real-world scenarios.

One way to alleviate the cold-start issue is to incorporate auxiliary features such as user de-

mographics and item content features. For example, a coevolutionary model [84] takes advantage

of auxiliary features such as item genres and incorporates the former events of all user-item pairs

with different weights. The time prediction performance has been improved since more data are

used to fit the model parameters of each user-item pair, but the item prediction performance has

decreased due to the combination of the events from all user-item pairs.

8

On the other hand, a multivariate Hawkes process (MHP) [35, 56] can be used to handle a

multi-dimensional (e.g., N = m× n) random process where different dimensions are correlated

with each other. Specifically, the conditional intensity for the i-th dimension is characterized by

the base intensity and the linear combination of the influences of events occurred in every other

dimension on the i-th dimension. Extensive research [54, 23, 22, 87] has focused on estimating

the N × N excitation matrix of a multivariate process for various inference tasks. However,

an MHP either fails to describe the correct mutual influence between dimensions or becomes

computational expensive in most real-world applications involving a large collection of event

sequences [22, 45, 32].

In this chapter, we propose local low-rank Hawkes processes to model large-scale user-item

interactions, which efficiently captures the correlations of Hawkes processes in different dimen-

sions. Specifically, a Hawkes process is used to model the interaction sequence of each user-item

pair. The parameter matrices for all processes, such as the base intensity matrix and self-exciting

coefficient matrix, are assumed to behave as low-rank matrices in the neighborhoods of cer-

tain user-item combinations. Each parameter matrix is expressed as a smoothed aggregation of

several low-rank matrices that approximate the parameters in local neighborhoods. We adopt

non-parametric kernel smoothing to aggregate several local models into a unified model approxi-

mation. Based on the local low-rank approximation, the Hawkes processes for all user-item pairs

are correlated due to the similarities between local mappings of the parameter matrices.

2.2 Model

We first introduce the background of Hawkes processes in Section 2.2.1 and then present the

local low-rank Hawkes processes in Section 2.2.2 and 2.2.3. We list key notation in Table 2.1.

2.2.1 Background on Hawkes Process

A temporal point process is a random process [17, 1] and the realization of the process

consists of a list of discrete temporal events T = {ti}ni=1. It is basically a counting process that

counts the cumulative number of events {N(t), t ≥ 0} occurring right before time t. A counting

process is also a submartingale, i.e., E[N(t)|Tt′] ≥ N(t′) for all t > t′, where Tt′ = {ti|ti < t′}ni=1

9

Table 2.1: Key notation.

Variable Description

m number of users
n number of items
T u,i a list of discrete temporal events for user-item pair (u, i)
O observed sequences of all user-item pairs
P number of pairs that contain a sequence of observed events in O
tu,ii i-th event in T u,i
λ(t) Hawkes process intensity function
η base intensity in Hawkes process
α self-exciting coefficient in Hawkes process

λ(u,i)(t) Hawkes process intensity for user-item pair (u, i)

κσ(t) kernel function in Hawkes process with bandwidth σ
Hu,i (u, i)-th entry of the base intensity matrix for user-item pair (u, i)
Au,i (u, i)-th entry of the self-exciting coefficient matrix for user-item pair (u, i)
q number of anchor points
s user-item pair (u, i)
τ τ -th entry of a list of q anchor points
sτ user-item anchor pair (aτ , bτ) for the τ -th anchor points
Hsτ base intensity matrix for the τ -th anchor point pair sτ
Asτ self-exciting coefficient matrix for the τ -th anchor point pair sτ

Kh(s1, s2) smoothing kernel for user-item pairs s1 and s2 with bandwidth h
Ksτ
h matrix for τ -th anchor point whose (u, i)-th entry is Kh(sτ , (u, i))

H ′,K ′,A′ block matrices defined in eq. (2.8)
M{u, i} vector defined in eq. (2.9), whereM can beH ′,K ′ andA′

λ, β model trade-off factors for constraints
X model parameter block matrix [H ′;A′]
Z auxiliary variable block matrix [Z1;Z2]
ρ regularization factor
Xsτ τ -th local model parameter block matrix [Hsτ ;Asτ]
λτ , βτ τ -th local model trade-off factors for constraints
ρτ τ -th local model regularization factor

10

denotes the history up to but not including time t′. A temporal point process can be characterized

by the conditional intensity function λ(t), which models the occurrence of the next event given

all the previous events.

The functional form of the intensity function characterizes the temporal point process. For

example, the intensity of a homogeneous Poisson process is constant over time, i.e., λ(t) = η ≥

0. Alternatively, the Hawkes process, a conditional Poisson process, is particularly useful for

modeling the mutual excitation between events. For example, the intensity can be defined as:

λ(t) = η + α
∑
ti∈Tt

κσ(t− ti), (2.1)

where κσ(t) := exp(−t/σ) is an exponential kernel function capturing temporal dependencies,

η ≥ 0 is a base intensity capturing the long-term incentive to generate events, and α ≥ 0 is the

coefficient that magnifies the influence of each previous event.

Given a collection of events between m users and n items, the occurrences of user u’s inter-

action events with item i can be modeled as a self-exciting Hawkes process [35], i.e.:

λ(u,i)(t) = Hu,i +Au,i

∑
tu,ij ∈T

u,i
t

κσ(t− tu,ij), (2.2)

whereH denotes anm×nmatrix with the (u, i)-th entry equal to the non-negative base intensity

for user-item pair (u, i), andA denotes an m×n matrix with the (u, i)-th entry equal to the self-

exciting coefficient for user-item pair (u, i). The sequence T u,it = {tu,ij |t
u,i
j < t}nj=1 denotes

the set of historic events induced between user u and item i up to but not including time t. In

traditional approaches [86, 20], the two parameter matrices H and A are assumed to have low-

rank structures.

A univariate Hawkes process can be extended to a multivariate Hawkes process [35, 56]

to handle a multi-dimensional (e.g., m × n) random process where different dimensions are

correlated with each other. However, in most real-world events involving large dimensions m

11

and n, the parameter estimation of an MHP becomes inefficient [22, 45, 32].

2.2.2 Local Low-Rank Hawkes Process

Assuming that the mapping from user-item pairs to parameters is slowly varying, the param-

eter matrices H and A for all user-item pairs s = (u, i) ∈ [m] × [n] can be characterized by a

smoothed combination of multiple low-rank matrices in a way similar to [51]. Specifically, we

assume that there exists a metric over the user-item space [m] × [n]. The distance between pair

s1 = (a1, b1) and pair s2 = (a2, b2) is denoted by d(s1, s2) = d((a1, b1), (a2, b2)), which reflects

the similarity between rows a1 and a2 and columns b1 and b2. We assume that there is a set of

q < m · n anchor user-item pairs and each of them is associated with a base intensity matrix

Hsτ and a self-exciting coefficient matrix Asτ , τ = 1, 2, ..., q. If d(s1, s2) is small, Hs1 and

As1 are similar toHs2 andAs2 , respectively, by their spatial proximity in the embedding Rm×n.

Typically, for an anchor pair sτ = (aτ , bτ) ∈ [m] × [n], the neighborhood {s′ : d(sτ , s
′) < h}

in the original matrices H and A can be approximated by the corresponding entries of matrices

Hsτ andAsτ .

Furthermore, we recover the mapping parameter matricesH andA from aggregating a set of

q < m·nmatrices without imposing a specific function form. Following common non-parametric

approaches, we define a smoothing kernelKh(s1, s2), s1, s2 ∈ [m]×[n] for user-item pairs, which

is a non-negative symmetric unimodal function parameterized by a bandwidth parameter h > 0.

There are many popular choices of smoothing kernels, such as the Gaussian Kernel, Logistic

Kernel, Sigmoid Kernel, and Silverman Kernel, defined as follows, respectively:

Kh(s1, s2) ∝ exp(−1

2
h−2d(s1, s2)2), (2.3)

Kh(s1, s2) ∝ 1

exp(d(s1, s2)/h) + 2 + exp(−d(s1, s2)/h)
, (2.4)

12

Kh(s1, s2) ∝ 1

exp(d(s1, s2)/h) + exp(−d(s1, s2)/h)
, (2.5)

Kh(s1, s2) ∝ exp(−|d(s1, s2)/h|√
2

) · sin(
|d(s1, s2)/h|√

2
+
π

4
). (2.6)

We adopt a type of locally constant kernel regression [82] to aggregate multiple local matrices.

For simplicity, we use the same smoothing kernel and the same bandwidth for base intensity η and

coefficient α. That is, for each user-item pair s = (u, i), the occurrences of user u’s interactions

with item i are modeled as a local low-rank Hawkes process with the following intensity:

λs(t)=

q∑
τ=1

Kh(sτ , s)∑q
k=1Kh(sk, s)

[Hsτ
s +Asτ

s

∑
tsj∈T st

κσ(t−tsj)], (2.7)

where Hsτ
s and Asτ

s are the s-th entry of the τ -th base intensity matrix Hsτ and self-exciting

matrix Asτ , τ = 1, 2, ..., q, respectively. Note that we have matrix index s = (u, i). Since the

users and the items in each matrix can be grouped into a limited number of sets with similar types,

we assume thatHsτ andAsτ have low-rank structures. This means that the nuclear norms of the

parameter matrices, ‖Hsτ‖∗ and ‖Asτ‖∗, are small. Therefore, the mapping parameter matrices

H and A in eq. (2.2) have local low-rank structures, and the local low-rank Hawkes process

in eq. (2.7) is actually based on the weighted summation of q low-rank Hawkes processes in

eq. (2.2). Specifically, our local low-rank Hawkes model is equivalent to the low-rank Hawkes

model [20] when the number of anchor points is equal to one, i.e., q = 1.

To simplify the notation, we denote byK(a,b)
h the matrix whose (i, j)-entry isKh((a, b), (i, j)).

Given a series of anchor points, e.g., sτ ∈ 1, ..., q, let Cs =
∑q

k=1Kh(sk, s), the denominator of

which is the summation of the kernel weights and is actually a constant for each (u, i) pair. We

further create three block matricesH ′,K ′, andA′ ∈ Rm×(q∗n) by concatenating a set of matrices

13

Hsτ , Ksτ
h , andAsτ as follows:

H ′ = [Hs1 , ...,Hsq],A′ = [As1 , ...,Asq],K ′ = [Ks1
h , ..., K

sq
h]. (2.8)

Also, letM{u, i} be a vector extracted from a matrixM for each (u, i) pair:

M{u, i} = [M s1(u, i), ...,M sq(u, i)], (2.9)

whereM can be any of the three matricesH ′,A′, andK ′.

2.2.3 Objective Function

Based on the survival analysis theory [1], the likelihood of observing a sequence of events

T = {ti}ni=1 is
∏

ti∈T λ(ti) · exp(−
∫ T

0
λ(τ)d(τ)), where T is the total observation time. Specif-

ically, let T u,i be the set of interaction events between entities u and i. The log-likelihood of

observing each sequence T u,i is:

L(T u,i |X) =
∑

tu,ij ∈T u,i

log(X>u,iΦ
u,i
j)−X>u,iΨu,i, (2.10)

where:

Xu,i =(H ′{u, i},A′{u, i})>,

Φu,i
j =C−1

u,i (K
′{u, i} · 1, K ′{u, i} ·

∑
tu,ik <tu,ij

κσ(tu,ij − t
u,i
k))>,

Ψu,i =C−1
u,i (K

′{u, i} · T, K ′{u, i} ·
∑

tu,ij ∈T u,i

∫ T

tu,ij

κσ(t− tu,ij)dt)>. (2.11)

As a result, the log-likelihood of observing all user-item interaction sequences O = {T u,i}u,i is

a summation of terms by L(O) =
∑
T u,i∈O L(T u,i). We can obtain the model parameters X by

14

minimizing the following objective function:

OPT = min
X
− 1

|O|
∑
T u,i∈O

L(T u,i |X) + h(X), s.t.X ≥ 0, (2.12)

where h(X) = λ‖H ′‖∗ + β‖A′‖∗, X = [H ′;A′], and λ and β control the trade-off between

the constrains. The nuclear norm ‖·‖∗ is a summation of all singular values and it can be used as

a convex surrogate for the matrix rank [73]. Thus, minimizing ‖H ′‖∗ and ‖A′‖∗ ensures each

Hsτ andAsτ to be low-rank. After obtainingX , we can use eq. (2.7) to compute the intensity.

2.3 Parameter Estimation and the Algorithms

To estimate model parameters, we introduce an efficient framework to optimize the objective

in eq. (2.12). Specifically, we introduce the latest Primal Averaging Conditional Gradient (PA-

CndG) algorithm [50] based on the Proximal Gradient (PG) method [49, 66]. The algorithm,

also referred to as the global approach, is described in Section 2.3.1. The convergence analysis

of the algorithm is described in Section 2.3.2. We further present a parallel algorithm to increase

the computation efficiency in Section 2.3.3. Finally, the computational complexity analysis is

described in Section 2.3.4.

2.3.1 Approximate Function and Gradient Update

Directly solving the objective in eq. (2.12) is difficult because the non-negative constraints

are coupled together with the non-smooth nuclear norm. To tackle the difficulties, we approxi-

mate eq. (2.12) by adopting a penalty method [20, 84]. Given ρ > 0, we introduce an auxiliary

variable Z = [Z1;Z2] with the squared Frobenius norm, which leads to the new formulation in

eq. (2.13):

ÔPT = min
X,Z
− 1

|O|
∑
T u,i∈O

L(T u,i |X)+h(Z)+g(X,Z), s.t.X ≥ 0, (2.13)

where g(X,Z) = ρ‖H ′ −Z1‖2
F + ρ‖A′ −Z2‖2

F . In this formulation of eq. (2.13), the nuclear

norm regularization terms and the non-negativity constraints are handled separately. The approx-

imate objective can always be the upper bound of the real objective given the bounded ρ [20].

15

For simplicity, we set:

f(X,Z) = − 1

|O|
∑
T u,i∈O

L(T u,i |X) + g(X,Z), (2.14)

and the objective function becomes:

ÔPT = F (X,Z) = f(X,Z) + h(Z), s.t.X ≥ 0, (2.15)

Note that f(·) is convex and Lipschitz continuous gradient (L-smooth), and h(·) is convex.

Algorithm 1: Local Low-Rank Hawkes
Input: All the training events O = {T u,i}u,i; learning rate ξk; parameters ρ, λ, β;

number of anchor points q; kernel function K(·) of widths h1, h2; step size
γk ∈ [0, 1];

Output: X = [H ′;A′], which is the block matrix
for τ = 1→ q do

(aτ , bτ) := a random selected (u, i) pair;
for i = 1→ m do

Kaτ
h1

(i) := exp(−1
2
h−2d(aτ , i)

2);
end
for j = 1→ n do

Kbτ
h2

(i) := exp(−1
2
h−2d(bτ , j)

2);
end

end
Choose to initialize U 0

1;
SetX0 = Z0 = U 0

1 = U 0
2;

for k← 1 to MaxIter do
Set Y k−1

1 = (1− γk)Xk−1 + γkU
k−1
1 ;

Set Y k−1
2 = (1− γk)Zk−1 + γkU

k−1
2 ;

Compute the proximal operator forX:
U k

1 = (Y k−1
1 − ξk∇1(f(Y k−1

1 ,Y k−1
2)))+;

Use a local linear expansion of f for Z:
U k

2 = argminZ{〈∇2f(Y k−1
1 ,Y k−1

2),Z〉+ h(Z)};
SetXk = (1− γk)Xk−1 + γkU

k
1;

Set Zk = (1− γk)Zk−1 + γkU
k
2;

end

As shown in Algorithm 1, we apply gradient update for model parameters X and Z in each

iteration and keep three interdependent sequences Uk, Xk, and Y k based on the schema in [66].

16

Specifically, we directly compute the proximal operator for X with the constraint in Algorithm

1 as:

U k
1 =arg min

Uk1≥0
{ 1

2ξk
‖U k

1−(Y k−1
1 −ξk∇1f(Y k−1

1 ,Y k−1
2))‖2}

= (Y k−1
1 − ξk∇1(f(Y k−1

1 ,Y k−1
2)))+. (2.16)

Note that h(Z) only has variable Z, so h(·) = 0, which means that it is just normal Projected

Gradient Descent (PGD). Besides, (·)+ in Algorithm 1 sets the negative coordinates to zero.

For Z, we do not directly calculate using eq. (2.16). Instead, we use a local linear expansion

to approximate it, which is known as conditional gradient. Specifically, it differs from traditional

conditional gradient method in the way that the search direction ∇2f(Y k−1
1 ,Y k−1

2) is defined.

It can be viewed as a variant of Nesterov’s method [66] and is obtained by replacing the prox-

mapping with a simpler linear expansion:

U k
2 = argmin

Z
{〈∇2f(Y k−1

1 ,Y k−1
2),Z〉+ h(Z). (2.17)

Specifically, this part can be solved by first calculating the top singular vector pairs of−∇2f(Y k−1
1 ,Y k−1

2)

and then using a line search to produce a scaling factor [93, 20].

2.3.2 Convergence Analysis

For PGD method, the algorithm achieves the well-known optimal rate O(1/k), i.e., a rate of

O(1/ε) given learning rate ξk ≤ 1/L, and for PA-CndG method, it also reaches O(1/k) given

the step size policy (1): γk = 2
k+1

or (2): γk = arg minγ∈[0,1] f((1 − γ)Xk−1 + γU k
1, (1 −

γ)Zk−1 + γU k
2) [50]. Generally, the algorithm should still reach the optimal rate O(1/k) by

properly choosing the step size parameter and the learning rate. We have the convergence results

for Algorithm 1 in theorem 1, followed by the proof.

Theorem 1. Let {Zk}, {Xk}, {U k
1}, and {U k

2} be the sequences generated by Algorithm 1 with

17

step size γk = 2
k+1

and learning rate ξk ≤ 1/L. Then we have:

F (Xk,Zk)− F ∗ ≤ 5LD2
max

k + 1
, (2.18)

where L is the Lipschitz constant of∇f(x, z).

Proof. Define:

lf (x, z; y1, y2) = f(x, z) + 〈∇1f(x, z), y1 − x〉+ 〈∇2f(x, z), y2 − z〉. (2.19)

ForX,Z ∈ Ω, f is Lipschitz continuous gradient and:

f(y1, y2) ≤ lf (x, z; y1, y2) +
L

2
‖y1 − x‖2 +

L

2
‖y2 − z‖2. (2.20)

First note that:

Xk − Y k−1
1 = γk(U

k
1 −U k−1

1),

Zk − Y k−1
2 = γk(U

k
2 −U k−1

2). (2.21)

Hence, using the definitions ofXk and Zk in Algorithm 1, we have:

f(Xk,Zk) ≤ lf (Y
k−1
1 ,Y k−1

2 ;Xk,Zk) +
L

2
‖Xk − Y k−1

1 ‖2 +
L

2
‖Zk − Y k−1

2 ‖2

= (1− γk)lf (Y k−1
1 ,Y k−1

2 ;Xk−1,Zk−1) + γklf (Y
k−1
1 ,Y k−1

2 ;U k
1,U

k
2)

+
L

2
γ2
k‖U k

1 −U k−1
1 ‖2 +

L

2
γ2
k‖U k

2 −U k−1
2 ‖2. (2.22)

For simplicity, define the Bregman divergence D(x, x′) = ‖x− x′‖2. From eq. (2.16), we know

it is actually PGD method with f(·) as Lipschitz continuous gradient and constrained to convex

set Ω. Based on the definition of the convex hull and the property of PGD, we have the following

18

property:

〈U 1 − Y k
1, (Y

k−1
1 −ξk∇1f(Y k−1

1 ,Y k−1
2))− Y k

1〉 ≤ 0, ∀ U 1 ∈ Ω. (2.23)

Using eq. (2.23) and the definition of U k
2 in Algorithm 1, we have:

〈∇1f(Y k−1
1 ,Y k−1

2),Y k
1−U ∗1〉≤−

1

2ξk
D(Y k

1,Y
k−1
1)+

1

2ξk
[D(U ∗1,Y

k−1
1)−D(U ∗1,Y

k
1)]

(2.24)

and

〈∇2f(Y k−1
1 ,Y k−1

2),U k
2〉+ h(U k

2) ≤ 〈∇2f(Y k−1
1 ,Y k−1

2),U ∗2〉+ h(U ∗2). (2.25)

Then noting thatD(x, x′) ≥ 0 and using the convexity of f(·) and h(·) together with the definition

of Zk in Algorithm 1 and eqs. (2.22), (2.24) and (2.25), we end up with:

F (Xk,Zk) ≤ (1− γk)f(Xk−1,Zk−1) + γklf (Y
k−1
1 ,Y k−1

2 ;U ∗1,U
∗
2)

+
γk
2ξk

[D(U ∗1,Y
k−1
1)−D(U ∗1,Y

k
1)] + γk(h(U ∗2)− h(U k

2)) + h(Zk)

+
L

2
γ2
kD(U k

1,U
k−1
1) +

L

2
γ2
kD(U k

2,U
k−1
2)

≤(1− γk)f(Xk−1,Zk−1) + γkf(U ∗1,U
∗
2) +

L

2
γk[D(U ∗1,Y

k−1
1)−D(U ∗1,Y

k
1)]

+ γk(h(U ∗2)− h(U k
2)) + h(Zk) +

L

2
γ2
kD(U k

1,U
k−1
1) +

L

2
γ2
kD(U k

2,U
k−1
2)

≤(1− γk)F (Xk−1,Zk−1) + γkF (U ∗1,U
∗
2) +

L

2
γk[D(U ∗1,Y

k−1
1)−D(U ∗1,Y

k
1)]

− γkh(U k
2) + h(Zk)− (1− γk)h(Zk−1) +

L

2
γ2
kD(U k

1,U
k−1
1) +

L

2
γ2
kD(U k

2,U
k−1
2)

≤(1− γk)F (Xk−1,Zk−1) + γkF (U ∗1,U
∗
2) +

L

2
γk[D(U ∗1,Y

k−1
1)−D(U ∗1,Y

k
1)]

+
L

2
γ2
kD(U k

1,U
k−1
1) +

L

2
γ2
kD(U k

2,U
k−1
2). (2.26)

19

Subtracting F (U ∗1,U
∗
2) from both sides of the above inequality, we have:

F (Xk,Zk)− F (U ∗1,U
∗
2) ≤ (1− γk)(F (Xk−1,Zk−1)− F (U ∗1,U

∗
2))

+
L

2
γk[D(U ∗1,Y

k−1
1)−D(U ∗1,Y

k
1)] +

L

2
γ2
kD(U k

1,U
k−1
1) +

L

2
γ2
kD(U k

2,U
k−1
2).

(2.27)

In view of Lemma 1 of [50] and the definition of γk and Γk, it is easy to verify that γ2k
Γk

= 2k
k+1
≤ 2

and γi
Γi

= i ≤ k, which implies that:

F (Xk,Zk)− F (U ∗1,U
∗
2) ≤ Γk(1− γ1)(F (X0,Z0)− F (U ∗1,U

∗
2))

+
ΓkL

2

k∑
i=1

{γi
Γi

[D(U ∗1,Y
i−1
1)−D(U ∗1,Y

i
1)] +

γ2
i

Γi
[D(U i

1,U
i−1
1) +D(U i

2,U
i−1
2)]}.

(2.28)

Let Dmax = maxx,y∈Ω‖x− y‖ and note that D(x, x′) ≥ 0. We finally have:

F (Xk,Zk)−F ∗≤ L

k(k + 1)
{kD(U ∗1,Y

0
1)+2

k∑
i=1

[D(U i
1,U

i−1
1)+D(U i

2,U
i−1
2)]}≤ 5LD2

max

k + 1
.

(2.29)

Therefore, the algorithm still achieves the optimal rate O(1/k), i.e., a rate of O(1/ε).

2.3.3 Parallel Algorithm

As mentioned earlier, the above global algorithm may be computational expensive when

the number of anchor points q increases to an extremely large value. We further speed up the

algorithm to accommodate the need of a large number of anchor points q to fit big industry data.

To this end, we first rewrite the optimal function in the form of eq. (2.32). We show in theorem 2

that when λτ and βτ are properly chosen, the two formulations will result in the same optimum.

As all the variables {Xsτ = [Hsτ ;Asτ]}qτ=1 are independent, we develop the parallel method in

Algorithm 2 that optimizes each block matrix {Xsτ}qτ=1 separately. Hence, it allows us to deal

20

with the objective function in parallel and makes the algorithm more efficient for big data.

Denote the log-likelihood of observing sequence T u,i mapping to a specific anchor point

sτ = (aτ , bτ) as:

Lsτ (T u,i |Xsτ) =
1

q
{
∑

tu,ij ∈T u,i

log(X(sτ)
>
u,iΦ(sτ)

u,i
j)−X(sτ)

>
u,iΨ(sτ)

u,i}, (2.30)

where:

X(sτ)u,i =(Hsτ (u, i),Asτ (u, i))>,

Φ(sτ)
u,i
j =q(1,

∑
tu,ik <tu,ij

κσ(tu,ij − t
u,i
k))>·Ksτ

h (u, i)/Cu,i,

Ψ(sτ)
u,i =q(T,

∑
tu,ij ∈T u,i

∫ T

tu,ij

κσ(t− tu,ij)dt)>·Ksτ
h (u, i)/Cu,i. (2.31)

Then we define the parallel objective function as:

OPTp = min
Xsτ ,Zsτ

− 1

|O|

q∑
τ=1

{
∑
T u,i∈O

Lsτ (T u,i|Xsτ)+hsτ (Z
sτ)}, s.t.X ≥ 0, (2.32)

where hsτ (Z
sτ) = λτ‖Hsτ‖∗ + βτ‖Asτ‖∗.

Theorem 2. With the condition that λτ and βτ for τ = 1, ..., q satisfy eq. (2.33), the optimal

value OPTp in eq. (2.32) coincides with the global optimal value OPT in eq. (2.15).

λ‖H ′‖∗ + β‖A′‖∗ ≤
q∑

τ=1

(λτ‖Hsτ‖∗ + βτ‖Asτ‖∗). (2.33)

Proof. For a real convex function ϕ(·), a set of numbers x1, x2, ..., xn, and positive weights αi,

Jensen’s inequality can be stated as:

ϕ(

∑
αixi
αi

) ≤
∑
αiϕ(xi)∑
αi

. (2.34)

21

The equality holds if and only if x1 = x2 = ... = xn or ϕ(·) is linear. Specifically, eq. (2.34)

becomes:

ϕ(

∑
xi
n

) ≤
∑
ϕ(xi)

n
(2.35)

if the weighs αi are equal.

As −log(·) is convex, we rewrite eq. (2.10) based on eq. (2.35) as:

− L(T u,i | {Xsτ}qτ=1) = −
∑

tu,ij ∈T u,i

log(

q∑
τ=1

X(sτ)
>
u,iΦ(sτ)

u,i
j /q)+

q∑
τ=1

X(sτ)
>
u,iΨ(sτ)

u,i/q

≤−
q∑

τ=1

{
∑

tu,ij ∈T u,i

log(X(sτ)
>
u,iΦ(sτ)

u,i
j)−X(sτ)

>
u,iΨ(sτ)

u,i}/q = −
q∑

τ=1

Lsτ (T u,i |Xsτ). (2.36)

Given eq. (2.33), we have:

h(Z) = λ‖H ′‖∗ + β‖A′‖∗ ≤
q∑

τ=1

(λτ‖Hsτ‖∗ + βτ‖Asτ‖∗) =

q∑
τ=1

hsτ (Z
sτ). (2.37)

Therefore, plugging eqs. (2.36) and (2.37) into the previous objective function in eq. (2.12), we

have OPT ≤ OPTp and readily arrive at the theorem.

Therefore, we can optimize the parallel objective function in eq. (2.32) separately by using

the parallel algorithm to approximate the parameter estimation. As the form of the objective

function is the same as the global one, we can still use the global updating approach. The details

are described in Algorithm 2.

2.3.4 Computational Complexity

Given a collection of interaction events between m users and n items, we assume for the

worst case each user-item pair has a sequence of events observed. The time complexity of cal-

culating the gradient of each user-item entry of each parameter matrix is a constant C, and thus

the total time complexity of the global algorithm with q anchor points is O(N2qC/ε), where

N = max{m,n}, since we have 2×m× n× q entries in the global model parameter matrixX

22

Algorithm 2: Local Low-Rank Hawkes Parallel
Input: All the training events O = {T u,i}u,i; learning rate ξk; parameters ρ, λ, β;

number of anchor points q; kernel function K(·) of widths h1, h2; step size
γk ∈ [0, 1];

Output: {Xsτ = [Hsτ ;Asτ]}qτ=1, which are the set of local parameter matrices:
for τ = 1, ..., q in parallel do

(aτ , bτ) := a random selected (u, i) pair;
for i = 1→ m do

Kaτ
h1

(i) := exp(−1
2
h−2d(aτ , i)

2);
end
for j = 1→ n do

Kbτ
h2

(i) := exp(−1
2
h−2d(bτ , j)

2);
end
Choose to initialize U 0

1;
SetX0 = Z0 = U 0

1 = U 0
2;

for k← 1 to MaxIter do
Set Y k−1

1 = (1− γk)Xk−1 + γkU
k−1
1 ;

Set Y k−1
2 = (1− γk)Zk−1 + γkU

k−1
2 ;

Compute the proximal operator forX:
U k

1 = (Y k−1
1 − ξk∇1(fsτ (Y

k−1
1 ,Y k−1

2)))+;
Use a local linear expansion of f for Z:
U k

2 = argminZ{〈∇2fsτ (Y
k−1
1 ,Y k−1

2),Z〉+ hsτ (Z)};
SetXk = (1− γk)Xk−1 + γkU

k
1;

Set Zk = (1− γk)Zk−1 + γkU
k
2;

end
end

23

and the algorithm takes O(1/ε) iterations. In practice, we only need to compute the sequences

of observed pairs that satisfy T u,i ∈ O, and usually the entries are quite sparse in the real world

dataset. For example, the ratio of the number of the observed user-item pairs to that of the to-

tal pairs ranges from 0.001 to 0.01 as shown in Table 2.2. Assume that there are P � m · n

pairs with sequences of observed events in the dataset, the complexity of the global algorithm

becomes O(PqC/ε). In summary, the complexity of the global algorithm increases as the size

of the dataset or the number of anchor points increases. The parallel algorithm should be q times

faster without the consideration of the communication cost. Specifically, by assuming q machines

for computing, the algorithm can run in parallel to estimate the q local model parameters. Fewer

entries in the local parameter block matrix Xsτ need to be computed in comparison with the

case of matrix X in the global algorithm. In the end, the local parameters will be combined to

obtain the final results. The parallel algorithm can speed up the global algorithm and achieves

the complexity of O(PC/ε).

2.4 Distance Measure, Kernel Calculation, and Anchor Point Selection

The distance metric d such as eq. (2.3) that measures the similarities between users or items

may be defined based on auxiliary content features such as user demographics and item genres. If

no such information is available, the user and item similarities can be measured through partially

observed user-item interaction matrix X , where each entry indicates the frequency of user-item

interactions during a time period. Specifically, the distances between row vectors (for users) and

between column vectors (for items) can be computed based on standard distance measures such

as “Cosine” metric and “Arc-cosine” metric. The “Cosine” metric between a pair of vectors is

defined as one minus the cosine of the angle between the vectors and the “Arc-cosine” metric

is the inverse cosine function between vectors. When the matrix X is very sparse, we follow

conventions as reported in [51] to factorize the matrix using standard incomplete SVD [4] to

obtain the latent matrices. We also investigate different combination methods in Section 2.5.3 to

construct a unified feature based on both user-item interactions and content features, and compare

the performance.

24

In Sections 2.2.2 and 2.3, we assume a general kernel function denoted by Kh(s1, s2), where

s1, s2 ∈ [m]×[n]. Similar to the related work [51], we assume a product formKh((a1, b1), (a2, b2)) =

Kh1(a1, a2) ·K ′h2(b1, b2), where those two kernels are on the spaces [m] and [n], respectively. Due

to the computation of the log function in eq. (2.10), we use the Gaussian kernel in eq. (2.3) for

bothK andK ′, as the kernel function is non-zero everywhere. The kernel function matrix for one

anchor point can be expressed asKsτ
h = Kaτ

h1
·Kbτ

h2
∈ [m]× [n], where τ = 1, ..., q. Generally, the

kernel bandwidth parameter represents the amount of smoothing and affects the estimation accu-

racy. We investigate the dependency of the model performance on kernel bandwidth in Section

2.5.3. We also compare the performance of kernel smoothing with different numbers of anchor

points in Section 2.5.3.

There are several approaches of selecting the anchor points s1, ..., sq, which may affect the

model performance. For simplicity, we randomly select anchor points from the observed (u, i)

entries in the matrix in our algorithm. It is worth mentioning that the anchor points can be selected

by other strategies such as pre-cluster processing, that is clustering the (u, i) pairs into q clusters

and then selecting one anchor point from each cluster. There are several clustering methods such

as K-Means Clustering and Hierarchical Clustering. For K-Means Clustering, the input features

for each (u, i) pair could be the concatenated user and item latent features obtained by SVD. For

Hierarchical Clustering, the input distance matrix is the one calculated by smoothing kernels. We

carry out experiments to select anchor points from clusters via several cluster analysis methods

in Section 2.5.3.

2.5 Experiments

In this section, we present the results of the experiments.

2.5.1 Datasets and Evaluation Criteria

We evaluate our model on the three real-world datasets and the details of each dataset are

shown in Table 2.2.

IPTV dataset [87] records the viewing behaviors of 7100 users on 436 TV programs, e.g.,

what and when they watch, from January to November 2012. It contains 4726 (u, i) pairs with

25

Table 2.2: Dataset description.
Dataset Users Items Events Pairs Item Features Time Duration

IPTV 7100 436 2.4M 4726 1420 8040
Yelp 100 17K 35K 20246 823 44640

Reddit 1000 1403 10K 2053 35 4090

nearly 2.4M events and 1420 movie features such as genres. These features are only used for

Coevolve baseline and experiments in Section 2.5.3 considering features with distance calcula-

tion. Yelp1 is available from Yelp dataset challenge. We select users with at least 100 posts, and

it contains 35k reviews for 17k businesses by 100 users in 11 years. Reddit2 dataset contains a

random selected 1000 users, 1403 groups, and 10k discussions events in January 2014.

We can evaluate the performance of our Hawkes model on three tasks:

Item Relevance: Given the history T = {ti}ni=1 of a specific user u, we calculate the sur-

vival rates for all the items at each testing time t, that is S(u,i)(t) = exp(−
∫ t
tu,in

λ(u,i)(τ)d(τ)).

According to the survival, we rank all the items in ascending order, and the ground-truth testing

item should be at the top ideally. Following [84], we report mean average rank (MAR) of all

testing cases. A smaller value of MAR indicates better predictive performance.

Time Prediction: Given a specific pair of user u and item i, we report the mean absolute er-

ror (MAE) [84, 20] of the next predicted time and the ground truth of testing time t. Specifically,

we compute the predicted time by calculating the density as f(t) = λ(u,i)(t)S(u,i)(t), and then

use the expectation to predict the next event. Furthermore, we give the relative percentage of the

prediction error (Err %).

Test Loss: It is defined as in the objective function eq. (2.13) with fixed coefficients of

Hawkes processes learned using events in the training set.

2.5.2 Baseline Methods and Parameter Settings

Poisson process is a relaxation of Hawkes process with no triggering kernel capturing tem-

poral dependencies. It only contains a base intensity η, which is a constant. The Poisson process

1https://www.yelp.com/dataset/challenge
2https://dynamics.cs.washington.edu/data.html

26

is a strong baseline in many cases, as most popular items usually have large base intensities.

PoissonTensor uses Poisson regression other than RMSE as the loss function to fit the num-

ber of events, which actually can be considered as the intensity in each discretized time slot [14].

Because the missing values are not random, simulating the values with Poisson distribution is

more reasonable than with Gaussian. Once we get the values, there are two ways to simulate the

intensity of test data. One is using the intensity that we have got only in the last time interval,

and the other is using the average intensity of all the training time intervals. We report the best

performance of these two choices.

LowRankHawkes is a Hawkes process based model [20] that can be seen as a relaxation of

our model with only one anchor point. It assumes that all the (u, i) pairs are independent so there

is no user-item interactions between pairs.

Coevolve is a coevolutionary latent feature process [84] which can be seen as a squared

Hawkes process adding a base intensity. It uses user and item features as well as the interaction

features between users and items, such as review features, to simulate the intensity of each (u, i)

pair. In our experiments, we only use the item feature. If no features are provided, the model

reduces to the Poisson process.

Parameter Settings: In the experiments, T is the length of the total time, and p = 0.76 is the

proportion where we split the data. Specifically, we use the events before time T ·p as the training

data, and the rest of them as testing data. We do experiments on several types of kernels, and find

that these do not affect the performance much. We use the Gaussian kernel with h1 = h2 = 0.8

and report the averaged results on the two tasks above.

2.5.3 Results

In Section 2.5.3, we first compare the results of our method with baseline methods using the

global algorithm. We then analyze the model performance in terms of its dependency on feature

integration methods, kernel bandwidth parameter, the number of anchor points, and anchor point

selection approaches in Sections 2.5.3, 2.5.3, 2.5.3, and 2.5.3, respectively. Finally, we compare

the model performance of the global and parallel algorithms in Section 2.5.3.

27

Comparison with Baselines

As described in Section 2.4, we follow [51] to factorize the user-item interaction matrix using

standard incomplete SVD [4] to obtain the latent feature matrices. The kernel function and “Arc-

cosine” metric measure the distances between different user-item pairs and a set of anchor points

are random selected from the user-item dimension.

We show the results in Fig. 2.1 for IPTV, Yelp, and Reddit data, respectively. Generally,

our model outperforms most other baseline methods in item prediction and returning time pre-

diction. The main reason is that each (u, i) pair’s intensity is simulated with its own sequence

mapping to a total of q local models in our model. Coevolve relies on the auxiliary features.

LowRankHawkes treats each (u, i) pair’s process independently. Poisson and PoissonTensor

simulate events without the history, and thus are lack of prediction power.

For IPTV and Reddit data, the exception occurs at the time prediction of Coevolve, because

the auxiliary feature information is added to this model. The Coevolve method uses a weighted

summation of all the events happened before the current event to simulate one (u, i) pair’s in-

tensity λu,i(t). Therefore, the returning-time prediction is good since a large number of events

are used to simulate the intensity function and a huge amount of auxiliary feature information

is incorporated. However, the item rank prediction becomes worse [84] because the individual

preferences are influenced by the general preference. Meanwhile, we can see that the Hawkes

process based models, such as our model, Coevolve, and LowRankHawkes, get better per-

formances when there are sufficient history events (with nearly 400 events per (u, i) pairs) in

comparison with the Poisson related models.

For Yelp data, as each (u, i) pair only has fewer than 3 events in average, the time prediction

is similar among LowRankHawkes and Poisson, which means that the history is not such an

important factor. In this time sparsity case, factorization model PoissonTensor gets better results

than point process based models. Even adding some auxiliary features, the Coevolve model

achieves comparable performance, our model performs the best without any features. As more

information is used to simulate the Hawkes process for each (u, i) pair, our model integrates

28

1.6643

13.5301

5.2461

179.6732 173.7013

1 2 3 4 5

Methods

1

10

100

1000

M
A

R

Ours

Coevolve

LowRankHawkes

PoissonTensor

Poisson

(a) Item relevance

383.0434

160.2381

817.6486

933.6554

993.132

1 2 3 4 5

Methods

0

200

400

600

800

1000

M
A

E

Ours

Coevolve

LowRankHawkes

PoissonTensor

Poisson

(b) Time prediction

0.054656

0.023527

0.12267

0.13885

0.14834

1 2 5 10 15

Methods

0

0.03

0.06

0.09

0.12

0.15

E
rr

 %

Ours

Coevolve

LowRankHawkes

PoissonTensor

Poisson

(c) Err %

95.1494

664.0728

111.1295

1737.8747

7737.3943

1 2 3 4 5

Methods

10

100

1000

M
A

R

Ours

Coevolve

LowRankHawkes

PoissonTensor

Poisson

(d) Item relevance

527.2977

587.3328

843.8283

587.1088

850.8407

1 2 3 4 5

Methods

0

200

400

600

800

1000

M
A

E

Ours

Coevolve

LowRankHawkes

PoissonTensor

Poisson

(e) Time prediction

0.14983

0.17491

0.23714

0.17484

0.23907

1 2 5 10 15

Methods

0

0.05

0.10

0.15

0.20

0.25

E
rr

 %

Ours

Coevolve

LowRankHawkes

PoissonTensor

Poisson

(f) Err %

6.0615

82.4354

49.1406

85.4914

128.1973

1 2 3 4 5

Methods

1

10

100

M
A

R

Ours

Coevolve

LowRankHawkes

PoissonTensor

Poisson

(g) Item relevance

5508.4259
5323.2799

8476.1938

9155.1331

10314.0945

1 2 3 4 5

Methods

4000

6000

8000

10000

M
A

E

Ours

Coevolve

LowRankHawkes

PoissonTensor

Poisson

(h) Time prediction

0.14414 0.14271

0.21503

0.24094

0.2659

1 2 5 10 15

Methods

0

0.05

0.10

0.15

0.20

0.25

0.30

E
rr

 %

Ours

Coevolve

LowRankHawkes

PoissonTensor

Poisson

(i) Err %

Figure 2.1: Prediction accuracy on IPTV (top row), Yelp (middle row), and Reddit (bottom row).

29

286.6993

578.0394

138.7214

1002.2301

226.8401

685.9375

1 2 3 4 5 6

Combination Methods

100

200

400

800

1600

T
es

t
L

o
ss

SVD only

Item only

Add

Dot Product

Concatenate

Outer Product

Figure 2.2: Test loss with respect to different combination methods of item features on IPTV
dataset.

some interaction influences from similar groups. In other words, our model performs better on

sequences without sufficient events.

Effect of Content Feature Integration

We investigate different combination methods using IPTV dataset to construct a unified item

feature based on both user-item interactions and item genres, compute the distance between user

and item similarities based on those features, and compare the model performance. We present

six strategies: item collaborative features by factoring user-item interaction, which is the method

we use previously (Collaborative); item content features (e.g., movie genres) (Content); addition

of these two features; element-wise product of the two; concatenation of the two; and the outer

product of the two flattened to one dimension. Since the content features are high dimensional

and sparse, we first reduce the dimension of content features to the same dimension of item

collaborative features. We then normalize these two types of features and finally integrate them

to a unified feature vector.

Fig. 2.2 illustrates the performance of test loss with respect to different combination methods

of item features on IPTV dataset. First of all, directly adopting items features through factoring

user-item interactions is better than only adopting item content features. Second, it seems that

30

addition and concatenation operations of these two features achieve better performance than only

using one of them. However, element-wise product and outer product operations perform worse

than using a single type of features. One of the reasons would be those two operations introduce

redundant and noisy information. In addition, we adopt three strategies including Pricipal Com-

ponent Analysis (PCA), Auto Encoder(AE), and Multi-dimensional Scaling (MDS) to reduce the

dimensions of item content features. In our experiments, we find that PCA achieves the best

performance, MDS is the second, and AE is the worst.

Effect of the Kernel Bandwidth

We investigate the effect of kernel smoothing on IPTV dataset. Generally, the bandwidth

parameter represents the amount of smoothing with small values corresponding to narrow ker-

nels and large values corresponding to wide kernels. As the bandwidth increases, the overlaps

between these local models become more and more significant. In addition, the bias of each

local model increases and the variance of each model decreases. The changes of test loss with

respect to increasing smoothing kernel bandwidth are shown in Fig. 2.3. It is obvious that the

best performance is achieved when the kernel bandwidth is in the range of [h1, h2] ∈ [0.7, 0.8].

The performance deteriorates as the kernel bandwidth deviates from an optimal bandwidth in

the range of [0.7, 0.8]. Meanwhile, the performance is stable as long as the smoothing kernel

bandwidth is selected in an appropriate range.

It is worth mentioning that we can calculate the smoothing kernel bandwidths for both users

and items separately. The performance may be further enhanced by investigating different com-

binations of user kernel bandwidths and item kernel bandwidths. For simplicity, we use the same

kernel bandwidth for users and items in our experiments.

Effect of the Number of Anchor Points

We also compare the performance of kernel smoothing with different numbers of anchor

points in Table 2.3 for IPTV, Yelp, and Reddit datasets. The results are obtained using our global

algorithm.

For IPTV and Reddit data, both item prediction and returning-time prediction are improved

31

0.5 0.6 0.7 0.8 0.9 1 2 5

Kernel Bandwidth

200

400

800

1600

T
e
s
t

L
o

s
s

688.274

477.8113

330.5068

286.6993

457.7147

741.0242

1021.0724

1904.2922

Figure 2.3: Test loss versus smoothing kernel bandwidth on IPTV dataset.

Table 2.3: Average performance with different numbers of anchor points by the global algorithms
on IPTV, Yelp, and Reddit datasets.

Datasets Metrics
Number of Anchor Points

1 2 5 10 15

IPTV
MAR 5.175 2.934 1.705 1.667 1.666
MAE 822.1 716.3 620.1 449.0 383.0
Err % 12.67 10.82 9.15 6.44 5.46

Yelp
MAR 116.0 106.6 94.63 95.74 95.09
MAE 845.7 805.9 520.7 581.7 591.0
Err % 23.71 22.74 14.98 17.34 17.62

Reddit
MAR 49.14 11.50 6.177 6.129 6.062
MAE 8476 8117 6909 6138 5508
Err % 21.50 20.60 17.64 15.88 14.41

32

when the number of anchor points increases. The results also indicate the bottleneck of the

performance given enough anchor points. As the (u, i) pairs are sparse in the space, i.e., we only

have 4726 (u, i) pairs on a 7100× 436 matrix for IPTV data, it is not appropriate to set too many

anchor points. Therefore, the number of anchor points should depend on the sparsity of the pairs

on user-item dimension. It is also worth mentioning that just a few anchor points, e.g., 5, can

render pretty good results.

For Yelp data, as the dataset only has 100 users, it reaches the best performance when the

number of anchor points is in the range of (5 ∼ 10). However, when the number of anchor

points further increases, bias may be introduced as some anchor points are similar, so it actually

calculates one type of local neighbors repeatedly in eq. (2.7), which finally lowers the prediction

performance. Therefore, selecting anchor points should also depend on the user dimension and

the item dimension rather than the pairs’ sparsity only.

Effect of Anchor Point Selection

In this section, we investigate some clustering strategies to select a set of anchor points

and compare the model performance with the one adopting random anchor point selection. We

compare K-Means Clustering and Hierarchical Clustering. K-Means is one of the most popular

partitional clustering methods and is computational efficient. Hierarchical Clustering groups the

data simultaneously over different scales of distance by creating a multi-level cluster tree, where

clusters at a lower level are joined as clusters at the next higher level. Unlike K-Means that

produces a single partitioning, Hierarchical Clustering can give different partitions depending on

the level-of-resolution.

For the category of Hierarchical Clustering methods, we adopt classic metrics such as “Seu-

clidean” as shown in Table 2.4 to measure the distance between a pair of data points. The metric

definitions are described in MATLAB3. Specifically, “Cosine” is defined as “one minus the

cosine of the included angle between points (treated as vectors)”, “Correlation” is defined as

“one minus the sample correlation between points”, and “Spearman” is defined as “one minus

3https://www.mathworks.com/help/stats/pdist.html

33

Table 2.4: Copenetic correlations of different distance metrics with different methods for com-
puting distance between clusters in Hierarchical Clustering on IPTV dataset.

Metric
Methods for Computing Distance Between Clusters

Average Centroid Complete Median Single Ward Weighted

Seuclidean 0.7990 0.7945 0.5810 0.7382 0.7875 0.6527 0.7318
Squaredeuclidean 0.8932 0.8918 0.7220 0.8758 0.8939 0.8687 0.8841

Mahalanobis 0.7605 0.7628 0.4384 0.6913 0.7105 0.4703 0.7086
Cityblock 0.9317 0.9336 0.8150 0.9027 0.9238 0.8639 0.8831

Minkowski 0.9339 0.9379 0.7998 0.9187 0.9327 0.8925 0.8946
Chebychev 0.8753 0.8792 0.8274 0.8386 0.8780 0.8113 0.8584

Cosine 0.6431 0.5943 0.5766 0.5566 0.4537 0.5256 0.5952
Correlation 0.6348 0.5997 0.5648 0.5343 0.4449 0.4838 0.5366
Spearman 0.6235 0.5986 0.5677 0.5048 0.3670 0.4950 0.5468

the sample Spearman’s rank correlation between observations”. In addition, we adopt a set of

metrics such as “Average”, “Centroid”, and “Complete” for computing the distance between

clusters. The definitions are described in MATLAB4. Finally, we follow the cluster analysis

in MATLAB5 and use the Cophenetic correlation coefficient6 to verify whether the cluster tree

generated from a particular metric is consistent with the pair-wise distances between original data

points. Large values (close to 1) indicate high-quality clustering results that capture the pair-wise

distances well. We show the Cophenetic correlations of clustering results using the combinations

of different metrics for computing the pairwise distance between pairs of points and different

metrics for computing the distance between clusters. As shown in Table 2.4, we find that us-

ing Minkowski distance metric and adopting centroid algorithm for computing distance between

clusters achieve the best cophenetic correlations for Hierarchical Clustering on IPTV dataset. It

is obvious that both Cityblock and Minkowski with average, centroid, or single algorithm can

achieve quite competitive clustering performance.

Finally, we compare the prediction performance of the models with different numbers of

anchor points selected by random selection, K-Means Clustering, and Hierarchical Clustering

strategies. For K-Means, we adopt the squared Euclidean distance metric for computing pair-

4https://www.mathworks.com/help/stats/linkage.html
5https://www.mathworks.com/help/stats/examples/cluster-analysis.html
6https://www.mathworks.com/help/stats/cophenet.html

34

Table 2.5: Average performance with different strategies of anchor point selection on IPTV
dataset.

Metrics
10 Anchor Points 15 Anchor Points

Random K-Means Hierarchical Random K-Means Hierarchical

MAR 1.667 2.379 1.662 1.666 1.968 1.666
MAE 449.0 502.9 363.2 383.0 409.1 386.0
Err % 6.44 7.31 5.16 5.46 5.86 5.51

wise distances. For Hierarchical Clustering, we adopt the best strategy based on the cophenetic

correlation. As shown in Table 2.5, the prediction performance of the model strongly depends

on the anchor selection strategies. Specifically, we find that sometimes several clusters only

contain a few (less than 10) members when applying K-Means Clustering on IPTV dataset. In

such cases, the imbalance of cluster size may influence the representativeness of selected anchor

points, which affects the prediction performance. When using Hierarchical Clustering, the cluster

performance is good since we adopt the best strategy relying on the cophenetic correlation, and

the model achieves pretty good prediction accuracy with only 10 anchor points, even better than

randomly selecting 15 anchor points.

In summary, there are several factors to consider when choosing a proper strategy to select

anchor points. A Hierarchical Clustering strategy can improve the model prediction accuracy

and decrease the computational cost with relatively fewer anchor points. However, it introduces

additional computational cost (e.g.,O(P 2) complexity for K-Means Clustering andO(P 3) for Hi-

erarchical Clustering) in the pre-processing. Selecting sufficiently large number of anchor points

randomly may achieve comparable performance but increase model complexity as described in

section 2.3.4. In cases where the clustering complexity is negligible comparing to model com-

plexity, a well chosen Hierarchical Clustering strategy is preferred.

Comparison of Global and Parallel Algorithms

We also compare the results of the global and parallel algorithms and present the results in

Table 2.6. It is obvious that the parallel algorithm performs better than the global algorithm and

achieves similar results with a smaller number of anchor points. The reason is that the parallel

algorithm is more flexible in controlling the nuclear norm for parameter matrices in comparison

35

Table 2.6: Average performance with different numbers of anchor points by global and parallel
algorithms on IPTV dataset.

Metrics
Number of Anchor Points

1 2 5 10 15

Global
MAR 5.175 2.934 1.705 1.667 1.666
MAE 822.1 716.3 620.1 449.0 383.0
Err % 12.67 10.82 9.15 6.44 5.46

Parallel
MAR 5.136 2.865 1.684 1.678 1.676
MAE 822.2 713.7 486.3 379.0 362.7
Err % 12.33 10.62 7.06 5.40 5.16

with the global algorithm, which only assumes the combination of a number of block matrices

low-rank. Specifically, for the global algorithm, only three parameters (λ,β,ρ) are used to control

the nuclear norm of model parameterX . For the parallel algorithm, there are up to 3·q parameters

in total and each tuple (λτ ,βτ ,ρτ) can be used to control the rank for each local model. Therefore,

the parallel algorithm is more compatible with the local low-rank assumption when dealing with

the nuclear norm. In the experiments, however, we find that it only slightly improves the results,

so we choose the same parameters for all local models with the nuclear norm. Meanwhile, we

can see that the prediction accuracy will converge as the number of anchor points grows.

36

CHAPTER 3
GEOMETRIC HAWKES PROCESSES

3.1 Introduction

Hawkes processes, which are capable of modeling temporal events that exhibit self-exciting

properties, have been widely applied in various applications such as supporting decision mak-

ing in smart health [89], inferring Granger causality [87], and predicting recurrent user behav-

iors [97, 19, 74]. Generally, Hawkes processes are useful for modeling a collection of correlated

event sequences such as earthquakes at N locations or the diffusion of M infectious diseases

among a group of N people. For example, in analyzing on-line user behaviors such as visiting

websites, recent approaches such as [20] treat the recurrent events of each user-item pair as an

one-dimensional Hawkes process, and assume the parameters of all processes have a low-rank

structure. However, methods that typically treat each process independently would fail to achieve

good performance when there are insufficient observations for each process.

Multivariate Hawkes processes [56] are suitable for modeling multiple correlated sequences,

where the occurrence of an event in one sequence may influence the occurrence of new events in

another. For example, in social event analysis, the events of an individual user can be modeled

as an one-dimensional Hawkes process and events in a network can be modeled as a Multivariate

Hawkes process [24, 59, 91], which captures the correlations of both endogenous and exogenous

event intensities. Extensive studies [54, 23, 22, 87] have focused on estimating the excitation ma-

trix of multivariate processes for different inference tasks. However, those approaches are either

unable to accurately capture the mutual influence between processes or become computationally

prohibitive in most real-world events involving large dimensions [22, 32].

Incorporating geometric structure in the form of graphs into Hawkes processes is an effec-

tive and efficient way for improving model prediction accuracy. In many real world applications,

correlations between different Hawkes processes can be encoded by a graph. For example, in

modeling the sequences of user-item interactions, the similarity of users and items can be repre-

sented by a user graph and an item graph, respectively. Such additional graph information can

37

be used to impose smoothness priors on the parameters such as the base intensities of each indi-

vidual process. Recently, geometric deep learning [8, 18, 44, 65] are promising techniques that

can learn meaningful representations for geometric structure data such as graphs and have been

successfully applied in various applications such as matrix completion.

In this chapter, we propose a novel Geometric Hawkes Process (GHP) model by integrating

geometric deep learning into Hawkes processes, which aims to efficiently capture meaningful pat-

terns in a large collection of correlated sequences of recurrent events. Specifically, each sequence

is modeled as a Hawkes process and the proximities between different processes are encoded in

a graph. A novel convolutional and recurrent neural network is adopted to extract local mean-

ingful patterns from the graph. The learned meaningful embeddings are then used to generate

parameters such as the base intensities that characterize Hawkes processes. Comparing to tra-

ditional methods, our GHP correlates each individual Hawkes process effectively through graph

embedding and it is computational efficient since the deep network structure requires constant

parameters that are independent of the graph size. To the best of our knowledge, our GHP model

is the first one to learn Hawkes processes with geometric deep learning. We also present the de-

tail design of the single-graph and multi-graph cases for our Geometric Hawkes Process (GHP)

model. Extensive experiments on real-world datasets demonstrate the predicting performance

improvements of our model in comparison with the state of the art.

3.2 Model

In this section, we introduce our Geometric Hawkes Process model. We first introduce the

background of Hawkes processes and geometric deep learning, and then present the geometric

Hawkes processes. We list key notations in Table 3.1.

3.2.1 Background on Hawkes Processes

A univariate Hawkes process is a self-exiting temporal point process and the realization of the

process consists of a list of discrete temporal events T = {ti}ni=1. It is suitable for modeling the

mutual excitation between events such as the occurrences of earthquakes at a particular location.

38

Table 3.1: Key notations.
Variable Description

Gr, Gc row graph and column graph
m,n number of nodes in Gr, Gc
u, i the u− th and i− th node
T a list of discrete temporal events
O observed sequences of all vertices
P mini-batch vertices size
ti i-th event in T
λ(t) Hawkes process intensity function
λ(u)(t) Hawkes process intensity for node u
λ(u,i)(t) Hawkes process intensity for node pair (u, i)

κ(t) kernel function in Hawkes process
a, b, c, p, q parameters in different kernels

η base intensity in Hawkes process
α self-exciting coefficient in Hawkes process
hu node u’s entry of base intensity vector
au node u’s entry of self-exciting coefficient vector
Hu,i node pair (u, i)’s entry of base intensity matrix
Au,i node pair (u, i)’s entry of self-exciting coefficient matrix
L Laplacian matrix of graph
D degree matrix of graph
W adjacency matrix of graph
Λ diagonal eigenvalue matrix
λl l-th eigenvalue in Λ
Γ total time in all the sequences
Λ̃ scaled eigenvalues in interval [−1, 1]

L̃ rescaled Laplacian w.r.t. Λ̃
K total degrees of Chebyshev polynomial basis
Tk k-th degree of Chebyshev polynomial basis
θ polynomial coefficients in single GCN
θk k-th polynomial coefficient in θ
Θ polynomial coefficients in multi GCN
x single channel input [h;a] of single-graph GHP
X single channel input [H;A] of multi-graph GHP
C,C ′ channels of input and output
ρ, γ, β trade-off factors for constraints
ζ parameters in LSTM network
xθ,ζ parameters in single-graph GHP
xθ,ζ

(T) the T -th step of xθ,ζ in optimization
XΘ,ζ parameters in multi-graph GHP
XΘ,ζ

(T) the T -th step ofXΘ,ζ
(T) in optimization

39

The conditional intensity function that characterizes a Hawkes process is defined as:

λ(t) = η + α
∑
ti∈Tt

κ(t− ti), (3.1)

where κ(t) is a kernel function that captures temporal dependencies, η ≥ 0 is the baseline inten-

sity that captures the long-term incentive to generate events, α ≥ 0 is the coefficient that scales

the influence of each previous event, and Tt = {ti|ti < t}ni=1 denotes the history up to but not

including time t.

Different types of parametric kernels can be used to capture certain forms of temporal depen-

dencies for Hawkes process. For example, zero kernel assumes no decay with respect to time and

the intensity with zero kernel indicates a Poisson process. A linear kernel assumes constant rate

of decay with respect to time. Note that an intensity function using a linear kernel can be updated

more efficiently to incorporate new events based on the accumulated value of previous events.

Others complex kernels such as exponential and Rayleigh kernels assume different degrees of

time decay. The specific forms of kernel functions are listed as following: Zero Hawkes Kernel

(Zero()):

κ(t) = Zero() = 0, (3.2)

Linear (Linear(a,b)):

κ(t) = Linear(a, b) = a(1− b

a
t) (3.3)

Exponential (EXP(a, b)): The exponential kernel, which is the most widely adopted by Hawkes

process, is defined as:

κ(t) = EXP (a, b) = ae−bt. (3.4)

40

Power-Law (PWL(a, c, p): The power-low kernel is usually used for modeling a slower rate of

decay than exponential [2]:

κ(t) = PWL(a, c, p) =
a

(t+ c)p
. (3.5)

Tsallis Q-Exponential (Qexp(a, q)): The Tsallis Q-exponential kernel is a power transform along

the shape parameter q between exponential and power-law kernels. It models the decay in a more

hybrid way [30]:

κ(t)=Qexp(a, q)=

ae−t, q = 1

a[1 + (q − 1)t]
1

1−q,q 6= 0 and 1+(1−q)t > 0

0, q 6= 0 and 1+(1−q)t ≤ 0.

(3.6)

Rayleigh (Ray(a, b)): The Rayleigh kernel has been used for modeling a non-monotonically

decaying effect [70]:

κ(t) = Ray(a, b) = ate−bt
2

(3.7)

Generally in real world applications, we would like to model a collection of correlated event se-

quences such as earthquakes at N locations. Intuitively, each of the N sequences can be modeled

as a self-exciting Hawkes process:

λu(t) = hu + au
∑
tuj ∈T ut

κ(t− tuj), (3.8)

where u = 1, ..., N is the index of sequences such as uth location, h and a are both vectors of size

N and their uth entries represent the non-negative base intensity and the self-exciting coefficient

for uth process respectively. The sequence T ut = {tuj |tuj < t}nj=1 denotes the set of historic events

of uth process up to but not including time t.

41

For events involving a pair of entities such as the interaction events between M users and N

items (e.g., various infectious diseases among a group of people), the occurrences of interaction

events between user u and item i can be modeled as following:

λ(u,i)(t) = Hu,i +Au,i

∑
tu,ij ∈T

u,i
t

κ(t− tu,ij), (3.9)

whereH denotes an m×n matrix with the (u, i)th entry equal to the non-negative base intensity

for pair (u, i), A denotes an m× n matrix with the (u, i)th entry equal to the self-exciting coef-

ficient for pair (u, i), and the sequence T u,it = {tu,ij |t
u,i
j < t}nj=1 denotes the set of historic events

of pair (u, i) up to but not including time t.

However, treating each process independently would fail to achieve good performance when

there are insufficient observations for each process. Incorporating correlations between processes

such as location proximities and user/item similarities can improve the model prediction accu-

racy. The proximity between multiple Hawkes processes can be represented as an undirected

weighted graph such as a proximity network of locations, a social network of users, and a net-

work encoding item similarities.

3.2.2 Background on Geometric Deep Learning

Formally, an undirected weighted graph is denoted as G = (V,E,W), where V is a finite

set of |V | = n vertices, E is the set of edges and W ∈ Rn×n is the adjacency matrix with entries

Wij > 0 if (i, j) ∈ E. For each graph, a Laplacian matrix, which is an n×n symmetric positive-

semidefinite matrix, can be constructed to reflect useful properties of a graph. Usually, the graph

Laplacian is constructed as three different forms, the combinatorial Laplacianeq. (3.10), the ran-

dom walk normalized Laplacianeq. (3.11), and the symmetric normalized Laplacianeq. (3.12):

Lc = D −W, (3.10)

42

Lrw = D−1Lc (3.11)

Lsys = D−1/2LcD−1/2 = In −D−1/2WD−1/2, (3.12)

where D ∈ Rn×n is the degree matrix with Dii =
∑

jWij and In is the identity matrix. The

symmetric normalized Laplacian is one of the most widely used graph Laplacian matrices. In our

work, we adapt L = Lsys as the graph Laplacian.

Graph Convolution Network (GCN)

Graph convolution is typically formulated in the spectral domain through graph Fourier trans-

form [58]. Specifically, a graph Laplacian L admits a spectral eigendecomposition of the form

L = UΛU>, where U = [u0, ..., un−1] ∈ Rn×n is the orthonormal matrix and is the complete

set of the orthonnormal eigenvectors {ul}n−1
l=0 ∈ Rn, and Λ = diag([λ0, ..., λn−1]) ∈ Rn×n is the

diagonal matrix with the associated ordered real nonnegative eigenvalues {λl}n−1
l=0 . In particu-

lar, eigenvectors are known as the Fourier atoms in classical harmonic analysis and eigenvalues

are usually interpreted as the frequencies of the graph. Given a function x = (x0, ..., xn−1)> ∈

Rn on the vertices of the graph, the graph Fourier transform on graph G is defined as x̂ =

(x̂(λ0), ..., x̂(λn−1)) = U>x ∈ Rn and its inverse is x = U x̂ [76]. Thus, the spectral convolu-

tional of function x and convolutional kernel function y on graph G is given by [8]:

(x ? y)G = U · diag([ŷ(λ0), ..., ŷ(λn−1)]) · U>x, (3.13)

where � is the element-wise Hadamard product. It is worth mentioning that convolutions are

by definition linear operators that diagonalize in the spectral domain, according to the definition

of Discrete Fourier Transform and the Convolution Theorem [58]. Thus, a GCN layer can be

defined as xoutput = σ((x ? y)G), where diag([ŷ(λ0), ..., ŷ(λn−1)]) represents parameters of

learnable filters in the spectral domain, and σ denotes the activation function (e.g. ReLU) which

is applied on the vertex-wise function values.

43

In order to reduce the computational complexity and the number of the parameters, as

well as adding localization which is common in graph signal processing [33], a polynomial

filter was introduced by [18]. Thus, the GCN layer with one filter has the following forms:

xoutput = σ(
∑K−1

k=0 θkL
kx), where θ = {θk}K−1

k=0 is a vector of polynomial coefficients for

such a filter and the number of parameters is K. Note that the formula involves only the com-

putation of the Laplacian L without the computation of its decomposition of U . Specifically,

the filter can be approximated by the Chebyshev polynomial basis Tk of degree k [33], where

Tk(λ̃l) = 2λ̃lTk−1(λ̃l) − Tk−2(λ̃l) is defined in a recursive way with T0 = 1 and T1 = λ̃l. Thus,

the GCN layer with one filter becomes [18]:

xoutput = σ(
K−1∑
k=0

θkTk(L̃)x), (3.14)

where L̃ = 2L/λmax − In is the rescaled Laplacian with scaled eigenvalues Λ̃ = 2Λ/λmax − In

in the interval [−1, 1].

By applying kernel polynomial localization, the computational complexity becomes O(n)

rather than O(n2) [18], as we don’t need to do eigendecomposition. Also, the parameter number

is only K rather than n, and the convolutional kernel with spatial localization will benefit local

feature extraction. There are some simplified variants of this filter that also achieve good perfor-

mance on classification tasks [44]. For example, assuming K = 2 and λmax = 2, we can get the

first-order model as:

xoutput = σ(
1∑

k=0

θkTk(L− I)x) = σ((θ0 − θ1D
−1/2WD−1/2)x). (3.15)

Besides, by setting the parameter of the zero-order term and the first-order term to be specific

forms θ = θ0 = −θ1, we have the following single parameter model which limits the number of

44

parameter per layers to avoid over-fitting:

xoutput = σ(θ(I +D−1/2WD−1/2)x), (3.16)

A even more simplified approximation model can be obtained through a re-normalization trick [44]:

xoutput = σ(θD̃−1/2W̃ D̃−1/2x). (3.17)

where W̃ = I +W , D̃ii =
∑

j W̃ij , and I +D−1/2WD−1/2 ≈ D̃−1/2W̃ D̃−1/2.

GCN with Multi-graph (Multi-GCN)

According to the definition of multidimensional Fourier Transform, Graph Fourier Trans-

form and GCN layers can be extended to multi-graph version [47, 65]. Given two scaled graph

Laplacian (referred to single-graph convolutional layer) Lr ∈ Rm×m and Lc ∈ Rn×n with m

vertices on the row graph Gr and n vertices on the column graph Gc, a multi-GCN layer with one

filter is defined as [65]:

Xoutput = σ(
K−1∑
k=0

K−1∑
k′=0

θkk′Tk(L̃r)XTk′(L̃c)), (3.18)

where function X ∈ Rm×n is two dimensional and such filter is parameterized by a K × K

matrix of polynomial coefficients Θ = (θkk′).

Generalized GCN Layers

More generally, considering the computation effectiveness of convolution, we give the fol-

lowing generalized form of GCN layers, which is an high performance GCN layer referring

to [13] and convolution implementation in Caffe [40]. Given C input channels of {xc}Cc=1 (a

matrix of size m× C) and C ′ output channels (output feature map size or the number of filters),

the single-GCN layer has the generalized form:

xc′output = σ(
C∑
c=1

K−1∑
k=0

θkc,c′Tk(L̃)xc). (3.19)

45

where c′ = 1, ..., C ′.

Similarly, this can also be applied to multi-GCN layer. Given C input channels of {Xc}Cc=1

(a tensor of size m × n × C) and C ′ output channels, the multi-GCN layer has the generalized

form:

Xc′output
= σ(

C∑
c=1

K−1∑
k=0

K−1∑
k′=0

θkk′c,c′Tk(L̃r)XcTk′(L̃c)). (3.20)

It is straightforward to expand the eqs. (3.15) to (3.17) to the generalized multi-GCN layer ver-

sion. For example, for re-normalization trick model eq. (3.17):

Xc′output
= σ(

C∑
c=1

θc,c′D̃
−1/2
r W̃rD̃

−1/2
r XcD̃

−1/2
c W̃cD̃

−1/2
c), (3.21)

where Θ = (θc,c′) is the convolutional filters.

Integration of GCN and RNN

Furthermore, a GCN network coupled with a RNN network can progressively reconstruct

the parameters and it has demonstrated to be highly efficient [65]. Specifically, the input of the

GCN network is the original matrix X(0). The output of the GCN network such as C ′ matrices

are the input to a RNN network such as LSTM [38]. Then, the output of the RNN network are

the input to a fully connected layer to calculate the changes dX of the input matrix X . After

several iterations (e.g. T steps), the predicted value becomesX(T) = X(T−1) + dX(T−1).

3.2.3 Our Geometric Hawkes Processes (GHP)

We propose a novel Geometric Hawkes Process (GHP) model by integrating the geometric

deep learning into Hawkes processes, which aims to efficiently capture meaningful patterns in

a large collection of correlated sequences of recurrent events. In our framework, each sequence

is modeled as a Hawkes process and the proximities between different processes are encoded in

graphs. Specifically, we propose two types of GHP: single-graph GHP and multi-graph GHP.

Single-graph GHP is particularly useful for modeling sequences with one type of graph such as

modeling earthquakes at N locations with a proximity network of locations. Multi-graph GHP is

46

particularly useful for modeling sequences with multiple graphs such as modeling the diffusion

of various infectious diseases among a group of people, where the relationship of people and dis-

eases can be represented by a user graph and an item graph, respectively. The learned meaningful

embeddings from graphs are then used to generate parameters such as the base intensities that

characterize Hawkes processes.

Specifically, the parameters of single-graph GHP are h, a as described in eq. (3.8) and they

are functions defined on a graph, e.g., a user graph. Similarly, the parameters of multi-graph GHP

are H and A as described in eq. (3.9), and they are functions defined on multiple graphs, e.g.,

a user graph and an item graph. The parameters are random initialized as x or X in equations

eq. (3.14) and eq. (3.18) respectively, and will be optimized in deep geometric learning. The loss

function is defined as the log-likelihood of observing the sequences of events. Formally, based

on the survival analysis theory [1], the likelihood of observing a sequence of events T = {ti}ni=1

is
∏

ti∈T λ(ti) ·exp(−
∫ Γ

0
λ(τ)d(τ)), where Γ is the total observation time. We present the details

for the two types of GHP as the following.

Single-graph GHP

Specifically, for a collection of Hawkes processes according to eq. (3.8) and eq. (3.14), let

T u be the set of events induced by vertex u = 1, ...,m. The log-likelihood of observing each

sequence T u is:

L(T u | xθ,ζ(T)) =
∑
tuj ∈T u

log(x(T)
u Φu

j)− x(T)
u Ψu, (3.22)

where:

x(T)
u =(h(u)(T),a(u)(T)),

Φu
j =(1,

∑
tuk<t

u
j

κ(tuj − tuk))>,

Ψu =(Γ,
∑
tuj ∈T u

∫ Γ

tuj

κ(t− tuj)dt)>. (3.23)

47

The feature vector Φu
j and the integral Ψu can be pre-calculated given certain forms of kernels

κ(t). The formulas for zero kernel and linear kernel functions are straightforward. Since the

constant scale parameter can be merged into the Hawkes self-exiting coefficient α (with matrix

form a(u)(T) and A(u, i)(T)) in eqs. (3.1), (3.8) and (3.9), we set a = 1 in eqs. (3.3) to (3.7).

When adopting zero kernels, the second term of the feature vector Φu
j and the integral Ψu becomes

zero, by integrating eq. (3.2) into eq. (3.23):

Φu
j =(1, 0)>,

Ψu =(Γ, 0)>, (3.24)

When adopting linear kernels, the vectors can be computed by integrating eq. (3.3) into eq. (3.23):

Φu
j =(1,

∑
tuk<t

u
j

[1− b(tuj − tuk)])>,

Ψu =(Γ,
∑
tuj ∈T u

[
b

2
(Γ− tuj)2 − (Γ− tuj)])>, (3.25)

For exponential kernels, the vectors can be computed by integrating eq. (3.4) into eq. (3.23):

Φu
j =(1,

∑
tuk<t

u
j

e−b(t
u
j−tuk))>,

Ψu =(Γ,
∑
tuj ∈T u

1

b
(1− e−b(Γ−tuj)))>, (3.26)

For power-law kernels, the vectors can be computed by integrating eq. (3.5) into eq. (3.23):

Φu
j =(1,

∑
tuk<t

u
j

1

(tuj − tuk + c)p
)>,

Ψu =(Γ,
∑
tuj ∈T u

1

p− 1
[c1−p − (Γ− tuj + c)1−p])>, (3.27)

48

For Tsallis Q-exponential kernels with 1 < q < 2, the vectors can be computed by integrating

integrating eq. (3.6) into eq. (3.23):

Φu
j =(1,

∑
tuk<t

u
j

[1 + (q − 1)(tuj − tuk)]
1

1−q)>,

Ψu =(Γ,
∑
tuj ∈T u

1

2− q
{1− [1 + (q − 1)(Γ− tuj)]

2−q
1−q })>, (3.28)

For Rayleigh kernels, the vectors can be computed by integrating integrating eq. (3.7) into

eq. (3.23)

Φu
j =(1,

∑
tuk<t

u
j

(tuj − tuk)e−b(t
u
j−tuk)2)>,

Ψu =(Γ,
∑
tuj ∈T u

1

2b
(1− e−b(Γ−tuj)2))>, (3.29)

Algorithm 3: Algorithm for Learning single-graph GHP
Input: All the training events O = {T u}u; parameters ρ, γ, β; {xc = [hc;ac]}Cc=1

Output: The coefficients of Hawkes processes {x(T)
c }Cc=1

begin
Initialize {x(0)

c }Cc=1.
for t← 0 to T do

Forward Propagation:
1. Apply one single-GCN layer eq. (3.19) on {x(t)

c }Cc=1 producing C ′ output
matrix {x(t)

c′output
}C′c′=1

2. Apply LSTM with a fully connected layer on the output matrix {x(t)

c′output
}C′c′=1

producing small incremental update {dx(0)
c }Cc=1

3. Update {x(t+1)
c ← x

(t)
c + dx(t)

c }Cc=1

Back Propagation:
1. Clip Value ({x(t+1)

c }Cc=1)
2. Apply Adam stochastic optimization algorithm to optimize eq. (3.30) and
update weights θ, ζ

end
Output {x(T)

c }Cc=1 to calculating Hawkes intensity by eq. (3.8).
end

49

It is worth mentioning that the notation xθ,ζ(T) emphasize the matrix depends on the param-

eters of GCN (polynomial coefficients θ) and those of the LSTM network (denote as ζ) after T

steps. As a result, the log-likelihood of observing all vertices’ sequences O = {T u}u is a sum-

mation of terms by L(O) =
∑
T u∈O L(T u). Also, we want the variables h and a to be faithful

to the graph structure G with m vertices and the corresponding graph Laplacian Lm×m. Thus, we

can add the graph regularizer h(xθ,ζ) = ρ{tr(h>Lh) + tr(a>La)} and the squared Frobenius

norm g(xθ,ζ) = γ‖h‖2
F + β‖a‖2

F as [69]. Finally, we can obtain h and a by minimizing the

following objective function:

OPT =min
θ,ζ
− 1

|O|
∑
T u∈O

L(T u |xθ,ζ(T))+h(xθ,ζ
(T))+g(xθ,ζ

(T)), s.t. xθ,ζ
(T) ≥ 0, (3.30)

where xθ,ζ = [h;a], and ρ γ, β control the trade-off between the constrains. After the parameters

converging to optimal, we can directly use x and eq. (3.8) to compute the intensity and make

predictions.

Multi-graph GHP

Similarly, we can give the objective function of multi-graph GHP. According to eq. (3.9)

and eq. (3.18), let T u,i be the set of events induced between vertex u = 1, ...,m and vertex

i = 1, ..., n. The log-likelihood of observing each sequence T u,i is:

L(T u,i |XΘ,ζ
(T)) =

∑
tu,ij ∈T u,i

log(X
(T)
u,i Φu,i

j)−X(T)
u,i Ψu,i, (3.31)

where:

X
(T)
u,i =(H(u, i)(T),A(u, i)(T)),

Φu,i
j =(1,

∑
tu,ik <tu,ij

κ(tu,ij − t
u,i
k))>,

Ψu,i =(Γ,
∑

tu,ij ∈T u,i

∫ Γ

tu,ij

κ(t− tu,ij)dt)>. (3.32)

50

Note that the feature vector Φu,i
j and the integral Ψu,i can be calculated in a way similar to

eq. (3.23). Thus, we omitted the closed forms of different kernels.

Algorithm 4: Algorithm for Learning multi-graph GHP
Input: All the training events O = {T u,i}u,i; parameters ρ, γ, β; {Xc = [Hc;Ac]}Cc=1

Output: The coefficients of Hawkes processes {X(T)
c }Cc=1

begin
Initialize {X(0)

c }Cc=1.
for t← 0 to T do

Forward Propagation:
1. Apply multi-GCN layer eq. (3.20) on {X(t)

c }Cc=1 producing C ′ output matrix
{X(t)

c′output
}C′c′=1

2. Apply LSTM with a fully connected layer on the output matrix {X(t)

c′output
}C′c′=1

producing small incremental update {dX(0)
c }Cc=1

3. Update {X(t+1)
c ←X(t)

c + dX(t)
c }Cc=1

Back Propagation:
1. Clip Value ({X(t+1)

c }Cc=1)
2. Apply Adam stochastic optimization algorithm to optimize eq. (3.33) and
update weights Θ, ζ

end
Output {X(T)

c }Cc=1 to calculating Hawkes intensity by eq. (3.9).
end

In multi-graph case, the notation XΘ,ζ
(T) emphasize the matrix depends on the parameters

of multi-GCN (polynomial coefficients Θ) and those of the LSTM network (denote as ζ) after

T steps. Similarly, the log-likelihood of observing all vertices’ sequences O = {T u,i}u,i is a

summation of terms by L(O) =
∑
T u,i∈O L(T u,i). Given the row graph structure Gr with m

vertices and the column graph structure Gc with n vertices, the corresponding graph Laplacian

are Lr ∈ Rm×m and Lc ∈ Rn×n. Thus, we can add the multi-graph regularizers as h̃(XΘ,ζ) =

ρ{tr(H>LrH) + tr(HLcH
>) + tr(A>LrA) + tr(ALcA

>)} [41]. It is worth mentioning that

two matrix withm×n dimension contain too many parameters. Usually, a lot of points’ attributes

can be categorized into a limited number of types for the real world data. So, we assume H and

A have low-rank structures, and we can add the nuclear norm g̃(XΘ,ζ) = γ‖H‖∗ + β‖A‖∗

as [20], which is frequently used as a convex surrogate penalty term for matrix rank. Finally, we

51

can obtainH andA by minimizing the following objective function:

OPT =min
Θ,ζ
− 1

|O|
∑
T u,i∈O

L(T u,i|XΘ,ζ
(T))+h̃(XΘ,ζ

(T))+g̃(XΘ,ζ
(T)), s.t.XΘ,ζ

(T) ≥ 0, (3.33)

where XΘ,ζ = [H ;A], and ρ γ, β control the trade-off between the constrains. After the pa-

rameters converging to optimal, we can directly useX and eq. (3.9) to compute the intensity and

make predictions.

Learning with Clipping

We can use several stochastic optimization algorithms such as SGD and Adam [43] to solve

the log-likelihood with regularizers. However, as Hawkes processes have non-negative parame-

ters, the objective function should be optimized under such non-negative constraints eqs. (3.30)

and (3.33). Since it is the inequality constraints, directly solving it by adding Lagrange mul-

tiplier or Kuhn-Tucker method [81] will introduce the Complementary Slackness Conditions,

which makes it more complex. To enforce the non-negative constraints on the objective function,

we clip the value to lie within a compact space after each temporal step t = 0, ..., T and make the

lower bound greater than zero. We present the following learning Algorithm 3 and Algorithm 4

for single-graph and multi-graph GHP, respectively.

Computational Complexity

By applying polynomial localization, the single-GCN eq. (3.14) reaches O(n) [18] rather

than using eq. (3.18) with complexity O(n2), where n is the number of vertices of the graph.

Thus, the multi-GCN has the complexity of O(mn) [65] considering C,C ′, K � min(m,n).

Also, the learning complexity of LSTM network is O(W), where the number of parameters

W = 4n2
c+4ncni+ncno+3nc [72], and the number of memory units, input units and output units

are equal to the number of output feature map size of the GCN nc = ni = nc = C ′ in our network.

As a result, such single-GCN + RNN network has the complexity ofO(n+n·C ′ ·C ′) = O(n) per

time step and the multi-graph one has the similar complexity ofO(mn) per time step. It is worth

mentioning that these are computed globally. To make it more efficient, we can also address

52

several mini-batch with P samples from n or mn, which makes the algorithm independent of the

graph size and achieve O(P) complexity.

3.3 Experiment and Results

In this section, we introduce the experiments.

3.3.1 Experimental Settings and Evaluation Metrics

We evaluate our model on three real world datasets which contain temporal interactions

between a set of users and a set of items. The details are shown in table 2.2. Specifically,

the IPTV dataset [87] contains 7100 users and 436 TV programs with 1420 program features

such as genres and countries. For each user-item pair, it contains a sequence of viewing time

during the period of January to November 2012. The Yelp1 dataset is available from Yelp dataset

challenge. After pre-processing, it records the time of writing reviews for 17k businesses by 100

users during a period of 11 years. The Reddit2 dataset contains the time of posting discussions

between random selected 1000 users and 1403 threads in January 2014.

As suggested in [65], a user or item graph can be constructed as an unweighted k-nearest

neighbor graph in the space of features such as TV features. In cases where user and item features

are not available, we can construct a two-dimensional user-item matrix from the time sequences

where each entry indicates the total count of user-item interactions, and apply SVD to get a

latent feature vector for each use or item. In cases where user and item content features (e.g.,

TV genres and countries) are available, we investigate the effect of building a KNN graph with

different integration methods of content features and the SVD features obtained through user-

item matrix. We can model these datasets using either single-graph GHP or multi-graph GHP.

For the first case, the parameters are regraded as vector functions on a graph (e.g., user graph)

and the values of each dimension (e.g., item index) are regraded as different channels. For the

second case, the parameters are regraded as scalar functions on both user and item graphs and the

size of the input channel is one.

There are three metrics to evaluate the performance of the model. In the experiments, we use

1https://www.yelp.com/dataset/challenge
2https://dynamics.cs.washington.edu/data.html

53

the events before time T · p as the training data, and the rest of them as testing data, where T is

the length of the total time, and p = 0.76 is the proportion where we split the data.

Test Loss: It is defined as in the objective function eqs. (3.30) and (3.33) with fixed coeffi-

cients of Hawkes processes learned using events in the training set.

Item Relevance: Given the history T = {ti}ni=1 of a specific user u, we calculate the survival

rates for all the items at each testing time t, that is Si(t) = exp(−
∫ t
tin
λi(τ)d(τ)). We then order

all the survivals and compute the rank of the ground-truth item the user interacts at testing time

t. Ideally the ground-truth item should be ordered at rank one. Following [84], we report mean

average rank (MAR) of all testing cases. A smaller value of MAR indicates better predictive

performance.

Time Prediction Accuracy: Given a specific pair of user u and the item i, we record the mean

absolute error (MAE) of the next predicted time and the ground truth of testing time t. The

predicted time is calculated by the density of next event time as f(t) = λ(u,i)(t)S(u,i)(t), and then

use the expectation to predict the next event. Furthermore, we also give the relative percentage

of the prediction error (Err %).

3.3.2 Baseline Methods

Po: Poisson processes are simplified Hawkes processes without capturing temporal depen-

dencies. The only parameter to characterize Poisson is the base intensity η, which is a constant.

Po-T: Poisson-Tensor uses Poisson regression error instead of RMSE as the loss function

when fitting the data. The intensity are regarded as the number of events in each discretized time

slot [14]. It assumes that the missing values are not random, and thus simulating the values with

Poisson distribution is more reasonable than with Gaussian. Once we get the model parameters,

there are two ways to simulate the intensity of test data. One is using the intensity that we have

got only in the last time interval, and the other is using the average intensity of all the training

time intervals. We report the best performance of these two choices.

LRH: LowRankHawkes is a collection of Hawkes processes [20] assuming that all processes

are independent and the parameters are low rank matrices. However, there are no interactions

54

0 50 100 150 200 250 300 350
Iteration

1.5

2

2.5

3

3.5

4

4.5
Te

st
 L

os
s

10 4 Test Loss with different graph input

Multi-Graph
User Graph
Item Graph

(a) Graph input

0 50 100 150 200 250 300 350
Iteration

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Te
st

 L
os

s

10 4 Test Loss with different K neighbor

2
5
10
15
20

(b) K neighbor

0 50 100 150 200 250
Iteration

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Te
st

 L
os

s

10 4 Test Loss with different architecture

1GCN
1GCN+GRU
1GCN+LSTM
2GCN+GRU
2GCN+LSTM

(c) Architecture

Figure 3.1: Testing loss with respect to different graph inputs, different number of neighbors, and
architectures on IPTV data.

between different processes.

Coevol: Coevolve is a co-evolutionary latent feature process [84] which constructs interde-

pendent Hawkes processes by embedding user and item features globally into each process. This

method actually combines all events happening before the current event from different processes

when fitting the parameter of each individual process. However, the performance in terms of item

relevance may be affected due to unrelated events. In addition, if no features are used, the model

reduces to a Poisson process.

3.3.3 Compare Ours of Different Parameters

We first investigate the influence of important parameters in our GHP model by evaluating

them using the testing loss. Specifically, the main parameters are types of graph, k-nearest neigh-

bor, and the variations of deep learning architectures. Moreover, we consider different ways of

building graphs to integrate both content features and interaction features, the type of triggering

kernels, and different graph propagation models.

Single vs Multi-graph

We show the results of testing losses with multi-graph input compared with only single-

graph input, e.g. only a user graph or an item graph, of IPTV dataset in fig. 3.1(a). As we can

see, the testing loss with multi-graph input outperforms that with only single-graph input, which

prove that the graph information is extracted well by the GCN + LSTM networks. It is worth

mentioning that the IPTV dataset contains 7100 users and 436 TV show items, so using only the

55

user graph achieves better results than using only the item graph. Also, the testing loss shows

that the less information inputted, the faster it overfits the data.

Number of K-neighbors

We also investigate the number K’s effect when constructing the K-nearest neighbor graph.

In fig. 3.1(b), we present the testing losses of IPTV dataset with 2, 5, 10, 15, 20 -NN graph input

of multi-graph GHP model. The figure demonstrates that give the K in a reasonable range, we

can achieve a stable and accurate estimation of the model. The results show that k = 10 is the

best for IPTV dataset. In the experiment, we use the same K for both user and item input graphs.

However, we can separately set K for the user graph and the item graph to make it more flexible.

According to fig. 3.1(a) and fig. 3.1(b), our GHP model benefits from the input graph information

and extracts useful features from these interactions, and thus the model overcomes the isolation

of point process models such as [20].

Variations of Architecture Setting

We compare different architecture settings of our model and the results are presented in

fig. 3.1(c). First of all, the RNN structure such as LSTM or GRU is essential to learn the diffusion

process of coefficients. The LSTM is more effective compared to GRU [15] because LSTM

can remember more historical information. Besides, the results show that adding more GCN

layers enhances the performance of modeling Hawkes processes, which indicates that deeper

network may extract more useful features. As data size increases, it is necessary to build deeper

architectures. More extensive studies on the architecture of GCN in different applications can be

found at [44, 65]. In our experiment, we found the structure of two GCN layers plus one LSTM

layer works best.

Building Item Graph by Integrating Features

In the case where both item content features (e.g., TV genres and countries) and user-item

interaction exist, we investigate different combination methods to integrate features to construct

the item KNN graph using IPTV dataset. The KNN graph depends on the distance between user

and item similarities based on these two type of features. Since the item content features are

56

3.1e+04

9.7e+03

-9.3e+03

1.9e+03

1.1e+04
1.3e+04

1 2 3 4 5 6

Combination Methods

-1e4

-0.5e4

0

0.5e4

1e4

1.5e4

2e4

2.5e4

3e4

3.5e4

T
e
s
t
L
o
s
s

SVD only

Item only

Add

Element-wise Product

Concatenate

Outer Product

Figure 3.2: Test loss with respect to different combination methods of item features on IPTV
dataset.

quite sparse with high dimension, we first apply some dimension reduction methods on them to

reduce the dimension of these features to the same dimension k of the item latent feature ob-

tained through user-item interactions. We adopt three dimension reduction techniques: Principal

Component Analysis (PCA), Auto Encoder(AE), and Multi-dimensional Scaling (MDS). The

experiments show that PCA achieves the best performance, while MDS is the second and AE

becomes the worst. After normalizing these two types of features, we finally integrate them to a

unified feature vector by six methods: only item SVD features by factoring user-item interaction;

only item content features; element-wise addition of these two features; element-wise product

of the two; concatenation of the two that extend the low dimension from k to 2k; and the outer

product which extend the lower dimension from k to k2.

We present the performance of test loss with respect to different combination methods of item

features on IPTV dataset in fig. 3.2. First of all, adopting the integration of two types of features

is better than only adopting one type of features. Second, the item content features seem to have

better qualities in representations than SVD collaborative features. At last, it seems that addition

and element-wise product operations of these two type of features achieve better performance

than others. The redundant and noisy information generated by concatenation and outer product

57

-9.3e+03

4.3e+03

3.2e+03 3.3e+03
2.7e+03

3.7e+03

1 2 3 4 5 6

Kernel

-1e4

-0.5e4

0

0.5e4

1e4

T
e
s
t
L
o
s
s

exp

zero

linear

pwl

qexp

ray

Figure 3.3: Test loss with respect to different kernels on IPTV dataset.

operations seem to be the reason leading worse performance.

Effect of Triggering Kernels

We also investigate the effects of using different triggering kernels of Hawkes processes such

as zero kernels, linear kernels and some other kernels introduced before eqs. (3.4) to (3.7). As

shown in fig. 3.3, the most widely used exponential kernel seems to capture the dependence of

history events well and achieves the best performance. Zero kernel is the worst and others are

in-between. Some research indicates that these kernels, which represent different forms of decay

may perform differently depending on various types of data [70, 19].

Different Graph Propagation Models

We compare the test loss with different graph propagation models [44] on the IPTV dataset.

The results shown in table 3.2 indicated that the first order term only model and the Chebyshev

filter eq. (3.14) with K = 2 both achieve comparable performance than other graph propagation

models eqs. (3.15) to (3.17). As we increase K, the number of parameters increases, which may

lead to the over-fitting problem. In our experiments, these graph propagation models don’t effect

the performance too much comparing with choices of kernel and feature combination methods.

This indicates that the content of the graph seems to be more important than how it is embedded

into the learning under the framework of graph convolution networks. Based on all the exper-

58

Table 3.2: Test loss with respect to different graph propagation models on IPTV dataset.
Description Propagation Model Test Loss

K = 2 Chebyshev filter eq. (3.14)
xoutput = σ(

∑K−1
k=0 θkTk(L̃)x)

-9.26e+03
K = 3 Chebyshev filter eq. (3.14) -7.11e+03

1st-order model eq. (3.15) xoutput = σ((θ0 − θ1D
−1/2WD−1/2)x) -5.04e+03

Single parameter 1st-order model eq. (3.16) xoutput = σ(θ(I +D−1/2WD−1/2)x) -3.14e+03
Re-normalization trick eq. (3.17) xoutput = σ(θD̃−1/2W̃ D̃−1/2x) -2.37e+03

1st-order term only xoutput = σ(θD−1/2WD−1/2x) -9.69e+03

Table 3.3: Average prediction performance comparison on IPTV, Yelp, and Reddit datasets.

Datasets Metrics
Methods

Our LRH Coevol Po Po-T

IPTV
MAR 1.643 5.175 13.57 173.7 178.7
MAE 361.0 822.1 160.3 993.1 933.6
Err % 5.13 12.27 2.35 14.83 13.89

Yelp
MAR 94.62 116.0 671.2 7778 1738
MAE 499.0 845.7 587.3 850.9 587.1
Err % 14.59 23.71 17.49 23.91 17.48

Reddit
MAR 6.010 49.14 82.44 128.2 85.49
MAE 5367 8476 5323 10314 9155
Err % 14.15 21.50 14.27 26.59 24.09

iments, we conclude that the graph Lapacian which depends on the graph construction and the

graph convolution network structures are crucial to the performance of our GHP model.

3.3.4 Compare with Baselines

We compare our GHP model with some state-of-art baselines by evaluating the metrics of

item relevance and time prediction accuracy as shown in table 3.3. We use multi-graph GHP

model and the results show that our method outperforms other baseline methods in general.

For IPTV and Reddit datasets, the exception occurs on time prediction of Coevol. Specifi-

cally, the Coevol method uses a weighted summation of all the events happened before the current

event to simulate one point’s intensity. Therefore, the returning-time prediction is good since a

large number of events are used to simulate the intensity function. The embedding of auxiliary

features such as TV genres is also helpful in improving prediction accuracy. However, the item

relevance prediction becomes worse [84] because the parameters of the individual process are in-

59

fluenced by unrelated processes. Meanwhile, we can see that the Hawkes process based models,

such as our model, Coevol, and LRH, get better performances when there are sufficient history

events (with nearly 400 events per point for IPTV and 30 events for Reddit) in comparison with

the Poisson related models. For Yelp data, as each point process only has fewer than 3 events

in average, the time prediction is similar among LRH and Po, which means that the history is

not such an important factor. In this time sparsity case, factorization model Po-T gets better re-

sults than point process based models. For all three datasets, LRH with low-rank assumption,

performs worse than our GHP that integrates graphs with low rank assumption. Obviously, inte-

grating graphs can better capture the correlations between different processes.

60

CHAPTER 4
FAIRNESS-AWARE GRAPH CONVOLUTIONAL POINT PROCESSES

4.1 Introduction

Human events are often recurrent and exhibit self-exciting properties. For example, in patient

diagnosis events, elevated risk exists for a patient that has been recently at risk. In TV watching

events, after watching an episode drama at a certain time, users are likely to watch the remaining

episodes daily or weekly in the following days. Time intervals between consecutive events carry

rich information about specific types of user-item interaction events. Point processes, which

assume certain forms of inter-event correlations, have been widely used in predicting temporal

events such as online check-ins, job-seeking events, and electronic records of hospital admissions

[19, 83, 89].

A joint modeling of point processes with coevolving user and item interests has been shown

more effective for capturing the temporal dynamics [25, 84, 79]. On one hand, the instantaneous

rate of interaction event occurrence depends on user interests and item profiles, which may evolve

over time. On the other hand, the interactions between users and items may also drive the evolu-

tion of user interests and item features as reflected by intuitive examples such as “you are what

you read and what you tweet”. Specifically, each user/item is associated with a dynamic chang-

ing feature in a latent space learned from basic features such as demographics, the features of

items he or she interacted with, and user-item interaction features such as reviews. The temporal

correlations between interaction events with coevolutionary dynamics are captured through high

dimensional intertwined stochastic processes.

Despite promising examples of point processes with coevolutionary dynamics, there are

still critical research challenges due to the data sparsity and imbalances with respect to certain

user/item groups. Firstly, the coevolving dynamics driven by the occurrence of user-item inter-

action would fail to achieve good performance when there are insufficient interaction events for

each process. In fact, a large portion of users and items have very few interaction events in many

applications. For example, Netflix movie rating dataset contains 480 k users and 17 k items and

61

most users only rate a few movies. In the LinkedIn dataset of 2,439 users and 82 items, only

12.8% have more than 4 reported job histories. Secondly, unfair predictions may be generated

due to data bias and can be amplified through self-excitation. For example, job-seeking event

prediction based on interaction data may exhibit socioeconomic bias since users with frequent

interaction events on LinkedIn tend to be the communities of higher socioeconomic status.

To tackle these challenges, we present a novel fairness-aware graph convolutional point pro-

cesses with coevolutionary feature embedding to strike a balance between the accuracy and fair-

ness in this chapter. Our major contributions are: (1) We learn the joint modeling of point

processes under geometric structure with coevolutionary feature embedding to achieve higher

prediction accuracy especially for processes with insufficient observations. (2) We present some

novel fairness metrics for introducing user and item parity into temporal event prediction. By

adding penalty terms of fairness costs to the likelihood function, our model enforces that the

expected intensity over a time period for each of the user/item groups to be equal. To our best

knowledge, our model is the first one that introduces fairness in point processes to model user-

item interactions. (3) We propose an efficient convex optimization algorithm to estimate model

parameters and discuss both scalability and efficiency of the algorithm. Extensive experiments

on real world datasets demonstrate that our method improves event prediction over baselines and

controls the balance between accuracy and fairness effectively.

4.2 Background

We first introduce background knowledge and list key notations in Table 4.1.

4.2.1 Point Process

Point processes are applied to modeling the temporal dynamics observed in event sequences

(e.g., TV browsing events) between of a group of m users and n items (e.g., TV programs).

Instead of discretizing the time into bins as traditional methods [31, 37, 83], the time of each

interaction event is modeled as a random variable. Formally, the ordered list of all observed q

events are denoted as O = {ek = (uk, ik, tk)}qk=1 in a window [0, T], where uk ∈ {1, ...,m},

ik ∈ {1, ..., n}, tk ∈ R+, 0 ≤ t1 ≤ t2... ≤ tq ≤ T . The event sequence (e.g., browsing

62

Table 4.1: Key notations.
Variable Description

L Laplacian matrix of graph
D degree matrix of graph
W adjacency matrix of graph
Λ diagonal eigenvalue matrix
U orthonormal eigenvectors matrix
Λ̃ scaled eigenvalues in interval [−1, 1]

L̃ rescaled Laplacian w.r.t. Λ̃
K total degrees of Chebyshev polynomial basis
Tk k-th degree of Chebyshev polynomial basis
Gu,Gi user graph and item graph
m,n number of nodes in Gu,Gi
u, i the u-th and i-th entry of user and item

D̃Gu , D̃Gi renormalized degree matrix of user and item graph
W̃Gu , W̃Gi renormalized adjacency matrix of user and item graph

Θ graph convolutional filter parameter matrix
Θk k-th polynomial filter parameter matrix in Θ

ΘGu ,ΘGi coefficient matrices of user and item process
Ω product of the graph covolutional filter matrices
T a list of discrete temporal events
O observed events of all user-item pairs
T total time in all the sequences
ek k-th event in O

uk, ik the specific u and i for ek
tk the time when ek happened for specific (uk, ik) pair

λu,i(t) point process intensity function for (u, i) pair
Λ(t) point process intensity function matrix
κω(t) kernel function in point process with bandwidth ω
ηu,i base intensity in point process for (u, i) pair
αu,i self-exciting coefficient in Hawkes process for (u, i) pair
H point process base intensity matrix
Ĥ auxiliary variable matrix for alternating updates
c, d input and output channel dimensions
α, ρ trade-off parameters for constraints
γ, β trade-off parameters for fairness

Xu(t),Xi(t) base drift of the user and item feature
uu(t), ii(t) dynamic coevolved feature for user and item
yu(t), zi(t) d-dimensional point process for user u and item i
U(t), I(t) dynamic convolved user and item feature matrix

Y Gu(t),ZGi(t) collections of user and item point processes
λ̃ intensity integral over time after normalization

63

history) of each user-item pair (u, i) can be modeled as a univariate process and the process

can be characterized via its conditional intensity λu,i(t), which is the expected rate of the event

occurrences for the user-item pair given the history of all the previous events up to time t.

Different types of point processes assume certain forms of dependency on the history in var-

ious ways. For example, the Poisson process makes the assumption that the duration is stationary

and the intensity function λu,i(t) = ηu,i, where ηu,i is constant for a specific (u, i) pair over time.

The Hawkes process [35] is an extension of Poisson process which add a exponential decay of

history events. It can be presented as:

λu,i(t) = ηu,i + αu,i
∑
tu,ik <t

κω(t− tu,ik), (4.1)

where ηu,i ≥ 0 is the baseline intensity that captures the long-term tendency of event occurrence,

αu,i ≥ 0 is the self-exciting coefficient of the history decay and κω = exp(−t/ω) is the kernel

function capturing temporal dependencies, which is usually an exponential kernel with bandwidth

ω.

4.2.2 Geometric Deep Learning

Given an undirected weighted graph denoted as G = (V, E ,W), where V is a finite set of

|V | = n vertices, E is the set of edges and W ∈ Rn×n is the adjacency matrix with entries

Wij > 0 if (i, j) ∈ E , an n× n symmetric positive-semidefinite matrix which is called the graph

Laplacian can be constructed to reflect useful properties of the graph. Usually, the normalized

graph Laplacian can be denoted as:

L = In −D−1/2WD−1/2, (4.2)

where D ∈ Rn×n is the degree matrix with Dii =
∑

jWij and In is the identity matrix.

In order to extract meaningful patterns from graph, the graph convolution is proposed in

the spectral domain [8, 36]. Specifically, suppose x ∈ Rn is a signal of graph G, where n is

64

the number of nodes in the graph, then the spectral graph convolution operator ? is defined as

follows:

x?y=U((U>x)�(U>y))=Udiag(U>y)U>x=Ugθ(Λ)U>x, (4.3)

where � is the element-wise Hadamard product, L = UΛU> is the normalized graph Laplacian

of G, U is the matrix of orthonormal eigenvectors of L, and Λ is the diagonal matrix with the

non-negative eigenvalues of L, gθ(Λ) = diag([ŷ(λ0), ..., ŷ(λn−1)]), and θ ∈ Rn is the learnable

convolutional filters. For simplicity, we denote x ? y as gθ ? x.

For the purpose of reducing the computational complexity and the parameters in the model,

as well as incorporating localization following the lead of graph signal processing [33], a poly-

nomial filter was introduced by [18]:

gθ(Λ) =
K∑
k=0

θkTk(Λ̃), (4.4)

where Λ̃ = 2Λ/λmax − In is the rescaled eigenvalues in the interval [−1, 1], Tk(Λ̃) = 2Λ̃ �

Tk−1(Λ̃) − Tk−2(Λ̃) is defined in a recursive way with T0 = I and T1 = Λ̃. As θ = {θk}Kk=0 is

a vector of polynomial coefficients for such a filter, the computational complexity of the entire

filtering operation becomesO(K|E|) rather thanO(n2) [18] by applying K-localized polynomial

kernel, where |E| is the number of non-zero values in L of the graph G. Then we have:

gθ ? x =
K∑
k=0

θkTk(L̃)x, (4.5)

where L̃ = 2L/λmax − In is the rescaled Laplacian. Note that the formula involves only the

computation of the Laplacian L without the computation of its eigendecomposition, and the

convolutional kernel with spatial localization will benefit local feature extraction.

65

A simplified variant of this filter is proposed in [44], which assumes K = 1 and λmax = 2:

gθ ? x = θD̃−1/2W̃ D̃−1/2x, (4.6)

with a single parameter constraining θ = θ0 = −θ1, where W̃ = W + In and D̃ii =
∑

j W̃ij .

Then the generalized version with c input channels in n-node signal X ∈ Rn×c and d filters or

feature maps is defined as follows:

Z = D̃−1/2W̃ D̃−1/2XΘ, (4.7)

with total complexityO(|E|dc), where Θ ∈ Rc×d is the matrix of filter parameters andZ ∈ Rn×d

is the convolved signal matrix.

4.3 Model

In this section, we introduce our Fairness-aware Graph Convolutional Point Processes. Our

model is inspired by techniques like matrix factorization and factorization machine, which shows

superior performance over sparsity data. We assume the self exiting component of the Hawkes

intensity function eq. (4.1) depends on the interaction of two multivariate point processes. Specif-

ically, the intensity function for a (u, i) pair is characterized as:

λu,i(t) = ηu,i + yu(t)zi(t)
>. (4.8)

where ηu,i ≥ 0 is the baseline intensity, yu(t) ∈ Rd and zi(t) ∈ Rd are the intensity functions for

the user process and the item process both with latent d dimensions. The intensity functions are

graph convolutional functions defined on user and item features, which may change over time.

The convolutional filters can be viewed as the coefficients of the our Graph Convolutional Point

Process. The inner product of the user process and the item process captures the compatibility

between a user u and an item i.

In the following sections, we first introduce the construction of user and item features in

66

section 4.3.1, and then introduce the details of our Graph Convolutional Point Process in sec-

tion 4.3.2. In addition, we introduce a set of novel fairness metrics in section 4.3.3, and the final

objective function in section 4.3.4.

4.3.1 Dynamic Feature Coevolution

We assume each user or item is associated with a c-dimensional feature vector that changes

over time. The dynamic feature of a user can be characterized by both user’s basic features and

the features of items he or she recently interacted with, which is called ”coevolution”. For each

user u, the corresponding embedding after user u’s k-th event euk = (iuk , t
u
k) can be formulated as:

uu(t) = Xu(t) +
∑

euk∈Ou,t
u
k<t

κω(t− tuk)iik(tuk). (4.9)

Similarly, for each item i, we specify ii(t) as:

ii(t) = X i(t) +
∑

eik∈Oi,t
i
k<t

κω(t− tik)uuk(tik), (4.10)

whereXu(t) ∈ Rc andX i(t) ∈ Rc are the base drift of the corresponding user and item and the

second summation term is the coevolution feature averaging. Specifically, the base drifts Xu(t)

andX i(t) are defined based on the features of specific users or items. It can be static or weighted

average of these static features observed at different times. The feature averaging processes are

modeled by an exponential kernel function κω(t) = exp(−ωt) with bandwidth ω, and it reduces

the influence of each previous feature.

It can be shown by induction that the feature functions defined in eq. (4.9) and eq. (4.10) can

be simplified as the following:

uuk(tk)=
k∑
j=1

I[uj =uk]κω(tk − tj)Xuj(tj)+
k−1∑
j=1

I[uj = uk]κω(tk − tj)X ij(tj), (4.11)

67

iik(tk) =
k∑
j=1

I[ij = ik]κω(tk − tj)X ij(tj) +
k−1∑
j=1

I[ij = ik]κω(tk − tj)Xuj(tj), (4.12)

where I[·] is the indicator function. By eq. (4.11) and eq. (4.12), the embedding features can

be exactly computed given the base drift features Xu(t) and X i(t). Once an event of user uk

interacting with item ik occurs, the corresponding features uuk(tk) and iik(tk) will be updated,

respectively.

4.3.2 Graph Convolutional Point Processes

As we can see, the feature embedding of users and items are driven by the occurrence of

user-item interaction as shown in eq. (4.11) and eq. (4.12). However, the feature embedding may

be inaccurate when there are insufficient interaction events for each point process. Thus, we

propose to incorporate additional geometric structure in the form of user and item graphs into

dynamic feature coevolution for improving temporal prediction accuracy.

We assume that similar users may share similar interaction patterns (e.g., TV browsing be-

havior). The similarity of users and items can be represented by a user graph and an item graph,

respectively. Additional graph information can be used in characterizing point process intensities

to enforce intensity smoothness over a graph. Specifically, we apply a graph convolution defined

in eq. (4.7) to the user and item features defined in eq. (4.11) and eq. (4.12) to generate intensities

for user and item processes:

Y Gu(t) = D̃
−1/2
Gu W̃GuD̃

−1/2
Gu U(t)ΘGu , (4.13)

ZGi(t) = D̃
−1/2
Gi W̃GiD̃

−1/2
Gi I(t)ΘGi , (4.14)

where Y Gu(t) and ZGi(t) are the convolved signlas for all the nodes in graph Gu and Gi. De-

note G = {Gu,Gi}, D̃G and W̃G are the rescaled degree matrix and adjacency matrix, ΘG ∈

68

Rc×d is the graph convolutional parameters, U(t) = [u1(t), ...,um(t)]> ∈ Rm×c, and I(t) =

[i1(t), ..., in(t)]> ∈ Rn×c. Note the output size d of convolutional layers may be different with

the input feature size c depending on the choices of filters.

Thus, based on the factorized intensity function eq. (5.1), the intensity functions for all user-

item pairs are defined as the following using a Matrix notation:

Λ(t) = H + Y Gu(t)ZGi(t)
>

=H+D̃
−1/2
Gu W̃GuD̃

−1/2
Gu U(t)ΘGuΘ

>
Gi[D̃

−1/2
Gi W̃GiD̃

−1/2
Gi I(t)]>, (4.15)

where Λ(t) is the matrix containing the intensities of all user-item pairs at time t, i.e., (λu,i(t)) ∈

Rm×n. Matrix H = (ηu,i) ∈ Rm×n is the baseline intensity matrix that captures the long-term

tendency of event occurrence, yu(t) ∈ Rd and zi(t) ∈ Rd are the convolved signals for that spe-

cific user u and item i based on eq. (4.13) and eq. (4.14), where Y Gu(t) = [y1(t), ...,ym(t)]> ∈

Rm×d and ZGi(t) = [z1(t), ...,zn(t)]> ∈ Rn×d.

Specifically, the base intensity matrix H represents the long-term tendency of user u inter-

acting with item i, which is independent of the history and the graph information. In addition,

the intensity of user u interacting with item i depends on the compatibility of their instantaneous

graph convoluted embedding. Because yu(t) and zi(t) coevolve through time and they integrate

graph information by graph convolution, their inner-product measures the cumulative influence

from the past interactions to the occurrence of the current event.

Incorporating the graph information enforce intensity smoothness over graphs. In addition,

another benefit of the graph convolutional operation is that we reduce the dimension of the input

feature drift, which is R|V |×c, to the dimension of output feature map size R|V |×d, where |V | is

the number of the vertices in graph G = (V, E ,W).

4.3.3 Fairness Metrics

In this section, we present several new fairness metrics, which measures the inconsistency in

different loss functions, such as mean square error, mean absolute error, Huber loss and Kullback-

69

Leibler divergence, between the intensities for different user/item groups. Without loss of gen-

erality, we assume there are s user groups (e.g., s = 2 for gender groups). A user’s group label

can be represented as a one hot vector of dimension Rs, which indicates which group the user

belongs to in all s groups. We can define the user KL fairness metric as:

ÛKL(g||¬g) =
1

s

s∑
g=1

1

n

n∑
j=1

Eg[λ̃]j log(
Eg[λ̃]j

E¬g[λ̃]j
) +

1

s

s∑
g=1

1

n

n∑
j=1

E¬g[λ̃]j log(
E¬g[λ̃]j

Eg[λ̃]j
), (4.16)

where λ̃ = 1
λmax

∫ T
0
λu,i(τ)dτ ≈ 1

λmax
T−1

∑T
t=0 λ

u,i(t) is the approximated intensity integral

across time and normalized by the largest intensity in training, Eg[λ̃]j is the average approxi-

mated intensity for the j-th item from users in group g, and E¬g[λ̃]j is the average approximated

intensity for the j-th item from users not in group g. By applying the log sum inequality, we know

that the KL fairness is always non-negative. When ÛKL(g||¬g) = 0, the expected event intensities

of the groups are the same. The item fairness metrics Î can be defined in a similar way.

Similarly, we can present the other fairness metrics such as MAE fairness, MSE fairness, and

a smoothed variation Huber fairness as follows:

ÛMAE =
1

s

s∑
g=1

1

n

n∑
j=1

|Eg[λ̃]j − E¬g[λ̃]j|, (4.17)

ÛMSE =
1

s

s∑
g=1

1

n

n∑
j=1

(Eg[λ̃]j − E¬g[λ̃]j)
2, (4.18)

ÛH=
1

2s

s∑
g=1

1

n

n∑
j=1

(Eg[λ̃]j−E¬g[λ̃]j)

2, if |Eg[λ̃]j−E¬g[λ̃]j| ≤δ,

δ|Eg[λ̃]j−E¬g[λ̃]j|−
1

2
δ2, otherwise,

(4.19)

where δ in eq. (4.19) is the hyperparameter. It is worth mentioning that when the difference

between the average intensities within and without the group s is small, the Huber fairness equals

the MSE fairness, which becomes the MAE fairness otherwise. They are equal at two points

70

where |Eg[λ̃]j − E¬g[λ̃]j| = δ. The Huber fairness approaches MAE fairness when δ → 0 and

MSE fairness when δ →∞ (large numbers).

In comparison with traditional non-parity fairness metrics [92, 42], our fairness metrics have

two contributions. First, we consider the fairness of event prediction in a continuous time period

and use the expectation of intensities over time between different groups to evaluate the fairness.

Second, as the intensities are not normalized, using common fairness metrics usually lead to the

explosion of the computation when the intensities are extremely large. Thus, inspired by the

idea of the normalized graph Laplacian, we normalize the intensities by the largest intensity in

training, which can reduce the explosion effect. It is worth mentioning that our fairness metrics

all enjoy convexity and permitting efficient optimization as regularizers. We prove the convexity

in theorem 3 and discuss the details of the different fairness metrics in the experiment section.

4.3.4 Maximum Likelihood Estimation with Fairness

Based on the survival analysis theory [1], the likelihood of observing a sequence of events

T uk,ik = {ti}ni=1 for a specific user-item pair (uk, ik) which is recorded within a time window

[0, T] is
∏

ti∈T uk,ik λ
uk,ik(ti) · exp(−

∫ T
0
λuk,ik(τ)d(τ)). The joint negative log-likelihood of ob-

serving all user-item pairs’ events O = {ek = (uk, ik, tk)}qk=1 is:

L = −
∑
ek∈O

log(λuk,ik(ti)) +
m∑
u=1

n∑
i=1

∫ T

0

λu,i(τ)dτ. (4.20)

We further propose to incorporate fairness criteria to guide the construction of Hawkes mod-

els. Specifically, we add a penalty term to the log-likelihood function that enforces the fairness

constraints. The model parameters H , ΘGu , and ΘGi are used to compute hazard rate λ in

eq. (4.15) and the hazard rate is also used to compute the fairness penalty. At first glance, the

objective function is non-convex due to the inner product of the two convolutional filter matrices

{ΘGu ,ΘGi}. Directly using common gradient based methods can usually easily trap into local

minimal that result in tuning the parameters for better performance. Since our Graph Convolu-

tional Point Process is typically one layer network, we can obtain a convex objective function

71

by following the work [84]. Specifically, the product of two matrices can be transformed to

one block matrix Ω = ΘGuΘ
>
Gi ∈ Rc×c, and the model parameters can be simplified as H and

Ω, which makes the likelihood eq. (4.20) convex. Furthermore, adding fairness penalties, the

objective becomes:

OPTf = min
H,Ω≥0

L(O |H ,Ω) + α‖H‖∗ + βÛ + γÎ, (4.21)

whereL is the log-likelihood of observed training data, Û is the user fairness penalty, Î is the item

fairness penalty, and β and γ are the scalar trade-off parameters weighting fairness against the

log-likelihood. In addition, α is a trade-off factor and ‖·‖∗ is the nuclear norm (i.e., trace norm)

commonly used for matrix regularization. Since the intensities of the point processes are always

non-negative, it is worth mentioning that the block matrix should also hold the non-negative

constraints.

4.4 Learning and Optimization

Obviously, the non-negative constraints as well as the non-smooth nuclear norm in the ob-

jective in eq. (4.21) makes the problem hard to optimize. Following the lead of the Primal Av-

eraging Conditional Gradient (PA-CndG) algorithm [50], which is based on Proximal Gradient

(PG) [49, 66], we propose an efficient framework to optimize the objective along with the fairness

penalties.

4.4.1 Alternative Formulation

In order to tackle the difficulties, we first approximate the objective function eq. (4.21) by

adopting a penalty method [20, 84]. With the condition ρ > 0, we introduce a squared Frobenius

norm of an auxiliary variable Ĥ leading to the new following formulation:

ÔPTf= min
H,Ω≥0,Ĥ

L(O|H ,Ω)+α‖Ĥ‖∗+ρ‖H−Ĥ‖2
F+βÛ+γÎ. (4.22)

The new formulation eq. (4.22) divides the non-smooth nuclear norm and the non-negativity

constraints, and thus benefits the optimization process. The approximate objective function is

72

upper bounded by the real objective given ρ [20].

4.4.2 Alternating Updates

We present algorithm 5 to solve eq. (4.22) efficiently. For notation simplicity, we set:

f(H ,Ω, Ĥ) = L(O|H ,Ω)+ρ‖H−Ĥ‖2
F +βÛ+γÎ. (4.23)

We first give the following theorem and proof.

Theorem 3. The function f(·) is convex and its derivative ∇f(·) is Lipschitz continuous (L-

smooth).

Proof. Since the log-likelihood and the Frobenius norm are convex, we only need to prove the

convexity and Lipschitz continuity of all the fairness metrics. Specifically, we prove the user

fairness UKL(·) in eq. (4.16) is convex and Lipschitz continuous gradient, and the rest of the

fairness metrics can be proved similarly.

First of all, the intensity function is a linear function of parametersH and Ω (Ω = ΘGuΘ
>
Gi ∈

Rc×c) based on eq. (4.15) because all the other terms are features computed at a given time t.

Thus, ∀H1,Ω1,H2,Ω2 > 0 and ∀ε ∈ (0, 1):

Λ(εH1 + (1− ε)H2, εΩ1 + (1− ε)Ω2) ≤ εΛ(H1,Ω1) + (1− ε)Λ(H2,Ω2) (4.24)

Note that the user fairness function UKL(·) is a function of intensities λ̃ and the log ratio
Eg [λ̃]j

E¬g [λ̃]j
keeps the same when λ multiplies a constant. Thus we have:

73

UKL(εH1 + (1− ε)H2, εΩ1 + (1− ε)Ω2))

≤ UKL(Λ(εH1 + (1− ε)H2, εΩ1 + (1− ε)Ω2))

≤ UKL(εΛ(H1,Ω1) + (1− ε)Λ(H2,Ω2))

≤ εUKL(Λ(H1,Ω1)) + (1− ε)UKL(Λ(H2,Ω2))

≤ εUKL(H1,Ω1) + (1− ε)UKL(H2,Ω2), (4.25)

thus, the KL fairness function eq. (4.16) is convex. Since it is linear, the derivative function is

constant and is exactly Lipschitz continuous.

Similarly, the convexity property holds for both MAE fairness and MSE fairness. Also, the

derivative function of MSE fairness satisfies the Lipschitz continuity. For the MAE fairness, the

derivative function is the signum function, which is locally Lipschitz continuous in any interval

not containing zero. Note that our MAE fairness ideally achieves zero and the intensities are

always non-negative, we can optimize it from one side by clipping the fairness gradient to enforce

non-negative. The Huber fairness, which is the combination of MSE fairness and MAE fairness,

is continuous around zero. The convexity and Lipschitz continuity still holds for Huber.

As we know the nuclear norm term in the alternative formulation eq. (4.23) is convex, thus,

based on the convexity and Lipschitz continuity proof above, we can apply cheap projected gra-

dient descent for H ,Ω and cheap linear minimization for Ĥ in each iteration. Specifically, the

algorithm consists of two main alternating subroutines:

• Proximal Gradient. Based on the schema in [66], we apply gradient update for parameters

H and Ω in each iteration in algorithm 5. Specifically, we directly calculate the proximal operator

74

ofH ,Ω along with the constraints, which reduce to the simple projections as follows:

Hk=argmin
Hk≥0
{ 1

2ξk
‖Hk−(Hk−1−ξk∇1f(Hk−1,Ωk−1,Ĥ

k−1
))‖2}

= (Hk−1 − ξk∇1(f(Hk−1,Ωk−1, Ĥ
k−1

)))+, (4.26)

and

Ωk=argmin
Ωk≥0
{ 1

2ξk
‖Ωk−(Ωk−1−ξk∇2f(Hk−1,Ωk−1,Ĥ

k−1
))‖2}

= (Ωk−1 − ξk∇2(f(Hk−1,Ωk−1, Ĥ
k−1

)))+, (4.27)

where (·)+ simply sets the negative values to zero.

• Conditional Gradient. For Ĥ , we do not directly compute gradients by eq. (4.26) and

eq. (4.27). We adopt a local linear expansion instead, to approximate the value, which is well

known as the conditional gradient (Frank-Wolfe) method. The difference between this condi-

tional gradient and other traditional conditional gradient methods is that the search direction,

which is ∇3f(Hk−1,Ωk−1, Ĥ
k−1

), is defined. It is actually a variant of Nesterov’s method [66]

by replacing the prox-mapping with a simpler linear expansion:

U k=arg min
Ĥ
{〈∇3f(Hk−1,Ωk−1,Ĥ

k−1
), Ĥ〉+α‖Ĥ‖∗}. (4.28)

Specifically, we first calculate the top singular vector pairs of −∇3f(Hk−1,Ωk−1, Ĥ
k−1

) and

then followed by a line search to produce a scaling factor [93] to solve the problem.

4.5 Convergence and Complexity

4.5.1 Convergence Rate

The projected gradient method achieves the well-known optimal rate O(1/k), i.e., a rate of

O(1/ε) with the condition that learning rate ξk ≤ 1/L. For the conditional gradient method, it

also reaches the optimal rate O(1/k) if it follows step size policy (1): γk = 2
k+1

or (2): γk =

75

Algorithm 5: Graph Latent Feature Processes
Input: All the sequences of training events O = {ek = (uk, ik, tk)}qk=1; learning rate ξk;

parameters ρ, α, β, γ; step size γk ∈ [0, 1];
Output: H , Ω

Choose to initializeH0, Ω0, Ĥ
0

for k← 1 to MaxIter do
Compute the proximal operator forH and Ω:
Hk = (Hk−1 − ξk∇1(f(Hk−1,Ωk−1, Ĥ

k−1
)))+;

Ωk = (Ωk−1 − ξk∇2(f(Hk−1,Ωk−1, Ĥ
k−1

)))+;
Use a local linear expansion of f for Ĥ:
U k=argminĤ{〈∇3f(Hk−1,Ωk−1,Ĥ

k−1
), Ĥ〉+α‖Ĥ‖∗};

Set Ĥ
k

= (1− γk)Ĥ
k−1

+ γkU
k;

end

arg minγ∈[0,1] f((1 − γ)Xk−1 + γU k
1, (1 − γ)Zk−1 + γU k

2) [50]. The algorithm should still

reach the O(1/k) optimal rate in general by properly choosing the learning rate and the step size

parameter.

4.5.2 Computational Complexity and Scalability

The computational complexity is O(N2E/ε), where the constant E is the time complex-

ity calculating the gradient of each entry in the parameter matrix, and N = max(m,n) is the

maximal number of users or items. Note that only parameter matrix H in the intensity function

eq. (4.15) is in the space of Rm×n.

To improve computational efficiency, we can use some prior knowledge to approximate the

base intensity ηu,i as a fixed parameter that captures the long-term tendency of event occurrence

of (u, i) pair. For example, we can count the number of events in the training period of that

entry. Then the parameter space can be reduced to Rc×c, as we only have one parameter Ω to

optimize and c � N . Also, since we don’t need to calculate the non-smooth nuclear norm, the

objective function can be easily optimized by gradient descent, which still has the well known

convergence rate O(1/k) for a convex and L-smooth function, and the computational complexity

for the optimization is O(c2E/ε). If the parameter space Rc×c is still huge, we can also use the

stochastic gradient descent with convergence rate O(1/
√
k) to minimize mini-batch for a convex

and L-smooth function, and achieve complexity of O(E/ε2).

76

Table 4.2: Dataset description.
Dataset User Item Event Pair Sensitive Feature Time

IPTV 7100 436 2.4M 4726 Genres 8040
Yelp 100 17K 35K 20246 N/A 44640

Reddit 1000 1403 10K 2053 N/A 4090
LinkedIn 2439 82 7495 5601 Age 40

4.6 Experiment and Results

In this section, we introduce the experiment and results.

4.6.1 Data

Our model is evaluated on four real world datasets which include user or item features as

well as temporal interactions between them. The details are shown in table 4.2. Specifically, the

IPTV dataset [87] contains 7,100 users and 436 TV programs from January to November 2012

with several program features, and some features such as genres and countries can be regarded as

sensitive feature on which we will apply fairness penalty. The Yelp1 dataset is presented by Yelp

dataset challenge. It contains the time stamps of writing reviews for 17k businesses by 100 users

in 11 years. The Reddit2 dataset records the time stamps of posting discussions between random

selected 1,000 users and 1,403 threads in January 2014. The LinkedIn dataset [88] contains the

job hopping records between 2,439 LinkedIn users and 82 IT companies. We group the users by

old and young as the fairness sensitive features. We compare the state-of-art baselines with our

model using the first three datasets, and evaluate the fairness on the sensitive features of IPTV

and LinkedIn datasets.

Following [65], we construct a user or item graph as an unweighted k-nearest neighbor graph

in the space of features such as TV features. If user and item features are not available, we can

apply SVD to a two-dimensional user-item matrix, which is constructed from the time sequences

and each entry represents the total number of user-item interactions, to get latent feature vectors

for the user and item. We split all of the events on the total time T by a proportion, e.g., p = 0.76,

so the events before time T · p are the training data, and the rest of them are testing data.

1https://www.yelp.com/dataset/challenge
2https://dynamics.cs.washington.edu/data.html

77

4.6.2 Evaluation Metrics

We apply three metrics to evaluate the performance and the fairness of the model:

Item Relevance: For a specific user u with the event history T = {ti}ni=1, we can calculate

the survival of all the items at each testing time t, which is Si(t) = exp(−
∫ t
tin
λi(τ)d(τ)). After

ordering all the survivals, we can obtain the rank of the ground-truth item the user actually in-

teracts with at testing time t. Therefore, the ground-truth item should be ranked one ideally. We

report the mean average rank (MAR) of all testing cases following [84]. A smaller MAR value

indicates better prediction performance.

Time Prediction Accuracy: For a specific user-item pair (u, i), we record the mean absolute

error (MAE) between the next predicted time and the ground truth testing time t. We compute the

predicted time by the density of next event time as f(t) = λ(u,i)(t)S(u,i)(t), and then predict the

next event by expectation. Besides, we also present the relative percentage of the time prediction

error (Err %).

Fairness Loss: we evaluate the fairness loss defined in Section 4.3.3 on the test set. The test

set loss may change due to the trade-off parameters in minimizing the objective function using

training data. It measures the degree of fairness. A larger fairness loss indicates less fairness of

the model.

4.6.3 Baseline Methods

Poisson: The Poisson process is the relaxation of our model without considering history

dependencies. It only has one constant parameter, the base intensity η.

Poisson-Tensor: Poisson-Tensor uses Poisson regression error rather than RMSE as the ten-

sor decomposition loss function [14]. The entries in the tensor are the numbers of events in each

discretized time slot, and it assumes that the missing values obey Poisson distribution, which is

more reasonable, instead of Gaussian. The intensity of the test data can be simulated by using

either the intensity we get in the last time interval, or the average of the intensities over all the

training intervals. We present the best performance of them.

LR-Hawkes: Low-rank Hawkes is a collection of Hawkes processes [20], which assumes

78

that each process is independent with others and the parameters matrices have low rank struc-

ture. Neither the correlations by interaction nor the dependencies between users or items are

considered.

Coevol: Coevolve is a coevolutionary latent feature process [84] which captures the coevolu-

tionary dynamics of user and item features. It enhances the prediction performance by adding co-

evolutional interaction features with base features. However, it only considers interaction events

while ignoring correlations between user-user pairs or item-item pairs in the real world scenario.

GCN-Hawkes: GCN-Hawkes learns the Hawkes process parameters under a graph convo-

lutional recurrent network [75]. It is worth mentioning that our proposed work is on a different

direction with GCN-Hawkes. GCN-Hawkes actually adopts “GCN layer and LSTM pooling”

network to learn the Hawkes coefficients (e.g., base intensity and influence scalar). The graph

feature embedding is static and does not consider the coevolutionary dynamics. However, our

model directly integrates the graph information to user and item features by graph convolutional

embedding.

4.6.4 Comparison with Baselines

We compare our model with some state-of-art baselines in table 4.3 by evaluating the item

relevance prediction and the returning time prediction in IPTV, Yelp and Reddit dataset. We can

see that in general, our model outperforms other methods. Our model and the GCN-Hawkes are

much better than other methods due to the graph convolution feature embedding, especially for

the data sets with fewer temporal events, e.g., Yelp and Reddit. The significant improvement of

these geometric related models demonstrates that the additional correlations between the users or

items are efficiently extracted and they are helpful for the model prediction performance. Also, as

our model and the Coevol adopt coevolutionary dynamics, the returning time prediction becomes

more accurate. The coevolutionary dynamics can efficiently utilize the history events, which is

important for returning time prediction. Besides, the history of the events is crucial in predicting

future events. Poisson process based methods (e.g., Poisson and Poisson-Tensor), which drop

much of the history information, perform worse comparing with others.

79

Table 4.3: Average prediction performance comparison on IPTV, Yelp, and Reddit datasets.

Datasets Metrics
Methods

Ours GCN-Hawkes LR-Hawkes Coevol Poisson Poisson-Tensor

IPTV
MAR 4.757 1.643 5.175 13.57 173.7 178.7
MAE 45.52 361.0 822.1 160.3 993.1 933.6
Err % 0.7895 5.13 12.27 2.35 14.83 13.89

Yelp
MAR 88.03 94.62 116.0 671.2 7778 1738
MAE 398.3 499.0 845.7 587.3 850.9 587.1
Err % 11.84 14.59 23.71 17.49 23.91 17.48

Reddit
MAR 3.114 6.010 49.14 82.44 128.2 85.49
MAE 2126 5367 8476 5323 10314 9155
Err % 2.73 14.15 21.50 14.27 26.59 24.09

Table 4.4: Average prediction performance comparison of different propagation models on IPTV
dataset.

Description Propagation Model
Evaluation Methods

MAR MAE Err %

K = 2 Chebyshev filter eq. (4.5)
Z =

∑K
k=0 Tk(L̃)XΘk

22.51 70.80 3.8
K = 3 Chebyshev filter eq. (4.5) 33.52 71.66 3.8

Single parameter 1st-order model Z = (In −D−1/2WD−1/2)XΘ 10.72 69.62 3.6
Opposite parameter 1st-order model Z = (In +D−1/2WD−1/2)XΘ 17.43 55.50 1.7

Renormalization trick eq. (4.7) Z = D̃−1/2W̃ D̃−1/2XΘ 4.757 45.52 0.79

1st-order term only Z = D−1/2WD−1/2XΘ 12.88 65.76 3.2
Multi-layer perception Z = XΘ 13.57 160.3 2.4

4.6.5 Comparison with Different Graph Propagation Models

We compare the prediction performance with different graph propagation models [44] on the

IPTV dataset. The results are shown in table 4.4. In general, these propagation models achieve

comparable performance with other baselines we present before, and our model, the renormal-

ization trick, outperforms the others. The Chebyshev filter model exhibits overfitting with the

increase of K, since it contains more parameters, and our model is a linear approximate variation

with K = 1. As our datasets are not very big, using simplified version of graph propagation

model such as several first-order models is enough to achieve good performance. Also, when

using multi-layer perception, it reduces to Coevol model while not applying the interaction fea-

tures.

80

Table 4.5: The fairness performance of different metrics on IPTV dataset.
Fairness Loss in Objective MAE MSE Huber KL

MAE Evaluation 0.1760 0.1832 0.1749 0.1706
MSE Evaluation 0.0324 0.0336 0.0306 0.0291
Huber Evaluation 0.1783 0.1822 0.1824 0.1683

KL Evaluation 0.1006 0.1002 0.0966 0.1002

Average Evaluation 0.1218 0.1248 0.1211 0.1171

4.6.6 Comparison of Different Fairness Metrics

We investigate the effect of using different fairness metrics in a way similar to [92]. Specifi-

cally, we use each fairness metric as a regularizer in the objective function with the same trade-off

parameter and train the model. After a fixed number of iterations, we evaluate the model perfor-

mance using all four fairness metrics. The results are shown in table 4.5. Each column indicates

the type of fairness loss metric used in the objective for training the model and each row indicates

the type of fairness loss used in evaluation. For example, if we use MAE fairness to train a model

and MSE fairness to evaluate the model, the fairness loss is 0.0324. The last row is the average

number of each column. A smaller fairness loss indicates a more fair scenario.

At first, It it obvious that our learning method can efficiently optimize the objective and

present stable results under different fairness loss metrics. Second, we can see that after using KL

fairness in the optimization, we obtain the smallest fairness loss under most of the metrics, which

indicates that the KL fairness are more efficient and less costly in the optimization. Further, even

though we use the normalized intensity for computing the fairness loss, the value of MSE fairness

evaluation is always smaller than others. The reason is that it’s quadratic and the input intensities

are smaller than one, which lead to a much smaller number. Thus, when using MSE fairness, we

need to fine tune the trade-off parameters to control the balance between precision and fairness.

4.6.7 Trade-off between Fairness and Accuracy Measures

We follow [5] to investigate the trade-off between accuracy and fairness for two applications:

IPTV item parity and LinkedIn user parity. In IPTV dataset, we treat 22 genre groups as the

sensitive feature. In LinkedIn dataset, we treat user age as the sensitive feature. The users are

81

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Fairness Loss

0

20

40

60

80

100

120

M
A

R

IPTV-Huber

IPTV-KL

Linkedin-Huber

Linkedin-KL

Figure 4.1: Trade-off between prediction and fairness of IPTV and LinkedIn datasets.

divided into young and old, with a 64% and 36% split. The trade-off parameter of the fairness

β or γ varies in the range [0, 1, 100, 10000] in the training stage. For each value of trade-off

parameter, we obtain a model which minimizes the associated regularized loss function. As the

Huber fairness incorporates the MAE fairness and MSE fairness, we only demonstrate the Huber

fairness and the KL fairness on IPTV dataset for item fairness and on LinkedIn dataset for user

fairness. The evaluation metric of fairness loss on test set is the same as the one used in the

regularizer.

The relations between test set fairness and accuracy are shown in fig. 4.1. In the figure, y axis

is MAR representing the model prediction accuracy, and x axis is the fairness loss on test set. The

model becomes more fair when the fairness loss is smaller and ideally approaches 0. The pre-

diction performance is better when the MAR is smaller and ideally approaches 1. There are four

curves in total each corresponding to the model frontier using one of the two fair metric regular-

izers on one of the two data sets. Four markers on each curve, approximately from left to right,

indicate the models trained using different trade-off parameters changing from [10000, 100, 1, 0].

Generally, as the trade-off parameter decreases, the model becomes more accurate and less fair.

In addition, fig. 4.1 shows the great diversity of tradeoffs across different datasets and dif-

82

ferent fairness regularizers. For example, if we examine the KL fairness and Huber fairness on

IPTV, the curvature is relatively mild, which indicates an approximately fixed rate at which fair-

ness can be traded for accuracy. In contrast, on dataset LinkedIn, fairness loss can be reduced

to some small threshold value without decreasing event prediction accuracy dramatically, which

indicates a relatively easy gain of fairness. It is worth mentioning that the KL fairness is usually

smaller than the Huber fairness when the same trade-off parameter is chosen, which is consistent

with our experiment in table 4.5.

83

CHAPTER 5
LIST-WISE FAIRNESS CRITERION FOR POINT PROCESSES

5.1 Introduction

Many types of event sequence data exhibit triggering and clustering properties in space and

time. For example, after a large earthquake, events of after-shocks usually occur in the following

days or weeks near the epicenter of the main shock [28]. Similarly, criminologists have reported

that 25% to 50% crime events are observed in a few areas of a city [61]. They have also demon-

strated that certain types of crime events such as burglaries are often reported repetitively from

the same neighborhood [6]. The time interval and spatial distance between two events carry a

great deal of information about the underlying dynamics of a specific type of events.

Predicting and ranking the rate of events as a function of space and time enables important

applications. Typically, space is divided into regions, time is divided into short intervals, and

regions are ranked based on the predicted event rates over a time window. For example, in a

predictive policing system, a city is divided into geographic sub-regions such as grid cells or

political boundaries. A predictive algorithm is used to forecast the rates of crime events for each

region at each day based on historical crime events. According to the predicted rates, police daily

patrol activities can be adjusted so that more resources are allocated to the regions with higher

risks. In practice, due to limited resources, regions are ranked by the predicted hazard rates in

each day and police activities are directed to top-k regions, also known as hotspots [61].

Variations of point-process models have become very popular for modeling event rates based

on historic events. Most of them assume certain forms of dependency on the history in different

ways. For example, the Hawkes process [27, 55] assumes that the influences from past events

are linearly additive towards the current event. Such models can capture inhomogeneous inter-

event times and causal (temporal) correlations observed in events. Spatial-temporal Hawkes

models extend temporal models to predict the rate of events at a specific location and time.

Spatial heterogeneity in hazard rates can be characterized as base intensities and the self-exciting

effects can be modeled with a variety of temporal kernels. Model parameters can be estimated

84

using standard maximum likelihood estimators given training data, e.g., events observed before

a specific time.

Although those predictive models improve event forecasting accuracy, biased predictions

may be introduced and amplified due to factors such as data bias and the feedback loop of algo-

rithms. For example, time-stamped geo-tagged event data from Twitter have been used for rapid

flood mapping, damage assessment, and situation awareness [11]. However, it has been reported

that higher disaster-related Twitter-use communities tend to be of higher socioeconomic status

[98]. Prediction based on such data may exhibit socioeconomic bias. Moreover, recent studies

have focused on the bias problem of event prediction in predictive policing. One potential prob-

lem is that if the police only patrol areas with higher estimated risks, there will likely be more

arrests than in other areas, and then biased arrests may be further amplified through the feedback

loop.

While there have been some early explorations [90, 46, 95] in developing ranking fairness

metrics that can be adopted by hazardous event prediction, most of them focus on either mea-

surement of fairness or post-processing ranking list to satisfy a fair condition. Hence, the ranking

functions are not influenced by the fairness metrics. A recent work [62] introduces demographic

parity into spatial-temporal crime prediction and directly uses it to penalize the likelihood func-

tion. The fairness metric enforces the amount of police patrol allocated to each demographic

group in selected hotspots to be proportional to the percentage of that group in the whole pop-

ulation. However, the fairness metric does not guarantee group parity at any point in ranked

regions.

In this chapter, we propose a novel list-wise fairness criterion for spatial-temporal point pro-

cess, which can efficiently evaluate the list ranking fairness. We also present a strict definition of

the unfairness consistency property of a fairness metric and prove that our list-wise fairness cri-

terion satisfies this property. We further integrate the fairness criterion into the objective function

and then obtain a fairness-aware ranking function that can generate a fair ranking list. We carry

on experiments over several real-word spatial-temporal datasets, and the results demonstrate the

85

effectiveness of our list-wise fairness criterion. We also discuss the scalability of our method and

propose a smoothed variation, which makes it easier for optimization.

5.2 Motivation

In this section, we first introduce the background of spatial-temporal point process model for

event prediction and then present the fairness concerns on event prediction.

5.2.1 Ranking Prediction by Spatial-Temporal Point Process

A collection of n events in an area (e.g., a city) during a time window [0, T] is represented as

a temporally ordered list T = {ek = (xk, tk)}nk=1, where event ek happens at time tk and location

xk, e.g., a pair of longitude and latitude. An event ek may be a crime event reported from a victim

or a disaster-related rescue request. In many event prediction applications, an area is divided

into grid cells or political boundaries such as ZIP Codes. For example, disaster areas can be

discretized into 30m by 30m square grid cells (resolution of TM remote sensing image), 150m

by 150m (size of a city block), or larger. Let G denote the set of grid cells and g ∈ {1, 2, . . . ,m}

index all m cells in G. For each location xk, let gk denote the index of the cell that covers this

location.

A temporal event sequence at the gth grid cell can be modeled as a Hawkes process [60, 62].

The process can be characterized via its conditional intensity λg(t), which models the expected

rate of the event occurrences at the cell given the history of all the previous events up to time t.

The conditional intensity function is:

λg(t) = ηg +
∑

tk<t,gk=g

θκω(t− tk), (5.1)

where ηg > 0 is the base intensity of cell g, θ is the self-exciting coefficient, and κω is the kernel

function that captures the temporal intensity triggered by recent events. A common choice of

kernel functions is an exponential kernel function with a bandwidth ω, i.e., κω(t) = ω exp(−ωt).

The base intensity ηg can be modeled as a function of spatial covariates/features, such as

demographics [80, 62], geological and socioeconomic variables. Let f g denote the d-dimensional

86

feature vector for cell g, i.e., f g ∈ Rd. Commonly, the base intensity is log-linear with the

coefficients α and the feature vector f g, that is, ηg = exp(α · f g). The base intensity can

be inhomogeneous through the space, which explains spatial variations of event hazards (e.g.,

disparate crime rates or flood hazards in different neighborhoods).

Given the observed historic event sequences T , the model parameters can be estimated by

maximizing the log-likelihood [62], or equivalently, minimizing the joint negative log-likelihood:

L(α, θ, ω) = −
n∑
k=1

log(λgk(tk)) +
∑
g∈G

∫ T

0

λg(t)dt, (5.2)

where gk is the cell index for event ek.

To better capture correlations between multiple processes defined on different grid cells, we

can incorporate spatial proximities in the form of graphs into Hawkes processes. Specifically,

each grid cell is a node and two nodes are connected by an edge if they are neighborhoods. The

graph is a proximity network of spatial cells. Similar to [41, 69, 75], a graph regularization

is added to enforce spatial smoothness of the intensities at each cell. Formally, the objective

function of the spatial-temporal Hawkes process with graph regularization is:

O(α, θ, ω) = minL(α, θ, ω) + ρ{T−1

T∑
t=1

tr(Λ(t)>LΛ(t))}, (5.3)

where Λ(t) = [λ1(t), λ2(t), ..., λm(t)]> is the vector of event rates at m cells during a time

window, ρ is the regularization parameter, and L is the Laplacian matrix constructed on the

graph.

For event forecasting, the model parameters estimated using training data can be used to

compute the intensities in eq. (5.1) at each cell g and a given time t. A higher intensity means a

larger probability that an event will happen at its corresponding location. In practice, the intensi-

ties Λ(t) in the list are ranked from the highest to the lowest, and top-K hotspots may be selected

at time t for informing further activities such as police patrolling.

87

Table 5.1: Example for ranking fairness.
Cell by Rank Intensity Group Race 1 Race 2

Cell 1 10.0 1 10.0 1.0
Cell 2 5.0 2 5.0 6.0
Cell 3 4.6 2 5.0 6.0
Cell 4 4.2 2 4.0 7.0
Cell 5 3.8 2 3.0 8.0
Cell 6 3.4 2 2.0 9.0
Cell 7 3.0 2 1.0 10.0
Cell 8 2.8 1 9.0 2.0
Cell 9 2.4 1 8.0 3.0

Cell 10 0.8 1 9.0 4.0

5.2.2 Fairness Concerns on Ranking

Our concern is that grid cells ranked by event hazard rates can make the visibility of a dis-

advantaged group even worse. For instance, the disadvantaged groups can be racial minorities or

the communities of lower social economic status. Existing fairness metrics focus on the group

fairness averaged over the entire list such that the average amount of attention received by each

demographic group should be fair. However, they do not compare the group fairness at every

point in the ranked list.

In table 5.1, we list a simple example to demonstrate that event rate prediction may exhibit

bias towards certain groups. Assume there are 10 locations (e.g., grid cells), which are ranked by

the predicted event rates during a given time period. Each cell is associated with 2-dimensional

demographic feature and each feature indicates the population of one race in the cell. The column

“Group” indicates the type of majority race for each cell. For example, 1 means that race 1 is the

majority and 2 means race 2 is the majority in that cell. Specifically, for cell 1 in the first row,

the predicted hazard rate is 10.0, which is the highest. There are 10.0 persons of race 1 and 1.0

person of race 2 living in the area of cell 1.

If we use the traditional fairness metrics to evaluate the entire list in table 5.1, it is fair.

Specifically, we can see that the total numbers of population for race 1 and race 2 are the same,

which is 56.0. Also, there are six cells labeled as group 2 while four labeled as group 1. However,

88

it is not fair at every point of the list. As we can see, most of the locations on the top of the list

are labeled as group 2, which means the ranker intends to rank group 2 higher than group 1.

Moreover, in reality, only top ranked cells receive sufficient attentions. If we take top-5 locations

into consideration, there are 80% of the locations labeled as group 2, which is also unfair for race

1. In this case, a more specific fairness criterion focusing on the entire ranking list is needed.

5.3 List-wise Fairness Criterion

In this section, we introduce our List-wise Fairness Criterion for spatial-temporal point

process. We first propose a series of definitions to describe the unfairness consistency property

of a fairness metric and then prove that our metric satisfies this property.

5.3.1 Preliminaries

Let G be the instance space, e.g., a set of all m grid cells. Each instance is associated with

some sensitive features such as races or social economic status. For simplicity, we assume there

are two sensitive features, such as race type one and race type two. Let Y be the set of values for

one race for all grid cells, and Ỹ be the set of values for the other, respectively. The feature value

of each instance indicates the relevance of the instance with respect to that feature. For example,

if we define the feature as the race population in a cell, y = 10.0 means 10.0 population of race

type one and y = 0 means zero population of that type. Also, a larger y ∈ Y indicates a larger

representation of race type one.

At a specific time t, the intensity function λg(t) can be considered as a mapping from in-

stances G to R and be shortened as λg. For every instance g ∈ G, we rank them by intensity

function λg. The final ranking list is denoted by g(1), ..., g(m), which satisfies λg(1) ≥ ... ≥ λg(m)
.

Let y1, ..., ym(yi ∈ Y) and ỹ1, ..., ỹm(ỹi ∈ Ỹ) be the sensitive features associated with g1, ..., gm,

respectively. Denote Sm = {(g1, y1, ỹ1), ..., (gm, ym, ỹm)} the set of intensities and features.

Following [29, 16, 85], we assume that (gi, yi, ỹi) are i.i.d. samples drawn from an underlying

distribution PGY Ỹ over G × Y × Ỹ .

The Normalized Discounted Cumulative Gain (NDCG) is a widely used list-wise ranking

metric to measure the ranking quality. It is often used to measure if web search engine algorithms

89

rank most relevant documents at top ranks. In our case, we adopt its formula to measure the

relevance of a ranked list with respect to sensitive feature values. Thus, we replace the relevance

scores with the sensitive feature values in the following definition.

Definition 4. Let P (r)(r ≤ 1) be a discount function on ranking positions. The intensity function

λg is the ranker. The Discounted Cumulative Gain (DCG) of the ranker λg with respect to a

sensitive feature Y using a discount function P (r) is defined as:

DCG(λg,G,Y) =
m∑
r=1

y(r)P (r). (5.4)

We can similarly define DCG for another sensitive feature Ỹ asDCG(λg,G, Ỹ) =
∑m

r=1 ỹ(r)P (r).

The ideal DCG (IDCG) is the best DCG value of any possible ranking function with re-

spect to a sensitive feature. Specifically, for the sensitive group Y , we have IDCG(G,Y) =

maxλ′g
∑m

r=1 y
′
(r)P (r). Thus, the Normalized DCG of intensity function λg on Sm with discount

function P (r) is defined as:

NDCG(λg,G,Y) =
DCG(λg,G,Y)

IDCG(G,Y)
. (5.5)

NDCG are normalized scores ranging from 0.0 to 1.0 and thus are cross-group comparable.

A NDCG is a standard NDCG if the discounting function is chosen to be the inverse logarithm

decay P (r) = 1
log(r+1)

. The choice of the base of the logarithm does not affect NDCG since the

normalization can cancel out constant scaling. We use the natural logarithm in this chapter. It is

worth mentioning that even though the discount function P (r) is defined on positive integers r,

we treat it as a function of non-negative real variable in the following sections. Thus, we can also

consider the corresponding derivative P ′(r) and integral
∫
P (r)dr. In the following section, we

leave out the word ”standard” and directly use NDCG unless we emphasis the difference.

90

5.3.2 List-wise Fairness Criterion

We now propose our List-wise Fairness Criterion of ranked list with respect to sensitive

features. Intuitively, we can compare the difference of NDCG scores with respect to different

sensitive features (e.g., racial groups). A disparity between NDCG scores indicates a larger

degree of unfairness between the racial groups. A strict definition of our List-wise Fairness

Criterion between each pair of groups is:

F (λg,G,Y , Ỹ) = (NDCG(λg,G,Y)−NDCG(λg,G, Ỹ))2. (5.6)

Note that an ideal List-wise Fairness Criterion should substantially distinguish the ranking

gain with respect to two groups at any prefix of the ranking. Below we first give the formal

definition that a ranker measured by a metric F is consistently unfair between two groups. The

definition describe the unfairness consistency property of a fairness measure.

Definition 5. Let (g1, y1, ỹ1), (g2, y2, ỹ2), ... be i.i.d. instance-label pairs drawn from the underly-

ing distribution PGY Ỹ over G ×Y × Ỹ . Given Sm = {(g1, y1, ỹ1), ..., (gm, ym, ỹm)} and intensity

function λg as the ranker. The ranker λg measured by a fairness metric F is said to be consis-

tently unfair between two groups if there exists a negligible function 1 µ(N) such that for every

sufficient large N , with probability 1− µ(N),

F(λg,G,Y , Ỹ) > 0, (5.7)

holds for all m ≥ N simultaneously.

This definition indicates the unfairness consistency property by a metric measuring the rank

list. We then give a theorem to show that our fairness metric indeed satisfies this property. For

simplicity, here we state the theorem for the simple case of features with binary values, i.e.,

1A function µ : N→ R is negligible iff ∀c ∈ N, ∃n0 ∈ N such that ∀n ≥ n0, µ(n) < n−c.

91

Y = {0, 1} and Ỹ = {0, 1}. It is easy to extend the result to the general case where values of Y

and Ỹ are finite sets [85].

To begin with, suppose there exist another intensity function λ̂g that preserves the order 2 as

original intensity function λg, then we have NDCG(λg,G,Y) = NDCG(λ̂g,G,Y) by definition.

Hence, the NDCG is defined on an equivalent class of intensity functions which can preserve the

same order. We now introduce the concept of canonical form.

Definition 6. Given an intensity function λg, we present a canonical form of λg as:

λ̂g = Pr
G∼PG

[λG ≤ λg]. (5.8)

The benefit of using the canonical form intensity function is that it satisfies the following

property, which can be easily proved by definition.

Proposition 7. For any intensity function λg, its canonical form λ̂g preserves the order of λg and

has uniform distribution on interval [0, 1].

Now we give the following theorem:

Theorem 8. Given the canonical intensity function λ̂g, let y′(s) = PrG∼PG [Y = 1 | λ̂G = s] and

ỹ′(s) = PrG∼PG [Ỹ = 1 | λ̂G = s]. Assume y′(s) and ỹ′(s) are Hölder continuous in s. Then,

unless y′(s) = ỹ′ almost everywhere on interval [0, 1], the ranker λg measured by our List-wise

Fairness Criterion is consistently unfair between the groups with sensitive features Y and Ỹ .

Proof. We prove our unfairness consistency in theorem 8 by adopting the technology provided

by [85] which are used to prove the property that a measure can distinguish ranking functions.

We first define the pseudo expectation N (m) and Ñ (m), which are integrals to approximate the

DCG, for the sensitive features Y and Ỹ respectively. We start with Y:

2Preserving the order means for ∀g1, g2 ∈ G, λg1 ≥ λg2 implies λ̂g1 ≥ λ̂g2 .

92

Definition 9. Assume Y = {0, 1}, and let y′(s) = PrG∼PG [Y = 1 | λ̂G = s], we define the

pseudo expectation N (m) for the unnormalized DCG as:

N (m) =

∫ m

1

y′(1− r/m)P (r)dr = m

∫ 1

1/m

y′(1− s)P (ms)ds, (5.9)

with the substitution of integration r = ms. Suppose that F (x) =
∫ x

1
P (r)dr and the prob-

ability p = Pr[Y = 1] > 0, we have the normalized pseudo expectation E(m) as E(m) =

N (m)/F (mp).

We first prove that the difference between the NDCG and its pseudo expectation is relatively

small with high probability by theorem 10.

Lemma 10. Suppose p = Pr[Y = 1] > 0 and y′(s) = PrG∼PG [Y = 1 | λ̂G = s] is Hölder

continuous 3 with constants a, C > 0 in s ∈ [0, 1]. Then

Pr[|NDCG(λg,G,Y)− E(m)| ≥ 5Cp−1m−min(a/3,1)] ≤ O(e−m
1/4

). (5.10)

We then prove that the difference between the pseudo expectations for the NDCG of the two

groups is much larger by theorem 11.

Lemma 11. Suppose p = Pr[Y = 1] > 0 and let y′(s) = PrG∼PG [Y = 1 | λ̂G = s] and

ỹ′(s) = PrG∼PG [Ỹ = 1 | λ̂G = s]. Then, unless y′(s) = ỹ′ almost everywhere on interval [0, 1],

there must exist an integer K ≥ 0 and a constant B 6= 0, so that

|E(m)− Ẽ(m)− B

logKm
| ≤ O(

1

logK+1 m
). (5.11)

The proofs of the two lemmas are in section 5.3.3. Thus, from theorem 10 and theorem 11,

and with the observation that
∑

m>N e
−m1/4 ≤ O(N3/4e−N

1/4
) ≤ O(e−N

1/5
), the ranker λg

measured by our List-wise Fairness Criterion is consistently unfair between two groups with

high probability.
3That is, for ∀s, s′ ∈ [0, 1], |y′(s)− y′(s′)| ≤ C‖s− s′‖a

93

5.3.3 Proofs of the Lemmas

In this section, we present the proofs of theorem 10 and theorem 11. We first give two key

claims that are useful to prove theorem 10, and then provide the proof of theorem 11. The proofs

of claims are in section 5.3.4.

Proof of Lemma 7

We first give two key claims.

Claim 12. Suppose that F (x) =
∫ x

1
P (r)dr and the probability p = Pr[Y = 1] > 0. For every

sufficiently large m, the following inequality

|NDCG(λg,G,Y)− DCG(λg,G,Y)

F (mp)
| ≤ O(m−1/3), (5.12)

holds with probability (1− 2e−2n1/3
).

Claim 13. Suppose that F (x) =
∫ x

1
P (r)dr and y′(s) = PrG∼PG [Y = 1 | λ̂G = s] is Hölder

continuous with constants a, C > 0 in s ∈ [0, 1]. Then,

|
m∑
r=1

y′(1− r/m)P (r)−N (m)| ≤ Cm−a/3F (m) + 10. (5.13)

Proof. Let G be the instance space and g1, ..., gm(gi ∈ G) be the m locations i.i.d. drawn from

underlying distribution PG. Let x(r) = λ̂g(r) and we have x(1) ≥ x(2) ≥ ... ≥ x(m) by definition.

According to the Chernoff bound which is a special case of Bernstein inequalities, for each r we

have |x(r) − (1 − r/m)| > m−1/3 with probability Q = 2e−2m1/3 . Then, a union bound over r

yields

Pr[∀r ∈ [m], |x(r) − (1− r/m)| ≤ n−1/3] ≥ 1−mQ. (5.14)

94

Since y′(s) is Hölder continuous with constants a, C > 0 in s ∈ [0, 1], we have:

Pr[|
m∑
r=1

(y′(x(r))P (r)−y′(1−r/m)P (r))|≤Cm−a/3
m∑
r=1

P (r)]≥1−mQ. (5.15)

Considering theorem 13 and eq. (5.15) together, we obtain:

Pr[|
m∑
r=1

y′(x(r))P (r)−N (m)| ≤ 2Cm−a/3F (m) + 10] ≥ 1−mQ. (5.16)

Considering the fact that y′(s) = PrG∼PG [Y = 1 | λ̂G = s] = E[Y |λ̂G = s], hence
∑m

r=1 y
′(x(r))P (r)

is the expectation of the DCG(λg,G,Y) =
∑m

r=1 y(r)P (r) conditioned on x(1), ..., x(m). Note that

conditioning on x(1), ..., x(m), y(r)(r = 1, ...m) are independent. Thus, since that g1, ...gm are ar-

bitrary and for ∀r, (P (r))2 ≤ P (r), by applying Hoeffding’s inequality which is another special

case of Bernstein inequalities, we have for ∀ε > 0,

Pr[|DCG(λg,G,Y)−
m∑
r=1

y′(x(r))P (r)| ≥ ε] ≤ 2 exp(− 2ε2

F (m)
). (5.17)

Let ε = F (m)2/3 and combine eq. (5.16) and eq. (5.17), we have

Pr[|DCG(λg,G,Y)−N (m)|>2Cm−a/3F (m)+2F (m)2/3]≤mQ+2e−2F (m)1/3 . (5.18)

Thus,

Pr[|DCG(λg,G,Y)

F (mp)
−N (m)|≥4Cp−1m−min(a/3,1)]≤mQ+2e−2F (m)1/3 , (5.19)

and the theorem 10 is proved by combining theorem 12 and eq. (5.19).

Proof of Lemma 8

We first quote two propositions from [85].

Proposition 14. (Claim 29 at [85]) Given a fixed integer k ∈ N∗ = {0} ∪ N. For sufficiently

95

large n,

∫ 1

2
n

| logk x|dx
(log(nx))k+1

≤ O(
1

logk+1 n
), (5.20)

and

Proposition 15. (Claim 30 at [85]) Span({logkx}k≥0), is dense in L2[0, 1].

Proof. Let ∆y′(s) = y′(s) − ỹ′(s). Note that F (mp) = Li(mp + 1), where Li(·) is the offset

logarithmic integral function and has the property Li(n) ∼ n
logn

. Hence, by the definition of the

normalized pseudo expectation E(m) in theorem 9 and the fact that |∆y′(s)| ≤ 1, we obtain:

E(m)− Ẽ(m) =
m

Li(mp+ 1)

∫ 1

1
m

∆y′(1− s)ds
log(1 +ms)

=
m

Li(mp+ 1)

∫ 1

2
m

∆y′(1− s)ds
log(1 +ms)

+O(
1

Li(m)
). (5.21)

By expanding 1
log(1+ms)

at ms, we have:

|
∫ 1

2
m

∆y′(1−s)ds
log(1+ms)

−
∫ 1

2
m

∆y′(1−s)ds
logm+log s

|≤
∫ 1

2
m

ds

ms log2(ms)
≤O(

logm

m
), (5.22)

and by expanding 1
logm+log s

at logm, we have the following

|
∫ 1

2
m

∆y′(1−s)ds
logm+log s

−
u∑
z=1

(−1)z−1

logzm

∫ 1

2
m

∆y′(1− s) logz−1 sds|

=|
∫ 1

2
m

∆y′(1−s) logu sds

(logm+εm,s)u+1
|≤
∫ 1

2
m

|∆y′(1−s) logu s|ds
(logm+log s)u+1

≤O(
1

logu+1 m
) (5.23)

holds for ∀u ∈ N∗, where εm,s ∈ (log s, 0) and we obtain the last inequality by theorem 14.

Also, by theorem 15 we known that unless ∆y′(s) = 0 almost everywhere, there exist a constant

k ∈ N∗ and a non-zero constant B so that

(−1)k
∫ 1

0

∆y′(1− s) logk sds = 0. (5.24)

96

Assume K is the smallest k satisfying eq. (5.24) and note that

∫ 2
n

0

logk xdx = k!
k∑
i=0

(−1)k−i
x logi x

i!

∣∣∣∣∣
2
n

0

= O(
logk n

n
), (5.25)

we finally have the following inequality by combining all the equations above:

|E(m)− Ẽ(m)− B

logKm
| ≤ O(

logKm

m
) +O(

1

logK+1m
)., (5.26)

and that completes the proof of theorem 11.

5.3.4 Proofs of the Claims

Proof of Claim 9

Proof. Let w =
∑m

(gi,yi)
I[yi = 1] represent the number of yi = 1 in the dataset. Considering it

is sampled i.i.d. and Pr[Y = 1] = p, by Chernoff bound we obtain:

Pr[|w/m− p| > m−1/3] ≤ 2e−2m1/3

. (5.27)

Hence, with probability larger than 1− 2e−2m1/3 , we have:

|NDCG(λg,G,Y)−DCG(λg,G,Y)

F (mp)
|≤|DCG(λg,G,Y)

w
−DCG(λg,G,Y)

F (mp)
| ≤

DCG(λg,G,Y)·max(| 1

F (m(p−m−1/3))
− 1

F (mp)
|,| 1

F (m(p+m−1/3))
− 1

F (mp)
|). (5.28)

Based on the observation that DCG(λg,G,Y) ≤ F (m) and the Taylor expansion of 1
F (m(p±m−1/3))

at mp, theorem 12 is proved.

97

Proof of Claim 10

Proof. Based on the fact that |P ′(r)| and P (r) are monotone decreasing functions and P (1) +

|P ′(1)| < 10, we have:

|
m∑
r=1

y′(1−r/m)P (r)−N (m)|=|
m∑
r=1

y′(1−r/m)P (r)−
∫ m

1

y′(1−s/m)P (s)ds|

=|
m−1∑
r=1

∫ r+1

r

(y′(1− r/m)P (r)− y′(1− s/m)P (s)) ds|+ y′(0)P (m)

≤|
m−1∑
r=1

∫ r+1

r

y′(1− s/m)(P (r)− P (s))ds|

+
m−1∑
r=1

∫ r+1

r

|y′(1− r/m)− y′(1− s/m)|P (r)ds+ y′(0)P (m)

≤
m−1∑
r=1

∫ r+1

r

|P (r)− P (s)|ds+ Cm−a/3
m−1∑
r=1

P (r) + P (m)

≤
m−1∑
r=1

|P ′(r)|+Cm−a/3F (m)+P (m)≤Cm−a/3F (m)+|P ′(1)|+
m∑
r=2

|P ′(r)|+P (m)

≤Cm−a/3F (m)+|P ′(1)|+P (1)−P (m)+P (m)≤Cm−a/3F (m)+10. (5.29)

Remark: theorem 8 provides the consistent analysis of our List-wise Fairness Criterion.

It can consistently differentiate two group in the ranking list provided by the intensity function.

Thus, we consider using it to penalize the objective function later in section 5.4. By minimizing

our List-wise Fairness Criterion, the penalties affect the final intensity function to generate a

fair ranking list.

It is worth mentioning that in the Standard NDCG, the inverse logarithm function is used as

the discount function. If other functions such as inverse polynomial P (r) = r−β, β > 0 are used

for computing the NDCG, the unfairness consistency is not exactly guaranteed. Also, an inverse

polynomial decay with β > 1 might not be appropriate when the list is huge, since the tail of the

ranking list may be omitted in calculation.

98

5.3.5 Cut-off Version

It is usually computational inhibitive the when calculate all the instance in practice. Thus,

we consider a cut-off version of our List-wise Fairness Criterion F (λg,G,Y , Ỹ)@k by using

the NDCG@k with k = cm for some constant c ∈ (0, 1) in eq. (5.6). We also adopt the discount

function P̃ (r) = 1
log(r+1)

if r ≤ k and P̃ (r) = 0 otherwise. Note that it is not appropriate to

define k as a constant independent with list size m. The reason is the NDCG@k is bounded

by the partial summation, which cannot consistently cover the total ranking list. Thus, k must

grow unboundedly when m goes to infinity. In addition, by adopting k = cm, the unfairness

consistency of F (λg,G,Y , Ỹ)@k holds under the conditions given in theorem 8. The proof is

similar to its full version in theorem 8.

5.4 Learning

In this section, we develop a penalized likelihood approach to incorporate fairness penalties

into point process models. Trade-off between event prediction accuracy and fairness can be

achieved by controlling the degree of fairness penalties in objective function.

5.4.1 Objective Function with List-wise Fairness Criterion

The fairness penalties based on List-wise Fairness Criterion for ranking grid cells with

respect to sensitive groups over the total training time period [0, T] is defined as follows:

F (α, θ, ω) =
1

T

T∑
t=1

(NDCG(λg(t),G,Y)−NDCG(λg(t),G, Ỹ))2. (5.30)

When F = 0, the ranking list with respect to the two groups achieves consistently fairness

averagely over a time period.

More generally, suppose there are q types of sensitive features and the i-th type of sensitive

features f i contains ci groups, then for ∀li, l′i ∈ ci, the total penalty is defined as follows:

F (α, θ, ω)=
1

T

q∑
i=1

∑
li>l′i

T∑
t=1

(NDCG(λg(t),G,Yli)−NDCG(λg(t),G,Yl′i))
2, (5.31)

99

where Yli is the l-th group of the i-th type sensitive features. For example, sensitive features

include race and gender. There are multiple types of race and different gender. When F =

0, for every type of sensitive features and for each pair of feature groups, the ranker achieves

consistently fairness averagely over a time period.

Finally, we add the penalty F weighted by a trade-off parameter γ to the objective function

eq. (5.3) and minimize:

OPT = minL(α, θ, ω) + ρ{T−1

T∑
t=1

tr(Λ(t)>LΛ(t))}+ γF (α, θ, ω). (5.32)

Once we obtain α, θ and ω, we can directly calculate the intensities for all grid cells by eq. (5.1)

and present a fair ranking list.

5.4.2 Optimization and Scalability

The objective function with fairness penalties defined by eq. (5.32) is non-differentiable since

grid cells needs to be ranked by intensities and a threshold is required for selecting top-k cells

at each time slot t. Thus, we adopt the Nelder-Mead simplex method [48] to find a local mini-

mum and the method works well in practice. We show the details how we apply this method in

section 5.5.2.

It is well known that simplex method takes polynomial time complexity, i.e., O(nk) in av-

erage [77], which is computational inhibitive when the dataset is huge. Hence, we provide a

smoothed variation of our method, which uses a non-linear function to approximate the rank and

makes it differentiable.

As we introduced before, for the standard NDCG, we use the inverse logarithm decay P (r) =

1
log(r+1)

as the discount function. We first rewrite the standard DCG in the following form:

DCG(λg,G,Y) =
m∑
i=1

yi
log(R(i) + 1)

, (5.33)

where R(i) is the rank position of the cell gi by the ranker, intensity function λg. The DCG is

non-smooth mainly because of the non-continuous mapping from the intensity score λgi to the

100

rank position R(i). Specifically, the rank position can be defined in the following form:

R(i) = 1 +
∑
j 6=i

I{λgi−λgj<0}. (5.34)

To deal with this problem, we follow [68] to revise the discount function so that it becomes

a continuous function of the intensities. Thus, we have the approximate rank position R̃(i) as:

R̃(i) = 1 +
∑
j 6=i

exp(−δ(λgi − λgj))
1 + exp(−δ(λgi − λgj))

, (5.35)

where δ is the hyper-parameter which is often set dynamically like the decay of learning rate.

A larger δ leads to a better approximation of rank position. However it increase the difficulty

of optimization due to the stronger degree of nonlinearity. When λgj � λgi , the non-linear part

approaches zero, thus the position hardly changes. Integrating the approximate rank position

eq. (5.35) into eq. (5.33), we obtain the smoothed DCG. The smoothed DCG can be optimized

by gradient based methods, which makes the computation faster and the model scalable. Nev-

ertheless, we have to mention that this smoothed method is not suitable for the cut-off version

NDCG@k. In addition, the smoothed method cannot guarantee the unfairness consistency prop-

erty we introduced before.

It is worth mentioning that our List-wise Fairness Criterion is not limited to spatial-temporal

point processes, in fact, it can be extended to other ranking problems. For example, suppose we

recommend a candidate list and the candidates may have sensitive features such as gender and

race. Our fairness metric can be applied to either binary or finite sets of features. The computa-

tional complexity increases when the list is huge (e.g., a million). In this case, our method using

the smoothed DCG can tackle the computation challenge and we can obtain an approximately

fair ranking list.

5.5 Experiment

In this section, we introduce the experiments and results.

101

5.5.1 Data

We evaluate our list-wise fairness criterion on three open sourced real-world datasets detailed

in table 5.2. Specifically, the Portland dataset 4 [61] is provided by 2017 NIJ Crime Forecasting

Challenge 5 that tasks participants to predict the spatial locations with highest numbers of crime

related calls in Portland, OR. It contains a list of events with geographic coordinates, timestamps,

and the types of events such as burglary, street crime, and auto theft from March, 1, 2012 to

February 28, 2017. In our setting, a unit time slot t is a day. Each event is assigned to one of equal

sized regular rectangle grids based on the longitude and latitude. In the experiments, we only use

the street event data and we simulate the race populations for white and Hispanic/Latino as the

sensitive features, which is an extreme case. We first learn the model without fairness penalties

to obtain a ranked list of locations, and assign the population for white as 1 to m in the order

from high to low and m to 1 for the Hispanic/Latino. The Dallas dataset 6 in Kaggle comes from

the Dallas Police Department containing detailed incidence reports for around 3 years at Dallas,

Texas. We adopt the similar settings for Portland dataset to specify the locations that the events

belong to. For the race population feature, we count the number of events for complainants in

three races (black, white, and Hispanic/Latino) and regard them as the population of that location

grid. The Houston dataset 7 is a crowdsourcing dataset obtained from a Google doc which

contains rescue requests for 3 days around Harris County in Greater Houston Area during the

Hurricane Harvey disaster. In this dataset, a time slot t is an hour and we use the ZIP Code as

the location id. We get the race population statistics from American FactFinder 8. We use the

populations of white and Hispanic/Latino as the sensitive features.

For Portland and Dallas datasets, we use the first 200 days for training and the days from 201

to 400 for testing given the huge number of events, while for Houston dataset we adopt the first

14 hours for training and the rest for testing. For geometric settings such as graph regularizers

4https://github.com/gomohler/crimerank
5https://nij.ojp.gov/funding/real-time-crime-forecasting-challenge
6https://www.kaggle.com/carrie1/dallaspolicereportedincidents
7https://data.world/sya/harvey-rescue-doc
8https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml

102

Table 5.2: Dataset description.
Dataset Events Geo-Type Unique-IDs Time Groups

Portland 166K Grid 398 1916d 2
Dallas 201K Grid 303 853d 3

Houston 1182 ZIP Code 106 26h 2

0 100 200 300 400 500

Iteration

0

0.2

0.4

0.6

0.8

F
ai

rL
o
ss

 &
 C

o
rr

el
at

io
n

10
0

10
20

10
40

10
60

10
80

O
b
je

ct
iv

e

FairLoss

Correlation

Objective

Figure 5.1: Convergence of the algorithm on Portland dataset.

in eq. (5.32), we assume that each location is a node in a graph and adjacent location nodes are

connected. In training, we use cut-off version of our list-wise fairness criterion as the fairness

penalties with NDCG@50 to improve computational efficiency. Since the optimization algorithm

only converges to local minimal, we run several times with different initialization and present the

best results.

5.5.2 Experiment Setting and Algorithm Convergence

We apply the Nelder-Mead simplex method in MATLAB
® by using the function ”fmin-

search” 9, which can find local minimum of unconstrained multivariable functions using derivative-

free method. Specifically, the code contains three parts: a script file that set all the variables and

initials such that apply the ”fminsearch” over objective function; a function file that is exactly

the objective; and another function file calculates the log-likelihood, graph regularizer and the

fairness penalties. We initialize the parameter as α = 0, θ = 0.8, and ω = e−2 for all the

9https://www.mathworks.com/help/matlab/ref/fminsearch.html

103

datasets. We set geometric trade-off parameter ρ = 1 and vary the fairness trade-off parameters

as γ = 10s, s = [0, 1, 2, ..., 8]. We follow [62] to define the fair model learned with γ = 108

and the neutral model without fairness penalties(γ = 0). The other experiments settings about

datasets are introduced in section 5.5.1.

We show the convergence curve of the algorithm in fig. 5.1 on Portland Dataset. We can see

that the method works well and the fairness loss, correlation and the value of objective finally

stably converge to a local minimal.

5.5.3 Evaluation Metrics

We use several metrics to evaluate both prediction performance and fairness influence by

adopting our list-wise fairness criterion.

Fairness Evaluation Metrics

• NDCG@k: We directly compare the NDCG@50 scores of different groups since we use

them in training. A smaller difference indicates a fairer prediction.

• FairLoss: We apply the fairness penalties that we define in eq. (5.32) to the test data. A

smaller fairness loss indicates a fairer ranking list.

• Patrol@k: We use the fairness metric defined in [62], which is the ratio of the summation

of population in the top-k locations over that in the total list per race group. Specifically,

Patrol@k =

∑k
i=1 y(i)∑m
i=1 ym

, (5.36)

and we just replace the NDCG with this metric and the difference between two groups should still

be averaged over time slot t and types i in eq. (5.31). We name it List-sum Fairness Criterion,

in contrast to our List-wise Fairness Criterion. In the experiments, we adopt k = 50 to keep

uniform standard with the former setting.

Prediction Performance Evaluation Metrics

• Correlation: We use the Pearson correlation coefficient between the predicted intensity

list Λ(t) and the ground truth, which is the list of numbers of events at time slot t, to evaluate the

prediction performance. It is between 1 and−1, where 1 indicates total positive linear correlation,

104

0 means no linear correlation, and−1 represents total negative linear correlation according to the

Cauchy–Schwarz inequality.

• TestLoss: It is the test loss without fairness penalties in eq. (5.32), which is the log-

likelihood of point process in eq. (5.2) that indicates the probability that existing history event T

has happened and no events happen in [tn, t).

• PAI@k: Predictive Accuracy Index (PAI) is widely used to measure the percentage of

crime events in the top-k locations [61, 62, 12, 64] and has the following form:

PAI@k =
events in k locations

total events
· total area

area of k locations
. (5.37)

Since PAI@k is area normalized, a value of 1 indicates random predictions. We also apply it

to the Houston rescue dataset. The value of k is chosen by the police resources or the rescue

resources and we provide two choices in the experiments, PAI@15 and PAI@50.

5.5.4 Fairness over Groups

We plot both the neutral (before adding our list-wise fairness penalties) and fair scenarios of

our model by measuring NDCG@50 on test data per group over all three datasets in fig. 5.2. We

can see that in general, this list-wise fairness criterion is effective and the differences between the

groups become smaller after adding our list-wise fairness penalties, and all the scores become

closer to each other to approach the ideal case with the fairness penalties close to 0. The perfor-

mance on Houston dataset is not as good as the former two due to data sparsity. In particular,

there are much fewer events in a little smaller number of unique ZIP Codes as described in ta-

ble 5.2. Besides the time slot t is an hour, and thus the events/time that represents the temporal

sparsity is also at a low level. Therefore, the locations most influenced by Hurricane Harvey

might have much higher intensities and much more rescue requests than others. As a result, it

requires a much larger fairness penalty to change the order of the ranking list. This leads to the

weak performance in terms of the fairness metrics and makes it hard to balance the NDCG@50

values between two groups. In addition, for the neutral scenario, the difference of the NDCG@50

105

Before After
0

0.2

0.4

0.6

0.8

1
N

D
C

G
@

5
0

White

Hispanic

(a) Portland
Before After

0

0.1

0.2

0.3

0.4

0.5

N
D

C
G

@
5

0

Black

White

Hispanic

(b) Dallas
Before After

0.54

0.55

0.56

0.57

0.58

0.59

0.6

N
D

C
G

@
5
0

White

Hispanic

(c) Houston

Figure 5.2: The NDCG@50 for different racial groups before and after adding list-wise fairness
penalties.

values between two groups for Houston data is relatively smaller than others, which indicates the

fairness penalty unscaled with γ is relatively small. That also increases the difficulty in obtaining

an extremely fair ranking list.

5.5.5 Fairness vs. Prediction Performance

We measure the prediction performance and present the correlation and PAI@k before and

after adding our list-wise fairness penalties in table 5.3. A higher correlation coefficient indicates

stronger correlation between the predicted intensity list and the ground truth of the number of

events, which finally represents the point process model’s prediction accuracy. A higher PAI@k

does not reflect the ranking accuracy of the intensity list according to the definition; however, it

represents a higher predicted number of independent events at top-k locations which is useful in

practice with limited police and rescue resources.

From the table, we can see that at first, the prediction performance is influenced when we

incorporate the fairness in objective functions. The ranking prediction performance represented

by the correlation is affected to a large extent. However, either PAI@15 or PAI@50 still keeps

a higher level. This demonstrates that most of the hotspots is still on the top of the predicted

ranking list. It is worth mentioning that although there is a significant cost in considering the

list-wise fairness, the PAI value is not only much higher than the random case, which is 1, but

also potentially even more accurate than human analysis.

106

Table 5.3: Average prediction performance before and after adding list-wise fairness penalties.

Dataset Accuracy Measure
Results

Before After

Portland
PAI@15 344.0795 263.9681
PAI@50 194.2702 95.9875

Correlation 0.6614 0.0030

Dallas
PAI@15 156.3209 21.1041
PAI@50 105.2752 16.4861

Correlation 0.6550 0.1534

Houston
PAI@15 455.4241 400.3325
PAI@50 179.1580 171.0044

Correlation 0.3993 0.3367

0 0.5 1 1.5 2

TestLoss without Fairness 10
5

0

0.2

0.4

0.6

0.8

F
a
ir

L
o

s
s

List-wise

List-sum

(a) Portland

0 2 4 6 8 10

TestLoss without Fairness 10
5

0

0.1

0.2

0.3

0.4

0.5

F
a
ir

L
o

s
s

List-wise

List-sum

(b) Dallas

490 500 510 520 530 540 550

TestLoss without Fairness

0.057

0.058

0.059

0.06

0.061

0.062

0.063

F
a
ir

L
o
s
s

List-wise

List-sum

(c) Houston

Figure 5.3: Fairness-accuracy curves for list-wise and list-sum fairness.

5.5.6 Comparison between List-wise and List-sum Fairness

Similar to [5], we investigate the trade-off between accuracy and fairness for two different

types of fairness penalties including the List-wise Fairness and List-sum Fairness. We apply

these two different fairness metrics in the training stage, and adjust the trade-off parameter of

the fairness γ in the range 10s, s = [0, 1, 2, ..., 8]. The x axis is the test loss without considering

fairness penalties and it indicates the model prediction performance. A lower test loss value

represents better prediction performance. The y axis is the fairness penalty based on our list-wise

fairness criterion and is calculated over test data. A lower value means a fairer ranking list.

According to the results shown in fig. 5.3, we can see that for all the three datasets, the degree

of the fairness of the model increases as the trade-off parameter γ becomes larger, resulting in a

worse prediction. Also, with the same level of the fairness loss, our List-wise Fairness achieves

107

Figure 5.4: Case study for Hispanic/Latino population.

better prediction performance than the List-sum Fairness in general. This indicates that our list-

wise fairness criterion is more efficient and less costly in the optimization. In addition, note that

the fairness loss for Houston data is relatively smaller than others as we described in section 5.5.4.

List-wise fairness have resulted in consistently more efficient curves with different values of

trade-off parameter γ than list-sum fairness.

5.5.7 Case study

We visualize the top-20 detected hotspots before (blue) and after (red) adding our list-wise

fairness penalties in fig. 5.4. The circle of both blue and red indicates that the location are cap-

tured in both ranking lists. The background 10 shows the population of Hispanic/Latino ranked

by percentage at Harris County in the Greater Houston Area, Texas. A total of 5 locations has

changed in the top-20 list and it is obvious that they switch to the locations with more His-

panic/Latino population in general. Even though the Houston dataset is sparse and it is hard to

obtain a fair ranking list as we introduced in section 5.5.4, the results are still visible in the figure.

It is worth mentioning that the east of Harris County, where several hotspots are detected in both

10Downloaded from the website: http://www.houstonstateofhealth.com/

108

Figure 5.5: Case study for White population.

neutral and fair ranking lists, is the worst-hit area suffering Hurricane Harvey. Since the model

still keeps these top predicted locations, it demonstrates the effectiveness of the spatial-temporal

point process in predicting the future events. Similar results are obtained on the white population

map and presented in fig. 5.5.

109

CHAPTER 6
CONCLUSIONS

6.1 Summary

In this research proposal, we present several novel point process-based models and learning

algorithms to analyze the asynchronous event data in various domains such as social networks,

business directory services, TV systems, and the job markets. Specifically, we’ve made the fol-

lowing contributions:

•Mutual Influences Modeling via Local Models. In Chapter 2, we present a novel frame-

work that integrates the kernel smoothing and the Hawkes process to model the temporal events

of user-item interactions. We assume that the intensity parameter matrix is locally low-rank. With

non-parametric kernel smoothing, each user-item pair can be simulated by a series of local matrix

mappings. We design an efficient convex optimization algorithm to estimate model parameters

and present a parallel algorithm to further increase the computation efficiency. Extensive ex-

periments on real-world datasets demonstrate the performance improvements of our model in

comparison with the state of the art. This model can be applied to other 2D aggregated Hawkes

processes, such as temporal user interactions in social networks, and extended to n-dimensional

aggregated Hawkes processes, as long as these dimensions satisfy the local low-rank assumption.

• Integrating Geometric Structure with Point Process. In Chapter 3, we present a novel

framework that integrates the graph convolutional recurrent neural network and Hawkes pro-

cesses to model temporal events. This model can be applied to a collection of correlated temporal

sequences of recurrent events, and it is able to correlate each sequence through graph embedding.

We also present single-graph and multi-graph settings of our model. Extensive experiments on

real-world datasets demonstrate the performance improvements of our model in comparison with

the state of the art.

• Fairness-aware Point Process Models with Graph Embedding. In Chapter 4, we present

an efficient point process framework that incorporates geometric structure with coevolving nature

of feature embedding to tackle data sparsity, and introduce several novel fairness metrics that

110

penalize the event likelihood function to enforce fairness. Extensive experiments on the real

world datasets demonstrate that our method can not only benefit event prediction but also balance

between accuracy and fairness.

• List-wise Fairness Criterion for Point Processes. In Chapter 5, we present a novel

list-wise fairness criterion to obtain a fair ranking list for predicting top-k locations via spatial-

temporal point process. We propose a strict definition of the unfairness consistency property

of a fairness metric and prove that our list-wise fairness criterion satisfies this property. Exten-

sive experiments on the real-world datasets demonstrate the effectiveness of the list-wise fairness

criterion.

In summary, our models and learning algorithms effectively extract the hidden dynamics

between the complicated asynchronous event data and successfully tackle not only the sparsity

but also the amplified self-excitation bias problems. The experiment results on real-world dataset

demonstrate their practicability in diverse applications.

6.2 Discussions and Future Research Directions

First of all, we currently only incorporate point process-based models with shallow neural

network contains several layers. We’d like to integrate point processes with different types of

deeper neural network structures such as transformers and residual neural networks. Secondly,

we believe that point process-based models can be extended to other application areas especially

natural language processing. Thirdly, for the geometric structure embedding, it is obvious that

graph structure in the real world is dynamic, thus developing novel techniques with dynamic

graph embedding is a big opportunity. Last but not least, we’d like to extend our research on

fairness-aware point processes, for example, adopting individual fairness or preprocessing sen-

sitive features before optimization, or developing other novel scalable fairness metrics for large

scale datasets and more efficient optimization methods of pairwise and top-K fairness metrics.

111

REFERENCES

[1] Odd Aalen, Ornulf Borgan, and Hakon Gjessing. Survival and Event History Analysis: A
Process Point of View. Springer Science & Business Media, 2008.

[2] Emmanuel Bacry, Iacopo Mastromatteo, and Jean-François Muzy. Hawkes processes in
finance. Market Microstructure and Liquidity, 1(01):1550005, 2015.

[3] Solon Barocas and Andrew D Selbst. Big data’s disparate impact. California Law Review,
104:671, 2016.

[4] Robert Bell, Yehuda Koren, and Chris Volinsky. Modeling relationships at multiple scales
to improve accuracy of large recommender systems. In Proc. of the ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining (KDD), pages 95–104,
2007.

[5] Richard Berk, Hoda Heidari, Shahin Jabbari, Matthew Joseph, Michael Kearns, Jamie Mor-
genstern, Seth Neel, and Aaron Roth. A convex framework for fair regression. arXiv
preprint arXiv:1706.02409, 2017.

[6] Wim Bernasco, Shane D Johnson, and Stijn Ruiter. Learning where to offend: Effects of
past on future burglary locations. Applied Geography, 60:120–129, 2015.

[7] Alex Beutel, Jilin Chen, Tulsee Doshi, Hai Qian, Li Wei, Yi Wu, Lukasz Heldt, Zhe Zhao,
Lichan Hong, Ed H Chi, et al. Fairness in recommendation ranking through pairwise com-
parisons. In Proc. of the ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), pages 2212–2220, 2019.

[8] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and
locally connected networks on graphs. In Proc. International Conference on Learning Rep-
resentations (ICLR), 2014.

[9] Toon Calders, Faisal Kamiran, and Mykola Pechenizkiy. Building classifiers with indepen-
dency constraints. In Proc. of the IEEE International Conference on Data Mining Work-
shops, pages 13–18, 2009.

[10] L Elisa Celis, Damian Straszak, and Nisheeth K Vishnoi. Ranking with fairness constraints.
arXiv preprint arXiv:1704.06840, 2017.

[11] Guido Cervone, Elena Sava, Qunying Huang, Emily Schnebele, Jeff Harrison, and Nigel
Waters. Using twitter for tasking remote-sensing data collection and damage assessment:
2013 Boulder flood case study. International Journal of Remote Sensing, 37(1):100–124,
2016.

[12] Spencer Chainey, Lisa Tompson, and Sebastian Uhlig. The utility of hotspot mapping for
predicting spatial patterns of crime. Security journal, 21(1-2):4–28, 2008.

[13] Kumar Chellapilla, Sidd Puri, and Patrice Simard. High performance convolutional neu-
ral networks for document processing. In Tenth International Workshop on Frontiers in
Handwriting Recognition, 2006.

112

[14] Eric C Chi and Tamara G Kolda. On tensors, sparsity, and nonnegative factorizations. SIAM
Journal on Matrix Analysis and Applications, 33(4):1272–1299, 2012.

[15] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

[16] Stéphan Clémençon, Gábor Lugosi, Nicolas Vayatis, et al. Ranking and empirical mini-
mization of u-statistics. The Annals of Statistics, 36(2):844–874, 2008.

[17] David R Cox and Peter Adrian Walter Lewis. Multivariate point processes. In Proc. 6th
Berkeley Symp. Math. Statist. Prob, volume 3, pages 401–448, 1972.

[18] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural net-
works on graphs with fast localized spectral filtering. In Proc. of the Annual Conference on
Neural Information Processing Systems (NeurIPS), pages 3844–3852, 2016.

[19] Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and
Le Song. Recurrent marked temporal point processes: Embedding event history to vector.
In Proc. of the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), pages 1555–1564, 2016.

[20] Nan Du, Yichen Wang, Niao He, Jimeng Sun, and Le Song. Time-sensitive recommendation
from recurrent user activities. In Proc. of the Annual Conference on Neural Information
Processing Systems (NeurIPS), pages 3492–3500, 2015.

[21] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fair-
ness through awareness. In Proc. of the 3rd Innovations in Theoretical Computer Science
Conference, pages 214–226, 2012.

[22] Michael Eichler, Rainer Dahlhaus, and Johannes Dueck. Graphical modeling for multivari-
ate Hawkes processes with nonparametric link functions. Journal of Time Series Analysis,
38(2):225–242, 2017.

[23] Jalal Etesami, Negar Kiyavash, Kun Zhang, and Kushagra Singhal. Learning network of
multivariate Hawkes processes: a time series approach. In Proc. of the Conference on
Uncertainty in Artificial Intelligence (UAI), pages 162–171, 2016.

[24] Mehrdad Farajtabar, Nan Du, Manuel Gomez Rodriguez, Isabel Valera, Hongyuan Zha, and
Le Song. Shaping social activity by incentivizing users. In Proc. of the Annual Conference
on Neural Information Processing Systems (NeurIPS), pages 2474–2482, 2014.

[25] Mehrdad Farajtabar, Yichen Wang, Manuel Gomez Rodriguez, Shuang Li, Hongyuan Zha,
and Le Song. Coevolve: A joint point process model for information diffusion and network
co-evolution. In Proc. of the Annual Conference on Neural Information Processing Systems
(NeurIPS), pages 1954–1962, 2015.

113

[26] Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh
Venkatasubramanian. Certifying and removing disparate impact. In Proc. of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD),
pages 259–268, 2015.

[27] Eric W Fox, Martin B Short, Frederic P Schoenberg, Kathryn D Coronges, and Andrea L
Bertozzi. Modeling e-mail networks and inferring leadership using self-exciting point pro-
cesses. Journal of the American Statistical Association, 111(514):564–584, 2016.

[28] Andrew M Freed. Earthquake triggering by static, dynamic, and postseismic stress transfer.
Annu. Rev. Earth Planet. Sci., 33:335–367, 2005.

[29] Yoav Freund, Raj Iyer, Robert E Schapire, and Yoram Singer. An efficient boosting
algorithm for combining preferences. Journal of Machine Learning Research (JMLR),
4(Nov):933–969, 2003.

[30] Debarghya Ghoshdastidar and Ambedkar Dukkipati. On power-law kernels, corresponding
reproducing kernel hilbert space and applications. In Proc. of the AAAI Conference on
Artificial Intelligence, 2013.

[31] Prem Gopalan, Jake M Hofman, and David M Blei. Scalable recommendation with hi-
erarchical poisson factorization. In Proc. of the Conference on Uncertainty in Artificial
Intelligence (UAI), pages 326–335, 2015.

[32] Eric C Hall and Rebecca M Willett. Tracking dynamic point processes on networks. IEEE
Transactions on Information Theory, 62(7):4327–4346, 2016.

[33] David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on graphs via
spectral graph theory. Applied and Computational Harmonic Analysis, 30(2):129–150,
2011.

[34] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning.
In Proc. of the Annual Conference on Neural Information Processing Systems (NeurIPS),
pages 3315–3323, 2016.

[35] Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes.
Biometrika, 58(1):83–90, 1971.

[36] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-
structured data. arXiv preprint arXiv:1506.05163, 2015.

[37] Balázs Hidasi and Domonkos Tikk. General factorization framework for context-aware
recommendations. Data Mining and Knowledge Discovery, 30(2):342–371, 2016.

[38] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[39] Zubin Jelveh and Michael Luca. Towards diagnosing accuracy loss in discrimination-aware
classification: An application to predictive policing. Fairness, Accountability and Trans-
parency in Machine Learning, 26(1):137–141, 2014.

114

[40] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Gir-
shick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast
feature embedding. In Proceedings of the 22nd ACM international conference on Multime-
dia, pages 675–678, 2014.

[41] Vassilis Kalofolias, Xavier Bresson, Michael Bronstein, and Pierre Vandergheynst. Matrix
completion on graphs. arXiv preprint arXiv:1408.1717, 2014.

[42] Toshihiro Kamishima, Shotaro Akaho, and Jun Sakuma. Fairness-aware learning through
regularization approach. In Proc. of the IEEE 11th International Conference on Data Min-
ing Workshops, pages 643–650, 2011.

[43] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proc.
International Conference on Learning Representations (ICLR), 2015.

[44] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In Proc. International Conference on Learning Representations (ICLR), 2017.

[45] Michael Krumin, Inna Reutsky, and Shy Shoham. Correlation-based analysis and genera-
tion of multiple spike trains using Hawkes models with an exogenous input. Frontiers in
Computational Neuroscience, 4:147, 2010.

[46] Juhi Kulshrestha, Motahhare Eslami, Johnnatan Messias, Muhammad Bilal Zafar, Saptarshi
Ghosh, Krishna P Gummadi, and Karrie Karahalios. Quantifying search bias: Investigating
sources of bias for political searches in social media. In Proceedings of the 2017 ACM
Conference on Computer Supported Cooperative Work and Social Computing, pages 417–
432, 2017.

[47] Takashi Kurokawa, Taihei Oki, and Hiromichi Nagao. Multi-dimensional graph fourier
transform. arXiv preprint arXiv:1712.07811, 2017.

[48] Jeffrey C Lagarias, James A Reeds, Margaret H Wright, and Paul E Wright. Convergence
properties of the nelder–mead simplex method in low dimensions. SIAM Journal on opti-
mization, 9(1):112–147, 1998.

[49] Guanghui Lan. An optimal method for stochastic composite optimization. Mathematical
Programming, 133(1):365–397, 2012.

[50] Guanghui Lan. The complexity of large-scale convex programming under a linear optimiza-
tion oracle. arXiv preprint arXiv:1309.5550, 2013.

[51] Joonseok Lee, Seungyeon Kim, Guy Lebanon, and Yoram Singer. Local low-rank matrix
approximation. In Proc. of the International Conference on Machine Learning (ICML),
pages 82–90, 2013.

[52] Joonseok Lee, Mingxuan Sun, Seungyeon Kim, and Guy Lebanon. Automatic feature in-
duction for stagewise collaborative filtering. In Proc. of the Annual Conference on Neural
Information Processing Systems (NIPS), pages 314–322, Dec. 2012.

115

[53] Joonseok Lee, Mingxuan Sun, and Guy Lebanon. PREA: Personalized recommendation
algorithms toolkit. Journal of Machine Learning Research (JMLR), 13(1):2699–2703, Sep.
2012.

[54] Rémi Lemonnier, Kevin Scaman, and Argyris Kalogeratos. Multivariate Hawkes processes
for large-scale inference. In Proc. of the AAAI Conference on Artificial Intelligence, pages
2168–2174, 2017.

[55] Scott Linderman and Ryan Adams. Discovering latent network structure in point process
data. In Proc. of the International Conference on Machine Learning (ICML), pages 1413–
1421, 2014.

[56] Thomas Josef Liniger. Multivariate Hawkes Processes. PhD thesis, ETH Zurich, 2009.

[57] Christos Louizos, Kevin Swersky, Yujia Li, Max Welling, and Richard Zemel. The varia-
tional fair autoencoder. arXiv preprint arXiv:1511.00830, 2015.

[58] Stephane Mallat. A Wavelet Tour of Signal Processing. Academic Press, 1999.

[59] Hongyuan Mei and Jason M Eisner. The neural hawkes process: A neurally self-modulating
multivariate point process. In Proc. of the Annual Conference on Neural Information Pro-
cessing Systems (NeurIPS), pages 6754–6764, 2017.

[60] George Mohler, Jeremy Carter, and Rajeev Raje. Improving social harm indices with a
modulated hawkes process. International Journal of Forecasting, 34(3):431–439, 2018.

[61] George Mohler, Michael D Porter, Jeremy Carter, and Gary LaFree. Learning to rank
spatio-temporal event hotspots. In Proceedings of the 7th international workshop on urban
computing, 2018.

[62] George Mohler, Rajeev Raje, Jeremy Carter, Matthew Valasik, and Jeffrey Brantingham.
A penalized likelihood method for balancing accuracy and fairness in predictive policing.
In Proc. of the IEEE International Conference on Systems, Man, and Cybernetics (SMC),
pages 2454–2459, 2018.

[63] George O Mohler, Martin B Short, P Jeffrey Brantingham, Frederic Paik Schoenberg, and
George E Tita. Self-exciting point process modeling of crime. Journal of the American
Statistical Association, 106(493):100–108, 2011.

[64] George O Mohler, Martin B Short, Sean Malinowski, Mark Johnson, George E Tita, An-
drea L Bertozzi, and P Jeffrey Brantingham. Randomized controlled field trials of predictive
policing. Journal of the American statistical association, 110(512):1399–1411, 2015.

[65] Federico Monti, Michael Bronstein, and Xavier Bresson. Geometric matrix completion
with recurrent multi-graph neural networks. In Proc. of the Annual Conference on Neural
Information Processing Systems (NeurIPS), pages 3697–3707, 2017.

[66] Yu Nesterov. Gradient methods for minimizing composite functions. Mathematical Pro-
gramming, 140(1):125–161, 2013.

116

[67] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neu-
ral networks for graphs. In International conference on machine learning, pages 2014–
2023, 2016.

[68] Tao Qin, Tie-Yan Liu, and Hang Li. A general approximation framework for direct opti-
mization of information retrieval measures. Information retrieval, 13(4):375–397, 2010.

[69] Nikhil Rao, Hsiang-Fu Yu, Pradeep K Ravikumar, and Inderjit S Dhillon. Collaborative
filtering with graph information: Consistency and scalable methods. In Proc. of the Annual
Conference on Neural Information Processing Systems (NeurIPS), pages 2107–2115, 2015.

[70] Manuel Gomez Rodriguez. Structure and Dynamics of Diffusion Networks. PhD thesis,
2013.

[71] Chris Russell, Matt J Kusner, Joshua Loftus, and Ricardo Silva. When worlds collide: Inte-
grating different counterfactual assumptions in fairness. In Proc. of the Annual Conference
on Neural Information Processing Systems (NeurIPS), pages 6414–6423, 2017.

[72] Haşim Sak, Andrew Senior, and Françoise Beaufays. Long short-term memory based recur-
rent neural network architectures for large vocabulary speech recognition. arXiv preprint
arXiv:1402.1128, 2014.

[73] S Sastry. Some NP-complete problems in linear algebra. Honors Projects, 1990.

[74] Jin Shang and Mingxuan Sun. Local low-rank Hawkes processes for temporal user-item
interactions. In Proc. of the IEEE International Conference on Data Mining (ICDM), pages
427–436, Nov. 2018.

[75] Jin Shang and Mingxuan Sun. Geometric Hawkes processes with graph convolutional re-
current neural networks. In Proc. of the AAAI Conference on Artificial Intelligence, pages
1–8, 2019.

[76] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre Van-
dergheynst. The emerging field of signal processing on graphs: Extending high-dimensional
data analysis to networks and other irregular domains. IEEE Signal Processing Magazine,
30(3):83–98, 2013.

[77] Daniel A Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the sim-
plex algorithm usually takes polynomial time. Journal of the ACM (JACM), 51(3):385–463,
2004.

[78] Mingxuan Sun, Guy Lebanon, and Paul Kidwell. Estimating probabilities in recommenda-
tion systems. In Proc. of the International Conference on Artificial Intelligence and Statis-
tics (AISTATS), pages 734–742, Apr. 2011.

[79] Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. Know-evolve: Deep temporal
reasoning for dynamic knowledge graphs. In Proc. of the International Conference on
Machine Learning (ICML), pages 3462–3471. JMLR. org, 2017.

117

[80] Rasmus Waagepetersen. Estimating functions for inhomogeneous spatial point processes
with incomplete covariate data. Biometrika, 95(2):351–363, 2008.

[81] Brian Wallace. Constrained optimization: Kuhn-tucker conditions. 2004.

[82] M. P. Wand and M. C. Jones. Kernel Smoothing. Chapman and Hall/CRC, 1995.

[83] Xin Wang, Roger Donaldson, Christopher Nell, Peter Gorniak, Martin Ester, and Jiajun Bu.
Recommending groups to users using user-group engagement and time-dependent matrix
factorization. In Proc. of the AAAI Conference on Artificial Intelligence, 2016.

[84] Yichen Wang, Nan Du, Rakshit Trivedi, and Le Song. Coevolutionary latent feature pro-
cesses for continuous-time user-item interactions. In Proc. of the Annual Conference on
Neural Information Processing Systems (NeurIPS), pages 4547–4555, 2016.

[85] Yining Wang, Liwei Wang, Yuanzhi Li, Di He, and Tie-Yan Liu. A theoretical analysis of
ndcg type ranking measures. In Proc. of the Conference on Learning Theory (COLT), pages
25–54, 2013.

[86] Wenming Xiao, Xiao Xu, Kang Liang, Junkang Mao, and Jun Wang. Job recommendation
with Hawkes process: an effective solution for RecSys Challenge 2016. In Proc. of the
Recommender Systems Challenge, 2016.

[87] Hongteng Xu, Mehrdad Farajtabar, and Hongyuan Zha. Learning granger causality for
Hawkes processes. In Proc. of the International Conference on Machine Learning (ICML),
pages 1717–1726, 2016.

[88] Hongteng Xu, Dixin Luo, and Hongyuan Zha. Learning Hawkes processes from short
doubly-censored event sequences. In Proc. of the International Conference on Machine
Learning (ICML), pages 3831–3840, 2017.

[89] Hongteng Xu, Weichang Wu, Shamim Nemati, and Hongyuan Zha. Patient flow predic-
tion via discriminative learning of mutually-correcting processes. IEEE Transactions on
Knowledge and Data Engineering, 29(1):157–171, 2017.

[90] Ke Yang and Julia Stoyanovich. Measuring fairness in ranked outputs. In Proceedings
of the 29th International Conference on Scientific and Statistical Database Management,
pages 1–6, 2017.

[91] Yingxiang Yang, Jalal Etesami, Niao He, and Negar Kiyavash. Nonparametric hawkes
processes: Online estimation and generalization bounds. arXiv preprint arXiv:1801.08273,
2018.

[92] Sirui Yao and Bert Huang. Beyond parity: Fairness objectives for collaborative filtering.
In Proc. of the Annual Conference on Neural Information Processing Systems (NeurIPS),
pages 2921–2930, 2017.

[93] Adams Wei Yu, Wanli Ma, Yaoliang Yu, Jaime Carbonell, and Suvrit Sra. Efficient struc-
tured matrix rank minimization. In Proc. of the Annual Conference on Neural Information
Processing Systems (NeurIPS), pages 1350–1358, 2014.

118

[94] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P Gummadi.
Fairness beyond disparate treatment & disparate impact: Learning classification without
disparate mistreatment. In Proc. of the International World Wide Web Conference (WWW),
pages 1171–1180, 2017.

[95] Meike Zehlike, Francesco Bonchi, Carlos Castillo, Sara Hajian, Mohamed Megahed, and
Ricardo Baeza-Yates. Fa* ir: A fair top-k ranking algorithm. In Proc. of the ACM Interna-
tional Conference on Information and Knowledge Management (CIKM), pages 1569–1578,
2017.

[96] Richard Zemel, Yu Wu, Kevin Swersky, Toniann Pitassi, and Cynthia Dwork. Learning fair
representations. In Proc. of the International Conference on Machine Learning (ICML),
pages 325–333, 2013.

[97] Ke Zhou, Hongyuan Zha, and Le Song. Learning social infectivity in sparse low-rank net-
works using multi-dimensional Hawkes processes. In Proc. of the International Conference
on Artificial Intelligence and Statistics (AISTATS), pages 641–649, 2013.

[98] Lei Zou, NSN Lam, Shayan Shams, Heng Cai, Michelle A Meyer, Seungwon Yang, Kisung
Lee, Seung-Jong Park, and Margaret A Reams. Social and geographical disparities in Twit-
ter use during Hurricane Harvey. International Journal of Digital Earth, pages 1–19, 2018.

119

VITA

Jin Shang received the B.S. degree in theoretical and applied mechanics and the M.S. degree

in solid mechanics, both from University of Science and Technology of China, Hefei, China,

in 2013 and 2016, respectively. He is currently pursuing his Ph.D. degree in the Division of

Computer Science and Engineering at Louisiana State University, Baton Rouge, LA, USA. His

research interests include machine learning as well as deep learning models and algorithms, with

applications in recommender systems and time-series analysis.

120

	Predictive Modeling of Asynchronous Event Sequence Data
	Recommended Citation

	tmp.1589036697.pdf.N9F4k

