A Neural Network Truth Maintenance System.

Suresh Guddanti

Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://repository.lsu.edu/gradschool_disstheses

Recommended Citation

https://repository.lsu.edu/gradschool_disstheses/5185

This Dissertation is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Scholarly Repository. For more information, please contact gradetd@lsu.edu.
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.
A neural network truth maintenance system

Guddanti, Suresh, Ph.D.
The Louisiana State University and Agricultural and Mechanical Col., 1991
A
Neural Network
Truth Maintenance System

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and
Agricultural and Mechanical College
in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

in

The Department of Mechanical Engineering

by
Suresh Guddanti
B.E., Bombay University, 1983
M.S., Louisiana State University, 1987
August 1991
ACKNOWLEDGEMENT

I would like to express my appreciation to the Department of Mechanical Engineering, Louisiana State University, for funding my graduate study. I also appreciate Dr. W. Pratt Mounfield Jr., my major professor, and my father Mr. G. Srikrishna Murty for encouraging me to pursue a doctoral degree.

I also would like to thank the following members of my committee, Dr. S.C. Kak, Dr. G.D. Catalano, Dr. Vic Cundy, and Dr. D.W. Yannitell. I am thankful to Dr. Ljubomir T. Gruić from the University of Belgrade for his advice during the conclusion of this work.

Finally, I appreciate my wife Revathi Guddanti for her patience and understanding.
The following work is a result of knowledge gained from graduate level courses from three different disciplines namely Artificial Intelligence (AI) in Computer Science, Neural Networks in Electrical Engineering and finally Control Systems in Mechanical Engineering. Generally, the techniques developed in AI at the conceptual stage are powerful, but are often not practical during implementation. Techniques from other fields are therefore necessary. Neural Networks have applications in many disciplines, and a successful approach toward a solution requires a combined effort arising from the various disciplines that are involved in the application. The Neural Network Truth Maintenance System is a step toward such a combined effort.
Table of Contents

ACKNOWLEDGEMENT ... ii

FOREWORD .. iii

List of Tables .. vii

List of Figures ... viii

ABSTRACT ... ix

1 Introduction .. 1
 1.1 Biological Neurons ... 2
 1.2 Artificial Neurons ... 3
 1.3 Expert Systems ... 6

2 Truth Maintenance Systems ... 8
 2.1 Some More Terms and Definitions in a TMS 10
 2.2 Applications and Importance ... 10
 2.3 Conventional TMS Methodology ... 11
 2.4 Prior Work .. 13

3 TMS Neural Network Model .. 18
 3.1 Fact Representation .. 18
 3.2 Knowledge Representation .. 19
List of Tables

Table I: Facts And Justifications. ... 20
Table II: Comparison of Solutions. .. 28
Table III: Justifications for the Two Queen Problem. 29
Table IV: Results of the Two Queen Problem. .. 29
Table V: Example using 6 Logical Facts. .. 30
Table VI: Results of the 6 Facts Case. ... 30
Table VII: Example from Doyle(1976). ... 31
Table VIII: Results of Doyle's Case. .. 31
Table IX: Synchronous and Asynchronous Iterations 36
Table X: Stability Results Using H_1. .. 55
Table XI: Stability Results Using H_2. ... 56
Table XII: Stability Results Using H_3. ... 57
List of Figures

Figure 1: Basic Neuron Interconnections ... 2
Figure 2: Basic Neural Network Architecture .. 19
Figure 3: Electronic Circuit for TMS Neural Network .. 24
Figure 4: Two Queen Problem .. 29
Figure 5: Iteration Graph for Synchronous Model ... 36
Figure 6: Iteration Graph Using Asynchronous Model .. 37
Figure 7: Types of Stability .. 45
Figure 8: Immediate Neighborhood Points of the Origin. 50
ABSTRACT

A novel approach using Neural Networks has been developed to generate consistent labelling of facts in relation to a given set of rules. In the proposed system, facts are represented by neurons and their interconnections form the knowledge base. The Neural Network Truth Maintenance System (TMS) arrives at a valid solution provided the solution exists. A valid solution is a consistent labelling of facts. If a valid solution does not exist the network does not converge. An experimental setup was built and tested using conventional integrated circuits. The hardware design is suitable for VLSI implementation for large, real-time problems. The TMS Neural Network blends the simplicity and speed of Neural Network architecture with the power of artificial intelligence techniques. A methodology has been developed to study the stability of logical networks in terms of Lyapunov Stability criteria.
1 Introduction

The development of Neural Networks is an attempt to mimic the operation of the human brain. While traditional computers have taken a prominent place in today’s technology even the most powerful computers have not matched the human brain in solving certain types of problems in real time. For example speech recognition is carried out by the human brain much faster than traditional computers. The primary reason for the difference in performance can be attributed to the parallel processing that occurs in the operation of the human brain in contrast to the sequential processing in a traditional computer.

A traditional computer essentially has a central processing unit (CPU), and many memory locations that have specific memory addresses. The CPU fetches instructions sequentially from the memory locations and performs the necessary operations. During this time all the other data/instructions residing in the memory locations are sitting idle with no contribution to the throughput of the system. The sequential processing is therefore a big bottleneck in the processing speed of a traditional computer.

The concept of parallel processing has been introduced where several CPU units processed the data in parallel. But the parallel processing is limited to
independent processes, and the overall computation process is essentially sequential. The only difference is that different parts of the entire sequence of operations that are independent, are processed simultaneously. The context of parallel processing in the human brain is completely different. Every memory cell that contains data, collectively act to produce the output. Study of the biological structure of the human brain has indicated that the concept of a CPU does not exist in the human brain. The detailed operation of the human brain is not clear yet and has not been completely understood. However, current research in Neural Networks is based on the gross organization of the brain cells.

1.1 Biological Neurons

The Human brain has millions of neurons interconnected with each other. It is believed that the interconnections play a major role in the storing of data. The interconnections may be either amplifying or attenuating the signal passing through them. As seen in Figure 1, a neuron has inhibitory(I) as well as excitatory(E) inputs. It is believed that the neuron accumulates the signals coming from its various inputs and activates its output(O) based on a threshold value. The neuron cell is therefore believed to be a very simple computational unit that sums its inputs and sends an

Figure 1: Basic Neuron Interconnections
output signal if the sum is above a threshold value. The attenuation or weight factor associated with the interconnection may be a result of the length of the interconnecting links. New links may be formed as new data is learned, or existing links may be strengthened on repeated learning, or sometimes, the interconnections may vanish because of loss of memory. The key factor is that if a few cells cease functioning, the brain will still function and reconstruct the data with some minor loss in detail (Hopfield, 1986). In fact the remaining cells may reconfigure during another learning phase to compensate for the loss. A traditional CPU on the other hand will halt if one memory location malfunctions.

1.2 Artificial Neurons

A Neural Network modelled after the brain is a set of computational units whose interconnections are analogous to the interconnection between biological neurons. In general, any model that resembles the interconnections of a biological neuron has been classified as a Neural Network. Each computational unit has an output and some inputs. Each input of the neuron is connected to an output of another unit. In some cases one input of the neuron may be connected to its own output, this is termed self or direct feedback (Caudill, 1987). The interconnections are through amplifiers with gains ranging from 0 to > 1. The gains of these amplifiers are generally called as weights.

A neuron is said to be triggered or 'fired' when its output goes high (or a logic level 1). The Excitatory inputs have a positive effect in triggering a neuron in contrast to the Inhibitory inputs. A neuron is triggered when the sum of all the
weighted inputs exceed the threshold of that neuron. The thresholding function is commonly called as the activation function. The activation function is typically a sigmoid curve (Caudill, 1988). In practice, instead of modelling the inputs as Excitatory and Inhibitory, the artificial neuron is modelled with only a single type of input but with two complementary outputs. When one output is low (0), the other output is the inverted value (1). An inhibitory connection could therefore be made by connecting a neuron input with the inverted output of another neuron. The artificial neuron models are usually designed to toggle between two states namely (0) and (1). Some models use other states such as (-1) and (1).

Neural Networks that learn facts or patterns and show associative recall of the stored patterns are of the more classic types. Hopfield demonstrated the associative recall capability of such a Neural Network (Hopfield and Tank, 1986a). Some Neural Network models have departed from the classical models, and have assumed a form more specific to the nature of the problem. For example, Tank and Hopfield (1986b) formed a specific model for an A/D (analog to digital) converter circuit and a specific model for the Linear Programming circuit.

Various learning schemes like Hebbian Learning, Delta Learning Rule (Caudill, 1988a), and Back-Propagation Learning (Caudill, 1988b) are used to calculate the interconnection weights W_{ij}. Learning schemes are required for networks that identify patterns. The interconnections in a Neural Network may be symmetric or asymmetric. The interconnections are symmetric if $W_{ij} = W_{ji}$. Symmetric synchronous Neural Networks have the tendency to become cyclic, that
is, the network outputs a sequence of states and finally repeats a particular sequence of states (Martland, 1987). If all neurons in a Neural Network update their states simultaneously, the Neural Network is synchronous. If the updating is randomly sequential that is, one neuron at a time is updated, the Neural Network is asynchronous. Based on the nature of the intermediate states of a neuron, Neural Networks are further classified into discrete or continuous networks. Discrete Neural Networks (Vidal et al., 1987) have the same advantage over analog Neural Networks as digital circuits have over analog circuits that is immunity to noise in the small signal range.

The Neural Network model presented in this paper is of the discrete type, where the only valid states of a neuron are a '1' or a '0'. The Neural Network is also an asymmetric asynchronous system. The Truth Maintenance System (TMS) Neural Network model is different from the classic Hopfield model conceptually as well as architecturally. The classic Hopfield model arrives at solutions (patterns) that are stored in the Network in terms of the interconnection weights. The known solutions are used to teach the Hopfield network to find the interconnection weights via the learning schemes mentioned above. Once the interconnection weights are determined, the network will converge to one of the stored patterns closest to the given arbitrary input pattern. This type of memory access system is known as associative memory. However, in the TMS Neural Network the interconnections are fixed by the user based on rules and the solutions are not known apriori as is explained in the following sections. Besides, the TMS Network is asymmetric,
compared to the symmetric network of Hopfield.

1.3 Expert Systems

One application of Neural Networks is in Expert Systems. The TMS Neural Network (as would be shown later) could also be adapted as an Expert System. A brief description of an Expert System is therefore included.

Expert Systems (Patrick and Winston, 1984) are essentially computer programs that make use of knowledge and inference procedures to solve problems that require human intelligence. The user provides facts and rules to the expert system while the Expert System provides its expertise in solving the problem for the user. The Expert System thus has a knowledge base and an inference engine. The knowledge base consists of rules relating various facts present in the system. Inferencing is arriving at a conclusion, which follows from given facts and the rules present in the knowledge base. For example, assume that a knowledge base contains the following rules regarding automobile diagnostics for a car that car does not start:

(1) If ENGINE CRANKS and SPARK PLUGS FIRE
then FUEL SYSTEM IS FAULTY

(2) If BATTERY IS LOW
then ALTERNATOR IS BAD or BATTERY IS BAD.

(3) If SPARK PLUGS DO NOT FIRE
then BATTERY IS LOW or IGNITION COIL IS FAULTY

(4) If ENGINE DOES NOT CRANK
then BATTERY IS LOW

Note that the words in uppercase are facts and the if-then statements are the rules that link the facts. The part before then is called the antecedent and the part after then is called consequence. These rules are stored in a tree format so that it
is easy to search through the tree. Given a fact that the engine is not cranking, the
inferencing program searches through the rule tree using a search technique among
the antecedent part of the rule and finds a match with Rule #4. Rule #4 indicates
LOW BATTERY is a probable cause. The inferencing program then searches for
LOW BATTERY among the antecedents and finds a match with Rule #2. There
are two consequences for Rule #2 namely BAD ALTERNATOR, BAD
BATTERY. The inferencing program then branches out and tries to find either of
the two consequence in the antecedent part of the rules but finds no match. The
inferencing program therefore arrives at two possibilities for the cause, namely a
bad alternator or a bad battery. In practice, the knowledge data base is large and
require complex search techniques.

The basic Truth Maintenance System is explained in Chapter 2. Chapter 3
is a literature search of related topics. The proposed TMS Neural Network is
explained in chapter 4. Chapter 5 details the hardware aspects of the system.
Example problems and simulation results are given in chapter 6. Modelling aspects
of the TMS Neural Network are covered in Chapter 7. Stability computations of
the TMS Neural Network are presented in Chapter 8. The final chapter concludes
the dissertation with suggestions for future work.
2 Truth Maintenance Systems

Consider a logic system containing a finite number of facts. In the current context, a fact is considered to be a description of an entity or process. The facts are interrelated by rules. In the Truth Maintenance System a fact is restricted to have two labels - true or false. The rules are lists of truth values that make a particular fact true. Note that the words true and false are merely symbolic and may be substituted by any set of labels that are complimentary to each other logically. The labels true and false will be used from now on for the sake of convenience. Each rule may use the truth values of some or all of the remaining facts. The truth value for any fact is justified if at least one rule associated with that fact is satisfied. If the truth values of all facts are justified, then the truth values are said to be consistent.

A TMS algorithm solves for a consistent set of truth values for a set of facts stored in a knowledge base. The state of the art TMS makes use of a recursive labelling algorithm (Doyle, 1979) involving list manipulations. Such an algorithm is well suited for implementations in LISP (List Processing). In practice the number of facts that are stored in the TMS is very large. For a set of N facts, there are 2^N possible combinations of true/false values of which only a few combinations
may be consistent.

To understand the concept of facts and consistent truth values, consider a system of facts as shown below:

FACT #1: (A) = CLOUDY SKY
FACT #2: (B) = RAIN
FACT #3: (A->B) = CLOUDY SKY implies RAIN
FACT #3: (NA) = Not CLOUDY SKY

In the above system there are 4 facts. If we assign truth values (a truth value can be True (T) or False (F)) to each fact in the following order: T F T F then by looking at the facts we can conclude by using our own logical reasoning that the truth values namely T F T F are not consistent among each other with respect to the rules defined above. This conclusion can be arrived at by the following reasoning. It is trivial that the first (T) and fourth (F) truth values are consistent with each other. The first truth value (T) tells us Sky is Cloudy. Since Fact #3 is assigned True we can conclude that it will rain. However the second truth value(F) indicates NO RAIN. Therefore we have an inconsistency or contradiction in the set of truth values T F T F. Though this was a very simple example with only four facts, we can see that the reasoning chain is complex. Since the actual number of possible combinations of truth values are \(2^N\) for N number of facts, the total number of combinations of the truth values in the above example is 16. For a large problem with thousands of facts, the total number of combinations of truth values become tremendously large. For such a large problem, one can imagine how long it would take to find out even one set of consistent truth values.
2.1 Some More Terms and Definitions in a TMS

For a formal definition of a Truth Maintenance System consider a system containing a finite number of facts. Let the truth value of each fact be dependent on a number of rules. A fact can have one of two truth values - True or False. Each rule may use the truth values of some or all of the remaining facts. The truth value for any fact may be justified if at least one rule associated with that fact is satisfied. If the truth values of all facts are justified, then the truth values are said to be consistent. A Truth Maintenance System solves for a consistent set of truth values for a set of facts stored in a knowledge base. The knowledge base contains rules for determining truth values of the facts. The format of the rule storage is discussed in more detail in the following chapters.

2.2 Applications and Importance

An expert system contains a rule database, and an inference engine. As more and more rules are added, there is a distinct possibility of having conflicts between the most recent rules and the existing rules in the database. This could lead to faulty inferences. The TMS system would therefore be a valuable tool in maintaining the consistency in the rule database. The TMS system can also be used as an expert system. For example, to see if Fact 1 and Fact 2 imply Fact 3, Fact 3 (which is the goal node) is clamped to a false state, while the nodes for Fact 1 and Fact 2 are clamped true. If the system arrives at a consistent solution, then the implication of the goal is False. The inference of the goal would be true only if the
system does not reach a consistent solution, i.e., it keeps oscillating. Thus to make inferences, one has to only clamp the appropriate truth values. By clamping a truth value for a particular node, the node is not allowed to be updated. It is said to be locked.

The proposed TMS Neural Network model generates consistent truth values for a given set of facts and rules. The TMS Neural Network is based on the representation given by Doyle (1979). Doyle (1979) uses a generalized notion of \textit{in} and \textit{out} instead of \textit{true} and \textit{false} representation. By \textit{in} Doyle implies that the corresponding fact is \textit{in} the \textit{current} set of beliefs otherwise, it is not in the set of beliefs.

The TMS Neural Network model reduces the computation time by a large factor when compared with a software implementation of the conventional labelling algorithm on a traditional computer. The reduction in computation time can be attributed to the massively parallel computation process that takes place in a Neural Network. To our knowledge, there are no Neural Network models reported in the literature, which uses the concept of TMS in arriving at consistent truth values. Considering the simplicity in structure of the model combined with the speed of obtaining solutions, the TMS Neural Network would be a significant step in applying Neural Networks to expert system applications.

2.3 Conventional TMS Methodology

The significance of the TMS Neural Network will be perceived if one can get an idea of the relative complication involved in obtaining the valid solutions
using conventional methods. A simplified version of Doyle’s algorithm (Kundu, 1989) is explained here for clarity. The algorithm begins with initializing all facts to arbitrary truth values. A process of elimination begins by considering the truth value (label = true/false) of the first fact and examining the justification lists of all other facts. It may be recalled that each justification has two lists (a) TLIST and (b) FLIST. For each justification a check is made to see if the label (true/false) of fact #1 is same as the name of the list (TLIST/FLIST) to which it belongs. If the check is positive, then the first fact number is eliminated from the appropriate list in the justification in question. For instance, if fact #1 was labeled true and it was found in the TLIST of a particular justification (say for fact #3), the first fact is removed from the TLIST of the justification. If at this stage, the justification (say for fact #3) becomes a pair of null sets, then the label of fact #3 is made true irrespective of the previous assumption. Fact #1 is then called the justifier of the justification being considered. If the check is negative then the entire justification under scrutiny is removed. Again at this stage, if there are no justifications for a particular fact remaining, then that fact is labeled false. This process is repeated by considering fact #2 and so on until the last fact. In the above process, it is possible to arrive at a label for fact #1, contradictory to the one assumed. One then has to back up to the point where the truth value of fact #1 was assumed, and repeat the above process after changing the assumption for fact #1.

The above explanation is a brief outline of the concept of the labelling process used in conventional AI techniques. In actual practice, the state of
computation is kept track of so that one knows how much to back up whenever a contradiction takes place. The actual details of the process are not important to this discussion since the purpose is to grasp the computational rigor involved in arriving at a valid labelling.

2.4 Prior Work

An extensive search of published literature revealed no prior work on a TMS Neural Network. However, work has been reported on implementing inferencing in hardware. Inferencing involves arriving at conclusions based on a given set of rules and initial facts. If the truth values are graded then the inference is a called fuzzy inference. An inference engine is a processor that processes rules according to a particular technique. Each updating process in a TMS Neural Network can be considered as an inference step.

Kemke (1987) provides mathematical definitions of neurobiological terms. He shows the similarities of the models of human neuron operations occurring in neural networks. He shows that by selecting appropriate parameters the neurons could behave as flip-flops and logical functions such as AND, OR and NOT. This representation of neurons agrees very much with the TMS Neural Network model. McNaughton and Papert (1971) also refer to neurons as a type of flip-flop.

Many hardware implementations of inferencing reported in the literature make use of a hybrid architecture involving an external computer and are primarily aimed at arriving at a conclusion. Some implementations store rules in ROM
(Read Only Memory). Cleary (1987) describes a VLSI chip in which the communication between neurons is multiplexed. The VLSI chip is accessed by a host computer and performs the mathematical operations or thresholding. One application of the VLSI chip suggested is for rule based type of reasoning as used in expert systems. In his system he assigns one unit (neuron) to each rule, fact, and conclusion present in the expert system. A rule is said to fire if each of its preconditions is true. This is programmed by setting the threshold equal to the number of preconditions. This operation is similar to the logical AND function with the number of inputs equal to the number of preconditions. A conclusion is considered true if there is any rule that makes the conclusion and is firing. Simple true / false reasoning is possible in this system and the author claims that the system is very fast and could be part of an expert system where speed is important.

Some researchers have considered the modifications of search trees that are extensively used in expert systems. One such work is based on Fuzzy Cognitive Maps (FCMs) that are feedback generalizations of search trees. Kosko (1987) considers an FCM as a form of Neural Network. He builds a connection matrix having weights of 0, +1, and -1. The connection matrix is used for inferencing. Each iteration of an inference consists of multiplying an input vector with the weight matrix. The process is repeated by using the product of the previous iteration until a limit cycle is reached. That is, the FCM stabilizes to a limit cycle. He argues that convergence is obvious in at most 2^N iterations since there are only 2^N possibilities. He claims that in practice the convergence is obtained in very few
iterations. Comparisons of limit cycles (Taber and Siegel, 1987) of FCMs based on different experts have also been studied.

Another approach taken by Green and Michalson (1987) uses a network similar to an inference net. A node essentially has a summing junction for its weighted inputs with a particular activation level. The node gives a boolean result based on the inputs. They call their network an Evidence Flow Graph (EFG). The graph essentially shows the links between the input hypothesis and Knowledge Source Procedures (KSPs). The KSPs then evaluate all their inputs based on the above method. The technique lacks specific mapping procedures to map decision process into an EFG.

Another inference net approach was taken by Venkatasubramanian (1985) who designed a parallel network expert system to deal with inexact or probablistic reasoning. He used a parallel network of binary, threshold units. The solution was obtained by a probabilistic search through the solution space using the simulated annealing algorithm. The simulated annealing algorithm is a probabilistic technique in which the system is excited so that the current state is capable of escaping from a local minima, and finally letting the system settle down at a new local minimum. His architecture had three levels of nodes (1) input data nodes that were clamped either in the on state or the off state depending on the observed symptoms of the problem, (2) the intermediate level nodes that were driven by the nodes at the same level along with the data supplied by the input nodes, and (3) the answer nodes that represented the decision reached by the system. The number of levels for the class
of intermediate nodes depend on the problem. Knowledge was represented by the weighted interconnections between the nodes. The weights were initially assigned randomly, and were refined by comparing the outputs with the real world data. There is no mention of any hardware implementation and an explicit rule formulation is not given.

Optical implementation of expert systems (McAulay, 1987), (Warde and Kottas, 1986), (Eichmann and Caulfield, 1985), (Szu and Caulfield, 1987) have also been reported in the literature.

In all the literature reviewed (except McNaughton and Papert, 1971) none of the implementations make use of the flip-flop model of a neuron. The TMS Neural Network stands out uniquely, based on its capability to detect consistency among all the facts in the database. At the same time, the TMS Neural Network allows for inferences to be made as explained in the previous section.

Many references were found in the literature on the discrete analysis of networks. Robert (1986) treated boolean networks as discrete iterations and used the incidence matrix approach to study the convergence properties. This technique is covered in more detail in Chapter 6. Thomas and Richelle (1988) obtains relations for the number of steady states based on the number of positive loops in the interaction graph. A graph with \(n \) positive loops may have up to \(3^n \) steady states. He claims that interactions between the loops reduce the number of steady states. A graph of interactions is a signed directed graph using the logical 'OR' operator for the connection. The signed property of the connecting links represent
INVERTORS. This N element signed graph is then converted into a $N \times N$ adjacency matrix which has the elements 0, 1, -1, depending on the connections. Thomas and Richelle claim that this adjacency matrix is analogous to the Jacobian matrix of the continuous systems. But, they conclude that their technique does not generalize when the loops interact with each other. They described gene interactions in terms of logical equations to use their technique. Apparently gene interaction seems to be another area of application of TMS Neural Networks.

Bankovic (1989) shows that for a set of boolean equations that are consistent, it is possible to arrive at a solution by the method of successive elimination. This technique may be therefore used to verify the consistency of the boolean equations. However, this technique would be more of a brute-force type approach and involves symbolic computation.
3 TMS Neural Network Model

The TMS Neural Network embodies the following functions, (1) Fact representation, (2) Knowledge representation, and (3) Labelling or Inferencing process. A hardware implementation of the Network is also shown along with an example problem. The conceptual architecture is shown in Figure 1. There is only one layer of neurons that act as the input as well as the output neurons. This layer is directly interconnected based on the rules involving the neurons.

3.1 Fact Representation

Each neuron represents a fact. The context of a fact is the same as described in the earlier chapter. As seen from Figure 1, each neuron has an input state as well as an output state. The input states of all neurons are volatile, i.e, their states are determined by the instantaneous outputs of the knowledge base. The output states on the other-hand store the input state values that were present during triggering. The input or output state of a neuron can be either 0 or 1. For simplicity in the hard-wiring, the inhibitory inputs are realized by having complimentary (inverted) neuron outputs besides the regular neuron output. The combined output states of these neurons form the output of the system. The inputs
to these neurons come from the knowledge base, which is explained in the next section. The outputs of these neurons are fed back to the knowledge base. The feedback channels enable the knowledge base to process the output state and feed the result back to the neuron inputs. Thus at any instant the neuron input state represents the current state while the output state represents the past state. When the neuron is updated or triggered, the state at the input gets transferred to the output. That is, the past state becomes current. In Figure 1, each neuron is depicted by partitioned boxes. The upper half of each box represents the input or current state of that neuron, while the lower half of each box represents the output or past state. The interconnections will be explained in the next section.

3.2 Knowledge Representation

Knowledge is represented in the knowledge base as rules. These rules are supplied from the real world by the user. The rules are represented in the justification format shown by Doyle (1979). A justification for a particular fact is a set of truth values of the remaining facts in the database. The truth values in a justification are essentially the Necessary and Sufficient conditions to make the fact true. It may be noted that the justification does not contain a truth value of the
same fact. In other words, there is no self-feedback present in the system.

As mentioned before a justification contains the truth values of several facts. Facts are identified by node numbers. To identify the facts as well as their truth values, each justification is separated into two lists, namely the **TLIST** and the **FLIST**. The **TLIST** contains the node numbers of the facts that are *true* while the **FLIST** contains the node numbers of the facts that are *false*.

The justification can be understood by considering an example from Table 1 (Kundu, 1989). There are a total of four facts and each fact is identified by node numbers ranging from 1 to 4.

Take for example node 1 that represents the fact A. If \(\neg A \) is *false* then it can be trivially concluded that fact A is *true*.

Therefore node 4 is placed in the **FLIST**. The **TLIST** is empty in this justification. Node 3 represents the fact \(A \cdot B \) (A implies B) that is logically equivalent to \(\neg A \lor B \) (not A or B). Thus, if node 3 is *false* then it is certain that \(\neg A \) is *false*. Which means that A is *true*. Therefore, node 3 is also placed in the **FLIST**. Negation of node 3 alone is sufficient to make node 1 *true*, therefore a second justification list is created with node 3 in the **FLIST**.

Table I: Facts And Justifications.

<table>
<thead>
<tr>
<th>No.</th>
<th>Fact</th>
<th>Justifications</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TLIST</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>{}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{}</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>{1, 3}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{3}</td>
</tr>
<tr>
<td>3</td>
<td>A\cdot B</td>
<td>{2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{}</td>
</tr>
<tr>
<td>4</td>
<td>\neg A</td>
<td>{3}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{}</td>
</tr>
</tbody>
</table>
Thus, to make node 1 *true* only one of the two justifications must be satisfied. Now consider fact B. It is necessary that node 3 should be *true* to make node 2 *true*, but this condition alone is not sufficient. In addition, Node 1 also should be made *true* to make node 2 *true*. Therefore, one justification for node 2 consists of node 1 and 3 in the TLIST. On similar grounds one can show that it is necessary and sufficient that node 3 be *true* and node 4 be *false* to make node 2 *true*.

The mapping of the justifications into interconnections is straight-forward. Each justification list contributes a column of interconnections. If a fact has three justifications, then there would be three columns of interconnections corresponding to that neuron. The rows contain the neuron output states. Each Neuron has a normal output as well as a complimentary output, there are then 2N number of rows. The complimentary outputs would represent the FLIST while the regular outputs would represent the TLIST. The node numbers in the justification list indicate locations of the interconnections. If the node number is in the TLIST then the interconnection is formed on the normal output row of that neuron. In the example shown, there are two columns of interconnections corresponding to the two justifications for the first node. In the first column, the interconnection is made at the first row from the bottom, since it corresponds to the complimentary output of first neuron. This is essentially the mechanism of transformation of node 4 in the FLIST into an interconnection.

3.3 Labelling Process

As explained earlier, the knowledge base has access to the (*past*) truth values of all the neurons. It processes these *past* truth values in parallel and computes the
current truth value. Each neuron therefore has at any instant, its current state as well as its past state. The (current) input state of a particular neuron is consistent with the (past) output states of all the other neurons. A valid labelling requires consistency between all the (current) input state of all neurons. If the (current) input and (past) output states are identical for each of the other neurons, then the (current) input states of a particular neuron would be consistent with the (current) input state of the remaining neurons. In general, one can conclude that if the (current) input state of every neuron is identical with its (past) output state, then the current states of all the neurons constitute a valid labelling or a consistent solution.

It is trivial to observe that the (past) input state of all neurons also would constitute a consistent solution. If the (past) input states are consistent, the knowledge base will not observe any conflict and therefore, its result (the current state) will not change.

The update mechanism, which consists of a pair of switches associated with each neuron, has two important functions. First, it will enable an update of only one neuron at a time, thereby making the updates asynchronous. Secondly, it updates a neuron only if it detects a difference in the input state and output state of a neuron. Therefore, the potential energy that drives the system from one state to another is a function of the difference between the input state and output state of the neurons. If even one neuron has different input and output state the update takes place. Hence the criterion for an update can be expressed as: Perform an update if ΔE is > 0 where
\[\Delta E = \sum_{j=1}^{N} |F_{ij} - F_{oj}| \]
(Eq.1)

\[F_{ij} \in [1, 0] \]
(Eq.2)

and F_{ij} is the input state of the neuron j and F_{oj} is the output state of neuron j.

When a consistent solution is obtained ΔE becomes zero. The system can then be considered to have come to a minimum energy state. As long as there is conflict among the past states, the system will keep searching for a consistent labelling. Stability aspects of the network will be shown in later chapters.

3.4 Expert System Application

The TMS Neural Network could be used as an expert system by clamping the truth values of the antecedent facts and the consequent facts. For example to verify if Fact #1 implies Fact #3 of an imaginary TMS Neural Network, the truth value of Fact #1 is clamped to a '1' and the truth value of Fact #3 is clamped to a '0'. If the network converges, then the implication Fact #1 implies Fact #3 is false. If the network does not converge then the implication is true.
4 Hardware Implementation

An Integrated Circuit (IC) design of the Network using CMOS (Complimentary Metal Oxide Semiconductor) chips is shown in Figure 3. The Network has interconnected AND gates, and OR gates. Each column of interconnections corresponding to a particular neuron represents an AND gate. The AND gates ensure that all nodes in a particular justification satisfy the required conditions. The outputs of all AND gates of a particular neuron are connected to an OR gate. The OR gates allow choice of any justification that becomes true. The output of each AND gate is connected to one input of the OR gate. The output of each OR gate is connected to the neuron input. Thus, the current state of each neuron is represented by the output of an OR gate.
The output of each neuron is connected to the inputs of the other AND gates through latches. A latch essentially stores the past state as explained earlier. There is no self feedback for individual neurons. Some outputs of the neurons are inverted before they connect with other neurons. These inverted outputs are derived from the complimentary outputs of the latches. Unconnected inputs of the AND gates are set to logic level 1 by pull up resistors. The unconnected inputs of the OR gates are held at logic level 0 by grounding them. The state of the network at any instant is given by the binary logic level pattern and consists of 1’s and 0’s. The interconnection between each pair of neurons is defined by the inter-relationship between the stored facts. The network is said to be stable when there is no change in state between cycles. Each cycle consists of an update sequence, which transfers the current state to the past state. The latch function is realized by using flip-flops.

The truth values of facts are represented by the discrete logic levels of '1' and '0'. A logic '1' corresponds to a true value while '0' corresponds to a false value. At power-up the network stabilizes with random initial set of truth states at the output of each OR gate. Since the latches at power-up are not activated the network remains inactive. The updating process is then initiated sequentially starting from the first neuron. Note that any update sequence may be used. The update of a neuron takes place when one of the flip-flops is clocked with one pulse. At this stage, the neuron state (current state) at the D input of the flip-flop is transferred to the Q output (past state) (See Figure 3). When this update takes
place, the new value will alter the current states of the remaining neurons, depending on the interconnections. After the propagation delay, which is of the order of nanoseconds (CMOS Data Book, 1981), all neuron inputs stabilize to the appropriate new logic states.

Clock pulses are supplied by an oscillator at point A (Figure 3). The updating procedure is minimal, in the sense that clock pulses for updating are not sent to those neurons (flip-flops) that have identical current and past states. This is achieved for each neuron by a pair of switches controlled by an XOR gate that monitors the past and current state of that neuron. The switches associated with a given neuron direct the clock pulses to the other neurons or to itself, depending on the past and current states of the neuron in question. The switching arrangement allows only one neuron to be updated at a time. If stability is reached then the clock pulses start appearing at point B (Figure 3).

In order for the network to be used as an expert system, the truth values of '0' or '1' are clamped by using the RESET and SET inputs of the flip-flop. Modification of the update mechanism is also necessary to prevent the update of the clamped flip-flop.
5 Example Problems

5.1 Case of Four Facts

Consider a case consisting of four different formulas (Kundu, 1989) as shown in Table I. The interconnection information is stored in the Network by using the justifications from column 3. Node 1 is represented by neuron 1, Node 2 by neuron 2, i.e., node n by neuron n. Each justification list corresponds to the inputs of one \textit{AND} gate. If the node number appears in the \textit{TLIST} of the justification then the Q output corresponding to that neuron is used. If the node number appears in the \textit{FLIST} of the justification then the \(\bar{Q} \) output is used. For example, Node 1 has two justifications, therefore two \textit{AND} gates will be used. The complete interconnection for the problem in Table I is shown in Figure 3.

5.1.1 Computer Simulation Results

A computer program (Appendix II) was written to accept the justifications corresponding to N formulas and simulate the TMS Neural Network. The program tests the Network for all possible \(2^N \) input combinations of 1's and 0's as the starting states. For the above problem there are 16 possible input vectors but only three of them are valid states. Table II shows the three unique solutions that were
obtained by this program compared to the conventional labelling algorithm. Note that the conventional labelling algorithm would be implemented in LISP and would require more computation time than the Neural Network to arrive at a valid labelling.

5.1.2 Experimental Results

An experimental setup was constructed of CMOS IC's with the interconnections shown in Figure 3. LED's were used to indicate the output states of individual neurons. Table II shows that the solutions were same as those obtained by the computer simulation. The clock frequency was slowed to about 1 Hz, so that one could visually see the updates taking place. With no clamping, each time the circuit was switched on, the network began with a random set of truth values for the past states of each neuron, and subsequently arrived at one of the stable states. The solution was observed almost instantaneously when the clock was stepped up to 1 Mhz.

5.2 Eight Queen Problem

Another interesting example is the eight queen problem. The goal is to place eight queens on an empty chess board such that no queen can attack another queen. This problem is simplified and adapted to the TMS Neural Network so that

<table>
<thead>
<tr>
<th></th>
<th>Conventional</th>
<th>TMS Neural Network Simulation</th>
<th>TMS Neural Network Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTTF</td>
<td>TTTF</td>
<td>TTTF</td>
<td></td>
</tr>
<tr>
<td>FTTT</td>
<td>FTTT</td>
<td>FTTT</td>
<td></td>
</tr>
<tr>
<td>TFFF</td>
<td>TFFF</td>
<td>TFFF</td>
<td></td>
</tr>
</tbody>
</table>
two queens are to be placed on a 3X3 square. The two queen problem requires nine neurons, one for each position on the 3X3 square as seen in Figure 4. The notation used is as follows: If the value for neuron #1 is 1 then the Queen is present on position #1 on the 3X3 square. If the neuron value is zero, then the Queen is not present on that particular position. Using this notation the justification table for this problem is created as shown in Table III. The results for the Three Queen Problem are shown in Table IV and they obviously indicate a correct solution.

![Figure 4: Two Queen Problem.](image)

<table>
<thead>
<tr>
<th>Neuron #</th>
<th>Justifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{}</td>
</tr>
<tr>
<td>2</td>
<td>{}</td>
</tr>
<tr>
<td>3</td>
<td>{}</td>
</tr>
<tr>
<td>4</td>
<td>{}</td>
</tr>
<tr>
<td>5</td>
<td>{}</td>
</tr>
<tr>
<td>6</td>
<td>{}</td>
</tr>
<tr>
<td>7</td>
<td>{}</td>
</tr>
<tr>
<td>8</td>
<td>{}</td>
</tr>
<tr>
<td>9</td>
<td>{}</td>
</tr>
</tbody>
</table>

Table IV: Results of the Two Queen Problem.

<table>
<thead>
<tr>
<th>Neuron #</th>
<th>Justifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(2,3,4,7,5,9)</td>
</tr>
<tr>
<td>2</td>
<td>(1,3,4,6,5,8)</td>
</tr>
<tr>
<td>3</td>
<td>(1,2,5,7,6,9)</td>
</tr>
<tr>
<td>4</td>
<td>(1,7,5,6,2,8)</td>
</tr>
<tr>
<td>5</td>
<td>(1,2,3,4,6,7,8,9)</td>
</tr>
<tr>
<td>6</td>
<td>(3,9,4,5,2,8)</td>
</tr>
<tr>
<td>7</td>
<td>(1,4,5,3,8,9)</td>
</tr>
<tr>
<td>8</td>
<td>(7,9,5,2,4,6)</td>
</tr>
<tr>
<td>9</td>
<td>(7,8,3,6,5,1)</td>
</tr>
</tbody>
</table>

Table III: Justifications for the Two Queen Problem.
5.3 Case of Six Facts

Another example using 6 logical facts is shown in Table V (Kundu, 1989). This problem has three valid states. The network stopped at one of these equilibrium points when presented with different initial conditions. The three equilibrium points are shown in Table VI and these agree with the results of conventional TMS solutions.

Table V: Example using 6 Logical Facts.

<table>
<thead>
<tr>
<th>Node</th>
<th>Formula</th>
<th>Justifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>{} {4}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{3,2}</td>
</tr>
<tr>
<td>2</td>
<td>B OR C</td>
<td>{1,3} {4}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{3} {4}</td>
</tr>
<tr>
<td>3</td>
<td>A > B OR C</td>
<td>{1,2} {1}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{4} {1}</td>
</tr>
<tr>
<td>4</td>
<td>Not A</td>
<td>{3} {2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{1}</td>
</tr>
<tr>
<td>5</td>
<td>A OR C</td>
<td>{} {4}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{6} {2}</td>
</tr>
<tr>
<td>6</td>
<td>Not A > B</td>
<td>{1} {2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{1,2} {4,5}</td>
</tr>
</tbody>
</table>

Table VI: Results of the 6 Facts Case.

TFFFTT
TTTFTF
FFITFF
5.4 Doyle’s Case

The example problem presented by Doyle (1975) was also tried using the TMS Neural Network. The justifications and the correct solutions are given in Table VII and Table VIII respectively. Note that Doyle had shown only one of the two solutions given in Table VIII.

Table VII: Example from Doyle(1976).

<table>
<thead>
<tr>
<th>Node</th>
<th>Justifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{3}</td>
</tr>
<tr>
<td>2</td>
<td>{}</td>
</tr>
<tr>
<td>3</td>
<td>{1}</td>
</tr>
<tr>
<td>4</td>
<td>{2}</td>
</tr>
<tr>
<td>5</td>
<td>{}</td>
</tr>
<tr>
<td>6</td>
<td>{3,5}</td>
</tr>
</tbody>
</table>

Table VIII: Results of Doyle’s Case.

Table VIII: Results of Doyle’s Case.

<table>
<thead>
<tr>
<th>FTFTTF</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFTITT</td>
</tr>
</tbody>
</table>

5.5 Solution Trajectories

Preliminary study had revealed that, the TMS Neural Network exhibits the concept of attraction basins. The attraction basins being the valid states. The simulation program was modified to plot the solution trajectories. Different parameters were examined as likely representation of the boolean state. One candidate was the sum of the absolute difference between subsequent states. This parameter was thought of as a representation of the energy of the system since this value becomes zero when a valid state is reached. Examination of such an energy
trajectory had shown unusual behavior of traversing over peaks and valleys before coming to a minimum of zero. The plots of these trajectories are shown in Appendix I as dark lines. Another parameter that was examined was the center of gravity in terms of the 1's present in the boolean state. For example the center of gravity for 0110 as well as for 1001 would be \((1\times1+1\times4)/(1+1) = 2.5\). It was hypothesized that the trajectory of the center of gravity would exhibit the convergence toward the center of gravity of the valid state. The light colored line of Appendix I indicates the center of gravity of the state trajectory. However study of both the above trajectories did not reveal any interesting behavior.
6 TMS Neural Network as an Iterative Process

As mentioned before, the TMS Neural Network is a sequential updating network. The system essentially produces an output state based on an input state. The new output is fed back into the system to produce another output state. This process is repeated until the output state becomes equal to the input state. The operation of the TMS Neural Network can therefore be thought of as a discrete iterative process. Francois Robert(1976) visualized the boolean iterative network as an iteration graph and obtained several results. In this chapter, the results developed by Robert(1976) will be applied to the TMS Neural Network. The iteration graph of the TMS Neural Network for example 1 will be shown in the subsequent sections of this chapter.

An iterative process can be mathematically described as given in (Eq.3):

\[X^{r+1} = F(X^r) \quad (r = 0,1,2,\ldots) \]

(Eq.3)

Where X and F are n dimensional vectors whose components are given by (Eq.4) Since X is a n-dimensional vector, the above operation constitutes a synchronous update mechanism. This is because, the output states of all neurons are computed simultaneously based on the current input state. However, in the TMS Neural
Network, only one neuron is allowed to compute the output and feed the result to all other neurons. For modeling purposes, an operator is necessary that will map the sequential update to a synchronous update. This will allow us to express the asynchronous network operation in the format shown above. One candidate is the **Gauss-Seidel** operator.

6.1 Gauss-Seidel Operator

The **Gauss-Seidel** operator will allow the updates, one neuron at a time, though it may appear that all neurons are being updated simultaneously. The Gauss-Seidel operator is applied as shown in (Eq.5):

\[
g_1(x_1, ..., x_n) = f_1(x_1, x_2, ..., x_n) \\
g_2(x_1, ..., x_n) = f_2(g_1(x), x_2, ..., x_n) \\
\vdots \\
g_i(x_1, ..., x_n) = f_i(g_1(x), g_2(x), ..., g_{i-1}(x), ..., x_n) \\
\vdots \\
g_n(x_1, ..., x_n) = f_n(g_1(x), g_2(x), ..., g_{n-1}(x), x_n)
\]

(Eq.5)

Note that, the synchronous iteration for the TMS Neural Network is simpler to express mathematically based on the interconnections. The Gauss-Seidel operator
can then be applied to incorporate the sequential update sequence. The update sequence is determined by the order in which the equations are arranged. In the above formulation the update sequence is 1, 2, ..., i, ...n. The conversion is shown for the following example.

6.2 Asynchronous Model of Example 1

From the relationships represented by the justifications in Table I, we obtain the mathematical equations in terms of boolean logic as given by (Eq.6):

\[
\begin{align*}
 f_1(x) &= \overline{x_3} + \overline{x_4} \\
 f_2(x) &= x_1x_3 + x_3\overline{x_4} \\
 f_3(x) &= x_2 + \overline{x_1} + x_4 \\
 f_4(x) &= x_3\overline{x_2} + \overline{x_1}
\end{align*}
\]

(Eq.6)

Note that the OR operator is represented by +, the AND operator is represented by multiplication, and the summation 1 + 1 is equal to 1 in boolean logic.

After applying the Gauss-Seidel operator and simplifying the boolean expressions, we obtain (Eq.7) for an update sequence of 1,2,3,4:

\[
\begin{align*}
 g_1(x) &= \overline{x_3} + \overline{x_4} \\
 g_2(x) &= x_1x_3 \\
 g_3(x) &= x_3 + x_4 \\
 g_4(x) &= x_4
\end{align*}
\]

(Eq.7)

6.2.1 Iteration Graphs

The iteration graph for the above problem can be obtained by considering all possible vectors as an input and their corresponding output after one iteration. The
calculation is performed using synchronous as well as asynchronous operations namely f(x) and g(x) respectively.

Figure 5 shows the iteration graph for the synchronous update model (Eq. 6). The graph consists of segments connecting the input state code for x (column 1 of Table IX) and output state code (column 4) as calculated in Table IX. Note that there are two graphs that are cyclic. Starting from an initial state 2, 15, or 6 the system cycles between states 6 and 15. Starting from an initial state of 9, 12, 13, or 10, the system cycles between 10 and 13. For all other initial states except, 8 and 14 the system reaches a fixed point namely, 3. The other two fixed points 8 and 14 are isolated fixed points. The fixed points (3, 8, and 14) are defined as stable states.

<table>
<thead>
<tr>
<th>Table IX: Synchronous and Asynchronous Iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
</tr>
<tr>
<td>Code</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
</tbody>
</table>

![Figure 5: Iteration Graph for Synchronous Model [F(x)]](image-url)
Figure 6 shows the iteration graph for the equivalent asynchronous update model. Note the absence of cyclic states. For all possible initial states, the system reaches one of the three stable states. The stable states in both synchronous as well as asynchronous cases are identical. This is true for all cases in which stable states exist.

6.3 Significance of Update Sequence

The above iteration graph for the asynchronous model was for an update sequence of 1-2-3-4. A different update sequence gives the same three stable states namely 3, 8, and 14. However, the iteration graph may look different. For example, in Figure 6 for an update sequence of 1,2,3,4 and an initial state of 1, the network trajectory is 1 -> 11 -> 3. With an initial state of 9, the network trajectory is 9 -> 11 -> 3. However if the update sequence is changed to 4,3,2,1. The network trajectories for the initial state of 1 is 1 -> 3. For the initial state 9, the network trajectory is 9 -> 8.

6.4 Incidence Matrix:

Robert (1976) based his analysis on a boolean matrix called an incidence
matrix. The incidence matrix of F is defined to be a $N \times N$ boolean matrix given by (Eq.8):

$$B(F) = b_{ij}$$

where $b_{ij} = 0$ if f_i is independent of x_j
and $b_{ij} = 1$ if f_i is dependent of x_j

(Eq.8)

The incidence matrix for the synchronous system (Eq.6) is given by (Eq.9)

\[
B(F) = \begin{bmatrix}
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0
\end{bmatrix} \quad \text{(Eq.9)}
\]

For the asynchronous system (Eq.7) the incidence matrix is given by (Eq.10):

\[
B(G) = \begin{bmatrix}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix} \quad \text{(Eq.10)}
\]

The incidence matrix however seems to be a crude tool to study the stability because it carries very little information about the relationship between the state variables. It is also possible to have the same incidence matrix for a stable as well as an unstable system. A counter example that discourages the use of incidence matrix is shown next.
Consider the system (Eq.11), which does not have any equilibrium points,

\[g_1(x) = \overline{x_3} + \overline{x_4} \]
\[g_2(x) = x_3 x_4 \]
\[g_3(x) = x_3 + x_4 \]
\[g_4(x) = \overline{x_4} \]
(Eq.11)

The incidence matrix is given by (Eq.12)

\[
B(G) = \begin{bmatrix}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]
(Eq.12)

Compared to the stable system (Eq.7) and its associated incidence matrix (Eq.10), it could be seen that both (Eq.10) and (Eq.12) are same! Following this discovery, the incidence matrix technique was abandoned.
7 Mathematical Modelling of TMS Neural Network

To study the stability of the TMS Neural Network it is necessary to generate a mathematical model of the system. The mathematical model of the TMS Neural Network can be described if we can model the individual components of the system. The components of the system are logic gates and flip-flops. The motivation behind developing the mathematical model is to find out the stability characteristics of the system. An algebraic model would enable us to apply stability principles developed by Lyapunov. It is therefore necessary for the system model to be completely algebraic.

There are two basic approaches: (1) model the individual components used in the hardware circuit and develop equations based on the hardware connections between individual components; or (2) develop the equations for each neuron in terms of the boolean functions implied by the justification table, and then convert the boolean equations into the necessary algebraic form. Both techniques involve development of simple algebraic relations for boolean operations. The use of the first technique directly yields equations that incorporate the asynchronous update operation. The second technique still would require some type of transformation to incorporate the asynchronous update operation. Implementation of the first technique involves substantial computation, also the computation would be different
for each problem. The first method was therefore abandoned.

The second technique involved development of the boolean equations to model the operation of the individual neurons. This step was simple since the justification table provided the logical relationships required for each neuron. The sequential update information was then incorporated by using the Gauss-Seidel operator (Sec. 6.1). The resulting boolean equations now closely represented the asynchronous operation of the TMS Neural Network. The next step is to convert these boolean equations into simple algebraic equations without the use of MAX or ABS functions. The conversion of the boolean equations would require equivalent algebraic operations corresponding to boolean operations namely AND, NOT, OR, etc.

The algebraic model of each boolean operation can be devised by observing the truth table of each logic element. The truth table of all the logic elements used in the TMS Neural Network is shown below with the respective algebraic description. All the models assume that the input states and output states take the logic states of 0 and 1.

7.1 AND Gate

The AND gate is the simplest to model algebraically and is described by the product of the inputs. This model is also valid for multiple inputs. The algebraic equation for an AND gate with three inputs A, B, and C and output as Q is given by (Eq.13)
\[Q = ABC \]
(Eq.13)

7.2 Inverter

The algebraic model for the inverter is also simple. For an inverter with A as its input and Q as the output, the algebraic equation is given by (Eq.14)

\[Q = 1 - A \]
(Eq.14)

7.3 OR Gate

By observing the truth table of the OR gate, the algebraic model for a 2 input OR gate with inputs A and B, and output Q can be written as (Eq.15)

\[Q = A + B - AB \]
(Eq.15)

For a three input OR gate with inputs A, B, and C, and an output Q, the equation can be derived from (Eq.15) as shown below (Eq.16):

\[
Q = (A \lor B) \lor C \\
= (A + B - AB) \lor C \\
= (A + B - AB) + C - (A + B - AB)C \\
= A + B + C - AB - BC - AC + ABC
\]
(Eq.16)

In a similar way, the algebraic equation for an OR gate with any number of input can be derived.

7.4 Example Problem

The algebraic transformation relationships developed above will be implemented on the boolean system of equations developed in the previous chapter for Example 1(Eq.7). Note that the terms in \{\} represent boolean relationships.
The algebraic transformation is obtained as (Eq. 17):

\[g_1(x) = \{x_3 + \bar{x}_4\} \]
\[= (1 - x_3) + (1 - x_4) - (1 - x_3)(1 - x_4) \]
\[= 1 - x_3 x_4 \]

\[g_2(x) = \{x_3 \bar{x}_4\} \]
\[= x_3(1 - x_4) \]

\[g_3(x) = \{x_3 + x_4\} \]
\[= x_3 + x_4 - x_3 x_4 \]

\[g_4(x) = \{x_4\} \]
\[= x_4 \]

(Eq. 17)
8 Application of Lyapunov Stability Criteria

The TMS Neural Network can be classified as a force-free stationary system. The system equation has been expressed before in the vector difference form (Eq.18):

$$X^{k+1} = \phi[X^k]$$ \hspace{1cm} (Eq.18)

where ϕ is a nonlinear function dependent on the state vector, and k is the iteration number. The system generates new solutions until it reaches an equilibrium state X_e. When the equilibrium state is reached, the solution remains constant and will satisfy (Eq.19)

$$X_e = \phi[X_e]$$ \hspace{1cm} (Eq.19)

The above description is identical with the description of classical systems (LaSalle, 1976) except for the fact that the TMS Neural Network has multiple equilibrium states. Thus the assumption of uniqueness of the solution is dropped. For Example (1) there are 3 equilibrium states. Now assume that the system is at an equilibrium point. If the system is perturbed by a small amount, and the system
ultimately goes back to the same equilibrium point, the equilibrium is defined to be *asymptotically stable*. However, if the system remains in the vicinity of the equilibrium point, then the equilibrium is defined to be *stable*. If perturbations are allowed to span the entire state space, and the equilibrium is asymptotically stable, then the equilibrium is defined to be *globally asymptotically stable*. A stable equilibrium can therefore give rise to the existence of *limit cyclic*, i.e., the solution oscillates between a fixed number of states. Since, we are interested in the TMS Neural Network to find an equilibrium point (solution), our interest is in systems that are asymptotically stable or globally asymptotically stable. Figure 7 illustrates the concepts of different types of stability.

![Types of Stability](image)

Figure 7: Types of Stability

The stability of equilibrium points of nonlinear dynamic systems is studied using well established theorems given by Lyapunov (Hahn, 1963). These theorems are mentioned below without proof. The power of Lyapunov's theorems lies in the fact that the stability of the equilibrium point of the dynamical system can be studied
without the knowledge of the system trajectories or solution. This method can therefore be applied to the stability analysis of the TMS Neural Network.

8.1 Terms and Definitions

Lyapunov's direct method involves finding a scalar function called Lyapunov Function with certain properties. These properties are explained below:

8.1.1 Positive Definite Function

A scalar function $V(x)$ is positive definite if and only if both conditions (1) and (2) hold

(1) $V(x)$ is zero at the origin.

(2) $V(x) > 0$ at all points in the state space other than the origin.

Note that a positive definite function is not allowed to be equal to zero at any point other than zero.

8.1.2 Positive Semi-Definite Function

A scalar function $V(x)$ is positive semi-definite if and only if condition (1) holds

(1) $V(x) \geq 0$ at all points in the state space other than the origin.

8.1.3 Negative Definite Function

A scalar function $V(x)$ is negative definite if $-V(x)$ is positive definite.

8.1.4 Negative Semi-Definite Function

A scalar function $V(x)$ is negative semi-definite if $-V(x)$ is positive semi definite.
8.1.5 Positive Definite Matrix

A matrix H, can be positive definite if the following equivalent conditions are true

1. The quadratic form of H, which is X^THX is positive definite
2. All the principal minors of H are greater than zero.

The principal minors of a matrix H, are calculated by computing the determinants of the sub-matrices, with each diagonal element of H, as the first element of the sub-matrix. For a $N \times N$ matrix there would be N principal minors. The computation of the principal minors is carried out in the next chapter.

8.2 Lyapunov’s Stability Theorems

The stability of the equilibrium points of dynamical systems is classified into three major categories namely (1) Stable Equilibrium, (2) Asymptotically Stable Equilibrium, and (3) Unstable Equilibrium. According to Lyapunov, the three types of stability can be defined based on a function. This function called the Lyapunov function is based on the problem description, which is in terms of the derivative of the state variables. Definitions of the different types of stability in terms of Lyapunov functions are given below.

8.2.1 Stable Equilibrium

The equilibrium state $X=0$ is stable if there exists a scalar function $V(x)$ that is positive definite and $\Delta V(X)$ is negative semi-definite. $V(x)$ is called a Lyapunov function.
8.2.2 Asymptotically Stable Equilibrium

The equilibrium state \(X = 0 \) is asymptotically stable if there exists a scalar function \(V(X) \) that is positive definite and \(\Delta V(X) \) is negative definite.

Note that the stability definitions are defined with respect to the equilibrium point at the origin. In the TMS Neural Network, the equilibrium points are usually non-zero. This demands mapping the system equations so as to translate the equilibrium to the origin.

8.3 Translation of the Equilibrium Point

The TMS Neural Network may have multiple equilibrium points none of which may be at the origin of the system. However, all Lyapunov's stability tests are defined with respect to the origin as an equilibrium point. It therefore becomes necessary to translate the equilibrium point to the origin and then test its stability. The translation of the equilibrium point is carried out by the following procedure.

Using (Eq.18), (Eq.19) and with \(y \) as the transformed coordinate, we obtain (Eq.20-a)-(Eq.20-c).

\[
Y^k = X^k - X_e \tag{Eq.20-a}
\]

\[
X^k = Y^k + X_e \tag{Eq.20-b}
\]

\[
X^{k+1} = Y^{k+1} + X_e \tag{Eq.20-c}
\]

Substituting the above relations into the system equation (Eq.18) we get (Eq.21)
\[
Y^{k+1} = \phi(Y^k + X_e) - X_e \\
Y^{k+1} = \Phi(Y^k) \\
where \Phi(Y^k) = \phi(Y^k + X_e) - X_e
\]

(Eq.21)

The translated system equation now has an equilibrium at \(Y_e = [0 \ 0 \ 0 \ 0] \) and will be used later in the Lyapunov's stability theorems.

8.4 Lyapunov Functions

Though Lyapunov provided a powerful technique to test the stability of the equilibrium of a system, there is no general methodology to derive suitable Lyapunov functions. The Lyapunov function may be different for different systems and are not unique for a given system. Extensive work (Edward 1968, Vannelli 1985, Szego 1963) has been done in the generation of Lyapunov functions but they are usually restricted to specific class of problems. To prove the stability of an equilibrium point, one has to search for a suitable Lyapunov function. Failure to find such a function still does not guarantee instability. The technique however, guarantees stability, if a Lyapunov function is found.

A common form of a Lyapunov functions is of the form (Eq.22)

\[
Y = \begin{bmatrix} y_1 & y_2 & \ldots & y_n \end{bmatrix}^T \\
V_1(Y) = |Y|
\]

(Eq.22)

\(V_1 \) is obviously positive definite on \(\mathbb{R}^n \)

Another form used widely is (Eq.23)

In the limiting case, with \(H = I \), we obtain \(V_2 = Y^T I Y = Y^T Y = V_1 \)
\[V_2(Y) = Y^T H Y \] \hspace{1cm} \text{(Eq. 23)}

\(H \in \mathbb{R}^n \) is Positive Definite

In (Eq. 23), the \(H \) matrix is required to be positive definite. The test for stability of the origin is performed by (1) evaluating the first forward difference in the immediate neighborhood of the origin using (Eq. 24)

\[\Delta V(Y) = V(Y^{k+1}) - V(Y^k) \] \hspace{1cm} \text{(Eq. 24)}

and (2) verifying the definiteness of (Eq. 24). As defined earlier, if (Eq. 24) is negative definite for all \(Y \), then the origin is asymptotically stable, if (Eq. 24) is zero, then the origin is stable, and finally if (Eq. 24) is negative definite, then the origin is unstable.

For the TMS Neural Network, the translated system state space domain is such that \(Y \in \{-1, 0, 1\} \). The smallest immediate neighborhood of the origin consists of eight points that are away from the origin by one unit distance. The eight points in the immediate neighborhood of the origin are shown in Figure 8.

The test for stability is performed for each point in the immediate neighborhood. The result of each test must indicate either stable or asymptotic stable conditions. If one test shows unstable behavior, then either a new \(H \) matrix has to
be tried or a new $V(Y)$ has to be found. If an H matrix can be found such that all tests indicate stable behavior then it can be concluded that the origin vis-a-vis the equilibrium point in question is stable. The stability test has to be carried out for all the equilibrium points in the system in a similar way.
9 Stability of TMS Neural Network

The concepts of stability developed in the previous chapter will be applied to the TMS Neural Network example 1. The network function for each neuron is first represented in boolean notation. This step is simple since the circuit is also a logic circuit. The resulting boolean equations are shown below (Eq.25)

\begin{align*}
f_1(x) &= \overline{x_3} + \overline{x_4} \\
f_2(x) &= x_1x_3 + x_3x_4 \\
f_3(x) &= x_2 + x_1 + x_4 \\
f_4(x) &= x_3\overline{x_2} + \overline{x_1}
\end{align*}

(Eq.25)

Equations (Eq.25) in fact represent the operation of the network in a synchronous update mode. Since the TMS Network operates in asynchronous mode, the system equations are transformed using the Gauss-Siedel operator (Sec. 6.1) as shown in (Eq.26-a), (Eq.26-b) along with the intermediate boolean simplification steps. The system (Eq.26-a), (Eq.26-b) shown is for an update sequence 1-2-3-4.

\begin{align*}
g_1(x) &= \overline{x_3} + \overline{x_4} \\
g_2(x) &= x_1x_3 + x_3\overline{x_4} \\
&= (\overline{x_3} + \overline{x_4})x_3 + x_3\overline{x_4} \\
&= x_3\overline{x_3} + \overline{x_4}x_3 + x_3\overline{x_4} \\
&= 0 + x_3\overline{x_4} + x_3\overline{x_4} \\
&= x_3\overline{x_4}
\end{align*}

(Eq.26-a)
\[g_3(x) = x_2 + \overline{x_1} + x_4 \]
\[= x_3x_4 + x_3 + x_4 + x_4 \]
\[= x_3\overline{x_4} + x_3x_4 + x_4 \]
\[= x_3x_4 + x_4 + x_4 \]
\[= x_3(1 + x_4) + x_4 \]
\[= x_3 + x_4 \]
\[\]
\[g_4(x) = x_3\overline{x_2} + \overline{x_1} \]
\[= (x_3 + x_4)(\overline{x_3x_4}) + \overline{x_3 + x_4} \]
\[= (x_3 + x_4)(\overline{x_3} + x_4) + x_3x_4 \]
\[= (x_3\overline{x_3} + x_3x_4 + x_4\overline{x_3} + x_4x_4) + x_3x_4 \]
\[= (0 + x_3x_4 + x_4\overline{x_3} + x_4) + x_3x_4 \]
\[= x_4(x_3 + \overline{x_3} + 1 + x_3) \]
\[= x_4(1 + 1) \]
\[= x_4 \]

The boolean equations (Eq.26-a)-(Eq.26-b) are then transformed into simple algebraic equations using the relations developed earlier. The algebraic simplification steps are shown below (Eq.27):

\[g_1(x) = (1 - x_3) + (1 - x_4) - (1 - x_3)(1 - x_4) \]
\[= 1 - x_3x_4 \]
\[g_2(x) = x_3(1 - x_4) \]
\[= x_3 - x_3x_4 \]
\[g_3(x) = x_3 + x_4 - x_3x_4 \]
\[g_4(x) = x_4 \]

Rewriting the algebraic equations in difference form we obtain (Eq.28).

\[x_1^{k+1} = 1 - x_3^kx_4^k \]
\[x_2^{k+1} = x_3^k(1 - x_4^k) \]
\[x_3^{k+1} = x_3^k + x_4^k(1 - x_3^k) \]
\[x_4^{k+1} = x_4^k \]
As mentioned before, the TMS Neural Network often has multiple equilibrium points. Since we are translating the system with respect to one equilibrium point at a time. The origin represents only one of the equilibrium points. The origin therefore cannot be a global attractor due to the presence of other attractors in the state space. The stability analysis of the network with multiple equilibrium points therefore has to restrict to the nearest neighborhood of the origin.

Using equations (Eq.28), one has to find an H matrix such that the first forward difference (Eq.24) is greater then or equal to zero for all the immediate neighborhood points of the equilibrium point. The H matrix is a 4x4 matrix, so to make the search easier an interactive computer program was written (Appendix III). The computer program makes use of the above equations along with the translation equations (Eq.21) and computes the first forward difference (Eq.24) for each neighborhood point of the equilibrium point, and evaluates their stability. Note that after each translation, each equilibrium point becomes the origin of the system. The neighborhood points in the translated state space would therefore be same for all the three equilibrium points. The program displays the H matrix on the screen and allows the user to edit the H matrix. The evaluation of the stability of all the three equilibrium states for all their immediate neighborhood points is displayed on the screen simultaneously. The user can keep changing the H matrix arbitrarily until the desired results are obtained. Here, the H matrix was changed until at least one equilibrium point had all its neighborhood points satisfy the Lyapunov criterion.

After several trials, it was possible to obtain an H matrix that made all the
nearest neighborhood points of the origin with respect to X_{e1} and X_{e2} simultaneously asymptotically stable or at least stable. With

$$H_1 = \begin{bmatrix} 1 & 1 & 3 & 2 \\ 1 & 0 & 0 & 1 \\ 3 & 0 & 2 & 4 \\ 2 & 1 & 4 & 3 \end{bmatrix}$$

(Eq.29)

the stability results shown in Table X were obtained.

Notice that X_{e1} has all neighborhood points asymptotically stable except for the 2nd and 8th neighbor, which are just stable. X_{e2} has 2nd, 3rd, 7th and 8th neighbor as stable and 1st, 4th, 6th and 9th neighbor as asymptotically stable. However, X_{e3} has the 4th and 6th neighbor as unstable. We now check for the positive definiteness of H_1. The first principal minor of H_1 is 1, which is obviously greater than zero. However, the second principal minor is $1 \times 0 - 1 \times 1 = -1$ is less than zero. H_1 is therefore *not* positive definite. Therefore, a new H matrix has to be found.

Another H matrix that simultaneously satisfied the Lyapunov criterion for X_{e2}

<table>
<thead>
<tr>
<th>No.</th>
<th>Smallest Neighborhood Points</th>
<th>Stability Results for X_{e1}</th>
<th>X_{e2}</th>
<th>X_{e3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[-1 0 0 0]</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>[0 -1 0 0]</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>3</td>
<td>[0 0 -1 0]</td>
<td>A</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>4</td>
<td>[0 0 0 -1]</td>
<td>A</td>
<td>A</td>
<td>U</td>
</tr>
<tr>
<td>5</td>
<td>[0 0 0 0]</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>6</td>
<td>[1 0 0 0]</td>
<td>A</td>
<td>A</td>
<td>U</td>
</tr>
<tr>
<td>7</td>
<td>[0 1 0 0]</td>
<td>A</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>8</td>
<td>[0 0 1 0]</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>9</td>
<td>[0 0 0 1]</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>
and \(X_{e3} \) was also found. With

\[
H_2 = \begin{bmatrix}
1 & 2 & 3 & 4 \\
2 & 0 & 0 & 2 \\
3 & 0 & 0 & 0 \\
4 & 2 & 0 & 3
\end{bmatrix}
\]
(Eq.30)

the stability results shown in Table XI were obtained. Observe that all the nearest neighborhood points are at least stable.

However \(H_2 \) is not positive definite because the second principal minor (-4) is negative.

Table XI: Stability Results Using \(H_2 \) [A=Asymptotic Stable, S=Stable, U=Unstable].

<table>
<thead>
<tr>
<th>No.</th>
<th>Neighborhood Points</th>
<th>Stability Results for Xe1 0011</th>
<th>Xe2 1110</th>
<th>Xe3 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>([-1 0 0 0])</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>([0 -1 0 0])</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>3</td>
<td>([0 0 -1 0])</td>
<td>U</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>4</td>
<td>([0 0 0 -1])</td>
<td>A</td>
<td>A</td>
<td>S</td>
</tr>
<tr>
<td>5</td>
<td>([0 0 0 0])</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>6</td>
<td>([1 0 0 0])</td>
<td>A</td>
<td>A</td>
<td>S</td>
</tr>
<tr>
<td>7</td>
<td>([0 1 0 0])</td>
<td>U</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>8</td>
<td>([0 0 1 0])</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>9</td>
<td>([0 0 0 1])</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

Since \(H \) has to be positive definite the program was modified to verify for positive definiteness and display the results on the screen. This allowed the user to change \(H \) until it was positive definite and made the nearest neighborhood points at least stable. Using the modified version of the program, another \(H \) matrix was found (Eq.31).

With \(H_3 \) the stability results shown in Table XII were obtained. Observe that all the nearest neighborhood points are asymptotically stable. Also \(H_3 \) is positive...
\[H_3 = \begin{bmatrix} 10 & -2 & 0 & 0 \\ -2 & 20 & -15 & 20 \\ 0 & -15 & 30 & -20 \\ 0 & 20 & -20 & 40 \end{bmatrix} \]

(Eq.31)

definite since all the four principal minors are positive as computed by the program.

The Lyapunov function (Eq.23) with \(H = H_3 \) therefore satisfies the Lyapunov criteria in the immediate neighborhood of the origin for all the three equilibrium points, we can conclude that the three equilibrium points are asymptotically stable in the nearest neighborhood of the origin. Note that there may be a different \(H \) matrix satisfying the Lyapunov criterion for each equilibrium point.

Table XII: Stability Results Using \(H_3 \)
A = Asymptotic Stable, S = Stable, U = Unstable.
10 Conclusions

10.1 Salient Features

In spite of the development of powerful techniques and representation models, Artificial Intelligence (AI) has had a limited success in the application arena because of lack of real time performance efficiency. Neural Networks on the other hand have the unique capability of high speed by virtue of their parallel architecture. The TMS Neural Network inherits the good features of both AI and Neural Networks with respect to model representation and execution speed. The TMS Neural Network model stands out uniquely from conventional Neural Network models functionally as well as architecturally. Conventional Neural Networks are primarily aimed at associative memory storage by generating the interconnection weights for a given set of memories. For a TMS Neural Network the interconnection weights are known apriori. Given an input the conventional Neural Network is expected to yield one of the stored memories. However, the TMS Neural Network gives a solution that is not known apriori. Of course, there are optimization applications of Neural Networks that yield an unknown solution. Based on this context, the TMS Neural Network would fit into the optimization application branch of Neural Networks.

The knowledge representation model of the TMS Neural Network makes it
unique when compared with other expert system implementations using Neural Networks. The knowledge representation model allows the TMS Neural Network to check for consistency in the knowledge (rule) base as more rules are added to it. The TMS Neural Network system is as sensitive as a conventional TMS algorithm to the addition or removal of rules or certain facts. This is in spite of the fact that the algorithms are different from each other. This behavior was observed in the initial stages of development of the TMS Neural Network and was very encouraging. This partly contributed to the validity of the TMS Neural Network in the absence of a convergence proof at the developmental stage.

The hardware is simple due to the absence of resistors and operational amplifiers usually found in conventional Neural Networks. The TMS Neural Network is based on logic and the interconnections are switches. This makes it more reliable and less prone to noise problems. However it is possible to develop an equivalent model using resistors and comparators. The neuron update operation of the TMS Neural Network is also very simple and is driven by the difference between the input state and output states. Our intuition agrees with this type of update since the system is trying to reach a state of zero difference between the input and output state. Overall, the concept of TMS has never been merged or implemented with Neural Networks before.

The time required to arrive at a stable state is insignificant, considering the high clock frequency that could be used. For very large problems a stable solution would be found using a much higher clock frequency, say for example 10 MHz. The
high speed of inferencing lends this new system toward a real time expert system.

A true mathematical model of the TMS Neural Network that included the asynchronous update process was constructed. A new methodology for applying the modified Lyapunov stability criterion to the TMS Neural Network has also been successfully devised. Application of the Lyapunov stability criterion has revealed that the equilibrium points of the TMS Neural Network were asymptotically stable in the nearest neighborhood of the origin. However since the system has multiple equilibrium points, it would not be possible to find a Lyapunov Function for satisfying Global Asymptotic Stability criterion. That is, the origin with respect to one of the equilibrium points cannot be an attractor for the whole state space due to the presence of other attractors.

10.2 Future Work

As mentioned before, the behavior of the system is different for different update sequences. This behavior needs to be studied in greater detail. Knowledge of the trajectory behavior in relation to the update sequence could be used for faster convergence toward the solution. Also, the update sequence in the practical implementation changes dynamically. Modelling of the dynamic update sequence could therefore be undertaken in the near future.

The hardware implementation shown here demonstrated the operation of the network. The practical implementation however involves many intricate details such as interfacing of the network with traditional computers. The ultimate goal is to fabricate the TMS Neural Network on a chip. Practical limitations of the number
of pins on a chip requires the use of multiplexing for loading and unloading of the interconnection data. The circuit details necessary for loading the interconnection data also need to be worked out.
References

Kundu, S., 1989, Advanced Artificial Intelligence Lecture Notes, Louisiana State University.

McNaughton, R., Papert, S., 1971, Counter-Free Automata, MIT Press.

Sample plot of state trajectories generated by the simulation program (for Table V).
APPENDIX II

Source Code of Program SIMTMSNN.BAS
TMS Neural Network SIMULATOR

Program Written by: Suresh Guddanti
Postscript Plotting support included

DEFINT I-N
DECLARE SUB helpscreen ()
DECLARE SUB postbox ()
DECLARE SUB postline1 (xps1!, yps1!, xps2!, yps2!, pthick!, pgray!)
DECLARE SUB postpage ()
DECLARE SUB postclose ()
DECLARE SUB posttext (xpl!, ypl!, pthick!, pgray!)
DECLARE SUB POSTLINE (xpl1!, ypl1!, xpl2!, ypl2!, pthick!, pgray!)
DECLARE SUB newstate ()
DECLARE SUB stable ()
DECLARE SUB allneuron ()
DECLARE SUB negation ()
DECLARE SUB plotreset ()
DECLARE SUB convstate (s$)
DECLARE SUB initplot ()
DECLARE SUB plot ()
DECLARE SUB initplot1 (jb)
DECLARE SUB tmfast ()
DECLARE SUB fastrules1 (i)
DECLARE SUB reng ()
DECLARE SUB wsort ()
DECLARE SUB fastrules ()
DECLARE SUB checkpoint (i, j, k, iw)
DECLARE SUB intersect (i)
DECLARE SUB wupdate (i)
DECLARE SUB music ()
DECLARE SUB default ()
DECLARE SUB actvert (i, j)
DECLARE SUB neuron1 (i)
DECLARE SUB settle ()
DECLARE SUB automode ()
DECLARE SUB dec2bcd (ib)
DECLARE SUB consistent (i, v)
DECLARE SUB sCIRCLE1 (p, q, c)
DECLARE SUB redraw ()
DECLARE SUB delay (tm)
DECLARE SUB getdata ()
DECLARE SUB savedata ()
DECLARE SUB wupdate (i)
DECLARE SUB tms ()
DECLARE SUB rules ()
DECLARE SUB wupdate (iww)
DECLARE SUB wdraw ()
DECLARE SUB scircle (p, q, c)
DECLARE SUB weights ()
DECLARE SUB keyinput ()
DECLARE SUB neuron (i)
DECLARE SUB vertical (i)
DECLARE SUB horizontal (i)
DIM SHARED xn(10, 10, 20), yn(10, 10, 20), aimage(1000), ltr, ifl, abort
DIM SHARED k$, ipast(10), icurrent(10), xmax, x, invert(10), noninvert(10), n
DIM SHARED nwt, wx(100), wy(100), nvert(10), wcol, restart, restart1, dl
DIM SHARED nlock(10), order(10), up$, nycol, iw(100), kw(100), jw(100)
DIM SHARED ksound, fS, pulse(1000), npulse, postprn
DIM SHARED nwn(10, 10), kkw(10, 10, 50)
DIM SHARED ndiff, ndiff1, iplot, ix1, iy1, bckcol, ilx1, iyl1
DIM SHARED istateS, ifstateS, cg, cg1, nstable, nst$(10)
DIM SHARED iconflict, nconflict(10), islock(10), cgst(10), nste
SCREEN 9, 1, 1
CLS
CALL helpscreen
SCREEN 9, 0, 0
CLS
' INITIALIZE VARIABLES
postpm = 0
iplot = 0
nste = -1
bckcol = 8
ksound = 1
dl = .2
' VIEW PRINT 23 TO 25
COLOR 14, bckcol
abort = 0
restart = 0
wtcol = 14
itr = 7
ifl = 6
nwt = 0
n = 2
FOR i = 1 TO n
 nvert(i) = 1
NEXT i
100 CLS
VIEW (0, 0)-(639, 300), 8
VIEW PRINT 23 TO 25
CALL default
xmax = 10 * (n + 2)
WINDOW (0, 0)-(xmax, xmax)
FOR i = 1 TO n
 ipast(i) = itr
 noninvert(i) = ipast(i)
NEXT i
wsort
CALL redraw
'CALL settle
CALL wsort
CALL fastrules1(0)
wtrdraw
CALL regen
200
CALL weights ' Assign Weights and get user commands
IF restart = 1 THEN
 restart = 0
 GOTO 100
END IF
IF abort = 1 THEN 500
CALL wtrdraw
CALL tms
GOTO 200
500 END
' ERROR SERVICE ROUTINE IF FILE NOT FOUND
1222 LOCATE 23, 1: PRINT "File Does not Exist";
CALL delay(.75)
SCREEN , 1, 1
CLS
PRINT "Files in your directory;"
PRINT "Files in your directory;"
FOR i = 1 TO 30: PRINT : NEXT i
FILES **,**
PRINT : PRINT : PRINT
LOCATE 23, 1: INPUT "Load File; " , fl$
CALL helpscreen
SCREEN , , 0, 0
FOR i = 1 TO 10: PRINT : NEXT i
CLS
RESUME

SUB actvert (i, j)
 x1 = i * 10 + 10 + 5 / (nvert(i) + 1) * j
 LINE (x1, 18.5)-(x1, xmax), 11
END SUB

SUB allneuron
FOR i = 1 TO n
 CALL neuron(i)
NEXT i
END SUB

SUB automode
 CALL wsort
 IF iplot = 0 THEN nstable = 0
 IF iplot = 1 THEN CALL initplot
 pulset = 0
 pulsemax = 0
 FOR j = 0 TO 2 ^ (n - 1)
 CALL dec2bcd(j)
 IF iplot = 1 THEN CALL convstate(jstate$)
 istateS = jstate$
 IF iplot = 1 THEN CALL initplot1(jb)
 'LOCATE 24, 1: PRINT b;
 k$ = INKEY$
 IF k$ = "X " THEN
 restart = 1
 IF iplot = 1 THEN CALL plotreset
 GOTO 899
 END IF
 END FOR
 CALL tmsfast
 IF npulse > pulsemax THEN pulsemax = npulse
 pulset = pulset + npulse
 pulse(B + 1) = npulse
NEXT jb
pulsea = pulset / 2 ^ n
IF iplot = 0 THEN
 LOCATE 23, 50: PRINT "Update Average = ", pulsea;
 LOCATE 24, 50: PRINT "Max. Updates = ", pulsemax;
 LOCATE 23, 1: PRINT SPACES(48);
 LOCATE 23, 1: PRINT "Stable States :";
 FOR kkl = 1 TO nstable
 PRINT nst$(kkl); " ";
 NEXT kkl
ELSE
 CALL keyinput
 CALL plotreset
END IF
899
 IF postprn = 1 THEN CALL postclose
END SUB
SUB checkwt (i, j, k, iww)
 iww = 0
 FOR mw = 1 TO nwt
 IF iw(mw) = i AND jw(mw) = j AND kw(mw) = k THEN iww = mw
 NEXT mw
END SUB

SUB consistent (i, v)
 v = 1: ndiff = 0: cg = 0
 FOR ii = 1 TO n
 IF ii = i THEN 543
 IF ipast(ii) <> icurrent(ii) THEN
 v = 0
 ndiff = ndiff + 1
 END IF
 NEXT ii
543
 n2 = 0
 FOR ii = 1 TO n
 IF ipast(ii) = itr THEN
 cg = cg + ii
 n2 = n2 + 1
 END IF
 NEXT ii
 IF n2 = 0 THEN
 eg = 0
 ELSE
 eg = eg / n2
 END IF
END SUB

SUB convstate (s$)
 s$ = ""
 FOR i = 1 TO n
 IF ipast(i) = itr THEN
 s$ = s$ + " T ">
 ELSE
 s$ = s$ + " F ">
 END IF
 NEXT i
END SUB

SUB dec2bcd (ia)
 FOR i = 1 TO n
 ib = 2 ^ (i - 1)
 itemp = (ib AND ia) / ib
 ipast(i) = itr
 IF itemp = 0 THEN ipast(i) = ifl
 NEXT i
 FOR i = 1 TO n
 IF nlock(i) <> 0 THEN
 ipast(i) = islock(i)
 END IF
 NEXT i
 ' IF iconflict = 1 THEN CALL negation
END SUB

SUB default
 up$ = ""
 FOR pi = 1 TO n
 order(pi) = pi
 up$ = up$ + CHR$(48 + pi)
 NEXT pi
LOCATE 24, 1: PRINT "Update Sequence: "; up$;
ix1 = 1: iy1 = 1
ix2 = 9: iy2 = 2
END SUB

SUB delay (tm)
t1 = TIMER
WHILE ABS(TIMER - t1) < tm
WEND
END SUB

SUB fastrules (ineuron)
 IF iconflict = 1 THEN CALL negation
FOR i = 1 TO n
 IF i = ineuron THEN 435
 icurrent(i) = il
 FOR j = 1 TO nvert(i)
 FOR nw = 1 TO nwn(i, j)
 temp = kkw(i, j, nw) / 2
 itemp = INT(temp)
 IF 1 AND kkw(i, j, nw) = 1 THEN
 IF ipast(itemp + 1) = itr THEN
 GOTO 124
 ELSE
 END IF
 ELSE
 IF ipast(itemp) = il THEN
 GOTO 124
 ELSE
 END IF
 END IF
 NEXT nw
 icurrent(i) = itr
 EXIT FOR
124 NEXT j
435 NEXT i
 IF iconflict = 1 THEN CALL negation
END SUB

SUB getdata
 ON ERROR GOTO 1222
 LOCATE 24, 1: PRINT SPACE$(20);
 LOCATE 24, 1: INPUT "Load File: " , flS
 IF fl$ = " " THEN GOTO 134
 OPEN fl$ FOR INPUT AS #1
 INPUT #1, n, nwt
 FOR i = 1 TO nwt
 INPUT #1, iw(i), jw(i), kw(i)
 NEXT i
 FOR i = 1 TO n
 INPUT #1, nvert(i)
 NEXT i
 FOR i = 1 TO n
 INPUT #1, nconflict(i)
 NEXT i
 CLOSE
134 LOCATE 24, 1: PRINT SPACE$(20);
 ON ERROR GOTO 0
END SUB

SUB helpscreen
 FOR i = 1 TO 25: PRINT : NEXT i
COLOR 14
LOCATE 1, 30: PRINT "HELP SCREEN"
COLOR 13
LOCATE 3, 10: PRINT "EDITING COMMANDS"
LOCATE 4, 5: COLOR 14: PRINT "n/N"; : COLOR 3: PRINT ": Add/Delete Neuron"
LOCATE 5, 5: COLOR 14: PRINT "a/A"; : COLOR 3: PRINT ": Add/Delete Justifications"
LOCATE 6, 5: COLOR 14: PRINT "/f"; : COLOR 3: PRINT ": Add/Delete Interconnection"
COLOR 13
LOCATE 8, 10: PRINT "FILE COMMANDS"
LOCATE 10, 5: COLOR 14: PRINT "t"; : COLOR 3: PRINT ": Save problem to file"
LOCATE 10, 5: COLOR 14: PRINT "r"; : COLOR 3: PRINT ": Retrieve problem from file"
LOCATE 10, 5: COLOR 14: PRINT "Z"; : COLOR 3: PRINT ": Specify PostScript filename"
COLOR 13
LOCATE 13, 10: PRINT "PLOTTING COMMANDS"
LOCATE 15, 5: COLOR 14: PRINT "p"; : COLOR 3: PRINT ": Enable Plotting"
LOCATE 15, 5: COLOR 14: PRINT "/p"; : COLOR 3: PRINT ": Disable Plotting"
COLOR 13
LOCATE 3, 50: PRINT "SIMULATION COMMANDS"
LOCATE 45, 14: COLOR 14: PRINT "t"; : COLOR 3: PRINT ": Toggle Neuron State"
LOCATE 45, 14: COLOR 14: PRINT "y"; : COLOR 3: PRINT ": Enable Fast Settling"
LOCATE 45, 14: COLOR 14: PRINT "/E"; : COLOR 3: PRINT ": Enable/Disable Negation"
LOCATE 45, 14: COLOR 14: PRINT "/I"; : COLOR 3: PRINT ": Lock neuron State"
LOCATE 45, 14: COLOR 14: PRINT "o"; : COLOR 3: PRINT ": Change/Default Update Seq"
LOCATE 45, 14: COLOR 14: PRINT "/R"; : COLOR 3: PRINT ": Reset all neuron states"
LOCATE 45, 14: COLOR 14: PRINT "b"; : COLOR 3: PRINT ": Set to next binary state"
LOCATE 45, 14: COLOR 14: PRINT "X"; : COLOR 3: PRINT ": QUIT PROGRAM"
LOCATE 22, 5: COLOR 14: PRINT "NOTE: KEYBOARD MUST BE IN NUMLOCK MODE FOR ARROWS TO WORK"
END SUB

SUB horizontal (i)
 IF i = 0 THEN EXIT SUB
 n = i * 10 + 10
 x1 = x + 1.25
 x2 = x + 3.75
 y1 = 13.5 - 13 / n * i
 y2 = 13.5 - 13 / n * (i - 1)
 y = (y1 + y2) / 2
 LINE (x1, 13.5)-(x1, y), invert(i)
 x3 = 20 - 19 / n * (i)
 x4 = 20 - 19 / n * (i - 1)
 x4 = (x4 + x3) / 2
 LINE (x3, y)-(x4, y), invert(i)
 LINE (x3, y3)-(xmax, y3), noninvert(i)
 LINE (x1, y1)-(x4, y1), invert(i)
 xy = xmax - 23
 y3 = 18.5 + xy / n * i
 y4 = 18.5 + xy / n * (i - 1)
 y4 = (y3 + y4) / 2 + 1.5
 LINE (x3, y3)-(xmax, y3), noninvert(i)
 CALL intersect(i)
END SUB

SUB initplot
 ix1 = 1: iy1 = 1
 ixl = 9: ily1 = 2
VIEW PRINT 1 TO 25
VIEW (ix1, iy1)-(ix1 + 160, iy1 + 87), 1
CLS
WINDOW (0, 0)-(xmax, xmax)
CALL regen
WINDOW (0, 0)-(n + 3, 2 * n - 2)
END SUB

SUB initplot1 (jb)
ix1 = ix1 + 160
IF ix1 > 580 THEN
ix1 = 1
iy1 = iy1 + 87
IF iy1 > 265 THEN
iy1 = 1
CALL keyinput
VIEW (0, 0)-(639, 349), , 3
CLS
IF postpm = 1 THEN CALL postpage
END IF
END IF
VIEW (ix1, iy1)-(ix1 + 158, iy1 + 85),, 3
IF postpm = 1 THEN CALL postbox
CLS
iymax = 2 * n - 2
FOR ix = 1 TO n + 3
LINE (ix, 0)-(ix, iymax), 8
xpl = ix: ypl = 0: yp2 = iymax
IF postpm = 1 THEN POSTLINE xpl, ypl, xpl, yp2, 1, .8
NEXT ix
ixmax = n + 3
FOR iy = 1 TO iymax - 1
LINE (0, iy)-(ixmax, iy), 8
xpl = 0: ypl = iy: xp2 = ixmax
IF postpm = 1 THEN POSTLINE xpl, ypl, xp2, ypl, 1, .8
NEXT iy
ilxl = ilxl + 20
IF ilxl > 70 THEN
ilxl = 9
ilyl = ilyl + 6
IF ilyl > 20 THEN ilyl = 2
END IF
COLOR 10: LOCATE ilyl, ilxl: PRINT istate$; ptex$ = istate$
xpl = n - 1: yp1 = n + 2
IF postpm = 1 THEN CALL posttext(xpl, yp1, ptex$)
COLOR 3: PRINT jb;
END SUB

SUB intersect (i)
x = i * 10 + 10
xy = xmax - 23
FOR j = 1 TO nvert(i)
FOR k = 1 TO 2 * n STEP 2
y3 = 18.5 + xy / n * (k + 1) / 2
y4 = 18.5 + xy / n * ((k + 1) / 2 - 1)
y4 = (y3 + y4) / 2 + 1.5
x1 = x + j * 5 / (nvert(i) + 1)
xn(i, j, k) = x1
yn(i, j, k + 1) = x1
yn(i, j, k) = y4
yn(i, j, k + 1) = y3
END SUB
NEXT k
NEXT j
END SUB

SUB keyinput
 BEEP
 k$ = ""
 WHILE k$ = ""
 REM LOCATE 24, 20: PRINT "?";
 k$ = INKEY$
 WEND
END SUB

SUB music
 IF ksound = 1 THEN EXIT SUB
 FOR j = 1 TO 60
 k = 50 * j
 SOUND k, .05
 NEXT j
END SUB

SUB negation
 FOR i = 1 TO n
 IF nconflict(i) <> 0 THEN
 IF ipast(nconflict(i)) = itr THEN
 icurrent(i) = ifl
 END IF
 IF ipast(i) = itr THEN
 icurrent(nconflict(i)) = ifl
 END IF
 IF ipast(i) = ipast(nconflict(i)) THEN
 ipast(i) = itr
 IF ipast(nconflict(i)) = itr THEN
 ipast(i) = ifl
 END IF
 END IF
 IF icurrent(i) = icurrent(nconflict(i)) THEN
 icurrent(i) = itr
 IF icurrent(nconflict(i)) = itr THEN
 icurrent(i) = ifl
 END IF
 END IF
 END IF
 NEXT i
END SUB

SUB neuron(i)
 x = i * 10 + 10
 LINE (x, 13.5)-(x + 5, 16), ipast(i), BF
 LINE (x, 16)-(x + 5, 18.5), icurrent(i), BF
 LINE (x, 16)-(x + 5, 16), 0
 REM Ik = itr
 REM IF ipast(i) = itr THEN Ik = ifl
 IF nlock(i) <> 0 THEN CALL scircle(x + 2.5, 14.75, 1)
 IF iconflict = 1 AND nconflict(i) <> 0 THEN CIRCLE (x + 2.5, 14.75), .75, 11
END SUB

SUB neuron1(i)
 x = i * 10 + 10
 LINE (x, 13.5)-(x + 5, 18.5), 4, B
END SUB
SUB newstate
 IF nste > 2 ^ n - 1 THEN nste = -1
 nste = nste + 1
 CALL dec2bcd((nste))
END SUB

SUB plot
 LINE (npulse - 1, ndiff1)-(npulse, ndiff), 14
 xp1 = npulse - 1: yp1 = ndiff1
 xp2 = npulse: yp2 = ndiff
 pgray = 0
 pthick = 36
 IF postpm = 1 THEN POSTLINE xp1, yp1, xp2, yp2, pthick, pgray
 ndiff1 = ndiff
 LINE (npulse - 1, cg1)-(npulse, cg), 13
 yp1 = cg1: yp2 = cg
 pgray = .3
 IF postpm = 1 THEN POSTLINE xp1, yp1, xp2, yp2, pthick, pgray
 cg1 = cg
END SUB

SUB plotreset
 VIEW (0, 0)-(639, 349)
 CLS
 VIEW (0, 0)-(639, 300), 8
 WINDOW (0, 0)-(xmin, xmax)
 ixl = 1: iyl = 1
 CALL regen
END SUB

SUB postbox
 xps1 = ixl - 1: yps1 = iyl - 1: xps2 = ixl + 159: yps2 = iyl + 86
 postline1 xps1, yps1, xps2, yps2, 14, 0
 postline1 xps1, yps1, xps2, yps2, 14, 0
 postline1 xps1, yps1, xps2, yps2, 14, 0
 postline1 xps1, yps1, xps2, yps2, 14, 0
END SUB

SUB postclose
 ' PRINT #4, "_ep _ed end"
 CLOSE #4
 postpm = 0
END SUB

SUB POSTLINE (xp1, yp1, xp2, yp2, pthick, pgray)
 ' input local coordinates
 xps1 = PMAP(xp1, 0) + ixl ' get pixel address and add vport org
 yps1 = PMAP(yp1, 1) + iyl
 xps2 = PMAP(xp2, 0) + ixl
 yps2 = PMAP(yp2, 1) + iy1
 CALL postline1(xps1, yps1, xps2, yps2, pthick, pgray)
END SUB

SUB postline1 (xps1, yps1, xps2, yps2, pthick, pgray)
 xps1 = xps1: yps1 = yps1: xps2 = xps2: yps2 = yps2
 VIEW (0, 0)-(639, 349)
 WINDOW (1200, 1200)-(9000, 5500)
 ixps1 = PMAP(xps1, 2) ' convert pixel to physical page coordinates
 iyps1 = PMAP(ypss1, 3)
 ixps2 = PMAP(xps2, 2)
iyps2 = PMAP(ypss2, 3)
PRINT #4, "gsave ";
PRINT #4, USING "####"; pgray;
PRINT #4, ", g ";
PRINT #4, USING "############"; pthick;
PRINT #4, " setlinewidth ";
PRINT #4, USING "############"; ixps1; iyps1;
PRINT #4, "_m"
PRINT #4, USING "############"; ixps2; iyps2;
PRINT #4, "_1_s grestore"

VIEW (ixl, iyl)-(ixl + 158, iyl + 85), , 3
WINDOW (0, 0)-(n + 3, 2 * n - 2)

END SUB

SUB postpage
PRINT #4, " cp ";
PRINT #4, " bp /Times-ItalicR 399 _ff ";
PRINT #4, "0 13200 10200 _ornt ";
END SUB

SUB posttext (xp1, yp1, ptex$)
 xpsl = ixl + PMAP(xp1, 0)
 ypsl = iyl + PMAP(yp1, 1)
 VIEW (0, 0)-(639, 349)
 WINDOW (1200, 1200)-(9000, 5500)
 xpsl = PMAP(xpsl, 2)
 ypsl = PMAP(ypsl, 3)
PRINT #4, USING "############"; xpsl; ypsl;
PRINT #4, ",_m ("; ptex$; ")_S"
VIEW (ixl, iyl)-(ixl + 158, iyl + 85), , 3
WINDOW (0, 0)-(n + 3, 2 * n - 2)
END SUB

SUB redraw
FOR i = 1 TO n
 invert(i) = itr
 IF noninvert(i) = itr THEN invert(i) = ifl
 CALL neuron(i)
 CALL vertical(i)
 CALL horizontal(i)
NEXT i

END SUB

SUB regen
FOR i = 1 TO n
 CALL neuron(i)
 CALL vertical(i)
 CALL horizontal(i)
NEXT i
 CALL wtredraw
END SUB

SUB rules
FOR i = 1 TO n
 CALL vertical(i)
 CALL wtredraw
FOR j = 1 TO invert(i)
 t1 = 0; t2 = 0
FOR k = 1 TO 2 * n
\[wc = POINT(xn(i, j, k), yn(i, j, k)) \]
\[ws = POINT(x_{\text{max}} - .1, yn(i, j, k)) \]
\[\text{IF } wc = w_{\text{col}} \text{ THEN } t1 = t1 + 1 \]
\[\text{IF } wc = w_{\text{col}} \text{ AND } ws = ifl \text{ THEN } 20 \]
\[\text{IF } wc = w_{\text{col}} \text{ AND } ws = itr \text{ THEN } t2 = t2 + 1 \]
\[\text{NEXT } k \]
\[\text{IF } t1 = t2 \text{ AND } t1 <> 0 \text{ AND } \text{icurrent}(i) = ifl \text{ THEN } \]
\[' \text{SOUND 2000, .5} \]
\[\text{icurrent}(i) = itr \]
\[\text{CALL actvert(i, j)} \]
\[\text{GOTO 10} \]
\[\text{END IF} \]
\[\text{IF } t1 = t2 \text{ AND } t1 <> 0 \text{ AND } \text{icurrent}(i) = itr \text{ THEN } \]
\[\text{CALL actvert(i, j)} \]
\[\text{GOTO 30} \]
\[\text{END IF} \]
\[20 \text{ NEXT } j \]
\[\text{IF } \text{icurrent}(i) = itr \text{ THEN } \]
\[\text{icurrent}(i) = ifl \]
\[' \text{SOUND 1000, .5} \]
\[\text{ELSE} \]
\[\text{GOTO 30} \]
\[\text{END IF} \]
\[10 \text{ CALL neuron(i)} \]
\[\text{CALL horizontal(i)} \]
\[\text{CALL wtredraw} \]
\[30 \text{ NEXT } i \]
\[\text{END SUB} \]

SUB savedata
\[\text{LOCATE 24, 1: INPUT "Save to File: ", fl$} \]
\[\text{IF fl$ = " " THEN GOTO 102} \]
\[\text{OPEN fl$ FOR OUTPUT AS #1} \]
\[\text{PRINT #1, n, nwt} \]
\[\text{FOR } i = 1 \text{ TO } nwt \]
\[\text{PRINT #1, iw(i), jw(i), kw(i)} \]
\[\text{NEXT } i \]
\[\text{FOR } i = 1 \text{ TO } n \]
\[\text{PRINT #1, nvert(i)} \]
\[\text{NEXT } i \]
\[\text{FOR } i = 1 \text{ TO } n \]
\[\text{PRINT #1, nconflict(i)} \]
\[\text{NEXT } i \]
\[\text{CLOSE} \]
\[102 \text{ LOCATE 24, 1: PRINT SPACES(20);} \]
\[\text{END SUB} \]

SUB scircle (p, q, c)
\[\text{LINE (p - .2, q - .2)-(p + .2, q + .2), c, BF} \]
\[\text{END SUB} \]

SUB sCIRCLE1 (p, q, c)
\[\text{LINE (p - .3, q - .4)-(p + .3, q + .4), c, BF} \]
\[\text{END SUB} \]

SUB settle
\[\text{CALL music} \]
\[\text{LOCATE 25, 40} \]
\[\text{PRINT SPACES(35);} \]
\[\text{LOCATE 25, 40} \]
\[\text{PRINT "Settling";} \]
FOR i = 1 TO n
 CALL vertical(i)
 CALL wtredraw
 icurrent(i) = ifl
 FOR j = 1 TO nvert(i)
 t1 = 0; t2 = 0
 FOR k = 1 TO 2 * n
 wc = POINT(xn(i, j, k), yn(i, j, k))
 IF wc <> wtcol THEN 55
 ws = POINT(xmax - .1, yn(i, j, k))
 IF wc = wtcol THEN t1 = t1 + 1
 IF wc = wtcol AND ws = ifl THEN GOTO 22
 IF wc = wtcol AND ws = itr THEN t2 = t2 + 1
 NEXT k
 IF t1 = t2 AND t1 <> 0 THEN
 icurrent(i) = itr
 CALL actvert(i, j)
 CALL wtredraw
 GOTO 11
 END IF
 NEXT j
11 CALL neuron(i)
 CALL horizontal(i)
 CALL wtredraw
NEXT i
LOCATE 25, 40
PRINT SPACE$(35);
END SUB

SUB stable
 CALL convstate(kstate$)
 FOR i = 1 TO nstable
 IF kstate$ = nst$(i) THEN EXIT SUB
 NEXT i
 CALL consistent(0, v)
nstable = nstable + 1
nst$(nstable) = kstate$
cgst(nstable) = eg
END SUB

SUB test
 FOR i = 0 TO 15
 CALL dec2bcd(i)
 PRINT ipast(1); ipast(2); ipast(3); ipast(4)
 NEXT i
END SUB

SUB tms
 LOCATE 23, 40: PRINT SPACE$(35);
 valid1 = 0
 FOR i = 1 TO n
 CALL neuron(i)
 NEXT i
 CALL settle
 npulse = 0
 LOCATE 25, 50: PRINT "No. Of Updates:"; npulse;
 WHILE valid1 = 0
 FOR p = 1 TO n
 i = order(p)
 SOUND 10000, .1
REM CALL neuron1((i))
j$ = INKEYS
IF j$ <> " " THEN EXIT SUB
IF nlock(i) = 0 THEN
 IF ipast(i) <> icurrent(i) THEN
 ipast(i) = icurrent(i)
 SOUND 300, .5
 npulse = npulse + 1
 LOCATE 25, 50: PRINT "No. Of Updates: "; npulse;
 CALL neuron((i))
 CALL horizontal((i))
 CALL fastrules1((i))
 CALL consistent(i, valid1)
 EXIT FOR
 END IF
END IF
END IF
NEXT p
CALL regen
WEND
LOCATE 23, 40: PRINT "CONSISTENT SOLUTION";
END SUB

SUB tmsfast
valid1 = 0
CALL fastrules1(0)
CALL consistent(0, v)
ndiff1 = ndiff; cg1 = cg
npulse = 0
ntry = 0
WHILE valid1 = 0
 ntry = ntry + 1
 IF ntry > 30 THEN
 SOUND 1000, 2
 GOTO 267
 END IF
 FOR ip = 1 TO n
 i = order(ip)
 IF ndiff > 2 AND iconflict = 1 AND icurrent(i) = icurrent(neonflict(i)) THEN 341
 IF nlock(i) = 0 AND ipast(i) <> icurrent(i) THEN
 ipast(i) = icurrent(i)
 npulse = npulse + 1
 CALL fastrules1((i))
 IF iplot = 1 THEN
 CALL consistent(i, v)
 CALL plot
 END IF
 IF npulse > 20 THEN
 BEEP
 EXIT SUB
 END IF
 EXIT FOR
 END IF
 NEXT ip
 END IF
 CALL consistent(0, valid1)
 WEND
267
 IF iplot = 0 THEN
 CALL stable
 END IF
 IF iplot = 1 THEN
 CALL convstate(jstate$)
 ifstate$ = jstate$
 END IF
341 NEXT ip
CALL consistent(0, valid1)
WEND

COLOR 12: LOCATE iy1 + 1, ix1: PRINT ifstate$;
 xp1 = n - 1: yp1 = n + 1: ptex$ = ifstate$
 IF postpm = 1 THEN posttext xp1, yp1, ptex$
FOR i = 1 TO nstable
 LINE (npulse, cgst(i))-(npulse + .25, cgst(i)), 12
NEXT i
END IF
FOR i = 1 TO n
 neuron (i)
NEXT i
END SUB
SUB vertical (i)
 FOR k = 1 TO nvert(i)
 x1 = i * 10 + 10 + 5 / (nvert(i) + 1) * k
 LINE (x1, 18.5)-(x1, xmax), 3
 NEXT k
END SUB
SUB vupdate (i)
 x = i * 10 + 10
 LINE (x, 18.5)-(x + 5, xmax), 8, BF
 CALL neuron(i)
 CALL vertical(i)
 FOR j = ITOn
 CALL horizontal(j)
 NEXT j
END SUB
SUB weights
 cur = 1
 j = 1
 i = 1
 k = 1
 k$ = ""
 WHILE k$ <> "g"
 xc = xn(i, j, k)
 yc = yn(i, j, k)
 r = 3
 xg1 = xc - r
 xg2 = xc + r
 yg1 = yc - r
 yg2 = yc + r
 GET (xg1, yg2)-(xg2, yg1), aimage(1)
 CALL sCIRCLE1(xc, yc, 10)
 WHILE k$ = ""
 k$ = INKEY$
 WEND
 PUT (xg1, yg1), aimage(1), PSET
 COLOR 14, bckcol
LOCATE 24, 1: PRINT "Update Sequence: up$; ";
LOCATE 24, 1: PRINT "Update Sequence: up$; ";
LOCATE 23, 40: PRINT SPACE$(39);
LOCATE 24, 40: PRINT SPACE$(39);
CALL wsort
SELECT CASE k$
CASE IS = "e" ' Enable negation conflict
 iconflict = 1
CALL allneuron
CASE IS = "E" 'Disable negation conflict
iconflict = 0
CALL allneuron
CASE IS = "e"
iconflict = 1
jcon = i
LOCATE 25, 1: PRINT "Take Cursor to Negation and press z ";
GOTO 810
CASE IS = "C"
nconflict(i) = 0
CASE IS = "Z"
LOCATE 24, 1: INPUT "Enter PostScript file name:"; pfl$
IF pfl$ <> " " THEN
 OPEN pfl$ FOR OUTPUT AS #4
 LOCATE 24, 1: PRINT SPACES(40);
 postprn = 1
ELSE
 CALL plotreset
END IF
CASE IS = "z"
nconflict(i) = jcon
nconflict(jcon) = i
LOCATE 25, 1: PRINT SPACES(50);
CASE IS = "p" ' Enable Plotting
iplot = 1
ixl = 1; iyl = 1
VIEW PRINT 1 TO 25
CASE IS = "P" ' Disable Plotting
iplot = 0
VIEW PRINT 23 TO 25
CALL plotreset
CASE IS = "q" ' SOUND TOGGLE
IF ksound = 1 THEN
 ksound = 0
ELSE ksound = 1
END IF
CASE IS = "6" ' DIRECTION ARROWS NUMERIC KEYPAD
j = j + 1
IF j > nvert(i) THEN
 j = 1
 i = i + 1
 IF i > n THEN i = 1
END IF
CASE IS = "8"
k = k + 1
IF k > 2 * n THEN k = 1
CASE IS = "4"
j = j - 1
IF j < 1 THEN
 i = i - 1
 IF i < 1 THEN i = n
 j = nvert(i)
END IF
CASE IS = "2"
k = k - 1
IF k < 1 THEN k = 2 * n
CASE IS = "3"
j = 1
i = i + 1
IF i > n THEN i = 1
CASE IS = " "
i = i + 1
IF i > n THEN i = 1
CASE IS = "1"
i = i - 1
IF i < 1 THEN i = n
CASE IS = "t" 'Toggle state
IF ipast(i) = ifl THEN
 ipast(i) = itr
ELSEIF ipast(i) = itr THEN ipast(i) = ifl
END IF
CALL neuron(i)
CALL horizontal(i)
' CALL settle
CALL fastrules1(i)
CALL regen
CASE IS = "y" 'Enable fast updates
 CALL tmsfast
CASE IS = "i" 'Insert interconnection
 CALL checkwt(i, j, k, iww)
 IF ABS(iww) < .1 THEN
 nwt = nwt + 1
 iw(nwt) = i; jw(nwt) = j; kw(nwt) = k
 CALL wtredraw
 CALL music
 END IF
CASE IS = "T" 'Delete interconnection
 CALL checkwt(i, j, k, iww)
 IF ABS(iww) > .1 THEN
 CALL wupdate(iww)
 nwt = nwt - 1
 CALL scircle(xc, yc, 8)
 CALL wtredraw
 CALL music
 END IF
CASE IS = "a" 'Add justification line
 nvert(i) = nvert(i) + 1
 CALL vupdate(i)
 CALL intersect(i)
 CALL wtredraw
 CALL music
CASE IS = "A" 'Remove justification line
 nvert(i) = nvert(i) - 1
 IF j = nvert(i) + 1 THEN j = nvert(i)
 CALL vupdate(i)
 CALL intersect(i)
 CALL wupdate(i)
 CALL wtredraw
 CALL music
CASE IS = "l" 'Save problem to file
 CALL savedata
CASE IS = "e" 'Retrieve problem from file
 CALL getdata
 restart = 1
EXIT SUB
CASE IS = "N" 'Delete neuron
 n = n - 1
 restart = 1
EXIT SUB
CASE IS = "n" 'Add neuron
 n = n + 1
 nvert(n) = 1
 restart = 1
EXIT SUB
CASE IS = "X" ' QUIT
 restart = 0
 abort = 1
EXIT SUB
CASE IS = "v" ' Not implemented yet
dl = dl * .75
CASE IS = "V" ' Not implemented yet
dl = dl * 1.25
CASE IS = "b" ' Automatically try all inputs
CALL automode
CASE IS = "R" ' Reset all neurons
nn2 = 2 ^ n - 1
CALL dec2bcd(nn2)
CALL fastrules1(0)
CALL regen
CASE IS = "B" ' Get next binary state
CALL newstate
CALL fastrules1(0)
CALL regen
CASE IS = "l" ' lock neuron state
 IF nlock(i) = 2 THEN
 nlock(i) = 0
 ELSE
 islock(i) = ipast(i)
 nlock(i) = 2
 END IF
 CALL neuron(i)
CASE IS = "w" ' Zoom
CLS
VIEW (0, 0)-(320, 175), 8
restart = 1
EXIT SUB
CASE IS = "W" ' Unzoom
CLS
VIEW (0, 0)-(639, 300), 8
restart = 1
EXIT SUB
CASE IS = "o" ' Change update sequence
LOCATE 24, 1: PRINT "Enter Update Sequence";
INPUT up$
FOR pi = 1 TO n
 order(pi) = VAL(MID$(up$, pi, 1))
NEXT pi
LOCATE 24, 1: PRINT "Update Sequence: up$";
CASE IS = "O" ' Set default update sequence
CALL default
CASE ELSE
LOCATE 24, 1: PRINT "ERROR";
CALL delay(2)
LOCATE 24, 1: PRINT " ";
SCREEN ,, 1, 1
WHILE INKEY$ = "": WEND
END SELECT
SCREEN ,, 0, 0
WEND
END SUB

SUB wsort
FOR i = 1 TO n
 FOR j = 1 TO nvert(i)
 nw = 0
 NEXT j
NEXT i
FOR k = 1 TO 2 * n
 CALL checkwt(i, j, k, kwk)
 IF kwk <> 0 THEN
 nw = nw + 1
 kkw(i, j, nw) = k
 END IF
NEXT k
nwn(i, j) = nw
NEXT j
NEXT i
END SUB

SUB wtredraw
 FOR i = 1 TO nwt
 CALL scircle(xn(iw(i), jw(i), kw(i)), yn(iw(i), jw(i), kw(i)), wtcol)
 NEXT i
END SUB

SUB wupdate (iww)
 FOR ii = iww TO nwt - 1
 iw(ii) = iw(ii + 1)
 NEXT ii
 FOR ii = iww TO nwt - 1
 jw(ii) = jw(ii + 1)
 NEXT ii
 FOR ii = iww TO nwt - 1
 kw(ii) = kw(ii + 1)
 NEXT ii
END SUB

SUB wvupdate (i)
 FOR ii = 1 TO nwt
 IF jw(ii) > nvert(i) THEN
 CALL wupdate(ii)
 nwt = nwt - 1
 END IF
 IF kw(ii) > 2 * n THEN
 CALL wupdate(ii)
 nwt = nwt - 1
 END IF
 NEXT ii
END SUB
APPENDIX III

Source Code of Program STABCHEK.BAS
LYAPUNOV STABILITY ANALYSIS

by: Suresh Guddanti

This program allows the user to interactively change the H matrix
and system equations directly on-screen
and computes the Lyapunov stability results of the system equilibrium points

DECLARE SUB setup ()
DECLARE SUB testcolor ()
DECLARE SUB statbox ()
DECLARE SUB xebox ()
DECLARE FUNCTION bin2dec% (xarray%())
DECLARE SUB SolvePhi (xo%(), xn%())
DECLARE SUB edtmatsmg (edit$)
DECLARE SUB edteqmsg (edit$)
DECLARE SUB parse2 (bs$, nmax%, phival%)
DECLARE SUB parse3 (bs$, nmax%)
DECLARE FUNCTION eval% (p$)
DECLARE SUB resetanswers ()
DECLARE SUB checkpositive ()
DECLARE FUNCTION det% (ix%, iy%)
DECLARE SUB getnewH ()
DECLARE SUB getnum (aa$, xx%, yy%)
DECLARE SUB PrintH ()
DECLARE FUNCTION YtHY% (ik%)
DECLARE FUNCTION Y1tHY1% ()
DECLARE SUB Phi1234 ()
DECLARE SUB GetXe ()
DECLARE SUB getnewphi ()
DECLARE SUB PrintPhiEq ()
DECLARE SUB parse1 (as$, bs$(), npar%)
DECLARE SUB parseeqn ()
DECLARE SUB compulephi ()
DECLARE SUB getkey (char$, scan%)
DECLARE SUB makeyy11 (numy%, nval%)
DECLARE SUB checkzero (nzero%, nindex%(), zeroval%, uval%())
DECLARE SUB DefaultH ()
DECLARE SUB printx ()
DECLARE SUB textbox (tbx%, tby%, tdx%, tdy%, coll%, col2%)
DECLARE SUB colorset (nn%)
DECLARE SUB PrintDefPhi ()
DECLARE SUB EditSCREEN ()
DECLARE SUB printY (n%)
DECLARE SUB stabilitybox ()
DECLARE SUB statusbox (msg$)
DECLARE SUB makeYnear ()
DECLARE SUB resultbox ()
DECLARE SUB minorbox ()
DEFINT A-Z

TYPE regtype
 ax AS INTEGER
 bx AS INTEGER
 cx AS INTEGER
 dx AS INTEGER
 bp AS INTEGER
 si AS INTEGER
 di AS INTEGER
 flags AS INTEGER
END TYPE

DIM SHARED y(10, 4), yl(10), phi(10), phi1(10), Xe1(10, 10)
DIM SHARED H&(5, 5), T(10), xxx, yyy, abort, pmt(5), hp
DIM SHARED nstable(5), nunstable(5), nasymptotic(5)
DIM SHARED phi\eq\$(5), eq(5), eq1\$(10), eq2\$(10), eq3\$(10), eq4\$(10)
DIM SHARED NumXe, editmatflag, editeqflag
DIM SHARED hxcur, hycur, eqxcur
DIM SHARED colsetfc(10), colsetbc(10)
DIM SHARED box1fc, box1bc, bname1fc, bname1bc
DIM nearest$(10), globalst$(10)

' y(n,m) = n test points (neighbors) with m components
' xe1(n,m) = n equilibrium points with m components

CALL setup
CALL stabilitybox
CALL statbox
CALL statusbox("PENDING")
CALL xebox
CALL DefaultH ' Generate Default H matrix
CALL PrintH ' Print H matrix
CALL checkpositive
CALL resultbox
CALL Phi234 ' Generate Default System Equations
CALL PrintDefPhi ' Print Default System Equations
CALL getnewphi
CALL parseeqn ' Parse System Equations From Screen
CALL PrintPhiEq ' Print System Equations

CALL GetXe ' Compute Equilibrium Points
CALL stabilitybox
CALL resultbox

abort = 0
DO
 CALL EditSCREEN
 IF abort = 1 THEN EXIT DO
 IF editmatflag = 1 THEN
 CALL getnewH
 CALL PrintH
 CALL checkpositive
 END IF
 IF editeqflag = 1 THEN
 CALL getnewphi
 CALL parseeqn ' Parse System Equations From Screen
 CALL PrintPhiEq ' Print System Equations
 CALL GetXe
 END IF
 FOR k = 1 TO NumXe
 nasymptotic(k) = 0
 nstable(k) = 0
 nunstable(k) = 0
 NEXT k
 qq$ = "
 FOR numval = 0 TO 15
 CALL makeyyll(numy, numval)
 FOR k = 1 TO NumXe
 FOR i = 1 TO numy
 CALL printY(i)
 FOR j = 1 TO 4
 yl© = y(i, j) + xe1(k, j)
 NEXT j
 CALL computephi
 FOR j = 1 TO 4
 phil(j) = phi© - xe1(k, j)
 NEXT j
 v = YltHY - YtHY(i)
LOCATE 3 + k
qq$ = qq$ + INKEYS
IF qq$ <> "" THEN
statusbox("ABORTED")
GOTO 100
END IF
colorset (2)
LOCATE , 0
SELECT CASE v
CASE IS < 0 ' Asymptotic Stable
nasymptotic(k) = nasyniptotic(k) + 1
LOCATE , 44
PRINT USING "####"); nasymptotic(k)
CASE IS = 0 ' Stable
nstable(k) = nstable(k) + 1
LOCATE , 22
PRINT USING "####"); nstable(k)
CASE IS > 0 ' Unstable
nunstable(k) = nunstable(k) + 1
LOCATE , 32
PRINT USING "####"); nunstable(k)
CASE ELSE
BEEP: BEEP: BEEP
END SELECT
END SELECT
IF numval = 0 THEN
IF nasymptotic(k) > 0 THEN nearst$(k) = "Asymptotic"
IF nstable(k) > 0 THEN nearst$(k) = "Stable "
IF nunstable(k) > 0 THEN nearst$(k) = "Unstable "
LOCATE 3 + k, 56: colorset (2): PRINT nearst$(k)
ELSE
IF nasymptotic(k) > 0 THEN globalst$(k) = "Asymptotic"
IF nstable(k) > 0 THEN globalst$(k) = "Stable "
IF nunstable(k) > 0 THEN globalst$(k) = "Unstable "
LOCATE 3 + k, 67: colorset (2): PRINT globalst$(k)
END IF
NEXT i
NEXT k
IF numval = 0 THEN
ntmp = 0
FOR k = 1 TO NumXe
IF nearst$(k) = "Unstable " THEN ntmp = ntmp + 1
NEXT k
IF ntmp = NumXe THEN EXIT FOR
END IF
NEXT numval
statusbox("COMPLETE")
100
LOOP
PALETTE
COLOR 7, 0
CLS
SOUND 2000, 4
PRINT "PROGRAM TERMINATED"
END

FUNCTION bin2dec (xarray())
dval = 0
FOR i = 1 TO 4
 dval = dval + xarray(i) * 2 ^ (i - 1)
NEXT i
bin2dec = dxval
END FUNCTION

SUB checkpositive
hp = 1
pml(1) = H&(1, 1)
IF pml(1) <= 0 THEN hp = -1
pml(2) = H&(1, 1) * H&(2, 2) - H&(1, 2) * H&(2, 1)
IF pml(2) <= 0 THEN hp = -1
pml(3) = H&(1, 1) * (H&(2, 2) * H&(3, 3) - H&(2, 3) * H&(3, 2)) - H&(1, 2) * (H&(2, 1) * H&(3, 3) - H&(3, 1) * H&(2, 3)) + H&(1, 3) * (H&(2, 1) * H&(3, 2) - H&(2, 2) * H&(3, 1))
IF pml(3) <= 0 THEN hp = -1

d1& = H&(2, 2) * det(3, 4) - H&(2, 3) * det(2, 4) + H&(2, 4) * det(2, 3)
d2& = H&(2, 1) * det(3, 4) - H&(2, 3) * det(1, 4) + H&(2, 4) * det(1, 3)
d3& = H&(2, 1) * det(2, 4) - H&(2, 2) * det(1, 4) + H&(2, 4) * det(1, 2)
d4& = H&(2, 1) * det(2, 3) - H&(2, 2) * det(1, 3) + H&(2, 3) * det(1, 2)
pml(4) = H&(1, 1) * d1& - H&(1, 2) * d2& + H&(1, 3) * d3& - H&(1, 4) * d4&
IF pml(4) <= 0 THEN hp = -1
CALL minorbox
LOCATE 22, 2: PRINT pml(1)
LOCATE , 2: PRINT pml(2);
LOCATE 22, 12: PRINT pml(3)
LOCATE , 12: PRINT pml(4);
LOCATE 20, 2
COLOR , 2
IF hp > 0 THEN
PRINT "POSITIVE DEFINITE"
ELSE
PRINT "NOT POSITIVE DEFINITE"
END IF
END SUB

SUB checkzero (nzero, nindex(), zeroval, uval())
nzero = 0
FOR i = 1 TO 4
 IF uval(i) = zeroval THEN
 nzero = nzero + 1
 nindex(nzero) = i
 END IF
NEXT i
END SUB

SUB colorset (nn)
COLOR colsetfc(nn), colsetbc(nn)
END SUB

SUB computephii
CALL parse1(phieq$(l), eql$(), np(l))
CALL parse3(eql$(), np(l), phival)
phi(l) = phival
CALL parse1(phieq$(2), eql$(), np(l))
CALL parse3(eql$(), np(l), phival)
phi(2) = phival
CALL parse1(phieq$(3), eql$(), np(l))
CALL parse3(eql$(), np(l), phival)
phi(3) = phival
CALL parse1(phieq$(4), eq4$(), np(4))
CALL parse3(eq4$(), np(4))
CALL parse2(eq4$(), np(4), phival)
phi(4) = phival

END SUB

SUB DefaultH

' Default H matrix

H&(1, 1) = 10
H&(1, 2) = -2
H&(1, 3) = 0
H&(1, 4) = 0
H&(2, 1) = -2
H&(2, 2) = 20
H&(2, 3) = -15
H&(2, 4) = 20
H&(3, 1) = 0
H&(3, 2) = -15
H&(3, 3) = 30
H&(3, 4) = -20
H&(4, 1) = 0
H&(4, 2) = 20
H&(4, 3) = -20
H&(4, 4) = 40

END SUB

FUNCTION det (ix, iy)
det = H&(4, iy) * H&(3, ix) - H&(4, ix) * H&(3, iy)
END FUNCTION

SUB EditSCREEN

yy = hycur
xx = hxcur
editmatflag = 0
editeqflag = 0
edtmatmsg ("Editing")
LOCATE yy, xx, 1
scan = 0
WHILE scan < > 28
 CALL getkey(a$, scan)
 COLOR 11, 1
 SELECT CASE scan
 CASE IS = 15
 IF xx > eqxcur - 2 THEN
 xx = 2
 edtmatmsg ("Editing")
 edteqmsg (" ")
 ELSE
 xx = eqxcur
 edtmatmsg (" ")
 edteqmsg ("Editing")
 END IF
 CASE IS = 77
 IF xx < 80 THEN xx = xx + 1
 IF xx > eqxcur THEN
edtmatsmsg (" ")
edteqmsmg ("Editing")
END IF
CASE IS = 75
IF xx > 2 THEN xx = xx - 1
IF xx < eqxcur THEN
 edtmatsmsg ("Editing")
edteqmsmg (" ")
END IF
CASE IS = 72
yy = yy - 1
IF yy < 15 THEN yy = 15
CASE IS = 80
yy = yy + 1
IF yy > 18 THEN yy = 18
CASE IS = 28
xxx = xx
yy = yy
CASE IS = 1
abort = 1
EXIT SUB
CASE IS = 46
testcolor
CASE ELSE
IF xx < eqxcur - 1 AND editmatflag = 0 THEN
 editmatflag = 1
 CALL resetanswers
END IF
IF xx > eqxcur - 1 AND editeqflag = 0 THEN
 editeqflag = 1
 CALL resetanswers
END IF
LOCATE yy, xx, 1
colorset (2)
COLOR 11
PRINT a$;
xx = xx + 1
END SELECT
LOCATE yy, xx, 1
WEND

END SUB

SUB edteqmsg (edt$)
LOCATE hycur - 1, eqxcur + 1, 0: colorset (1)
PRINT edt$
END SUB

SUB edtmatmsg (edt$)
LOCATE hycur - 1, hxcur + 1, 0: colorset (1)
PRINT edt$
END SUB

FUNCTION eval (p$)
IF MID$(p$, 1, 1) = "z" THEN
eval = yl(VAL(MID$(p$, 2)))
ELSE
eval = VAL(p$)
END IF
END FUNCTION
SUB getkey (char$, scan)
DIM inregs AS regtype, outregs AS regtype
outregs.flags = 64
WHILE outregs.flags AND 64
 inregs.ax = &H100
 CALL interrupt(&H16, inregs, outregs)
WEND
inregs.ax = 0
CALL interrupt(&H16, inregs, outregs)
scan = outregs.ax \ 255
char$ = CHR$((outregs.ax - scan) MOD 255)
IF char$ > = "0" AND char$ < = "9" THEN scan = 0
END SUB

SUB getnewH
' Obtain H matrix from Screen
cl = 0
yy = hycur - 1
xx = 1
FOR i = 1 TO 4
 yy = yy + 1
 xx = 1
 FOR j = 1 TO 4
 nn = 0
 CALL getnum(aa$, xx, yy)
 H&(i, j) = VAL(aa$)
 NEXT j
NEXT i
COLOR, 0
LOCATE, , 0
END SUB

SUB getnewphi
yy = hycur - 1
FOR i = 1 TO 4
 yy = yy + 1
 xx = 30
 phieq$(i) = ""
 WHILE xx < 80
 CALL getnum(aa$, xx, yy)
 phieq$(i) = phieq$(i) + aa$
 WEND
NEXT i
END SUB

SUB getnum (aa$, xx, yy)
aa$ = ""
nn = 32
WHILE nn = 32
 nn = SCREEN(yy, xx)
 xx = xx + 1
 IF xx > = 80 THEN EXIT SUB
WEND
 xx = xx - 1
 WHILE nn <> 32
 nn = SCREEN(yy, xx)
 aa$ = aa$ + CHR$(nn)
 xx = xx + 1
 IF xx = 80 THEN EXIT SUB
 WEND
SUB GetXe
DIM Xold(5), Xnew(5), resultof(30)
' COMPUTE EQUILIBRIUM POINTS
NumXe = 1
CALL xebox
colorset (2)
LOCATE 4, 3, 1: PRINT "Computing...";
LOCATE , , 0
NumXe = 0
FOR i = 0 TO 15
 FOR j = 1 TO 4
 Xold(j) = SGN(2 ^ (j - 1) AND i)
 NEXT j
 CALL SolvePhi(Xold(), Xnew())
 ddold = bin2dec(Xold())
 ddnew = bin2dec(Xnew())
 IF ddold = ddnew THEN
 NumXe = NumXe + 1
 FOR j = 1 TO 4
 Xe1(NumXe, j) = Xnew(j)
 NEXT j
 ELSE
 resultof(ddold) = ddnew
 END IF
NEXT i
CALL xebox
CALL printxe
CALL stabilitybox
CALL resultbox
END SUB

SUB makeYnear
' generate Immediate Neighborhood points
FOR i = 1 TO 4
 FOR j = 1 TO 10
 y(j, i) = 0
 NEXT j
NEXT i
y(1, 1) = -1
y(2, 2) = -1
y(3, 3) = -1
y(4, 4) = -1
y(5, 4) = 1
y(6, 3) = 1
y(7, 2) = 1
y(8, 1) = 1
END SUB

SUB makeyy11 (numy, nval)
DIM nindex(5), u(5), uval(5)
IF nval = 0 THEN ' Test only nearest Neighbors
 CALL makeYnear
 numy = 8
 EXIT SUB
END IF
FOR i = 1 TO 4
 uval(i) = SGN(2 ^ (i - 1) AND nval)
 y(i, i) = uval(i)
\[y(2, i) = -u_{val(i)} \]

\text{NEXT} \ i

\text{numy} = 2

\text{zeroval} = 0

\text{CALL} \ \text{checkzero(azero, nindex(), zeroval, uval())}

\text{IF} \ \text{nzero} < > 0 \ \text{THEN}

\text{FOR} \ i = 1 \ \text{TO} \ 4

\quad u(i) = u_{val(i)}

\text{NEXT} \ i

\text{FOR} \ i = 1 \ \text{TO} \ (2 \ ^ \ \text{nzero}) - 1

\quad \text{FOR} \ j = 1 \ \text{TO} \ \text{nzero}

\quad \quad u(\text{nindex}(j)) = -1 \ \cdot \ \text{SGN}(2 \ ^ \ (j - 1) \ \text{AND} \ i)

\text{NEXT} \ j

\quad \text{numy} = \text{numy} + 1

\text{FOR} \ j = 1 \ \text{TO} \ 4

\quad y(\text{numy}, j) = u(j)

\text{NEXT} \ j

\text{NEXT} \ i

\text{END IF}

\text{END SUB}

\text{SUB} \ \text{minorbox}

\text{CALL} \ \text{textbox(2, 21, 20, 3, 1, 2)}

\text{LOCATE} \ 21, 2: \ \text{colorset}(1): \ \text{PRINT} " \text{Principal Minors}"

\text{colorset}(2)

\text{END SUB}

\text{SUB} \ \text{parsel(a$, b$(, npar)}

\quad \text{nb} = 0

\quad \text{i} = 0

\quad \text{bb$} = ""

\text{WHILE} \ \text{bb$} < > "\text{""

\quad \text{i} = \text{i} + 1

\quad \text{bb$} = \text{MIDS(a$, i, 1)}

\text{WEND}

\quad \text{i} = \text{i} + 1

\text{WHILE} \ \text{i} < = \text{LEN(a$)}

\quad \text{aa$} = \text{MIDS(a$, i, 1)}

\quad \text{SELECT CASE aa$}

\quad \text{CASE IS} = "***"

\quad \quad \text{nb} = \text{nb} + 1

\quad \quad \text{b$(nb) = "***"

\quad \text{CASE IS} = "*"

\quad \quad \text{nb} = \text{nb} + 1

\quad \quad \text{b$(nb) = "*"

\quad \text{CASE IS} = "."

\quad \quad \text{nb} = \text{nb} + 1

\quad \quad \text{b$(nb) = "."

\quad \text{CASE IS} = ""

\quad \text{CASE IS} = ""

\quad \text{CASE ELSE}

\quad \quad \text{nb} = \text{nb} + 1

\quad \quad \text{b$(nb) = ""

\quad \quad \text{bb$} = \text{MIDS(a$, i, 1)}

\quad \text{WHILE} \ (\text{bb$} < > "\text{"}) \ \text{AND} \ (\text{i} < = \text{LEN(a$)}) \ \text{AND} \ \text{bb$} < > "***" \ \text{AND} \ \text{bb$} < > "+" \ \text{AND} \ \text{bb$} < > "."

\quad \quad \text{b$(nb) = b$(nb) + bb$}

\quad \quad \text{i} = \text{i} + 1

\quad \quad \text{bb$} = \text{MIDS(a$, i, 1)}

\text{WEND}

\quad \text{i} = \text{i} - 1

\text{END SELECT}
i = i + 1
WEND
npar = nb
END SUB

SUB parse2 (b$(), nmax, phival)
phival = eval(b$(1))
icount = 1
WHILE icount < nmax
 icount = icount + 1
c$ = b$(icount)
 SELECT CASE c$
 CASE IS = "++"
 icount = icount + 1
 phival = phival + eval(b$(icount))
 CASE IS = "--"
 icount = icount + 1
 phival = phival - eval(b$(icount))
 CASE ELSE
 END SELECT
 WEND
END SUB

SUB parse3 (b$(), nmax)
FOR i = 1 TO nmax
 IF (b$(i) = "**") THEN
 bval = eval(b$(i - 1)) * eval(b$(i + 1))
 b$(i - 1) = STR$(bval)
 b$(i) = ""
 b$(i + 1) = ""
 END IF
NEXT i
END SUB

SUB parseeqn
CALL parse1(phieq$(1), eql$(), np(1))
CALL parse1(phieq$(2), eq2$(), np(2))
CALL parse1(phieq$(3), eq3$(), np(3))
CALL parse1(phieq$(4), eq4$(), np(4))
END SUB

SUB Phi234
' DEFAULT System function for Asynchronous system Seq 1234
phieq$(1) = "Phi(1) = 1 - z3 * z4"
phieq$(2) = "Phi(2) = z3 - z3* z4"
phieq$(3) = "Phi(3) = z3-z3 * z4+z4"
phieq$(4) = "Phi(4) = z4"
END SUB

SUB PrintDefPhi
CALL textbox(eqxcur, hycur - 1, 45, 5, 1, 2)
LOCATE hycur - 1, eqxcur + 10
colorset (1)
PRINT "SYSTEM EQUATIONS"
colorset (2)
LOCATE hycur, eqxcur + 1
FOR i = 1 TO 4
 LOCATE, eqxcur + 1
 PRINT phieq$(i)
NEXT i
SUB PrintH
 hhx = hxcur: hhy = hycur
 CALL textbox(hhx, hhy - 1, 24, 5, 1, 2)
 LOCATE hycur - 1, hxcur + 7
 COLOR colsetfc(1), colsetbc(1)
 PRINT "H Matrix";
 LOCATE hycur, hxcur
 FOR i = 1 TO 4
 COLOR colsetfc(2), colsetbc(2)
 LOCATE, hxcur
 FOR j = 1 TO 4
 PRINT USING "####"; H&(i, j);
 NEXT j
 PRINT
 NEXT i
 PRINT
 COLOR, 0
END SUB

SUB PrintPhiEq
 CALL textbox(eqxcur, hycur - 1, 45, 5, 1, 2)
 LOCATE hycur - 1, eqxcur + 10
 colorset(1)
 PRINT "SYSTEM EQUATIONS"
 LOCATE hycur, eqxcur + 1
 colorset(2)
 PRINT "Phi(1) = " ;
 FOR i = 1 TO np(1)
 PRINT eq1$(i); " " ;
 NEXT i
 PRINT eq2$(i); " " ;
 NEXT i
 PRINT "Phi(2) = " ;
 FOR i = 1 TO np(2)
 PRINT eq2$(i); " " ;
 NEXT i
 PRINT "Phi(3) = " ;
 FOR i = 1 TO np(3)
 PRINT eq3$(i); " " ;
 NEXT i
 PRINT "Phi(4) = " ;
 FOR i = 1 TO np(4)
 PRINT eq4$(i); " " ;
 NEXT i
END SUB

SUB printxe
 CALL xebox
 FOR i = 1 TO NumXe
 COLOR colsetfc(2), colsetbc(2)
 LOCATE 3 + i, 2: PRINT " Xe"; : PRINT USING ";" ; i;
 PRINT " = <" ;
 FOR j = 1 TO 4: PRINT USING ";" ; Xe(i, j); : NEXT j
 PRINT " >" ;
 NEXT i
END SUB

SUB printY (n)
 statusbox(" ")
 colorset(2)
LOCATE 22, 56, 0
FOR i = 1 TO 4
 PRINT USING "##"; y(n, i);
NEXT i
END SUB

SUB resetanswers
IF editmatflag = 1 THEN
 CALL minorbox
 LOCATE 20, 2: COLOR , 2: PRINT SPACE$(25);
END IF
IF editeqflag = 1 THEN
 NumXe = 1
 LOCATE 5, 1: COLOR , 2
 FOR i = 1 TO 8
 PRINT SPACE$(79)
 NEXT i
 CALL xebox
END IF
CALL stabilitybox
CALL resultbox
statusbox("Editing")
END SUB

SUB resultbox
ntmp = NumXe
CALL textbox(55, 3, 23, 1 + ntmp, 1, 2)
colorset (1)
LOCATE 3, 56: PRINT "Nearest"
LOCATE 3, 67: PRINT "Global"
END SUB

SUB setup
hxcur = 2: hycur = 15: eqxcur = 28
PALETTE 0, 32
PALETTE 2, 40
PALETTE 3, 49
PALETTE 4, 28
PALETTE 5, 12
PALETTE 8, 40
PALETTE 9, 38
PALETTE 11, 44
PALETTE 13, 7
PALETTE 14, 39
colsetfc(1) = 9
colsetbc(1) = 5
colsetfc(2) = 14
colsetbc(2) = 3
COLOR , 2
CLS
COLOR 13, 4
LOCATE 1, 1: PRINT SPACES(80);
LOCATE 1, 25: PRINT "LYAPUNOV STABILITY TEST"
NumXe = 1
END SUB

SUB SolvePhi (xo(), xn())
FOR i = 1 TO 4
 y1(i) = xo(i)
NEXT i
CALL computephi
FOR i = 1 TO 4
 xn(i) = phi(i)
NEXT i
END SUB

SUB stabilitybox
 ntmp = NumXe
 CALL textbox(20, 3, 32, 1 + ntmp, 1, 2)
 colorset (1)
 LOCATE 3, 20: PRINT "STABLE";
 LOCATE , 30: PRINT "UNSTABLE";
 LOCATE , 42: PRINT 'ASYMPTOTIC';
END SUB

SUB statbox
 LOCATE , , 0
 CALL textbox(55, 21, 10, 2,1, 2)
 colorset (1)
 LOCATE 21, 56: PRINT "Testing";
END SUB

SUB statusbox (msg$)
 colorset (2)
 LOCATE 22, 56: PRINT msg$
END SUB

SUB testcolor
 WHILE scan <> 28
 CALL getkey(a$, scan)
 SELECT CASE scan
 CASE IS = 77
 IF hcolor < 63 THEN hcolor = hcolor + 1
 PALETTE n, hcolor
 CASE IS = 75
 IF hcolor > 0 THEN hcolor = hcolor - 1
 PALETTE n, hcolor
 CASE IS = 72
 IF n > 0 THEN n = n - 1
 CASE IS = 80
 IF n < 15 THEN n = n + 1
 CASE ELSE
 END SELECT
 LOCATE 25, 1: PRINT "TEST:"; n, hcolor;
 WEND
END SUB

SUB textbox (tbx, tby, tdx, tdy, coll, col2)
 nfc = colsetfc(coll)
 nbc = colsetbc(coll)
 bfc = colsetfc(col2)
 bbc = colsetbc(col2)
 LOCATE tby, tbx
 COLOR nfc, nbc
 PRINT SPACES(tdx);
 COLOR 0, 2
 PRINT CHR$(220);
 FOR i = tby + 1 TO tby + tdy - 1
 COLOR bfc, bbc
 LOCATE i, tbx
 PRINT SPACES(tdx);
 COLOR , 0
 PRINT "* ";
 NEXT i
END SUB
NEXT i
COLOR 0, 2
LOCATE tby + tdy, tbx + 1
PRINT STRING$(tx, 223);
END SUB

SUB xebox
ntmp = NumXe
CALL textbox(2, 3, 16, 1 + ntmp, 1, 2)
COLOR colsetfc(1), colsetbc(1)
LOCATE 3, 2: PRINT *"Equilibrium Pts";
END SUB

FUNCTION YltHY
' Compute YltHY
zz = 0
FOR i = 1 TO 4
 T(i) = 0
 FOR j = 1 TO 4
 T(i) = T(i) + phi(j) * H&(j, i)
 NEXT j
 zz = zz + T(i) * phi(i)
NEXT i
YltHY1 = zz
END FUNCTION

FUNCTION YtHY (ik)
' compute YtHY
zz = 0
FOR i = 1 TO 4
 T(i) = 0
 FOR j = 1 TO 4
 T(i) = T(i) + y(ik, j) * H&(j, i)
 NEXT j
 zz = zz + T(i) * y(ik, i)
NEXT i
YtHY = zz
END FUNCTION
VITA

Suresh Guddanti was born on September 25, 1960, in Kurnool located in Andhra Pradesh state of India, son of G. Sri Krishna Murty and G. Manikyam. He attended high school at Atomic Energy Central School, Bombay, India. Mr. Guddanti has graduated First Class with Distinction with a Bachelor of Engineering in Mechanical Engineering.

Mr. Guddanti has worked as a Research Engineer for Larsen & Toubro Limited, Bombay, for two years. He obtained his Masters Degree in Mechanical Engineering at Louisiana State University in December 1987.
Candidate: Suresh Guddanti

Major Field: Mechanical Engineering

Title of Dissertation: A Neural Network Truth Maintenance System

Approved:

[Signature]
Major Professor and Chairman

[Signature]
Dean of the Graduate School

EXAMINING COMMITTEE:

[Signatures]

Date of Examination:

4/26/91