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ABSTRACT 

Although leak incidents continue, a pipeline remains the most reliable mode of transportation 

within the oil and gas industry. It becomes even more important today because the projection for 

new pipelines is expected to increase by 1 billion BOE through 2035. In addition, increasing 

number and length of subsea tiebacks face new challenges in term of data acquisition, monitoring, 

analysis, and remedial actions. Passive leak-detection methods commonly used in the industry 

have been successful with some limitations in that they often cannot detect small leaks and seeps. 

In addition to a thorough review of related topics, this study investigates how to create a framework 

for a smart pigging technique for pipeline leak detection, as an active leak detection method. 

Numerical modeling of smart pigging for leak detection requires two crucial components: 

detailed mathematical descriptions for fluid-solid and solid-solid interactions around pig, and 

network modeling for the calculation of pressure and rate along the pipeline using iterative 

algorithms. The first step of this study is to build a numerical model that shows the motion of a 

pig along the pipeline with no leak, i.e., at a given injection rate, a pig first accelerates until it 

reaches its terminal velocity, beyond which the pig moves at a constant velocity. The second step 

is to construct a network model that consists of two pipeline segments (one upstream and the other 

downstream of leak location) through which the pig travels and at the junction of which fluid leak 

occurs. By putting these multiple mechanisms together and using resulting pressure signatures, 

this study presents a new method to predict the location and size of a leak present in pipeline.



 1  
 

INTRODUCTION 

Leak detection is a well-defined subset of the pipeline industry, because of the economic and 

societal impacts of leak incidents. Pipeline leaks of hazardous liquid or gas can often cause 

irreparable damages to the environment, life, and public relations; therefore, prevention of the 

incidents is key. According to Henrie et al. (2016), the definition of a pipeline leak is “…the 

unintended escapement of commodity from pipelines due to a pipeline system integrity breach…”, 

which can range from a small seep to a complete rupture. For oil and gas pipeline, the focus of this 

study, the breach typically occurs through the failure (either mechanically or chemically) of 

pipeline that is buried underground, spanning open space, or laid out in subsea area.   

 

Brief History of Pipeline and Regulations 

After first U.S. oil was struck in Titusville, PA in 1859, the main transportation of oil over land 

was by wagon. This system soon saw competition from continuous miles of oil pipeline, the first 

of which was a five-mile wrought iron line constructed in 1865 (Giddens, 1938). From this time, 

pipeline grew in length, standing as the main transmission path for crude oil. When blockages or 

constrictions in pipeline prevented fluid flow, operators turned to the inline cleaning tool so-called 

pig (pipeline inspection gauge).  

 

_________________ 

This work was previously published as Thiberville, C., Wang, Y., Waltrich, P., Williams, W., & 

Kam, S. I. 2020. Modeling of Smart Pigging for Pipeline Leak Detection. SPE Production & 

Operations. DOI: 10.2118/198648-PA 
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As tools and technology to maintain and develop pipeline progressed, pipelines increased in 

continuous mileage to over 1,000 miles long in the 1920s. In the 1960s, pipeline pigs were further 

developed to include smart pigs (i.e., inspection pigs and devices that record information about the 

internal condition of a pipeline) whose features surpassed merely cleaning to include inline 

measurements, which enabled operators to address sections of pipe affected by buildup or 

corrosion (Tiratsoo 1992; PPSA 1995; Cordell and Vanzant 2003; Bai and Bai 2005). At this point 

in history, from the late 1960s and onward, the mileage of transportation pipeline in the U.S. grew 

significantly. In 2017, over 79,000 miles of crude oil pipeline, over 62,000 miles of liquid 

petroleum product pipeline, and over 2,500,000 miles of gas distribution, gathering, and 

transmission pipeline were recorded (U.S. Department of Transportation, 2018). Pipeline 

regulation and leak detection may seem an obvious necessity for such an intricate network 

transporting hazardous materials; however, the first U.S. pipeline federal regulation and 

establishment of the Office of Pipeline Safety did not occur until 1968, roughly 100 years after the 

first pipeline was laid.  Since the Natural Gas Pipeline Safety Act of 1968 was adopted and 

amended in 1976 and 1979, several other congressional acts have passed including the Pipeline 

Safety Reauthorization Act of 1988, the Pipeline Safety Act of 1992, the Accountable Pipeline 

Safety and Partnership Act of 1996, and the Pipeline Safety Improvement Act of 2002 (Parker, 

2004). Further updates, modifications and regulations were established with the Pipeline 

Inspection, Protection, Enforcement, and Safety Act of 2006 (Public Law 109-468), Pipeline 

Safety, Regulatory Certainty, and Job Creation Act of 2011 (Public Law 112-90), and Protecting 

Our Infrastructure of Pipelines and Enhancing Safety Act of 2016 (Public Law 114-183). 

Significantly, the result of legislation has been greater public awareness of pipeline safety and 

improved guidance on pipeline safety standards to establish “best practice” amongst industry 
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operators, particularly concerning pipeline leak detection, pipeline monitoring systems, and 

pipeline integrity management. 

Legal descriptions classifying pipeline leaks may be found within the U.S. Code of Federal 

Regulations (CFR) Title 49. Existing CFR Title 49 for regulation of transportation systems was 

amended in 1994 by the 103rd Congress to include pipeline regulation under Subtitle VIII (Public 

Law 103-272). Since its passage, Subtitle VIII of Title 49 has been amended by the subsequent 

congressional acts mentioned previously and it covers topics from pipeline safety to fee 

scheduling. This fact is notable as all pipeline operator compliance in the U.S., including leak 

detection capabilities, is held to the standards outlined in Title 49. Details on how an incident is 

defined are available in the PHMSA Incident Report Criteria History document (PHMSA, 2018). 

 Guidance on pipeline safety and safe operation comes predominantly from 

recommendations by the standards body, American Petroleum Institute, or API. API 

Recommended Practices (API RP) 1130 and 1175 and API Technical Report (API TR) 1149 

address topics of computational pipeline monitoring (CPM), leak detection program management, 

and the effect of pipeline variability and uncertainty on leak detection, respectively. API 1130 was 

written to give guidance on the design, implementation, testing, and operation of CPM systems.  

Herein, computational pipeline monitoring (CPM) is defined as “a term that was developed to refer 

to algorithmic monitoring tools that are used to enhance the abilities of a pipeline controller to 

recognize hydraulic anomalies that may be indicative of a pipeline leak or commodity release.” 

CPM may be considered an internal, passive leak-detection method that utilizes single or multiple 

pipeline parameter measurements, such as pressure, temperature, viscosity, density, flowrate, 

product sonic velocity, or product interface location along with computation by the controller or 

electronic system to detect a leak. Although CPM is a primary component in most leak-detection 



4 
 

systems, it often plays a role as part of a team of systems encompassing the pipeline operator’s 

Leak Detection Program (LDP), as shown by API RP 1175.   

 

Evolution of Leak Detection and Pigging Technique 

As pipeline networks grew after World War II and governmental agencies developed to ensure 

public and environmental safety surrounding hazardous fluid transport, pipeline leak detection and 

testing became a field of its own. Until acoustic and electric current pigs were developed, the 

dominant method of leak detection was hydrostatic pressure testing whereby a line must be taken 

out of service for testing.  Although still in use today, this process is time consuming and 

inefficient, particularly in light of the extensive mileage in play currently. In the late 1960s and 

throughout the 1970s, acoustic pigs began gaining traction as a reliable in-line leak detection 

technique (Riemsdijk and Bosselaar, 1967; Fluornoy and Schroeder, 1978).   

 In conjunction with pigging techniques, pipeline simulation gained steam in the 1970s and 

was subsequently used for development of leak detection programs. Using computer simulation, 

Chan (1980) found the parameters most sensitive as leak detection “Sensing Parameters” to be rate 

of pressure drop and rate of flow. Early publications of studies employing similar computer-based 

simulations blossomed throughout the 1980s. The concept of Real-Time monitoring for leak 

detection, whereby pressure and temperature data is gathered in real-time and compared to a 

computer based model of the pipeline system, using standard supervisory control and data 

acquisition (SCADA) information was presented by Dupont et al. (1980) and proven for gas line 

applications by Burson et al. (1986). After that, Bednorz and Pringle (1998) employed simulation 

methods to study the effects of instrumentation spacing on real-time leak detection. Stafford and 

Williams (1996) and Wuori et al. (2000), however, concluded that no “new breakthroughs” had 



5 
 

been made in the early 1990s, with the exception of fiscal improvements to fiber optic technology, 

and the focus should be made on leak prevention and rapid detection.   

 The ADEC (2012) report noted an impressive improvement to existing computational leak 

detection, that was, the use of statistical analysis and learned behavior to determine a leak condition 

in combination with real time transient modelling (Geiger and Werner 2003; Salmatanis et al. 

2015). In addition, the smart-pig technology presented by Elliott et al. (2008) refined the 

capabilities of acoustic detection to a small diameter pig able to flow freely in the product line.   

 Several other studies that may contribute to development of an omniscient pig assisted 

leak-detection methodology include Shannon et al. (1985), Tolmasquim and Nieckele (2008), 

Mirshamsi and Rafeeyan (2012), and Lima et al. (2017). Tolmasquim and Nieckele (2008) 

developed numerical coding using a finite difference scheme to solve the transient pressure and 

velocity fields imposed on a pipeline when oil is displaced by a sealing pig. The combined 

equations of continuity and momentum for fluid flow along with an equation coupling the fluid 

flow with pig motion, first developed by Azevedo et al (1996), were employed to model the 

mechanics of pig motion, then discretized to solve the time dependencies. In addition, they 

successfully implemented a proportional-integral-derivative (PID) controller to maintain a set 

threshold of desired pipeline pressure or pig velocity. With two test cases, the potential of the 

controller method for implementation in the field was proven for efficient pigging operations.   

 Years later, Mirshamsi and Rafeeyan (2012) used quantitative feedback theory (QFT) to 

show that pig velocity can be kept constant, as desired, during runs to ensure measurement quality 

and accuracy. A majority of inline inspection tools (ILI) or smart pigs are used to evaluate the 

reduction in metal thickness due to corrosion. Magnetic flux leakage technology is typically 

employed for this measurement, and it is negatively affected by excessive pig speed and lift-off 
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from the pipe wall. This type of velocity control measure may prove useful if pig assisted leak 

detection is used in combination with pressure transducer-fitted leak detection pigs, such as the 

one created by Camerini et al. (2004). A study by Lima et al. (2017) proved experimentally that a 

parameter vital to pig assisted leak detection, that is, pig velocity, could be determined by 

commonly monitored parameters. Their study sought to determine pig velocity using pipeline 

pressure transducers and supervisory data. With direct measurement of velocity (Ramsden 2006), 

which correlates measured voltage to velocity, mounted on the pig, they were able to confirm their 

velocity calculations using transducers and Supervisory Control and Data Acquisition (SCADA) 

information. Chatzigeorgiu et al. (2013) recently showed the pressure signature of a leak in water 

pipeline that can be detected by a robotic device or smart pig without interruption to flow. The 

device is able to detect even small leaks of a minimum 1 gal/min to within 1-foot location accuracy 

by exploiting the suction force of commodity release on a flexible skirt that runs the diameter of 

the pipeline. In their laboratory- and field-scale testing of a leak detection pig, Camerini et al. 

(2004) found that the leak location could be estimated by measuring the differential pressure across 

the pig.  

The current trends and obstacles in the evolution of leak detection are shown by the 2016 

U.S. Pipeline and Hazardous Materials Safety Administration’s (PHMSA) peer review report. The 

report shows an analysis of projects on a scale of Ineffective to Very Effective and, as reported, 

the topics on leak detection include studies to optimize existing leak detection technologies, 

pipeline survey using side-scan lasers for small natural gas leaks, and differential absorption lidar 

(DIAL) for aerial detection of methane leaks (Emery et al., 2016). In 2018, further update on the 

project listed notable strides in leak detection technology to include a small diameter, free flowing 

internal smart-pig leak detection based on acoustic sensing, further development in aerial survey 
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for pipeline leak detection, and the use of spectroscopy to detect vapors from liquids pipeline leaks 

(Secor 2018). 

 

Modelling Pig Motion 

Literature regarding the mechanistic modeling and experimental study of pig movement in pipeline 

is prolific. In reviewing available literature, researchers began studying the motion of both spheres 

and capsules (i.e. cylinders) in liquid and gas pipe in the late 1950s and early 1960s (Govier and 

Aziz 1972; McDonald and Baker 1964). Operators began using spheres for liquids removal in 

1958 and later for batching or product separation, while discussion of cylindrical capsule use, in 

contrast, began as a means to efficiently transport solids in pipe (Govier and Aziz 1972). Common 

parameters determined mechanistically and monitored experimentally in these early studies 

include stiction pressure necessary to move a stationary pig (or overcome static friction), the 

driving pressure necessary to keep a pig in motion once a balance of forces has been reached, the 

effect of pig dimensions, and the pig velocity, to name a few.   

 Pig motion through a pipeline is affected by characteristics of the pig, the driving fluid, and 

the pipeline. Hara et al. (1978) reported experimental results of deploying a spherical pig in 4-in, 

1,300-m horizontal test-line while flowing fluids of varying density and viscosity, namely water, 

kerosene, and gasoline. Azevedo et al. (1996) modeled the mechanisms of a bypass pig (i.e., a pig 

with multiple bypassing holes) moving in a line similar to that of Hara et al. (1978).  Modeling a 

pig in a 4-in, 1,300-m horizontal line, the group found the pressure drop across the pig could be 

predicted by mechanistic modeling of the fluid flow through the bypass holes and across an 

idealized gap between the pig outer diameter and the pipe inner diameter.   
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MOTIVATION AND OBJECTIVES 

Even with continued evolution in the field of leak detection and extensive guidance, pipeline 

operators have not been able to maintain a consistent incident decline trend.  Henrie et al. (2016) 

show spills have declined since 2002; however, since 2007 the decline trend has flattened (Fig. 1) 

and indicates pipeline leaks persist inevitably.  Although detection systems are in place, both Shaw 

et al. (2012) and Henrie et al. (2016) noted that a majority of leaks reported to PHMSA are more 

likely to be detected by direct visual observation.  This statement implies the predominant leak-

detection method has not changed from visual observation since the previous comprehensive U.S. 

leak detection study published in 1982 (Mastandrea, 1982).  Perhaps these statistics have improved 

since the API TR 1149 (2015) recommendations were published, but a comprehensive leak 

detection study is yet to be complete. 

 

 

Figure 1. U.S. Pipeline and Hazardous Materials Safety Administration right-of-way reported 

leaks (Source: modified from Henrie et al. (2016)). 
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Prompted by experimental and mechanistic studies on leak detection (such as Scott et al. (1999), 

Smith and Griffin (2001), Gajbhiye and Kam (2008), and Kam (2009), which use a passive 

approach to leak detection by employing commonly monitored parameters such as pressure and 

flowrate), Thiberville et al. (2017) extended the concepts of previous mechanistic models to a Gulf 

of Mexico (GOM) case study using numerical simulations. These modeling and simulation studies 

evaluate a wide range of multiphase flow scenarios in the pipeline in terms of the changes in 

pressures and/or flow rates as leak detection indicators at various values of backpressure, pipe 

diameter, inlet gas-oil ratio, water depth, water cut, riser presence, inclination angle, and boundary 

conditions, among many. The use of contour plots, presenting the variations in terms of pressure 

and total flowrate (ΔP and Δqt), is shown to be a useful means of monitoring possible pipeline leak 

and back-calculating leak characteristics such as leak position (xleak) and opening size (dleak). This 

then prompted the current study that aims to combine the use of commonly monitored parameters 

with the smart pigging, or to marry the passive and active approaches of pipeline leak detection.  

Therefore, this study for the first time presents a mathematical framework for leak-

detection technique combined with smart pigging. The results are presented in terms of unique 

pressure signatures which are related to the location and size of pipeline leak.     

 In addition, this study also demonstrates how different pieces of knowledge can be 

implemented together for leak-detection purpose, including (i) the physics of fluid flow through 

and around a bypass pig in a horizontal pipeline, (ii) the relationships among fluid velocity (or 

flowrate), pig velocity, and pressure drop across the pig, and (iii) formulation of leak-detection 

problem using network model and smart pigging.  
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METHODOLOGY 

In order to describe pig motion within the pipeline, this study employs a hydrodynamic model for 

a bypass-type pig developed by Azevedo et al. (1996) as shown in Fig. 2, where the pig (with 

length Lpig and outer radius Rpig) is moving at the velocity of Vpig in a pipe (with inner radius Rpipe 

(or inner diameter dpipe)) filled with incompressible aqueous phase (i.e., water, with density of w 

and viscosity of w). The constant inlet water flow rate of qw across the pipe cross-sectional area 

( Rpipe
2) splits into (i) the flow rate through the gap between pipe inner surface and pig outer 

surface (qwgap) and (ii) the flow rate through the hole within the pig (qwhole). Note that the gap ( ) 

is given by (Rpipe-Rpig), while the hole has hole radius Rhole and length Lhole (that is, the same as 

Lpig). Over the pig length of Lpig, the pressure drop across the pig is given by ΔPpig that is no other 

than the difference between the pressure at the upstream of the pig (Pupp) and the pressure at the 

downstream of the pig (Pdnp). Also note that the horizontal pipeline extends from the inlet (x = 0 

where P = Pin) to the outlet (x = Lpipe where P = Pout) with pig upstream and downstream located 

at x = xpig and x = xpig + Lpig, meaning that P = Pupp at x = xpig and P = Pdnp at x = xpig + Lpig. 

Incompressible flow allows the water flow rate of qw maintained along the pipeline, including the 

inlet (qw = qwin) and outlet (qw = qwout). Note that, by saying smart pigging technique, this study 

assumes the pressure values at the upstream and downstream ends of the pig (Pupp and Pdnp) are 

monitored with time—and available. 
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Figure 2. Schematic representation of model parameters describing a pig in motion in horizontal 

pipeline. 

 

The equations in Azevedo et al. (1996) can then be summarized as follows:   

 

  𝑞𝑤𝑔𝑎𝑝 = 2𝜋𝑅𝑝𝑖𝑝𝑒 (
𝛿3

12𝜇𝑤
 

∆𝑃𝑝𝑖𝑔

𝐿𝑝𝑖𝑔
 −  

𝛿

2
 𝑉𝑝𝑖𝑔)                                                                         (1) 

 

 𝑞𝑤ℎ𝑜𝑙𝑒 =  
𝜋√2(2𝑅ℎ𝑜𝑙𝑒)2

4
 √

∆𝑃𝑝𝑖𝑔
𝜌𝑤

⁄

𝑘+
𝑓𝐿ℎ𝑜𝑙𝑒

2𝑅ℎ𝑜𝑙𝑒
⁄

                                                                             (2)
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where,  k and f represent the entrance/exit effect due to the hole in the pig and the friction factor 

through the hole, respectively. Note that the flow through the gap mimics the one for a slit 

geometry, and these equations deal with laminar flow that typically occurs when the pig is in 

motion.     

At the injection rate of qw, the bypassing flow rate around and across the pig (qwbp) is 

defined as       

 𝑞𝑤𝑏𝑝 =  𝑞𝑤𝑔𝑎𝑝 + 𝑞𝑤ℎ𝑜𝑙𝑒         (3) 

       

which makes 

 

 𝑞𝑤𝑏𝑝 = 𝑞𝑤𝑖𝑛 −  𝜋𝑅𝑝𝑖𝑔
2 𝑉𝑝𝑖𝑔        (4)  

         

for incompressible flow. Fluid mechanics defines shear force (Fs) created by the fluid flowing 

across the pig and through the gap and frictional force (Ffr) between the pig and pipe wall as 

follows: 

 

 𝐹𝑠 = 2𝜋𝑅𝑝𝑖𝑝𝑒𝐿𝑝𝑖𝑔 (
1

2
 

∆𝑃𝑝𝑖𝑔

𝐿𝑝𝑖𝑔
 𝛿 −  𝜇𝑤 

𝑉𝑝𝑖𝑔

8
)      (5) 

 

 𝐹𝑓𝑟 =  𝐹𝑠 +  𝜋𝑅𝑝𝑖𝑝𝑒
2 ∆𝑃𝑝𝑖𝑔        (6) 

           

 Because Azevedo et al. (1996) show that the contact forces are not coupled to 

hydrodynamic forces with the exception of large oversize pig cups, this study derives equations 
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below to relate the pressure drop across the pig (ΔPpig), water flow rate (qw, qwin and qwout), and pig 

velocity (Vpig).     

 

 𝑞𝑤ℎ𝑜𝑙𝑒 =
𝜋√2(2𝑅ℎ𝑜𝑙𝑒)2

4
(

∆𝑃𝑝𝑖𝑔 𝜌𝑤⁄

𝑘+𝑓𝐿ℎ𝑜𝑙𝑒 2𝑅ℎ𝑜𝑙𝑒⁄
)

1

2
      (7)  

 

 𝑞𝑤𝑔𝑎𝑝 = 2𝜋𝑅𝑝𝑖𝑝𝑒 (
𝛿3

12𝜇𝑤

∆𝑃𝑝𝑖𝑔

𝐿𝑔𝑎𝑝
−

𝛿

2
𝑉𝑝𝑖𝑔)      (8)  

 

 𝑞𝑤𝑔𝑎𝑝 + 𝑞𝑤ℎ𝑜𝑙𝑒 = 𝑞𝑤𝑖𝑛 − 𝜋𝑅𝑝𝑖𝑔
2 𝑉𝑝𝑖𝑔       (9) 

  

Once the equations are solved for ΔPpig, it can be shown as follows: 

 

 𝐵2∆𝑃𝑝𝑖𝑔
2 + (−2𝐴𝐵 − 𝐶)∆𝑃𝑝𝑖𝑔 + 𝐴2 = 0      (10)  

 

where 

 

 𝐴 = 𝑞𝑤𝑖𝑛 − 𝜋𝑅𝑝𝑖𝑝𝑒
2 𝑉𝑝𝑖𝑔 + 𝜋𝑅𝑝𝑖𝑝𝑒𝛿𝑉𝑝𝑖𝑔      (11) 

        

 

 𝐵 =
𝜋𝑅𝑝𝑖𝑝𝑒𝛿3

6𝜇𝑤𝐿𝑔𝑎𝑝
          (12) 

 

 𝐶 = (𝜋√2(2𝑅ℎ𝑜𝑙𝑒)2)
2

(
1

𝜌𝑤(𝑘+𝑓𝐿ℎ𝑜𝑙𝑒 2𝑅ℎ𝑜𝑙𝑒⁄ )
)      (13) 



14 
 

 

 Concurrently, the pressure gradient within the aqueous phase where no pig is present (0 < 

x < xpig, or xpig + Lpig < x < Lpipe) can be calculated by the Darcy-Weisbach frictional pressure loss 

equation as detailed by Brill and Mukherjee (1999), i.e., 

 

 (
𝑑𝑃

𝑑𝑥
)

𝑓
= (

𝑓𝜌
w
(

𝑞𝑤𝑖𝑛
𝜋𝑅𝑝𝑖𝑝𝑒

2⁄ )

2

4𝑅𝑝𝑖𝑝𝑒
)         (14) 

 

where, the Moody friction factor (f) is obtained from  

 

 𝑓 = 64
𝑅𝑒⁄           (15) 

          

if laminar flow or 

 

 
1

√𝑓
= −2 log10 (

𝜖 (2𝑅𝑝𝑖𝑝𝑒)⁄

3.7
+

2.51

𝑅𝑒√𝑓
)       (16) 

       

 with the absolute roughness 𝜖, if turbulent. The Reynolds number (Re) is defined as 

 

 𝑅𝑒 =
𝜌

w
(

𝑞𝑤𝑖𝑛
𝜋𝑅𝑝𝑖𝑝𝑒

2⁄ )2𝑅𝑝𝑖𝑝𝑒

𝜇
w

        (17)  
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Next, suppose a leak is imparted on the pipeline at a given longitudinal leak location (x = 

xleak) with a circular leak-opening size of diameter dleak (or radius Rleak), leading to a leak flow rate 

of qleak. As shown in Fig. 3, the solution scheme in such a scenario depends on whether the pig in 

motion is located upstream or downstream from the leak.   

 When the pig is located upstream of the leak, the inlet pressure (Pin) is a result of the 

following 4 components: 

(i) the pressure drop downstream of the leak (i.e., 𝑥 = 𝑥𝑙𝑒𝑎𝑘 to 𝐿𝑝𝑖𝑝𝑒), with a flowrate equal 

to  𝑞𝑤𝑜𝑢𝑡 = 𝑞𝑤𝑖𝑛 − 𝑞𝑙𝑒𝑎𝑘,  

(ii) the pressure drop of the pipe upstream of the leak but downstream of pig (i.e., 

𝑥 = (𝑥𝑝𝑖𝑔 + 𝐿𝑝𝑖𝑔) to 𝑥𝑙𝑒𝑎𝑘) with a flowrate equal to 𝑞𝑤𝑖𝑛,  

(iii) the pressure drop across the pig (ΔPpig) (i.e., 𝑥 = 𝑥𝑝𝑖𝑔 to (𝑥𝑝𝑖𝑔 + 𝐿𝑝𝑖𝑔)), and  

(iv) the pressure drop upstream of the pig (i.e., 𝑥 = 0 to 𝑥𝑝𝑖𝑔) with a flowrate equal to 𝑞𝑤𝑖𝑛.  

If the outlet pressure (Pout) is given, this allows an equation for Pin to be written as follows:   

 𝑃𝑖𝑛 = 𝑃𝑜𝑢𝑡 + (𝐿𝑝𝑖𝑝𝑒 − 𝑥𝑙𝑒𝑎𝑘) (
𝑑𝑃

𝑑𝑥
)

𝑓,𝑞𝑤𝑖𝑛−𝑞𝑙𝑒𝑎𝑘

+ (𝑥𝑙𝑒𝑎𝑘 − (𝑥𝑝𝑖𝑔 + 𝐿𝑝𝑖𝑔)) (
𝑑𝑃

𝑑𝑥
)

𝑓,𝑞𝑤𝑖𝑛

+

∆𝑃𝑝𝑖𝑔 +𝑥𝑝𝑖𝑔 (
𝑑𝑃

𝑑𝑥
)

𝑓,𝑞𝑤𝑖𝑛

         (18) 

 

If the pressure at the junction (i.e., at the leak) is given by Pjunc, Eq. (18) becomes 

 

 𝑃𝑖𝑛 = 𝑃𝑗𝑢𝑛𝑐 + (𝑥𝑙𝑒𝑎𝑘 − (𝑥𝑝𝑖𝑔 + 𝐿𝑝𝑖𝑔)) (
𝑑𝑃

𝑑𝑥
)

𝑓,𝑞𝑤𝑖𝑛

+ ∆𝑃𝑝𝑖𝑔 + 𝑥𝑝𝑖𝑔 (
𝑑𝑃

𝑑𝑥
)

𝑓,𝑞𝑤𝑖𝑛

 (19) 

 

where 
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 𝑃𝑗𝑢𝑛𝑐 = 𝑃𝑜𝑢𝑡 + (𝐿𝑝𝑖𝑝𝑒 − 𝑥𝑙𝑒𝑎𝑘) (
𝑑𝑃

𝑑𝑥
)

𝑓,𝑞𝑤𝑖𝑛−𝑞𝑙𝑒𝑎𝑘

     (20) 

Or, equivalently,   

 

 𝑃𝑗𝑢𝑛𝑐 = 𝑃𝑜𝑢𝑡 + (
𝑓𝜌

w
(𝐿𝑝𝑖𝑝𝑒−𝑥𝑙𝑒𝑎𝑘)

4𝑅𝑝𝑖𝑝𝑒(𝜋𝑅𝑝𝑖𝑝𝑒
2 )

2 ) × (𝑞𝑤𝑖𝑛 − 𝑞𝑙𝑒𝑎𝑘)2     (21) 

 

 

 
Figure 3. Schematic drawing of pig location (x = xpig) with respect to the leak (x = xleak) with 

opening size of dleak. 
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Note that Pjunc can also be determined from the surrounding pressure (Psurr) outside the leak and 

the leaking flow rate (qleak), i.e.,  

 

 𝑃𝑗𝑢𝑛𝑐 = 𝑃𝑠𝑢𝑟𝑟 + (
𝜌

w

2(𝜋𝑑𝑙𝑒𝑎𝑘
2 /4)

2
𝑐𝑙𝑒𝑎𝑘

2
) × 𝑞𝑙𝑒𝑎𝑘

2       (22) 

 

where cleak is a leak coefficient which is constant 0.85 for water according to API 14B (2005) 

(PIPESIM 2013). The concept of a network model forces these two junction pressure values in 

Eqs. (21) and (22) to be identical. This allows the unknown qleak to be determined by iteration. 

 A similar approach can be applied when the pig is located downstream of the leak, i.e., 

 

  𝑃𝑖𝑛 = 𝑃𝑜𝑢𝑡 + (𝐿𝑝𝑖𝑝𝑒 − (𝑥𝑝𝑖𝑔 + 𝐿𝑝𝑖𝑔) ) (
𝑑𝑃

𝑑𝑥
)

𝑓,𝑞𝑤𝑖𝑛−𝑞𝑙𝑒𝑎𝑘

+ ∆𝑃𝑝𝑖𝑔 

  +(𝑥𝑝𝑖𝑔−𝑥𝑙𝑒𝑎𝑘) (
𝑑𝑃

𝑑𝑥
)

𝑓,𝑞𝑤𝑖𝑛−𝑞𝑙𝑒𝑎𝑘

+ 𝑥𝑙𝑒𝑎𝑘 (
𝑑𝑃

𝑑𝑥
)

𝑓,𝑞𝑤𝑖𝑛

    (23) 

If Pjunc is used, Eq. (23) becomes 

 

 𝑃𝑖𝑛 = 𝑃𝑗𝑢𝑛𝑐 + 𝑥𝑙𝑒𝑎𝑘 (
𝑑𝑃

𝑑𝑥
)

𝑓,𝑞𝑤𝑖𝑛

       (24) 

where 

 

 𝑃𝑗𝑢𝑛𝑐 = 𝑃𝑜𝑢𝑡 + (𝐿𝑝𝑖𝑝𝑒 − (𝑥𝑝𝑖𝑔 + 𝐿𝑝𝑖𝑔) ) (
𝑑𝑃

𝑑𝑥
)

𝑓,𝑞𝑤𝑖𝑛−𝑞𝑙𝑒𝑎𝑘

+ ∆𝑃𝑝𝑖𝑔 + 

  +(𝑥𝑝𝑖𝑔−𝑥𝑙𝑒𝑎𝑘) (
𝑑𝑃

𝑑𝑥
)

𝑓,𝑞𝑤𝑖𝑛−𝑞𝑙𝑒𝑎𝑘

      (25) 
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Similarly, Eq. (25) can be used together with Eq. (22) to determine Pjunc and qleak by iteration. Note 

that the iteration when the pig is located downstream of the leak is more complicated, because the 

term ΔPpig is also a function of flowrate of (qwin - qleak) where qleak is required to be calculated by 

iteration.   

 

 Sometimes, it is convenient to use the pressure drop across the leak (ΔPleak) for analysis as 

follows: 

 

 ∆𝑃𝑙𝑒𝑎𝑘 = 𝑃𝑗𝑢𝑛𝑐 − 𝑃𝑠𝑢𝑟𝑟 =
𝜌𝑤×(

4 𝑞𝑙𝑒𝑎𝑘
𝜋𝑑𝑙𝑒𝑎𝑘

2⁄ )

2

2
×

1

𝑐𝑙𝑒𝑎𝑘
2     (26) 

 

which can also be written as  

 𝑑𝑙𝑒𝑎𝑘 = 2 (
𝑞𝑙𝑒𝑎𝑘

𝜋𝑐𝑙𝑒𝑎𝑘√
2(∆𝑃𝑙𝑒𝑎𝑘)

𝜌𝑤

)

1
2⁄

       (27) 

 

if leak opening size (dleak) needs to be calculated. 

 At this stage, this study assumes one-dimensional horizontal flow, incompressible single-

phase flow, a particular type of pig, and clean and uniform pipe surface. Some of these assumptions 

can be relaxed in the future, as briefly discussed in the later section (for example, effects of 

multiphase flow and compressible phases). Although the equations are developed for a bypass-

type pig, other types of pig can also be used in the same manner as long as the relationships among 

qw, Vpig, and ΔPpig are provided.     
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RESULTS 

As a base-case scenario, this study considers a pipeline with no leak first. Input parameters for this 

base-case scenario are taken from actual experiments (Azevedo et al. 1996) and summarized in 

Table 1, where the pipeline has 4-inch (0.0486-m) ID and 4,265-ft (1300-m) horizontal length with 

a bypass-type pig. The bypass pig is chosen because of its popularity in industry to avoid excessive 

sticking and blockage. The pig terminal velocity (VpigT) of 1.14 m/s (or 3.74 ft/s), borrowed from 

Azevedo et al. (1996), is common in field-scale operations (Cordell and Vanzant 2003).   

 Fig. 4 shows a typical pig motion when a pig is launched: (i) the pig accelerates (at the rate 

of apig) and its velocity (Vpig) increases from Vpig = 0 (at t = 0) to Vpig = VpigT (at t = tacc) linearly, 

and (ii) the pig velocity reaches and remains at its terminal velocity afterwards, Vpig = VpigT (for t 

> tacc). The corresponding change in pig location (xpig) is shown in Fig. 5 where it first curves up 

(for t < tacc) to reach x = Lacc at t = tacc, and then follows a straight-line trend afterwards (for t > 

tacc). Note that such an approximation during the acceleration phase is based on the steady-state 

interactions among the fluid, pig and pipe wall, and thus makes the model in this study a quasi-

steady-state approach (more details on this topic are discussed in the later section).    

Once a pig is in motion, the pressure drop across the pig (ΔPpig) can be calculated by using 

Eqs. (10) through (13). Figs. 6 and 7 show such a result, i.e., ΔPpig as a function of Vpig and ΔPpig 

as a function of qw, respectively. Because of the nature of quadratic equation in Eq. (10), there 

exist two solutions - real and imaginary solutions. The real solution, which is physically 

meaningful, is shown by the colored portion of the curves in Fig. 6 (where the slope is negative) 

and Fig. 7 (where the slope is positive), while the imaginary solution is shown by the gray portion 

of the curves 
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By combining the basic information for the pipeline with a pig (shown in Table 1, and Figs. 

4 and 5) and the relationship among ΔPpig, Vpig and qw for the bypass-type pig of interest (shown 

in Figs. 6 and 7), Fig. 8 shows pressure profile as a function of distance (P vs. x) during the 

operation time (t). As conjectured from the concept of stiction pressure, there is a threshold value 

of pressure drop (or inlet pressure, Pin) that needs to be overcome for the pig to start its initial 

motion (ΔPpig = 9.28 MPa (about 1343 psi) approximately at t = 0.2 sec in the figure). As the pig 

accelerates, ΔPpig decreases (see Fig. 6) and Pin reduces continuously until it reaches ΔPpig = 228 

kPa (about 33 psi) at t = tacc = 2.0 sec. After the pig reaches its terminal-velocity phase (t > tacc), as 

shown by Fig. 9, Pin and ΔPpig do not change any more. Within this phase, it is the pressure values 

upstream and downstream of the pig (Pupp and Pdnp) that change with time. 

 

Table 1. Input parameters for the pipeline and pig in the base case. 

input 

parameter description value 

input 

parameter description value 

Rpipe (m) inner radius of the pipe 0.0486 Lpig (m) length of pig 0.1458 

Lpipe (m) total length of the pipe 1300 VpigT (m/s) pig terminal velocity 1.14 

qwin (m
3/s) total flowrate at the inlet 0.00972 δ (m) 

gap between pig and 

pipe wall 0.0001 

μw (Pa s) viscosity of driving fluid 0.002 tacc (s) 

time for pig to 

accelerate to VpigT 2 

ρw (kg/m3) density of driving fluid 1000 Lhole (m) length of bypass hole 0.1458 

Pout (Pa) backpressure at the outlet 101325 Rhole (m) 

inner radius of the 

bypass hole 0.0058 

      k entrance/exit effect 2.95 
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The results in Figs. 8 and 9 can be used to predict pressure change as a function of time at 

any longitudinal location (x) along the pipeline. Figs. 10 and 11 show such an example in terms of 

Pin, Pupp, and Pdnp. As predicted in Fig. 8, Fig. 10 shows that Pin first increases up to the threshold 

pressure value to initiate pig motion, then decreases as the pig accelerates until t = tacc = 2.0 sec. 

Pin stays at the same level afterwards (t > tacc) maintaining Vpig = VpigT. Fig. 11 shows details on 

what happens during the terminal-velocity phase: While Pin and Pout are fixed at the same level, 

and Pupp and Pdnp decrease continuously with time as the pig travels further downstream. Note that 

ΔPpig (i.e., Pupp – Pdnp) remains the same during this time period.   

 

 
Figure 4. Change in pig velocity (Vpig) during acceleration and terminal-velocity phases in the 

base case. 
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Figure 5. Change in pig location (xpig) during acceleration and terminal-velocity phases in the 

base case. 
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Figure 6. Pressure drop across pig (ΔPpig) as a function of pig velocity (Vpig) in the base case 

(only the colored part of the curves represents real solutions, while the other gray part represents 

imaginary solutions). 
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Figure 7. Pressure drop across pig (ΔPpig) as a function of fluid velocity (qw) in the base case 

(only the colored part of the curves represents real solutions, while the other gray part represents 

imaginary solutions). 
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Figure 8. Pressure (P) as a function of longitudinal distance (x) during acceleration and terminal-

velocity phases in the base case (Pout = 101325 Pa = 14.7 psia). 
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Figure 9. Pressure (P) as a function of longitudinal distance (x) during terminal-velocity phase in 

the base case (magnified view) (Pout = 101325 Pa = 14.7 psia). 
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Figure 10. Pressure (P) as a function of time (t) during acceleration and early terminal-velocity 

phases in the base case (Pout = 101325 Pa = 14.7 psia). 

  



28 
 

 
Figure 11. Pressure (P) as a function of time (t) during terminal-velocity phase in the base case 

(Pout = 101325 Pa = 14.7 psia). 

 

 The next step of this study is to look into the case with a leak in the system. Table 2 shows 

input details of the leak: a circular leak opening with the radius (Rleak) = 0.6 inch (or 0.007625 m) 

and the location (xleak) at the midpoint in the total pipeline length (i.e., Lpipe/2 = 650 m). The model 

also needs the surrounding pressure outside the leak (Psurr) and leak discharge coefficient (cleak). 

Because tacc = 2.0 sec. is negligible compared to the overall operation time (about 1150 sec. as 

shown in Fig. 11), this study focuses on the pig motion only during the terminal-velocity phase. 

The modeling results in the presence of a leak require two separate solutions (when the pig is 

located upstream of the leak as well as downstream), combining them together.    

Figs. 12 through 16 show the calculation results when the pig is located upstream of the 

leak. First, Fig. 12 presents the relationship between Pjunc and qleak for the pipeline downstream of 
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the leak (Eq. (20)) and through the leak (Eq. (22)). The intersection between the two curves (Pjunc 

= 181 kPa and qleak = 0.009144 m3/s for the input parameters shown in Table 1 and Table 2) are 

obtained by iterations. The results are summarized by the schematic figure in Fig. 13.  

Those subsequent plots show the pressure as a function of distance x (Fig. 14, showing the 

results at three different times and the pig arrival time of t = 566 sec at the leak), the pressure-

gradient (dP/dx) as a function of x at t = 343 sec (Fig. 15), and the change in pressure as a function 

of time at different locations (Pin, Pupp, and Pdnp). Overall, these are similar to Figs. 9 and 11 because 

the pig is still in the upstream of the leak during which qwin and Vpig are the same as no-leak base-

case scenario. Some interesting aspects should be noted, however, such as (i) the pressure gradient 

along the upstream pipeline (183 Pa/m) is higher than that along the downstream pipeline (122 

Pa/m) because of fluid loss through the leak and (ii) the pressure loss across the pig plays a 

significant role compared to the overall pressure drop along the fluid in the pipeline (see ΔPpig in 

Fig. 14). Such an aspect is also shown by the pressure gradient (see ΔPpig/Lpig) in Fig. 15.      

 

Table 2. Input parameters for the pig. 
   input 

parameter description value 

Rleak (m) radius of the leak 0.00763 

xleak (m) longitudinal leak location 650 

Psurr (Pa) external pressure surrounding the leak 101325 

cleak discharge coefficient 0.85 

tacc (s) time for pig to accelerate to VpigT 0* 

*tacc=0 means the pig moves at its terminal velocity. 
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Figure 12. Finding junction pressure (Pjunc) and leak flowrate (qleak) when the pig is upstream of 

the leak location (Pig terminal velocity upstream of the leak (VpigT = 1.14 m/s); iterations are 

used to find the intersection point of (qleak, Pjunc)). 

 

 
 

 
Figure 13. A schematic figure summarizing calculation results when the pig is upstream of the 

leak location. 
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Figure 14.  Pressure (P) as a function of longitudinal distance (x) when the pig is upstream of the 

leak location. 
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Figure 15. Pressure gradient (dP/dx) as a function of longitudinal distance (x) when the pig is 

upstream of the leak location.  
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Figure 16. Pressure (P) as a function of time (t) when the pig is upstream of the leak location.  

 

 

Figs. 17 through 21 show the calculation results when the pig is located downstream of the 

leak. It should be noted that, similar to the case with the pig upstream, the calculation requires the 

downstream terminal velocity that can initially be estimated or measured from the experiments. 

This section chooses the downstream terminal velocity (VpigTdn) ¾ of the upstream terminal 

velocity (VpigT), which means VpigTdn/VpigT = 0.75, or VpigTdn = 0.855 m/s (2.81 ft/s). Different 

ratios of VpigTdn/VpigT, of course, affect pressure losses and thus leak flowrate, which is discussed 

more in the later section. 
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First, Fig. 17 presents the relationship between Pjunc and qleak along the pipeline (Eq. (25)) 

and through the leak (Eq. (22)). The intersection between the two curves, when the pig is located 

downstream, gives Pjunc = 230 kPa and qleak = 0.00272 m3/s (cf. Pjunc = 181 kPa and qleak = 0.009144 

m3/s in Fig. 12). The results are summarized by the schematic figure in Fig. 18 that can be 

contrasted with Fig. 13.  

Similarly, Fig. 18 shows the results of pressure as a function of distance (at three different 

times) right after the pig passes the leak location (t =578 sec), Fig. 19 the pressure-gradient (dP/dx) 

as a function of x at t = 876 sec, and Fig. 20 the change in pressure as a function of time at different 

locations (Pin, Pupp, and Pdnp). Overall, they are similar to Figs. 14 and 16 (when the pig located 

upstream of leak) with some notable differences such as (i) the pressure loss across the pig is 

reduced (ΔPpig = 63 kPa (9 psi) from 228 kPa (33 psi)) because of the change in flowrate across 

the pig (qwin - qleak = 0.007002 m3/s  from qwin = 0.009722 m3/s)  and (ii) the inlet pressure (Pin) 

changes to and maintained at 348 kPa (from 527 kPa), accordingly, as the pig passes through the 

leak location. 
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Figure 17. Finding junction pressure (Pjunc) and leak flowrate (qleak) when the pig is downstream 

of the leak location (Pig terminal velocity downstream of the leak is 75% of that upstream 

(VpigTdn/VpigT = 0.75); iterations are used to find the intersection point of (qleak, Pjunc)). 

 

 

 
Figure 18. A schematic figure summarizing calculation results when the pig is downstream of the 

leak location. 
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Figure 19. Pressure (P) as a function of longitudinal distance (x) when the pig is downstream of 

the leak location. 
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Figure 20. Pressure gradient (dP/dx) as a function of longitudinal distance (x) when the pig is 

downstream of the leak location.  
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Figure 21. Pressure (P) as a function of time (t) when the pig is downstream of the leak location.  

 

 Putting both results (the pig upstream and downstream) together, a complete description of 

the pig travelling over the pipe length can be created. First, Fig. 22 shows six different pig locations 

(related to six different times, equivalently) where the results are reported, first three when the pig 

is located upstream (xpig = 0.1Lpipe, 0.3Lpipe, and 0.5Lpipe -Lpig) and the other three when the pig is 

located downstream (xpig = 0.5Lpipe, 0.7Lpipe, and 0.9Lpipe). Figs. 23 and 24 show the combined 

solutions, when the pig travels upstream as well as downstream (i.e., Figs. 16 and 19 and Figs. 18 

and 21), respectively.  
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Finally, Figs. 25 through 27 show how pressure changes as a function of distance and time 

when the pig terminal velocity downstream is 60 %, 70 %, and 90 % of that upstream (i.e., VpigTdn/VpigT 

= 0.6, 0.7, and 0.9, respectively; note that VpigTdn/VpigT = 0.75 in Figs. 23 and 24). Because ΔPpig, 

Vpig and qw are interconnected (see Figs. 6 and 7), a change in pig velocity (whether upstream or 

downstream of the leak) leaves unique pressure signatures as shown in Figs. 25 through 27. Note 

that the higher VpigTdn/VpigT, the lower ΔPpig downstream, and, as a result, the more reduction in 

Pin as the pig moves from upstream to downstream.  

These results show the significance of this study as active smart-pig leak-detection method 

where the pressures measured in both ends of the pig while traveling (i.e., Pupp and Pdnp) can greatly 

improve traditional passive leak-detection methods based only on the pressure and/or flowrate 

measurements at the inlet and outlet (i.e., Pin and Pout; qwin and qwout). As shown by the pressure 

signatures in Figs. 23 through 27, for example, the sharp changes in Pin and ΔPpig (or, Pupp - Pdnp), 

as the pig travels across the leak location, can be used as an indicator of xleak. Furthermore, the 

magnitude of the change in ΔPpig, measured in the experiments, can also be used to confirm the 

change in pig velocity (i.e., VpigT to VpigTdn) and thus pig arrival time at the outlet. These pig 

velocities, of course, can be measured directly (as a part of smart pig capacity) or estimated from 

the experimental data.  

 

 
 Figure 22. Six different pig locations selected to create pressure profile (xpig = 0.1Lpipe, 0.3Lpipe, 

0.5Lpipe -Lpig, 0.5Lpipe, 0.7Lpipe, and 0.9Lpipe).  
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Figure 23. Pressure (P) as a function of longitudinal distance (x) as pig travels the entire pipe 

length (Pig terminal velocity downstream is 75% of that upstream (VpigTdn/VpigT = 0.75)). 
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Figure 24. Pressure (P) as a function of time (t) as pig travels the entire pipe length (Pig terminal 

velocity downstream is 75% of that upstream (VpigTdn/VpigT = 0.75)).

 

 

Figure 25. Pressure (P) as a function of longitudinal distance (x) and time (t) as pig travels the 

entire pipe length (Pig terminal velocity downstream is 60% of that upstream  

(VpigTdn/VpigT = 0.6)).  
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Figure 26. Pressure (P) as a function of longitudinal distance (x) and time (t) as pig travels the 

entire pipe length (Pig terminal velocity downstream is 70% of that upstream  

(VpigTdn/VpigT = 0.7)) 

 

 

Figure 27. Pressure (P) as a function of longitudinal distance (x) and time (t) as pig travels the 

entire pipe length (Pig terminal velocity downstream is 90% of that upstream  

(VpigTdn/VpigT = 0.9)).  
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 Such results in terms of pressure signature (Figs. 23 through 27), if estimated or obtained 

experimentally, can be applied to determine leak flowrate (qleak) and junction pressure (Pjunc) at the 

leak location (xleak). For example, the case shown in Figs. 23 and 24 (where VpigTdn/VpigT = 0.75 

with VpigT = 1.14 m3/sec (Table 1)), has qleak and Pjunc values of 0.00194 m3/sec and 181 kPa when 

the pig is upstream of the leak (Fig. 12) and 0.00272 m3/sec and 230 kPa when the pig is 

downstream of the leak (Fig. 17).  

When the pig terminal velocity downstream is 60%, 70%, and 90% of that upstream (i.e., 

VpigTdn/VpigT = 0.6, 0.7, and 0.9, respectively; Figs. 25 through 27), the qleak and Pjunc values are 

0.00340 m3/sec and 375 kPa; 0.00301 m3/sec and 275 kPa; and 0.00204 m3/sec and 190 kPa when 

the pig is downstream of the leak. The qleak and Pjunc values, when the pig is upstream, are not 

affected and therefore stay same, however. Note that the lower VpigTdn/VpigT, the higher qleak.  

In actual lab experiments and field tests with a smart pig, qleak and ΔPleak (i.e., Pjunc – Psurr) 

can readily be estimated from pressure signatures. Therefore, size (dleak) is then determined by qleak 

and ΔPleak (Eq. (26)). 

  



44 
 

DISCUSSIONS  

The modeling approach implemented in this study is based on quasi-steady state, per se, because 

the calculation during the pig set in motion is based on the steady-state relationships among the 

pressure drop across the pig (ΔPpig), water flow rate (qw), and pig velocity (Vpig). In order to check 

the validity of the model, one can perform a transient simulation for the pig movement. Fig. 28 

shows example simulation results from OLGA where the same input parameters (such as pipeline 

dimensions, fluid properties, and injection and outlet conditions) are applied. Because OLGA 

provides only cylindrical pig (i.e., pig with gaps but no holes), this simulation effort adjusts a pig 

friction factor that offers a similar pressure drop across the pig. Please note that, as a result, the 

simulation outputs are produced not to confirm the accuracy of the quasi-steady-state modeling, 

but to confirm the general trend. 

 First, the simulation performs a single-phase water flow in a horizontal pipeline from t = 0 

sec during which the pressure gradient along the pipeline remains low and constant and the inlet 

pressure is maintained almost at a fixed value. The pig is launched at t = 900 sec, accelerates until 

t = 1360 sec to reach a terminal velocity, and then exits the system at t = 2290 sec. Overall, the 

transient simulation results resemble the quasi-steady-state modeling results. For example, during 

the acceleration phase (about 900 < t < 1360 sec), pig velocity (Vpig) increases with time which 

leads to a steep reduction in ΔPpig and Pin. During the terminal-velocity phase (about 1360 < t < 

2290 sec), ΔPpig and Pin stay at the same level, and the high pressure-gradient wave across the pig 

propagates linearly with time. The only difference between the quasi-steady-state modeling and 

the transient simulation seems to be the way the pig accelerates during the acceleration phase, i.e., 

more gradually taking longer time to reach the terminal velocity in the transient simulation. This 
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makes sense because the simulation has the capacity of taking the dynamics between the fluid, 

pipe wall, and pig surface into account in a time-dependent manner.   

 
Figure 28. Transient OLGA simulation to validate the model in this study (similar input 

parameters with incompressible single-phase water).   

 

Another aspect that can be examined by the transient simulation is pig motion when 

multiphase-phase flow and compressible fluid are associated. Such cases are obviously beyond the 

scope of this study (i.e., incompressible single-phase flow) for leak-detection purpose, but one may 

get a useful insight as a part of future work.  

Fig. 29 repeats the same simulation case as Fig. 28 including injection rate at the inlet, 

except that the fluids now consist of 20 % of air and 80 % of water in terms of mass. The results 

show two main differences compared with the incompressible single-phase flow (Fig. 28). First, 

the presence of compressible gas phase makes the pressure profile (i.e., pressure vs. distance) 

curved showing the effect of gas-phase decompression towards the outlet, and accordingly the inlet 

pressure is much higher to compress the gas phase to get the same injection rate. Second, the 

transient simulation exhibits a higher level of fluctuation in terms of pig velocity and pressure drop 

that may sometimes cause convergence and stability issues. Because the trend observed with 
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multiphase flow, including a compressible phase is similar to what is predicted with the modeling 

results in this study, the extension of similar leak-detection methods in a compressible multiphase 

flowline appears to be promising. 

 

 
Figure 29.  Transient OLGA simulation to understand multiphase-flow and compressibility 

aspects (similar input parameters, keeping the same total flowrate at the inlet with 20% air and 

80% water).   

 

The results obtained in this study based on the quasi-steady-state approach and the results 

from transient simulations (compressible vs. incompressible phases; single-phase vs. multiphase 

flow) can be used to guide experimental studies to come as a next phase. The experimental design 

can be made with a long pipeline that is coiled in circles. For each circle of the pipeline, a pressure 

transducer and a leak can be installed to measure pressure responses and mimic various leak 

conditions. It should be noted that this modeling study may be yet to be ready for the field testing, 

where the pipe inner surface may not be clean (because of corrosion and erosion, for example), 

where the pipe inner diameter may not be uniform (because of pipe deformation and solid 

deposition), and where the fluid flow and pig motions are complicated (multiphase flow, 
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incompressible flow, complex terrain with varying inclination angles, pig not reaching the 

terminal-velocity phase and so on). 

Limited cursory trials with transient simulator can be performed with the addition of 

pipeline inclination angle. Some preliminary results show that pipeline inclination angle leads to 

the change in overall pressure drop along the pipeline due to the addition of hydrostatic pressure. 

There appears almost no change in pressure drop across the pig (ΔPpig) or pig velocity (Vpig), 

however, because the length scale of the pig is negligible compared to that of pipeline. In general, 

the effect of upward pipeline inclination on leak detection seems to help leak detection because 

the pressure drop across the leak is higher in that case.  Additional work is required to investigate 

more complicated pipeline configurations associated with various inclinations angles.  

Finally, the effects of those modeling parameters for the quasi-steady-state approach in this 

study need to be investigated for a wide range of scenarios. They include, but are not limited to, 

different pig characteristics (gap size, bypass hole diameter, etc.), pig types, and pig materials. It 

is because the pig dynamics may be highly influenced by those parameters that describe the pig 

motion, the solid-fluid interaction, and solid-solid interaction. The effect of these parameters seems 

beyond the scope of this study.  
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CONCLUSIONS  

This modeling study shows how to use a smart pigging technique (i.e., using a pig with pressure 

sensors to measure pressure values at the upstream and downstream ends of the pig (Pupp and Pdnp)) 

for pipeline leak detection. This active leak-detection method demonstrates how to improve 

traditional passive leak-detection methods that rely only on the pressure and flow rate 

measurements at the inlet (Pin and qwin) and outlet (Pout and qwout). 

The results show that, as a pig travels along the horizontal pipeline moving across the leak 

location (xleak), the pressure responses (Pin, Pupp, and Pdnp) leave unique signatures. Such 

information can then be used to determine the major unknowns, such as leak location (xleak) and 

leak opening size (dleak), at given input parameters such as pig velocity (Vpig). A network model 

concept is used as an efficient tool to interrelate the pressure loss across the pig (ΔPpig), pig velocity 

(Vpig), leaking flowrate (qleak) and pressure at the junction (Pjunc). 

This study based on fluid mechanics and pig dynamics is believed to place a stepping stone 

towards the proof-of-concept experimental studies to come in the near future, as demonstrated by 

transient simulations.   
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