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Abstract 

While the forest grows, the price of timber fluctuates. Price uncertainty plays a key role 

in forestry due to the extended rotation length of growing trees. Like double sides of the same 

coin, risk preference and uncertainties should be considered together. This is because risk 

preference represents people’s attitude toward that uncertainty when making management 

decisions. Risk preference is especially an important issue for forest management because forests 

are exposed to substantial uncertainties during their long growing period. However, most 

existing relevant studies either simply overlook the risk preference issue or fail to consider it 

together with a practical forest management decision-making approach. In this dissertation study, 

a behavior-based forest management model was developed to measure forest managers’ risk 

preferences directly through their potential behaviors toward price changes. Besides, an adaptive 

harvest decision-making approach that incorporates varying levels of risk preference was 

established. Based on the models developed in this dissertation, numerical simulations were 

carried out to evaluate the impact of risk preferences in forest management outcomes. Results of 

simulations show that risk preference could indeed affect the performance of forest management. 

Besides, a properly selected risk preference level may bring extra risk premiums to forestry 

investment. In addition, sensitivity analyses found that there always exists a certain level of risk 

preference that will lead to the highest average return across different scenarios. Furthermore, a 

case study using the LSU Lee Memorial Forest as the sample site was carried out to demonstrate 

the adaptive harvest decision-making process using the method developed in prior chapters. The 

results of this case study not only confirmed the conclusions reached by numerical simulations, 

but also reiterated the importance of risk management strategy in forest management under 

uncertainties. 
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Chapter 1. Introduction 

As a general rule of asset pricing, price equals expected discounted payoff (Cochrane 

2005). Following this logic, the value of a piece of forestland dedicated to timber production is 

defined as expected discounted payoff that can be generated from it, i.e. the total expected profits 

by producing timber from this piece of forestland over infinite rotations. Since people started 

managing forests as a business, the objective of forest management has always been to get the 

highest profit from their investment. Commercial forestland owners, thereby, attempt to 

maximize the value of forestland primarily through optimal harvest scheduling, i.e. harvest  

and sell the trees at the right time to obtain the highest possible return. 

Traditionally, forestland valuation and stand-level harvest decision-making approaches 

are based on discounted cash flow (DCF) approach and assume constant stumpage price and 

discount rate. With such assumptions, timber production is perfectly repeatable, i.e. every 

rotation will experience the same tree growth pattern, stumpage price, and interest rate, etc. In 

other words, timber production is assumed to be deterministic and not incorporating any types of 

uncertainties. A classic example of this type of approach is the Faustmann model (Faustmann 

1849), which defines the value of a piece of forestland as the present value of all future harvest 

profits over infinite rotations and refers it as the Land Expectation Value (LEV). This model has 

been considered as a fundamental building block of forest management theories because it had 

answered a simple but basic question: how much is a piece of land worth if it is devoted to the 

growing of trees (Newman 2002). Following this model, forestland owners are supposed to 

determine the rotation length of a forest plantation at the initial stage of investment, and not to 

make any change in the middle of rotations. Many further efforts have been spent on this field 

following the framework of the Faustmann model, where the uncertainties are simply ignored.  
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In fact, uncertainties play key roles in forest management because of the extended 

investment cycle of forestry compared to other industries. Specifically, the common rotation 

length for a commercial forest plantation can often be more than 25 years or even longer in 

North America. Obviously, various forms of uncertainties are embedded in this long time 

horizon as the market and environmental conditions are always changing. Uncertainties, 

especially the price uncertainty, will greatly affect the forest management behavior and the value 

of forestland (Amacher, Ollikainen, and Koskela 2009). On the other hand, risk preference 

represents the attitude of a forestland owner in facing uncertainties. Risk preference can 

profoundly affect landowners’ behavior in dealing with price uncertainty and make forest 

management decisions. In fact, risk preference and price uncertainty are like the two sides of the 

same coin, and thusly should be studied together. Among existing literature, several studies have 

discussed the issue of forest management under price uncertainty and other forms of 

uncertainties, but most of them just leave risk preference unaddressed. For a small portion of 

studies that tried to incorporate forestland owner’s risk preferences into the decision-making 

process, their methods were either inexplicit or measuring landowners’ risk preferences in 

indirect ways. In addition, these existing efforts in addressing this issue usually involved very 

complicated algorithms, which restrict them from being used for actual forest management 

decision-making. The specific pros and cons of existing efforts in this field are detailed in the 

following literature review chapter.  

Considering the drawbacks of existing methods, ideally, we need a forest management 

model that is (a) able to address price uncertainty; (b) able to incorporate risk preference into the 

decision-making process in a direct and simple fashion; (c) capable of making forest 
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management decision heuristically without requiring intensive computation, which enable it to 

be used in practice.  

Therefore, this dissertation intends to establish the theoretical framework of a behavior-

based forest management model that can address price uncertainty and risk preference at the 

same time. By using this model, this dissertation will also demonstrate how to explicitly measure 

forestland owner’s risk preferences based on their behaviors, and how the varying risk preference 

among forestland owners will affect their decisions when dealing with price uncertainty, along 

with how those decisions result in differentiated returns of their investments in forestry. The 

results may contain implications for developing risk management strategies to deal with price 

uncertainty in forest management.  

Specifically, the structure of this dissertation is organized as follows: After this 

introduction as chapter 1, chapter 2 is a literature review on the existing articles on forest 

management under price uncertainty and previous efforts to incorporate risk preference into 

forest management decision-making. Following that, chapter 3 illustrates the theoretical 

framework of a behavior-based model to conduct adaptive forest management considering both 

price uncertainty and risk preferences. Chapter 4 presents numerical simulations that show how 

varying risk preferences will affect forest management outcomes under different scenarios. 

Chapter 5 is a case study demonstrating empirical applications of this model to the management 

of LSU’s Dean Lee Research Forest, which showcase how one can use this model to make 

harvest decisions adaptive to enhance forest management outcomes. Chapter 6 concludes the 

entire research and provides some further implications.    
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Chapter 2. A Review of Literature on Forest Management Consider 

Uncertainty and Risk Preferences 

As mentioned in last section, the most essential forest management problem is to 

determine the optimal harvest age to maximize the value of a piece of forestland. The studies on 

such topic have been the frontier of forest management for decades (Amacher, Ollikainen, and 

Koskela 2009). Over the years, substantial portion of relevant literature are based on the 

framework that are originated from the seminal paper by Faustmann (1849), known as the 

Faustmann model. Essentially, as a deterministic discounted cash flow (DCF) type model, the 

Faustmann model assumes that the value of a piece of forestland, i.e. the land expectation value 

(LEV), is the summation of a series of harvesting incomes over infinite rotations. Based on this 

model, by choosing the optimal rotation length 𝑡 , the landowner can maximize the land 

expectation value as 

𝐿𝐸𝑉 =  
𝑃(𝑡)𝑄(𝑡) − 𝐶𝑒𝑟𝑡

𝑒𝑟𝑡 − 1
                                                                                                                           (1) 

where 𝑃(𝑡) is the stumpage price of trees at age 𝑡, 𝑄(𝑡) is the stand volume at age 𝑡, 𝐶 is the 

regeneration cost, and 𝑟 is the interest rate. In classical Faustmann model, parameters like 𝐶 and 

𝑟 are assumed constant over time, which is why such type of model is regarded as static model in 

forest management terminology. 

Since Gaffney (1957) proved the superiority of Faustmann model over other static 

methods in the determination of optimal rotation length, many studies have been conducted to 

solve for optimal thinning age and rotation length, e.g. Bentley and Teeguarden (1965), Bentley 

and Fight (1966), and Heaps (1981). However, following the original Faustmann model, most of 

those studies assumed the same rotation will be perfectly repeating forever, i.e. every rotation 
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will incur the same stumpage price, stand volume, and regeneration cost, etc. Apparently, these 

assumptions are too ideal to be true.  

The effort to overcome such unrealistic assumptions started from several studies that 

incorporated unfixed rotation length by assuming a continuously increasing stumpage price trend 

(McConnell, Daberkow, and Hardie 1983, Hardie, Daberkow, and McConnell 1984, Yin and 

Newman 1995). In those studies, stumpage price uncertainty was addressed in a way that real 

stumpage price rises at a constant pace. Although being regarded as an initial exploration of 

forest management under price uncertainty, this constant-rising price assumption is not 

consistent with the true price behavior in stumpage market around the world. Rather than 

specifically setting a price behavior, a real breakthrough to relax the stringent assumptions of 

perfectly repeating rotation is the work by Chang (1998). In this paper, a generalized Faustmann 

model was presented, as: 

𝐿𝐸𝑉1 =  [𝑃1(𝑡1)𝑄1(𝑡1) − 𝐶1𝑒𝑟1𝑡1]𝑒−𝑟1𝑡1 +  𝑒−𝑟1𝑡1𝐿𝐸𝑉2                                                                     (2) 

where the 𝐿𝐸𝑉1 is the current land expectation value for certain forestland, the 𝐿𝐸𝑉2 refers to the 

new land expectation value after the first rotation. The difference between 𝐿𝐸𝑉1 and 𝐿𝐸𝑉2 is a 

generalization of the difference between current and future rotations, i.e. the difference in 

stumpage price, stand volume, and other variables. Within this framework, if the stumpage price, 

stand volume, and regeneration cost, etc. are given for all the future crops, the optimal rotation 

length for each crop can be solved explicitly. However, since the future land expectation value 

(𝐿𝐸𝑉2) is hard to predict, solving the optimal rotation age by using generalized Faustmann model 

still relies on examining the problem analytically. Thus, although generalized Faustmann relaxed 

the constraint of prefect repeating rotation theoretically, it is still difficult for landowners to 
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address price uncertainty ex ante by solely using generalized Faustmann model. The randomness 

of stumpage price series is needed to be quantified in more explicit means. 

 One method to incorporate price uncertainty into forest management is the reservation 

price approach (Brazee and Mendelsohn 1988b, Lohmander 1987). By assuming an existing 

long-term mean stumpage price, a landowner decides whether to harvest a forest stand or not by 

comparing the observed market stumpage price and an age‐dependent reservation price. 

Specifically, if the stumpage price observed at the time point of decision is above the reservation 

price, this landowner is directed to cut the trees at that age; otherwise one should wait another 

period of time for further decision. Obviously, compared to those methods that make harvest 

decision once at a time at the beginning of rotations, reservation price approach is an adaptive 

decision-making approach, i.e. harvest decisions are made heuristically at the end of each time 

period (usually a year) rather than only once at the very beginning. Thus, the landowner can 

make the optimal harvest decision adaptive to the changing stumpage price over time. 

Previous study suggests that managing forestland adaptively using reservation price 

method will significantly boost the expected net present value (NPV) of a forestland compared to 

making harvest decision solely relying on Faustmann model (Brazee and Mendelsohn 1988a). 

Since its debut, reservation price has gone through extensive developments and modification to 

incorporate various types of incomes and uncertainties. For example, Brazee and Bulte (2000) 

present a modified reservation price model that include thinning incomes. Gong, Boman, and 

Mattsson (2005) integrate non-timber benefits into a reservation price model to make optimal 

timber harvest strategy. Susaeta and Gong (2019b) propose a reservation price-based framework 

to include both price uncertainty and the risk of natural disturbances. Other than theoretical 
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analysis, there are also some applications of reservation price in empirical forest management 

cases (Susaeta and Gong 2019a). 

While it is most common to solve optimal rotation age problem by directly maximizing 

the expected total cash value, one may also solve it from a marginal perspective. Specifically, 

solving the optimal timber harvest strategy problem from a marginal perspective means that one 

should consider from a perspective of incremental rate rather than the total cash value. Pressler 

(1860) developed the indicator rate formula to explicitly separates the incremental rate of a 

forestland value into three parts, i.e. the incremental rates of quantity, quality, and price. It 

represents the same solution to maximizing the classic Faustmann LEV (Johansson and Löfgren 

1985). Furthermore, as pointed out by Chang and Deegen (2011), the Pressler’s indicator rate 

formula is also compatible with the generalized Faustmann model and all corresponding 

analytical results and applications. With Pressler’s indicator rate formula, different types of 

uncertainties could be separated out and dealt with individually. At each time point, the optimal 

harvesting strategy, i.e. harvest now or not, for a forest stand can be determined adaptively by 

following a marginal principle with respect to time. 

However, for both reservation price approach and the Pressler’s indicator rate method, 

making adaptive harvesting decision relies on one essential assumption: stumpage price follows 

a certain distribution with finite mean and variance. This assumption is not always true. Previous 

findings suggest that stumpage price can be purely stochastic, i.e. following a diffusion process 

(Hultkrantz, Andersson, and Mantalos 2014). As stated by Haight and Holmes (1991), the 

optimal harvest decision largely depends on the behavior of price series. Amid the coexistence of 

various price behaviors, more adaptive forest management methods were development. Among 
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them, articles utilizing the Real Option Analysis (ROA) approach and Markov Decision Process 

(MDP) method stand for a substantial group of the existing literature.  

Given the nature of an adaptive decision-making process, making optimal management 

decision largely relies on arrival of new information about the ongoing investment. As new 

information come in, the market condition and future cash flow may be uncovered gradually,  

which enables management to alter its initial operating strategy in response to unexpected 

opportunities or operating losses (Trigeorgis 1996). This issue can be addressed by real option 

analysis (ROA) approach. Real options refer to the right, without obligation, to undertake certain 

management actions, such as deferring, abandoning, expanding, staging, or contracting a capital 

investment project (Trigeorgis 1996). The real option analysis approach is the general 

application of real option valuation techniques to make capital budgeting decisions, especially 

for optimal stopping problem. In forestry, the optimal stopping problem refers to the landowner’s 

decision in each period whether to harvest trees, wait for one more period, or salvage harvest in 

case of natural catastrophes. Conceptually, if treating these forest management actions as real 

options, one may solve for the optimal forest management strategy via solving and comparing 

these actions’ implied real option values.  

 Depending on the types of option and time framework, various methods have been 

applied to solve real option value problems in forestry. One of the most common is the Black-

Scholes model. For studies utilizing this method, forest investment opportunities are treated as 

European call options and their values can be explicitly solved by the Black-Scholes model. 

Since mid-1980s, a number of studies apply Black-Scholes model to solve forest management 

problems as real option problems such as timber harvesting contract (Shaffer 1984), alternative 

management options (Zinkhan 1991), and tree harvesting strategy (Gjolberg and Guttormsen 
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2002). However, although being regarded as valuable initial explorations of using ROA on forest 

management, many of those studies were not using Black-Scholes model in a correct fashion as 

they failed to fulfill the assumptions of Black-Scholes Model on price process. As Thomson 

(1991) pointed out, the optimal rotation cannot be determined by using Black-Scholes model 

unless the stumpage price follows a lognormal diffusion process. In addition, treating 

management actions as European style options imply that one can only take managerial actions 

at certain fixed exercise time points, which restrict it from been used in those cases where 

flexible timing is needed. For those cases, optimal stopping problem is often modeled as an 

American option because it implies the right to buy or sell the underlying asset during the time 

before or at the expiry date. In practice, timber harvest contract is often regarded as an American 

call option (Yin and Newman 1997).  

As Hull (2000) indicated, the value of an American call option can only be solved 

numerically. For the discrete time framework, the dominant method to solve for the value of an 

American option is the binomial tree approach by Cox, Ross, and Rubinstein (1979). The 

binomial tree approach assumes that the price of underlying asset will either increase or decrease 

during a certain timespan. Each price node will be followed by another split to two other nodes 

with high and low prices until the expiry of option. Thomson (1992) employs the binomial tree 

method to determine the optimal forest rotation when the price follows a diffusion process and 

found the superiority of binomial trees methods over the traditional net present value approach 

due to its ability to incorporate flexibility. Following this first attempt, more efforts have been 

added to literature such as alternative management options (Duku-Kaakyire and Nanang 2004) 

and carbon sequestration income (Tee et al. 2014).  
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Binomial tree approach is only valid for the real option problems in discrete time scheme. 

For those under continuous time framework, the stochastic dynamic programming (SDP) has 

been used as an alternative method to solve real option problems in forest management. One 

pioneer work utilizing SDP to determine optimal harvest decision is by Norstrøm (1975). After 

that, a number of authors have expanded this approach into many specific issues, such as harvest 

decisions under stochastic carbon price (Chladna 2007), optimal rotation determination for 

uneven aged forests (Clarke and Reed 1989), and timber harvest contract valuation (Burnes, 

Thomann, and Waymire 1999), among others. Most studies of such kind utilize the finite-

difference techniques to obtain numerical solutions of option values, which generate a lot of 

computational complexity (Yin 2001, Yin and Newman 1997, Di Corato, Gazheli, and 

Lagerkvist 2013, Insley 2002, Insley and Rollins 2005). 

Beyond those real option related approaches, articles taking advantage of the Markov 

decision process (MDP) also represents significant efforts to address the forest management 

problem under uncertainties. As an extension of Markov chains, MDP approach is a discrete time 

mathematical framework widely used to solve optimal decision-making problems in many 

disciplines. In an MDP, the one who manages the system is called an agent, the condition of such 

system in each step is described by state 𝑠, and the agent is facing a finite set of actions 𝐴. For 

each state and action, there is a transition model P(s′|s, a), which describes the probability of 

getting to a new state 𝑠′ given the current state 𝑠 and a specific action 𝑎 within the set 𝐴. In 

addition, a reward function is specified to regulate the rewards, which can be positive or 

negative, granted to the decision maker upon the move to a new state. The state transition of an 

MDP satisfies the Markov property, i.e. the future states of the process depend only upon the 

present state, but not a sequence of states prior that preceded it. The function that regulates what 
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action an agent should take at each state is called a policy, which is essentially a function of 

states. Specifically, the optimal policy under MDP framework is measured by maximizing the 

management objectives, e.g. net present cash value, expected utility, etc. In additional, a discount 

factor may also be introduced to MDP to reflect the time preference of a decision maker and the 

opportunity cost of investment alternatives, even though the discounting criteria sometimes may 

lead to non-convergence problem in optimizations. 

MDP has been an effective way to model forest management subject to various types of 

uncertainties, e.g. stumpage price uncertainty, timber growth uncertainty, etc. The initial effort of 

using MDP for forest management problem is made by Lembersky and Johnson (1975), in which 

MDP method is used to optimize the management policy for even-aged forestland. After that, 

applications of MDP in forest management are extended to many different specific situations, 

e.g. managing uneven-aged forest stands (Kaya and Buongiorno 1987), combining financial 

objective and ecological diversity (Lin and Buongiorno 1998), and multiple ecological objectives 

(Zhou and Buongiorno 2006), among others.  

For majority of relevant studies, linear programming or quadratic programming 

techniques were employed to solve for the optimal policy that can maximize the expected utility 

function. Rather than simply determining the optimal decision for the initial stand state, MDP 

method supplies a comprehensive optimal decision rules available for any possible future states 

of such forest. The optimal policy consists of all decisions that an agent should do at every single 

possible state. Frankly speaking, such comprehensiveness also has its drawback. One problem of 

utilizing MDP is that, though it considers uncertainties, the policy is determined ex ante given 

the initial states. Appearently, the states must be finite, so that the possible future states are 

described as categories rather than infinite numbers of explicit conditions. Furthermore, the MDP 
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problems in practice usually do not have close-form solution but rely on numerical techniques to 

solve for an optimal solution. Not to mention that it is impossible to foresee all possible 

conditions, even finding solution for MDP problem with a reasonable scale may consume 

extensive computational power. For example, Couture, Cros, and Sabbadin (2016) reported that a 

very powerful server computer with high-end processors and memories is not capable of solving 

problems with more than five stands due to the massive size of generated transition table. 

Though out all these efforts mentioned in previous paragraphs, forest management under 

uncertainties have been investigated based on various types of models and from several different 

perspectives, e.g. different sources of incomes, different stand age classes, etc. However, 

compared to the massive amount of efforts that have been spent on optimizing management 

strategy from a pure objective stance, fewer literature has been dedicated to subjective side of 

uncertainty, i.e. risk preference, which stands for human’s subjective attitude toward risk and 

uncertainty. A number of survey studies have showed that forestland owners’ preferences toward 

risk and uncertainty will affect their management decisions, and thereby affect the valuation of 

forestlands (Feliciano et al. 2017, Laakkonen et al. 2018, Lunnan, Nybakk, and Vennesland 

2006, Andersson and Gong 2010). Therefore, this topic is worthy of more attention by 

researchers. 

Risk preference has been taken into consideration with a numbers of different timber 

harvest decision making models. For example, Gong (1998) develops a modified reservation 

price model to make adaptive optimal harvest decisions while explicitly incorporate landowners’ 

risk preference. Specifically, in this model, the reservation price is determined by maximizing 

the expected utility of landowners instead of expected net cash value. By integrating expected 

utility function into the reservation price model, relevant literature has been expanded over 
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extensive topics, such as optimal harvest strategy considering price uncertainty, risk of natural 

disturbance, and financial risk aversion (Susaeta and Gong 2019b). As an adaptive decision-

making approach, reservation price approach provides an excellent way to adaptively make 

optimal harvest decision considering the impact of risk preference, while its assumptions on 

price process narrow it down from being used for more pervasive cases. 

Several studies have addressed the optimal harvest scheduling problem with risk 

preference based on the MDP approach, which has better tolerance in price behaviors. For 

example, Couture, Cros, and Sabbadin (2016) measures the effect of risk aversion on the 

management of an un uneven-aged forest, Buongiorno, Zhou, and Johnston (2017) compare how 

three general categories of risk preference. i.e. risk seeking, risk neutral, and risk aversion, will 

affect the forest management decisions, and Zhou and Buongiorno (2019) set up an MDP-based 

model explicitly to address the optimal harvest scheduling issue under the expected utility 

framework.  

The nature of MDP enables it to provide solutions to all possible future states rather than 

only for the initial one. While the solution can be comprehensive for all future states, after all it 

is provided upfront at the beginning, i.e. the optimal solution is either being provided one at a 

time ex ante. Taking risk preference into consideration does not solve this problem and could 

sometimes make it worse. For using MDP to carry out an adaptive forest management, one needs 

to run the entire dynamic programming process over again at each new step to ensure the 

optimized solution can still hold up because more unexpected information may come into the 

system. Even without incorporating the financial risk aversion, such repeated computations may 

add burdens to the already very extensive computational process required by MDP approach. If 

risk preference is also taken into consideration, even for a forest stand with reasonable size and 



14 

 

class formation, conducting adaptive forest management using MDP may become unparallelly 

complicated and will consume tremendous amount of computational power. 

Other than the MDP and reservation price approach that are both based on discrete time 

framework, some scholars also use dynamic programming techniques to address the same issue 

from a perspective of operational research (Tahvonen and Kallio 2006, Pagnoncelli and Piazza 

2017, Lien et al. 2007, Gong and Lofgren 2008). Like many of those taking advantages of MDP, 

these operational research-type studies also address the risk preference issue as financial risk 

aversion explicitly through expected utility function framework.  

Existing studies have already addressed the impacts of risk preference on forest 

management via several different methods and from several different aspects. A number of 

models have been developed to integrate risk preference into the forest management decision-

making under uncertainties, and many meaningful results are raised from these models. In 

general, the consensuses of most existing literature are: First, financial risk aversion leads to a 

cutting cycle (or rotation) shorter than the optimal one determined with the risk-neutral 

assumption. Second, financial return under certain range of risk preference level will lead to a 

risk premium. Relevant studies have proved these two conclusions via either theoretical or 

practical ways. However, existing methods still have many drawbacks. 

First, while there are some exceptions, e.g. (Buongiorno, Zhou, and Johnston 2017) and 

(Gong and Lofgren 2008), the majority of relevant studies use expected utility function to 

measure risk preference of forest managers. Although expected utility function is widely 

regarded as a straightforward and explicit way for this purpose, utility is not something that one 

can directly observe in practice. Therefore, it is difficult to measure one’s risk preference in a 

precise and convenient manner by using expected utility function framework.  
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Second, many decision-making methods, e.g. MDP, are still ex ante methods, i.e. those 

methods determine the optimal harvesting policy once at the beginning. Due to the fact that all 

decisions are made beforehand, these non-heuristic decision-making approaches will make 

forestland owners more difficult to adjust their decision adaptive to unexpected changes in the 

interim. In fact, it is more suitable to use those ex ante methods to make project evaluation rather 

than making harvest decisions in practice. 

Last but not least, many current adaptive forest management methods are too complicated 

for practical use. The complex mechanism and hungry needs for computational power restrict 

them from being used by common forestland owners in daily forest management practice. This 

may even partially contribute to the unpopularity of adaptive forest management among real 

world forestland owners. 
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Chapter 3. A Behavior-based Forest Management Model for Making Timber 
1Harvest Decisions Involving Manager’s Risk Preference 

Obviously, it will be desirable if a new adaptive forest management method can 

overcome the shortcomings of existing methods mentioned at the end of the last chapter. 

Specifically, this method should be able to (1) solve the optimization problem heuristically to 

enable adaptive management; (2) address risk and uncertainty issues, (3) incorporate the varying 

level of risk preference in an explicit manner, and (4) easy to calculate in practice. Amid these 

four key features, I establish a behavior-based adaptive forest management approach in this 

dissertation. Built upon the Pressler’s indicator rate formula, this method explicitly measures 

forestland owners’ risk preferences through their potential behaviors toward different timber 

price situations.  

3.1. Separation of the Annual Value-Added of a Forest 

Before proceeding further, I want to reiterate that the phrase forest management in this 

dissertation refers to the management of a forest that is dedicated only to timber production. 

Therefore, the primary forest management decision to make by the landowner involves harvest 

timing, i.e. whether to harvest the trees in current year, or delay it to let trees grow for one extra 

year. One way to solve this problem marginally is to separate the annual increment, or value-

added, of a forest into multiple parts, which can be either deterministic or random. 

Conceptually, the annual value-added of a forest come from three sources: the quantity 

increment, quality increment, and price increment. The quantity and quality increments stand for 

the increased timber volume and improved timber quality as trees grow larger, and the price 

 
Chapter 3 and chapter 4 of this dissertation appeared, in a slightly different form, as Zhang, Fan, and Sun Joseph 

Chang. 2018. "Measuring the Impact of Risk Preference on Land Valuation: Evidence from Forest Management." 

Land Economics 94 (3):425-436, August 2018. © 2018 by the Board of Regents of the University of Wisconsin 

System. Reprinted courtesy of the University of Wisconsin Press. 
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increment represents the possible extra value-added contributed by stumpage price change in 

such year. Clearly, the quantity and quality increments will be positive values for most years as 

biological volume of trees keep growing almost all the time. However, the price increments can 

either be positive or negative due to price uncertainty. 

Pressler (1860) published his famous paper about the indicator rate formula, in which the 

annual value increment of a forest is separated through an elegant mathematical form as 

(𝑎 + 𝑏 + 𝑐)
𝑘

𝑘 + 1
; 𝑤𝑖𝑡ℎ 𝑘 =  

ℎ

𝑔
 (1) 

where 𝑎 is the rate of quantity increment, 𝑏 is the rate of quality increment, 𝑐 is the rate of price 

increment, ℎ is the variable timber capital, and 𝑔 is the fixed land capital. Note that the variable 

timber capital at the age 𝑡 is the value of the existing forest at this age, i.e. 𝑉(𝑡), and the fixed 

land capital is the value of such forestland, i.e. the LEV. Obviously, a rational forestland owner 

should make the rate of total annual increment to be greater than the interest rate 𝑟.   

According to Chang and Deegen (2011), the stumpage value of a forestland at age 𝑡 can 

be expressed as 

𝑉(𝑡) =  ∑ 𝑃𝑗(𝑡)

𝑛

𝑗=1

𝑊𝑗(𝑡)𝑄(𝑡) (2) 

where 𝑃𝑗(𝑡) is the stumpage price of product class 𝑗 in age 𝑡, 𝑊𝑗(𝑡) is the percentage of the 

product class 𝑗 in the stand volume, and 𝑄(𝑡) is the total stand volume at age 𝑡. Note that the 

yield of a timber stand usually consists of several products classes. For example, in the U.S. 

South, southern pine timber stands typically consists of pulpwood, chip-and-saw (CNS) logs and 

saw logs, sorted by unit value ascendingly. Therefore, as trees grow to larger size, the proportion 

of high value product class will also be increased. In fact, the quality increment stands for the 

value-added due to increased proportion of high-quality product class.  
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Mathematically, differentiating the equation (2) with respect to t, we get: 

𝑉′(𝑡) =  ∑ 𝑃𝑗
′(𝑡)𝑊𝑗(𝑡)𝑄(𝑡) +

𝑛

𝑗=1
   ∑ 𝑃𝑗(𝑡)𝑊𝑗

′(𝑡)𝑄(𝑡) +
𝑛

𝑗=1
 ∑ 𝑃𝑗(𝑡)𝑊𝑗(𝑡)𝑄′(𝑡)

𝑛

𝑗=1
 (3) 

     However, in cases where product classes are not differentiated, a general stumpage 

price for all product class is used so that the quality increment is not considered. Accordingly, 

the parameters for quality increment and product class are removed from the equation, shown the 

following equation: 

𝑉(𝑡) =  𝑃(𝑡)𝑄(𝑡) (4) 

where the notations are the same as in equation (2). 

Taking derivatives with respect to 𝑡 on both side of equation (4), one gets 

𝑉′(𝑡) =  𝑃′(𝑡)𝑄(𝑡) + 𝑃(𝑡)𝑄′(𝑡) (5) 

Then, by dividing 𝑉(𝑡) into both sides, we get 

𝑉′(𝑡)

𝑉(𝑡)
=  

𝑃′(𝑡)𝑄(𝑡)

𝑉(𝑡)
+  

𝑃(𝑡)𝑄′(𝑡)

𝑉(𝑡)
 =   

𝑃′(𝑡)

𝑃(𝑡)
+ 

𝑄′(𝑡)

𝑄(𝑡)
 (6) 

With the two terms on the far right part of equation (6), the first one stands for the rate of 

price increment, i.e. the 𝑐 in the Pressler’s indicator rate formula; the second one stands for the 

rate of quantity increment, i.e. the 𝑎 in the Pressler’s indicator rate formula. Recall that the 

annual stumpage increment rate should be greater than the interest rate 𝑟, namely 

(𝑎 + 𝑐)
𝑘

𝑘 + 1
> 𝑟, 𝑘 =  

ℎ

𝑔
=  

𝑉(𝑡)

𝐿𝐸𝑉
 , 𝑎 =  

𝑄′(𝑡)

𝑄(𝑡)
(7) 

With growth and yield models, the values of 𝑄(𝑡) and 𝑄′(𝑡) are assumed to be known at 

any age 𝑡. 𝑉(𝑡) can also be calculated as 𝑃(𝑡)*𝑄(𝑡) as the current year stumpage price is known. 

In addition, the LEV, which stands for the value of land, is a constant. Therefore, the values of 𝑎 

and 𝑘 are deterministic at any age 𝑡. However, the price increment rate, 𝑐, remains a random 
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term. In fact, the value of 𝑐 needs to be greater than a minimum value to maintain profitability if 

one decides to delay harvesting from age 𝑡 to 𝑡 + 1. This relationship is shown as follow: 

𝑐 ≥ 𝑟 (1 +  
1

𝑘
 ) − 𝑎, 𝑘 =  

ℎ

𝑔
=  

𝑉(𝑡)

𝐿𝐸𝑉
 , 𝑎 =  

𝑄′(𝑡)

𝑄(𝑡)
 (8) 

Following equation (8), we can define a minimum required price increment rate 𝑥 

between age 𝑡 and 𝑡 + 1, where  

𝑥 = min(𝑐) =  𝑟 (1 +  
1

𝑘
 ) − 𝑎 (9) 

With equation (9), the value of 𝑥 can be calculated each year. This necessary price 

increment rate, namely 𝑥, serves as an important reference for forestland owners to make harvest 

decision under price uncertainty. A heuristic harvest decision-making approach incorporating 

both price uncertainty and risk preference can also be constructed based on it. 

3.2. Level of Risk Tolerance – A Quantitative Measure of Risk Preference 

Following the definition of the minimum required price increment rate 𝑥, a target price at 

age 𝑡 + 1 can be derived as 

𝑃∗(𝑡 + 1) = (1 + 𝑥)𝑃(𝑡) (10) 

where 𝑃(𝑡) is the current stumpage price when the landowner makes harvest decision, and 

𝑃∗(𝑡 + 1) stands for a target price that the landowner needs to maintain profitability if harvest is 

delayed to the next year. Specifically, if the stumpage price in year 𝑡 + 1 is higher than the target 

price, the value of forest will increase and the decision to delay harvest is correct. Otherwise, the 

forest owner incurs a loss in value of forestland and the decision to delay harvest is in fact 

incorrect. Due to the price uncertainty, it is impossible to know whether the stumpage price will 

be higher than the target price or not. However, knowing the probability of such an event is 

possible. Conceptually, if this probability of incurring a loss when delaying harvest is lower than 
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some level, a rational forestland owner may think that the probability of getting extra profit by 

waiting one extra year is minimal, so that it is not worth the waiting and the timber should be 

harvested right away.   

Mathematically, the probability that the forestland owner will get extra profit by delaying 

timber harvest and wait for one extra year can be defined as follow: 

Pr(Getting extra profit) = Pr [𝑃(𝑡 + 1) > 𝑃∗(𝑡 + 1)] (11) 

Likewise, define the probability that a forestland owner will incur a loss if delay the 

timber harvest as: 

Pr (Incurring a loss) =  Pr [𝑃(𝑡 + 1) < 𝑃∗(𝑡 + 1)] =  1 −   Pr (Getting Extra Profit) (12) 

Obviously, the probability of incurring a loss is a measure of the downside risk in the 

decision-making process. Such a probability serves as an important benchmark when measuring 

people’s risk preference. In fact, the tolerances to the down-side risk are different among people. 

Risk-seeking persons are generally more tolerant of such a risk than risk-averse persons. Thus, 

based on (12), a decision rule can be established with a threshold probability level τ, which is the 

maximum level of probability of incurring a loss that can be tolerated by a forestland owner. If 

Pr(Incrruing a loss) > τ, meaning the chance that one can get extra profit by delaying harvest is 

too small to afford. Thus, the decision is then probably to harvest timber now. Otherwise, one 

should keep the trees and delay the decision to the next year.   

In this study, this threshold probability level τ is named as the level of risk tolerance, 

which is a quantitative measure of the general risk preference of a forestland owner. The value of 

τ varies across different landowners and reflects their general risk preference. For example, a 

forestland owner with τ = 0.90 means one can tolerate the probability of incurring a loss as much 

as 90% for any single year. In another word, timber harvest should only be conducted when the 
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probability of incurring a loss by delaying the harvest is greater than 0.90, i.e. the chance of 

getting extra profit by delaying harvest is less than 10%. Likewise, another more risk-seeking 

forestland owner may have a higher value of τ, e.g. 0.95, which means a higher tolerance on 

downside risks. In another word, this forestland owner is more risk seeking than the prior one 

with τ = 0.90. Therefore, under this decision rule, a higher level of risk tolerance indicates a 

more risk-seeking preference in terms of management behavior, while a lower level of risk 

tolerance indicates a more risk-averse preference. Note that the value of τ is the level of risk 

tolerance for any single year over the rotation period. Due to the extended length of forestry 

investment, a landowner will potentially have many chances to harvest and sell the trees. In the 

meantime, trees keep growing over the rotation, which keeps the cost of carrying the timber asset 

at a low level. Therefore, at any single year, delaying the harvest and bet on the good price will 

appear in the future is an easy choice, unless the timber price is already extremely high and one 

will be very likely to incur a loss if delaying the harvest to the next year. As a result, the value of 

τ will be a large number in forestry (e.g. 0.90), which reflects the fact that forestland owners will 

only harvest the timber when the possibility of incurring a loss by waiting is extremely large. 
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Chapter 4. Numerical Studies Regarding the Impact of Risk Preference on 

Forest Management Outcomes 

4.1. A Numerical Analysis Under Fixed Market Conditions 

This chapter presents several numerical simulation studies to demonstrate how varying 

risk preferences will affect forest management decisions and valuation of forestland with price 

uncertainty. Specifically, the stumpage price series is randomly generated following a log-

normal distribution to reflect the fact that price is changing on a percentage scale. The 

parameters of such distribution are calibrated pursuant to the Louisiana southern pine real 

stumpage price series from 1956 to 2015 (Louisiana Department of Agriculture and Forestry 

2019). Specifically, the mean and variance for the original price series are $169.19/Mbf and 

$65.73/Mbf, respectively. The growth-yield model employed is the same as the model used in 

Brazee and Mendelsohn (1988c) to enable direct comparison. Moreover, the minimum harvest 

age is set to be 12 years is set because the trees won’t be large enough to be merchantable prior 

to this age by that age. Likewise, there is a maximum harvest age of 80 years, which implied the 

fact that a reasonable landowner will not wait for the harvesting opportunity forever but will 

have to cut the trees for some reason. Some other settings used include the interest rate 𝑟 is set to 

be 0.04 and the regeneration cost 𝐶 is assumed to be $60 per acre. 

Other than this behavior-based adaptive harvesting decision-making approach proposed 

in this dissertation, the classical Faustmann approach and the reservation price strategy are also 

included in this numerical study for comparison purpose. The forest management outcomes (i.e. 

mean LEV and mean rotation length) of these three models are compared. Specifically, the net 

present values of profits from the first 10 rotations are added up to approximate the true LEV, i.e. 

the value of such a piece of forestland. A total of 30 different scenarios with the level of risk 

tolerance varies from 0.5 to 0.99 have been analyzed. For each scenario, the numerical 
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simulation has been running for 5000 times. The mean LEV and rotation length are extracted for 

comparison with other approaches. The mean LEV stands for the value of this piece of forestland 

under such level of risk tolerance, and the mean rotation length serves as a benchmark for the 

performance of forest management.  

Shown in Table 1 is a summary of the mean LEV and rotation length for different levels 

of risk tolerance. In detail, the mean rotation length keeps increasing as the level of risk tolerance 

increases, while the mean LEV increases for the initial stage to a peak then suddenly decreases 

as the level of risk tolerance continues to increase. Essentially, the finding in rotation length fits 

the theories that risk-averse behaviors lead to shorter rotation length and earlier harvest age. 

However, the finding on the mean LEV is not consistent with the intuition that taking higher risk 

will always lead to a higher return, as is implied by many classical asset pricing model, e.g. the 

capital asset pricing model (CAPM) (Sharpe 1964). In fact, the realization of the full value for a 

piece of forestland relies heavily on the risk preference of its owner/manager, and there exists a 

certain level of risk tolerance that will bring on average the highest return to landowners. 

Whether individual landowners could tolerate such a level of risk is a separate matter. Namely, 

in this dissertation, I refer this level of risk tolerance that could bring the highest average LEV to 

forestland owners as the optimal level of risk tolerance. 

The comparison of forest management outcomes among selected management 

approaches are shown in Figure 1 and Figure 2. As we can see from these two figures, under the 

changing price scheme, those two approaches considering price uncertainty show significant 

advantages over the classical Faustmann model, which overlooks the price uncertainty. 

Specifically, by applying the reservation price approach, we get a mean LEV of $4725 per acre 

and a mean rotation length of 26.3 years. Compared with the mean LEV of $2202 per acre and a  
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Table 1. Summary of Rotation Length and Mean LEV with different Risk Tolerance Level 

The risk 

tolerance level 

Mean Rotation 

Length (Year) 

S.D. of Rotation 

length 

Mean LEV 

(USD) 
S.D. of LEV 

0.50 14.30 2.64 2008.00 483.82 

0.55 14.84 2.97 2200.91 536.31 

0.60 15.43 3.33 2480.73 613.84 

0.65 16.17 3.75 2774.14 624.54 

0.70 17.07 4.29 3108.31 610.21 

0.75 18.15 4.89 3391.05 725.46 

0.76 18.34 4.90 3429.40 654.13 

0.77 18.85 5.28 3609.48 718.12 

0.78 19.05 5.34 3619.32 735.94 

0.79 19.37 5.55 3750.66 728.76 

0.80 19.65 5.84 3846.53 723.78 

0.81 20.15 6.07 3942.33 674.14 

0.82 20.56 6.29 4012.12 755.72 

0.83 20.98 6.51 4118.49 735.64 

0.84 21.53 6.90 4161.61 685.97 

0.85 22.09 7.33 4265.06 705.68 

0.86 22.81 7.81 4391.60 729.28 

0.87 23.33 8.12 4506.81 740.42 

0.88 24.31 8.64 4587.49 736.73 

0.89 24.91 9.14 4657.39 694.90 

0.90 25.92 9.71 4774.44 727.45 

0.91 27.44 11.01 4784.20 796.96 

0.92 28.78 11.81 4848.88 832.35 

0.93 30.79 13.33 4850.85 954.48 

0.94 32.68 14.31 5012.98 934.59 

0.95 35.43 15.98 4815.15 1159.40 

0.96 39.40 18.13 4695.00 1335.37 

0.97 44.89 19.83 4453.26 1553.61 

0.98 52.40 21.31 3946.02 1881.95 

0.99 63.20 20.34 2904.47 2037.85 

 

mean rotation length of 31 years under the classical Faustmann model, this is a huge  

improvement. The more impressive finding is on the performance of the behavior-based adaptive 

forest management model. Essentially, there is a non-linear relationship between the mean LEV 

and chosen level of risk tolerance. For a certain range of risk tolerance levels, the mean LEV by 

applying my behavior-based management approach could out-perform that of the reservation 

price approach, though the mean rotation lengths of the latter are slightly longer than that of the 
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former for this range. As mentioned before, the reservation price approach assumes risk 

neutrality. Thus, the finding here implies that a certain degree of risk-seeking preference may 

lead to a better realization of the value of a forest, but at the expense of some degree of 

management flexibility due to the extended rotation length when compared to the risk-neutral 

approach, i.e. the reservation price approach. 

4.2. Sensitivity Analyses of Market Conditions 

In the above section, by establishing the level of risk tolerance (i.e. τ) as a measure of risk 

preference for an individual forestland owner, I demonstrate the impacts that varying risk 

preferences could bring for forest management outcomes under fixed market conditions (i.e. 

interest rate and market volatility). However, if those market conditions are changing, the pattern 

of such impacts brought about by the risk could also be changed. To figure out this interaction, 

multiple numerical sensitivity analyses are conducted to determine how the mean LEV and mean 

rotation length are impacted by varying levels of risk tolerance of forest owners as the market 

condition changes, i.e. various levels of interest rate or market price volatility. Specifically, the 

sensitivity analyses on interest rate and stumpage price volatility are carried out independently. 

Other than the default setting that 𝑟 = 0.04 and 𝜎 = 0.28225, I have presented the cases for ten 

different levels of interest rate and price volatilities (Variances of price distribution). Therefore, 

for either the interest rate or stumpage price volatility, a total of 11 cases have been simulated 

following the same way described in the last section. 

The full scenario of the relationship between mean LEV and the level of risk tolerance 

for selected levels of interest rate is presented in Figure 3. Essentially, for every level of interest 
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Figure 1. The Comparison on Mean LEV between the Reservation Price Approach, the Classical 

Faustmann Model, and our Heuristic Decision-Making Approach 

 

 

Figure 2. The Comparison of mean Rotation Length between the Reservation Price Approach, 

the Classical Faustmann Model, and our Behavior-based Heuristic Decision-Making Approach 
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rate, there exists a specific level of risk tolerance that will lead to the highest mean LEV, i.e. the 

optimal level of risk tolerance remains existing even if the interest rate changes. Moreover, as the 

interest rate increases, the curvature near the maxima of the mean LEV curve becomes flatter. 

This implies that the realization of forestland value relies less on risk preference when the 

interest rate increases. In other words, the valuation of forestland is more sensitive to its 

manager’s risk preference under the low-interest scenario than under the high-interest scenario. 

Specifically, how the optimal level of risk tolerance changes with respect to the interest 

rate is summarized in Table 2. In general, as the interest rate increases, the optimal level of risk 

tolerance is declining, while the mean rotation length is also decreasing. This finding indicates 

that a landowner should be more risk-seeking under the low-interest rate case because of the very 

low cost of carrying the timber asset. However, if the interest rate climbs to a higher level, the 

cost of carrying such a timber asset would rise to a level that is higher than the growth rate of 

trees. This would reduce the advantage of the forest as a self-appreciating asset, and force 

landowners to be more risk-averse to avoid incurring a further loss while waiting. The same facts 

are also presented graphically in Figures 4 and 5.  

The relationship between mean LEV and levels of risk tolerance for selected stumpage 

price volatilities are presented in Figure 6. As shown in the graph, except for the case when 𝜎 =

0.02, all other cases appear to have one obvious single peak on the curve. However, the mean 

LEV curve displays an almost flat line for quite a range of risk tolerance levels when the 

stumpage price volatility is very small, i.e. 𝜎 = 0.02. In this case, since the stumpage price is 

very stable, it is very close to a constant pattern and the price uncertainty is nil. Thus, the impact 

of risk tolerance on the valuation of forestland becomes very small, i.e. the valuation of 

forestland is not sensitive to the risk preference of individual landowners. However, since the   
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Table 2. Summary of Sensitivity Analysis on Interest Rate 

Interest Rate 

Optimal 

Level of 

Risk 

Tolerance 

Mean 

Rotation 

Length 

(Year) 

S.D.  of 

Rotation 

Length 

Mean LEV 

(USD) 
S.D. of LEV 

0.005 0.97 47.24 20.61 78674.41 9710.99 

0.010 0.95 37.94 17.38 37914.15 3962.97 

0.020 0.95 37.08 17.40 15239.97 2334.84 

0.030 0.95 36.24 16.62 8188.65 1625.27 

0.040 0.92 28.67 11.70 4982.66 841.47 

0.050 0.91 26.68 10.14 3221.13 530.05 

0.060 0.91 25.87 9.53 2229.01 439.88 

0.070 0.91 25.70 9.45 1608.32 336.21 

0.090 0.89 22.82 7.67 866.09 175.09 

0.110 0.87 20.90 6.49 502.41 128.38 

0.130 0.84 18.58 5.15 302.12 70.70 

 

 

Figure 3. A Full Scenario of Mean LEV with Different Level of Risk Tolerance under Selected 

Level of Interest Rates.  
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Figure 4. The relationship between the interest rate and the optimal level of risk tolerance 

 

 

Figure 5. The relationship between the interest rate and the mean rotational length associated 

with the optimal level of risk tolerance. 
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Figure 6. A full scenario of mean LEV with different levels of risk tolerance under selected 

levels of stumpage price volatility 

 

price volatility still exists, there remains a level of risk tolerance that leads to the highest mean 

LEV. In other words, the optimal level of risk tolerance remains existing as the stumpage price 

fluctuates. 

Shown in Table 3 is the summary of sensitivity analyses on stumpage price volatility. In 

essence, as the stumpage price volatility increases, the optimal level of risk tolerance would also 

increase, and the mean LEV associated with the optimal risk tolerance is also increasing. This 

finding implies that a risk-seeking strategy is preferred when price volatility is high. In this case, 

even if the landowner decides to postpone harvest because of a very low level of risk tolerance 
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and missed an opportunity to sell the trees at a good price, the chance that another good price 

will be appearing is relatively high. However, if the price volatility is small, the risk preference 

of forestland manager plays a weaker role in management because the frequency and magnitude 

of a “good price” are both lower compared to the case with high-price volatility. In general, I 

found that the choice of risk preference is more important when the stumpage price volatility is 

high. A relatively large risk premium can be obtained by properly choosing the level of risk 

tolerance if the price volatility is high, but the mean LEV is not greatly affected by risk 

preference if the magnitude of price fluctuation is very small. The same fact is shown in Figure 7 

as well.  

Table 3. Summary of Sensitivity Analysis on Price Volatility 

Price 

Volatility (σ) 

Optimal 

Level of 

Risk 

Tolerance 

Mean 

Rotation 

Length 

(Year) 

S.D.  of 

Rotation 

Length 

Mean LEV 

(USD) 
S.D. of LEV 

0.02 0.77 30.48 3.22 3398.70 54.17 

0.05 0.85 29.72 5.45 3487.50 148.57 

0.1 0.88 29.18 7.69 3717.03 292.66 

0.15 0.91 29.87 9.72 3984.35 486.09 

0.2 0.92 29.95 11.31 4270.85 585.18 

0.25 0.92 28.92 11.17 4618.54 713.59 

0.28 0.93 28.67 11.70 4982.66 841.47 

0.3 0.95 35.17 16.03 5294.01 1076.76 

0.35 0.96 35.61 16.80 5653.76 1345.81 

0.4 0.95 34.48 16.79 6268.31 1614.72 

0.45 0.94 31.07 15.02 6805.42 1627.23 

 

On the other hand, the trend on the mean rotation length with respect to the price 

volatility shows no clear pattern, as shown in Figure 8. Specifically, the mean rotation length 

associated with the optimal level of risk tolerance is fluctuating at a low level when 𝜎 < 0.3, but 

it jumps to a higher stage when the volatility 𝜎 reaches the level of 0.3. However, the mean 

rotation length then decreases to a lower value as the price volatility continues to rise. In fact, 
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this chaotic pattern may imply that a highly fluctuating market will make such a harvest 

decision-making process unstable. 

 

Figure 7. The relationship between the stumpage price volatility and the optimal level of risk 

tolerance. 

 

Figure 8. The relationship between the stumpage price volatility and the mean rotation length 

associated with the optimal level of risk tolerance. 
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Chapter 5. A Case Study of Adaptive Forest Management by Using the 

Behavior-based Forest Management Model 

Based on the behavior-based decision model that I developed in this dissertation, in the 

last chapter the impact of risk preferences on forest management outcomes is presented. Clearly, 

by taking advantage of this model, forestland owners’ management potential behavior toward 

price situations, i.e. tolerance on downside price risk, could be directly used as a benchmark to 

measure their risk preferences in a simple but explicit fashion. Furthermore, as an adaptive forest 

management approach that considers both price uncertainty and risk preference together, this 

model could have practical applications in real-world forest management. In this chapter, by 

using LSU Lee Memorial Forest as a sample site, I will demonstrate how to use this behavior-

based model to conduct adaptive forest management to improve financial returns. In addition, 

this case study will also show that a proper risk management strategy can play a key role in 

forest management under the changing-price scheme. 

5.1. A Summary of the LSU Lee Memorial Forest 

Located between Franklinton and Bogalusa in the Washington Parish of Louisiana, Lee 

Memorial Forest is a 1210-acre research forest affiliated with the LSU School of Renewable 

Natural Resources. It was named after Professor J.G. Lee, Sr., who taught the first forestry 

courses offered at LSU and became the first head of the Department of Forestry in 1924. The 

LSU Lee forest originally began with a 1000-acre donation from the Great Southern Lumber 

Company in 1926. In 1991, it was augmented by another 210-acre gift from William A. Knight 

estate. 

Although it is primarily managed for research, teaching, and demonstration purposes, the 

Lee Forest provides its own operating budget with the timber sales revenue. Thus, except for the 

land areas that are devoted to research and teaching, much of the remaining area in this forest is  
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Figure 9. Planning Map of the LSU Lee Memorial Forest  
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still managed for harvesting incomes. Approximately, there are around 580 acres of even-aged 

southern pine forest, 70 acres of uneven-aged southern pine forest and 130 acres of managed 

hardwood bottomlands that are devoted to timber production. The planning diagram map of LSU 

Lee Memorial Forest is displayed in Figure 9. 

5.2. Case Study Design 

The primary objective of this case study is to test the behavior-based adaptive forest 

management method by using the real historical data of LSU Lee Memorial Forest over a 30-

year period (i.e. 1988 to 2017). Specifically, I assume that a hypothetical forest manager took 

over the management of a part of the LSU Lee Memorial Forest in 1988 and started managing 

this forest by using the behavior-based model for 30 years until 2017. Given the same scenario 

data (i.e. stumpage price, catastrophic events, etc.), I will demonstrate how risk preferences will 

affect the harvest decisions made by the hypothetical manager, which eventually leads to 

different management outcomes. Moreover, other than demonstrating the impact of risk 

preferences on forest management outcomes, this case study will serve as a practical guide of 

how to use the behavior-based forest management model developed in this dissertation to make 

harvest decisions adaptively in real forest management practice.  

The sample site involved in this case study is the 584-acre even-aged southern pine 

plantations, which are the primary source of harvestable timber in the Lee Forest. Based on the 

timber cruise data, I separate the sample site into five different blocks according to the age 

classes of trees grow on them. Specifically, the plant dates for the block one to five are 1949, 

1979, 1940, 1969, and 1959, respectively. The sizes of them are, from block one to block five, 

142 acres, 125 acres, 104 acres, 75 acres, and 136 acres, respectively. The information about age 

class, size, and site index of these five blocks are detailed in Table 4.  
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 Table 4. Summary of the Case Study Site in LSU Lee Memorial Forest 

Block 
Year 

Planted 

Initial Stand 

Age 
Size (Acre) Site Index 

Bug Timber 

Harvest 

1 1949 39 142 90  

2 1979 9 125 91  

3 1940 48 104 90 1989 

4 1969 19 75 82  

5 1959 29 136 87  

 

The stumpage price and regeneration data used for this study are presented in Table 5. In 

detail, the real Louisiana annual average timber products stumpage price and the regeneration 

cost data recorded by the Lee Forest Office are used for this case study. In each year the 

hypothetical forest manager will make the harvest decision based on the real stumpage prices 

observed in Louisiana. In order to make this case study more realistic, the catastrophic events 

happened during the study period were also included in this case study. Specifically, Hurricane 

Katrina tore through Washington Parish on August 29, 2005, and the Lee Forest took a direct hit. 

Almost all the merchantable pine plantations were destroyed by this devastating hurricane. Thus, 

in this case study, if the timber stand age is greater than or equal to 10 in 2005, I assume the 

timber will be destroyed by hurricane Katrina and the stand will be replanted in 2006. In 

addition, the timbers in block 3 were clear cut in 1989 due to insect infection. Therefore, in this 

case study, I apply the rule that all timber stands in block 3 will be harvested in 1989 due to 

insect infections. Furthermore, I assume the plantation contains only one tree species, i.e. 

loblolly pine (Pinus taeda). As a practical case study, three major classes of timber products are 

considered in this study, i.e. sawtimber, Chip N’ Saw (CNS), and pulpwood. The growth of trees 

and the proportion of timber product classes are projected by the Merchlobx software developed 

by the LSU School of Renewable Natural Resources (Chang et al. 2005). 
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Table 5. The Real Softwood Stumpage Prices and Southern Pine Regeneration Cost in Louisiana 

from 1988 to 2017 

Year 
Real Sawtimber 

Stumpage Price 

Real CNS 

Stumpage price 

Real Pulpwood 

Stumpage Price 

Regeneration 

Cost 

1988 18.82 6.59 5.53 149 

1989 18.84 9.14 6.05 152 

1990 19.83 9.85 5.70 155 

1991 20.84 10.57 6.61 158 

1992 23.73 14.41 7.42 162 

1993 28.73 19.29 7.81 165 

1994 34.53 22.57 7.23 168 

1995 38.36 26.92 7.15 175 

1996 33.74 25.00 6.85 181 

1997 40.40 29.48 7.72 188 

1998 40.85 27.56 8.70 195 

1999 36.73 28.93 7.76 210 

2000 33.87 28.63 6.52 225 

2001 31.50 25.97 5.90 240 

2002 32.11 28.19 5.52 255 

2003 28.76 20.30 5.12 217 

2004 29.34 20.65 4.77 179 

2005 27.95 22.63 5.35 196 

2006 25.72 20.72 4.16 212 

2007 22.66 13.56 5.99 239 

2008 19.11 13.93 5.33 265 

2009 17.64 15.99 5.04 263 

2010 16.49 12.04 5.15 261 

2011 14.87 10.68 4.09 274 

2012 14.73 10.11 4.10 287 

2013 15.12 8.24 4.11 250 

2014 15.32 8.36 4.51 213 

2015 16.70 8.51 5.09 229 

2016 17.53 8.86 5.50 244 

2017 15.91 8.54 4.90 260 

Conceptually, each year based on the projected tree growth and current timber price, the 

forest manager can calculate the target price for the next year using equation 9 in the Chapter 3. 

By looking at the percentile of this target price in the presumed price distribution, the probability 

that the price in next year will be lower than the target price can be derived. This probability is 

the de facto downside price risk in equation 12 of the Chapter 3. Therefore, the decision-
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mechanism here is to compare this downside price risk with the risk tolerance level. If the 

downside risk is higher than what can be tolerated, then the manager will harvest the timbers. 

Otherwise, the trees will be kept until the next round of decision-making a year later. 

Furthermore, since there are three product classes with different prices in this case study, each 

class will have its own target price. To handle this situation, I also calculate the value share of 

the three product classes each year and assume the harvest decision will be made only based on 

the product class with the largest value share among the three. For example, in a year when 

sawtimber, CNS, and pulpwood account for 10%, 20%, and 70% of the total stumpage value, 

respectively, the forest manager will make the harvest decision by comparing only the downside 

risk of the pulpwood price with the risk tolerance level because pulpwood stands for a majority 

part of merchantable timber value at that time.  

To demonstrate the impact of risk preference on forest management outcomes, I set up 

three hypothetical managers who have different risk tolerance levels (i.e. 0.5, 0.7, and 0.9) in this 

case study. In each year, managers face exactly the same scenarios in terms of stumpage price, 

timber growth, and catastrophic events. The only difference between them is the risk tolerance 

level, which serves as the decision criterion to be compared with the calculated downside price 

risk. Obviously, due to differences in their risk tolerance levels, any of them could make unique 

harvest decisions individually in the interim, and eventually result in different management 

outcomes. 

5.3. Empirical Results 

In this case study, the three hypothetical forest managers have their risk tolerance level 

defined as 0.5, 0.7, and 0.9, respectively. For each of them, individual harvest decisions are 

needed to be made for each of the five blocks every year. Thus, there are 3 x 5 = 15 harvest 



39 

 

decision tables that contain all management track records covering all five blocks managed under 

three risk tolerance levels. All decisions are made on an acre basis, and detailed decision track 

records are presented in Table 6 through Table 20. 

As shown in Table 6, the manager took over the block one in 1988, when the stand age is 

39. At that time, the majority product class was CNS with a 45.4% timber value share and the 

CNS price down-side risk was 0.09. Obviously, the downside risk was much smaller than the 

risk tolerance level, which is 0.5 for this hypothetical manager, so that the decision was keeping 

the trees for another year. Afterward, CNS remains its majority position until 1991 when 

Sawtimber took the majority with a value share of 42.9%. However, since the sawtimber 

downside price risk remains lower than 0.5, the stand was not harvested until 1993 when the 

sawtimber price downside risk jumped to 0.704, which is greater than what can be tolerated by 

this hypothetical forest manager. As a result, the timbers on this site were harvested in 1993 and 

generated an income of $6344.73 per acre. Then, the trees were regenerated in 1994 but all trees 

were wiped out by Hurricane Katrina in 2005 so that this manager had to plant the trees again in 

2006. This new batch of trees had no commercial value until 2016 when the minimum amount of 

pulpwood became available. In 2016 and 2017, the downside price risk of the dominate product 

class, i.e. the pulpwood was much smaller than 0.5. Therefore, the trees were kept there for 

further growth. 

For block two, the manager took over the site when the dominant product class is 

pulpwood in 1988. As shown in Table 7, the pulpwood downside price risk climbed to 0.5 in the 

year 1990, which triggered a harvest in 1990 and generated an income of $272.78 per acre. 

Thereafter, the trees were replanted in 1990 and became merchantable from 2001 to 2004. 

During this period, the dominant product class remains as pulpwood, but the downside price risk 



Table 6. Harvest Decision Table for Block 1 If Risk Tolerance Level is 0.5 

Year Age 

Total 

Volume 

(ton) 

Sawtimber 

Value 

Share 

CNS 

Value 

Share 

Pulpwood 

Value 

Share 

Sawtimber 

Downside 

Price risk 

CNS 

Downside 

Price risk 

Pulpwood 

Downside 

Price risk 

Event Income 

1988 39 223.58 0.64 0.27 0.09      

1989 40 227.67 0.59 0.33 0.08 0.256 0.16 0.62   

1990 41 232.77 0.61 0.32 0.07 0.303 0.19 0.52   

1991 42 236.14 0.62 0.31 0.07 0.349 0.21 0.79   

1992 43 239.74 0.60 0.33 0.06 0.495 0.40 0.94   

1993 44 242.36 0.60 0.35 0.05 0.704 0.63 0.95 Harvest 6344.73 

1994 

to 

2003 

0 

to 

9 

No Commercial Value 

 

2004 10 27.54         

2005 11 Katrina 

2006 

to 

2015 

0 

to 

9 

No Commercial Value 

 

2016 10 27.54 0.000 0.077 0.923 0.173 0.14 0.34   

2017 11 36.69 0.000 0.106 0.894 0.167 0.15 0.30   
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Table 7. Harvest Decision Table for Block 2 If Risk Tolerance Level is 0.5 

Year Age 

Total 

Volume 

(ton) 

Sawtimber 

Value 

Share 

CNS 

Value 

Share 

Pulpwood 

Value 

Share 

Sawtimber 

Downside 

Price risk 

CNS 

Downside 

Price risk 

Pulpwood 

Downside 

Price risk 

Event Income 

1988 9 No Commercial Value 

1989 10 28.73 0.00 0.12 0.88 0.20 0.14 0.46   

1990 11 38.04 0.00 0.18 0.82 0.29 0.18 0.50 Harvest 272.78 

1991 

to 

2000 

0 

to 

9 

No Commercial Value 

 

2001 10 28.73 0.00 0.29 0.71 0.56 0.71 0.23   

2002 11 38.04 0.00 0.39 0.61 0.60 0.80 0.18   

2003 12 44.36 0.00 0.45 0.55 0.56 0.57 0.18   

2004 13 51.98 0.00 0.53 0.47 0.59 0.59 0.12   

2005 14        Katrina  

2006 0 

to 

9 

No Commercial Value 

 
2007 

2015 

2016 10 28.73 0.00 0.13 0.87 0.17 0.14 0.34   

2017 11 38.04 0.00 0.18 0.82 0.17 0.15 0.29   

 

 

 

 

 

 

 



had always been below 0.5, which lead to no harvest in the interim and all merchantable trees 

were wiped out in 2005 by Hurricane Katrina. For that reason, from 2006 to 2015, the tress on 

this site had no commercial value because of their young age. After that, in 2016 and 2017, the 

pulpwood downside price risk was less than 0.5 so that no harvest was carried out. 

As shown in Table 8, the trees on block three were at the age of 48 when this manager 

took them over. In the first year, no decision was made due to the decision mechanism. However, 

as mentioned before, the trees on block three were infested by bugs thus they must be harvested 

right away to prevent further spread of bug infestation. Therefore, all trees on this site were 

harvested in 1989 regardless of the downside price risk of sawtimber, which was the dominant 

product class at the time. This bug harvest generated an income of $4081.94 per acre. After 

replanting in 1990, the tract had no commercial value until 2000, when a small amount of 

pulpwood became merchantable. In 2003, when the CNS product took a 50% share of the total 

value, the CNS downside price risk of 0.58 triggered a harvest. It is worth noting that the CNS 

downside price risk has been above 0.5 for several years before 2003, but at that time the 

pulpwood was still dominating the value proposition of the entire stand. Thus, no harvest 

decision was reached because of the relatively low pulpwood downside price risk. Furthermore, 

this early harvest also made the manager replant trees in 2004. When Hurricane Katrina hit the 

site in 2005, the stand age was only one so that trees are too young to be impacted. After that, 

new batch of merchantable timber became available in 2014 but no harvest was triggered until 

the end of the study period due to low downside price risks through those years. 

Table 9 presents the harvest decision-making track record in block 4 for the manager with 

a risk tolerance of 0.5. In 1989, when the dominant product class is still pulpwood, the first 

harvest was carried out as the pulpwood downside price risk hiked above what can be tolerated 



Table 8. Harvest Decision Table for Block 3 If Risk Tolerance Level is 0.5 

Year Age 

Total 

Volume 

(ton) 

Sawtimber 

Value 

Share 

CNS 

Value 

Share 

Pulpwood 

Value 

Share 

Sawtimber 

Downside 

Price risk 

CNS 

Downside 

Price risk 

Pulpwood 

Downside 

Price risk 

Event Income 

1988 48 259.20 0.77 0.18 0.05      

1989 49 259.44 0.73 0.22 0.05 0.28 0.10 0.51 Bug 4081.94 

1990 

to 

1999 

0 

to 

9 

No Commercial Value 

2000 10 27.54 0.00 0.27 0.73 0.61 0.78 0.33   

2001 11 36.69 0.00 0.34 0.66 0.60 0.75 0.27   

2002 12 43.12 0.00 0.49 0.51 0.67 0.85 0.24   

2003 13 49.63 0.00 0.50 0.50 0.57 0.58 0.19 Harvest 561.91 

2004 

to 

2013 

0 

to 

9 

No Commercial Value 

2014 10 27.54 0.00 0.13 0.87 0.13 0.13 0.16   

2015 11 36.69 0.00 0.17 0.83 0.19 0.15 0.35   

2016 10 43.12 0.00 0.24 0.76 0.21 0.16 0.46   

2017 11 49.63 0.00 0.31 0.69 0.16 0.14 0.27   
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Table 9. Harvest Decision Table for Block 4 If Risk Tolerance Level is 0.5 

Year Age 

Total 

Volume 

(ton) 

Sawtimber 

Value 

Share 

CNS 

Value 

Share 

Pulpwood 

Value 

Share 

Sawtimber 

Downside 

Price risk 

CNS 

Downside 

Price risk 

Pulpwood 

Downside 

Price risk 

Event Income 

1988 19 73.52 0.01 0.39 0.60      

1989 20 79.94 0.01 0.48 0.51 0.27 0.16 0.65 Harvest 652.55 

1990 

to 

1999 

0 

to 

9 

No Commercial Value 

2000 10 20.66 0.00 0.15 0.85 0.89 0.95 0.79 Harvest 201.43 

2001 

to 

2010 

0 

To 

9 

No Commercial Value 

2011 10 20.66 0.00 0.09 0.91 0.24 0.33 0.32   

2012 11 24.73 0.00 0.14 0.86 0.20 0.26 0.23   

2013 12 29.30 0.00 0.17 0.83 0.15 0.14 0.13   

2014 13 37.42 0.00 0.19 0.81 0.17 0.15 0.24   

2015 14 42.63 0.00 0.25 0.75 0.20 0.15 0.38   

2016 15 48.25 0.00 0.30 0.70 0.22 0.16 0.48   

2017 16 54.27 0.00 0.36 0.64 0.16 0.15 0.29   



to 0.65. When trees became just merchantable in 2000, the price of pulpwood was at a high level 

again and a downside price risk of 0.79 was observed, which resulted in another harvest that 

year. During the time period between 2001 and 2010, the immature tress had no merchantable 

value but was small enough to survive Hurricane Katrina. Until the age 16 in 2017, the pulpwood 

downside price risk had been below 0.5 so that all trees were still there by the end of the study 

period. 

For block five which was a 29-year old stand at the beginning of this case study, CNS 

product stood for more than half of the timber value in the first several years. The first harvest on 

this site was carried out in 1993 when the CNS downside price risk climbed above 0.5 to 0.62. 

After the first harvest until 2003, trees had no commercial value. However, the 11-year stand was 

wiped out in 2005 by Hurricane Katrina so that the planting cycle started all over again in 2006. 

In 2016, a pulpwood downside price risk of 0.62 was observed so that trees were harvested at 

such an early age for a harvest income of $261.91 per acre. As a result, the site was under 

regeneration by the end of the study period in 2017. The detailed management track record for 

this case are shown in Table 10. 

In Tables 11 through 15, the harvest decisions and forest management track record by the 

manager who has a risk tolerance level is 0.7 are presented. As shown in Table 11, the downside 

price risk for the dominant product class in Block one (i.e. Sawtimber) jumped from 0.495 to 

0.704 in 1993, which leads to the harvest decision. In fact, this is the same event that triggered 

harvest for the previous forest manager whose risk tolerance level is lower. Since there is no 

downside price risk ever became greater than 0.5 thereafter, the decisions made by this forest 

manager are exactly the same as those made by the previous manager.



Table 10. Harvest Decision Table for Block 5 If Risk Tolerance Level is 0.5 

Year Age 

Total 

Volume 

(ton) 

Sawtimber 

Value 

Share 

CNS 

Value 

Share 

Pulpwood 

Value 

Share 

Sawtimber 

Downside 

Price risk 

CNS 

Downside 

Price risk 

Pulpwood 

Downside 

Price risk 

Event Income 

1988 29 153.05 0.29 0.48 0.23      

1989 30 159.21 0.28 0.53 0.19 0.26 0.16 0.63   

1990 31 164.11 0.30 0.54 0.16 0.29 0.18 0.49   

1991 32 169.92 0.32 0.52 0.16 0.33 0.21 0.76   

1992 33 175.90 0.32 0.54 0.13 0.47 0.38 0.92   

1993 34 180.34 0.35 0.55 0.10 0.68 0.62 0.95 Harvest 3992.64 

1994 

to 

2003 

0 

to 

9 

No Commercial Value 

2004 10 24.79 0.00 0.22 0.78 0.75 0.71 0.25   

2005 11 29.75 0.00 0.31 0.69 0.47 0.63 0.17 Katrina  

2006 

to 

2015 

0 

to 

9 

No Commercial Value 

2016 10 24.79 0.00 0.10 0.90 0.27 0.18 0.62 Harvest 261.91 

2017 0 No Commercial Value 
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Table 11. Harvest Decision Table for Block 1 If Risk Tolerance Level is 0.7 

Year Age 

Total 

Volume 

(ton) 

Sawtimber 

Value 

Share 

CNS 

Value 

Share 

Pulpwood 

Value 

Share 

Sawtimber 

Downside 

Price risk 

CNS 

Downside 

Price risk 

Pulpwood 

Downside 

Price risk 

Event Income 

1988 39 223.58 0.64 0.27 0.09      

1989 40 227.67 0.59 0.33 0.08 0.256 0.16 0.62   

1990 41 232.77 0.61 0.32 0.07 0.303 0.19 0.52   

1991 42 236.14 0.62 0.31 0.07 0.349 0.21 0.79   

1992 43 239.74 0.60 0.33 0.06 0.495 0.40 0.94   

1993 44 242.36 0.60 0.35 0.05 0.704 0.63 0.96 Harvest 6344.73 

1994 

to 

2003 

0 

to 

9 

No Commercial Value 

2004 10 27.54 0.000 0.077 0.923 0.539 0.55 0.10   

2005 11 36.69 0.000 0.106 0.894 0.487 0.64 0.19 Katrina  

2006 

to 

2015 

0 

to 

9 

No Commercial Value 

2016 10 27.54 0.000 0.077 0.923 0.173 0.14 0.34   

2017 11 36.69 0.000 0.106 0.894 0.167 0.15 0.30   



As shown in Table 12, the initial conditions for the second hypothetical manager are 

identical to that faced by the first manager. However, unlike the previous case, the first harvest 

decision was made in 1991 by the second manager because the pulpwood downside price risk 

breached 0.7 that year. Note that the downside risk of pulpwood price was 0.502 in 1990, which 

triggers harvest if the tolerance level is 0.5. But in this case the risk tolerance level is 0.7, the 

same downside price risk will lead to a decision of keeping trees because it is 0.502 is still within 

the range that can be tolerated by this second forest manager. Due to this one-year postponement 

of timber harvest, trees became merchantable in 2002 but still wiped out by Hurricane Katrina in 

2005. Because the downside price risk did not soar above 0.7 afterward, no timber harvest 

decision was made until the end of the study period in 2017. 

As shown in Table 13, for block three, the decisions made by the second forest manager 

are identical to the first one because the bug infestation issue forces them to harvest the trees in 

1989 and no downside price risk higher than 0.5 was observed for the product class with biggest 

value share (i.e. pulpwood) thereafter. For block 4, the first harvest happed in the year of 1994, 

when the timber value is dominated by CNS product and the downside risk of CNS price is 0.74. 

Afterward, in 2005, the timber stands again was wiped out by Hurricane Katrina when its age 

just reached 10. In 2016, then the stand age finally reached 10 again, the pulpwood downside 

price risk hit 0.73 so that harvest was triggered and an income of $215.15 per acre was 

generated. The detailed management track record of the second forest manager for block 4 was 

presented in Table 14.  

For the management of block five, the only harvest decision made by the second forest 

manager is in 1994 as shown in Table 15. At this time, the CNS product took a 53% timber value 

share and the downside price risk for this product is 0.78, which is greater than the tolerance 



Table 12. Harvest Decision Table for Block 2 If Risk Tolerance Level is 0.7 

Year Age 

Total 

Volume 

(ton) 

Sawtimber 

Value 

Share 

CNS 

Value 

Share 

Pulpwood 

Value 

Share 

Sawtimber 

Downside 

Price risk 

CNS 

Downside 

Price risk 

Pulpwood 

Downside 

Price risk 

Event Income 

1988 9 No Commercial Value 

1989 10 28.73 0.00 0.12 0.88 0.201 0.138 0.465   

1990 11 38.04 0.00 0.18 0.82 0.294 0.184 0.502   

1991 12 44.36 0.00 0.24 0.76 0.305 0.196 0.712 Harvest 376.20 

1992 

to 

2001 

0 

To 

9 

No Commercial Value 

2002 10 28.73 0.00 0.32 0.68 0.564 0.776 0.148   

2003 11 38.04 0.00 0.34 0.66 0.555 0.565 0.174   

2004 12 44.36 0.00 0.47 0.53 0.583 0.584 0.118   

2005 13 51.98 0.00 0.53 0.47 0.178 0.337 0.021 Katrina  

2006 

to 

2015 

0 

to 

9 

No Commercial Value 

2016 10 28.73 0.00 0.13 0.87 0.17 0.14 0.34   

2017 11 38.04 0.00 0.18 0.82 0.17 0.15 0.29   
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Table 13. Harvest Decision Table for Block 3 If Risk Tolerance Level is 0.7 

Year Age 

Total 

Volume 

(ton) 

Sawtimber 

Value 

Share 

CNS 

Value 

Share 

Pulpwood 

Value 

Share 

Sawtimber 

Downside 

Price risk 

CNS 

Downside 

Price risk 

Pulpwood 

Downside 

Price risk 

Event Income 

1988 48 259.20 0.77 0.18 0.05      

1989 49 259.44 0.73 0.22 0.05 0.28 0.10 0.51 Bug 4081.94 

1990 

to 

1999 

0 

to 

9 

No Commercial Value 

2000 10 27.54 0.00 0.27 0.73 0.61 0.78 0.33   

2001 11 36.69 0.00 0.34 0.66 0.60 0.75 0.27   

2002 12 43.12 0.00 0.49 0.51 0.67 0.85 0.24   

2003 13 49.63 0.00 0.50 0.50 0.57 0.58 0.19   

2004 14 56.67 0.00 0.59 0.41 0.54 0.55 0.10   

2005 15        Katrina  

2006 

to 

2015 

0 

to 

9 

No Commercial Value 

2016 10 27.54 0.00 0.12 0.88 0.17 0.14 0.34   

2017 11 36.69 0.00 0.17 0.83 0.17 0.15 0.30   
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Table 14. Harvest Decision Table for Block 4 If Risk Tolerance Level is 0.7 

Year Age 

Total 

Volume 

(ton) 

Sawtimber 

Value 

Share 

CNS 

Value 

Share 

Pulpwood 

Value 

Share 

Sawtimber 

Downside 

Price risk 

CNS 

Downside 

Price risk 

Pulpwood 

Downside 

Price risk 

Event Income 

1988 19 73.52 0.01 0.39 0.60      

1989 20 79.94 0.01 0.48 0.51 0.27 0.16 0.65   

1990 21 85.21 0.02 0.54 0.44 0.31 0.19 0.54   

1991 22 90.09 0.02 0.55 0.43 0.33 0.20 0.75   

1992 23 96.75 0.04 0.61 0.35 0.45 0.37 0.90   

1993 24 101.87 0.04 0.69 0.26 0.68 0.61 0.95   

1994 25 107.72 0.07 0.73 0.21 0.85 0.74 0.84 Harvest 2070.92 

1995 

to 

2004 

0 

to 

9 

No Commercial Value 

2005 10        Katrina  

2006 

to 

2015 

0 

to 

9 

No Commercial Value 

2016 10 20.66 0.00 0.06 0.94 0.32 0.20 0.73 Harvest 215.15 

2017 0 No Commercial Value 
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Table 15. Harvest Decision Table for Block 5 If Risk Tolerance Level is 0.7 

Year Age 

Total 

Volume 

(ton) 

Sawtimber 

Value 

Share 

CNS 

Value 

Share 

Pulpwood 

Value 

Share 

Sawtimber 

Downside 

Price risk 

CNS 

Downside 

Price risk 

Pulpwood 

Downside 

Price risk 

Event Income 

1988 29 153.05 0.29 0.48 0.23      

1989 30 159.21 0.28 0.53 0.19 0.26 0.16 0.63   

1990 31 164.11 0.30 0.54 0.16 0.29 0.18 0.49   

1991 32 169.92 0.32 0.52 0.16 0.33 0.21 0.76   

1992 33 175.90 0.32 0.54 0.13 0.47 0.38 0.92   

1993 34 180.34 0.35 0.55 0.10 0.68 0.62 0.95   

1994 35 187.00 0.40 0.53 0.08 0.89 0.78 0.89 Harvest 4970.57 

1995 

to 

2004 

0 

to 

9 

No Commercial Value 

2005 10 24.79 0.000 0.062 0.938    Katrina  

2006 

to 

2015 

0 

to 

9 

No Commercial Value 

2016 10 24.79 0.000 0.062 0.938 0.27 0.18 0.62   

2017 11 29.75 0.000 0.094 0.906 0.27 0.19 0.59   



level of 0.7. It is worth noting that the CNS downside price risk is 0.62 in 1993, which is enough 

to trigger harvest for the first hypothetical manager whose risk tolerance level is 0.5. But for the 

second manager who risks more to wait for one more year, a higher harvest income was 

generated at $4970.57 per acre.  

The third forest manager has a risk tolerance level of 0.9, which means that this manager 

is more risk-seeking than the previous two. Table 16 detailed the third manager’s decision track 

record for block one. Since the age of trees on this block was already 39 at the beginning of the 

case study, the product class with the largest value share has always been the sawtimber. 

However, different from the previous two managers who made a decision to harvest tree in 1993 

when sawtimber downside price risk was 0.704, the third manager chose to wait in 1993 and 

actually decided to harvest tree in 1994 when the sawtimber downside price risk jumped over 0.9 

to 0.904 this year. As a result, this delayed harvest generated an income of $7836.38 per acre, 

which is higher than in the previous cases. Similarly, Hurricane Katrina hit the site in 2005 and 

destroyed the 10-year old stand. After the first harvest, the downside price risk for the product 

with biggest value share had been in low levels that are not enough to trigger harvest, so that the 

trees were kept there until the end of study period in 2017.  

Table 17 presents the track record of management decisions made by the third forest 

manager for block two. As one can see from this table, pulpwood had been the value-dominant 

product between 1989 and 1993 and CNS took larger value shares between 1994 and 1997. Due 

to the high tolerance level (i.e. 0.9), the relatively high pulpwood downside risks from 1991 to 

1993 did not trigger harvest like the previous two cases, while this manager waited until the CNS 

downside price risk climbed above 0.9 in 1997 to conduct the harvest and got an income of 

$1948.39 per acre. Due to this delay in harvest, the regeneration took place in 1998 so that trees 



 

Table 16. Harvest Decision Table for Block 1 If Risk Tolerance Level is 0.9 

Year Age 

Total 

Volume 

(ton) 

Sawtimber 

Value 

Share 

CNS 

Value 

Share 

Pulpwood 

Value 

Share 

Sawtimber 

Downside 

Price risk 

CNS 

Downside 

Price risk 

Pulpwood 

Downside 

Price risk 

Event Income 

1988 39 223.58 0.64 0.27 0.09      

1989 40 227.67 0.59 0.33 0.08 0.256 0.16 0.62   

1990 41 232.77 0.61 0.32 0.07 0.303 0.19 0.52   

1991 42 236.14 0.62 0.31 0.07 0.349 0.21 0.79   

1992 43 239.74 0.60 0.33 0.06 0.495 0.40 0.94   

1993 44 242.36 0.60 0.35 0.05 0.704 0.63 0.96   

1994 45 248.05 0.64 0.32 0.04 0.904 0.79 0.91 Harvest 7863.38 

1995 

to 

2004 

0 

to 

9 

No Commercial Value 

2005 10 27.54 0.000 0.077 0.923    Katrina  

2006 

to 

2015 

0 

to 

9 

No Commercial Value 

2016 10 27.54 0.000 0.077 0.923 0.173 0.14 0.34   

2017 11 36.69 0.000 0.106 0.894 0.167 0.15 0.30   

 

 

 

 

 

 



55 

 

Table 17. Harvest Decision Table for Block 2 If Risk Tolerance Level is 0.9 

Year Age 

Total 

Volume 

(ton) 

Sawtimber 

Value 

Share 

CNS 

Value 

Share 

Pulpwood 

Value 

Share 

Sawtimber 

Downside 

Price risk 

CNS 

Downside 

Price risk 

Pulpwood 

Downside 

Price risk 

Event Income 

1988 9 No Commercial Value 

1989 10 28.73 0.00 0.12 0.88 0.201 0.138 0.465   

1990 11 38.04 0.00 0.18 0.82 0.294 0.184 0.502   

1991 12 44.36 0.00 0.24 0.76 0.305 0.196 0.712   

1992 13 51.98 0.00 0.34 0.66 0.416 0.346 0.868   

1993 14 58.62 0.00 0.46 0.54 0.559 0.523 0.846   

1994 15 68.23 0.00 0.57 0.43 0.807 0.694 0.768   

1995 16 75.60 0.01 0.65 0.34 0.895 0.841 0.733   

1996 17 83.89 0.01 0.68 0.31 0.808 0.808 0.719   

1997 5 91.09 0.01 0.71 0.27 0.941 0.915 0.877 Harvest 1948.39 

1998 

to 

2007 

0 

to 

9 

No Commercial Value 

2008 10 28.73 0.00 0.20 0.80 0.194 0.291 0.233   

2009 11 38.04 0.00 0.29 0.71 0.169 0.404 0.206   

2010 12 44.36 0.00 0.32 0.68 0.151 0.248 0.269   

2011 13 51.98 0.00 0.41 0.59 0.120 0.207 0.087   

2012 14 58.62 0.00 0.46 0.54 0.105 0.174 0.071   

2013 15 68.23 0.00 0.46 0.54 0.131 0.132 0.097   

2014 16 75.60 0.01 0.48 0.51 0.134 0.134 0.158   

2015 17 83.89 0.01 0.50 0.49 0.178 0.140 0.312   

2016 18 91.09 0.02 0.52 0.47 0.195 0.146 0.406   

2017 19 99.26 0.03 0.56 0.41 0.148 0.138 0.243   



were not impacted by Hurricane Katrina in 2005. Since there was no downside price risk above 

0.9 were observed between 1998 and 2017, the trees were kept there till the end of the study 

period.  

For block three, the decisions made by the third manager were also identical to the 

previous two as shown in Table 18. This is because of the inevitable bug harvest in 1989, and 

relatively low downside price risks that were not large enough to trigger a harvest. Table 19 is 

the harvest decision table for block four if the risk tolerance level is 0.9. From this table one can 

see that the only harvest happened in 1997 when the value-dominant product class was CNS and 

the downside price risk for this product is 0.94. Apparently, like the case of block two, this risk-

seeking manager again obtained a high harvest income by delaying harvest for a better price. In 

addition, due to this late harvest, another side-benefit is that this site was lucky enough to avoid 

being damaged by Hurricane Katrina in 2005. Similarly, as shown in Table 20, high tolerance for 

downside risk also resulted in a late harvest in block five in 1995. Like what happened to block 

four, the harvest in 1995 brings a higher income than harvest earlier and make the newly planted 

young trees going through Hurricane Katrina safely in 2005. However, due to the high tolerance 

in risk, no harvest was conducted after 1995 because the relatively low stumpage price was not 

able to push the downside price risk high enough to trigger a harvest. 

Tables 21, 22, and 23 summarize the forest management outcomes across all the five 

blocks by these three hypothetical managers with different risk preference levels equal to 0.5, 

0.7, and 0.9, respectively. All numbers shown in this table are values compounded to the end of 

this case study (i.e. 2017) with an interest rate of 0.06. Specifically, the cash position is the value 

of the accumulated harvest incomes minus the regeneration costs from any specific site. Timber 

value is the net value of the standing timber remaining at the site in 2017. In detail, 
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Table 18. Harvest Decision Table for Block 3 If Risk Tolerance Level is 0.9 

Year Age 

Total 

Volume 

(ton) 

Sawtimber 

Value 

Share 

CNS 

Value 

Share 

Pulpwood 

Value 

Share 

Sawtimber 

Downside 

Price risk 

CNS 

Downside 

Price risk 

Pulpwood 

Downside 

Price risk 

Event Income 

1988 48 259.20 0.77 0.18 0.05      

1989 49 259.44 0.73 0.22 0.05 0.28 0.10 0.51 Bug 4081.94 

1990 

to 

1999 

0 

to 

9 

No Commercial Value 

2000 10 27.54 0.00 0.27 0.73 0.61 0.78 0.33   

2001 11 36.69 0.00 0.34 0.66 0.60 0.75 0.27   

2002 12 43.12 0.00 0.49 0.51 0.67 0.85 0.24   

2003 13 49.63 0.00 0.50 0.50 0.57 0.58 0.19   

2004 14 56.67 0.00 0.59 0.41 0.54 0.55 0.10   

2005 15 0.00 0.00 0.63 0.37    Katrina  

2006 

to 

2015 

0 

to 

9 

No Commercial Value 

2016 10 27.54 0.000 0.077 0.923 0.17 0.14 0.34   

2017 11 36.69 0.000 0.106 0.894 0.17 0.15 0.30   
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Table 19. Harvest Decision Table for Block 4 If Risk Tolerance Level is 0.9 

Year Age 

Total 

Volume 

(ton) 

Sawtimber 

Value 

Share 

CNS 

Value 

Share 

Pulpwood 

Value 

Share 

Sawtimber 

Downside 

Price risk 

CNS 

Downside 

Price risk 

Pulpwood 

Downside 

Price risk 

Event Income 

1988 19 73.52 0.003 0.350 0.647      

1989 20 79.94 0.003 0.385 0.612 0.27 0.16 0.65   

1990 21 85.21 0.007 0.413 0.580 0.31 0.19 0.54   

1991 22 90.09 0.009 0.440 0.551 0.33 0.20 0.75   

1992 23 96.75 0.017 0.462 0.522 0.45 0.37 0.90   

1993 24 101.87 0.022 0.505 0.473 0.68 0.61 0.95   

1994 25 107.72 0.030 0.515 0.455 0.85 0.74 0.84   

1995 26 114.77 0.045 0.525 0.430 0.94 0.89 0.85   

1996 27 120.39 0.056 0.534 0.411 0.86 0.85 0.81   

1997 28 124.58 0.066 0.548 0.386 0.97 0.94 0.93 Harvest 3465.71 

1998 

to 

2007 

0 

to 

9 

No Commercial Value 

2008 10 20.66 0.038 0.962 -0.030 0.38 0.46 0.63   

2009 11 24.73 0.062 0.938 -0.056 0.25 0.52 0.40   

2010 12 29.30 0.094 0.906 -0.241 0.16 0.25 0.29   

2011 13 37.42 0.115 0.885 -0.020 0.14 0.23 0.12   

2012 14 42.63 0.167 0.833 -0.084 0.14 0.21 0.12   

2013 15 48.25 0.206 0.794 0.075 0.15 0.14 0.13   

2014 16 54.27 0.246 0.754 0.094 0.15 0.14 0.19   

2015 17 60.75 0.281 0.719 0.072 0.18 0.14 0.31   

2016 18 68.23 0.320 0.680 -0.082 0.22 0.16 0.48   

2017 19 73.52 0.350 0.647 -1.109 0.16 0.14 0.28   
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Table 20. Harvest Decision Table for Block 5 If Risk Tolerance Level is 0.9 

Year Age 

Total 

Volume 

(ton) 

Sawtimber 

Value 

Share 

CNS 

Value 

Share 

Pulpwood 

Value 

Share 

Sawtimber 

Downside 

Price risk 

CNS 

Downside 

Price risk 

Pulpwood 

Downside 

Price risk 

Event Income 

1988 29 153.05 0.121 0.562 0.317 0.24 0.09 0.43   

1989 30 159.21 0.143 0.558 0.299 0.26 0.16 0.63   

1990 31 164.11 0.156 0.558 0.286 0.29 0.18 0.49   

1991 32 169.92 0.174 0.553 0.273 0.33 0.21 0.76   

1992 33 175.90 0.197 0.546 0.256 0.47 0.38 0.92   

1993 34 180.34 0.224 0.534 0.243 0.68 0.62 0.95   

1994 35 187.00 0.253 0.516 0.231 0.89 0.78 0.89   

1995 36 190.77 0.278 0.505 0.217 0.95 0.91 0.87 Harvest 6140.37 

1996 

to 

2005 

0 

to 

9 

No Commercial Value 

2006 10 24.79 0.000 0.062 0.938 0.61 0.73 0.13   

2007 11 29.75 0.000 0.094 0.906 0.32 0.28 0.41   

2008 12 38.58 0.000 0.123 0.877 0.24 0.33 0.33   

2009 13 44.85 0.000 0.172 0.828 0.18 0.42 0.22   

2010 14 51.54 0.000 0.213 0.787 0.16 0.26 0.30   

2011 15 57.73 0.000 0.259 0.741 0.11 0.19 0.07   

2012 16 66.99 0.000 0.301 0.699 0.12 0.19 0.09   

2013 17 73.63 0.003 0.338 0.659 0.13 0.13 0.10   

2014 18 81.05 0.003 0.373 0.624 0.14 0.14 0.18   

2015 19 87.50 0.006 0.404 0.590 0.19 0.14 0.34   

2016 20 93.33 0.009 0.433 0.558 0.20 0.15 0.41   

2017 21 100.69 0.016 0.464 0.520 0.16 0.14 0.27   



the value of standing timber here refers to the value of live trees growing on this site, which can 

be calculated as the Faustmann Forest value minus the classical Faustmann land expectation 

value based on the stumpage price and regeneration cost in 2017. 

As one can easily observe from these three summary tables, the cash position stands for a 

vast majority of the total final value position realized through forest management. In detail, 

compounding the harvest income over time easily expands their magnitude, while the standing 

timber values at the end of the study are not high due to the low stumpage price. Apparently, as 

shown for evidences from the last 30 years in Louisiana, harvesting and selling trees at the right 

time to take advantage of a good stumpage price is by far the most effective forest management 

strategy. A similar conclusion was also reached by Gould (1960) based on the experience of 

managing Harvard Forest. In addition, as one can also observe, a moderately higher risk 

tolerance in general delayed harvest but lead to better management outcomes. For example, for 

the block 5, the third forest manager who waited longer for a good price eventually obtained a 

significantly higher total cash position than the previous two managers. Theoretically, if the 

timber harvest is delayed, the cash position and the standing timber value are supposed to trade-

off. This is because a delay in timber harvest will result in a delay in regeneration. Thus, the 

timber stand should be younger and has less volume than those stands have been harvested 

earlier. However, in the case study, Hurricane Katrina exerted a great impact on the management 

as an unexpected catastrophic disaster. Given the fact that Katrina wiped out all merchantable 

forests, some sites with young-age trees in 2005 were fortunate enough to be spared. On the 

other hand, for most sites that harvest are conducted earlier, managers lost those merchantable 

trees and even needed to pay for the regeneration cost again in 2006. A typical example is the 

Block five, for which the three managers harvested trees in 1993, 1994, and 1995, respectively. 
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The third manager, who is most risk-seeking among these three, took the highest harvest income 

and, fortunately, avoided the impact of Katrina on this block. However, taking risk does not 

always bring benefit. Taking the management of block three as an example, the first manager 

harvested the trees in 2003 when the CNS downside risk reached 0.57, which is not high enough 

to trigger harvest for the manager two whose risk tolerance level is 0.7. As a result, the second 

manager missed the chance to harvest tress earlier but lost all merchantable stands during the 

hurricane season of 2005.  

From the results presented in Table 21 through Table 23, the impact of risk preference on 

forest management outcomes are clearly presented. Compared to the first forest manager whose 

risk tolerance level is 0.5, the one with risk tolerance of 0.9 eventually gains an over $2 million 

additional income for the study site, which is truly modest in size. The total value realized by the 

manager two was also slightly higher than the first manager. Given the large differences among 

management outcomes, it is obvious that a proper risk management strategy is the key to the 

success of forest management under uncertainties. 

Table 21. Summary of Forest Management Outcomes by the Hypothetical Forest Manager 

Whose Risk Tolerance Level τ = 0.5 

 Size 
Initial Stand 

Age 

Total Cash 

Position 

Standing 

Timber 

Value 

Total 

Block 1 142 39 25,701 496 26,197 

Block 2 125 9 216 519 735 

Block 3 104 48 21,958 558 22,516 

Block 4 75 19 2,884 525 3,409 

Block 5 136 29 16,052 507 16,559 

Sample 

Site Total 
582  8,359,566 301,666 8,661,232 
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Table 22 Summary of Forest Management Outcomes by the Hypothetical Forest Manager Whose 

Risk Tolerance Level τ = 0.7 

 Size 
Initial Stand 

Age 

Total Cash 

Position 

Standing 

Timber 

Value 

Total 

Block 1 142 39 25,701 496 26,197 

Block 2 125 9 654 519 1,173 

Block 3 104 48 20,708 496 21,204 

Block 4 75 19 7,135 260 7,395 

Block 5 136 29 18,692 508 19,200 

Sample 

Site Total 
582  8,962,274 275,479 9,237,753 

 

Table 23. Summary of Forest Management Outcomes by the Hypothetical Forest Manager 

Whose Risk Tolerance Level τ = 0.9 

 Size 
Initial Stand 

Age 

Total Cash 

Position 

Standing 

Timber 

Value 

Total 

Block 1 142 39 30,191 496 30,687 

Block 2 125 9 5,860 850 6,710 

Block 3 104 48 20,708 496 21,204 

Block 4 75 19 10,897 610 11,507 

Block 5 136 29 22,348 929 23,277 

Sample 

Site Total 
582  11,029,883 400,360 11,430,243 
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Chapter 6. Discussion and Conclusion 

Forestry, by its nature, is a long-term investment. Given the extended growing period, 

trees are exposed to multiple forms of risks and uncertainties, especially the timber price 

uncertainty. Therefore, throughout a long investment cycle, properly managing a forest should 

involve an adaptive decision-making process to respond to potential risks and uncertainties in a 

timely fashion. Besides, to reflect an individual’s attitude toward uncertainty, risk preference 

should be considered along with risk itself when designing a decision-making approach 

involving uncertainties. Existing studies addressing the risk preference issue in the forest 

management field focus more on measuring the impact of risk preference on certain management 

decisions. However, there lacks a comprehensive picture showing how varying risk preferences 

affect the forestland valuation and forest management outcomes (Couture, Cros, and Sabbadin 

2016, Buongiorno, Zhou, and Johnston 2017). In addition, the methods used to quantify risk 

preferences are either inexplicit or difficult to implement. For a long time, there lacks a 

meaningful way to link the adaptive forest management decision-making approach with a 

practical method to measure forest managers’ risk preferences explicitly.  

This dissertation is meant to fill this gap. In this dissertation, a behavior-based model is 

developed to measure individual forest manager’s risk preferences through their management 

behaviors. Based on this model, I construct an adaptive harvest decision-making approach using 

the level of risk tolerance to incorporate varying risk preferences across different forestland 

managers. Numerical simulations demonstrate the impact of varying risk preferences on the 

forest management outcomes under different scenarios. Furthermore, a case study was also 

conducted, which provides a practical guide of using this method to carry out adaptive forest 

management and presents more empirical evidence to support the theoretical analyses. 
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In detail, the numerical simulations demonstrate that, for a certain range of risk tolerance 

levels, the adaptive harvest decision-making approach developed in this dissertation outperforms 

both the reservation price strategy and the classical Faustmann approach. This result implies that 

a properly selected risk management strategy may bring additional benefit to forestland owners if 

price uncertainty persists. More importantly, evidences are showing that a certain level of risk 

tolerance could lead to the highest average LEV, regardless of how market conditions change. As 

shown in the sensitivity analyses, this finding is valid for all market conditions that I have 

included in this study. The results of sensitivity analyses reveal that a forestland owner should be 

more risk-seeking during the low-interest rate period because of the low cost of carrying the 

timber asset, while one should be more risk-averse if the interest rate rises. Furthermore, 

choosing a proper level of risk preference is more important to a forestland owner if the market 

volatility is large. In fact, a properly chosen, relatively risk-seeking strategy is preferred in the 

highly volatile market because it may bring a considerable risk premium to forestland owners. 

Conversely, the impact of risk preference on forest management will be relatively weak if the 

stumpage price does not fluctuate too much or is even close to a constant level. 

In addition to numerical simulations, this dissertation also includes a case study using the 

LSU Lee Memorial Forest as the sample site. This case study is meant to showcase practical 

applications the behavior-based model developed in this dissertation into adaptive forest 

management and examine the impact of risk preferences on forest management outcomes in a 

real-world scenario. The empirical results of this case study are largely consistent with that of 

numerical simulations, which again validated the theoretical framework established in this 

dissertation. Specifically, for a certain range of risk tolerance levels, the final total value position 

increases as the risk tolerance level rise. For a 584-acre sample site, a better risk management 



65 

 

strategy eventually brings more than $2 million final value position over a 30-year management 

period. This result is more than enough to reiterate that a proper risk management strategy is the 

key to the success of forest management under uncertainties.  

Overall, the adaptive harvest decision-making approach constructed in this dissertation 

enables the forestland owners to incorporate their risk preferences into the harvest decision-

making process in response to potential price risk. Numerical simulations and practical case 

studies both show the advantages of this approach. In addition to building an adaptive forest 

management methodology, this dissertation creates a behavior-based approach to measure risk 

preference. This approach allows us to directly observes the forest manager’s risk preference 

from their behavior response to given price situations. Compared to existing methods to measure 

risk preference, the behavior-based model developed in this dissertation provides a direct 

measure of an individual forest manager’s risk preference. In other words, the risk tolerance level 

of an individual forest manager can be measured explicitly by answering relevant situational 

questions on a survey questionnaire. 

Before this behavior-based forest management model, there is no meaningful way to 

survey the risk preferences of forest managers explicitly. For example, under the utility function 

framework, the risk preferences cannot be measured precisely in practice as utility is not 

something that one can observe directly. Therefore, beyond the optimal harvest age, this 

behavior-based model may have wide usage across many disciplines as long as a practical, 

observable measurement of individual forestland manager’s risk preference is needed. For 

instance, one application of this method is to address the economy of scale issues in Forestry. In 

general, trees grow in similar patterns among landowners, but large landowners usually can 

achieve better management outcomes. A question may be raised as to whether large-scale 
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forestland owners can achieve better forest management outcomes because they can tolerate 

more risks (i.e. more risk-seeking) than small-scale landowners so that they can capture the risk 

premiums. Obviously, answering such a question requires precise measurement of the risk 

preferences across different types of forestland owners in a practical survey, which was 

impossible before the invention of this behavior-based model.  

As an initial exploration to apply this behavior-based model in adaptive forest 

management, the level of risk tolerance for a forestland owner is assumed to be constant over the 

length of rotation in this dissertation. However, forestland owners are very unlikely to keep their 

risk preferences unchanged over time. In fact, they might be more risk-seeking at the initial stage 

while becoming more risk-averse as the trees grow larger since the speed of tree growth has 

slowed down. Therefore, it will be very interesting to explore the impact of risk preference on 

forest management behavior and forestland valuation under a varying risk preference scheme.  

In addition, the behavior-based model developed in this dissertation relies on an essential 

assumption that the stumpage price follows a certain distribution with finite mean and variance, 

i.e. it is a mean-reverting process. However, price behavior varies across regions in the world. 

For instance, Hultkrantz, Andersson, and Mantalos (2014) found that the real price of timber 

stumpage is a mean-reverting process in Sweden after World War II. On the contrary, Parajuli 

and Chang (2015) found that the Louisiana southern pine real stumpage price does not really 

have a long-term mean, i.e. follows a diffusion process. Obviously, due to the restrictive 

assumption, the approach proposed in this dissertation is not capable of addressing risk 

preference issues if the stumpage price is not a mean-reverting process.  

I believe that risk and risk preferences are like two sides of the same coin, and one should 

always consider them together. There is much room for legitimate debate as to whether the 
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stumpage price follows a certain distribution, or whether the risk preference of a person or an 

organization will vary over time. But this dissertation, through a behavior-based model, has 

guided us through what has been the terra incognita of practically incorporating varying risk 

preferences into the adaptive forest management. 
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