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PREFACE

Interferometric gravitational wave detection is a multinational, interdisciplinary undertaking

that thrives on the skills of thousands of people from diverse backgrounds. Scientists, engineers,

computer programmers, teachers, students, citizen scientists, etc. all are vital components to this

field’s ability to make cutting-edge contributions to human knowledge through scientific inquiry,

and to contribute to the well-being of the greater community through educational outreach pro-

grams which enrich the public with enthusiasm for the pursuit of discovery.

The research presented in this thesis was carried out within the LIGO Scientific Collaboration

(LSC). Although much of this work stemmed from discussion and collaboration with LSC members,

this dissertation has not been reviewed by the collaboration. Opinions expressed here are my own

and not necessarily those of the LSC.
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I would like to thank Gabriela González for being an amazing advisor, for her guidance and

patience, for making the LSU experimental gravity group a welcoming and fulfilling research group

to work in, and for giving me the awesome opportunity to work on my PhD doing research for

LIGO during the first-ever direct measurement of gravitational waves!

I’d also like to thank Joshua Smith for introducing me to LIGO and taking me in as a Masters

student. I really had a great time working in his lab and learning all about the LIGO instrument

and detector characterization. The experience changed my life for the better.

Thank you to Rick Savage for giving me the opportunity to work with his team while the

photon calibrator system was being installed. I gained a lot of knowledge about control systems,

calibration, and fishing from that experience.

There were countless people who were invaluable to me when learning about LIGO and working

on my thesis. Thanks to the instrumental experts such as Anamaria Effler, Stuart Aston, Joe

Betzweiser, Adam Mullavey, Shivaraj Kandhasamy, Marie Kasperek (and many more) for answering

my questions and throwing some epic nuggets of knowledge my way. Thank you to all the people

of the calibration and detector characterization groups for all of their hard work. Thanks to

Duncan MacLeod for GWpy and for being awesome, and thanks to his wife, Lucy, for also being

awesome and for a copy of “A Simples Life” by Aleksander Orlov, a book which chronicles the

life of an extraordinary meerkat. Thanks to Jess McIver for sharing knowledge of the seismic

and suspension isolation systems as well as encouraging Adventure Time quotes. Thanks to TJ

Massinger for being such a complete bad-ass and for giving an excellent ALS talk that really helped

further my understanding of how the interferometer locks. Thank you to Evan Goetz for your help

with calibration uncertainty. Thank you so much to Alex Urban and Guillermo Valdés for being

extremely helpful and answering so many of my day-to-day questions.

iii



Thanks to all my fellow students such as Marissa, Nutsinee, Jon, Chris, Robi, Khan, Daniel,

Sid, Martin, Stephen, Shania, Andre, etc. for being great colleagues, friends, and partners in crime

throughout grad school. From studying for the qualifying exam to adventures at LVC meetings

to exploring secret crawl spaces to commandeering discarded traffic signs.. Thank you all for the

countless memories!

I’d like to thank everyone who befriended me and made Baton Rouge a place to call home.

Thank you Danielle (honorary LIGO scientist) for being diabolical and obnoxious with me. Thanks

to Melanie for being a great friend and confidant. Thank you to Blaine for always being supportive

and for sharing your deep appreciation of industrial music and dank memes, and thank you to

Donk and Luther for being solid trivia partners and hilarious friends. Thank you to Matt H. for

sharing your knowledge of baseball and for being my California twin. Thank you to Chad for your

hospitality and for all the fireball. Thank you to Chase for being such a magical ray of sunshine.

Thank you to Tweety for being a friendly face and for all your random expletives. Thank you to

Sanchez for all the interesting conversations, encouragement, and for just being such a cool dude.

You will be missed. And thank you to the many others I was not able to list by name. It saddens

me to have to leave Baton Rouge behind. I hope y’all are well, and I look forward to seeing y’all

again someday.

I owe a great deal of gratitude to all my friends and family in California. Thank you to Erica for

being my cosmic butt buddy and for your continued support and friendship. Thank you to Geo and

Monica for always inviting me into your home for gatherings and for all the great memories we’ve

made over the years. Thank you to Matt for all the good times nerding out, and for introducing me

to Lightning Fast VCR Repair. Thank you to Daniel for all the great conversations and for sharing

some of your deep knowledge of biochemistry with me. Thank you to Jenny for the painting and

for your continued encouragement. Thank you to Jan for all the fur-baby pictures that brightened

my day. Thank you to Gladis and Paco for all your love and support and for treating me like one

of your own. Thank you to Fiji for being such an amazing abue. You will be missed.

iv



Thank you to Andy and Sam for keeping me company at all ungodly hours of the night while

I was working on my thesis. Thank you to my mom, Simone, and dad, Tim, for conjuring me into

existence! Thank you to Joni for your continued encouragement and for all the fun times. Thank

you to Brodie for being a pal and always having my back. Thank you to Eric for all the frivolous

trips to the Dollar Tree and for being a great uncle.

My last acknowledgement I save for my grandparents, Bonnie and Leroy. I am deeply thankful

for all the love and support you have given me my whole life. Without you this dissertation would

not have been written.

v



TABLE OF CONTENTS

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER
1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 GENERAL RELATIVITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Gravitational Radiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Gravitational-wave Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 INTERFEROMETRIC GRAVITATIONAL-WAVE DETECTORS . . . . . . . . . . . . . . . . . 9
3.1 Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 PHOTON CALIBRATOR IMAGE ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1 Photon Calibration Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Uncertainty Induced by Beam Spot Misalignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 TIME-DEPENDENT PARAMETER TRANSIENTS FOR O2 . . . . . . . . . . . . . . . . . . . . . 26
5.1 Modified Z-score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Characterizing Transients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Effect of Largest O2 Calibration Transients on Calibration Uncertainty . . . . . . . 36
5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 ANALYSIS OF O3A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.1 Characterizing Transients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vi



LIST OF TABLES

4.1 Example of image-analysis measurements of PCAL beam offsets in mm. . . . . . . . . . . . . . 25

5.1 Break down of the number individual noise transients isolated by our
algorithm using an |z| ≥ 5 threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.1 Break down of the number of individual noise transients isolated by our
algorithm using an |z| ≥ 5 threshold for O3a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vii



LIST OF FIGURES

2.1 An exaggerated illustration of the effect of the different polarization
bases of a passing gravitational wave on a ring of test masses. . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Optical layout of a simple Michelson interferometer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Advanced LIGO Optical Layout.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Schematic of the Advanced LIGO control loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Diagram of quadruple suspension isolation system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 Amplitude spectral density plots of calibration lines in GW strain mea-
sured at both LHO and LLO detectors calculated using 1024 seconds of
h(t) data from August 17, 2017 12:00:00 UTC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Fit of LHO x-end test mass illuminated to see the edge clearly. . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Fit of LHO Y-end test mass in dark chamber, so PCAL beam spots
(circled) are visible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Example of long-exposure photograph of the interferometric-beam scat-
ter from the surface of a test mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Example of 2D image array fit to 2D Gaussian distribution to estimate
the interferometric beam center ~b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 DARM time-dependent parameters calculated from calibration lines. . . . . . . . . . . . . . . . . 26

5.2 Example of the z-score algorithm applied to mock non-stationary data.
Comparison of mock data with and without a large transient at t = 2 hours. . . . . . . . . . 27

5.3 Probability density histogram of raw mock data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4 Probability density histograms comparing the distributions of z-score
data from mock data without the transients to the distribution of z-
scores of mock data with the transient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.5 Time series comparing z-scores of mock data using a mean-based method
with z-scores using a mean-based method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.6 Histograms of fcc z-scores using O2 data from LHO (left) and LLO (right). . . . . . . . . . . 31

viii



5.7 Comparison of distributions of peak z-score magnitudes for fcc at LHO
and LLO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.8 Timeseries plot of the LLO fcc centered around the peak time corre-
sponding to the largest fcc z-score event throughout O2 (January 20,
2017 15:53 UTC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.9 Comparison of distributions of peak z-score magnitudes for κC at LHO
and LLO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.10 Histograms of κC z-scores using O2 data from LHO (left) and LLO (right). . . . . . . . . . . 34

5.11 Time series of the LLO κC centered around the peak time corresponding
to the largest fcc z-score event throughout O2 (January 20, 2017 15:53 UTC).. . . . . . . . 35

5.12 Histograms of κPU z-score distribution of O2 data from LHO (left) and
LLO (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.13 Histograms of κTST z-score distribution of O2 data from LHO (left) and
LLO (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.14 Comparison of the calibration response function residuals during the
most significant noise transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.15 Normalized spectrogram of gravitational-wave strain surrounding the
January 20, 2017 events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1 Histograms of fcc z-scores using O3a data from LHO (left) and LLO (right). . . . . . . . . . 41

6.2 Time series of 1024 seconds centered on the transient in the LLO fcc
that had the highest peak z-score magnitude in O3a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.3 Time series of 1024 seconds centered on the transient in the LHO fcc
that had the highest peak z-score magnitude in O3a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.4 Histograms of κC z-scores using O3a data from LHO (left) and LLO (right). . . . . . . . . . 42

6.5 Histograms of κUIM z-scores using O3a data from LHO (left) and LLO (right). . . . . . . 43

6.6 Histograms of κPUM z-scores using O3a data from LHO (left) and LLO (right). . . . . . . 44

6.7 Time series of 1024 seconds centered on the transient in the LHL κPUM
that had the highest peak z-score magnitude in O3a due to an erroneous
segment of flat data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.8 Time series of 1024 seconds centered on the transient in the LHO κPUM
that had the highest valid peak z-score magnitude in O3a. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

ix



6.9 Histograms of κPUM z-scores using O3a data from LHO (left) and LLO (right). . . . . . . 45

6.10 Time series of 1024 seconds centered on the transient in the LHO κTST
that had the highest peak z-score magnitude in O3a due to an erroneous
segment of flat data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.11 Time series of 1024 seconds centered on the transient in the LHO κTST
that had the highest valid peak z-score magnitude in O3a. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

x



ABSTRACT

This dissertation describes a novel method of analyzing fluctuations in the time-dependent

calibration models of the LIGO interferometers to estimate their effect on strain reconstruction for

gravitational-wave detections. The time-dependence of the calibration model of each detector is

tracked with a set of parameters which are continuously measured while the interferometers are

operating. These parameters track slow variations in the sensing function of the detectors as well

as the actuators that hold the detectors in an operational state. The time-dependent parameter

data during the second observation run (O2 [November 30, 2016 16:00 UTC to August 25, 2017

22:00:00 UTC]) and the first epoch of the third observation run (O3a [April 1, 2019 15:00 UTC

to October 1, 2019 15:00 UTC]) were combed for significant fluctuations. A modified z-score

was used as a standardized metric to identify and sort time segments which correspond to noise

transients in the time-dependent calibration parameters for both detectors. The results of our

search through O2 data from the LIGO Hanford Observatory (LHO) identified a set of relatively

few noise transients all with negligible statistical significance, demonstrating that the behavior of

the time-dependent calibration parameters at LHO were largely consistent with Gaussian noise on

30-minute or less time scales. Our search through O2 data from the LIGO Livingston Observatory

(LLO) showed similar results for the parameters that track variations in actuation. Likewise,

the sensing function parameters were mostly consistent with Gaussian noise as well; however,

our search identified a small set of statistically significant noise transients. None of which were

coincident with gravitational-wave signals, and the most significant of which were estimated to

momentarily increase the strain reconstruction 1σ uncertainty from 1% to 3% in the regime of the

interferometers’ most sensitive frequency band (150 Hz). Like the O2 results, analysis of O3a data

revealed that all the time-dependent calibration parameters at each detector were mostly consistent

with Gaussian noise on 30-minute or less time scales. Our results demonstrate that overall, the

time-dependent calibration parameters experienced very few significant fluctuations throughout O2

and O3a, and even largest transient we found would have minimal impact on gravitational-wave

measurements.
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CHAPTER 1. INTRODUCTION

The Laser Interferometric Gravitational-wave Observatory (LIGO) consist of two complex in-

terferometric detectors separated by 3000km that measure fluctuations in space-time caused by

cataclysmic astrophysical events deep in the cosmos. Both detectors are located in the United

States; one is in Hanford, Washington, while the other resides in Livingston, Louisiana. The LIGO

detectors consist of a Michelson interferometer equipped with two 4-km Fabry-Perot cavities, a

power-recycling cavity in the symmetric port to increase the input laser power, a signal-recycling

cavity in the anti-symmetric port to tune the detector response bandwidth, and a myriad of other

systems which all work in concert to allow LIGO to measure differences in arm lengths down to

the order of 10−20m/
√

Hz at 150Hz [1] at the time of writing.

The construction of the LIGO sites was finished in the late 1990s, and the first observations

began in 2005 and continued intermittently until 2010 [1]. In their initial state, the interferometers

were sensitive to arm length fluctuations down to the order of 10−18m/
√

Hz at 150Hz, so the chances

of making a direct detection of gravitational-waves were slim, and indeed one was not made in

that time frame. However, this time was not wasted as the lack of observation contributed to the

upper-limits of astrophysical rate estimates, and allowed the project to expand the understanding of

large-scale intereferometers, paving the way for the next generation of gravitational-wave detectors.

From 2010 to 2015, the LIGO interferometers were shutdown and underwent various upgrades

(e.g. improved seismic isolation systems) which lowered the noise floor by a factor of approximately

10−3 at 150Hz, this second generation version of LIGO is deemed Advanced LIGO. On September

14, 2015, technically 4 days before the start of the beginning of Advanced LIGO’s first observation

run (O1), the LIGO observatories achieved the world’s first direct detection of gravitational waves.

A clear signal which featured a frequency and amplitude evolution consistent with the merger of

two compact stellar objects. On February 11, 2016, after months of careful investigation, the LIGO

Scientific Collaboration announced that the signal was caused by the inspiral and merger of two

1



intermediate-mass black holes approximately 1.3 billion light-years away [2]. O1 would last until

January 12, 2016, and two more binary black hole merger signals would be detected.

Following the success of O1, the LIGO detectors shutdown operations to undergo upgrades

for nearly 11 months before starting the second observation run (O2) on November 30th, 2016.

This time the Italian detector, Virgo, had finished undergoing upgrades and joined LIGO on

August 1, 2017, adding to the world-wide network of gravitational-wave detectors. The LIGO-

Virgo Collaboration made eight new detections during O2. Most notably, on August 17, 2017, the

first gravitational-wave signal from the merger of two neutron stars was detected in both LIGO

detectors as well as the Virgo detector. In addition, this event was corroborated by independent

electromagnetic observations. For instance, the short gamma-ray burst (GRB 170817A) from the

neutron-star collision was independently detected by the Fermi Gamma-ray Burst Monitor [3],

ushering in the beginning of multimessenger astronomy [4].

Since then the LIGO and Virgo detectors have achieved even greater sensitivity, and completed

the first phase of the 3rd observation run (O3a), spanning from April 1, 2019 to October 1, 2019.

During this time thirty-two more gravitational-wave signals have been detected, including more

binary neutron star mergers, as well as signals from the collision of a black hole and a neutron star.

The detection rate of O3 so far has been considerably higher than during previous observation

runs, and it is expected to increase even more once the Japanese gravitational-wave detector is

operational in late 2019.

Contemporary gravitational-wave detectors use laser interferometry to measure extremely small

fluctuations in local space-time which cause fluctuations in laser power which are recorded as

an electronic output signal. The output signal must be calibrated into astrophysical units by

accounting for the optomechanical response of the interferometer in order to make statements

about a possible detected gravitational wave. Since the interferometer response is expected to vary

slightly over the duration of an observation run, time-dependent components were added to the

Advanced LIGO calibration model and tracked to compensate.
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This dissertation will focus on the calibration of the LIGO detectors, and the effect that large

noise transients in the detector can have on the accuracy of minute-scale time-dependent corrections

to the calibration. Chapter 2 gives a brief introduction of gravitational waves. Chapter 3 discusses

basic relevant information regarding interferometry and calibration of LIGO detectors. Chapter 4

discusses the photon calibrator (PCAL) subsystem of Advanced LIGO, specifically on a photometric

estimation of the uncertainty introduced via test mass rotations induced by beam misalignment of

the PCAL beams. Chapter 5 discusses a statistical search for significant fluctuations in parameters

used to track time-dependent parameters during the 2nd observation run of Advanced LIGO, which

were not previously found by vetoes, the results of that search, and an estimation of the effect of

the worst-case offenders on the calibration uncertainty of the instruments. Chapter 6 discusses a

similar, preliminary analysis performed on the first 6 months of the 3rd observation run (O3a).

Chapter 7 concludes our study.
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CHAPTER 2. GENERAL RELATIVITY

2.1. Gravitational Radiation

Isaac Newton’s Theory of Universal Gravitation describes gravitation as an attractive force

between two objects with mass. The magnitude of the force is proportional to the product of their

masses and inversely proportional to the square of their spatial separation. It is an extremely

accurate model when it comes to ordinary gravity on the surface of Earth and even when it comes

to predicting most celestial mechanics; however, it is ultimately flawed in regimes of strong gravity,

and it proposes a gravitational force that propagates instantaneously over any distance, which

is at odds with our knowledge that the speed limit of information through space has a finite,

frame-invariant value, c = 299 729 458 m/s.

Albert Einstein’s theories of Special and General Relativity propose a geometrical model of

space-time which explains this phenomenon and models gravitation as the manifestation of physics

in a curved space-time, and a result of this theory is that disturbances in the gravitational field

do not propagate instantaneously. They propagate at c, and these travelling disturbances in the

gravitational field are known as gravitational waves.

In order to concisely invoke the mathematical logic that motivates the existence gravitational

waves, we start with the Einstein Field Equations (EFE) [5].

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν (2.1)

This tensor equation relates the curvature of space-time to energy-momentum density. On

the left-hand side, the Ricci curvature tensor and its trace, R, known as the Ricci scalar, Rµν ,

correspond to the curvature of a local space-time. The Ricci tensor is calculated from non-linear

combinations of the derivatives of the metric tensor, gµν , which carries information about the

structure of space-time and causality. Finally, the cosmological constant, Λ, is a correction factor

which allows for an expanding universe.
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On the right-hand side, there is one term with a coefficient that includes the Newtonian gravi-

tational constant, G, and the speed of light, c. The stress-energy tensor, Tµν , contains information

about the energy/momentum density of the gravitational system. The solutions to the EFE can

be used to determine the evolution of a gravitational system.

The scope of this dissertation will focus on gravitational radiation observed sufficiently far

away from the source to warrant the consideration of a small perturbation hµν to the Minkowski

metric ηµν in the weak-field limit and Transverse-traceless gauge (equation 2.2), in which case the

EFE reduce to leading order to a linear tensor equation (equation 2.3) [6].

gµν = ηµν + hµν (2.2)

(
∇2 − 1

c2
∂2

∂t2

)
hµν = 0 (2.3)

The simplified form may be recognized as the equation of a wave which describes the perturba-

tion propagating through space-time at the speed of light. The mathematical tensor object which

describes with travelling perturbation, hµν , is called the gravitational-wave strain tensor, and its

physical manifestation is called the gravitational-wave strain. The strain is what gravitational-

wave detectors measure as the perturbation passes through the instrument. Furthermore, in the

transverse-traceless gauge, the strain of a gravitational-wave traveling the +z direction may be

expressed as

hµν =



0 0 0 0

0 a b 0

0 b −a 0

0 0 0 0


(2.4)

This may also be expressed as a linear sum of two components. hµν = ah+ + bh×, where
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h+ =



0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0


(2.5)

and

h× =



0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0


(2.6)

.

Here, h+ and h× form an orthogonal basis for expressing the polarization of a gravitational-

wave traveling in the +z direction. The h+ component will oscillate between stretching space

along the x-axis while compressing space along the y-axis and vice-versa (Fig. 2.1), while the h×

component expresses stretching and compression along perpindicular axes rotated 45◦ around the

z-axis. The polarization of gravitational waves is important to account for as not all signals will

be aligned with the arms of the detectors [6].

2.2. Gravitational-wave Sources

General Relativity predicts that any system with a non-vanishing quadrupole moment second-

time derivative, will emit gravitational waves. More specifically,

hµν =
2G

Rc4
Ïµν (2.7)

Simply stated, this means that if a system undergoes an asymmetric redistribution of its

mass/energy density, gravitational-waves are created. As a counterexample, if an object rotates
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Figure 2.1: An exaggerated illustration of the effect of the different polarization bases of a passing
gravitational wave on a ring of test masses [7].

about a symmetric axis (e.g. a spinning top spinning without precession, or a spinning sphere)

will not produce gravitational waves. If, however, the object rotates about a non-symmetric axis,

gravitational waves are produced. But that does not mean people will detect every ripple in

space-time that is created.

The coefficient, 2G
c4

= 1.65× 10−44 s2/kgm, is such an absurdly small quantity that there is

currently no feasible way to detect a gravitational-wave signal from everyday occurrences here

on Earth. Instead, current terrestrial detectors are sensitive to gravitational wave signals from

cataclysmic astrophysical events. These sources can be categorized using two dimensions: duration

of signal, and whether a good model exists.

The most prominent well-modeled source of short-duration signals is the Compact Binary

Coalescence (CBC). In the final moments of binary systems comprised of dense stellar objects (i.e.

some combination of neutron stars and/or black holes), these objects will be orbiting each other

at relativistic speeds, disturbing space-time enough for detectors on Earth to measure it. CBC

signals are well-modeled, so matched-filtering techniques may be employed to find such signals in

the data [7].
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On the other hand, supernovae are hypothesized to be a promising source of short-duration

gravitational wave signals which are not well modeled. An asymmetry in the rapid expulsion of

matter and energy from a supernova is expected to produce gravitational waves strong enough to

potentially be measured by Earth-based detectors. Since the gravitational-wave signals emitted

from a supernova are not yet well understood, matched-filtering methods cannot be used to find

burst signals in noisy data. Instead, the data are combed for excess energy coherent in both

detectors.

Well-modeled, long-duration signals are also prospective detections. These would be the

continuous-wave (CW) gravitational-wave signals produced by rapidly spinning neutron stars. Neu-

tron stars are so dense that a small mountain on the surface could produce a signal at a well-defined

frequency and phase that may become evident with month-to-year-time-scale integrations of data.

Long-duration, unmodeled signals (stochastic signals) are the cumulative gravitational-wave

signals from numerous events throughout the universe and those left over from the Big Bang.
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CHAPTER 3. INTERFEROMETRIC GRAVITATIONAL-WAVE DE-
TECTORS

3.1. Interferometry

Albert Einstein had doubts regarding the feasibility of a direct measurement of gravitational

waves, but he was not privy to the extremely high-precision measurements made possible with

laser interferometry, a discipline of high-precision measurement techniques which is at the heart

of modern gravitational-wave detectors. When electromagnetic fields combine, they do so in su-

perposition. That is, if there are multiple sources of an electromagnetic source in a system, the

total resulting field is simply the sum of the constituent fields. If the waves are in phase, that is

called constructive interference, and the resulting field amplitude will increase. If, however, they

are out of phase the waves will cancel each other out in a process called destructive interference.

This principle is widely used to make very precise measurements, and furthermore an apparatus

that uses interferometry to make measurements is an interferometer. There are many types, each

with unique characteristics and uses, but the type of interferometer upon which LIGO is built is

called the Michelson interferometer.

Simply put, the Michelson interferometer (Fig. 3.1) consists of a coherent laser source at the

symmetric port which shines onto a beam splitter (BS) at the vertex where it is partially trans-

mitted and partially reflected. The transmitted and reflected beams travel down paths, lx and ly,

respectively. At the end of which, they encounter perfectly reflective mirrors, M1 and M2, and are

reflected back along the same paths, recombining at the antisymmetric port where its intensity is

measured at a photodetector. The intensity of light that the photodetector observes is related to

the relative phase of the beams from each path. Since the phase of a light beam depends on its

path length, the differential path lengths will determine the intensity of light at the photodetector.

The emitted laser is coherent up until it is split at the BS. Let the BS be the origin of our

reference frame (x = y = 0), and let the arms of lengths lx and ly lie across the x and y axes,

respectively. Thus, we can write the conditions for completely constructive interference as a func-
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Figure 3.1: Optical layout of a simple Michelson interferometer.
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tion of the differential path length (∆l = lx − ly) and the laser wavelength, λ, as ∆l = mλ, and

the condition for completely destructive interference as ∆l = (m + 1
2
)λ such that m ∈ N . Thus,

(9) − (8) shows that the range in differential path length corresponding to phase shift between

destructive and constructive interference is one half of the laser wavelength: ∆lfringe = λ
2
.

Thus, measuring a fine gradient of light intensities between fringes allows the operator of a

Michelson interferometer to measure distance fluctuations more precise than the wavelength of the

input laser, which at LIGO is λ = 1064nm. However, even though the LIGO interferometers are

large-scale Michelsons are their core, a pure Michelson with 4 km arm lengths would not make

be capable of making length measurements precise enough to detect gravitational waves. So to

increase sensitivity, each arm is made from Fabry-Perot Interferometers.

While at their core, the LIGO interferometers are very large-scale Michelson interferometers,

they are much more complex, compound interferometers. Fig. 3.2 shows the optical layout of the

Advanced LIGO interferometers, complete with a simple Michelson as well as a set of other optical

cavities which are vital to detecting gravitational waves.

3.2. Calibration

The LIGO interferometers each have two orthogonal evacuated tubes which each house a Fabry-

Perot cavity (arm cavity) approximately 4km in length, and they are extremely sensitive to arm

length fluctuations The lengths of the x and y arm cavities are labeled Lx and Ly respectively, and

the differential arm (DARM) length is calculated as ∆Lext = Lx−Ly. is calculated as the differential

arm length divided by the average arm length. h = ∆Lext/L̄. However, LIGO uses a feedback

control loop system to hold the interferometer in its observational state (locked state) by actuating

on the test mass positions to cancel out DARM motion, so the calculation of ∆Lext requires one

to take into account the effect of the control loop [8] as well as the optomechanical response.

This calculation is usually done in the frequency domain by modeling the main components of the

control loop as transfer functions, which will be discussed in the following section.

The optomechanical response of each LIGO interferometer is modeled as a transfer function, C;

and is referred to as the sensing function. The sensing function is used to convert arm displacement
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Figure 3.2: Advanced LIGO Optical Layout.
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Figure 3.3: Schematic of the Advanced LIGO control loop [9].

differentials into the gravitational-wave (GW) readout signal, DARM ERR (or derr). This signal

is fed into digital filter bank (the effect of which are modeled by the transfer function D) to

create the DARM-control signal dctrl. AU , AP , and AT are the actuation functions, which model

how much DARM displacement (in meters) is induced into the interferometer by feeding dctrl

into the actuators on the bottom three stages of the y-end quadruple suspension, i.e. the upper-

intermediate, penultimate, and test-mass stages (Fig. 3.4). Furthermore, the cumulative actuation

transfer function (A) from all three stages of actuation is written as A = AU + AP + AT [9].

The effect of the control loop on the differential arm length of the interferometer can be

expressed as

∆Lres = ∆Lext −∆Lctrl (3.1)

where ∆Lext is the DARM displacement caused by an external source –either a GW or noise

source–, ∆Lctrl is the DARM displacement induced by the actuators on the bottom three stages of
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Figure 3.4: Diagram of quadruple suspension isolation system. The four core optics of the LIGO
arm cavities are suspended from a four-stage-pendulum isolation system. Actuators on the bottom
three stages of the y-end suspension are used to cancel out differential arm length fluctuations [10].
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the y-end actuators, and ∆Lres is the residual DARM displacement left over after compensation.

In order to reconstruct a GW signal, we are interested in calculating ∆Lext.

One can produce an expression of ∆Lext in terms of the derr signal and the transfer functions

discussed above:

∆Lext =
1 +G

C
derr (3.2)

where G = ADC. Furthermore, the transfer function 1+G
C

is called the response function, and

it is used to reconstruct strain from derr.

The LIGO interferometers have a signal-recycling cavity placed in the anti-symmetric port

of the interferometer which allows for control over the optomechanical response using a scheme

known as Resonant Sideband Extraction (RSE) [11], and during O2, the signal-recycling cavity was

in a zero-detuned configuration, which allows the sensing function to be expressed as a single-pole

low-pass filter.

C(f) =
Kc

1 + if/fcc
e2πifL/c (3.3)

where Kc and fcc are the optical gain and the coupled-cavity pole frequency of the interfer-

ometer respectively, and the factor e2πifL/c accounts for the time delay of light traveling down the

arm cavities.

The transfer functions discussed in the previous sections are measured by injecting swept-sine

signals at certain points in the control loop and measuring the response. This is not possible during

observation runs, so “calibration lines” (sinusoidal waves of a constant frequency) are injected into

the control loop at various points in the control loop at designated frequencies using different

actuators in order to serve as fiducial marks that allow tracking the of the closed-loop transfer

function at those frequencies [8, 9].

The PCAL laser is used to actuate on directly on the test mass via radiation pressure, and

the signal associated with these lines is labeled xpc [12]. Furthermore, a line is injected into the
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Figure 3.5: Amplitude spectral density plots of calibration lines in GW strain measured at both
LHO and LLO detectors calculated using 1024 seconds of h(t) data from August 17, 2017 12:00:00
UTC. The top row (red) show the 5 LHO calibration lines: xT (fT ), xpc(fpc1), and xctrl(fctrl), such
that fT = 35.9 Hz, fpc1 = 36.7 Hz, fctrl = 37.3 Hz, fpc2 = 331.9 Hz, and fpc3 = 1084 Hz. The
bottom row (blue) show the 5 LLO calibration lines: xT (fT ), xpc(fpc1), and xctrl(fctrl), such that
fT = 16.9 Hz, fpc1 = 16.3 Hz, fctrl = 15.7 Hz, fpc2 = 331.3 Hz, and fpc3 = 1083 Hz.
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feedback system on top of the dctrl signal before it is inverted and fed into the suspension stage

actuators; this signal is labeled xctrl, and a line is injected directly into the electrostatic actuator

controlling the y-end test mass; this signal is labeled xT [9].

The calibration lines are also used for tracking time-dependent variations in the calibration

model by comparing amplitude fluctuations in the actuation signals with amplitude fluctuations

in sensed by the interferometer in the DARM ERR signal.

The time-dependent calibration model introduces time-dependent parameters into the control-

loop transfer functions. For the sensing function C the scaling factor, κC , and the coupled-cavity

pole frequency, fcc, are allowed to vary in time.

C(f, t) = κC(t)
CRes(f)

1 + if/f(t)cc
(3.4)

where CRes is the residual frequency-dependent sensing function at the reference time.

CRes(f) = C0(f)
( 1

1 + if/fcc(to)

)−1

(3.5)

In addition, the actuation transfer functions for the test mass actuator, κTST , and the penul-

timate and upper-intermediate stages, κPU .

A(f, t) = κPU(t)APU(f, t0) + κTST (t)ATST (f, t0) (3.6)

The amplitude fluctuations in the calibration injections signals are measured by demodulating

the calibration lines. Ratios of the demodulated calibration lines in DARM ERR to their corre-

sponding actuation signals are used to calculate slow-varying measurements of the time-dependent

calibration parameters.

Integral to our ability to make astrophysical statements using gravitational-wave detectors are

the accuracy and precision with which one can convert the electronic signals outputted by the

detectors into gravitational-wave strain, i.e. the calibration of the detectors. The calibration must
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take into account the various components of the interferometer as well as the control loop system

used to suppress differential arm-length fluctuations.

Over time, the calibration may fluctuate slightly due to various reasons, and so calibration

fiducials are used to track these the time-dependence of the calibration during observations on a low-

frequency scale [9]. In later chapters, this dissertation will discuss an investigation into this time-

dependent tracking method to search for the effect of unveteoed noise transients on the calculation

of these parameters and furthermore their effect on gravitational-wave strain reconstruction.
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CHAPTER 4. PHOTON CALIBRATOR IMAGE ANALYSIS

4.1. Photon Calibration Overview

The Photon Calibrator uses a laser to exert a force on the end test masses to precisely modu-

late controlled displacements into the arm-cavity lengths, Lx and Ly, at selected frequencies and

amplitudes, which are used as fiducials for calibrating the LIGO control loop [12].

The success of the Photon Calibrator as a reliable fiducial is dependent on the confidence of our

knowledge of the power the PCAL beams incident on the test mass, and furthermore our ability

to model the transfer function which maps beam power to displacement induced in the arm cavity.

The PCAL laser actuates on the test mass via radiation force which we express in terms of the

incident power, P (t) and optical efficiency of the mirror, 0 ≤ ε ≤ 1.

Frad(t) =
(1 + ε)P (t)

c
(4.1)

The PCAL laser is capable of outputting 0W to roughly 2W of power and during operation,

the power is modulated around 1W. Thus we can write the power incident on the test mass as

P (t) = Pm(1 + β cos(ωt)) (4.2)

where Pm ≈ 1W , and 0 ≤ β ≤ 1 is the modulation depth. It is interesting to derive the

response of the test mass to an actuation force.

The test mass hangs at the bottom of a quadruple pendulum. The response of a quadruple

pendulum to a driving force is quite complicated in general, and the LIGO Calibration team takes

the full quadruple-pendulum response into account. However, for modulation frequencies greater

than ≈ 10Hz, the response of a pendulum behaves like a free mass. The lowest PCAL injection

frequency is ≈ 30Hz, so this allows us to approximate the system to that of a free body being

acted upon by an external force. Consider a free particle of mass, m, initially at rest at the origin
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that undergoes a sinusoidal external force F = Frad(t)ω>w0 , one can ignore the DC component of

Frad and express the acceleration of the particle as

ẍ(t) =
(1 + ε)Pmβ

mc
cos(ωt) (4.3)

And from this one can integrate to obtain the equation of motion:

x(t) = −(1 + ε)P0

mcω2
cos(ωt) cos(θ). (4.4)

Here, Pm and β are combined into P0, and with a convenient choice of initial conditions, the

constants of integration are made to vanish. Additionally, cos(θ) is applied to account for the fact

that the PCAL beams come in from the side at an angle of θ ≈ 9.8◦. Using this expression we can

calculate amplitude length modulation induced into the arm cavity given the power and frequency

of the input PCAL laser.

This approximation is tailored for a point-particle test mass. If we require a more accurate

representation of the physics in play, we can account for the soft-body deformation of the test mass

surface [13] as well as the rigid body mechanics of the test mass as both phenomena contribute to

the calibration uncertainty when the PCAL beams are misaligned. The latter case is discussed in

the following section.

4.2. Uncertainty Induced by Beam Spot Misalignment

If the PCAL actuation point is directly through the center of mass of the mirror, then we should

expect the modulated arm length to exactly match the above expression. However, a misaligned

actuation point can introduce rotation, adding systematic error to the calibration.

The face of the test mass can be considered as a plane characterized by a Cartesian reference

frame with its origin positioned at the center of mass of this plane. We assume the PCAL beam

paths are parallel to the optical axis of the test mass. We let the points at which the PCAL beams

contact the surface of the test mass be ~a1 and ~a2 and the power amplitudes of each beam be P1
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and P2, and define an effective actuation point, ~aeff , which is the power-weighted average of ~a1

and ~a2,

~aeff =
P1 ~a1 + P2 ~a2
P1 + P2

(4.5)

If the PCAL actuation point is off-center, but the LIGO interferometer beam is perfectly

centered, then we should not expect additional displacement “seen” by the detector. If however

the actuation point and the interferometer beam are both off-center, then induced rotations will

couple into the interferometer signal, confusing the calibration. The amplitude of induced rotation

is the ratio of the mirror mass to its moment of inertia times the dot product of the positions of

the effective actuation point and the position of the center of the interferometer beam.

xrot =
M

I
~aeff ·~b (4.6)

Given the beam positions (~a1, ~a2, and ~b) one may estimate the amplitude of displacement

induced by a small misalignment of the PCAL beams with the following equation:

x0 = −(1 + ε)P0 cos(θ)

mcω2
(1 +

M

I
~aeff ·~b). (4.7)

The end-station of each arm cavity was equipped with an in-air camera that would peer into

the vacuum chamber via a periscope and look at the surface of the test mass. Using these cameras

I was able to take photographs of the test mass surfaces in order to estimate the beam locations.

The photographs were 6000x4000 pixel arrays, so my methodology involved constructing a trans-

formation of the image basis in pixels to a positions on the surface of the test mass (Fig. 4.1 and

Fig. 4.2). The test mass surface should appear circular when viewed head-on and elliptical when

viewed at an angle. Given that the test masses have precisely-known diameters (≈ 340 mm), and

that they are being viewed by the camera at an incident angle of 8.75◦, I was able to measure

the positions of the PCAL beams by fitting a set of points in the images corresponding to the

visible edge of the test mass to a ellipse, and using the fitted ellipse parameters to construct a
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Figure 4.1: Fit of LHO x-end test mass illuminated to see the edge clearly. Yellow crosses and
yellow circles are the points chosen for the curved edge and the flat edge, respectively. The smooth
curve is the elliptical fit, and the coordinate system set to the center of ellipse found by fitting.
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Figure 4.2: Fit of LHO Y-end test mass in dark chamber, so PCAL beam spots (circled) are visible.
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transformation from the photograph basis to the test-mass basis. Tab. 4.1 shows an example of

the measurements of these beam positions in mm [12].

Figure 4.3: Example of long-exposure photograph of the interferometric-beam scatter from the
surface of a test mass.

Furthermore, the position of the interferometric beam~b is also needed to estimate the rotational

uncertainty. Thus, I also took long-exposure photographs of the test-mass surfaces while the arm

cavities were in lock (Fig. 4.3). I estimated the position of the interferometric beam in the image

basis by first cropping out unrelated features from the photograph and omitting saturated pixels.

Then I fit the 2-dimensional image arrays to a 2-dimensional Gaussian distribution to obtain fitted

parameters associated with the center of the beam-scatter distribution in pixels. Then I used

the basis transformation constructed with the previous photograph to ascertain the center of the

inteferometric beam in the test-mass basis. Finally, with all the beam positions estimated, I made

estimates of uncertainty due to rotation induced from beam misalignment.
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Figure 4.4: Example of 2D image array fit to 2D Gaussian distribution to estimate the interfero-
metric beam center ~b.

Table 4.1: Example of image-analysis measurements of PCAL beam offsets in mm.

Offset (mm) LHOX LHOY LLOX LLOY

~a1
(-1.7, 4.4),
(-4.6, 7.3)

(-0.2, 2.9)
(0.0, -2.4),
(-1.2, -2.8)

(3.9, 0.0)

~a2
(-4.2,-1.8),
(-4.3, -3.9)

(-1.1, -3.6)
(-2.4, 1.7),
(-5.1, 1.7)

(1.4, 5.5)

I carried out this process each time the PCAL beams were adjusted and intermittently to

account for any changes that would possibly occur over the course of several weeks, and in the

most significantly misaligned cases I observed, the PCAL beams were misaligned by approximately

3 mm and the interferometric beam by approximately 10 mm. This should induce rotations that

would contribute an error of 0.1% in the PCAL, which is small compared to the error expected

from bulk elastic deformation [13].
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CHAPTER 5. TIME-DEPENDENT PARAMETER TRANSIENTS FOR
O2

The time-dependent calibration parameters are known to vary slightly during observation runs,

and they are tracked and compensated for faithfully on slow time scales. However, this search

method was designed for the purpose of finding transients on minute time scales. We have developed

and implemented a new method for identifying statistically significant transients in the time-

dependent calibration parameters, which was applied to O2 data to search for transient events

and to ascertain the overall effect on the calibration uncertainty for the Hanford and Livingston

detectors.

5.1. Modified Z-score

Figure 5.1: DARM time-dependent parameters calculated from calibration lines–LIGO Hanford
(red traces) and LIGO Livingston (green traces). Nominal values of all three scalar factors κTST ,
κPU and κC are 1, and the nominal value of the coupled cavity pole frequency, fcc, for LIGO
Hanford is 341 Hz and for LIGO Livingston is 388 Hz [9].
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Figure 5.2: Example of the z-score algorithm applied to mock non-stationary data. Comparison of
mock data with and without a large transient at t = 2 hours.

Figure 5.3: Probability density histogram of raw mock data. The distribution is spread over a wide
set of values. This makes setting thresholds for defining large fluctuations difficult.
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Fig. 5.1 shows the values of the time-dependent parameters over a 45-day period during O2.

It is evident from this figure that the behavior of the time-dependent parameters is non-stationary

on a days-to-weeks timescale. These are the slowly-varying changes being tracked by the time-

dependent parameters. We want to find out if there are short-duration transients that are not

being tracked faithfully. Thus, we applied a transformation on the time-dependent parameter data

that will remove the non-stationarity of the data over long timescales and establish a standardized

metric of the statistical significance of each datum.

In particular, the sweeping time-window used in this analysis was a ±15-minute window sur-

rounding each datum that was used to calculate the modified z-score of the datum. That is, for

each 30-minute set of data, X, surrounding datum, xc and consisting samples x1, x2, ..., xc, ..., xN ,

then the z-score corresponding to the data point in the center of the data segment, xc can be

written as

zc =
xc −median(X)

α ∗median(abs(X −median(X)))
(5.1)

where α = 1.253 to scale the resulting distribution to have a standard deviation of 1. A

30-minute window was chosen to be long in compared to the upper-limit frequency of the time-

dependent parameters (7.8 mHz), but short compared to the average lock segment duration (ap-

proximately 3 hours). In order to illustrate the behavior of this algorithm, Fig. 5.2 shows a time

series plot of artificially-created non-stationary data compared to a time series plot of the z-score

of that data. In both plots, overlapping traces compare the raw data to the raw data with the

addition of a large transient at t = 2 hours. the effect of the z-score is to remove the slowly-varying

factors while preserving the transient. Fig. 5.3 shows the histogram of the raw mock data with a

transient. Since the data are non-stationary, the distribution is spread out, obscuring the transient

and making it difficult to apply meaningful statistical thresholds. On the other hand, Fig. 5.4

shows the histograms of the z-scores of the mock data without a transient and with a transient.

In the former case, the distribution of the z-score is mostly consistent with a Normal-Gaussian
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distribution. This is also true in the latter distribution; however, the effect of the transient stands

out above the background.

Even though replacing all the median operations in our definition of z with means would be

more computationally efficient, the use of medians in the algorithm makes the standard deviation

of resultant z-score data resilient against the effect of large but short transients. Fig. 5.5 shows

time series of the z-score of our mock data using medians compared with a mean-based method.

Since z is inversely proportional to the mean absolute deviation from the mean, the presence of a

large transient in the input window diminishes the result, producing z-scores where the transient

is attenuated.

Figure 5.4: Probability density histograms comparing the distributions of z-score data from mock
data without the transients to the distribution of z-scores of mock data with the transient.

Z-score data spanning O2 were calculated for each time-dependent calibration parameter and

were used to classify the statistical significance of the corresponding data point of the time-

dependent calibration parameter within the temporal vicinity of the data point in question.

Since time-dependent parameter values are expected to fluctuate within a few minutes of the

interferometer acquiring or losing observational state (losing lock), z-scores within 15 minutes of a
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Figure 5.5: Time series comparing z-scores of mock data using a mean-based method with z-scores
using a mean-based method.

lock acquisition or loss are omitted. Likewise, data within 15 minutes of known data quality vetoes

are omitted in order to focus our analysis on new transients.

Finally, thresholds of ±5 were applied to the z-scores to group data segments into distinct

transient events. When the absolute value of a z-score exceeds the threshold, this marks the

beginning of a new transient event, and when it eventually falls below the threshold, this marks

the end of the event. This is applied to z-score values of each time-dependent parameter to produce

a list of new parameters (i.e. the start time, the end time, the maximum z-score, and the time

corresponding to the maximum z-score), which describe a transient event.

5.2. Characterizing Transients

Advanced LIGO’s 2nd Observation Run (02) occurred from November 30, 2016 16:00:00 UTC

to August 25, 2017 22:00:00 UTC, spanning 168 days and 6 hours; however, LHO was in an opera-

tional state 61.7%, while LLO was in an operational state 60.6% of the time. Taking into account

the 15-minute padding around observing segments and data-quality veto segments, our analysis

calculated z-scores for 66.6% of the total time-depedent calibration parameter data corresponding

to LHO observational time and 79.2% of LLO observational time. Due to the nature of the z-score
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algorithm, slowly varying drifts were removed, and the resulting distributions were mostly consis-

tent with a Normal Gaussian distribution. However, the distributions of some parameters show

evidence of noise transients that vary quickly compared to the timescale of a typical observation

stretch, which on average lasted approximately 3 hours.

As described in section 5.1, the z-scores for each parameter were then scanned for instances

when |z| passed our threshold of 5 and returned back under it. Each such instance we regard as a

potential noise transient. Table 5.1 enumerates the number of noise transients that were detected

by our algorithm for each parameter, which will be discussed in the following subsections.

Table 5.1: Break down of the number individual noise transients isolated by our algorithm using an
|z| ≥ 5 threshold. The first column lists the parameter symbols. The 2nd and 4th columns list the
number of transients found by our method during O2 for LHO and LLO respectively. The 3rd and
5th columns list the percentage of the total O2 observational time for LHO and LLO respectively.

Parameter No. at LHO % of O2 (LHO) No. at LLO % of O2 (LLO)

fcc 51 0.0098 86 0.0299

κC 30 0.0065 97 0.0359

κPU 44 0.0064 56 0.0137

κTST 45 0.0089 68 0.0138

(a) fcc z-score distribution of LHO O2 data (b) fcc z-score distribution of LLO O2 data.

Figure 5.6: Histograms of fcc z-scores using O2 data from LHO (left) and LLO (right). These plots
show that the vast majority of data points fit within a Normal Gaussian distribution centered
around a null z-score; however, in the LLO data, several large excursions are evident, which are
indicative of significant outlier events in the LLO coupled cavity pole frequency estimates.
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As expected, the results of the z-score calculations of fcc are consistent with a Normal distri-

bution (Fig. 5.6). The noise transients found for LHO all have peak z-score magnitudes between

5 and 10 (Fig. 5.7), and while the vast majority of the fcc transients found from LLO data have

peak z-score magnitudes between 5 and 10, there is a spread of a small number of transients with

z-score magnitudes up to nearly 85. The analysis found 86 significant noise transients. The largest

had a peak z-score magnitude of |z| = 83.71 for 199 seconds from 1168962803 to 1168963002 GPS,

and the second largest |Z| = 48.25, which lasted 158 seconds from 1168961184 to 1168961342 GPS.

Fig. 5.8 shows the time series plot of the two largest noise transients that were identified by our

method. An offline, high-frequency recalculation of fcc shows little difference in the shape of the

transients, except that the offline calculations peak at a higher value because the online param-

eters are held constant when the calibration line uncertainties are high, and that the transients

peak sooner because the broader demodulation bandwidth used in the calculation of the offline

parameters allow for faster responses.

Figure 5.7: Comparison of distributions of peak z-score magnitudes for fcc at LHO and LLO.

The results of the z-score calculations of κC are consistent with a Normal Gaussian distribution

with signs of a few significant outlier events. Fig. 5.9 shows that the noise transients found for

LHO all have peak z-score magnitudes between 5 and 10, while the LLO results reach z-score

magnitudes to almost 64. Overall, the analysis found 97 significant noise transients, the largest

had a peak z-score magnitude of |z| = 55.46 and was above the |z| ≥ 5 threshold for 190 seconds
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Figure 5.8: Timeseries plot of the LLO fcc centered around the peak time corresponding to the
largest fcc z-score event throughout O2 (January 20, 2017 15:53 UTC). The orange trace illustrates
the data calculated by the calibration pipeline with an upper frequency cutoff at 7.8mHz. The blue
trace illustrates the reconstructed data with an upper frequency cutoff at 0.3Hz. The high-frequency
reconstructions are not appreciably difference from the original calculations. The high-frequency
reconstruction shows the interferometer coupled cavity-pole frequency quickly dropping about 125
Hz over the course of about 3 minutes.

Figure 5.9: Comparison of distributions of peak z-score magnitudes for κC at LHO and LLO.
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(a) κC z-score distribution of LHO O2 data. (b) κC z-score distribution of LLO O2 data.

Figure 5.10: Histograms of κC z-scores using O2 data from LHO (left) and LLO (right). Similarly
to the fcc z-scores, κC z-scores are largely Normal Gaussian with a mean of zero, but a number of
large excursions are evident from LLO data.

from 1168962803 to 1168962993 GPS. The second largest transient found had a peak magnitude

z of |Z| = 39.45, which lasted 148 seconds from 1168961194 to 1168961342 GPS. These transients

overlap in time with the top 2 largest noise transients found in the fcc parameter. Fig. 5.11 is a

time series plot of these two loudest transients. It makes a comparison of the online κC with our

offline high-frequency recalculation. Like in the case with the 2 loudest transients in fcc, there is

not much difference in the overall shape of the transients, other than the offline recalculations peak

higher and sooner.

The coefficient that tracks fluctuations in the actuation transfer functions of both the upper-

intermediate and penultimate suspension stages, κPU , had z-score distributions very consistent

with Normal Gaussian data. Fig. 5.12 shows that the z-scores of κPU at both detectors show little

evidence of significant transients that may have had a strong effect on the calibration. For LHO,

we only found 44 transients in κPU with peak z magnitudes |z| ≥ 5; however, the most significant

transient peaked at only |z| = 6.73. For LLO we found 56 transients. The largest had a peak z

magnitude of only |z| = 7.13.

The z-score results for the coefficient that tracks the actuation transfer function were indicative

of a well-behaved test-mass actuation function at both detectors. The distributions of its z-score
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Figure 5.11: Time series of the LLO κC centered around the peak time corresponding to the largest
fcc z-score event throughout O2 (January 20, 2017 15:53 UTC). The orange trace illustrates the
data calculated by the calibration pipeline with an upper frequency cutoff at 7.8mHz. The blue
trace illustrates the reconstructed data with an upper frequency cutoff at 0.3Hz. This plot shows
the optical gain increased by about 15% over the same period of time that the coupled-cavity pole
frequency decreased appreciably.

(a) κPU z-score distribution of LHO O2 data. (b) κPU z-score distribution of LLO O2 data.

Figure 5.12: Histograms of κPU z-score distribution of O2 data from LHO (left) and LLO (right).
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(a) κTST z-score distribution of LHO O2 data (b) κTST z-score distribution of LLO O2 data.

Figure 5.13: Histograms of κTST z-score distribution of O2 data from LHO (left) and LLO (right).

are consistent with Normal Gaussian random data with rare exceptions for both LHO and LLO.

At the LHO detector, the there were 45 transients found in κTST , and the peak z-score magnitude

was only |z| = 7. Likewise, the test-mass actuation function was well behaved at the LLO detector.

κTST was found to have 68 transients; however, the largest only went up to |z| = 7.04.

5.3. Effect of Largest O2 Calibration Transients on Calibration Uncer-
tainty

Large fluctuations in one or more time-dependent calibration parameter coincident with a

gravitational-wave detection has the potential to affect the uncertainty in modeling the calibration

response function, which would contribute to uncertainty in astrophysical parameter estimations.

None of the noise transients found by the method described in this paper were coincident with any

of the confirmed gravitational-wave signals nor the marginal candidates of O2. We assess what is

the effect that the worst offenders had on strain reconstruction to evaluate the impact on parameter

estimation of gravitational-wave sources in the future, when frequent detections will make overlap

more likely.

On January 20, 2017, the two events with the highest corresponding z-scores occurred in

both the fcc and κC parameters. (Figs. 5.8 and 5.11) show the time series data of fcc and κC ,

and (Fig. 5.15) shows two periods of about 10 minutes of highly elevated noise in the calibrated

gravitational-wave strain below approximately 30Hz, which are coincident with the transients. It
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is likely the elevated low-frequency noise contaminated the time-dependent calibration parameter

calculation through the 3 lowest calibration lines. Similar coincident noise behavior was observed

in the detector output, in core optic motion measured via optical laser, as well as accelerometer

data. This indicates that the large fluctuation in the coupled-cavity pole frequency and optical

gain coefficient is caused by seismic activity raising the overall noise level in detector output across

a frequency band which overlaps calibration lines, contaminating the calculation of the parameters.

In order to quantify the effect these noise transients had on the calibration, we compared

the systematic error δR/Rmodel and uncertainty σR/R
model [14] calculated five minutes before and

during the central time of each of the noise transients (Fig. 5.14). In all four cases, the regime of

the detector’s most sensitive band (150 Hz), the 1σ uncertainty thresholds were found to increase

modestly during loud the noise transients, increasing the 1σ uncertainty in the calibration from

from 1.2% to 3.4%.

Figure 5.14: Comparison of the calibration response function residuals during the most significant
noise transients.
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Figure 5.15: Normalized spectrogram of gravitational-wave strain surrounding the January 20,
2017 events. Each amplitude value has been normalized by the median value of its corresponding
frequency bin. This figure shows two periods of highly elevated low-frequency noise, which are
coincident with the two time-dependent calibration parameter noise transients in question, and
overlap with three calibration lines.

5.4. Conclusions

This analysis demonstrates that the time-dependent calibration tracking system operating with

good fidelity during O2. No serious transients were found in the LHO calibration parameters, and

only 4 potentially serious transients were found in the coupled-cavity pole frequency and optical gain

parameters for LLO. Even so, these transients have minimal impact on the calibration uncertainty

in the interferometer’s detection band.
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CHAPTER 6. ANALYSIS OF O3A

6.1. Characterizing Transients

The first phase of Advanced LIGO’s 3rd Observing Run (O3a) lasted 184 days from April 1,

2019 15:00:00 UTC to October 1, 2019 15:00:00 UTC. Similar to O2, calibration lines were injected

into the control loop to measure time-dependent calibration parameters which track slowly-varying

changes in the sensing and actuation transfer functions. We calculated z-scores of the coupled-cavity

pole frequency fcc and the optical gain κC , which track variations in the sensing function, as well as

the actuation coefficients of the upper-intermediate, penultimate, and test-mass suspension stage

actuators, κUIM , κPUM , and κTST respectively. During O3, the actuation functions of the upper-

intermediate and penultimate suspension stages are being tracked separately with the parameters

κUIM and κPUM , respectively. Thus, our expression for the time-dependence of the total actuation

function is now

A(f, t) = κUIM(t)AUIM(f, t0) + κPUM(t)APUM(f, t0) + κTST (t)ATST (f, t0) (6.1)

where AUIM(f, t0), APUM(f, t0), and ATST (f, t0), are the frequency-dependent actuation func-

tions of the upper-intermediate, penultimate, and test-mass suspension stage actuators measured

at reference time t = t0.

The same analysis that was carried out on O2 data was carried out on O3a data. However,

several times during the run, one or more time-dependent calibration parameter was artificially

held at a constant value during time segments corresponding to high uncertainty in the calibration

lines in order to maintain a best estimate for the time being, and many of those segments were

long enough in duration to result in very large z-score magnitudes that would dominate the results.

Thus, the algorithm was adjusted to ignore such segments when it encounters them, and the analysis

was reran. Because of this, different percentages of the total O3a observational data were analyzed

for each time-dependent calibration parameter; however, the differences were not vast. Taking into
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account our omission of flat segments, padding around observational segments and padding around

data quality veto segments, the analysis still covered the majority of O2 observational data. At

LHO, approximately 74.7% of the total observational data was analyzed for fcc and κC , 76.8% of

the data for κPUM , 75.5% for κUIM , and 77.2% of the data for was analysed for κTST . At LLO,

approximately 67.8% of the total observational data was analysed for fcc and κC , 72.0% for κUIM ,

and approximately 72.5% of the data was analyzed for κTST .

Overall, the results show that all the time-dependent calibration parameters were well-behaved

throughout O3a. Table 6.1 enumerates the number of noise transients out algorithm found using

a minimum z-score magnitude of |Z| ≥ 5. The following subsections will discuss the performance

of each parameter in a bit more detail.

Table 6.1: Break down of the number of individual noise transients isolated by our algorithm
using an |z| ≥ 5 threshold for O3a. The first column lists the parameter symbols. The 2nd and
4th columns list the number of transients found by our method during O3a for LHO and LLO
respectively. The 3rd and 5th columns list the percentage of the total O3a observational time for
LHO and LLO respectively.

Parameter No. at LHO % of O3a (LHO) No. at LLO % of O3a (LLO)

fcc 21 0.0038 42 0.0093

κC 34 0.0062 23 0.0033

κUIM} 35 0.0065 91 0.0164

κPUM} 40 0.0101 79 0.0216

κTST 47 0.0079 89 0.0210

Fig. 6.1 is a histogram of the fcc z-score distributions using LHO data compared to the

corresponding distribution using LLO data. The z-score results of fcc at both detectors consistent

with a Normal Gaussian distribution, with only the rare small excursion. At LHO, there were 21

noise transients found with a peak z-score magnitude greater than or equal to 5. The largest had

a speak z-score magnitude of |z| = 8.70. Fig. 6.2 is a time series plot of 1024 seconds centered

on the GPS time corresponding to the peak z-score of the highest-scoring fcc noise transient at

the LHO detector. Even though this event was the most significant transient found in the LHO

coupled-cavity pole frequency, the measurement only deceased approximately 2 Hz for roughly 5
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(a) fcc z-score distribution of LHO O3a data. (b) fcc z-score distribution of LLO O3a data.

Figure 6.1: Histograms of fcc z-scores using O3a data from LHO (left) and LLO (right). These
plots show that for both detectors, the vast majority of data points fit within a Normal probability
distribution function (red trace); however, these plots also show evidence of fast noise transients,
especially at LLO.

minutes. That is very modest compared to the most significant transient in fcc during O2, when

the coupled-cavity pole dropped over 100 Hz (Figs. 5.8).

Figure 6.2: Time series of 1024 seconds centered on the transient in the LLO fcc that had the
highest peak z-score magnitude in O3a.

At LLO, the algorithm found 42 noise transients in fcc, the largest had a peak z-score magni-

tude of only |z| = 8.06. Fig. 6.3 is a time series plot of 1024 seconds centered on the GPS time

corresponding to the peak z-score of the highest-scoring fcc noise transient at the LLO detector.

Likewise, despite this being the most significant event found in the LLO coupled-cavity pole fre-

quency, we see that it only increased approximately 4 Hz over a during of roughly 3 minutes, which

again is not a cause for concern.
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Figure 6.3: Time series of 1024 seconds centered on the transient in the LHO fcc that had the
highest peak z-score magnitude in O3a.

(a) κC z-score distribution of LHO O3a data. (b) κC z-score distribution of LLO O3a data.

Figure 6.4: Histograms of κC z-scores using O3a data from LHO (left) and LLO (right). These
plots show that for both detectors, the vast majority of data points fit within a Normal probability
distribution function (red trace); however, these plots also show strong evidence of fast noise
transients at both detectors.
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Fig. 6.4 is a histogram of the κC z-score distributions using LHO data compared to the

corresponding distribution using LLO data. The z-score results of at both detectors were consistent

with a Normal Gaussian distribution, with only rare, small excursions. At LHO, we found 34

separate transients; the most significant of which had a very modest peak z-score magnitude of

|z| = 6.01. Likewise at LLO, we found 23 transients, but the largest had a peak z-score magnitude

of only |z| = 7.89. Overall, none of the transients found by our algorithm are large enough to cause

significant detriment to the calibration.

(a) κUIM z-score distribution of LHO O3a data. (b) κUIM z-score distribution of LLO O3a data.

Figure 6.5: Histograms of κUIM z-scores using O3a data from LHO (left) and LLO (right). These
plots show that for both detectors, the vast majority of data points fit within a Normal probabil-
ity distribution function (red trace); however, these plots show evidence of fast noise transients,
especially at LLO.

Fig.6.5 compares the distributions of the z-scores of the upper-intermediate stage actuation

coefficient κUIM . As usual, both are mostly consistent with a Normal Gaussian distribution. For

LHO, the algorithm found 35 transient events, and the most significant transient had a peak z-score

magnitude of |z| = 6.37. At LLO, there were 91 transients found, but again the most significant

had a modest peak z-score magnitude of |z| = 8.98.

Fig.6.6 is the histogram comparison of the penultimate-stage actuation coefficient κPUM . The

distribution at LHO is consistent with a Normal Gaussian with 40 transient identified by the

algorithm. The most significant had a peak z-score magnitude of |z| = 8.71. On the other hand,

while the LLO distribution is mostly consistent with a Normal Gaussian, it is indicative of the
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(a) κPUM z-score distribution of LHO O3a data. (b) κPUM z-score distribution of LLO O3a data.

Figure 6.6: Histograms of κPUM z-scores using O3a data from LHO (left) and LLO (right). These
plots show that for both detectors, the vast majority of data points fit within a Normal probabil-
ity distribution function (red trace); however, these plots show evidence of fast noise transients,
especially at LLO.

possibility of a somewhat significant transient. Indeed the algorithm detected 79 transients, and

the most significant had a peak z-score magnitude of |z| = 16.47, which is comparatively large.

However, upon closer investigation it was found that unfortunately one long-duration flat segment

made it into the analysis (Fig. 6.7), so this result has been omitted. Thus, the most significant

valid transient had a peak z-score magnitude of |z| = 10.19, which is still fairly large compared to

other results. Fig. 6.8 is a time series of 1024 seconds centered around the peak z-score of that

transient, which shows only an increase of approximately 1.5% over roughly a 3-minute duration.

Figure 6.7: Time series of 1024 seconds centered on the transient in the LHL κPUM that had the
highest peak z-score magnitude in O3a due to an erroneous segment of flat data.
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Figure 6.8: Time series of 1024 seconds centered on the transient in the LHO κPUM that had the
highest valid peak z-score magnitude in O3a.

(a) κPUM z-score distribution of LHO O3a data. (b) κPUM z-score distribution of LLO O3a data.

Figure 6.9: Histograms of κPUM z-scores using O3a data from LHO (left) and LLO (right). These
plots show that for both detectors, the vast majority of data points fit within a Normal probabil-
ity distribution function (red trace); however, these plots show evidence of fast noise transients,
especially at LLO.
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Fig.6.9 is the histogram comparison of the test-mass-stage actuation coefficient κTST at both

detectors. The LHO distribution is mostly consistent with a Normal Gaussian with only small,

rare excursions. However, the LLO histogram shows evidence of a moderately large transient. For

LHO, we found 47 transients, and the largest had a peak z-score magnitude of |z| = 6.78, which is

not significant enough for alarm. On the other hand, scanning LLO data resulted in 89 transients,

the largest of which having a peak z-score magnitude of |z| = 22.5, which would be cause for

alarm; however, this is the second and last instance of a long-duration flat segment unfortunately

making its way into the analysis (Fig. 6.10). Thus, this transient was omitted as well. Fig. 6.11

is a time series of the highest-scoring remaining transient, which corresponded to a peak z-score

magnitude of |z| = 10.52. Despite the moderately large score, the parameter is seen to increase

only approximately 1.1% for roughly 3 minutes.

Figure 6.10: Time series of 1024 seconds centered on the transient in the LHO κTST that had the
highest peak z-score magnitude in O3a due to an erroneous segment of flat data.

6.2. Conclusions

This analysis demonstrates that the time-dependent calibration tracking system operated with

good fidelity during O3a. No serious transients were found in the LHO or LLO calibration param-

eters.
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Figure 6.11: Time series of 1024 seconds centered on the transient in the LHO κTST that had the
highest valid peak z-score magnitude in O3a.
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CHAPTER 7. CONCLUSIONS

Our work in the LIGO photon calibrator project was able to design and implement a method

of estimating the photon beam spot locations on the end-station test masses that was minimally

invasive, requiring no venting of the vacuum chambers or any significant interaction with the

core optics or other contents of the vacuum chamber which are held under strict contamination

standards. This new method used in-air cameras which took photographs of the test masses through

a view-port on the end-station vacuum chambers, and the beam spot locations were estimated by

using the photographs to construct a basis transformation between the photograph and the test

mass surface. We determined that the offsets of the beam positions from the nominal locations

would contribute to an uncertainty in the photon calibrator displacement of approximately 0.1%,

which is negligible compared to displacement uncertainties introduced by bulk elastic deformations

on the surface of the test mass. Furthermore, this method allowed for intermittent estimations to

be carried out throughout observation runs which demonstrated that the photon calibrator beam

spots were not subject to significant drifts over the time scales of an observation run.

In addition, we present a novel method of detecting and characterizing large fluctuations in the

LIGO time-dependent calibration parameters. Our method is able to compensate for the slowly-

varying non-stationarity of the calibration parameters by applying a swept time-window through

the data to calculate and associated value that demonstrates the statistical significance of each data

point against a standardized background based on the behavior of the data within the temporal

neighborhood of the datum in question. This method has not been previously used to analyze the

LIGO time-dependent calibration parameters. Furthermore, the results of our work demonstrated

that fluctuations in the optomechanical response of both LIGO interferometers were accurately

compensated for in the time-dependent calibration model. The z-scores were largely consistent

with Normal-Gaussian random data. In all the parameters, the noise transients were rare, and in

all but the coupled-cavity pole frequency fcc and optical gain κC at LLO, all of the transients that
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we found with our method were small enough to have a negligible impact on strain reconstruction.

The z-scores of the O3a time-dependent calibration parameters likewise were largely consistent with

Normal-Gaussian random noise, and did not indicate any transients that would cause significant

detriment to gravitational-wave measurements. The most significant transients found in our entire

analysis of both O2 and O3a were occurred during O2 in fcc and κC at LLO, and only corresponded

to a increase in calibration uncertainty from 1.2% to 3.4% in the regime of the interfermeters’ most

sensitive frequency band (150 Hz).
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