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Abstract

Portfolios of mortgage loans played an important role in the Great Recession and continue to

compose a material part of bank assets. The distribution of mortgage portfolio returns, and

consequently, the risk of these portfolios, is quite distinct even from other fixed income asset

classes. This dissertation contains three essays, each aiming to analyze a specific component

of risk in mortgage portfolios and role of geographical diversification in reducing this risk.

The first essay investigates how cross-sectional dependence in the underlying properties

flows through to the loan returns, and thus, the risk of the portfolio. In addition to demon-

strating this relationship theoretically, this essay demonstrates how the spatially dependent

structure of the underlying housing returns is revealed in the mortgage market by a shock

to the default rate. The resulting increase in the asset correlations reduces the effectiveness

of any geographical diversification present in the portfolio.

Even when the distribution of mortgage returns is known, the ability to reduce portfolio

risk through geographical diversification can be limited due to the concentration of mort-

gage debt in major metropolitan areas. The second essay aims to model this geographical

concentration for various partitions of the mortgage market and examine the role this has

on limiting investors’ ability to diversify risk. This is accomplished by fitting the empirical

regularity from regional science known as the rank-size rule to measure this concentration.

The third and final essay in this dissertation focuses on modeling the mortgage default

decision and imputing unobserved factors that may bias the estimated impact of observed

factors such as the loan-to-value ratio. As alluded to in the first essay, the default rate, or

probability of default ex-ante, is an important determinant of the observed correlation across

mortgage returns. This essay develops a ridge regression model, which is tuned to maximize

out-of-sample predictive performance using cross-validation, that imputes these unobserved

factors while preventing model overfitting.

vii



Chapter 1. Introduction

A oft-referenced topic that arises in discussions recalling the 2008 financial crisis is the credit

ratings, or the evaluation of risk, for mortgage-backed securities (MBS). These financial

products effectively bundle a large number of mortgages (loans that are secured by real

estate assets) into a portfolio and sell off the cash flow rights to the portfolio’s proceeds.

With assets such as these, modeling the distribution of returns or measuring portfolio risk

can be challenging. This dissertation aims to examine three important considerations for

evaluating the risk of a mortgage portfolio and the impact of geographical diversification.

In the first essay, Chapter 2, the multivariate return structure of mortgage portfolios is ex-

amined, and the correlation across these returns is modeled as a function of the default rate

and the correlation of the underlying housing returns. The censored variable framework that

is used demonstrates how periods of strong economic growth and low default rates coincide

with small observed correlations across mortgage returns and low risk for diversified port-

folios. However, a shock to the default rate reveals the latent correlations of the underlying

housing, and subsequently, the risk reduction from geographical diversification diminishes

due to the revealed correlations from the recovered collateral.

This essay the models the cross-sectional dependence – correlation – of the underlying

housing using local house price indices (HPIs) from the Federal Housing Finance Agency

(FHFA). This dependence is partitioned into a strong (macro) component and a weak (spa-

tial) component that fades as the distance between the properties increases. This dependence,

and its spatial structure, often remains hidden during strong economic periods and low de-

fault rates. However, a default shock can have a disproportionately large impact on portfolio

risk. The use of Value at Risk (VaR) in Section 2.4 shows the compounding effects from the

increased risk of the individual assets and the increased correlation across asset returns. A

simulation exercise in Section 2.5 demonstrates how the estimated housing correlations flow

through to mortgage portfolio risk.
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Although this relationship between portfolio risk and the underlying collateral exists for

other fixed-income portfolios, the setting provided by residential mortgages is convenient

since the value of the collateral is simply the value of the property. Unlike other fixed-

income assets, such as corporate bonds where the collateral is the firm’s assets, residential

mortgages have readily available estimates of their collateral. The FHFA has made HPIs

available for a wide range of geography levels and frequencies (Bogin, Doerner, and Larson,

2018). Additionally, residential properties exhibit substantial degrees of comovement (Fis-

cher, Füss, and Stehle, 2019) and tend to have spillover effects, particularly with distressed

assets (Lin, Rosenblatt, and Yao, 2009; Daneshvary, Clauretie, and Kader, 2011; Hartley,

2014). Thus, understanding the spatial structure of housing return dependence and how the

return structure flows through to mortgage portfolios is important for modeling the return

distribution at the portfolio level.

With multivariate normal asset returns such as in the traditional Markowitz (1952) model,

the portfolio variance for a set of weights (w) is given by (1).

σ2
p = w′ · Σ · w (1)

In this case, the covariance matrix (Σ) for asset returns defines the diversification potential.

One can think of diversification as the process of tuning the portfolio weights of w to achieve

the investor’s desired risk/return balance. If the weight vector w contains an element for

every city or metropolitan statistical area (MSA) represented in the portfolio, then this

process of geographically diversifying a portfolio may be constrained if the underlying assets

(mortgages) are concentrated in just a small number of cities. This limiting effect on the

diversification of mortgage portfolios that is induced by large geographical concentration of

mortgage debt in major metropolitan areas is the focus of the second essay, Chapter 3.

When it comes to mortgage debt, this large degree of geographical concentration results

from not just a larger quantity of loans originating in more populous cities, but also the price

differential between dense urban areas and rural locations. In addition to these compounding
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effects of the quantity and size of new mortgage originations, D’Acunto and Rossi (2019) find

that since 2011, the largest mortgage lenders have decreased the approval rate of small and

medium-size loans, and increased those of large loans. This essay aims to examine the degree

to which the resulting concentration of mortgage debt can limit the ability of investors to

diversify a portfolio of these assets.

The examination of this limiting effect to portfolio diversification is further complicated

once the institutional details of the U.S. mortgage market are factored in. For example, a

report by the Urban Institute (Dec. 2019) shows that since being placed under governmen-

tal conservatorship in 2008, the government sponsored enterprises (GSEs) have guaranteed

roughly 50% of all new mortgage originations. Combined with other governmental programs

such as Federal Housing Administration (FHA) and Veteran Affairs (VA) mortgages, roughly

60–80% of new mortgages have their risk borne by taxpayers. This partitioning of the mort-

gage market with geographically disperse programs, leaves the remaining private mortgage

market to be quite heavily concentrated, as will be demonstrated in Chapter 3.

Since the private-label MBS market dried up in 2008, most private market loans have been

held as portfolio loans on bank balance sheets. In recent years (2018–2019), this private-

label MBS market has seen a small recovery (roughly 2% of 2019 Q1–Q3 originations as

per the Urban Institute report); however, this is still a small share of the private mortgage

market as portfolio loans have accounting for at least a 30% share since 2014. Since most

of the exposure to this highly concentrated private mortgage market is held by systemically

important financial institutions, understanding the differences between the geographically

disperse portfolios of the GSE securities and highly concentrated portfolios of non-conforming

loans can be an important factor when measuring portfolio risk.

Coinciding with the resurfacing of the private-label MBS market in recent years, the Trump

administration, along with the FHFA, has expressed interest in returning the GSEs back

to the private market (Ackerman and Davidson, 2019b). This transition, which has begun

with the Treasury Department and FHFA agreeing in late 2019 to allow the companies to
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begin retaining more earnings in preparation for the move (Ackerman and Davidson, 2019a),

can have a substantial impact on the breakdown between the public and private mortgage

markets. Based on the numbers from the Urban Institute report, this move would more than

double the size of the private mortgage market.

If the GSEs are considered as a part of the private mortgage market during the pre-

crisis period,1 then the Urban Institute report shows more than 95% of first-lien mortgages

originating into the private market at the peak in 2005–2006. Following the explicit guarantee

of the GSEs and collapse of the private-label securitization market, this proportion fell to

just 16% in 2008. The years following the crisis (2008–2013) saw roughly a 20% / 80% split

between the private and public market shares. In 2014, the share of portfolio loans roughly

doubled resulting in approximately a 30% / 70% breakdown for the 2014–2018 period. The

most recent percentages for 2019 Q1–Q3 show another shift towards the private market with

the respective shares at 39% and 61%. With these numbers, a reclassification of the GSEs

to the private market would shock these percentages to 81% and 19%, respectively for the

private and public markets.

Regardless of the breakdown of the private/public mortgage markets, a critical component

of any analysis of risk in a mortgage portfolio is the prediction of default risk. The modeling

of mortgage default has been studied across a rich literature; however, the limitations and

reliability can often result in challenges to drawing conclusions. The final essay in Chap-

ter 4 aims to address two potential omissions in mortgage default models and proposes an

econometric method to attempt to impute these unobserved factors and correct the potential

biases.

1 Although Fannie Mae and Freddie Mac did not have an explicit guarantee that the U.S.
government would bail them out in the event of financial difficulties, the GSEs did benefit from a
direct line of credit to the U.S. Treasury. This access to low-cost debt and the general perception that
the U.S. government would not allow these entities to fail are effectively known as an “implicit”
guarantee. This guarantee became explicit in September 2008 when the GSEs were placed into
conservatorship.
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The first of these potential omissions is unobserved dynamics in borrower or loan char-

acteristics. For example, if a borrower reports their income or credit score on a mortgage

application, the use of this origination value in a dynamic default model implicitly assumes

that the value remains constant over time. In other words, without addressing the omitted

dynamics, one make the assumption that the borrower’s credit score or income does not

change over time. Left unaddressed, this can bias the estimated effect of other observed dy-

namic variables if they are correlated with the omitted variable. For example, if a borrower’s

income is correlated with the property value, then using the property value (either explic-

itly, or implicitly through the loan-to-value, LTV, ratio) will capture some of the explanatory

power of the income dynamics.

A second potential omission for many mortgage default models is the unobserved hetero-

geneity across borrowers. Although some differences between borrowers can be controlled for

explicitly in a predictive model, (ex. credit scores, income, etc.), unobservable factors such as

borrowers attitudes towards default can be difficult to capture statistically. This unobserved

heterogeneity across borrowers, both static and dynamic, is imputed in a penalized ridge

regression model, which is tuned using 10-fold cross-validation to maximize out of sample

predictive performance.

In their totality, these three essays combine to make a contribution to the modeling of

risk and geographical diversification for mortgage portfolios. The first essays quantifies the

diversification potential given the underlying multivariate distribution of housing returns.

The second essay examines the ability for investors or stakeholders to achieve this potential

diversification by modeling the geographical concentration of mortgage debt and its role

in limiting the ability to diversify risk. The final essay focuses on the mortgage default

decision and provides an econometric methodology for imputing unobserved heterogeneity

and dynamics for default models.
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Chapter 2. Mortgage Return Dependence

Since real estate constitutes one of the largest asset classes, loans secured by real estate

(mortgages) also represent one of the largest fixed income asset classes. Usually such mort-

gages are held in a pool or a portfolio. Diversification provides at least one reason to hold

a portfolio of mortgages and this raises the question of how much diversification can one

obtain? Certainly, the poor performance of many of such mortgage portfolios during the

Great Recession raises questions about the extent of possible diversification.

In this manuscript, we aim to answer this question at the finest scale possible. At the

individual level, a loan effectively represents a censored random variable where performing

loans yield a constant return and non-performing loans yield a variable return. The diver-

sification potential across a portfolio or pool of mortgage loans would therefore depend on

the correlations among censored random variables. These correlations between loan returns

may be different than the correlations between the underlying properties or borrowers.

The nature of correlation between censored and truncated variables has a long history

in psychology (Birnbaum, Paulson, and Andrews, 1950; Aitkin, 1964; Muthén, 1990). For

example, Aitken motivates the issue by the situation where educational institutions screen

individuals on aptitude tests, but only measure achievement on admitted students. The

correlation between aptitude and achievement for the population (true latent correlation) is

higher than for the selected group.

Although it might seem difficult to see how this would work in a loan context, we can

consider the extremes to obtain intuition. To start, if all loans had no risk and their payoffs

were constant, no diversification would be possible since the correlation between constants is

zero. At the other extreme, if all loans defaulted and the lenders foreclosed, the correlation

between loan returns would just equal the correlation among the future property returns. In

other words, a set of mortgage loans where all have been foreclosed becomes a portfolio of

properties.
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In the case of mortgage loans, the latent correlation is equal to that of the underlying

real estate values. Properties show high levels of spatial (Pace, 1997) and, more broadly,

cross-sectional dependence (Pesaran, 2007). In this paper, we make a distinction between

spatial and cross-sectional dependence that partitions correlations into diverisifiable and

systematic portions. This is analogous to the distinction between weak and strong cross-

sectional dependence in Chudik, Pesaran, and Tosetti (2011). In Section 2.2, we find roughly a

1:2 ratio of spatial to broader cross-sectional dependence in empirical HPI return correlations.

Regional science, urban economics, and spatial econometrics have documented the many

ways that variables at one location can affect variables in other locations (Kuethe et al.,

2008; LeSage and Pace, 2009; Hoogstra et al., 2017). Considering more intermediate cases

for defaults, the extremes suggest that as the risk of loans increase (default rates rise) the

correlations between the returns on loans will rise and the diversification potential will fall.

The goal of this chapter is to (1) document aspects of the spatial and cross-sectional depen-

dence across borrowers and properties; (2) show how correlations among loan returns vary

with default rate given the underlying correlations among properties; and (3) illustrate how

much of a difference this makes for the diversification across mortgage loans in a portfolio.

The rest of this chapter is structured as follows: Section 2.1 describes the data used to

document substantial dependence across housing returns in Section 2.2. This is followed with

a theoretical model in Section 2.3, which relates the latent dependence with that of mortgage

returns. Section 2.4 examines the implications for portfolio risk, and Section 2.5 combines

these results into a simulation exercise to demonstrate the effect across portfolios of various

sizes. Section 2.6 concludes the chapter.

2.1. Data

As follows from portfolio theory, larger correlations across asset returns limit the diversi-

fication potential for portfolios of these assets. This section will provide a brief discussion

of the empirical data that will be used to document substantial dependence across housing

returns. Since individual house values are only observed in the event of a sale, we make use
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of annual house price indices (HPIs) at the five-digit ZIP code level from the FHFA. These

indices begin as early as 1975 and are available through 2017. For ease of presentation, we

restrict the analyses to the 20 CS-MSAs.2 We then use the 2010 ZIP Code Tabulation Area

to Metropolitan and Micropolitan Statistical Areas Relationship File from the U.S. Census

to identify the five-digit ZIP codes within each MSA.

Table 2.1 presents some statistics regarding the five-digit ZIP codes and populations within

these MSAs. For our factor models in Section 2.2.1, we use national time series of the

unemployment rate from the Bureau of Labor Statistics and the average 30-year fixed-rate

mortgage from Freddie Mac. For our spatial analysis, the distances between ZIP codes are

computed using the Haversine formula (Sinnott, 1984)3 on the geographic coordinates for

each combination, which are obtained from the 2017 U.S. Census Gazetteer Files.

2.2. Empirical Dependence

As is demonstrated theoretically in Section 2.3, mortgage loan returns are more highly cor-

related during periods with larger default rates. This correlation can be attributed to the

larger portion of defaulting loans revealing the underlying housing correlations. In this sec-

tion, we document substantial correlations across house price returns at the five-digit ZIP

code level. Tools from spatial statistics are then employed to show how these returns covary

as a function of the separation distance.

Although the market values for individual houses are only observed in the event of a sale,

Bailey, Muth, and Nourse (1963) introduced a repeat-sales framework to construct price

indices for housing markets. This methodology was further developed by Case and Shiller

(1987, 1989) and later applied to various geography levels down to the census tract level by

Bogin, Doerner, and Larson (2018) and made available by the FHFA. We use log returns of

their annual HPIs at the five-digit ZIP code level.

2 The 20 CS-MSAs are listed in full in Table A.1 of Appendix A.

3 More specifically, the MATLAB function, lldistkm.m, by M. Sohrabinia available online at
https://www.mathworks.com/matlabcentral/fileexchange/38812-latlon-distance.

8



Table 2.1. Summary Statistics for the 20 CS-MSAs

MSA 2010 HHs ZIPs 100HH+ HPIs >3T

ATL 2,165,495 227 208 196 195
BOS 1,883,206 286 277 257 257
CHA 737,775 90 81 71 71
CHI 3,797,247 414 386 362 361
CLE 955,756 118 108 101 101
DAL 2,502,075 283 270 230 230
DEN 1,078,837 147 131 110 110
DET 1,886,537 232 221 216 206
LV 840,343 73 69 54 54
LA 4,493,983 385 366 347 345

MIA 2,464,417 186 183 173 171
MIN 1,354,973 227 212 207 206
NY 7,527,752 919 863 734 732

PHX 1,798,501 164 158 140 139
POR 925,076 131 124 120 120
SD 1,164,786 108 100 87 86
SF 1,741,999 182 172 140 138

SEA 1,463,295 171 159 141 141
TPA 1,353,158 136 133 127 127
DC 2,213,752 352 300 281 280

ALL 42,348,963 4,831 4,521 4,094 4,070

USA 123,365,608 25,659 23,011 16,540 N/A

The 2010 HHs is the total number of households per the 2010 U.S. Census. ZIPs is the total number
of five-digit ZIP codes. 100HH+ counts the ZIPs with more than 100 households. HPIs counts the
ZIP codes that match to a HPI in the FHFA data. Finally, >3T removes a minimal number of ZIP
codes to ensure at least 4 overlapping observations for every combination. Note: ZIP code 92672
contains 15,632 households in LA and 76 households in SD, so it is assigned to the LA MSA.

Since ZIP code combinations within MSAs are included in our dataset, these are likely to

be highly correlated and may account for the larger mean (0.52) when compared to MSA-

level mean of 0.29 in Cotter, Gabriel, and Roll (2014). To provide some feel for typical values

of house price return correlations across various geographies, Table 2.2 presents some average

correlations within and across MSAs. Table 2.3 presents selected correlations for MSAs,4 and

ZIP codes both within- and across the respective MSAs.

4 Table B.1 in Appendix B expands Panel A of Table 2.3 to include all 20 CS-MSAs.
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Table 2.2. Average Housing Return Correlations

MSA Within-MSA Across-MSA Difference

ATL 0.6834 0.5157 0.1677
BOS 0.8008 0.4928 0.3080
CHA 0.5885 0.4080 0.1806
CHI 0.6920 0.5325 0.1595
CLE 0.5339 0.4025 0.1314
DAL 0.5490 0.2968 0.2522
DEN 0.6989 0.3605 0.3384
DET 0.7536 0.4756 0.2779
LV 0.9088 0.6303 0.2784
LA 0.8267 0.5308 0.2960

MIA 0.7953 0.5695 0.2258
MIN 0.7709 0.5939 0.1771
NY 0.7441 0.4941 0.2500

PHX 0.8630 0.5824 0.2806
POR 0.8113 0.4553 0.3560
SD 0.8102 0.5641 0.2461
SF 0.7789 0.5461 0.2327

SEA 0.8174 0.5085 0.3089
TPA 0.8299 0.6142 0.2157
DC 0.7700 0.5603 0.2096

ALL 0.7469 0.5062 0.2407

N 628,508 7,651,907 8,280,415

Average pairwise housing return correlations at the ZIP code level partitioned by combinations
within- and across-MSAs. Averages are presented for each CS-MSA and the full sample along with
the total number of combinations in each partition.

2.2.1. Weak vs. Strong Cross-Sectional Dependence

The high level of correlation among housing returns for cities separated by thousands of

miles suggests that more than just spatial dependence is at work. Chudik, Pesaran, and

Tosetti (2011) distinguish between weak (spatial) and strong (macro) cross-sectional depen-

dence in the context of panel models. These definitions relate to the asymptotic behavior

of the largest eigenvalue of the covariance matrix as the cross-sectional dimension (N) in-

creases. If the largest eigenvalue converges to a constant value as N tends to infinity, this

suggests the absence of any strong cross-sectional dependence and that only weak depen-
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Table 2.3. Selected Housing Return Correlations

Panel A: Average House Price Correlations Across MSAs

MSA: BOS DAL LA MIN NY SD SF

BOS 0.80
DAL 0.32 0.55
LA 0.47 0.20 0.83

MIN 0.63 0.42 0.55 0.77
NY 0.69 0.22 0.55 0.59 0.74
SD 0.55 0.24 0.78 0.63 0.55 0.81
SF 0.52 0.29 0.73 0.60 0.51 0.74 0.78

Panel B: Selected ZIPs Across MSAs

ZIP: 02176 76148 90230 55423 07066 92104 94523

02176 1.00
76148 0.24 1.00
90230 0.38 0.04 1.00
55423 0.37 0.35 0.59 1.00
07066 0.73 0.06 0.43 0.24 1.00
92104 0.48 0.08 0.36 0.54 -0.16 1.00
94523 0.45 0.21 0.79 0.66 0.48 0.40 1.00

Panel C: Selected ZIPs Within NY MSA

ZIP: 10467 11209 11214 11226 11229 11235 11385

10467 1.00
11209 0.48 1.00
11214 0.53 0.83 1.00
11226 0.42 0.62 0.68 1.00
11229 0.63 0.87 0.91 0.64 1.00
11235 0.59 0.86 0.88 0.71 0.90 1.00
11385 0.62 0.84 0.81 0.62 0.89 0.85 1.00

Panel A presents the average pairwise correlations across seven MSA combinations. Panel B presents
the correlations for select ZIP codes in each of the seven MSAs, and Panel C presents correlations
across the seven most populous ZIP codes in the NY MSA. Each of the ZIP codes in Panel B was
listed as one of America’s 50 Highest Demand ZIP Codes Of 2016 by Forbes.

11



dence remains. In the context of portfolios of mortgages, this would suggest some limitations

to the diversification benefits of increasing the N , or the number of loans in the portfolio.

The two-stage approach of Bailey, Holly, and Pesaran (2016) for spatio-temporal analysis

incorporates a test for weak cross-sectional dependence using the CD statistic developed in

Pesaran (2004, 2015). Although the standard CD statistic is defined for balanced panels with

fixed N and T , Pesaran (2004) provides an extension for unbalanced panels, which is the

variant that we apply to our housing return panel. This statistic, presented in (2), involves a

weighted average of the pairwise correlations (ρ̂ij), where the weights,
√
Tij, are the square

root of the number of periods with overlapping observations for units i and j.

CD =

√
2

N(N − 1)

(
N−1∑
i=1

N∑
j=i+1

√
Tij ρ̂ij

)
(2)

Rejection of the null hypothesis in this first step suggests the presence of (semi-)strong

dependence, which can be removed by using residuals from factor models. Bailey, Holly,

and Pesaran (2016) suggest two approaches for implementing these factor models. The first

regresses housing return time series for each ZIP code on the cross-sectional averages at

the national or regional levels. Alternatively, a principal components approach can be taken

using the panel of housing returns. Sufficiently reducing the test statistic to the point where

the null is no longer rejected suggests that only weak dependence remains. At this point,

modeling of the spatial structure commences with the defactored observations.

In addition to the CD statistic, Bailey, Kapetanios, and Pesaran (2016) develop a measure

of the degree (or strength) of cross-sectional dependence known as the exponent of cross-

sectional dependence. The α measure estimates the rate of increase in the largest eigenvalue

of the covariance matrix as N →∞. Their bias-corrected estimator (3) consistently estimates

this exponent for α > 1/2. The interpretation of this measure is that larger α relates with

higher degrees of cross-sectional dependence.

α̊ = 1 +
1

2

ln σ̂2
x̄

lnN
− ln µ̂2

v

2 lnN
− ĉN

2[N lnN ]σ̂2
x̄

(3)
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The estimation of α in (3) requires the use of the consistent estimators σ̂2
x̄, µ̂

2
v, and ĉN .

The first estimator (4) is simply a measure of the variation in the cross-sectional averages.

σ̂2
x̄ =

1

T

T∑
t=1

(x̄t − x̄)2 (4)

The estimator in (5) uses x̄t(cp), which are the cross-sectional averages of only the ZIP

codes with a significant factor loading in the time series regression on the cross-sectional

averages. Following from Bailey, Kapetanios, and Pesaran (2016), we use the critical values

suggested in Holm (1979).

µ̂2
v =

√√√√ 1

T

T∑
t=1

[x̄t(cp)− x̄(cp)]
2 (5)

The final estimator (6) makes use of σ̂2
i = 1

T

∑T
t=1 û

2
it, where ûit = xit − δ̂ix̄t, which is the

observation less the variation explained by the cross-sectional average.

ĉN =
1

N

N∑
i=1

σ̂2
i (6)

In Column (1) of Table 2.4, we calculate these statistics for the raw housing returns as

well as the average pairwise correlation across the panel. Column (2) presents the similar

results after standardizing each time series. As evident from the large CD statistics, these

panels exhibit substantial, strong cross-sectional dependence.

To reduce this strong dependence, we estimate factor models to remove variation from

common, macroeconomic factors. Our first factor, which follows from Bailey, Holly, and

Pesaran (2016), is the time series of cross-sectional averages from the housing return panel.

After regressing each housing return time series on an intercept and the cross-sectional

average, we test the residuals for cross-sectional dependence and produce Column (3) of

Table 2.4. After defactoring with the cross-sectional averages, this greatly reduces the CD

statistic down to 77.95.
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Table 2.4. Measures of Cross-Sectional Dependence in Housing Return Factor Models

Panel A: Measures of Cross-Sectional Dependence

(1) (2) (3) (4) (5) (6) (7)

Average Correlation 0.5245 0.5245 0.0019 -0.0003 -0.0007 -0.0004 -0.0008
CD Statistic 16096.7050 16096.7050 77.9481 11.8758 1.6385 10.6535 -0.1431
Exponent of CSD 0.9893 0.9910 0.6743 0.6588 0.6517 0.6491 0.6710
Controls:
Cross-Sectional Average N N Y Y Y Y Y
Current Unemployment N N N Y N Y N
Lagged Unemployment N N N N Y N Y
Current Interest Rates N N N Y N N Y
Lagged Interest Rates N N N N Y Y N

Panel B: Spherical Semivariogram Parameters

Range (km) 2,833 893 829 772 778 769 781
Nugget 0.0020 0.1938 0.3946 0.4459 0.4421 0.4472 0.4400
Sill 0.0043 0.4903 0.9794 0.9760 0.9787 0.9732 0.9812

Panel A presents various measures of cross-sectional dependence across a variety of factor model specifications. These measures
include the average pairwise correlation, CD test statistic calculated as in (2), and the exponent of cross-sectional dependence
calculated as in (3). Panel B includes the parameters from a fitted spherical semivariogram model for each panel of housing returns.
The results are presented for raw housing returns (1), standardized returns (2), and residuals from various factor regressions on
the cross-sectional averages, unemployment rates, and interest rates.
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In effort to remove other potential common factors, we include some additional macroe-

conomic factors that are often related to housing, such as unemployment rates and interest

rates. Columns (4)–(7) of Table 2.4 present the cross-sectional dependence statistics for the

residuals from these three-factor models using combinations of current and lagged unem-

ployment and interest rates.

The CD statistic is sufficiently lowered to insignificance for two of the specifications: the

three-factor models with lagged unemployment rates and either current (CD = −0.14) or

lagged (CD = 1.64) interest rates. Since the exponent of cross-sectional dependence is lower

with lagged interest rates (α̊ = 0.6517 < 0.6710), we select this specification to defactor the

housing returns in the subsequent spatial analysis.

2.2.2. Spatial Dependence

In Section 2.2.1, the strong cross-sectional dependence was modeled using three factors: a

market factor and lagged unemployment and interest rates. This section focuses on modeling

the weak cross-sectional dependence by applying tools from spatial statistics on the factor

model residuals, specifically from Column (5) in Table 2.4. Some common tools to describe

the spatial structure of a process are the variogram, covariogram, and correlogram. A (semi-)

variogram fits (half) the average squared difference between observations as a function of

a measure of the distance between the points. A covariogram, and its normalized form, a

correlogram, fit the covariance and correlation as a function of the distance measure.

Prior literature has considered both separation over time, yielding an autocorrelogram

(Gourieroux and Jasiak, 2002), and space (Dubin, 1998), which yields a spatial cross-correlogram.

Dubin, Pace, and Thibodeau (1999) discuss correlograms and semivariograms within the con-

text of real estate values and fit empirical housing data to various functional forms including

the spherical model (7), which we use to fit an empirical semivariogram of housing returns.5

5 For a more detailed summary of variogram concepts and valid variogram models, see Anselin
(2016) and Smith (2020).
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The parameters a, s, and g refer to the nugget, sill, and range of the model, which respec-

tively refer to the function value at the origin, the long-range semivariance, and distance at

which the semivariance reaches the sill.

γ(k; a, s, g) =



0 k = 0

a+ (s− a)

(
3k

2g
− k3

2g3

)
0 < k ≤ g

s k > g

(7)

For a cross-section of housing returns, an empirical semivariogram partitions the obser-

vations into K bins based on a distance metric (km between ZIP codes) and computes (8),

which is equal to half of the average squared difference between housing returns across all

combinations within each bin, k.

γ̂(k) =
1

2|Nk|
∑
i,j∈k

(ri − rj)2 (8)

To take full advantage of the panel of data, the variogram measure is expanded to average

across the squared differences over time in addition to being averaged at the cross-sectional

level. Equation (9) calculates this where T (i, j) is the number of periods with observed

housing returns in both locations i and j, and T̄k is a vector of the mean lengths of the time

series in each bin k. This transforms the roughly 8 million combinations per year into the

empirical semivariogram in Figure 2.1 where K = 100 equal sized bins.

γ̂(k) =
1

2 · (Nk · T̄k)
∑
i,j∈k

∑
t∈T (i,j)

(ri,t − rj,t)2 (9)

Panel B of Table 2.4 presents the fitted semivariogram parameters from the raw housing

return panel, standardized returns, and defactored housing returns from the various factor

models described in Section 2.2.1. Figure 2.1 plots the empirical semivariogram and fitted

spherical model for the defactored housing returns from the three-factor model (Column (5)

in Table 2.4).
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Figure 2.1. Empirical Semivariogram for Housing Returns

Note: Empirical semivariogram with 100 bins and spherical fitted curve for an unbalanced panel of
4,070 defactored housing return time series. Fitted model parameters, a, s, and k in (7), respectively
refer to a nugget of 0.44, a sill of 0.98, and range of 778 km.
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An intuitive extension of the variogram concept is its theoretical relation with the analo-

gous concepts of covariograms and correlograms. Equation (4.1.7) of ? is reproduced in (10),

which relates the covariogram measure, C(k), to the process variance, σ2, and the variogram

measure, γ(k). Since we use standardized residuals with unit variance, the spherical semivar-

iogram can be transformed to its implied covariogram, which is equivalent to the correlogram

following from the unit variance.

C(k) = σ2 − γ(k) (10)

The semivariogram in Figure 2.1 suggests that spatial dependence alone might account for

nearly a 0.5 correlation for properties located close to each other. At a distance of 200 km

(roughly Los Angeles to San Diego), this spatial correlation is down to 0.35. For a distance

of 450 km (roughly Los Angeles to Las Vegas), the correlation is down to 0.14, and by the

range of 778 km (just beyond the distance between Los Angeles and San Francisco), the

correlation drops to 0 and the spatial dependence fades.

However, these tools from spatial statistics are only modeling the weak component of

the housing return dependence. The strong dependence that was removed in the factor

regressions must be replaced in order to account for dependence imposed by macroeconomic

factors. After using the spherical variogram model to estimate the spatial correlation given a

specific separation distance, we can replace the strong dependence that was removed in the

factor regressions. This provides a framework for simulating asset returns with both strong

and weak cross-sectional dependence, which is the focus of next section.

2.3. Theory

In this section, we model the relation between the risk of a loan portfolio with the dependence

in the underlying collateral. When considering the return of an individual mortgage and the

underlying property value, appreciation (or depreciation) in the latter is censored so long as

the borrower remains current on the loan. In other words, performing loans yield constant

returns, which do not covary with other loan returns. Alternatively, if the borrower defaults
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and the lender forecloses, the loan return is equal to the return on the value of the property

securing the loan. Thus, intermediate cases suggest that the risk of a portfolio of mortgages

involves correlations across censored random variables.

The statistical foundations for our derivation of the correlation between censored variables

comes from the work on the closely related topic of truncation. Early work on truncation (see

Birnbaum (1950) and Aitkin (1964)) has roots in psychology and the effect of truncation in

educational admissions. Our derivation of the correlation across censored variables is adapted

from the example in Chapter 46 of Kotz, Balakrishnan, and Johnson (2000), which focuses

of the bivariate truncated normal distribution.6

To begin, consider a one-period loan with principal, L, and coupon rate, c. The price of the

underlying collateral equals 1 at origination and has a value after one period of V = 1 + r

where r represents the return on the asset. At maturity of the loan, the borrower either

defaults (d = 1) or repays the loan (d = 0). If the borrower repays L(1 + c), this yields a

constant return of c. If the borrower defaults, the lender receives the value of the collateral,

which yields a variable return of V/L− 1 or L−1(1 + r)− 1.

If V < L(1 − κ) where κ represents potentially heterogeneous frictions to default,7 then

the borrower defaults. The equivalent condition in (11) defines this dichotomy in terms of

the housing return where h = L(1 − κ) − 1. This default threshold combines both frictions

and leverage. We assume it is constant across borrowers and will tune it to vary the default

rate at the portfolio level as the paper progresses.

d =


1, if r < h

0, otherwise

(11)

At t = 0, the lender has a portfolio of two loans: one risky loan that defaults as in (11), and

a loan which has previously defaulted at some t < 0. The return on the risky loan is given

6 A more detailed derivation relating censoring with truncation is provided in Appendix C.

7 A parameter of κ = 0 would represent the case of ruthless default.
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in (12), which is censored from above by performance of the loan. If the borrower defaults,

the loan return is equal to a linear transformation of the collateral return.

R1 =


r∗1 if r1 < h

c otherwise

(12)

r∗1 = L−1(1 + r1)− 1 (13)

For the defaulted loan, the initial loss is a sunk cost and future returns are equal to the

returns on the underlying collateral. Thus,

R2 = r2 (14)

For simplicity, we assume that the housing returns follow a bivariate normal distribution

with a correlation of ρ. Since correlations are invariant to the addition of constants and

factors of proportionality, we let r∗1 and r2 each have zero mean and unit variance. Finally,

we assume a zero coupon rate for the loans to further simplify the solution. This yields a

correlation equal to that of a censored random variable (r̃1 = d · r∗1) and the uncensored

return of the defaulted loan, r2.

corr(R1, R2) = corr(r̃1, r2) (15)

The correlation between the risky loan and defaulted loan is defined by (16). Unlike trun-

cation, censoring of one variable does not affect the distribution of the other; thus, the

normalized return of the previously defaulted loan results in the latter terms of both the

numerator and denominator dropping out, yielding (17).

corr(r̃1, r2) =
E[r̃1r2]− E[r̃1]E[r2]√

var(r̃1)
√

var(r2)
(16)

=
E[r̃1r2]√
var(r̃1)

(17)

Appendix C derives the relevant univariate and bivariate moments, including the corre-

lation, for this case of right censoring on the standard normal distribution. This yields the
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moments for r̃1 given by (18)–(20), where φ(·) and Φ(·) refer to the normal pdf and cdf,

respectively.

E[r̃1] = −φ(h) (18)

E[r̃2
1] = Φ(h)− hφ(h) (19)

var(r̃1) = Φ(h)− hφ(h)− φ(h)2 (20)

The joint expectation is solved using the law of total expectation.

E[r̃1r2] = Er̃1 [E[r̃1r2|r̃1]] (21)

Since r̃1 is a constant within the inner expectation, it factors out yielding (22).

E[r̃1r2] = Er̃1 [r̃1 · E[r2|r̃1]] (22)

The conditional expectation of r2 is identical to that of the truncated distribution in (143)

of Table C.1 in Appendix C, which yields (23).

E[r̃1r2] = Er̃1
[
ρ · r̃2

1

]
(23)

After factoring out ρ and substituting in (19), we obtain (24).

E[r̃1r2] = ρ · (Φ(h)− hφ(h)) (24)

Finally, we substitute (24) and (20) into (17) and then (15) and obtain the closed form

solution for the correlation, (25).

ρ̃ = corr(R1, R2) = ρ · Φ(h)− hφ(h)√
Φ(h)− hφ(h)− φ(h)2

(25)

From this solution, the underlying latent correlation is reduced by a factor equal to a

nonlinear function of the default cutoff parameter.

ρ̃

ρ
=

Φ(h)− hφ(h)√
Φ(h)− hφ(h)− φ(h)2

= λ(h) ≤ 1 (26)

21



For some numerical intuition, if we evaluate (26) at h = 0, we have Φ(0) = 0.5 and φ(0) u

0.4. Using these values, the loan correlation is approximately 6/7 of the latent correlation.

This suggests that the first 50% of defaults reveal over 85% of the underlying housing return

correlation. Figure 2.2 depicts this nonlinearity for three cases of latent correlations, ρ =

0.1, 0.5, 0.9. In regards to the sensitivity to the probability of default, the figure shows that

the loan return correlations are at their most sensitive for the lowest default rates.

In the spirit of providing a useful approximation, such as the popular Rule of 72 for esti-

mating the duration or interest rate to double one’s investment, we provide a simplification

of this closed form solution for the loan return correlation, we apply the natural logarithm

to both sides of (26), which yields (27). The linear approximation of this relation, (28), is

estimated using OLS on 1,000 equal spaced increments over the range of h ∈ [−3, 0], which

corresponds to a domain of Φ(h) ∈ (0, 0.5) or probability of default ranging from 0 to 50%.

This transforms the solution into a exponential function of the default rate, (29), and fits

with an R2 of 0.9914 compared to the exact solution from (26).

ln

(
ρ̃

ρ

)
= ln(Φ(h)− hφ(h))− 0.5 · ln(Φ(h)− hφ(h)− φ(h)2) (27)

u 0.2070 + 0.3336 · ln(Φ(h)) (28)

=⇒ ρ̃

ρ
u exp(0.2070)︸ ︷︷ ︸

=1.23

·Φ(h)0.3336 (29)

To further simplify this approximation, the coefficient on ln(Φ(h)) is rounded to 1/3 to

obtain the cube-root form in (30). This adjustment maintains the high correlation (0.9928)

with the true solution in (26) and improves the simplicity of its functional form.

ρ̃

ρ
u 1.23 · 3

√
Φ(h) (30)

Figure 2.3 depicts this approximation in reference to the true scaling factor over the

domain of Φ(h) ∈ (0, 0.3). As would be suggested by the high R2 from the estimation,

this approximation closely fits to the true solution over the most relevant domain (< 30%

default).
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Figure 2.2. Loan Return Correlations and the Default Rate

Note: Loan return correlations across various default rates and underlying asset correlations. Cor-
relations are for a two-asset portfolio with one loan defaulting with 100% certainty and the other
with a likelihood of being censored equal to 1 minus the probability of default. Each curve reflects
a specific underlying housing return correlation.
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Figure 2.3. Cube-Root Approximation for Loan Return Correlations

Note: Plot depicting the cube-root approximation (dashed line) from (30) and the true correlation
scaling factor (solid line) from (26) over the interval of Φ(h) ∈ (0, 0.3).
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2.4. Portfolio Implications

To demonstrate the implications for holding a portfolio of loans with returns that are cor-

related collateral returns, we first examine the expected return and risk of the two-loan

portfolio described previously in Section 2.3. We let the weight of the risky loan equal w,

and thus the defaulted loan has a weight of 1− w.

w =

[
w 1− w

]T
(31)

Using (12), (14), and (18), the expected returns are given by (32).

r =

[
c− φ(h) 0

]T
(32)

From (20) and (24), we construct the covariance matrix, (33).

Σ =

Φ(h)− hφ(h)− φ(h)2 ρ · (Φ(h)− hφ(h))

ρ · (Φ(h)− hφ(h)) 1

 (33)

Using the traditional formulas for portfolio expected return and risk, (34) and (36), we

obtain the closed form solutions in (35) and (37).

E[rp] = wT · r (34)

= w(c− φ(h)) (35)

σ2
p = wT · Σ ·w (36)

= w2(Φ(h)− hφ(h)− φ(h)2)

+ 2ρw(1− w)(Φ(h)− hφ(h)) + (1− w)2 (37)

From this simple two-loan portfolio, we see that an economic shock increasing the under-

lying default parameter, h, will influence a portfolio in multiple ways. First, the expected

return falls for each asset. Additionally, the variance of each asset increases, and this leads to

an increased correlation across the loan returns. A Value at Risk (VaR) measure consolidates

these impacts into a single risk measure, (38). This effectively measures the portfolio loss

where losses beyond this value occur with probability α.
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VaR(h;α) = z(1− α) ·
√
σ2
p − E[rp] (38)

Assuming the distribution of portfolio returns is normally distributed, then z(1 − α) =

Φ−1(1−α), which suggests that the 1% worst outcomes produce returns roughly 2.33 standard

deviations less than the expected portfolio return. From this measure, we can show how a

macroeconomic shock increasing default rates will percolate through to risk of a portfolio in a

single measure that combines the effects on the expected returns, variances, and correlations.

To better demonstrate these different effects, we compute the derivative of this VaR mea-

sure with respect to the theoretical default rate, Φ(h). The first step, (39), uses the chain

rule to first take the derivative with respect to h before transforming to units of the default

rate, Φ.

dVaR

dΦ
=
dVaR

dh
· dh
dΦ

(39)

After substituting (38) into (39), the result, (40), decomposes the derivative into three

important pieces: dE[rp]/dh, dσ2
p/dh, and dh/dΦ.

dVaR

dΦ
=

(
z(1− α) · 1

2

(
σ2
p

)−1/2 dσ
2
p

dh
− dE[rp]

dh

)
· dh
dΦ

(40)

The first derivative, dσ2
p/dh, captures the effect of a shock to the default rate on the

variance of the portfolio. From the variance in (37), this includes the change in the variance

of the risky asset (first term) and the effect on the covariance (second term). Over the most

relevant domain (< 30% default), as the default rate increases, the variance of the risky asset

and the covariance both increase, which combine to increase the variance across portfolio

returns.

The second derivative, dE[rp]/dh, demonstrates the effect of the shock on the expected

return of the portfolio, and the final term simply converts the derivative units to the theo-

retical default rate instead of the underlying default cutoff parameter. Intuitively, as default

rates rise, the expected portfolio return decreases in the relevant domain, and since Φ(h)
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is the normal cdf, the last derivative is equal to φ(h)−1, which is strictly positive over the

domain of (0,1).

If we consider an economic shock that increases the default rate, then the expected return

for each asset decreases, the variance of the each asset increases, and the correlation across

the returns in the portfolio increases. The VaR framework demonstrates how these effects

compound on each other to increase the riskiness of a portfolio of mortgages when default

rates rise (Figure 2.4).

2.5. Simulations

As demonstrated in Section 2.3, the latent correlations across housing returns flow through

to the loans secured by those properties as a function of the default rate. The empirical

housing return correlations estimated in Section 2.2 show that these underlying correlations

are certainly non-trivial and likely to play a major role in the risk of a mortgage portfolio in

periods with high default rates. In this section, we build off of these foundations and conduct

a simulation exercise, which extends the two-loan example of Section 2.3 to portfolios of

various sizes and uses parameters based off of empirical estimates in Section 2.2.

We begin by simulating 100,000 independent draws for 4,070 random variables from a

standard normal distribution, each corresponding with a specific ZIP code. To mimic the

defactored housing returns, a positive-definite correlation matrix is generated by applying

the spherical semivariogram model to the distance matrix, D, and estimating the theoretical,

positive-definite correlation matrix.

After imposing these correlations on the simulated variables, we simulate 100,000 draws

for each of the three factors from the factor regressions and impose the empirical correlations

across the factors. These simulated factors are then multiplied by the respective factor load-

ings for each ZIP code and added to the simulated variables, which are scaled by the model

RMSEs (mean RMSE = 0.69). This procedure effectively adds back the strong cross-sectional

dependence that was removed in the factor regressions.
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Figure 2.4. Portfolio Risk and the Default Rate

Note: Simple example of the relation between the distribution of portfolio returns across various risk
levels and latent correlations. The expected return of the portfolio decreases the same regardless
of the underlying housing correlations; however, the variance increases more with larger latent
correlations and thus amplifies the effect of an economic shock to the default risk on a VaR measure.
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These simulated variables now reflect similar correlations as the empirical housing returns.

However, these represent the normalized housing returns. To match the empirical distribu-

tions, we scale each simulated variable by the respective standard deviation and add the mean

return. This results in simulated variables with similar means, variances, and correlations as

the empirical housing return panel.

With these simulated asset returns, we construct portfolios of various sizes (N = 5, 50, 500)

by randomly sampling from the simulated variables with replacement, which effectively

assumes there is sufficient mortgage debt secured by properties in each ZIP code. As in

Section 2.3, we let the underlying default cutoff vary such that the portfolio default rates

vary from 0–30% default. For the performing loans, we assume a constant 5% coupon rate.

The standard deviation of the equal weighted portfolio returns is then estimated where

w = 1/N · ι, ι is an N -element column vector of ones, and Σ is the N ×N covariance matrix

of the simulated portfolio loan returns.

σp = (wT · Σ ·w)1/2 (41)

Given the simulated default choices for a given cutoff h, the portfolio standard deviation

is computed as in (41). Figure 2.5 presents this measure of portfolio risk across various

default rates and portfolio sizes. Intuitively, as the default rate rises, portfolio risk increases.

Similarly, portfolios with more loans have less risk; however, the marginal benefit is decreasing

in size. The reduction in risk when going from 5 to 50 loans is substantially larger than the

additional reduction from increasing to 500 loans.

If we compare these results with some real mortgage-backed securities, many of these

securities contain more than 1,000 loans with a few even exceeding 10,000 loans. These

findings suggest that these larger MBS deals might only be marginally more diversified than

the smaller deals with only several hundred loans. However, diversification in reality depends

on more dimensions than just geographical space. Variation across loan terms, vintage, and

borrower characteristics are examples of some other dimensions that might provide incentives
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to further grow and diversify a portfolio. Additionally, due to economics of scale and the

presence of fixed costs when constructing a portfolio of mortgages, larger portfolios provide

benefits beyond just diversification.

2.6. Discussion

In this chapter, we investigate the impact of underlying housing return correlations on the

risk of a mortgage portfolio. Individual mortgage returns can be viewed as censored random

variables where defaulting loans reveal the latent housing return correlations. This results in

the distribution of mortgage portfolio returns as a function of both the underlying house price

correlations and the default realizations. At one extreme, the ideal scenario of 0% default

yields a constant return with no risk. At the other extreme, a 100% default rate transforms

the loan portfolio into a portfolio of houses and the return correlations are equal to the

underlying house price return correlations. Thus, low default rates imply high censoring

which masks the latent asset correlations.

The theoretical model developed in Section 2.3 relates the correlation across loan returns to

the underlying house price return correlations and the likelihood of censoring (1−probability

of default). When considering a portfolio of these loans, the interaction between the default

rate, the underlying housing co-movement, and portfolio theory increase the complexity of

modeling the risk in a mortgage portfolio. Since underwriting standards usually strive to keep

default rates low, and do so the vast majority of the time, historical correlations of returns do

not provide a very good idea of the behavior of portfolios under severe economic conditions.

Under poor economic conditions where default rates rise, we how that loan returns fall,

correlations among loan returns increase, and the potential to diversify away risk is reduced.

To contextualize the non-linearity of this relationship, let’s consider the lowest pre-crisis

delinquency rate from Federal Reserve Economic Data (FRED) (1.41% in 2004Q4) to the

peak (11.54% in 2010Q1).8 Using our cube-root approximation in (30) and Figure 2.3, the

8 Although the 30+ day delinquency rates from FRED may be too broad to directly reflect
a hard default as in the model, the relative increase may provide a reasonable comparison across
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Figure 2.5. Simulated Effects of Portfolio Size on Risk

Note: Standard deviation across 100,000 draws of simulated portfolio returns. Simulated returns
are scaled and correlated so as to match the empirical distributions in means, varaiances, and
all pairwise correlations. Each curve plotted represents the standard deviation across randomly
selected portfolios of each size in each simulation.

31



proportion of the underlying housing correlations that is revealed in a mortgage portfolio

would effectively double from 29.7% to 59.9% at the peak.

In the case of real estate loans or mortgages, the large degree of dependence in the under-

lying collateral (house price returns) has both strong (macro) and weak (spatial) aspects.

In Section 2.2, we documented substantial correlations across house price returns at the

five-digit ZIP code level. The empirical correlations suggest that two properties within the

same MSA are roughly 50% more correlated than two properties secured by properties in

different MSAs. The impact of this spatial dependence appears to fade to zero around 778

km or roughly the distance between Los Angeles and San Francisco.

Incorporating the FRED delinquency rates with the empirical housing correlations, the

estimated mortgage return correlation for properties in Los Angeles and San Diego would

increase from 0.23 to 0.46. However, for geographically separate MSAs such as Los Angeles

and New York City, the increase from 0.16 to 0.33 is proportionally similar, but smaller in

magnitude due to the lack of spatial dependence.

Section 2.5 demonstrates the relation between the default rate of a portfolio and the

variance across simulated mortgage returns tuned to the empirical parameters defining the

underlying covariance structure. Intuitively, as the number of loans in the portfolio grows,

the risk is reduced; however, this reduction in risk is substantially larger when going from 5

to 50 loans than it is when going from 50 to 500 loans.

Again, to contextualize with the FRED delinquency rates, the standard deviation in Fig-

ure 2.5 across 5-loan portfolios is quite large even for low default rates, but still increases by

83% from 0.018 at 1.41% default to 0.033 at 11.54%. This sensitivity of portfolio risk to the

default rate increases with portfolio size as the 50-loan portfolios increase by 160% (from

0.010 to 0.026) and the 500-loan portfolios increased by 190% (from 0.009 to 0.025). These

regimes. Potentially offsetting this attenuation is the underestimation of the true theoretical relation
in Figure 2.3. Additionally, the FRED rates only consider loans that are still accruing interest; thus,
previously defaulted loans may still be exposed in a mortgage portfolio and contribute to the asset
co-movement.
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findings suggest a drastic difference in mortgage portfolio return behaviors in good times

and bad.

To conclude, our findings quantify the diversification potential for portfolios of mortgages

where the underlying collateral exhibit substantial cross-sectional dependence. Future po-

tential for extensions of this work may include the examination of the ability to achieve this

potential diversification through the concentration of mortgage debt across space. Further,

one might extend this investigation to asset classes beyond mortgages and real estate by

incorporating an MGARCH approach as in Heaney and Sriananthakumar (2012).
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Chapter 3. Geographical Concentration of Mortgages

In the context of mortgage portfolios, where loans are secured by the underlying real estate

assets, geographical diversification is an attractive approach for risk management. However,

the concentration of mortgage debt in major metropolitan areas can result in limitations to

the amount of diversification that stakeholders can attain. Stakeholders in the mortgage mar-

ket are somewhat more involved than for some other asset classes. For example, according

to the U.S. Department of Housing and Urban Development, the FHA guarantees approxi-

mately 12% of newly originated mortgage debt as of 2018, and the risk of these mortgages

is borne by U.S. taxpayers.

Additionally, another 42% of mortgage debt is guaranteed and securitized by Fannie Mae

and Freddie Mac, which are currently under government conservatorship and classified as

GSEs. As per the Urban Institute (Dec. 2019), these governmental programs, along with

Veteran Affairs (VA) mortgages, combine for more than a 60% share of new originations.

The remaining 40% of private market loans are held as portfolio loans or packaged into

non-agency mortgage-backed securities. Since the 2008 housing crisis when the private secu-

ritization market effectively vanished, the vast majority of the private market loans have been

held on the balance sheets of systemically important financial institutions. Of these bank-

owned mortgages, approximately 50% of the aggregate balance comes from jumbo mortgages,

which have principal amounts greater than the GSE’s conforming loan limits (CLLs) and

are ineligible to be purchased by the GSEs.

The varying regulatory requirements across these governmental programs, such as mini-

mum credit scores or the CLLs, result in differential degrees of geographical concentration

across the various programs and classifications. Since these programs generally capture a

relatively disperse set of mortgages, the remaining private market tends to be quite heavily

concentrated. For example, although the conforming mortgage market (loans with balances

under the CLLs) has only a modest degree of geographical concentration, the residual jumbo

mortgage market exhibits a substantial degree of concentration.
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As these governmental programs continue to play an increased role in mortgage markets,

the implications regarding the risk of these portfolios is an important consideration for

the economy. As noted in a recent article by The Washington Post, these governmental

agencies guarantee nearly $7 trillion in mortgage-related debt, which is 33% more than the

years prior to the 2008 housing crisis (Paletta, 2019). This paper examines the use of rank-

size relations to parameterize the geographical concentration of mortgage markets and the

potential implications of large concentrations for portfolio diversification.

Rank-size relations provide a means to characterize the geographical concentration in

mortgage debt. For example, the Zipf distribution (Zipf, 1949) suggests a linear relationship

between the natural logarithms of city sizes and their respective ranks when sorted from

largest to smallest. The traditional rank-size rule, or Zipf’s Law, is a special case where the

slope of the log-linear relationship is equal to −1. This gives the simple result that the size

of a city multiplied by its rank is constant, or that the second largest city is 1/2 the size of

the largest, the third is 1/3 the size of the largest, and so on.

Power law distributions, such as Zipf’s, have been a long-standing empirical regularity with

various applications including city sizes, firm sizes, wealth, international trade, and word-use

frequencies across many languages.9 Fitting these distributions effectively produces measure-

ments that describe the degree of concentration in a variable. As a result, the geographical

distribution of mortgage debt can be simplified down to just one or two parameters.

With the Zipf distribution, the limiting distribution of city sizes follows a power law dis-

tribution where the rate of geometric decline is given by the estimated slope parameter.

However, when considering larger and more complete sets of cities, Eeckhout (2004) argues

that the law of proportionate effect (city growth is independent of absolute size) results in

9 Although originally credited to Auerbach (1913), the rank-size rule was popularized by Zipf
(1949), and has since branched into a vast literature. Some more recent papers include: Brakman,
Garretsen, Van Marrewijk, and Van Den Berg (1999); Axtell (2001); Reed (2002); Ioannides and
Overman (2003); Klass, Biham, Levy, Malcai, and Solomon (2006); Gabaix (1999, 2011); Piantadosi
(2014); Chaney (2018).
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a limiting distribution that is log-normal, which is known as Gibrat’s Law (Gibrat, 1931).

Following some additional debate (Eeckhout, 2009; Levy, 2009), Malevergne, Pisarenko, and

Sornette (2011) use the uniformly most powerful unbiased test to compare the two and con-

clude that the power law hypothesis should be accepted, and that the log-normal hypothesis

be rejected.

However, rather than simply testing the hypothesis of city sizes following the traditional

rank-size rule, I aim to parameterize the geographic concentration of mortgage debt using

data from Black Knight Financial Services (BKFS). One notable drawback of the power

law fit of the Zipf distribution is that it is most accurate in the tail and overestimates the

size of the largest cities for the U.S. I resolve this concern by adapting the parabolic fractal

distribution, which extends the log-linear form of the Zipf distribution to include a quadratic

term for ln(rank). This greatly improves upon the linear fit, particularly for the largest cities.

The interpretation of the of the estimated parameters becomes more complicated with the

parabolic fractal distribution. To address this, I orthogonalize the quadratic term from the

linear term, which isolates the effects from each part. Thus, the additional fit provided by

curvature can be compared directly to the portion that is explained by the linear term from

the Zipf distribution. This can also be interpreted in the sense of comparing the power law fit

from the linear component with a correction term that remedies the functional misspecifica-

tion. I find that the relative effect of these two components is fairly constant in explaining the

geographical concentration across both populations and the various sectors of the mortgage

market.

Although the market shares of each city can be directly measured from the data, these

rank-size relations provide a way to parameterize the distributions into just a single measure

of concentration. The fitted rank-size curves are then scaled to produce a probability mass

function or implied weights based on these estimates. These effectively represent theoretical

weights for portfolios constructed by randomly sampling from the implied distributions.
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Alternatively, one can think of these weights as capturing the relative exposure of a specific

market or variable to local shocks in each individual city.

When considering a portfolio of mortgages, the aggregation from the risk of individual

assets to portfolio-level risk involves both a correlation and concentration component. In

this manuscript, the focus is on modeling the concentration component using the afore-

mentioned rank-size relations. The correlation across mortgage returns can be decomposed

into weak spatial dependence and strong macroeconomic dependence (Dombrowski, Pace,

and Narayanan, 2020), which describe the potential for diversification. Given the depen-

dence structure of returns, the concentration component can limit the ability for investors

to achieve the suggested diversification potential.

Within real estate, the role of geographical diversification has been studied going back to

Corgel and Gay (1987), who focus on diversifying across local economic conditions. More

recently, Cheng and Roulac (2007) measure the effectiveness of geographical diversification

in real estate investment, and Cotter, Gabriel, and Roll (2014) find that increased market

integration lowers the diversification potential for housing investment. Market integration

in this case is analogous to the macroeconomic component of housing dependence, which

is shown in Section 3.2.2. to lower the limiting effect of high geographical concentration on

portfolio risk. This reduction in the ability to diversify risk follows from the lesser potential

for diversification that results from the larger correlations.

The remainder of this chapter is structured as follows: Section 3.1 describes the rank-

size relationships and how they are estimated, Section 3.2 relates these distributions with

portfolio variance and the subsequent implications for diversification, Section 3.3 applies

these models to the BKFS mortgage data, and finally, Section 3.4 provides a brief discussion

and concludes.
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3.1. Rank-Size Relations

The rank-size rule, or Zipf’s Law, states that for a ranked set of observations, the size of a

given observation (ci) is inversely proportional to its rank i.

ci ∝
1

i
(42)

In the context of city populations, this suggests that the size of the ith ranked city will be

equal to the population of the largest city (c1) divided by its rank. For the U.S., New York

City is the top ranked (largest) city with nearly 20 million people within its metropolitan

area as of 2018. The traditional rank-size rule would then suggest that the second ranked

city, Los Angeles, should have a population of approximately 10 million. However, this simple

estimate leaves much room for improvement since the actual census estimates suggest more

than 13 million in 2018.

One way to generalize this rank-size relation is to allow for different rates of geometric

decline in the sequence of ranked sizes. This is done by introducing a shape parameter, α,

which governs how quickly the sequence declines.

ci ∝
1

iα
(43)

The shape parameter, α, is effectively a measure of the degree of concentration in a variable.

For example, the special case of α = 0 produces a result where every observation has equal

size. Since i0 = 1, the ranked observations are proportional to a constant, and thus c1 =

c2 = · · · = cn. As a result of the ranking procedure, this case acts as a lower bound and any

amount of geographical concentration will produce larger estimates of α.

The traditional rank-size rule refers to the scenario where α = 1. In this case, the second

ranked city is half the size of the top ranked city, the third ranked city is one-third the

size of the top ranked city, and so on. If one factors out the size of the top ranked city,

what remains is the following sequence: 1/1, 1/2, 1/3, . . . , 1/n. If one views this sequence as

a set of weights that sum to one, this normalized set of weights r(x) can define a statistical

distribution where (44) is the probability mass function.

38



r(x) =
1/x

1 + 1/2 + 1/3, . . . , 1/n
(44)

In its generalized form, this is known as the Zipf distribution, which has a probability

mass function given by (45), where the scaling factor Hn,α is a generalized harmonic sum, as

in (46).

f(x;n, α) = x−αH−1
n,α (45)

Hn,α =
n∑
i=1

i−α (46)

The Zipf distribution has some connections to a few other statistical distributions. For

example, the Pareto distribution has the same general notion; however, it is defined for

continuous variables as opposed to the discrete case of the Zipf distribution. Another related

distribution is the zeta distribution, which is the limit of the Zipf distribution as n→∞. In

this case, the sum in (46) becomes infinite, which is known as the Riemann zeta function.

An interesting property of this function is the convergence of the Riemann zeta function

when α > 1. This property will be explored further in Section 3.2; however, the general

consequence of this convergence is the existence of an asymptotic bound on the amount of

diversification that one can obtain. In other words, at a certain point, including an additional

city in the portfolio does not provide any further benefit in regards to lowering portfolio risk.

To provide some additional intuition regarding the concentration parameter, α, and the

implied weights from the Zipf distribution, consider a scenario where n = 400 and α =

{0, 1, 2}. These cases of α respectively refer to the equal-weighted case, traditional rank-size

rule, and a convergent case of the Zipf distribution.

In the equal-weighted case (α = 0), the weight assigned to the top ranked site is simply

1/n or 0.25%, which is the same for all cities. Alternatively, with the traditional rank-size

rule (α = 1), the top ranked site receives a weight of 15.2%, the second rank is 7.6%, and

by rank 60, the weight has decayed down to the equal-weighted level of 0.25%. In the highly

concentrated, convergent case (α = 2), the top ranked site has a 60.9% weight, the second

rank has 15.2%, and the remaining 398 sites make up the remaining 23.9%.
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If we examine the median ranks that indicate how many of the top sites are needed to

account for 50% of the weight, the equal-weighted case simply yields 200.5, which suggests

that the top 200 sites have half the weight and the bottom 200 have the remaining half. In

the α = 1 case, the larger concentration gives the top 15 sites a 50% share and the bottom

385 the other half. With α = 2, over 50% weight is given to just the top ranked site and the

remaining 399 produce less than half of the concentration (39.1%).

3.1.1. Estimation

For an empirical cross-section of data, estimation of the α parameter effectively produces

a measurement of the degree of concentration in the variable. This is achieved by fitting the

log-linear regression model in (47) where the ordinary least squares coefficient for β1 is an

estimate of −α. The variable of interest, x, is ranked from largest to smallest and shifted by

1/2, r = rank − 1/2. This rank shift follows from Gabaix and Ibragimov (2011) to reduce

small sample bias. Thus, in regards to city populations, the top rank is 0.5 (New York City),

followed by 1.5 (Los Angeles), and so on.

ln(x) = β0 + β1 ln(r) + ε (47)

As an example of the fit provided by the Zipf distribution, Figure 3.1 depicts the fitted

curve for the populations across the 50 largest CBSAs from the 2018 intercensal estimates

from U.S. Census. With an adjusted R2 of 0.953 and estimated slope of −0.662, this demon-

strates a relatively close fit for a mild degree of concentration among the top 50 metropolitan

areas. Since this estimate of α is less than one, there does not appear to be any major con-

cerns regarding diversification within this subset of the top 50 CBSAs.

An observation that one may have regarding this linear fit is the autocorrelation in the

residuals. Gabaix (2009) notes that this positive autocorrelation follows from the ranking

procedure, and that as a result, the typical OLS standard errors are incorrect. To address

this, standard errors that are presented throughout the paper are computed across 10,000

bootstrap iterations.
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Figure 3.1. Linear Rank-Size Relation for the 50 Largest MSAs by Population

Note: Fitted linear rank-size relation for the populations across the 50 largest MSAs in the 2018
intercensal estimates from the U.S. Census. The estimated slope parameter suggests α = 0.662 for
the Zipf distribution in (45), and produces an adjusted R2 of 0.953.
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The estimation of the rank-size regression model has been studied for quite some time

with a variety of approaches. For example, Nishiyama, Osada, and Sato (2008) recommend

a trimmed OLS procedure, which removes an optimal number of the top ranked sites to

reduce bias when testing for the traditional rank-size rule. However, rather than testing the

hypothesis of α = 1, this paper aims to simplify the concentration risk of mortgage debt and

compare across different section, which would be incomplete without including the largest

markets.

Another approach to the issue of autocorrelation and bias is to expand the functional

form of the regression to allow for non-linearity in the fitted curve. The motivation for this

is emphasized when expanding to the full set of 945 U.S. CBSAs, which are plotted along

with their linear fit in Figure 3.2. From this figure, the non-linearity of this relationship is

apparent with the top ranked metros being vastly overestimated by the linear approximation.

This result appears to contrast with the case of country-level populations, in which La-

herrère and Sornette (1998) find that China and India appear as outliers while the remaining

countries fit a straight line with an R2 of 0.995. This phenomenon, which they term as a

“king effect,” also appears in cases such as the populations of French cities, where Paris

is the “king” or underestimated outlier in the rank-size regression. Unlike these cases, the

scenario with U.S. city populations shows gradual overestimation when moving from the

well-fitting mid-section of the curve to the top ranked cities. This pattern suggests that the

linear relationship can be improved upon by introducing an additional parameter to correct

for the non-linearity apparent in the empirical data.
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Figure 3.2. Linear Rank-Size Relation for All U.S. CBSA Populations

Note: Fitted linear rank-size relation for the populations across all 945 U.S. CBSAs in the 2018
intercensal estimates from the U.S. Census. The estimated slope parameter suggests α = 1.244 for
the Zipf distribution in (45), and produces an adjusted R2 of 0.968.
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3.1.2. Parabolic Fractal Distribution

One such non-linear model involves fitting the parabolic fractal distribution (Laherrère,

1996). This distribution expands the log-linear relationship from the Zipf distribution to

include a quadratic term for ln(rank), as in (48).

ln(x) = β0 + β1 ln(r) + β2 ln2(r) + ε (48)

This resembles the translog extension of the Cobb-Douglas production function by fitting

a second-order polynomial instead of a straight line to the log-log relationship. With this

additional term, the model corrects for the non-linearity that arises when examining a more

complete set of locations. As seen in the fitted curve for 2018 populations in Figure 3.3, this

parabolic fit greatly improves upon the linear fit of the Zipf distribution, particularly around

the top ranked sites.

With this additional term, the regression R2 improves to 0.995 from the 0.968 of the

linear Zipf fit from Figure 3.2. However, one drawback of this expanded functional form

is the difficulty in comparing the estimates across variables. For example, when comparing

the estimates of Zipf’s α across the 2010 population counts and 2018 intercensal estimates

from Table 3.1, the increase in magnitude of the slope estimate from 1.219 to 1.244 suggests

that populations are becoming more concentrated in major metropolitan areas. On the other

hand, the parabolic fractal estimates are less clear. The magnitude of the linear coefficient

gets smaller (−0.174 to −0.155), and the quadratic coefficient becomes larger in magnitude

(−0.107 to −0.112).

One way to address the interpretation issue is to orthogonalize the quadratic term in (48)

with the linear term. This is accomplished by regressing ln2(r) on ln(r), as in (49), and using

the residuals (50) in place of the quadratic term. At this point, the estimated slope coefficient

β̂1 will be equal to that of the linear Zipf regression and β̂2 will capture the impact of the

curvature provided by the quadratic component. To make comparisons regarding the relative

effects of each of these components, all of the variables are normalized to have unit variance
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Figure 3.3. Fitted Quadratic Rank-Size Relation for All MSAs

Note: Fitted quadratic rank-size relation for the populations across all 945 U.S. CBSAs in the 2018
intercensal estimates from the U.S. Census. This functional form follows from the parabolic fractal
distribution and produces an adjusted R2 of 0.995.
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Table 3.1. Rank-Size Estimates for U.S. CBSA Populations

2010 Counts 2018 Estimates

ZIPF PFO ZIPF PFO

β̂0 18.626 15.071 18.793 14.892
s.e. 0.155 0.028 0.162 0.027

β̂1 −1.219 −0.984 −1.244 −0.984
s.e. 0.026 0.005 0.027 0.005

β̂2 − −0.162 − −0.165
s.e. − 0.005 − 0.004

R̄2 0.969 0.995 0.968 0.995
n 945 945 945 945
p50 2.698 1.995 2.684 1.994
p75 8.047 3.991 7.937 3.976
p90 40.459 10.188 39.445 10.072

Rank-size regressions for the population estimates across all 945 U.S. CBSAs from the 2010 census
counts and 2018 intercensal estimates. ZIPF and PFO refer to the linear Zipf and orthogonalized
parabolic fractal models described in Section 3.1. Standard errors for the parameter estimates are
computed across 10,000 bootstrap iterations. The percentile ranks, p50, p75, and p90 refer to the
number of CBSAs needed to produce the respective percentages of diversification, as described in
Section 3.2.2.

in the regression. The result, denoted by PFO, is given in (51) where σx, σr, and σu are the

standard deviations of ln(x), ln(r), and û, respectively.

ln2(r) = γ0 + γ1 ln(r) + u (49)

û = ln2(r)− γ̂0 − γ̂1 ln(r) (50)

ln(x)

σx
= β0 + β1

ln(r)

σr
+ β2

û

σu
+ ε (51)

Since these transformations simply orthogonalize and scale the variables, this PFO regres-

sion results in the exact same set of predictions as the standard parabolic fractal regression.

However, now the coefficients capture the relative impact of each of the independent compo-

nents. For example, with the 2018 population estimates in Table 3.1, the linear coefficient of

−0.984 is identical in effect to the Zipf slope coefficient of −1.244 after the scaling. However,

now the β̂2 coefficient has some interpretive value.
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Since each coefficient represents the standard deviation of the respective component in the

fitted model, the coefficient of −0.165 relates to a variance of 0.027 (or 0.1652). Meanwhile,

the standard deviation of 0.984 from the linear component relates to a variance of 0.968,

which is also the R2 from the linear, Zipf model. Mathematically, since the dependent variable

is also normalized to have unit variance, the sum of these variances, 0.968 + 0.027 = 0.995,

is equal to the PFO model R2.

An additional consideration when fitting a parabola is the monotonicity implied by the

ranking procedure. For the Zipf distribution, the slope parameter is guaranteed to be non-

positive.10 However, with the parabolic fit, it is possible that the estimates produce a parabola

that is increasing for some portion of the domain. This is resolved by imposing two con-

straints, (53) and (54), which require that the first derivative, (52), be non-positive at both

bounds of the domain, r ∈ [0.5, n− 0.5]. Since the derivative is linear in ln(rank), this forces

the fitted curve to be non-increasing over the entire domain.

d(r) =
d ln(x)

d ln(r)
= β1 + 2β2 ln(r) (52)

d(0.5) ≤ 0 =⇒ β1 ≤ −2β2 ln(0.5) (53)

d(n− 0.5) ≤ 0 =⇒ β2 ≤
−β1

2 ln(n− 0.5)
(54)

For the orthogonalized variant of the parabolic fractal distribution, the two monotonicity

constraints are similar; however, due to the orthogonalization and scaling, a few minor tweaks

must be made. The details for the transformed constraints are included in Appendix D.

3.2. Implications for Portfolio Risk

The analysis of risk is an important consideration for both portfolio selection and optimiza-

tion. In the traditional mean-variance setup of Markowitz (1952), risk is proxied with the

variance of the portfolio returns as in (55). The components of this are the portfolio weights,

w, and the covariance matrix for asset returns, Σ.

10 A slope of zero is possible in the equal-weighted case; however, any variation in size will result
in a negative slope due to the ranking procedure.

47



σ2
p = w′ · Σ · w (55)

In regards to geographical concentration, the focus is on modeling the distribution of the

w component of this equation, given the return distribution characterized by Σ. The rank-

size relations described in the previous section provide a way to simplify this concentration

into just a few estimated parameters. To the degree that a portfolio follows similar weights,

the fitted relations can be scaled to produce implied portfolio weights. Alternatively, these

implied weights can be thought of an the proportional importance of each CBSA to the

national market. This section demonstrates how to obtain the implied weights from the

fitted rank-size regressions and the implications for the ability to diversify risk when the

weights are distributed as such.

3.2.1. Implied Weights

Similar to the derivation of the Zipf distribution in Section 3.1, the fitted sizes from the

estimated rank-size regressions must be scaled by their sum to produce the implied weights.

From the fitted values of each regression model, the logarithmic functional form typically

requires an adjustment to account for the log-normality of the transformed residuals. Using

the Zipf distribution as an example, the natural exponential of (47) produces (56), which

simplifies to (57) following from the properties of exponentials.

x = exp(β0 + β1 ln(r) + ε) (56)

= exp(β0) · rβ1 · exp(ε) (57)

Thus, when taking the expectation of x given β, the first two terms are fixed and factor

out, as in (58). However, if ε is normally distributed, then E[exp(ε)] = exp(σ2/2), and scales

the expected size from the regression.

E[x|β] = exp(β0) · rβ1 · E[exp(ε)] (58)

Although this is important for calculating the expected values for the size of each CBSA,

this scaling is equal for each site. As a result, its effect is offset when dividing by the sum to

obtain implied weights, as in (59)–(61).
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w =
E[x|β]∑
E[x|β]

(59)

=
exp(β0) · rβ1 · E[exp(ε)]∑n
r=1 exp(β0) · rβ1 · E[exp(ε)]

(60)

=
rβ1∑n
r=1 r

β1
(61)

These implied weights in (61) are identical to the probability mass function in (45) defining

the Zipf distribution. This same process can be repeated for the implied weights from the

parabolic fractal distribution; however, the solution does not simplify as neatly and is left

for Appendix E.

3.2.2. Portfolio Variance

With these implied weights from the rank-size regressions, these simplifications can be

substituted into the portfolio variance equation in (55). In this framework, the implications

of the asset concentration can be examined and compared across the two rank-size models.

As a way to compare the fit in terms of portfolio risk, these can also be compared with the

empirical weights given by the original data. As will be demonstrated, the parabolic fractal

distribution outperforms the linear Zipf regression.

To begin, consider the simple case of independent and identically distributed returns. In

this case, the covariance matrix is σ2In where In is an n by n identity matrix with ones on

the diagonal and zeros for the off-diagonal elements. This leads to a portfolio variance equal

to the individual asset variance multiplied by the sum of squared weights, as in (64).

σ2
iid = w′σ2Iw (62)

= σ2w′w (63)

= σ2(w2
1 + w2

2 . . . w
2
n) (64)

For the case of Zipf-distributed weights, the sum of squared weights can be simplified using

the harmonic number notation from (46). For each asset i, the implied weight can be written

as (65) and its squared value in (66).
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w(n, α)i =
i−α

Hn,α

(65)

w(n, α)2
i =

i−2α

H2
n,α

(66)

Substituting this into the i.i.d. portfolio variance from (64), the numerator in (67) is simply

another harmonic number, which yields the solution in (68).

σ2
iid = σ2

∑n
i=1 i

−2α

H2
n,α

(67)

= σ2Hn,2α

H2
n,α

(68)

In this scenario, the asymptotic properties of harmonic sums demonstrates a potential

limiting effect in regards to diversification. As noted back in Section 3.1, when the α pa-

rameter is greater than one, the harmonic sum converges as n → ∞. This implies that the

denominator in (68) approaches a finite value. Similarly, the numerator also converges and

the i.i.d. portfolio variance has an asymptotic bound greater than zero. This suggests a limit

to the amount of diversification that one can obtain.

On the other hand, if the concentration is low (α ≤ 1), the harmonic sum diverges and

increases to infinity along with n. Since the denominator continues to increase, the i.i.d.

portfolio variance will approach zero for sufficiently large n. This rate of decline is faster for

less concentrated asset classes.

For example, Figure 3.4 demonstrates the decline in the i.i.d. portfolio variance as n

increases with different concentrations. The equal-weighted portfolio (α = 0) diversifies at

a rate of 1/n. The traditional rank-size rule of α = 1 declines at a slower rate, but still

approaches zero as n increases. The convergent case of α = 2 exhibits a much slower rate

of decline as well as an asymptotic lower bound of 0.4, which demonstrates the limit on

diversification that can be imposed by a highly concentrated market.

Building off of this idea of an asymptotic limit to the level of diversification that one

can obtain, another way to compare the implied weights from the rank-size regressions is to

examine the number of sites required to reach a certain percentage of the potential diversi-
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Figure 3.4. Concentration Risk with i.i.d. Assets

Note: Portfolio variance across i.i.d. assets with unit variances and Zipf distributed weights.
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fication. For example, since the α = 2 case has a lower bound of 0.4 for the i.i.d. variance,

50% diversification would be obtained at the rank where the i.i.d. variance is equal to 0.7.

This involves re-weighting each subset of weights such that they sum one. Using the

earlier example of n = 400 and α = 2, a portfolio with only the top ranked site will re-

weight the 0.609 to 1, which produces a variance of 1. Similarly, for a portfolio of the top

two sites, the weights of 0.609 and 0.152 re-weight to 0.8 and 0.2. This produces a variance

of 0.82 + 0.22 = 0.68. Thus, more than 50% of the potential risk reduction is obtained just

by including the second ranked site in the portfolio. This rank for this 50% reduction in risk

in denoted as p50 and is presented along with p75 and p90 in the bottom three rows of each

table underneath the regression estimates.

As a visual aid to understanding these percentile ranks, Figure 3.5 presents a comparison

between the linear Zipf weights, the parabolic PFO weights, and the empirical weights for

mortgage debt across the 929 CBSAs present in the BKFS dataset.11 For each curve, the

p50 rank indicates the number of cities required to lower the i.i.d. portfolio variance 50%

of the way to its fully diversified variance. Unlike the theoretical case where n → ∞, this

fully diversified variance is simply based off of the full weight vector. As can be seen in the

figure, the Zipf distribution’s overestimation of the top ranked sites tends to overestimate the

limiting factor; however, the PFO model greatly improves on this and traces the empirical

weights quite well.

The correlation across asset returns is another critical component for portfolio variance

and the ability to diversify risk. For mortgages, this component can be represented as a

function of the correlation across the underlying property returns and the default rate of the

loans (Dombrowski, Pace, and Narayanan, 2020). Real estate assets demonstrate high levels

of both spatial (weak) and macroeconomic (strong) cross-sectional dependence. In regards to

11 Although there are 945 CBSAs in the U.S. as per the Census, the 16 unmatched CBSAs all
correspond with micropolitan areas with less than 50,000 residents. For more details on the BKFS
dataset and its coverage, see Section 3.3 and Appendix F.
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Figure 3.5. Comparison of Rank-Size Estimates with Empirical Weights

Note: Comparison between linear Zipf weights, PFO weights, and empirical weights for i.i.d. port-
folio variances as portfolio size increases.
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geographical diversification, risk can be reduced by diversifying away the weak dependence;

however, the strong dependence remains regardless of portfolio size.

To examine the effect of strong cross-sectional dependence in this context, a correlation

of ρ is introduced to the i.i.d. returns and a unit variance is assumed, as in (69). This can

be rewritten into matrix form as in (70), where In is an n by n identity matrix and ιn is a

vector of ones.

Vij =


1, if i = j

ρ, if i 6= j

(69)

V = (1− ρ)In + ριnι
′
n (70)

Substituting this correlation matrix into (55), (71) simplifies to (72).

σ2
p = w′V w (71)

= (1− ρ)w′w + ρw′ιnι
′
nw (72)

Then (73) follows since both w′ιn and ι′nw are equal to one since the weight vectors sum

to one. Thus, (74) provides the portfolio variance as a function of the macroeconomic risk

(ρ) and i.i.d. portfolio variance described previously.

= (1− ρ)w′w + ρ (73)

= (1− ρ)σ2
iid + ρ (74)

The effect of this correlation on portfolio variance is a reduction in the potential for di-

versification. This subsequently lowers the impact of any concentration risk coming from

the portfolio weights. For example, if ρ = 0.3, this portion of the variance is not diversifi-

able. The sum of squared weights (or σ2
iid) can still limit the ability to achieve the potential

diversification; however, this term is scaled by (1−ρ) or 0.7. More strong dependence (ex. spe-

cialized portfolios) diminishes the diversification potential in general and lowers the impact

of high concentrations. However, as will be demonstrated in the next section, some sectors
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of the mortgage market (such as jumbo mortgages) exhibit substantially larger degrees of

concentration, which may offset the attenuation from large correlations.

3.3. Empirical Concentration

Now that the previous examples for the rank-size relations have demonstrated the concen-

tration of population across U.S. CBSAs, the focus shifts to the mortgage market. Using

a large set of loan-level mortgage data from BKFS, this section models the geographical

concentration of various sectors by partitioning the data across a number of dimensions,

including GSE-eligibility, lien priority, interest rate type, loan purpose, occupancy status,

and documentation level.

The raw BKFS dataset includes a loan table, which provides origination characteristics for

more than 173 million loans. Additionally, monthly remittance tables begin in January 1989

and provide updates on loan statuses, balances, and interest rates. After a relatively mild

cleaning process,12 we are left with just over 150 million loans originating between January

1990 and November 2016, which is the most recent month of observation.

For financial variables such as mortgage debt, the concentration of population only reflects

part of the equation. In addition to large population centers originating more loans, there is

also a pricing differential between major cities and smaller, less urban locations. This suggests

that while measurements of population concentration may act as a reasonable baseline for

the quantity of loans, the value of the debt is likely to be even more highly concentrated.

This distinction between concentration in quantity vs. concentration of balances is demon-

strated in Table 3.2. This table presents the rank-size estimates for both the total number

of loans originated over the sample period along with the estimates for the concentration

of the aggregate balances. From the Zipf slope estimates, the increase from α̂ = 1.56 for

quantities to α̂ = 1.73 for balances shows a materially larger degree of concentration for

the aggregate debt compared to simply the number of loans. When compared to the 2018

population estimate of α̂ = 1.24, both mortgage quantities and balances appear to be far

12 See Appendix F for a detailed account of the data cleaning process.
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more heavily concentrated than is suggested by measures of population concentration. Thus,

the geographical concentration of mortgage debt is larger than that of the number of loans,

which are both larger than the concentration present in populations across the country.

In regards to the orthogonalized parabolic fractal estimates, the additional fit provided by

the curvature explains a similar proportion of the loan quantity concentration (0.966/0.163 =

5.93) as with the aggregate debt balances (0.968/0.163 = 5.94). This suggests that the

comparison of the linear components compares similar degrees of variation in the rank-size

relationship. The fitted relations for the aggregate mortgage debt are presented in Figures 3.6

and 3.7, respectively for the linear Zipf and quadratic PFO models.

For the diversification percentile ranks, the Zipf estimates suggest that 90% of the po-

tential diversification is obtained by diversifying across the top 21 ranked cities. However,

since the overestimation of top ranked sites leads to an overestimated lower bound for the

diversification potential (as in Figure 3.5), these ranks are less reliable than those for the

PFO model, which more closely tracks the true empirical weights.

For the PFO estimates, the percentile ranks suggest that approximately 50% of the po-

tential diversification is obtained just by including the two largest cities in the portfolio. To

attain 75% of the diversification potential, p75 suggests this is accomplished with the top

four cities. Then for 90% of the diversification potential, the top ten cities reduce the i.i.d.

portfolio variance 90% of the way to its fully diversified lower bound.

To narrow the focus and provide some comparisons across different segments of the mort-

gage market, Tables 3.3–3.9 present the rank-size estimates for various subsets of loans. The

first partition that is examined is the conforming vs. jumbo loan markets. One characteristic

of the mortgage market that distinguishes it from other debt markets is the prominence of

the GSEs, which stimulate demand in the secondary mortgage market by purchasing and

securitizing any loans that meet their criteria. One such criterion is the loan amount, which

is set by the Federal Housing Finance Agency. Mortgages that fall below this threshold are

classified as conforming loans and are eligible for purchase by the GSEs. Loans with bal-
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Figure 3.6. Fitted Linear Rank-Size Relation for All Mortgages

Note: Fitted linear rank-size relation for the total mortgage debt originated across 929 U.S. CBSAs
from the BKFS dataset. The estimated slope parameter suggests α = 1.734 for the Zipf distribution
in (45), and produces an adjusted R2 of 0.914.
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Figure 3.7. Fitted Quadratic Rank-Size Relation for All Mortgages

Note: Fitted quadratic rank-size relation for the total mortgage debt originated across 929 U.S.
CBSAs from the BKFS dataset. This expanded functional form follows from the parabolic fractal
distribution in Section 3.1.2 and produces an adjusted R2 of 0.963.
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Table 3.2. Rank-Size Estimates for All Mortgages

Loan Quantities Balances

ZIPF PFO ZIPF PFO

β̂0 19.375 11.992 32.088 17.808
s.e. 0.270 0.091 0.285 0.101

β̂1 −1.555 −0.966 −1.734 −0.968
s.e. 0.045 0.016 0.048 0.018

β̂2 − −0.163 − −0.163
s.e. − 0.024 − 0.026

R̄2 0.912 0.960 0.914 0.963
n 929 929 929 929
p50 2.353 1.985 2.110 1.978
p75 5.690 3.916 4.604 3.869
p90 20.825 9.705 13.727 9.398

Rank-size regressions for the total quantities and balances of mortgage originations across 929 U.S.
CBSAs over the period from 1990–2016. ZIPF and PFO refer to the linear Zipf and orthogonalized
parabolic fractal models described in Section 3.1. Standard errors for the parameter estimates are
computed across 10,000 bootstrap iterations. The percentile ranks, p50, p75, and p90 refer to the
number of CBSAs needed to produce the respective percentages of diversification, as described in
Section 3.2.2.

ances above this limit are classified jumbo loans and are often held as portfolio loans on bank

balance sheets or packaged into private-label mortgage-backed securities (MBS).

Table 3.3 examines the non-conforming, jumbo loan market, which suggests drastically

larger degrees of concentration (α̂ = 2.53 for loan quantities and 2.58 for aggregate debt).

On the other hand, conforming loans (Table 3.4) are far less concentrated with α̂ = 1.54 and

1.69, respectively for quantities and balances. Since the less concentrated, conforming loans

are purchased and securitized by the GSEs, this would suggest that the loans held in bank

portfolios or in private-label MBS tend to be more highly concentrated than those that are

in the GSE securities. In regards to the diversification percentile ranks, the conforming loan

market estimates appear fairly similar to those for the full mortgage market with p50, p75,

and p90 respectively equal to 2, 4, and 10. However, for the jumbo market, p75 reduces to 3.5

and p90 falls to approximately 7.7.
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Table 3.3. Rank-Size Estimates for Jumbo Mortgages

Loan Quantities Balances

ZIPF PFO ZIPF PFO

β̂0 19.954 7.598 33.380 12.362
s.e. 0.461 0.150 0.481 0.163

β̂1 −2.534 −0.967 −2.579 −0.963
s.e. 0.077 0.026 0.081 0.028

β̂2 − −0.163 − −0.162
s.e. − 0.040 − 0.041

R̄2 0.901 0.962 0.891 0.954
n 913 913 913 913
p50 1.770 1.939 1.761 1.936
p75 2.621 3.564 2.574 3.544
p90 4.595 7.724 4.437 7.636

Rank-size regressions for the total quantities and balances of jumbo mortgage originations across
U.S. CBSAs over the period from 1990–2016. ZIPF and PFO refer to the linear Zipf and orthogonal-
ized parabolic fractal models described in Section 3.1. Standard errors for the parameter estimates
are computed across 10,000 bootstrap iterations. The percentile ranks, p50, p75, and p90 refer to
the number of CBSAs needed to produce the respective percentages of diversification, as described
in Section 3.2.2.

Another separation for the mortgage market is the lien priority. In event of foreclosure,

the priority of the mortgage lien indicates the riskiness for the debtholder to recover some

of the losses. After foreclosure sales, which tend to be at a substantial discount (Clauretie

and Daneshvary, 2009), first-lien debtholders are paid down prior to any recovery for junior

liens.

In Table 3.5, the left columns model the concentration of first-lien mortgages. These are

the vast majority of the loans with approximately 96% of all loans and 99% of the aggregate

debt. The first-lien debt demonstrates similar results to the full set of mortgages in Table 3.2.

This is contrasted with junior-lien mortgages (right columns of Table 3.5) that have only a

residual claim to recovery in event of a default. The concentration estimate of 1.83 suggests a

mildly larger degree of concentration for this smaller market; however, this does not appear

to be statistically significant given the standard errors.

60



Table 3.4. Rank-Size Estimates for Conforming Mortgages

Loan Quantities Balances

ZIPF PFO ZIPF PFO

β̂0 19.276 12.021 31.774 18.027
s.e. 0.272 0.090 0.296 0.098

β̂1 −1.541 −0.965 −1.691 −0.966
s.e. 0.046 0.016 0.050 0.017

β̂2 − −0.162 − −0.163
s.e. − 0.024 − 0.026

R̄2 0.909 0.958 0.908 0.959
n 929 929 929 929
p50 2.372 1.985 2.169 1.980
p75 5.783 3.919 4.818 3.880
p90 21.544 9.724 15.095 9.474

Rank-size regressions for the total quantities and balances of conforming mortgage originations
across U.S. CBSAs over the period from 1990–2016. ZIPF and PFO refer to the linear Zipf and
orthogonalized parabolic fractal models described in Section 3.1. Standard errors for the parameter
estimates are computed across 10,000 bootstrap iterations. The percentile ranks, p50, p75, and p90

refer to the number of CBSAs needed to produce the respective percentages of diversification, as
described in Section 3.2.2.

As with the previous results for the PFO model, both the first-lien and junior-lien parti-

tions exhibit similar relative effects between the linear portion of the fit and the correction

for the non-linearity. For the first-lien subset, the relative effect is nearly identical to the full

market (0.968/0.163 = 5.94). Then for the smaller junior-lien market, the explanatory power

is slightly lower; however, the relative effect of the two components (0.958/0.161 = 5.95) is

still fairly constant.

In regards to the percentile ranks, the results are both quantitatively similar to those for

the full mortgage market. The number of cities needed to obtain 50%, 75%, and 90% shares

of the diversification potential remain in a similar range around 2, 4, and 9, respectively in

the PFO model.

The type of interest rate for a mortgage is another loan characteristic that appears to

suggest some variation around the degree of geographical concentration. In Table 3.6, the
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Table 3.5. Rank-Size Estimates by Lien Priority

First-Lien Junior-Lien

ZIPF PFO ZIPF PFO

β̂0 32.075 17.805 27.999 14.609
s.e. 0.288 0.101 0.313 0.117

β̂1 −1.733 −0.968 −1.825 −0.958
s.e. 0.048 0.018 0.053 0.021

β̂2 − −0.163 − −0.161
s.e. − 0.027 − 0.028

R̄2 0.914 0.963 0.893 0.943
n 929 929 929 929
p50 2.172 1.978 1.997 1.974
p75 4.830 3.869 4.170 3.840
p90 15.186 9.399 11.466 9.211

Rank-size regressions for the balances of mortgage originations partitioned by lien priority over the
period from 1990–2016. ZIPF and PFO refer to the linear Zipf and orthogonalized parabolic fractal
models described in Section 3.1. Standard errors for the parameter estimates are computed across
10,000 bootstrap iterations. The percentile ranks, p50, p75, and p90 refer to the number of CBSAs
needed to produce the respective percentages of diversification, as described in Section 3.2.2.

estimated concentration for adjustable rate mortgages (α̂ = 2.07) is quite larger than that

of the fixed rate mortgage market (α̂ = 1.69). Similar to previous results, the PFO model

suggests consistent improvements to the linear fit of the Zipf distribution and the estimated

percentile ranks are also unchanged.

When comparing mortgages that are originated for new purchases and refinancing activity

(Table 3.7), both subsets suggest similar degrees of geographical concentration, which are

also similar to the full mortgage market.

In Table 3.8, the concentration of investment properties (α̂ = 2.08) appears to be larger

than for owner-occupied properties (α̂ = 1.71). The estimates for the investment property

subset do tend to carry slightly less explanatory power in the rank-size regressions; however,

as with the junior-lien market, if the relative effect of the two components are compared

(0.955/0.161), then the proportional importance of each component is shown to be constant.
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Lastly, the geographical concentration between loans with full documentation are com-

pared to those with less than full documentation. In Table 3.9, the estimates for the fully

documented mortgage market suggest only slightly less concentration than the non-fully

documented loans. On the other dimensions of comparison, such as the relative effects in the

PFO model and the percentile ranks, these estimates also produce fairly similar results.

Table 3.6. Rank-Size Estimates by Interest Rate Type

Fixed Rate Adjustable Rate

ZIPF PFO ZIPF PFO

β̂0 31.699 18.037 31.672 14.783
s.e. 0.284 0.099 0.350 0.117

β̂1 −1.688 −0.967 −2.072 −0.972
s.e. 0.048 0.018 0.059 0.020

β̂2 − −0.163 − −0.164
s.e. − 0.026 − 0.032

R̄2 0.911 0.961 0.922 0.972
n 929 929 927 927
p50 2.172 1.980 1.899 1.963
p75 4.830 3.881 3.369 3.756
p90 15.186 9.481 7.512 8.713

Rank-size regressions for the balances of mortgage originations partitioned by interest rate type over
the period from 1990–2016. ZIPF and PFO refer to the linear Zipf and orthogonalized parabolic
fractal models described in Section 3.1. Standard errors for the parameter estimates are computed
across 10,000 bootstrap iterations. The percentile ranks, p50, p75, and p90 refer to the number of
CBSAs needed to produce the respective percentages of diversification, as described in Section 3.2.2.

3.4. Discussion

This paper characterizes the geographical concentration of the mortgage market using the

empirical regularity from regional science known as rank-size rule. This allows for the simpli-

fication of a set of portfolio weights into just one or two parameters that measure the degree

of concentration. Rank-size distributions such as the Zipf or parabolic fractal distribution

demonstrate how high levels of geographical concentration can impose limits on the ability

to achieve diversify a portfolio of mortgages.
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Table 3.7. Rank-Size Estimates by Loan Purpose

New Purchases Refinances

ZIPF PFO ZIPF PFO

β̂0 31.074 17.372 31.214 17.042
s.e. 0.297 0.098 0.287 0.110

β̂1 −1.724 −0.969 −1.755 −0.964
s.e. 0.050 0.017 0.048 0.020

β̂2 − −0.163 − −0.162
s.e. − 0.027 − 0.027

R̄2 0.916 0.966 0.906 0.955
n 929 929 929 929
p50 2.124 1.979 2.081 1.977
p75 4.654 3.871 4.497 3.862
p90 14.022 9.416 13.102 9.356

Rank-size regressions for the balances of mortgage originations partitioned by loan purpose over the
period from 1990–2016. ZIPF and PFO refer to the linear Zipf and orthogonalized parabolic fractal
models described in Section 3.1. Standard errors for the parameter estimates are computed across
10,000 bootstrap iterations. The percentile ranks, p50, p75, and p90 refer to the number of CBSAs
needed to produce the respective percentages of diversification, as described in Section 3.2.2.

The linear relationship between ln(size) and ln(rank) suggested by the Zipf distribution

is extended to allow for non-linearity by fitting the parabolic fractal distribution along with

an orthogonalized variant, which isolates the effect of the curvature. This extension helps

correct for the overestimation of the top ranked cities evident from the linear fit of the

Zipf distribution and provides more accurate predictions for the degree of concentration in

mortgage debt.

The application of these rank-size relations to data from BKFS suggests considerable de-

grees of concentration in the mortgage market. When compared to the estimate of Zipf’s

α for populations (1.24 in 2018), the quantity of mortgage originations produces a materi-

ally larger estimate of 1.56. Taking into account the higher property values of these large

metros, this concentration estimate increases to 1.73 for the aggregate balances of the debt

originations.
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Table 3.8. Rank-Size Estimates by Occupancy Status

Owner-Occupied Investment

ZIPF PFO ZIPF PFO

β̂0 31.577 17.798 28.505 12.915
s.e. 0.276 0.101 0.414 0.150

β̂1 −1.713 −0.970 −2.084 −0.955
s.e. 0.046 0.018 0.069 0.026

β̂2 − −0.163 − −0.161
s.e. − 0.027 − 0.033

R̄2 0.921 0.967 0.868 0.938
n 929 929 928 928
p50 2.139 1.979 1.895 1.962
p75 4.708 3.875 3.337 3.743
p90 14.377 9.443 7.388 8.641

Rank-size regressions for the balances of mortgage originations partitioned by occupancy status over
the period from 1990–2016. ZIPF and PFO refer to the linear Zipf and orthogonalized parabolic
fractal models described in Section 3.1. Standard errors for the parameter estimates are computed
across 10,000 bootstrap iterations. The percentile ranks, p50, p75, and p90 refer to the number of
CBSAs needed to produce the respective percentages of diversification, as described in Section 3.2.2.

This dataset also allows for examination of specific sectors of the mortgage market to

examine the differential degrees of geographical concentration. One such sector that exhibits

a substantial degree of concentration is the jumbo loan market. With α estimates of ap-

proximately 2.5, this suggests that these loans tend to be heavily clustered in just a few

large markets. Since these loans are not eligible for purchase by the GSEs, these jumbo loans

tend to either be held as portfolio loans or consolidated into private-label mortgage-backed

securities. Thus, the risk of the private market is exacerbated by the geographically disperse

nature of the conforming loan market.

In addition to the jumbo mortgage market, several other sectors of the mortgage market

exhibit relatively large degrees of geographical concentration, albeit to a lesser degree. For

example, mortgages secured by investment properties are substantially more concentrated

when compared to owner-occupied properties. Similarly, junior-lien mortgages are slightly
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Table 3.9. Rank-Size Estimates by Documentation Type

Full Doc Non-Full Doc

ZIPF PFO ZIPF PFO

β̂0 30.736 17.258 31.821 17.487
s.e. 0.283 0.108 0.294 0.101

β̂1 −1.702 −0.961 −1.753 −0.969
s.e. 0.048 0.020 0.049 0.018

β̂2 − −0.162 − −0.163
s.e. − 0.026 − 0.027

R̄2 0.901 0.950 0.916 0.966
n 928 928 929 929
p50 2.154 1.979 2.083 1.977
p75 4.763 3.878 4.506 3.863
p90 14.731 9.457 13.150 9.359

Rank-size regressions for the balances of mortgage originations partitioned by documentation status
over the period from 1990–2016. ZIPF and PFO refer to the linear Zipf and orthogonalized parabolic
fractal models described in Section 3.1. Standard errors for the parameter estimates are computed
across 10,000 bootstrap iterations. The percentile ranks, p50, p75, and p90 refer to the number of
CBSAs needed to produce the respective percentages of diversification, as described in Section 3.2.2.

more concentrated than their first-lien counterparts, and adjustable rate mortgages show

slightly more concentration than fixed rate mortgages.

With these large degrees of geographical concentration in mortgage debt, portfolios con-

structed from these assets are likely to experience limits to the amount of diversification

that can be obtained. The Zipf distribution and the convergence of the generalized harmonic

sum allow for a rigorous demonstration for how such limits to geographical diversification

can lead to a lower bound on portfolio risk. As a result, the relative weights for various

cities demonstrates how local economic shocks for some cities remain local, but others can

propagate through to global shocks for highly concentrated markets. For example, a local

shock to California is effectively a global shock to the jumbo mortgage market.
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Chapter 4. Imputing Dynamics in Mortgage Default Models

In traditional analysis of mortgage default, an unaddressed issue is that many predictors

of default are only observable at the time of loan origination. Some predictors, such as

interest rate type and whether a borrower provides full documentation, are characteristics of

a mortgage and have no time-varying attributes. However, some other important variables

do change over time. Examples of such dynamic variables include property values, borrower

income, wealth, and credit scores.

For property values, a common solution is to use house price indices (HPIs) to capture

dynamics at a macro-level. However, factors like borrower income, wealth, and credit scores

are likely to be driven more by borrower-specific factors, so this approach may not be as

effective. Although some studies simply use the estimated house price dynamics as indepen-

dent variables (Archer, Elmer, Harrison, and Ling, 2002; Ambrose, Conklin, and Yoshida,

2016), many others construct a measure of equity in the form of a current loan-to-value ratio

(CLTV).13

Although some of these models (Deng et al., 2000; Archer et al., 2002; Foote et al., 2008;

Bajari et al., 2008; Ambrose et al., 2016; Bhutta et al., 2017) include aggregated dynamic vari-

ables such as divorce and unemployment rates, for many of these models, the only borrower-

specific variable that varies over time is the CLTV ratio. However, other variables (such as

borrowers’ credit scores) also vary over the life of the loan, but standard practice is to use

the credit score at origination (Bajari et al., 2008; Mayer et al., 2009; McCollum et al., 2015;

Ambrose et al., 2016; Bhutta et al., 2017). If credit scores or any other omitted dynamic

predictors vary systematically with house prices or any other included regressors, then the

traditional approach could create a bias by omitting these dynamics.

Another potential omission in traditional mortgage default models is the inclusion of

borrower-specific fixed effects. The assumption of exogeneity requires that any unobserved

13 See Deng, Quigley, and Order (2000); Foote, Gerardi, and Willen (2008); Bajari, Chu, and
Park (2008); Mayer, Pence, and Sherlund (2009); Campbell and Cocco (2015); McCollum, Lee, and
Pace (2015); Bhutta, Dokko, and Shan (2017).
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heterogeneity be uncorrelated with the included regressors. If the cross-sectional variation

of this heterogeneity is related with any predictor variables, this will also lead to biased

coefficients.

For example, if a borrowers’ income is not observed (as in our dataset), its variation will be

captured by the error term. Thus, if borrower income is systematically related with any other

predictors, the resulting estimates will be biased. Although some studies, such as Bajari et al.

(2008), use debt-to-income ratios to infer borrower income at origination, and other studies

use regional income measures (Ambrose et al., 2016; Bhutta et al., 2017) the potential issue

of omitting income dynamics arises.

Another component of this unobserved heterogeneity is the variation in borrowers’ atti-

tudes towards default. A survey by Guiso, Sapienza, and Zingales (2013) finds that views

regarding the morality of default are relevant when determining the willingness of individuals

to strategically default. Such attitudes regarding the morality of default may also be critical

omissions if certain classes of borrowers are more likely to have specific loan characteristics,

such as full documentation or adjustable rate mortgages.

If all other factors driving the default decision are controlled for in the model, then includ-

ing borrower-specific intercepts will capture the variation around these attitudes surrounding

default. Deng et al. (2000) find evidence of statistically significant heterogeneity among bor-

rowers and suggests that its omission leads to errors in estimation of prepayment behavior.

This supports the idea that there are distinctions between borrowers relating to innate atti-

tudes towards default.

The goal of this paper is to (1) impute unobserved heterogeneity and predictor dynamics,

(2) determine the effectiveness of this methodology using cross-validation, and (3) evaluate

the resulting influence on the importance of the traditional variables, such as CLTV, in the

default decision. Using a ridge regression framework, we are able to estimate an econometric

model to capture these effects through a specification of the model fit, which is tuned to

maximize out-of-sample performance.
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We use residential mortgage data provided by Blackbox Logic LLC along with HPIs from

the S&P/Case-Shiller 20-City Composite Home Price Index. This allows us to construct a

sample of nearly 90 million borrower-month observations spanning over 2 million residential

loans for properties in the 20 CS-MSAs originating in 2003–2014.

Based on this sample, we find the largest difference between the analysis proposed here

and the conventional approach is concentrated in the California MSAs of our sample. The

estimates of the full documentation and CLTV parameters increase in magnitude when

imputing static heterogeneity compared to the estimates from a traditional OLS model.

When imputing unobserved dynamics, the opposite effect results and those variables become

less important in the default decision. To the degree that latent fixed effects and omitted

dynamics predict differential default behavior of fully documented versus undocumented

borrowers, this technique may have value in better understanding the mortgage behavior.

In the context of mortgage default literature, our study and its findings make a contri-

bution by proposing a solution to two econometric issues: consideration of borrower het-

erogeneity beyond observed loan characteristics and imputation of unobserved dynamics for

time-varying predictors. In predictive models, using a measure of house price appreciation

to reflect changes in borrower equity may be sufficient maximize predictive power and out-

of-sample performance. However, from an explanatory perspective, the correlation between

housing returns and important liquidity factors, such as borrower income or wealth, may

bias the relative importance of negative equity in the default decision. Thus, when explain-

ing why defaults on residential mortgages skyrocketed at the onset of the 2008 recession,

understanding the nature of these potential biases should help untangle the joint effects of

the falling house prices and deteriorating economic conditions affecting borrower liquidity.

The rest of this chapter is structured as follows: In Section 4.1, we describe the source

and nature of the empirical data and provide summary statistics. In Section 4.2, we discuss

the theoretical foundations of mortgage default analysis, quantify the proposed biases, and

describe the relevant econometric considerations for our analysis. In Section 4.3, we propose
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several model specifications to impute borrower heterogeneity and dynamics. Section 4.4

goes into detail regarding the parameter selection method. In Section 4.5, we discuss some

insights regarding the results.

4.1. Data

The primary source of data for this study comes from Blackbox Logic LLC (BBX). This

dataset includes residential, privately securitized mortgages over all credit categories. We

examine loans originating between 2003–2014 for properties within one of the 20 CS-MSAs

of the S&P CoreLogic Case-Shiller Home Price Indices.14 We further restrict the sample

to loans with standard 15- or 30-year terms and those with estimated CLTV ratios within

the range (0,3).15 Table 4.1 presents some summary statistics for the variables partitioned

by MSA to show geographical differences in leverage, loan characteristics, and performance.

In the appendices, we provide the names and descriptions for the variables from the BBX

dataset (Table G.1) and for the variables used in our statistical models (Table H.1).

4.1.1. Estimating CLTV Ratios

In order to estimate CLTV ratios, we use the origination appraisal value and scale it

by the accumulated housing appreciation (or depreciation) at the MSA-level using the S&P

CoreLogic Case-Shiller Home Price Indices. This yields monthly estimates for the underlying

collateral (75). Combined with the monthly balance updates from the BBX remittances,

we obtain estimates of the CLTV ratios using (76). We use the loan origination date to

approximate the appraisal date (t = 0), then (76) produces the estimated CLTV for borrower

i in month t, where the CS terms refer to the index values of MSA j. Thus, i ∈ j.

CSV alueit = OrigAppraisalV alueCalci ·
(
CSjt
CSj0

)
(75)

CLTVit = ActualBalanceit/CSV alueit (76)

14 These restrictions are to limit the sample size and for ease of presentation.

15 A CLTV equal to zero indicates full repayment and a CLTV exceeding three is unlikely to
occur in reality and likely results from an error with either the mortgage balance or appraisal value.
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Table 4.1. Summary Statistics for BBX Variables

Dynamic Variables Static Variables

MSA Default CLTV Nobs FICO Fulldoc ARM Term Nloans

ATL 0.102 0.776 3,527,390 686.87 0.336 0.611 0.123 78,373
BOS 0.179 0.772 1,594,709 663.72 0.288 0.628 0.100 43,065
CHA 0.109 0.701 2,047,125 670.09 0.417 0.524 0.142 43,176
CHI 0.180 0.840 5,617,409 655.65 0.313 0.681 0.105 153,044
CLE 0.203 0.845 1,799,405 634.64 0.488 0.512 0.115 35,239
DAL 0.097 0.665 3,892,547 661.65 0.419 0.429 0.175 72,259
DEN 0.085 0.681 3,001,515 686.29 0.337 0.614 0.134 66,843
DET 0.232 0.952 2,180,196 621.84 0.499 0.713 0.090 55,823
LV 0.172 1.057 5,545,130 680.77 0.227 0.643 0.137 145,399
LA 0.133 0.827 11,946,578 682.38 0.192 0.660 0.113 316,390

MIA 0.223 0.974 7,944,618 664.46 0.252 0.628 0.105 177,860
MIN 0.138 0.825 2,968,995 671.55 0.355 0.645 0.115 71,232
NY 0.155 0.767 3,926,385 676.16 0.300 0.587 0.093 87,842

PHX 0.109 0.923 6,157,528 676.78 0.293 0.662 0.129 173,029
POR 0.097 0.668 2,593,714 685.24 0.325 0.532 0.156 62,465
SD 0.093 0.863 4,100,043 706.33 0.197 0.680 0.094 92,923
SF 0.083 0.805 9,410,340 713.37 0.206 0.673 0.087 229,142

SEA 0.100 0.693 3,343,664 689.63 0.327 0.602 0.127 81,343
TPA 0.188 0.944 3,154,583 661.36 0.304 0.608 0.110 70,318
DC 0.115 0.786 4,137,220 677.09 0.331 0.562 0.115 98,535

ALL 0.137 0.837 88,889,094 678.21 0.283 0.629 0.115 2,154,300

Summary statistics for variables partitioned by MSA. Dynamic variables are default indicators and
CLTV ratios. Static variables include origination FICO scores and indicators for full documentation,
adjustable rate, and 180-month term mortgages.

4.2. Theory

Much of the existing mortgage default literature focuses on two main rationales for default:

liquidity default and strategic default. The latter has been extensively studied since the

Great Recession when housing appreciation halted and declining property values coincided

with drastic increases in defaults. However, liquidity defaults can be more challenging to

study due to the difficulty in obtaining critical information regarding individual borrower

liquidity.
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For example, incentives to strategically default can be captured by the CLTV ratio, which

measures the equity position of a borrower. However, liquidity defaults are often driven by

individual factors such as the borrower’s income or wealth, which are often not available to

academic researchers. In the context of this paper, if any time-varying liquidity factors are

correlated with housing appreciation, then their effects will be partially captured by through

the CLTV variable. This may lead to a biased estimate of the true coefficient for CLTV.

This potential bias holds for all predictor variables included in the model.

An intuitive way to model the default decision is for a borrower to default on their mortgage

when either their wealth can be increased by defaulting (strategic default) or if a liquidity

constraint is binding (liquidity default). For analysis of liquidity defaults, it is important

to consider any additional liabilities of the borrowers and how they prioritize their debt

payments. Andersson, Chomsisengphet, Glennon, and Li (2013) study this issue and find

that pre-crisis borrowers were eight times more likely to prioritize mortgage payments over

credit card payments. However, once house prices began falling and strategic incentives

began to take hold, borrowers prioritized mortgage payments about the same as credit card

payments.

This suggests that in the context of liquidity defaults, borrowers are likely to prioritize

their mortgage payment over other types of debt. Thus, it is likely that factors such as income

or credit score begin to decline prior to a borrower’s first missed mortgage payment. This

motivates the idea that such unobserved dynamics are important in differentiating strategic

factors from liquidity factors.

In the remainder of this section, we evaluate a simple linear probability model, solve for

the biases introduced from key omitted variables, propose a novel solution to impute the

omitted variables, and discuss the relevant econometric issues that arise.

4.2.1. Ordinary Least Squares (Naive Model)

Before delving into unobserved heterogeneity and dynamics, we evaluate a traditional

linear probability model with a single, static intercept for all borrowers. The resulting re-
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gression coefficients from this model will be used as benchmark values for comparison in the

subsequent sections. In this naive model (78), our matrix of regressors, X0, is regressed on

Default (represented as y), where YEARS is a matrix of year fixed effects to control for

macroeconomic factors over time.

X0 =

[
1 FICO CLTV fulldoc ARM term YEARS

]
(77)

yit = X0,itβ0 + εit (78)

For this model, the optimal solution from ordinary least squares is:

β̂0 = (XT
0 X0)−1XT

0 y (79)

In Table 4.2, we present the naive OLS coefficients for each MSA and the weighted average

for the full sample. Since our samples are sufficiently large, all predictors are statistically

significant at the 99% level. In future sections, we restrict our focus to the magnitudes of

important coefficients as the standard errors are sufficiently small to assume significance.

4.2.2. Quantifying Bias from Omission of Borrower Heterogeneity

Let us first rationalize the inclusion of borrower-specific intercepts in the mortgage default

setting. The first consideration for a fixed effects model is the nature of the omitted variables.

Borrower fixed effects effectively control for static omitted variables. In our model, allowing

for borrower-specific intercepts captures any loan or borrower characteristics not already

controlled for explicitly in the model. For example, since we do not have data on borrower

occupation or marital status, these will be omitted variables that can partially be captured by

the intercepts. If any of the included regressors is systematically related with these omitted

variables, then the estimated coefficients will be biased.

Even in a more complete model that includes liquidity factors, this unobserved heterogene-

ity is likely to remain an important consideration for strategic default due to views regarding

the morality of default. Guiso et al. (2013) find that while negative equity is a necessary con-

dition for strategic default, the most predictive factors are moral and social considerations.
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Table 4.2. Naive OLS Default Model

MSA Intercept FICO CLTV Fulldoc ARM Term R2

ATL 0.0684 −0.0674 0.0485 −0.0329 0.0113 0.0309 0.0969
BOS 0.0123 −0.0752 0.0721 −0.0287 0.0470 0.0493 0.1578
CHA 0.0366 −0.0594 0.0434 −0.0181 0.0325 0.0284 0.0908
CHI 0.0756 −0.0607 0.0577 −0.0414 0.0548 0.0250 0.1247
CLE 0.1322 −0.0750 0.0460 −0.0226 0.0715 −0.0070 0.0806
DAL 0.0365 −0.0508 0.0353 −0.0157 0.0372 0.0200 0.0722
DEN 0.0216 −0.0531 0.0409 −0.0148 0.0143 0.0352 0.0754
DET 0.1169 −0.0635 0.0571 −0.0300 0.0766 0.0168 0.0996
LV 0.0616 −0.0570 0.0649 −0.0361 0.0286 0.0451 0.1597
LA 0.0349 −0.0583 0.0720 −0.0280 0.0330 0.0697 0.1519

MIA 0.0655 −0.0503 0.0991 −0.0257 0.0504 0.0664 0.1965
MIN 0.0128 −0.0716 0.0567 −0.0317 0.0418 0.0304 0.1201
NY 0.0600 −0.0697 0.0809 −0.0375 0.0299 0.0450 0.1786

PHX 0.0429 −0.0503 0.0559 −0.0285 0.0212 0.0469 0.1414
POR 0.0370 −0.0522 0.0564 −0.0188 0.0212 0.0559 0.1274
SD 0.0314 −0.0565 0.0593 −0.0269 0.0112 0.0648 0.1205
SF 0.0381 −0.0550 0.0642 −0.0232 0.0094 0.0653 0.1330

SEA 0.0304 −0.0575 0.0612 −0.0183 0.0188 0.0618 0.1455
TPA 0.0811 −0.0642 0.0783 −0.0470 0.0364 0.0333 0.1641
DC 0.0694 −0.0677 0.0626 −0.0323 0.0220 0.0459 0.1406

ALL 0.0507 −0.0587 0.0642 −0.0283 0.0310 0.0482 0.1373

OLS regression coefficients for each MSA. All coefficients statistically significant at the 99% level.

If these unobserved attitudes about default are related with borrowers’ selection of mortgage

characteristics, the estimated coefficients for those characteristics will be biased.

To quantify the bias resulting from a common-intercept model, we will assume the data

generating process (DGP) in (80). Let yit be the true probability of default for individual i

at time t, Mi control for time-constant loan characteristics (such as indicators for full docu-

mentation or mortgage term), and Nit control for dynamic predictors which vary throughout

the life of the loan (such as CLTV).

yit = κi +Miγ1 +Nitγ2 + εit (80)

= κ0 +Miγ1 +Nitγ2 + (κi − κ0) + εit (81)

= Xitβ + ∆κi + εit (82)
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If we estimate a linear probability model by OLS as in (77)–(79), then the estimated model

differs from (82) by replacing ∆κi + εit with uit, which is composed of the idiosyncratic error

term and borrower heterogeneity. If we substitute (82) into (79), we can solve for the omitted

variable bias as such:

β̂ = (XTX)−1XT (Xβ + ∆κ+ ε) (83)

= β + (XTX)−1XT∆κ+ (XTX)−1XT ε (84)

E[β̂|X] = β + (XTX)−1XT∆κ (85)

From inspection of (85), it is clear that this proposed bias will be non-zero whenever

borrower heterogeneity (∆κ) is systematically related with the included predictor variables

in X. The bias will primarily be a function of the relationship between the each regressor and

the true heterogeneity; however, any non-zero covariances between the included regressors

in the off-diagonal elements of (XTX)−1 may also have minor effects on the bias.

As an example, for the full documentation coefficient, the primary driver of the bias

in (85) will be the relationship between fully documented borrowers and the unobserved

heterogeneity. Ambrose et al. (2016) find evidence of borrower income misrepresentation

concentrated among borrowers who originated low-doc loans but could have originated full-

doc loans instead. It is intuitive to associate the willingness to misrepresent income with

moral views that impact the propensity to strategically default. One might also expect this

relationship to be true regarding liquidity defaults since borrowers with larger and more

stable income likely qualify for loans with good terms and have no incentive to misrepresent

items on a mortgage application.

Such relations suggest an inverse relationship between full documentation and unobserved

borrower heterogeneity. This would suggest that our estimate for βfulldoc is biased downwards

or that the signal of providing full documentation is smaller if we could observe borrowers’

views regarding morality of default. Since the findings of Ambrose et al. (2016) relate to
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income misrepresentation, this relation would hold true even in models that include borrower

income as an independent variable.

An alternative perspective regarding this bias would be to consider weak verification stan-

dards of loans classified as fully documented. For example, if income and employment are

appropriately verified for loans classified as fully documented, then this classification sig-

nals a significant reduction in asymmetric information between borrowers and underwriters.

However, if verification is lacking or fully documented borrowers are not properly screened,

then the information asymmetry will persist and the classification will be a weaker signal

regarding the default risk of the borrower. At the extreme of this case, classification of full

documentation is as simple as a borrower checking a box on the mortgage application. In the

context of our model, this would suggest that full documentation has a smaller magnitude

than in a scenario with more stringent verification standards.

Another consequence of potentially weak verification standards failing to reduce informa-

tion asymmetries between borrowers and underwriters is an increased sensitivity to house

price dynamics. With weak verification standards, it may be possible for weak or fraudulent

borrowers to misrepresent income or employment to obtain the loan or get more favorable

terms. Such borrowers are likely to have less stable incomes and face binding budget con-

straints. They may also be less likely to have reservations about strategically defaulting on

their mortgages.

Thus, an average borrower’s decision to default may appear more sensitive to house price

fluctuations when documentation standards are lacking. This would suggest that by imputing

these unobserved factors (as in our models), we should expect an increased signal from full

documentation and that the sensitivity to the CLTV ratio should decrease in magnitude

reflecting a lower sensitivity of default to house price dynamics.

4.2.3. Quantifying Bias from Omission of Variable Dynamics

When it comes to omitted dynamic variables, we often have one of two scenarios: the

variable is entirely omitted (borrower income) or the variable is observed at origination and
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only the dynamics are omitted (credit scores). For a completely omitted variable, the bias

would be similar to that of the omitted heterogeneity. However, for variables that are recorded

at origination, there is a subtle difference where use of the origination value implicitly assumes

that it remains constant over time.

Let’s consider credit scores as an example of a variable with omitted dynamics. The in-

clusion of the origination credit score in the default model assumes that credit scores do not

change over time. If credit score dynamics are systematically related with any of the other

independent variables, this will result in a bias to their estimated coefficients.

Recall the DGP in (80) and consider a credit score variable, sit, that is only observed at

loan origination (we only have si0). If we estimate a model with borrower fixed effects using

individuals’ origination credit scores, then the estimated model is (86) where the error term,

vit includes (sit − si0)γ0 in addition to the idiosyncratic error.

yit = κ0 + ∆κi + si0γ0 +Miγ1 +Nitγ2 + (sit − si0)γ0 + εit = Xitβ + vit (86)

Similar to the prior section, if we substitute (86) into the solution of our estimated model

(79) we can solve for the bias.

β̂ = (XTX)−1XT (Xβ + (sit − si0)γ0 + εit) (87)

= β + (XTX)−1XT (sit − si0)γ0 + (XTX)−1XT ε (88)

E[β̂|X] = β + (XTX)−1XT (sit − si0)γ0 (89)

This bias is primarily driven by the relationship between the omitted dynamics and the

included predictor variables, as well as the true marginal effect of credit scores on one’s

propensity to default, γ0. Intuitively, and from our naive model results, we know that larger

credit scores are associated with a lower probability of default. Thus, γ0 < 0. If any of the

included regressors is systematically related with future credit score dynamics (or any other

omitted dynamics), then the regression coefficients will be biased.

If we consider the CLTV ratio, it is likely that house prices have a non-zero correlation

with the incomes of some borrowers. As documented by Mayer et al. (2009), increases in
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unemployment (decreases to income) result in lower demand for housing, and thus house

prices. This suggests a positive relationship between house prices and borrower incomes.

This would imply that βCLTV is biased upwards and that the actual effect of house price

fluctuations is smaller than is suggested by the OLS model.

Intuitively, this bias can be explained as the CLTV dynamics partially capturing the

effects of changes to borrower income or credit scores. Since contingent claims approaches

to mortgage default often associate borrower equity with strategic incentives to default,

this bias would suggest that the impact of falling house prices on strategic defaults may be

overstated due to the correlated changes in unobserved liquidity factors.

4.2.4. Econometric Issues

We have now provided a rationale for the use of borrower-specific fixed effects and ex-

pressed the bias introduced from omitting them; however, it is crucial to note the issue

of perfect multicollinearity in modeling (80). If we allow for a distinct intercept for each

borrower, by estimating ∆κi, any non-time-varying predictor (often everything but CLTV)

will be a linear combination of the fixed effects intercepts. Thus, without a remedy to this

perfect multicollinearity issue, these loan characteristic variables will be unidentifiable in the

regression model. Our solution to this issue is to adapt a ridge regression model, which is

the primary focus of Section 4.3.

To resolve the omitted variable bias induced by the omission of predictor dynamics, we

refine our model to capture these dynamics through the estimated model parameters. Our

first proposed solution is to estimate a heterogeneous trend model, which allows for bor-

rowers’ distinct intercepts to change linearly over time. Alternatively, we employ a variable

parameter design as in (90) to impute non-linear dynamics.

κit = κ0 + ∆κi + ∆κit (90)

In this model specification, a model overfitting problem is apparent from allowing the ∆κit

parameter to vary for each observation. As with the perfect multicollinearity issue arising
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from fixed effects intercepts, we are able to resolve this issue through the use of a ridge

regression model.

4.3. Proposed Methodology

Once we allow for the model to have a distinct intercept for each individual borrower, the

issue of perfect multicollinearity arises. Similarly, the additional parameters for imputed

dynamics introduce additional estimation issues in the form of model overfitting. These are

remedied by adapting a penalized regression framework, such as ridge regression introduced

by Hoerl (1959). This section provides a brief overview of ridge analysis and subsequently

constructs structured penalties to allow for the estimation of the additional parameters.

4.3.1. Ridge Regression

The standard approach for ridge regression adds a penalty term, ρΓ in (91), to the usual

OLS solution. The ridge matrix Γ is traditionally set to an identity matrix,16 which penalizes

the magnitudes of estimated coefficients with strength ρ. This approach leads to biased

estimates with smaller magnitudes and smaller variances than OLS estimates.

β̂ridge(ρ) = (XTX + ρΓ)−1XTy (91)

Alternatively, the penalty structure can be adjusted to impose specific penalties on the

additional parameters introduced by borrower-specific intercepts and imputed dynamics.

We propose a two-ridge model with separate ridge parameters for each penalty (ρ1, ρ2). The

first ridge effectively tunes the amount of variation allowed among the borrower-specific

intercepts. For the dynamics ridge, we consider two alternatives that trade-off on simplicity

versus flexibility. The first proposal is effectively a heterogeneous trend model where each

borrower has a distinct time trend, whose slopes are penalized towards 0. Alternatively, a

smoothness penalty is considered for the variable parameter design described by (90).

A key attribute of ridge regression coefficients is that they are a function of the ridge

parameter(s). For each specific ridge, we can examine changes in coefficient estimates over

16 See Hoerl and Kennard (1970a,b); Marquardt and Snee (1975); Kasarda and Shih (1977);
Vinod (1978).
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a range of ridge parameter values. The concept of a ridge trace refers to plotting relevant

coefficients against the ridge parameters to evaluate the impact of the ridge on specific

parameters from the model.

For uniformity, we will refer to the matrix of the regressors as X, the dependent variable

(Default) as y, and all of the estimated coefficients as β, which includes the additional

parameters for the various models (labeled by κ, δ, and α) in addition to the naive model

regressors from (77). Additionally, we will refer to the number of observations (rows of X)

as N and the number of loans as K.

4.3.2. Borrower Heterogeneity

In this section, we formulate a penalty function to resolve the perfect multicollinearity that

arises from the inclusion of borrower-specific fixed effects. To alleviate the issue, we penalize

the squared deviations from the common intercept parameter. The penalty function (and its

corresponding gradient and Hessian) are defined in (92), (93), and (94).

P1(β̂) =
1

2K
∆κT∆κ (92)

∂P1

∂βi
=


1
K

∆κ if βi ∈ ∆κ

0 otherwise

(93)

∂2P1

∂βi∂βTj
=


1
K

if i = j and βi ∈ ∆κ

0 otherwise

(94)

From this penalty function, we obtain its ridge matrix from its Hessian. Thus, for the

fixed effects ridge, Γ1 = Iκ · 1
K

, where Iκ refers to a sparse matrix with the K rows and

columns corresponding to the coefficients, ∆κ, forming an identity matrix. Thus, the closed

form solution for the fixed effects model is of the following form:

β̂FE(ρ) = (XTX + ρ1Γ1)−1XTy (95)

With this penalty, we allow for the model to accept various degrees of variation in the

borrower-specific intercepts. We refer to the ridge parameter as ρ1 as we will include a second
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ridge in the subsequent sections, which uses a separate tuning parameter. For values of ρ1

close to 0, the model suffers from multicollinearity, time-constant regressors are not identified,

and loans with few observations may have extreme intercepts. For very large values of ρ1,

the penalty will force the fixed effects intercepts to all be equal to κ0 and the results are

equivalent to the naive model. This relation can be seen in the ridge trace on the left plot

of Figure 4.1.

4.3.3. Heterogeneous Trend Model

Once we have allowed for borrower fixed effects in the model, our next contribution is to

resolve the issue of omitting time-varying predictor dynamics. For our first potential solution,

we allow for the imputed borrower heterogeneity to change linearly over time. This can be

achieved by including borrower-specific time trends. With these K additional parameters,

which we call δi, we allow for individuals’ intercepts to change linearly within the model

through the regression coefficients. It is possible to extend this methodology to allow for

quadratic or higher order paths over time; however, for each additional degree polynomial

we allow for, we must estimate K additional parameters.

Once again, the issue of perfect multicollinearity arises from the inclusion of the borrower-

specific slope parameters. Similar to the fixed effects penalty, we introduce a ridge to penalize

the magnitude of these slope coefficients towards 0. This ridge matrix, Γδ = Iδ · 1
K

, is similar

to that of the fixed effect ridge where Iδ is similar to Iκ; however, the identity matrix is

located in the block that corresponds to the parameters in δ. The derivation of this ridge

mimics that of the fixed effects ridge. The resulting model yields the following solution:

β̂lin(ρ) = (XTX + ρ1Γ1 + ρ2Γδ)
−1XTy (96)

Intuitively, this penalty forces the slopes of the time trends to approach 0 as the penalty

strengthens (as ρ2 increases). As ρ2 approaches 0, the δ’s vary widely and the estimation

suffers from perfect multicollinearity. This relation is depicted in the right plot of Figure 4.1,
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where ρ1 is fixed to be large (effectively implementing a single-intercept model) to maintain

the two-dimensional nature of the ridge trace.
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Figure 4.1. Ridge Traces of Penalty Functions

Note: Imputed distribution of heterogeneity parameters and their relation with ridge parameters
(Atlanta sample)

4.3.4. Nonlinear Dynamics

The assumption of linear trends in heterogeneity can be fairly restrictive. In this section,

we propose an alternative model to allow for non-linear dynamics over time. Rather than

expand the polynomial form as described in the previous section, we do so by replacing

the trend parameters with N time-varying parameters (represented as ∆κit in (90)) and

imposing a smoothness penalty for each individual. To distinguish these parameters from

the time-constant heterogeneity parameters, we label them as αit.

To resolve the model overfitting issue that arises from these additional parameters, we pe-

nalize the squared successive deviations in the α parameters within each loan. This smooth-

ness penalty can be computed using the differencing matrix, A, which is a sparse matrix,

where Aα ≡ blkdiag(Ai) for i = 1, ..., K is in the block corresponding to the α parameters.
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Ai =



1 0 0 · · · · · · 0

-1 1 0 · · · · · · 0

0 -1 1 0 · · · 0

... 0
. . . . . . . . .

...

...
...

. . . . . . . . . 0

0 0 · · · 0 -1 1



This matrix allows for us to compute Aαα, which computes the successive deviations in

α. From this, we formulate the penalty function in (97).

P2(β̂) =
1

2K
αTATαAαα (97)

∂P2

∂βi
=


1
K
ATαAαα ∀βi ∈ α

0 otherwise

(98)

∂2P2

∂βi∂βTj
=


1
K
ATαAα ∀βi, βj ∈ α

0 otherwise

(99)

With this penalty, we construct the ridge matrix Γα = 1
K
ATA from (99). Since this for-

mulation replaces the linear ridge from the prior subsection, we replace Γδ with Γα, yielding

the solution:

β̂smooth(ρ) = (XTX + ρ1Γ1 + ρ2Γα)−1XTy (100)

The intuition surrounding this penalty at its ridge parameter bounds are that for ρ2 close

to 0, the model is severely overfit and each α parameter is being estimated from only one

observation. As ρ2 increases towards infinity, the α parameters will all converge to 0. We fix

ρ1 to be large and depict the trace of the mean α coefficient on the left and penalty function

values on the right of Figure 4.2.
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Figure 4.2. Nonlinear Dynamics Ridge Trace

Note: Nonlinear penalty ridge traces for ᾱit and P2(β) (Atlanta sample)

4.4. Parameter Selection and Interpretation

To obtain a single set of parameter estimates for each model, we must select specific values

for the ridge parameters. This parameter selection issue has been a topic of interest in

ridge regression for quite some time having been discussed by Hoerl and Kennard (1970a,b);

Marquardt and Snee (1975); Kasarda and Shih (1977); Vinod (1978); and Golub et al. (1979).

In this section, we adapt a variation of 10-fold cross-validation to select parameter values

that maximize out-of-sample predictive performance. The relationship between the ridge

parameters and the R2 of the ridge regression model provides an intuitive transformation of

the parameter selection problem into an optimization problem where the domain of interest

is the degree of increased model fit allowed by each additional ridge parameter.

4.4.1. Using Model Fit to Transform Ridge Parameters

One of the benefits of allowing for borrower heterogeneity and dynamics is a better fit

model. Consequently, we turn to the relationship between ρ and R2. If we start with a large
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penalty, the penalized parameters are trivial; however, as we relax the penalty strength (ρ

decreases), the model R2 monotonically increases as depicted in Figure 4.3.
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Figure 4.3. Ridge Trace of Model Fit

Note: Ridge traces of model R2 for each penalty function (Atlanta sample)

This injective relation between the ridge parameters and R2 provides a more interpretable

specification of the ridge parameters, where ∆1 is the marginal increase of the fixed effects

model R2 over the naive model fit. Thus, if we specify how much variation we wish to be

captured by time-constant borrower heterogeneity, we obtain a unique ρ1, and thus, a unique

β̂.

∆1 = R2
FE(ρ1)−R2

naive (101)

Similarly, we can transform the selection of ρ2 with a specification of ∆2, which represents

the additional explanatory power captured by imputed dynamics. This design, as shown in

(102), transforms the parameter selection problem into a specification of model fit.

∆2 = R2 −R2
FE (102)

Although this transformation still has two parameters for specification, selecting ∆1 and

∆2 is less arbitrary than other methods of parameter selection. This specification gives the

ridge traces for the ridge regression parameters a degree of interpretability.
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4.4.2. Maximizing Out-of-Sample Prediction

After transforming the ridge parameter selection issue into a specification of model fit, we

incorporate cross-validation methods to tune the transformed parameter so as to maximize

the out-of-sample prediction accuracy. For each MSA, we partition the set of loans into 10

disjoint testing sets. For each testing set, the remaining loans are used as training sets in

the ridge regression models. This 10-fold procedure is independently applied on two random

partitions of loans, which yields 20 distinct training and test sets.

For each training set, we obtain a unique ρ1 that achieves the marginal increase in model

fit specified by ∆1. This yields updated coefficients for the observed independent variables

(the fixed effects coefficients are disregarded as they relate to unobserved variables). Using

these updated coefficients, we apply the testing set and evaluate the predicted values.

Since the outcome variable is dichotomous, we measure the testing set predictions using

the receiver operating characteristic (ROC) curve. An ROC curve plots the true positive

prediction rate against the false positive rate over the entire domain for the cutoff to predict

default. This effectively varies the required probability of default for the model to predict

that a borrower will default. In machine learning, models of various complexity can be

compared by evaluating the integral (AUC) of this curve (with larger values indicating better

performance).

The testing AUCs are calculated and averaged for each of the 20 cross-validation itera-

tions. The resulting curve is traced out across the ∆1 domain for the Atlanta subsample in

Figure 4.4. The optimal parameter is selected from maximizing this curve (∆∗1 = 0.036 for

ATL). This transforms the parameter selection issue into the optimization problem in (103).

∆∗1 = max
∆1

¯AUCtest(∆1) (103)

However, this marginal increase in out-of-sample performance is not guaranteed for all

MSA-penalty combinations. As detailed in Table 4.3, which provides optimal parameters
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values and the impact on the explanatory variable coefficient magnitudes, 7/20 MSAs do

not obtain any improvements beyond the naive model estimates.
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Figure 4.4. AUC Maximization Example

Note: Ridge trace for the mean AUC from two partitions of 10-fold cross-validation for the ATL
subsample. The star marks the optimal value for ∆1 that maximizes the out-of-sample predictive
performance.

This procedure is repeated in (104) for ∆2 in the linear and non-linear models with ∆∗1

fixed. These results are presented in Tables 4.4 and 4.5.

∆∗2 = max
∆2

¯AUCtest(∆2|∆1) (104)
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Table 4.3. Optimal Fixed Effects Ridge Strengths

MSA R2
0 ∆∗1 ∆FICO ∆CLTV ∆Fulldoc ∆ARM ∆Term

ATL 9.69% 3.60% 0.63% 0.53% 1.86% 0.74% 1.53%
BOS 15.78% 0.70% −0.04% 0.02% 0.22% −0.15% 0.34%
CHA 9.08% 3.20% 0.25% 0.04% 0.15% −0.72% 1.94%
CHI 12.47% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
CLE 8.06% 0.90% 0.26% 0.06% −0.44% 0.15% −0.74%
DAL 7.22% 4.10% 0.46% 0.11% 1.54% 0.53% 1.25%
DEN 7.54% 9.00% 3.75% 3.14% 7.09% 9.31% 9.21%
DET 9.96% 1.00% 0.20% 0.23% 0.20% 0.43% 1.38%
LV 15.97% 4.00% −0.06% −0.62% 1.20% 0.36% 1.86%
LA 15.19% 14.30% −0.33% 4.45% 1.66% −8.62% 12.65%

MIA 19.65% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
MIN 12.01% 5.80% 0.95% 1.44% 3.39% 3.14% 5.37%
NY 17.86% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

PHX 14.14% 8.80% 0.28% 3.18% 5.62% −3.74% 7.88%
POR 12.74% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
SD 12.05% 14.10% 1.56% 6.06% 3.49% −10.10% 12.22%
SF 13.30% 14.50% 1.06% 4.54% 2.93% −17.30% 10.18%

SEA 14.55% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
TPA 16.41% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
DC 14.06% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

ALL 13.73% 5.92% 0.37% 1.73% 1.66% −3.23% 4.68%

Optimal fixed effects ridge penalties for each MSA and the percent change in coefficient magnitudes
resulting from including omitted variable imputations. Estimates for ALL are weighted averages
across the 20 CS-MSAs.
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Table 4.4. Optimal Linear Ridge Strengths

MSA R2
0 + ∆∗1 ∆∗2 ∆FICO ∆CLTV ∆Fulldoc ∆ARM ∆Term

ATL 13.29% 1.90% 0.16% −0.62% 0.50% 3.74% −0.25%
BOS 16.48% 4.20% −1.03% −2.02% 1.04% −0.51% −0.23%
CHA 12.28% 0.50% −0.01% −0.25% −0.21% −0.06% 0.18%
CHI 12.47% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
CLE 8.96% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
DAL 11.32% 1.00% −0.01% −0.50% 0.18% 0.20% −0.21%
DEN 16.54% 1.30% 0.39% −0.32% 0.22% 3.80% 1.29%
DET 10.96% 0.60% 0.22% −0.16% −0.04% 0.58% 0.27%
LV 19.97% 3.10% −0.97% −3.80% −0.24% 3.78% −1.95%
LA 29.49% 3.90% −1.29% −3.29% −2.53% −1.42% 1.35%

MIA 19.65% 5.40% −1.34% −3.62% −4.35% −1.32% −0.52%
MIN 17.81% 1.40% −0.02% −0.65% 0.29% 2.16% 0.32%
NY 17.86% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

PHX 22.94% 2.50% −0.78% −2.52% 0.58% 3.03% −0.33%
POR 12.74% 7.30% −1.78% −2.96% −0.72% −2.35% −0.22%
SD 26.15% 4.20% −1.32% −2.69% −2.41% 6.30% 0.44%
SF 27.80% 6.20% −2.18% −4.40% −2.87% −1.58% 0.33%

SEA 14.55% 0.70% −0.15% −0.27% −0.14% −0.08% −0.04%
TPA 16.41% 0.10% −0.02% −0.06% −0.03% 0.01% 0.02%
DC 14.06% 4.70% −0.89% −1.64% 0.11% 0.62% 0.87%

ALL 19.64% 3.00% −0.79% −2.07% −1.08% 0.58% 0.12%

Optimal heterogeneous trend ridge penalties for each MSA and the percent change in coefficient
magnitudes resulting from including omitted variable imputations. Estimates for ALL are weighted
averages across the 20 CS-MSAs.

89



Table 4.5. Optimal Nonlinear Ridge Strengths

MSA R2
0 + ∆∗1 ∆∗3 ∆FICO ∆CLTV ∆Fulldoc ∆ARM ∆Term

ATL 13.29% 2.20% 0.04% −0.51% 0.54% 2.73% −0.06%
BOS 16.48% 5.50% −1.27% −2.04% 0.99% −1.00% 0.24%
CHA 12.28% 0.40% −0.02% −0.16% −0.12% −0.08% 0.10%
CHI 12.47% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
CLE 8.96% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
DAL 11.32% 1.20% −0.04% −0.46% 0.18% 0.11% −0.18%
DEN 16.54% 1.50% 0.22% −0.29% 0.42% 2.80% 1.05%
DET 10.96% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
LV 19.97% 2.50% −0.70% −2.20% −0.19% 1.79% −0.91%
LA 29.49% 4.20% −1.58% −2.35% −2.30% −2.38% 0.93%

MIA 19.65% 6.80% −1.70% −3.52% −4.45% −1.76% −0.07%
MIN 17.81% 1.50% −0.08% −0.42% 0.29% 1.42% 0.53%
NY 17.86% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

PHX 22.94% 3.40% −1.24% −2.05% 0.30% 0.98% −0.11%
POR 12.74% 8.50% −1.95% −2.63% −0.60% −3.34% 0.10%
SD 26.15% 5.90% −2.10% −2.53% −2.68% 2.53% 0.41%
SF 27.80% 7.90% −2.86% −3.80% −3.27% −6.13% 0.16%

SEA 14.55% 1.20% −0.25% −0.35% −0.19% −0.28% −0.02%
TPA 16.41% 0.10% −0.02% −0.04% −0.02% 0.00% 0.02%
DC 14.06% 6.40% −1.20% −1.60% 0.23% −0.39% 1.15%

ALL 19.64% 3.62% −1.04% −1.70% −1.12% −0.72% 0.20%

Optimal non-linear dynamics ridge penalties for each MSA and the percent change in coefficient
magnitudes resulting from including omitted variable imputations. Estimates for ALL are weighted
averages across the 20 CS-MSAs.
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4.5. Discussion

In mortgage default analysis, many important predictor variables pertain to loan or bor-

rower characteristics that are only recorded at origination of the loan. For example, since

a borrower’s credit score is often used to model default risk, the omission of its dynam-

ics potentially results in biases in coefficients correlated with those credit score dynamics.

Such omitted dynamics may arise from other dynamic variables such as borrower income

or wealth. Additionally, the issue of perfect multicollinearity arises when including borrower

fixed effects to capture unobserved heterogeneity.

We resolve these issues by introducing a two-dimensional ridge regression model to impute

predictor dynamics and borrower heterogeneity. Although these models require a subjective

specification of ridge parameters, ρ, we transform this problem into an optimization problem

where parameters are selected such that out-of-sample performance is maximized.

From analysis of relative changes in parameter magnitudes, we can infer some details

regarding the bias introduced by these omissions. The most apparent evidence of the bias is

in the CLTV coefficient where the fixed effects ridge increases the magnitude of its coefficient

and the dynamic ridges result in a decrease. This is consistent with CLTV ratio capturing

some of the variation of dynamic omitted factors such as income or wealth. In the context

of our models, this implies that the CLTV ratio is actually a lesser signal of default if we

could observe information such as borrowers’ views about the morality of default or omitted

dynamics.

The insights from these findings can aid in understanding the importance of many factors

relating to both strategic behavior and default risk. In a period with lax documentation

standards, such as the pre-crisis period, weak or even potentially fraudulent borrowers may

have qualified for loans. If some of these weak but fully documented borrowers were more

strategic, then when prices fell they may have found default optimal. Therefore, the price

variable may have absorbed some of the effects of the documentation variable.
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To make this clearer, imagine a world where there are two groups of borrowers. One group

consists of strategic, fraudulent borrowers and the other of non-strategic, legitimate borrow-

ers. Consider two scenarios. The first scenario allows borrowers to simply check a box to

declare full documentation status. Whether someone checked the box would not provide any

information on their default probability. On the other hand, falling house prices would lead

the strategic fraudulent borrowers to default and therefore the price variable would explain

the variation in borrower performance. The second scenario involves perfect documentation.

In this case no fraudulent borrower would pass the documentation requirements and all fully

documented loans would be held by non-strategic borrowers. In this scenario, full documen-

tation would explain much of loan performance and price would explain much less of the

loan performance.

To further support our results, extensions of this project include lifting the penalized re-

gression framework into a logit or probit setting and implementing bounded estimation to

ensure plausible results. In a non-linear estimation model, such as logit and probit, compu-

tation of penalized coefficients is far more time consuming due to the lack of closed form

solutions. In regards to bounded estimation, due to the bounded nature of the probability

of default, it may be possible to further restrict parameter estimation to more closely reflect

reality.
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Chapter 5. Conclusion

The measurement of risk in mortgage portfolios and subsequent pricing of mortgage-backed

securities involves modeling the multivariate return distribution of a large number of loans

with highly correlated collateral values. The risk implications of these correlations are usually

masked whenever economic conditions are strong and most loans simply yield their constant,

scheduled coupon rate. However, when the economy faces a downturn and a default shock

occurs, the VaR framework in Section 2.4 shows how the shock has compounding effects

from the increased risk to the individual loans, but also from the larger correlations across

the asset returns.

Even under the assumption of normally distributed housing returns, the relationship be-

tween the degree of censoring (default rate) and theoretical correlation across the loan returns

is highly non-linear. For example, when the underlying properties have a correlation of ρ, the

model predicts a correlation of 0.297 · ρ when default rates are as low (1.41%) and 0.599 · ρ

at just 11.54% default. This suggests that the observed asset correlations for these portfolios

in the years preceding the crisis would have been roughly half of the levels experienced at

the peak of the crisis. These findings from Chapter 2 demonstrate an important structural

relationship between the underlying distribution of housing returns and the risk of a portfolio

of loans secured by those properties.

Given the spatially dependent distribution of mortgage returns, which effectively defines

the diversification potential for the mortgage market, the geographical concentration of the

outstanding mortgage market can lead to additional limits to diversification. The exam-

ination of the geographical concentration of mortgage debt in Chapter 3 produces some

interesting results when contrasting between conforming loans eligible for purchase by the

GSEs and the jumbo mortgage market, which tend to be held as portfolio loans on the bal-

ance sheets of large financial institutions. Unlike the geographically disperse governmental

programs that currently capture a large share of new mortgage originations, private mar-
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ket loans tend to be heavily concentrated in major metropolitan areas where high property

values often require large loans beyond the thresholds for GSE eligibility.

Regardless of the potential for investors to create a geographically diversified portfolio

of mortgages, the decision of borrowers to default on these loans lies at the center of the

measurement of portfolio risk. The censored variable framework in Chapter 2 demonstrates

how the correlations across the underlying housing are revealed in a portfolio through the

default rate, or the ex-ante probability of default. This mortgage default decision can be

challenging to statistically model due to data limitations. The econometric methodology

outlined in Chapter 4 aims to impute unobserved borrower heterogeneity and dynamics to

examine if these potential omissions lead to biases in the estimation of the effects of various

observed default factors.

As a whole, this dissertation contributes to the existing literature on the modeling of risk in

the mortgage market and the literature examining geographical diversification, particularly

for assets that are spatially dependent. The findings of these three essays demonstrate the

challenges that investors may face when constructing a geographically diversified portfolio

of mortgages and how the benefits of this diversification are substantially reduced in periods

with poor economic conditions and increased default rates.
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Appendix A. The CS-20 MSAs

Table A.1. List of CS-20 MSAs

MSA Metropolitan Statistical Area

ATL Atlanta-Sandy Springs-Marietta, GA
BOS Boston-Cambridge-Quincy, MA-NH
CHA Charlotte-Gastonia-Rock Hill, NC-SC
CHI Chicago-Joliet-Naperville, IL-IN-WI
CLE Cleveland-Elyria-Mentor, OH
DAL Dallas-Fort Worth-Arlington, TX
DEN Denver-Aurora-Broomfield, CO
DET Detroit-Warren-Livonia, MI
LV Las Vegas-Paradise, NV
LA Los Angeles-Long Beach-Santa Ana, CA

MIA Miami-Fort Lauderdale-Pompano Beach, FL
MIN Minneapolis-St. Paul-Bloomington, MN-WI
NY New York-Northern New Jersey-Long Island, NY-NJ-PA

PHX Phoenix-Mesa-Glendale, AZ
POR Portland-Vancouver-Hillsboro, OR-WA
SD San Diego-Carlsbad-San Marcos, CA
SF San Francisco-Oakland-Fremont, CA

SEA Seattle-Tacoma-Bellevue, WA
TPA Tampa-St. Petersburg-Clearwater, FL
DC Washington-Arlington-Alexandria, DC-VA-MD-WV

ALL Totals or averages across all CS-MSAs
USA Totals or averages of U.S. Census data

List of the 20 Metropolitan Statistical Areas in the S&P CoreLogic Case-Shiller 20-City Composite
Home Price NSA Index.
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Appendix B. HPI Correlation Matrix

Table B.1. Average House Price Return Correlations Across ZIP Codes

ATL BOS CHA CHI CLE DAL DEN DET LV LA MIA MIN NY PHX POR SD SF SEA TPA DC

ATL 0.68
BOS 0.52 0.80
CHA 0.57 0.34 0.59
CHI 0.58 0.43 0.51 0.69
CLE 0.49 0.32 0.42 0.53 0.53
DAL 0.46 0.32 0.37 0.25 0.24 0.55
DEN 0.52 0.38 0.37 0.34 0.41 0.52 0.70
DET 0.55 0.45 0.43 0.54 0.55 0.31 0.50 0.75
LV 0.58 0.51 0.42 0.66 0.49 0.38 0.46 0.65 0.91
LA 0.45 0.47 0.33 0.54 0.34 0.20 0.21 0.46 0.74 0.83

MIA 0.52 0.46 0.38 0.58 0.38 0.32 0.39 0.52 0.82 0.67 0.80
MIN 0.65 0.63 0.50 0.64 0.55 0.42 0.57 0.64 0.69 0.55 0.63 0.77
NY 0.48 0.69 0.36 0.53 0.31 0.22 0.23 0.37 0.57 0.55 0.55 0.59 0.74

PHX 0.53 0.48 0.43 0.59 0.41 0.37 0.45 0.58 0.81 0.63 0.78 0.64 0.55 0.86
POR 0.54 0.17 0.54 0.60 0.47 0.37 0.42 0.48 0.67 0.41 0.59 0.54 0.31 0.67 0.81
SD 0.47 0.55 0.30 0.55 0.41 0.24 0.33 0.54 0.73 0.78 0.66 0.63 0.55 0.61 0.38 0.81
SF 0.52 0.52 0.38 0.53 0.40 0.29 0.37 0.55 0.67 0.73 0.61 0.60 0.51 0.62 0.40 0.74 0.78

SEA 0.58 0.25 0.55 0.62 0.46 0.38 0.39 0.49 0.70 0.57 0.61 0.59 0.37 0.66 0.73 0.55 0.57 0.82
TPA 0.59 0.52 0.46 0.63 0.44 0.41 0.45 0.54 0.80 0.67 0.79 0.68 0.60 0.79 0.65 0.66 0.63 0.68 0.83
DC 0.43 0.52 0.32 0.61 0.39 0.17 0.22 0.44 0.70 0.74 0.69 0.59 0.65 0.65 0.46 0.71 0.64 0.55 0.69 0.77

Average correlations across housing returns across ZIP codes within the 20 CS-MSAs. The annual HPI data at the five-digit ZIP code level
is obtained from the FHFA and spans various starting points through 2017. Returns are calculated by differencing the natural logarithm of
HPI levels. Presented correlations are the means after allocating the 8,280,415 ZIP code level correlations across 4,070 ZIP codes to the 210
CS-MSA combinations.
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Appendix C. Truncated and Censored Normal Distributions

The statistical foundations for deriving the closed form solution of the correlation across

censored loan returns in Section 2.3 comes from the work on the bivariate truncated nor-

mal distribution in Chapter 46 Section 9 of Kotz, Balakrishnan, and Johnson (2000). The

relationship between truncated and censored data allows us to adapt these concepts to the

return structure of mortgage loans.

In this appendix, we derive the necessary moments to obtain the correlation for the cases

of right truncation and right censoring of the bivariate standard normal distribution. In

Table C.1, we consolidate the relevant moments for each distribution, which are procured in

more detail throughout the remainder of this appendix.

As in Kotz et al. (2000), we start with (105), a standard bivariate normal distribution with

a latent correlation of ρ. For the truncated case, (106), only values of X1 < h are used.17

Censoring, on the other hand, observes the values that were truncated, but replaces the true

latent value with a constant, censoring value, c, as in (107).

X1, X2 ∼ N(0, 0, 1, 1, ρ) (105)

T1, T2 = X1, X2 | X1 < h (106)

C1, C2 = X∗1 , X2 where X∗1 =


X1 if X1 < h

c if X1 ≥ h

(107)

In many cases of censoring, the censoring value, c, is equal to h maintaining a contin-

uous relationship with the latent variable. However, the coupon rate (censoring return for

mortgages) is unlikely to align perfectly with the factors influencing the default decision

(determining h), so we use a separate constant, c. To match with the example in Section 2.3,

we also present the simplified results where c = 0.

17 This deviates slightly from the example in Kotz et al. (2000) with a simple adjustment to right
truncation as opposed to left truncation as in their example.
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By definition, the expectation of a standard normal variable, (108) where φ(·) refers to

the standard normal pdf, is equal to 0.

E[X1] =

∫ ∞
−∞

xφ(x)dx = 0 (108)

To obtain the expectation of a truncated variable, the normal density function is scaled by

the cumulative density at the point of truncation, Φ(h). This rescales the density function

to (109) to ensure that the area under the curve remains equal to 1. This cumulative density

factors out of the integral in (110) yielding the result in (111).

φT (x) =


φ(x)

Φ(h)
if x < h

0 if x ≥ h

(109)

E[T1] =

∫ h

−∞
xφT (x)dx (110)

=
1

Φ(h)

∫ h

−∞
xφ(x)dx = −φ(h)

Φ(h)
(111)

For the censored case, the limits of integration are partitioned into two intervals as in (112).

The first integral yields the expectation conditional on x < h (since limx→−∞ φ(x) = 0). This

is also the truncated expectation multiplied by Φ(h), which is equal to 1 − the probability

of censoring. The latter integral spans the censored range and yields the censoring value, c,

multiplied by the probability of censoring. The assumption of c = 0 eliminates the latter

term in (114), yielding (115).

E[C1] =

∫ h

−∞
xφ(x)dx+

∫ ∞
h

cφ(x)dx (112)

= (−φ(x))
∣∣h
−∞ + c · (Φ(x))

∣∣∞
h

(113)

= −φ(h) + c · (1− Φ(h)) (114)

c = 0 =⇒ = −φ(h) (115)

The second raw moments are solved by similar methods, (116)–(119) for truncated case

and (120)–(123) for censored case, and presented in (141) of Table C.1. The steps from
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(118) to (119) and from (121) to (122) require the use of L’Hôpital’s Rule to resolve the

indeterminate solution (of the form −∞ · 0) for limx→−∞(xφ(x)), which approaches 0.

E
[
T 2

1

]
=

∫ h

−∞
x2φT (x)dx (116)

=
1

Φ(h)

∫ h

−∞
x2φ(x)dx (117)

=
1

Φ(h)
· (Φ(x)− xφ(x))

∣∣h
−∞ (118)

= 1− hφ(h)

Φ(h)
(119)

Just as with the first raw moment, the censored second raw moment when c = 0 is equal

to that of the truncated case multiplied by Φ(h).

E
[
C2

1

]
=

∫ h

−∞
x2φ(x)dx+

∫ ∞
h

c2φ(x)dx (120)

= (Φ(x)− xφ(x))
∣∣h
−∞ + c2 · (Φ(x))

∣∣∞
h

(121)

= Φ(h)− hφ(h) + c2 · (1− Φ(h)) (122)

c = 0 =⇒ = Φ(h)− hφ(h) (123)

These raw moments are combined to produce the variances in (125) and (127) along with

the simplified censored case in (128) for c = 0.

var(T1) = E
[
T 2

1

]
− E[C1]2 (124)

= 1− hφ(h)

Φ(h)
−
(
φ(h)

Φ(h)

)2

(125)

var(C1) = E
[
C2

1

]
− E[C1]2 (126)

= Φ(h)− hφ(h)− φ(h)2 + c(1− Φ(h))(cΦ(h) + 2φ(h)) (127)

c = 0 =⇒ = Φ(h)− hφ(h)− φ(h)2 (128)
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For the truncated distribution, the truncation changes the unconditional distribution of

T2. Kotz et al. (2000) show this, and the remaining moments for the truncated case in

(144)–(149) of Table C.1, come from Equations (46.155)–(46.160) in Kotz et al. (2000).18

However, for the censored case, the unconditional distribution of the second variable, C2,

is unaffected and remains a standard normal variable; thus, the covariance, (129), simplifies

to (130) since E[C2] = 0.

cov(C1, C2) = E[C1C2]− E[C1]E[C2] (129)

= E[C1C2] (130)

The expectation of the product of C1 and C2 can be written as the sum of the two double

integrals in (131) where f(x, y) is the joint density function for the bivariate standard normal

distribution.

cov(C1, C2) =

∫ h

−∞

∫ ∞
−∞

xyf(x, y)dydx+

∫ ∞
h

∫ ∞
−∞

cyf(x, y)dydx (131)

In the first term, x can be factored out of the inner integral, and since c is a constant, it

can be factored out of both integrals in the latter term.

cov(C1, C2) =

∫ h

−∞
x

∫ ∞
−∞

yf(x, y)dydx+ c

∫ ∞
h

∫ ∞
−∞

yf(x, y)dydx (132)

Since
∫
yf(x, y)dy = ρxφ(x), we can substitute this into both terms, which yields (133).

cov(C1, C2) = ρ

∫ h

−∞
x2φ(x)dx+ ρc

∫ ∞
h

xφ(x)dx (133)

The first integral in (133) is identical to the second raw moment when c = 0 and the latter

integral yields the probability density at h. This yields the solution in (134), which simplifies

18 The variance in (142) deviates from (46.161) in Kotz et al. (2000) by using the variance of a
right truncated variable rather than a left truncated variable as in their example. Additionally, the
conditional expectation in (143) is from the text preluding (46.155).
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to (135), and further to (136) when c = 0.

cov(C1, C2) = ρ(Φ(h)− hφ(h)) + ρc(−φ(h)) (134)

cov(C1, C2) = ρ(Φ(h) + (c− h)φ(h)) (135)

c = 0 =⇒ = ρ(Φ(h)− hφ(h)) (136)

Substituting (127) and (134) respectively into the definition of correlation, (137), we obtain

the solution for the correlation in (138).

corr(C1, C2) =
cov(C1, C2)√

var(C1)
√

var(C2)
(137)

= ρ · Φ(h) + (c− h)φ(h)√
Φ(h)− hφ(h)− φ(h)2 + c(1− Φ(h))(cΦ(h) + 2φ(h))

(138)

If we substitute (128) and (135) into (137) for the simplified case of censoring, this greatly

reduces the simplicity of the closed form solution and it thus applied to the example in

Section 2.3.

= ρ · Φ(h)− hφ(h)√
Φ(h)− hφ(h)− φ(h)2

(139)
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Table C.1. Relevant Moments of Standard, Truncated, and Censored Normal Distributions

Distribution: Standard Normal Truncated Normal Censored Normal

Variables: X1, X2 T1, T2 C1, C2 | c = 0

E[X1] 0 −φ(h)

Φ(h)
−φ(h) (140)

E[X2
1 ] 1 1− hφ(h)

Φ(h)
Φ(h)− hφ(h) (141)

var(X1) 1 1− hφ(h)

Φ(h)
−
(
φ(h)

Φ(h)

)2

Φ(h)− hφ(h)− (φ(h))2 (142)

E[X2|X1] ρ ·X1 ρ · T1 ρ · C1 (143)

E[X2] 0 ρ · E[T1] 0 (144)

E[X2
2 ] 1 ρ2 · E[T 2

1 ] + 1− ρ2 1 (145)

var(X2) 1 ρ2 · var(T1) + 1− ρ2 1 (146)

E[X1X2] ρ ρ · E[T 2
1 ] ρ · E[C2

1 ] (147)

cov(X1, X2) ρ ρ · var(T1) ρ · E[C2
1 ] (148)

corr(X1, X2) ρ ρ ·
[
ρ2 +

1− ρ2

var(T1)

]−1/2

ρ · E[C2
1 ]√

var(C1)
(149)
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Appendix D. PFO Monotonicity Constraints

Similar to the two monotonicity constraints for the standard parabolic fractal given by (53)

and (54) in Section 3.1.2, the quadratic functional form requires two constraints to force the

fitted curve to be non-increasing. To start, substitute the definition of orthogonalized term

from (50) into the regression equation from (51).

ln(x)

σx
= β0 + β1

ln(r)

σr
+ β2

ln2(r)− γ̂0 − γ̂1 ln(r)

σe
+ ε (150)

As with the standard parabolic fractal regression, the constraints require the first derivative

(151) to be non-positive over the relevant domain.

d(r) =
d ln(x)/σx
d ln(r)

=
β1

σr
+ β2

2 ln(r)− γ̂1

σe
(151)

Another result from the normalization of ln(r) is that the domain shifts as well. Thus,

rather than being defined over r ∈ [0.5, n − 0.5], the domain is now from ln(0.5)/σr to

ln(n− 0.5)/σr. This leads to the two following monotonicity constraints:

β1

σr
+ β2

2 ln(0.5)/σr − γ̂1

σe
≤ 0 (152)

β1

σr
+ β2

2 ln(n− 0.5)/σr − γ̂1

σe
≤ 0 (153)
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Appendix E. Implied Weights from PFO Regression

Following the scaling of the fitted, linear curve for the Zipf distribution to obtain implied

portfolio weights in Section 3.2.1, this appendix repeats the process to derive the implied

weights from the orthogonalized parabolic fractal regression.

After orthogonalizing and scaling the variables to estimate the fit for the parabolic fractal

distribution, the resulting regression from (51) is repeated in (154).

ln(x)

σx
= β0 + β1

ln(r)

σr
+ β2

û

σu
+ ε (154)

The first step involves multiplying both sides by σx.

ln(x) = σxβ0 +
σxβ1

σr
ln(r) +

σxβ2

σu
û+ σxε (155)

After taking the exponential of both sides, we obtain (156), which simplifies to (157) using

the properties of exponentials.

x = exp

(
σxβ0 +

σxβ1

σr
ln(r) +

σxβ2

σu
û+ σxε

)
(156)

= exp(σxβ0) · rσxβ1/σr · exp

(
σxβ2

σu
û

)
· exp(σxε) (157)

As with the Zipf distribution, the fitted values are scaled by their sum to obtain the implied

probability mass function (or weights). The first and last terms are both constants, and thus

cancel out, which simplifies (158) to (159).

w =

exp(σxβ0) · rσxβ1/σr · exp

(
σxβ2

σu
û

)
· exp(σxε)∑n

r=1 exp(σxβ0) · rσxβ1/σr · exp

(
σxβ2

σu
û

)
· exp(σxε)

(158)

=

rσxβ1/σr · exp

(
σxβ2

σu
û

)
∑n

r=1 r
σxβ1/σr · exp

(
σxβ2

σu
û

) (159)
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Appendix F. BKFS Data Cleaning

The full loan table from the Black Knight Financial Services (BKFS) dataset contains loan-

level information for 173,310,331 loans. Although the dataset includes loans from as early as

October 1949, we remove observations with ClosingMonth < 121, which indicate loans origi-

nating prior to 1990. The BKFS data format is a monthly sequence where ClosingMonth = 0

for December 1979, ClosingMonth = 1 for January 1980, and so on. Additionally, 35 more

observations with ClosingMonth > 443 are removed as these suggest loans originating after

the November 2016 cutoff of the dataset.

Although the data includes a variable for the ZIP code, there are two primary reasons for

conducting the analyses at the Core-Based Statistical Area (CBSA) level. First, the ZIP code

variable is only reliable at the three-digit level. Despite the BKFS documentation indicating

only the first three digits, there are some observations that contain all five digits. However,

many simply have the first three, followed by 00. Also, ZIP codes are constructed such that

their population sizes are fairly consistent, and thus, larger cities simply have more ZIP

codes. Thus, for the approach in this paper, the CBSA geography level is most appropriate.

The BKFS variable, CBSA MetroDivId, provides the identifier for the CBSA of each

property securing the respective loans. However, for the 11 CBSAs that are broken into

Metropolitan Divisions, the variable provides the division code instead of the CBSA code.

These divisions are aggregated into their respective CBSAs using the July 2015 delineation

file from the U.S. Census. Although there have been more recent updates to these delin-

eations, the July 2015 update is the most recent prior to our obtainment of the dataset.

Thus, any changes do not impact the assignment. For example, the Chicago-Naperville-

Evanston, IL, Metropolitan Division code was changed from 16974 to 16984 in the Sept.

2018 update.

Additionally, observations are removed if there are missing or non-positive original loan

balances or terms (or terms longer than 480 months). This leaves a final set of 150,468,530

loans spanning 929 CBSAs.
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Appendix G. BBX Variable Descriptions

Table G.1. Variable Descriptions from BBX Dataset

Variable Description

LoanID

This is the unique asset identifier that is generated
by concatenating the Deal Id and the data provider’s
supplied Loan Number. In the general case the loan
number is the identifier supplied by the servicer and
carried by the trustee.

ActualBalance

Amount of loan outstanding at the end of the re-
mit period from the perspective of the borrower. This
amount can differ from the ending scheduled balance
if the servicer has advanced principal payments on
the loan.

OrigAppraisalValueCalc
Cleansed or derived estimate of the property value at
the time of loan origination, as supplied by the data
provider.

FicoScoreOriginationCalc
Cleansed Fair Isaacs borrower credit score at the time
of loan closing.

DocTypeSummary
A normalized code across providers that indicates the
amount of income documentation provided by the
borrower.

IntRtTypeSummary
Specifies whether the coupon on the loan is fixed or
adjustable.

OriginalTermCalc
The cleansed or derived number of months between
the first payment date and the date the principal is
due from the borrower.

PropertyCityCalc
Cleansed or derived municipality that the property is
located in.

PropertyStateCalc
Cleansed or derived two character state code that in-
dicates the state that the property is located in.

DelinqStatus

Cleansed or derived amount of time between when
the borrower last made scheduled payments and the
current remittance period as measured in days using
the MBA delinquency calculation.
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Appendix H. Variable Definitions

Table H.1. Mortgage Default Model Variable Definitions

Variable Definition

FICO Borrowers’ origination FICO credit score
CLTV Current loan-to-value ratio as estimated in Section 4.1.1
Fulldoc 1 if borrower provided full documentation, 0 otherwise
ARM 1 if adjustable rate mortgage, 0 otherwise (fixed rate)
Term 1 if loan term is 15-years, 0 if loan-term is 30-years

Default 1 if borrower is 90+ days delinquent, 0 otherwise
04 1 if observation occurs in 2004, 0 otherwise
05 1 if observation occurs in 2005, 0 otherwise
06 1 if observation occurs in 2006, 0 otherwise
07 1 if observation occurs in 2007, 0 otherwise
08 1 if observation occurs in 2008, 0 otherwise
09 1 if observation occurs in 2009, 0 otherwise
10 1 if observation occurs in 2010, 0 otherwise
11 1 if observation occurs in 2011, 0 otherwise
12 1 if observation occurs in 2012, 0 otherwise
13 1 if observation occurs in 2013, 0 otherwise
14 1 if observation occurs in 2014, 0 otherwise

Definitions for the variables used in the mortgage default models throughout Chapter 4. Summary
statistics for these variables can be found in Table 4.1.
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