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Abstract

Drilling fluids are non-Newtonian mixtures that play a critical role in the timely and

successful completion of oil and gas wells. In the particular case of offshore operations,

proper design of drilling fluids is of paramount importance in the constant quest to lower

break-even prices. Most downhole problems are directly or in-directly related to the rheo-

logical and physical properties of drilling fluids, thereby calling for a better understanding

of the underlying changes of these properties with respect to drilling fluid composition and

external conditions.

The current stance in the design of drilling fluids involves the selection of components

and their concentration based on their known attributes. Surfactants and Oil:Water ratio

are examples of typical parameters used in the design of drilling fluids. However, the

laid emphasis on these attributes tends to overlook other effects of these components that

equally affect their end rheology and physical properties, possibly greater extents.

This project sought to assess the underlying effects of typical components used in the

preparation of oil-based drilling fluids (OBM), through the investigation of oil-base complex

fluids (OCF). Where OCFs refer to emulsion-suspension mixtures having oil as continuous

phase. Surfactants and Oil:Water ratio were the composition variables investigated, with

temperature as the external variable. The variables in the project were thus both qualitative

and quantitative.

Results of the experimental analysis found the underlying effects of both composition

and external variables to significantly affect the flow curve, yield stress and stability of

OCFs. Comparison between OCFs and OBMs showed similarities on the effect of com-

position and temperature on their flow and yield properties. Phenomena such as phase

inversion, depletion flocculation and wall slip were equally found to affect the mechanical

properties of both fluids, albeit to different extents.
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Chapter 1
Introduction

1.1 Motivation

In the oil and gas industry, the drilling of wellbores is the first and most expensive

step of all operations [1]. The type, depth and location of the well determines the drilling

cost, which can represent 25 % of the total oilfield exploration budget. For both on- and

offshore operations it is essential for drilling fluids to display desired rheological properties.

Via the aforementioned, these viscoelastic mixtures are able to meet their defined functions

allowing timely and successful completion of the well; maintain the safety of rig personnel

and equipment; and preserve the environment by avoiding spillage and other well-control

related issues. In the current economic stance of oil prices, lowering break-even prices is

continuously sought by operators via different means amongst which is the performance of

drilling fluids through a sound understanding of their mechanical properties.

Drilling environments in deepwaters pose additional challenges in comparison to their

onshore counterparts. This is due to the extreme environmetal conditions, Figure 1.1,

drilling fluids are subjected to when flowing through the different geometric conduits that

make the circulation loop of the rotary system. With these highly varying conditions come

undesirable changes in the intrinsic physical and flow properties of drilling fluids that are

detrimental to their established functions. Examples of such operations are the drilling of

wells in water depths greater than 10,000 ft and 40,000 ft total measured depth in the Gulf

of Mexico (GoM) [2][3], where water temperatures can be as low as < 40 ◦F . On the other

hand, temperatures at the opposite end of the scale exceeding 450 and 500 ◦F have been

experienced in the Gulf of Thailand and Red Sea respectively [2][4].
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Figure 1.1. Offshore rig [5].

The main challenges encountered in deepwater drilling have been classified under 10

points, namely: (1) lost circulation, (2) mud properties, (3) solids transport, (4) stuck pipe,

(5) wellbore stability, (6) shallow gas hazards, (7) gas hydrates, (8) reservoir productivity,

(9) environmental issues and (10) fluid-related logistics [6][7]. Research and development (R

& D) efforts have been focused on minimizing the costs resulting from the aforementioned

challenges and unscheduled events which collectively cost operators in the GoM more than

$1 billion in non-productive time (NPT) on an annual basis [7]. About 10 - 40 % of total

drilling time is non-productive, with up to 15 % accounted for by downhole problems [8].

With the latter reported to account for more than 40 % of total NPT costs [7]. Figures

1.2 and 1.3 respectively show a breakdown of the source of NPT and the trend in offshore

daily rig rates over the past years.

Recognizing the need to address the operational challenges that pose risks to personnel

2



and equipment safety, induce significant costs and may result in environmental issues, the

deepwater drilling industry amongst other measures developed what is today known as

flat rheology invert drilling fluids (FRIDF). These drilling fluid systems were developed to

overcome the issues observed with the use of conventional oil-based drilling fluids (OBM) as

a result of the drastic changes in their apparent viscosity and gel strength with temperature

and pressure (Figure 1.4) [7][9][10]. The benefits associated to the use of FRIDFs have

allowed them to be used in the drilling of hundreds of deepwater wells, where improvements

in rate of penetration (ROP), hole cleaning efficiency, equivalent circulation density (ECD)

reduction and lost circulation minimization has been observed [9].

Figure 1.2. Sources of NPT - Deepwater industry [8].
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Figure 1.3. Deepwater rig rates [11].

However, despite the multiple benefits related to the application of FRIDFs in the

field its been recognized that drawbacks that were overlooked need to be addressed [9].

These drawbacks include the difficult field maintenance and engineering of the fluid system

because of its complex and multicomposition, the very high gel strength observed when

contaminated with low specific gravity solids. Furthermore, the ineffectiveness of certain

rheology modifiers beyond 250 ◦F has been reported requiring the introduction of another

to maintain the flat rheology. To continue, although FRIDFs provide uniform ECD under

extreme temperatures and pressures, ’uniform’ has been found not to always translate to

’uniformly low’ [10]. Finally, drawbacks associated to the use of conventional OBMs such

as compressibility, lower formation breakdown gradient (FBG), and gas compressibility

remain due to the inherent features of the oil (hydrocarbon) continuous phase [10].
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Figure 1.4. A comparison of the non-flat rheology profile of a conventional OBM (SBM) and
the original FRIDF in a simulated deepwater well profile, where temperature and pressure
changes are aligned with depth increase along the y-axis [9].

The change in mechanical properties of drilling fluids in general, and FRIDFs in par-

ticular, to changing environmental conditions is determined by their viscoelastic properties

which in turn are defined by their composition. For FRIDFs the number of components

typically used in their preparation usually exceeds 13 [10]. The use of rheology modifiers,

oil wetters, stabilizers, and complex emulsifier packages amongst other components used in

the preparation of FRIDFs underscores the need for a sound understanding of the possi-

ble interactions that can induce unaccounted phenomena. Assessing the conditions under

which these phenomena occur would enable the mitigation of downhole problems (Figure

1.2) which are all directly or indirectly related to drilling fluid rheology, and will at the

same time provide a route for the optimal design of novel drilling fluids.
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Figure 1.5. Schematic diagram of the formation of nanoemulsions by the
PIT method [12].

Temperature-induced phase inversion (TIPI) and wall slip are examples of phenomena

unaccounted for in drilling fluids. TIPI is a phenomenon whereby a drilling fluid would

transition from one type (WBM or OBM) to another (OBM or WBM) at a temperature

known as the phase inversion temperature (PIT). This phenomenon is well established

in the chemical and food industries, and is peculiar to emulsion systems stabilized by

nonionic surfactants. Figure 2.37 shows a schematic representative of the TIPI process.

At temperatures well below the PIT (∼T < PIT - 30 ◦C), the formation of oil-in-water

(O/W) emulsions is favored while at those greater (∼T > PIT + 20 ◦C) water-in-oil

(W/O) emulsions are favored [12]. The low and high temperatures to which drilling fluids

are subjected to when flowing through the different geometric conduits of the circulation

loop in deepwater operations, make them highly prone to undergo phase inversion leading

to changes in their rheological properties.
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Figure 1.6. The effect of gap width on the flow curves of a 10 wt.%
bentonite mud at temperature of 100 ◦F at 100 psi. Lines represent
regressions to experimental data [13].

Wall slip phenomenon, just like TIPI, depends on both composition and temperatures

to which non-Newtonian fluids are subjected to. The major consequences for cases of wall

slip occurrence in drilling fluids reside in: (1) excessive pump power requirements and (2)

greater risks of kicks/blowouts. During drilling fluid circulation, the ECD of the fluid is set

to remain within the drilling window, which tend more often than not to be narrow in the

ever increasingly challenging environments in which more operations are been conducted

[2][7][9]. Frictional pressure loss used in determining ECD are a function of the drilling

fluid’s rheology characterized on the field with viscometers. Figure 1.6 shows the increasing

and decreasing shear stresses of a drilling mud as a result of wall slip. As shown by Tables

1.1 and 1.2, a case can be made on wall slip being a contributing (if not major) factor in

the high kick frequencies observed during operations. This is well illustrated by the 55 %

kick frequency observed in shallow exploration wells in the GoM.
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Table 1.1: GoM - Development Wells Kick Frequencies: 2011 - 2015 [14].

Water Depth Grouped < 600 m > 600 m Total

number of wells spudded 699 122 821

number of kicks 95 27 122

number of wells with kicks 71 23 94

kick frequency per well 0.14 0.22 0.15

percentage number of wells with kicks 10.2 % 18.9 % 11.4 %

Table 1.2: GoM - Exploration Wells Kick Frequencies: 2011 - 2015 [14].

Water Depth Grouped < 600 m > 600 m Total

number of wells spudded 110 190 300

number of kicks 61 82 143

number of wells with kicks 33 56 89

kick frequency per well 0.55 0.43 0.48

percentage number of wells with kicks 30.0 % 29.5 % 29.7 %
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1.2 Problem Statements

1. Components used in the preparation of conventional drilling fluids for both on- and

offshore operations consist of: (i) immiscible liquid phases (water, oil), differing sur-

factant: (ii) polarity and (iii) concentrations.

Emphasis on certain benefits related to these components tend to overlook embedded

effects:

(a) Volume Fraction of Oil phase - Emphasis: high volume fraction of oil phase

for better lubrication of drilling string, inhibition of water-sensitive formations.

Overlooked: effect of emulsion viscoelastic properties on flow behavior.

(b) Surfactant polarity (hydrophilic lipophilic balance) - Emphasis: stabilizing O/W

or W/O base emulsion. Overlooked: temperature-induced phase inversion, de-

gree of emulsification, interaction with viscosifier (bentonite).

(c) Surfactant Concentration - Emphasis: interfacial tension reduction for emulsi-

fication, wettability alteration of cuttings to facilitate transport. Overlooked:

effect of micelle concentration on rheology e.g. depletion flocculation.

2. Drilling fluids (FRIDF) used in offshore operations in general, and deepwater drilling

in particular, contain multiple components to generate ’flat rheology’. The plausible

use of nonionic surfactants as part of the large and complex components, make the

likelihood of phase inversion occurrence high given the large temperature variations

(low to high) drilling fluids are subjected to in offshore operations.

3. Wall slip is a phenomenon overwhelmingly observed in multiple non-Newtonian fluids

such as polymers, suspensions and emulsions. Despite drilling fluids being emulsion-

suspension mixtures, insufficient attention has been put on the in-depth assessment

of the occurrence and conditions favoring slip.
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1.3 Research Objectives

1. Experimentally determine the effect of composition (internal) and temperature (exter-

nal) variables on rheology (flow curve, yield stress) of oil-base complex fluids (OCF).

Where OCFs are emulsion-suspension mixtures having oil as continuous phase. In-

ternal and external variables include:

(a) surfactant polarity

(b) surfactant concentration

(c) Oil:Water ratio

(d) temperature

2. Experimentally determine the electrical stability of OCFs.

3. Experimentally determine catastrophic and transitional phase inversion of OCFs.

4. Experimentally determine transitional phase inversion of water-base complex fluids

(WCF). Where WCFs are emulsion-suspension mixtures having water as continuous

phase.

5. Experimentally determine the effect of composition and temperature on the different

forms of wall slip in OCFs.

6. Experimentally determine the effect of composition on fluid loss of OCF:
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Chapter 2
Literature Review

2.1 Drilling Fluids

2.1.1 Functions & Composition

Drilling fluids (muds) refer to any fluid that is circulated during operations through ge-

ometric conduits going from the surface, down the drill string, through the bit and back to

the surface via the annulus [15]. These fluids perform the following functions: (1) cleaning

rock fragments from beneath the bit and carrying them to the surface, (2) generate suffi-

cient hydrostatic pressure against formations to prevent formation fluid influx, (3) maintain

wellbore stability, (4) cool and lubricate the drill string and bit, (4) minimize formation

damage, (5) enable adequate formation evaluation and (6) minimize environmental impact

[15][16]. Amongst the functions performed by drilling fluids the one most critical to drilling

operation efficiency is the removal of cuttings beneath the bit and their proper transporta-

tion to the surface via the annulus (Figure 2.1) [17]. All downhole drilling problems are

directly or indirectly related to the physical and rheological properties of drilling fluids,

that can result in well abandonment when it is unable to adequately perform its functions.

To meet the established functions mentioned earlier, drilling fluids must posses a num-

ber of properties. Among these properties are: (i) rheological, (ii) fluid loss control, (iii)

specific fluid weight, (iv) inhibition and (v) lubrication properties [19]. Rheological prop-

erties of drilling fluids determine their ability to achieve good hydraulic requirements and

good cuttings carrying capacity. Formation fluid influx of drilling fluids is determined by

the fluid loss control properties, this can be measured through static, dynamic and high

pressure high temperature (HPHT) tests [19]. The specific fluid weight property of drilling

fluids allow them to preserve the well column integrity during operations. Avoiding cuttings

from sticking to the drill bit to achieve greater ROP and maintaining wellbore stability is

defined by the fluid’s inhibition properties. Finally, lubrication properties of the drilling

fluid assist in the prevention of problems such as stuck pipe. Generally, oil-based drilling
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fluids provide better lubrication properties over their water counterparts [19]. Drilling

fluids are classified based on the type of the continuous (base) fluid and other primary

components as follows [16][17]:

• Gaseous: air, nitrogen, natural gas

• Gas-Liquid mixtures: foam, aerated water

• Aqueous: water-based muds (WBM)

• Nonaqueous: oil-based muds (OBM)

Figure 2.1. Cut-
tings in circulating
drilling fluid [18]

The selection of one drilling fluid over another for a given operation (or depth interval)

is governed by the following criteria: (1) formation type(s) to be drilled, (2) temperature

range, strength, permeability and pore fluid pressure of the formation, (3) water quality

available, (4) formation evaluation procedure and (5) ecological and environmental consid-

erations [16]. A significant fraction of total drilling costs is often associated with drilling

fluids, underscoring the importance of its selection and design [17]. The emulsification of oil

in a water continuous medium yields an O/W base emulsion in WBMs, while that of water
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in a continuous oil medium yields a W/O base emulsion in an OBM. A major difference

between conventional OBMs and WBMs is that all solid additives in OBMs are considered

inactive because they do not react with the oil phase, while these solids can be inactive

(e.g. barite) and active (e.g. hydratable clay) in WBMs [16].

Table 2.1: Composition of Typical Onshore Water- and Oil-Based Muds [19].

WBM OBM

water continuous phase oil continuous phase

clay, biopolymers, polymers modified organophilic clay

weight additives weight additives

bridging agents wetting agents

surfactants surfactants

calcium chloride

The liquid phase of oil (synthetic base fluid) used in OBMs is either 100 % base fluid or

W/O emulsions [19]. The selection of the oil type depends on several factors. The selection

of oil used is important as it affects emulsion stability, ease of emulsification, the drilling

fluid’s odor and its effect on rubber it contacts [22]. The other components used in OBM

are: modified organophilic clay, calcium chloride brine, surfactants for emulsification and

wetting solid-additives (barium sulfate) as well as drill cuttings.

Elevated costs of paraffins and olefins is one of the reasons that drives the tendency

to emulsify water into an oil continuous phase. By doing so, reductions in the cost per

barrel of the drilling fluid are achieved [19]. The emulsification is done with surfactants

with hydrophilic lipophilic balance (HLB) values ranging between 4 and 6 [23][24][25].

HLB is an empirical quantitative scale which determines the type of emulsion stabilized

by a single or mixture of surfactants. Alkanolamides and imidazolines are commonly used

as surfactants in OBMs [19]. Although it is possible for a single surfactant to deliver

the emulsification and solid wetting properties needed for the OBM (Figure 2.2), two are
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commonly applied to meet each purpose. The Oil:Water (O:W) ratio commonly applied in

OBMs ranges from 60:40 - 90:10 [19].

Figure 2.2. Schematic of an oil mud
[16].

For conventional WBMs, components typically used in their preparation include: water,

clay (or polymers), weighting additives and bridging agents [19]. The use of clays provide

the rheological properties needed for cuttings suspension and transportation to the surface.

Weighting additives and bridging agents on the other hand are respectively used for density

control and formation damage prevention [19]. Stabilization of the base O/W emulsion is

done using anionic, nonionic and different possible blends of surfactants [26][27]. Figure

2.3 shows the beneficial effect of surfactant on bit balling reduction.

Composition and physicochemical variables involved in O/W formulations include

among others: concentration and nature of surfactant, oil type and mixing temperature

[28]. In the past Oil:Water ratios used in WBMs ranged from 40:60 - 75:25 [19], current

field applications however have Oil:Water ratios rarely exceeding 10:90. One of the many

benefits of emulsion presence in drilling fluids, is the reduced concentration of additives
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required to achieve desired rheological properties and added lubricity. To continue, lower

amounts of bridging agents are required in comparison to non-emulsified WBMs [19].

Figure 2.3. Balled drilled bit used with water-based fluid that:
(a) does not contain surfactant and (b) contains a surfactant
that prevents bit balling [19].

Holistically, OBMs find greater application in conventional drilling operations over

WBMs [10]. Their technical superiority over their water counterparts has consistently

been proven in the areas of cuttings conditioning, borehole stability, ionic inhibition, ROP,

and drill string sticking avoidance (Figure 2.4). The technical benefits associated to the

use of OBMs stem from their continuous organic phase [10].

They are considered to be more tolerant to contaminants (e.g. drill cuttings) and

easier to maintain, thereby accounting for their widespread selection for most challenging

wells [10]. However, some inherent features that make them attractive for onshore drilling

operations prove to be counter-productive for offshore deepwater drilling [10]. The setbacks

observed with their use for deepwater drilling include excessive increase in fluid viscosity

and gel strength with low temperatures, gas solubility, compressibility, and the prospect of

downhole pressure losses due to high ECD [9][10].
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Figure 2.4. Differential sticking due to pressure dif-
ferential between the drilling fluid and formation. As
time passes, if the drillstring remains stationary the
area of contact can increase as shown from left to right
making it more difficult to free the drillstring [20].

The use of emulsified drilling fluids in operations has been reported to present numerous

technical benefits. These include lower filtrate volume losses through the formation of a thin

filter cake by the emulsion droplets, Figure 2.5. Additionally, higher return permeabilities

due to the minimization of the infiltration of damaging solids and polymers were found

through the use of emulsified drilling fluids [1][21]. To continue, emulsified drilling fluids

allow higher ROPs to be achieved [22].

They have also been found to reduce bit balling in comparison to non-emulsified WBMs

[1]. An increase in bit life from 5 - 50 % has been observed amongst users of emulsified

drilling fluids. This has made them highly suitable in directional well drilling because of

the improved borehole conditions and low torques associated to their use [29] [30]. They

have equally been associated to thin filter cakes, thereby minimizing friction between the

drill pipe and wellbore and reducing the risk of differential sticking which is an important

trait when drilling in shallow horizontal wells [1][31][32].
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Figure 2.5. Effect of percent oil on the cumulative filtrate volume for Texas
limestone [21].

When drilling through low pore pressure formations, emulsified drilling fluids present

an advantage due to the presence of an oil phase thereby conferring them lower densities.

Through the increase of the O:W ratio both reaction with water-sensitive formations (e.g.

shale) and lower mud weight are achieved. Technical challenges however, do exist. These

arise from the ability of surfactants to alter the wettability of mineral surfaces. When

drilling through producing formations, it has been postulated that reduction of the pro-

duction potential of reservoirs through different formation damage mechanisms could be

caused by surfactants used in emulsified drilling fluids [19][33]. These formation damage

mechanisms include (i) surfactant invasion and alteration of reservoir rock wettability and

(ii) promotion of an emulsion barrier formation in the reservoir area surrounding the well-

bore by the surfactants [19].

2.1.2 Deepwater Drilling

Majority of deepwater operations occur in the Gulf of Mexico (GoM), Brazil and West

Africa. However major initiatives have been recently launched in areas like India, East
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Africa, New Zealand, Eastern Mediterranean, Eastern Canada and parts of the North Sea

[7][34]. Over the last two decades wells have been drilled in water depths going up to

10,000 ft (3,048 m) of water. The significant prospects for deepwater and ultra-deepwater

exploration in conjunction with the elevated rates for floating rigs, have driven continuous

R & D efforts to improve safety, economics and efficiency in these environments [7].

Figure 2.6. Deepwater drilling [35].

The deepwater temperature and pressure operating conditions to which conventional

drilling fluids are subjected to when flowing through the different geometric conduits of the

flow loop often lead to drastic changes in their physical and rheological properties. These

include high viscosity buildup with low temperatures that prevail when flowing through

the riser leading to high gel strengths and surge/swab pressures after making a trip or

connection [9]. These same fluids were found to show excessive shear thinning at high

downhole temperatures leading to poor hole cleaning and barite sagging, which would

often result in lost circulation due to the formation of barite plugs and cutting beds [9].

The technical challenges resulting from the use of conventional drilling fluids can be

classified under 10 main points namely: (1) lost circulation, (2) mud properties, (3) solids

transport, (4) stuck pipe, (5) wellbore stability, (6) shallow gas hazards, (7) gas hydrates,
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(8) reservoir productivity, (9) environmental issues and (10) fluid-related logistics [7]. Ma-

jority of these problems were addressed through the design and application of flat rheology

invert drilling fluids (FRIDFs), Figure 2.7.

Figure 2.7. Flat rheology concept [36].

These fluids were developed for deepwater application and have been observed to be less

sensitive to the wide temperature and pressure variations encountered [7][9][10]. They are

defined as drilling fluids that show relatively consistent readings of 6 rpm, yield point and 10

min gel strength over wide ranges of temperature [9]. The ’flat rheology’ profile achieved in

these fluids is the result of a complex composition of emulsifier packages, rheology modifiers

and viscosifiers. The interaction of all these components helps in reducing viscosity at low

temperatures while raising them at elevated values [7].

Both FRIDFs and conventional OBMs because of the intrinsic properties of their con-

tinuous oil phase pose challenges in reliable hydrostatic pressure estimations. This is due

to the degree of compressibility of the the oil phase that will lead to variations in mud

density at different points along the annulus, leading to variations in the actual hydrostatic

pressure exerted on the formation [10]. This problem tends to be exacerbated in deepwater

conditions where large variations in temperature and pressures prevail. Kick detection is

another challenge faced by non-aqueous drilling fluids that are OBMs and FRIDFs. Due

to the very high solubility of formation gas in oil, 10 to 100 times greater than water, kick
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detection is difficult with oil-based systems [10].

Table 2.2: Non-aqueous Drilling Fluid Composition with 70:30 Oil:Water Ratio [37].

Additive Function Concentration

base oil oil continuous phase 67 vol.%

primary emulsifier emulsifier 2.5 wt.%

Calcium Oxide alkalinity 1.5 wt.%

NaCl-saturated brine internal phase 34 vol.%

secondary emulsifier fluid-loss reducer 0.4 - 1.7 wt.%

organophilic clay viscosifier 0.5 - 0.6 wt.%

rheology modifier viscosifier 0.5 - 0.6 wt.%

wetting agent wettability as needed

barite weighting agent as needed

The technical challenges associated to the use of FRIDFs that highlight the importance

of a better understanding of the chemical and physical interactions between its components

include the following:

• Uniform hydraulics, ECD, observed does not always translate to uniformly ’low’ [10].

• Multiple field reports have indicated its difficult maintenance and engineering [9].

Typical formulations of FRIDFs contain more than thirteen components [10].

• Excessive 10 min gel strength following contamination by low specific gravity solids

and ineffectiveness of certain rheology modifiers beyond elevated temperatures have

equally been reported [9].
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2.1.3 Drilling Hydraulics

The large fluid pressures created by the presence of drilling fluids in the long slender

wellbore and tubular pipe strings, make the science of fluid mechanics important to the

drilling engineer [16]. These subsurface pressures must be factored into every well problem

encountered. The three commonly encountered well conditions during drilling operations

include: (1) static conditions, (2) circulating and (3) tripping operations. Static condition

refers to situations where both the fluid and central pipe are at rest, while circulating

operations refer to periods during which the drilling fluid is being circulated down the drill

string and up the annulus, Figure 2.8. Finally, tripping operations refer to those instances

in which the central pipe is displaced up or down through the drilling fluid. The second

and third conditions are complicated by the non-Newtonian behavior of the drilling fluid

[16].

Figure 2.8. Drilling fluid circulation loop [40].

Pressure determination at various points along the well can be quite challenging when
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the drill string or fluid is in motion [16]. Furthermore, mathematical description of frictional

forces present in the well can be difficult. Nevertheless, these forces must be determined for

the calculation of: (1) flowing bottomhole pressure (ECD) during drilling, (2) bottomhole

pressure or ECD during tripping operations, (3) optimum pump pressure, (4) cuttings-

carrying capacity of the mud and (5) the surface and downhole pressure present in the drill

string at different mud flow rates [16].

Controlling frictional pressure losses is important, they define pump pressure require-

ments, Equation 2.1, and allow the well to be drilled safely with overpressure without

fracturing the formation [16][38]. Where ∆Ps, ∆Pdp, ∆Pdc, ∆Pdca, ∆Pdpa and ∆Pbit repre-

sent the frictional pressure loss in the surface equipment, drill pipe, drill collar, drill collar

annulus, drill pipe annulus and bit nozzles respectively. Pp represents the pump pressure

[16].

Pp = ∆Ps + ∆Pdp + ∆Pdc + ∆Pdca + ∆Pdpa + ∆Pbit (2.1)

Continuous adjustment of parameters such as pump rate, drillstring rotation rate and

ROP are conducted in order to maintain annular pressure within the drilling window [38].

Frictional pressure losses generated can become critical especially when extermely large

viscous forces must be overcome to move the drilling fluid through the different geomet-

ric conduits of the flow loop. Development of frictional pressure loss equations require

mathematical representation of these forces. This has been done through the use of pop-

ular rheological models such as Bingham Plastic, Power Law and Herschel-Bulkley (Yield

Pseudoplastic) models, Figure 2.9 [16][39].
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Figure 2.9. Rheological models [41].

These models are respectively represented by Equations 2.3 - 2.5, where τ is the drilling

fluid shear stress, τy its yield stress, µ stands for its apparent viscosity, µp plastic viscosity,

γ̇ represents the applied shear rate, k is the fluid’s consistency index and n flow behavior

index. Equation 2.2 is the Newtonian rheological model which rarely describes the flow

properties of drilling fluids. The relationship between these models and frictional pressure

loss is defined by Equations 2.6 and 2.7 for the laminar and turbulent flow regimes re-

spectively [16]. Where r and d represent the radius and diameter of the geometric conduit,

dPf/dL represent the fluid’s frictional pressure loss gradient, ρ its density and f the friction

factor. c1 is a constant of integration which for the case of pipe flow equals zero.

τ = µγ̇ (2.2)

τ = τy + µpγ̇ (2.3)

τ = kγ̇n (2.4)
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τ = τy + kγ̇n (2.5)

τ =
r

2

dPf
dL

+
c1
r

(2.6)

dPf
dL
∝ fρv̄

r
(2.7)

Major assumptions are made in the derivation of the analytical expressions of frictional

pressure loss. These include: (1) that the drill string is concentrically centered in the

casing or open hole, (2) the drill string is not rotated, (3) circular sections of known

diameters of the open hole are present, (4) the drilling fluid is incompressible and (5) the

flow is isothermal . The computational complexity required to remove these assumptions,

is seldom justified [16]. No-flow conditions is the next condition commonly encountered

during drilling. This may arise when circulation is interrupted to make a trip or connection.

Under such conditions it is important for the drilling fluid to prevent settling of drill cuttings

as described by Equation 2.8 [16]. The rheological property of drilling fluids which defines

their ability to meet the aforementioned is their yield stress, τy.

τy =
1

6
∆ρg (2.8)

dPf
dL

=
τg
2
rw (2.9)

The gel strength, τg, of the drilling fluid determines the frictional pressure loss that

must be overcome by the pump to (re)initiate flow as defined by Equation 2.9. Where rw

represents the radius of the geometric conduit. In some cases the required pressure gradient

can be extremely high, especially in the riser where low temperatures prevail. Figure 2.10

summarizes the importance of drilling fluid rheology on drilling hydraulics.
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Figure 2.10. The role of fluid rheology [37].

The transportation of cuttings from the hole back to the surface is one of the primary

functions of drilling fluids. The adequate transportation of cuttings mitigates multiple

technical challenges such as stuck pipe, low ROP, high torque, formation fracturing, pre-

mature bit wear and drag on the drill string [42]. Many factors influence the transportation

of cuttings to the surface, these include hole diameter, well deviation angle, drill pipe di-

ameter, drill pipe rotation, drill pipe eccentricity, ROP and cuttings characteristics (size,

shape, bed porosity), drilling fluid velocity, type and rheology [42].

Cuttings transport ratio (FT ), Equation 2.10, is an excellent measure of the cuttings

carrying capacity of drilling fluids [16]. Cuttings in drilling fluids advance at a rate equal

to the difference between the fluid velocity (v̄a) and the cuttings’ slip velocity (v̄sl). The

particle’s velocity relative to the fluid’s velocity is referred to as the transport velocity (v̄T ).

FT =
v̄T
v̄a

=
v̄a − v̄sl
v̄a

= 1− v̄sl
v̄a

(2.10)

Computational fluid dynamics (CFD) simulations provides a means to analyze phe-

nomena that are otherwise quite difficult to observe through experimental studies [42]. It
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is defined as the analysis of systems involving fluid flow, heat transfer, and mass trans-

port and associated chemical reactions using computer-based simulations [43]. CFD anal-

ysis provides an interesting alternative to the experimental studies, particularly for the

simulation of real flows and theoretical advances under conditions otherwise unavailable

experimentally [44].

Multiple investigations into the effect of rheological properties of drilling fluids on

cuttings transport have conducted. Numerical and experimental analysis conducted have

found rheological parameters of popular non-Newtonian models used to describe the flow

behavior of drilling fluids, (n), consistency index (k), yield stress (τy) and plastic viscosity

(µp), to affect hole cleaning efficiency in different ways [45] [46] [47] [48].

Figure 2.11. Effect of yield stress on cuttings transport velocity
in wide annulus [49].
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Figure 2.12. Effect of consistency index on cuttings transport
velocity in wide annulus [49].

Figure 2.13. Effect of flow behavior index on cuttings transport
velocity in wide annulus [49].

Decrease in the values of the flow behavior index has been found to yield a decrease in

stationary bed formation, while increasing moving bed layers [45]. To continue, increase in
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the ratio of the flow behavior to consistency index (n/k) was found to lead to a reduction in

cuttings bed height [46]. The yield stress and plastic viscosity of drilling fluids were found

to increase hole cleaning efficiency with decrease in their values at reduced flow rates [48].

Figures 2.11 - 2.13 show the effect of different rheological parameters on cuttings transport

velocity for a CFD analysis conducted for a horizontal well geometry [49].

Results shown in Figure 2.11, indicate that high yield stress translate to better cutting

transport capacity by drilling fluids, however this effect is less significant in the core. The

same trend is observed for the flow consistency index, which is a rheological parameter

that relates the cohesion of individual particles, their ability to deform and resist flow [49].

Figure 2.12 shows that high k values translate to better cuttings transport. This rheological

property is directly proportional to the drilling fluid’s effective viscosity, implying cuttings

will be suspended longer and hence travel faster and further in fluids having high k values.

As shown in Figure 2.13, increase in the n leads to improved cuttings transport as well.

A difference in cuttings transport performance can however be observed when comparing

the core and the vicinity of the wall boundaries, where the drilling fluid with the lowest n

displays better cuttings transport in the latter region.

2.2 Surfactant: Polarity, HLB, & Concentration

Surfactants refer to amphiphilic molecules that find application in many industrial

processes. ’Amphiphile’ is indicative of the fact that one part of the molecule likes a given

solvent while the other part likes another, with both solvents being immiscible [50]. The

term surfactant is a contraction of the phrase ”surface active agent”. Their properties are

important as they dominant interfacial phenomena, examples of which are liquid-liquid,

liquid-solid and liquid-gas interfaces [51]. Typically, one of the solvents is water and the

water-loving part of the surfactant is referred to as hydrophilic, with the other part usually

preferring to be in an oily environment or air and is referred to as hydrophobic (Figure ??)

[50].
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Hydrophobic parts of surfactants tend to consist of long, straight alkyl chains (CH3(CH2)nC−1 ∼,

nC = 8 - 20) [50]. Surfactants can be divided into four groups based on the nature of the

electrostatic charge on the hydrophilic head group. These are: anionic, negative charge;

cationic, positive charge; nonionic, neutral (no charge); and zwitterionic, whose head group

possess both positive and negative charges so that the resultant charge is zero [50]. Com-

monly used surfactants are nonionic and anionic in nature, cationic surfactants pose en-

vironmental problems due to their non-biodegradability while zwitterionic surfactants are

expensive and therefore used only for special applications [50].

Figure 2.14. Conventional surfac-
tant [50].

A characteristic property of surfactants is their spontaneous aggregation in water to

form structures such as spherical micelles, cylinders or bilayers (Figure 2.15) [52]. Micelles

play a critical role in the ability of aqueous solutions to solubilize hydrophobic substances

(e.g. oil) at concentrations above their critical micelle concentration (CMC) [50]. When dis-

solved in two (immiscible) phases, surfactants adsorb at the interface with the hydrophobic

chain oriented towards the oil phase and hydrophilic head towards the water phase.

Decrease in interfacial tension occurs with continuous increase of surfactant concen-

tration till the critical micelle concentration (CMC) is reached [50]. Above the CMC the

interfacial tension remains constant. A number of physical properties of liquids are depen-

dent on surfactant concentration, these include osmotic pressure, electrical conductance

and optical turbidity. A key property of high practical relevance equally changes, which

is the capacity of solubilizing another hydrophobic substance (oil) in an immiscible liquid
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(water) [50].

Figure 2.15. Schematic cross-section through a spherical mi-
celle in water. A shell of polar head groups surrounds the hy-
drophobic core formed by the hydrocarbons chains. The micel-
lar structure is in equilibrium with monomers in solution. Right:
inverted micelle in oil [50].

As surfactant concentration increases above values of those of the CMC, the capacity

to solubilize a hydrophobic (oil) substance in an aqueous phase increases due to the aggre-

gation of surfactant molecules to form micelles [50]. On average, spherical micelles contain

30 - 100 surfactant molecules with outer diameters of 3 - 6 nm [50]. The tally of surfactant

molecules in micelles tend to differ. Some micelles may contain more or less surfactants

than others, such that there is a significant polydispersity. The distribution of aggregation

number of surfactants is schematically shown in Figure 2.16. The structure and nature of

head group polarity are the two competing factors driving micelle formation of surfactants.

Surfactants with long alkyl chains (hydrophobic tail) have smaller CMCs in comparison to

those with short ones, this is driven by an entropic effect called hydrophobic effect [53].

On the other hand, micelle formation tends to be opposed by the lateral repulsion of

the polar head groups. In addition as the surfactants are brought closer to each other,

the thermal fluctuations of the head groups are reduced leading to steric repulsion [50].

Nonionic surfactants tend to have lower CMCs than those of ionic surfactants due to the

additional electrostatic repulsion that is present in the latter [50]. Figure 2.17 shows the

effect of surfactant (micelle) concentration on the stabilization of emulsions. Where stability

here is referred to the time taken for 50 % of the aqueous to phase separate [56].
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Figure 2.16. Schematic distribution of surfac-
tant aggregates as a function of the aggregation
number for three different concentrations. When
the total surfactant concentration is equal to the
CMC we assumed a mean aggregation number of
Nagg = 50 [50].

Figure 2.17. Effect of concentration on the stability of asphalt emul-
sions for Tween 85, G1089 and Tween 81 after 60 days at 50 %
asphaltene content [56].
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Figure 2.18. HLB versus the stability for individual surfactants (1
-11) at 8 % concentration [56].

Hydrophilic lipophilic balance (HLB) is the other key property of surfactants. Whether

an O/W or W/O emulsion was obtained upon mixing oil, water and surfactant was a central

problem in emulsion technology. It was determined that the volume fractions of oil and

water are not important and that the type of emulsion is primarily determined by the

surfactant nature [50]. Figure 2.18 shows the effect of HLB on emulsions stability for

asphalt emulsions.

The type of emulsion formed by surfactants is defined by their packing parameter

(Ns), Equation 2.11. Where Vc is the volume of the hydrophobic part, Lc the length of the

hydrophobic tail and σA the effective area of the head group [50]. There are two additional

guidelines which are used for the practical formulation of emulsions, these are Bancroft’s

rule of thumb and the more quantitative HLB scale concept. Bancroft’s rule of thumb states

that continuous phase of an emulsion will be that in which the surfactant is preferentially

soluble [54][55]. Griffin on the other hand suggested an empirical quantitative HLB scale

which determines the tendency of surfactants to form W/O or O/W emulsions. The scale

runs from 0 - 20 for most surfactants and establishes that those with HLB values between 3

- 6 stabilize W/O emulsions while those with values between 8 - 18 stabilize O/W emulsions
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[23].

Ns =
Vc
LcσA

(2.11)

Surfactants play critical roles in the custom design of drilling fluid formulations as

emulsifiers, wetting agents, shale-swelling inhibitors, differential sticking prevention, miti-

gation of cuttings adhering to the drill bit etc. [19]. Their selection not only depends on

the desired formulation but equally varies with respect to the drilling fluid type, aqueous-

versus oil-based drilling fluids. Among the properties sought to be modified in drilling fluid

formulations are [19]:

• rheological properties - that allow the achievement of hydraulic requirements and

good transportation capacity of drill cuttings.

• fluid loss control - that prevents formation damage through fluid invasion.

• specific fluid weight - that ensures the drilling fluid provides required hydrostatic

control of the well at all times.

• inhibition properties - that prevent cuttings from sticking to the bit and maintain

wellbore stability.

• lubricant properties - that prevents issues such as stuck pipe.

2.3 Oil:Water Ratio: Emulsion Rheology

Fluid systems composed of at least two immiscible phases are known as emulsions [57].

The finely distributed phase is referred to as the dispersed phase while the other phase

acting as a dispersing agent is called the continuous or outer phase [50]. Emulsions find

great applications in industries such as that of oil & gas, where they are commonly known

to assist upstream processes (drilling fluids, oil recovery).
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Two types of emulsions can be distinguished from a thermodynamic perspective. Emul-

sions that are thermodynamically stable are referred to as microemulsions, while those

that show metastability (or unstability) are called macroemulsions. Dispersed droplets in

microemulsions have diameters between 5 - 100 nm while those in macroemulsions have

droplets of the order of wavelength of visible light, 0.5 - 10 µm [50]. O/W and W/O emul-

sions constitute the two most important emulsion systems, oil here referring to any liquid

not soluble in water (Figure 2.19).

Figure 2.19. An O/W and W/O emulsion with low volume fractions of
the dispersed phase�disp. In addition, a W/O emulsion with high volume
fraction is shown. �disp above 0.74 can occur due to polydispersity of
the drops. Small drops can fill the spaces between large ones [50].

Figure 2.20. Schematic diagram of droplet positional structure and in-
terfacial morphology for disordered monodisperse emulsions of repulsive
droplets as a function of the volume fraction of the dispersed phase,
�disp. In the dilute regime at low �disp, the droplets are spherical in the
absence of shear. As �disp → 1, the droplets become nearly polyhedral
in shape and form a biliquid foam. Dilute emulsions behave as visous
liquids, whereas concentrated emulsions exhibit solid-like elasticity [58].

34



Figure 2.21. Viscosity-volume fraction curve for O/W
emulsions [59].

Volume fraction of dispersed phase (�disp) is an important property which characterizes

macroemulsions. Although one would intuitively assume that �disp should be significantly

lower than 50 %, much higher �disp can actually be attained [50][58]. For monodispersed

spherical droplets, the maximum volume fraction is that of closed packed spheres (�disp =

0.74), Figure 2.20 [50][58]. Preparation of emulsions with much higher �disp have however

been achieved with values going as high as 99 % [50] [58].

By controlling the �disp, the mechanical properties of an emulsion can be changed from

that of a viscous liquid at low �disp to that of an elastic solid at elevated �disp [58]. The

display of elasticity at high �disp is the result of the work that needs to be done against

interfacial tension, σIFT , to increase the surface area of droplets when the shear further

deforms the already compressed droplets (Figure 2.20) [58]. The aforementioned is best

described by the Young-Laplace equation, Equation 2.12 [50]. Figure 2.21 shows the effect

of �disp on viscosity of emulsions.
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∆PLa = σIFT (
1

R1

+
1

R2

) (2.12)

• ∆PLa: pressure difference across the oil-water interface

• R1 and R2: are the principal radii of curvature and

• σIFT : is the interfacial tension

Rheology of emulsions can be considered a direct manifestation of the various inter-

action forces occurring within the system [59]. Phenomena such as flocculation, creaming

and sedimentation, coalescence and Ostwald ripening occurring within emulsion systems

are reflected in their rheological behavior [59]. Figure 2.22 depicts the aforementioned. For

the case of highly immiscible liquids, molecules of the dispersed phase cannot be exchanged

between droplets. Thus coarsening of the droplet size distribution as a result of Ostwald

ripening can be considered negligible for most oil-water emulsion systems [58]. Surfactants

play a key role in the stabilization of emulsions (coalescence) and their altered morphology

(flow fracture) during flow [61].

The driving force for the coalescence of dispersed droplets is the lower Gibbs free

energy that results from the reduced total interfacial area [50]. The coalescence, and thus

demulsification, of emulsions is first initiated by the molecular contact between surfactant

films as a result of the attractive Van der Waals forces, Figure 2.23 [50]. If the repulsive

forces between the two surfactant films is not significant enough the surfactant films will

fuse, forming a neck. The aforementioned being favored if the surfactant film is not fully

saturated. Ultimately the neck grows so that the two drops completely merge, with the

surfactant film remaining intact although its area and curvature changes [50].
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Figure 2.22. Evolution of the topology of an emulsion.
Ripening induces the growth of the largest droplets by in-
terdiffusion of the fluids. Coalescence decreases the num-
ber of droplets. Both ripening and coalescence decrease the
amount of interface. Conversely, flow-induced fracture al-
lows emulsions to be prepared by increasing the amount of
interface [62].

Figure 2.23. Three steps of droplet coalescence after floc-
culation or creaming for an O/W emulsion [50].

Stabilization of (macro)emulsions is achieved through the mitigation of molecular con-

tact between the dispersed phase. Although surfactants are ubiquitously used in the stabi-

lization of emulsions by adhering at the liquid-liquid interface, they are not the only form of

emulsifiers that can be used. Macromolecules such as proteins, polysaccharides or synthetic

polymers find great industrial applications in the stabilization of emulsions. In the drilling

industry, active solids such as bentonite, starch, Xanthan gum and carboxymethyl celldoes

do not limit their-self to the alteration of the flow behavior (shear thinning or thickening)

of drilling and/or mitigation of fluid loss through thin filter cake formation.
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These particles stabilize emulsion through steric and electrostatic repulsion [1][63][64].

Identical trends have been observed for inactive solids such as barite, whose primary pur-

pose is a density-additive, that also stabilize emulsions through steric hindrance and mod-

ification of the rheology of the oil-water interface [31]. The reason for the stabilizing effect

stems from the size of the particles that allow them to adsorb practically irreversibly at the

interface [50]. Particles assume stable position at the oil-water interface for contact angles

different from zero, Figure 2.24, but ultimately do desorb upon coalescence.

Figure 2.24. Droplet stabilized by polymer
(left) and by adsorbed solid particle (right).
The contact angles (θ) of the solid particles
with the continuous phase should be smaller
than 90 ◦ [50].

Surfactants however remain the main agent used in the preparation of emulsions [50].

Stabilization of emulsions as a result of the presence of surfactants can be summarized

into the following key points. In the case of W/O emulsions, the steric repulsion between

the hydrophobic tails of surfactants prevents aggregation of surfactant molecules. In the

case of O/W emulsions, the hydrophilic head groups prevent droplets from coalescing by

hydration repulsion [50]. When ions are present within the emulsion system, additional

forces come into play.

The high dielectric permittivity of water, allows ions to readily dissolve within it [50].

This leads to the formation of charged surfaces and thus the presence of an electric dou-

ble layer, Figure 2.25. With anions showing a greater solubility in oil media than cations,

dispersed oil droplets tend to be negatively charged leading to electrostatic repulsion. How-

ever, the increase in associated concentration of cations tends to reduce the Debye length

weakening the electrostatic force. Hence, emulsion stability for system containing ions
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tends to be exhibit a maximum based on the concentration of ions [50].

Figure 2.25. Helmholtz and Gouy-Chapman
model of the electric double layer [50].

Different additives are used in the preparation of emulsified drilling fluids (surfactants,

viscosifiers, O:W ratio etc.) with each affecting the fluid’s rheology in different ways. The

O:W ratio or the ratio of dispersed to continuous medium volume fraction is one of the most

important parameters to affect emulsion rheology [59]. For dilute emulsion systems having

�disp < 0.01 the relative viscosity (µr) of the system can be related to �disp using Einstein’s

equation, Equation 2.13 [65]. For greater �disp, µr becomes a more complex function of

�disp and is described by Equation 2.14. Where k1 represents Einstein’s coefficient and

k 6= k1 are the droplet hydrodynamic interaction coefficients. The number of interaction

terms increases with increasing volume fraction of the dispersed phase [59].

µr = 1 + 2.5�disp (2.13)

µr = 1 + k1 �disp +k2�disp2 + k3�disp3... (2.14)

The next variable affecting the rheology of emulsions, is the viscosity of the dispersed

phase with respect to that of the continuous medium. This was considered by Taylor

who extended Einstein’s hydrodynamic treatment for suspensions to emulsions, Equation

2.15 [66]. Equation 2.15 assumes that tangential and normal stresses from the continuous

medium are not mitigated by the emulsifier film around the droplet, which for very low

surfactant concentrations is a fair approximation.
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As shown by Equation 2.15, for instances where the viscosity of the dispersed phase

(µi) is far greater than that of the continuous phase (µo), µi � µo, as is the case for O/W

emulsions. The term between the brackets reduces to unity giving a coefficient of 2.5, as

opposed to a coefficient of 1 for cases where µi � µo as is the case for W/O emulsions or

foams [59].

µr = 1 + 2.5(
µi + 0.4µo
µi + µo

)�disp (2.15)

hm = dm((
�max
�disp

)
1/3

− 1) (2.16)

To continue, the third factor that affects emulsion rheology is the droplet size distri-

bution of the dispersed phase. This tends to be the case, particularly at elevated �disp

(> 0.60). Under such conditions, µr is inversely proportional to the reciprocal of the the

droplet diameter [67]. The structure of emulsions are completely destroyed (deflocculated)

at high shear rates as shown in Figure 2.26 and tend to be equidistant under such condi-

tions [59]. At low shear rates, where τ < ∆PLa the rearrangement of droplets occurs but

the coalescence, stretching or rupturing of droplets only begins as τ ≈ ∆PLa [58].

Dimensionless numbers such as the Capillary (Ca) (Equation 2.17) and Peclet (Pe)

numbers (Equation 2.18) allow the determination of dominant forces prevailing in emulsions

under given conditions. At a critical distance of separation between droplets, the viscosity

of emulsions tends to increase rapidly. The average distance of separation between droplets

(hm) is related to droplet diameter (dm) and dispersed phase volume fraction (�disp) by

the expression shown in Equation 2.16. Where �max is the maximum packing fraction for

hexagonally packed monodispersed spheres [59].
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Figure 2.26. Schematic log-log diagram of the steady shear
stress, τ , as a function of shear rate, γ̇, (solid) line for a con-
centrated emulsion. As γ̇ increases, τ rises above the elastic
yield stress, τy, as viscous contributions become important. As
τ approaches the Laplace pressure scale, σIFT/a (dashed line)
the droplets deform, stretch, and rupture as shown at right. De-
pending upon the interfacial properties, the droplets may also
recombine through coalescence [58].

Ca =
µγ̇

σIFT/a
(2.17)

Pe =
µγ̇a3

kBT
(2.18)

where:

• γ̇: flow shear rate

• σIFT : interfacial tension between the two fluids

• µ: fluid viscosity

• kB: Boltzmann’s constant

• T : temperature

• a: particle radius

In addition to the properties affecting emulsion rheology that pertain to the dispersed

phase, several other factors affect the rheology of emulsions that are related to the properties

of the continuous phase and interfacial film [59]. Three main properties of the continuous
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phase may be considered. First is the viscosity of the medium, which is affected by the

presence of additives such as excess emulsifiers and thickeners. The aforementioned being

added for various reasons amongst which the prevention of sedimentation and creaming [59].

The next property of the continuous medium is its chemical composition (pH, polarity etc.)

which affects the charges on the droplets and thus the presence of electrostatic repulsive

forces. These electrostatic repulsive forces are affected by the concentration of electrolyte,

which represents the third important property of the continuous medium [59].

Electroviscous effect(s) is the term commonly used to describe the effect of charges and

repulsion on the interaction between droplets in an emulsion. The distortion of the electric

double layer of droplets during shear represents the first form of this effect. This effect

leads to a small increase in relative viscosity in comparison to the second form which arises

from the overlapping of the double layers of the droplets in concentrated emulsions. With

the magnitude of the aforementioned being ∝ �2
disp [59].

Rheology of emulsions can equally be influenced by the interfacial rheology of the

emulsifier surrounding the droplet. When the interfacial film is subjected to an applied

shear, its constituent molecules as well as those of water and oil are displaced from their

equilibrium position [60]. The stress which develops will have an effect on the interfacial

viscosity of the film, which will in turn affect the bulk rheology of the emulsion [59]. This

tends to be predominantly the case for large deformable droplets, that have low amount of

surfactant molecules at their interface [59].
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Figure 2.27. Schematic representation of
depletion flocculation [59].

Figure 2.28. Effect of surfactant concentration (wt.%) for NPE 1800
surfactant [68].
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Figure 2.29. Variation of yield stress with surfactant concentration
(wt.%) for different surfactant systems [68].

At elevated surfactant concentrations, emulsion systems are prone to a phenomenon

known as depletion flocculation. This phenomenon leads to a change in the viscoelas-

tic properties of emulsions, basically changing their mechanical properties from viscous

to elastic-like [59]. Depletion flocculation causes dispersed droplets within the emulsion

system to be brought together as depicted in Figure 2.27, as a result of elevated micelle

concentrations [59].

The onset of the phenomenon occurs at surfactant concentrations exceeding a critical

value, which varies based on the surfactant’s physical properties as shown in Figures 2.28

and 2.29. Figure 2.28 shows that in the absence of dispersed particles the dispersion systems

shows no yield stress at all surfactant concentrations. However, in the presence of latex

particles a yield stress is displayed by the system at a critical concentration. This highlights

the effect of elevated micelle concentration on the flocculation of dispersed particles (hard

or soft) within non-Newtonian mixtures.
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2.4 Temperature

When drilling through shallow wells, temperature changes are not large and it is thus

a fair approximation to assume the rheological properties of drilling fluids not to change

significantly with respect to the aforementioned [69]. However, the drive in global demand

for hydrocarbon brings operators to drill in deeper reservoirs where extreme temperatures

and pressures prevail [70]. For such wells, the drilling window tends to be narrow and

thus careful evaluation and analysis of temperature and pressure on wellbore hydraulics is

required [69].

Figure 2.30. Shear stress at 3 (lower four lines) and 600 rpm
(upper four lines) as a function of temperature for HPHT OBM
[69].

Figures 2.30 and 2.31 show the effect of temperature on drilling fluid rheology. It

can be observed that the shear stress of the fluids decrease significantly with increasing

temperatures [69]. The temperature and pressure effects for OBMs have generally been

found to cancel out when pressure increases from 1 - 1,000 bar and temperature from 50 -

150 ◦C. For aqueous drilling fluids, the effect of pressure on apparent viscosity is typically
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smaller than that of temperature [69].

Figure 2.31. Shear stress at 3 (lower four lines) and 600 rpm
(upper four lines) as a function of temperature for HPHT WBM
[69].

In the case of OBMs, a noticeable deviation in the decreasing trend of shear stress

with temperature can be seen at values greater than 150 ◦C. A plausible reason for this

deviation is the thermal degradation of the mud sample[70] resulting in its instability and

as a consequence compromising the physical and mechanical properties that enable the

fluid to prevent the settling and effective transportation of cuttings to the surface.
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Figure 2.32. Relationship between mixing temperature and
emulsification after 24 hrs [71].

Figure 2.32 shows the effect of temperature on the stability of emulsions. The reduced

stability comes as a result of the greater number of collisions between dispersed droplets

and the desorption of surfactant molecules from the oil-water interface [31][71][72]. For

the most part the effect of temperature on the apparent viscosity of drilling fluids can be

modeled using Arrheniu’s equation, Equation 2.19 [73]. Where µ represents the viscosity of

the liquid, µ0 its viscosity at some reference temperature (T ), R the universal gas constant

and E the viscosity temperature coefficient. As shown in Figure 2.33, the apparent viscosity

of drilling fluids tends to decrease with increasing temperature [73].

µ = µ0e
E/RT (2.19)
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Figure 2.33. Temperature sweeps of OBMs and Base Oils at a temperature ramp
of 1 ◦C/min and shear rate of 100 s−1 [73].

2.5 Phase Inversion

Despite the large temperature variations that prevail in offshore operations, temperature-

induced phase inversion (TIPI) has seen little to no study in the drilling fluid industry. This

phenomenon involves the transition of emulsions, stabilized by nonionic surfactants, from

one type to another when a critical temperature known as the phase inversion temperature

(PIT) is reached. Above the PIT, emulsions transition from O/W to W/O or vice-versa

depending on the direction of temperature change [12][50][78]. This form of phase inversion

is referred to as transitional phase inverison (TPI).

It is brought about by the alteration of the affinity of nonionic surfactant(s) molecules

for a phase by etiher: changing the temperature the emulsion is subjected to or changing

the composition of the surfactant mixture (at constant temperature) [50][77]. Affinity of

surfactants towards a given phase is defined by their hydrophilic lipophilic balance (HLB),
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thus an alteration of the HLB is required for TPI to occur.

Mixtures instead of individual surfactants are used, because the desired HLBs required

for emulsion stability is normally not achieved through the use of single surfactants [77].

In other words, reduction of interfacial tension and enhanced emulsion stability is best

obtained through the use of surfactants with different HLBs [87]. Figure 2.34 shows the

phase inversion process for an O/W emulsion (2.34a) and a schematic for the preparation

of nano-emulsions via phase inversion (2.34b).

(a) Phase diagram of a water-in-octane-C12E5 emulsion [50].

(b) Schematic representation of nano-emulsion formation by PIT method [78].

Figure 2.34. Temperature-Induced Phase Inversion (TIPI).

Phase inversion of emulsions driven by temperature variation, comes as a result of
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the change in the optimum curvature (molecular geometry) and solubility of nonionic sur-

factants with the aforementioned [79][80][81]. The molecular geometry of surfactants is

defined by their packing parameter (Ns) (Equation 2.11) [12][50][82]. At low temperatures,

the surfactant tends to be more soluble in the aqueous phase and its packing parameter is

Ns <1, thus favoring the stabilization of a O/W emulsion [12].

With increasing temperatures, the hydrophilic head group of the nonionic surfactants

become dehydrated thereby decreasing their solubility in water and bringing their packing

parameter towards unity (Ns =1). The temperature at which the Ns of the surfactants

equals unity, is referred to as the phase inversion temperature (PIT) [50][12][78]. At tem-

peratures greater than the PIT, the surfactants show greater solubility in the oil phase and

their packing parameter becomes greater than unity (Ns > 1) and favors the stabilization

of W/O emulsion [12].

The dimension of the dispersed droplets obtained and consequently the stability of the

emulsion system, Table 2.3, depends on the rate at which it is cooled (heated). Rapid

cooling of emulsion systems to temperatures well below their PIT has been found to lead

to the formation of nanoemulsions [12].

Table 2.3: Comparison of the Properties of Different Emulsion Types that can be Prepared
from Oil, Water and Surfactant [12].

Emulsion Type Radius Range Stability Appearance

macroemulsion 100 nm - 100 µm metastable turbid/opaque

nanoemulsion 10 - 100 nm metastable clear/turbid

microemulsion 2 - 50 nm stable clear

An ’intermediate ’bicontinuous’ phase is usually involved in the transformation of one

emulsion type to another via phase inversion. Micro- and nano-emulsion systems, Figure

2.35, have a number of advantages over macro-systems. These include their better stability

to particle aggregation and gravitational separation [83][84], the novel rheological properties
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(e.g. high viscosity and gel strength) that can result from their design [84][85][86]. The

latter being of practical relevance to the drilling industry, where frictional pressure losses

and hole cleaning efficiency all depend on the apparent viscosity of drilling fluids.

Figure 2.35. Schematic representation of mi-
croemulsions and nanoemulsions fabricated
from oil, water and surfactant. The structure
of the particles in both types of colloidal dis-
persion is fairly similar - a hydrophobic core
of oil and surfactant tails and a hydrophobic
shell of surfactant head groups [83].

In most applications of emulsion phase inversion, a surfactant and co-surfactant is

used due to the enhanced stability it confers to the system. The presence of a complex

surfactant system at the interface, Figure 2.36, yields greater strength and thus resistance

to rupture. This makes the emulsion droplets less liable to coalescence, thereby making

them more stable [87]. Greater emulsion stability was equally found to be associated to high

surfactant packing at the interface, with the aforementioned best achieved with a complex

film [87][88]. The method of preparation of phase inversion emulsions, involving complex

surfactant films, involves the addition of the surfactant mixture to the dispersed phase [77].
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The dispersed medium-surfactant mixture solution is then added to the continuous phase

yielding what is commonly referred to as ’abnormal’ emulsions [77].

Figure 2.36. Complex surfactant film [78].

Figure 2.37 shows the effect of phase inversion on the apparent viscosity of an O/W

emulsion system stabilized by a complex mixture of nonionic surfactants. The occurrence

of phase inversion was observed to generate higher apparent viscosities (and thus shear

stresses) in the emulsion system as well as rheopectic time-dependent behavior [89]. The

formation of smaller dispersed droplets was found to account for the increase in viscosity

(Figure 2.39b), while the onset of rheopexy was indicative of the occurrence of phase

inversion [89][90].

Factors affecting the PIT at which inversion from one emulsion type to another occurs

include (among others) the: O:W ratio and HLB of the emulsion system as shown in

Figure 2.38 [89][91]. The polarity nature of the oil phase has been found to equally affect

TIPI occurrence. Non-polar oils (e.g. paraffin oil) have been found to show distinct TIPI

behavior as opposed to polar ones (e.g. isopropyl myristrate) [89].
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(a) The change in flow behavior with temperature from thixotropic (curves A) to negatively
thixotropic (curves B) and (curves C) for an emulsion of liquid paraffin with 50 % (w/w) water
and a 6 % (w/w) blend of Brij 92 and Brij 96 at an HLB of 6.5.

(b) Paraffin emulsion with 50 % (w/w) water and a 6% blend of Brij 92 and Brij 96 at an HLB
of 7.5 at different temperatures (magnification, 400x).

Figure 2.37. Temperature-induced phase inversion [89].
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(a) Effect of O:W ratio: PIT versus water phase ratio for liquid paraffin emulsions stabilized by
blends of Brij 92 + Brij 96, and Tween 80 + Span 80.

(b) Effect of HLB: influence of HLB on PIT for liquid paraffin emulsions stabilized by blends of
Brij 92 + Brij 96, and Tween 80 + Span 80

Figure 2.38. Variables affecting phase inversion [89].
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Application of transitional phase inversion of emulsion systems on the optimization of

properties of drilling fluids has been investigated through the alteration of the affinity of

nonionic surfactants components at ’constant temperature’ [92]. Inversion of the drilling

fluid was induced through the protonation and deprotonation of the nonionic surfactants.

The study highlighted the maintenance and cost benefits for muds that could be inverted

from one mud type to another through surfactant protonation and deprotonation for off-

shore operations. Protonation of the surfactant molecules in the presence of acids led to

the stabilization of O/W emulsions, while transition to an W/O emulsion was obtained

through the surfactants’ de-protonation upon addition of a base [92].

Table 2.4: Typical Formulation (g) of Reversible Invert Drilling Fluid [92].

12.5 lb/gal, 70:30 O/W Ratio; 25 % CaCl2

oil 125

lime 1 - 2

organoclay 2 - 6

reversible emulsifier 8 - 12

wetting agent 1 - 3

brine 90

weight material 293

The advantages to drilling operations revolved around the respective beneficial prop-

erties of OBMs and WBMs during drilling and subsequently completion. As an OBM, the

drilling fluid allowed higher ROPs, thinner filter cakes, good lubrication properties and

excellent hole stability. On the other hand, the same mud as a WBM allowed excellent

filtercake cleanups, better cementing, enhanced production in openhole completions and

waste minimization [92]. Table 2.4 shows the formulation of the reversible invert drilling

fluid that was investigated in the study, with an emulsifier concentration of 2.3 wt.%.

Figure 2.39 on the other hand compares the return permeability between a conventional
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drilling fluid and that of the invert emulsion drilling fluid.

(a) Return permeability with a conventional synthetic-based mud.

(b) Return permeability using a reversible invert emulsion mud.

Figure 2.39. Return permeability comparison between conventional and invert
emulsion drilling fluids [92].

Although not the subject of a lot of studies in the drilling industry, catastrophic phase

inversion (CPI), has been reported in other sectors of the oil and gas industry, specifically

in the production and transportation sectors [74][75]. CPI involves the conversion of an

emulsion from one type to another via the increment of the dispersed phase volume fraction

or through continuous agitation of the emulsion mixture [76][77]. Figure 2.40 shows a

schematic of the CPI process.
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Figure 2.40. Schematic representation of the proposed mechanism for low-intensity
emulsification by catastrophic phase inversion (CPI) method. The amount of
water added to a W/O emulsion is progressively increased, until a phase inversion
occurs and an O/W emulsion is formed [12].

2.6 Wall Slip & Jamming

The operating principle of all simple-shear rheometers involves the presence of solid

boundaries against which the sample fluid is intended to adhere, while the neighboring

fluid is set in motion by drag or pressure gradients [93]. The ’no-slip’ condition remains

valid in simple small-molecule liquids such as water [102]. The term ’wall slip’ originates

from the slip of one or both surfaces of solids when confined between two plates, with one

of the plates set in motion [93][94].

It is therefore to be expected that complex fluids, such as drilling fluids, display wall

slip at shear rates at which solid-like behavior prevails [93]. The term complex fluids refers

to viscoelastic (non-Newtonian) systems, meaning they display flow behavior intermittent

between solid-like and liquid-like based on the applied rate of deformation (shear rate),

Figure 2.41. What may possibly be the most important thing from an engineering stand-
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point is not to overcome the slippage but to characterize these effects in order to predict

the flow in some applications [95].

Figure 2.41. Illustration of shear-rate-dependent shear
stress for prototypical ’liquid-like’ and ’solid-like’ materi-
als [93].

Wall slip phenomenon is well established for viscoelastic (non-Newtonian) fluids like

emulsions, suspensions, polymeric liquids, gels, and foams[13] which thus calls for special

attention when understanding the flow behavior of these disperse systems under shear [95]-

[99]. Wall slip can be sub-divided into three forms, namely; (i) true (wall) slip: in which

a discontinuity exists at the boundary, (ii) cohesive slip: where the slip plane is found at

a certain distance from the wall and (iii) wall depletion or lubrication: where the no-slip

boundary condition is still valid but shear rate is enhanced at the wall [95][100]. See Figure

2.42.

For emulsion systems (soft particles), studies have found wall slip effects to be strongly

dependent on the type (W/O or O/W) and composition of the emulsion [95][99]. For

suspensions (hard particles), packing fraction particularly at values beyond 0.74 signifi-

cantly affect their slip behavior, see Figure 2.43. Other contributing factors include the
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shape, size and size distribution as well as volume fraction of particles, particle-particle

and particle-matrix interactions as well as the continuous liquid matrix rheology [101].

Figure 2.42. Near wall velocity profiles for wall, cohesive and lubrication slip [100].

For viscoelastic systems like emulsions and suspensions, that respectively have dispersed

droplet and solids within a continuous liquid medium, lubrication slip occurs when the local

concentration of particles is lower at the wall leading to the formation of a liquid slip layer.

The aforementioned provides a lubrication effect and facilitates the flow of the bulk (core)

fluid across the solid boundary [94]. Lubrication slip, Figure 2.44, is driven by chemical,
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hydrodynamic, steric and viscoelastic forces [94].

Figure 2.43. The hard sphere phase diagram. Below the volume frac-
tion � < �1 = 0.494, the suspension is a disordered fluid. Between
0.494 < � < 0.545, there is coexistence of the disordered phase with a
colloidal crystalline phase with FCC (or HCP) order; the colloidal crys-
talline phase is the equilibrium one up to the maximum close-packing
limit of � = 0.74 [93].

Dispersed particles having (i) large dimensions (and/or flocs of smaller particles), (ii)

elevated concentrations of dispersed phase (�disp) coupled with (iii) smooth walls are con-

ditions that favor the occurrence of slip in general and lubrication slip in particular [94]. Its

mitigation is driven by restoring osmotic forces, that increase particle concentration at the

wall. Lubrication slip has equally been found to be suppressed when the slip layer thick-

ness is comparable to the height of surface irregularities [101]. In other words, roughened

surfaces prevent slip [94][101].
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Figure 2.44. Schematics of the apparent slip mechanism of suspensions
with the binder liquid exhibiting slip at the wall with slip velocity Usb
[105].

Determination of slip velocity and the true shear rate associated with lubrication slip

in parallel disk experiments was outlined by Yoshimura and Prud’homme[106]. Their

method was based on performing two measurements at two different gaps. Yilmazer and

Kaylon[107] generalized this method by performing measurements at more than two gaps

(H). They showed that when plotting apparent shear rate (γ̇a,)versus 1/H in Equation

2.20, straight lines would be obtained. Through extrapolation the intercept would thus

be equal to the true shear rate, γ̇t. Where τ and Us represent the measured shear stress

and slip velocity respectively. The slip layer thickness, δ, is then determined by Equation

2.21 where µs represents the viscosity of the suspending liquid medium and T temperature.

Equation 2.22 can be used to determine the true viscosity, µ, of the complex fluid [101].

γ̇a = γ̇t(τ) + 2
Us(τ)

H
(2.20)

Us(τ, T ) =
δ

µs(T )
τ (2.21)

µ =
τ

γ̇t
(2.22)
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(a) Shear stress versus apparent shear rate at 21
◦C at various gap heights.

(b) Apparent shear rate versus 1/H.

(c) Slip velocity versus shear rate at different
temperatures.

Figure 2.45. 63 % glass beads (45.94 µm) suspension [101].
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Figure 2.45 illustrates the application of Equations 2.20 and 2.21 to determine the slip

layer thickness (δ) in a study investigating the effect of temperature on lubrication slip in

suspensions of aluminium powder and glass beads [101]. The study found slip velocity to

increase with temperature for a given shear stress value. The viscosity of the slip layer

thickness was found to significantly affect the slip behavior of the suspension. Specifically,

increasing temperatures were found to cause higher slip velocities as a result of decreasing

slip layer viscosity with temperature, see Equation 2.21 [101]. The study equally found slip

layer thickness to be independent of temperature, but to increase in value with increase in

size of the dispersed particles [101].

Figure 2.46. Controlling the wettability of a substrate through its
roughness. (a) Smooth surface; (b) Rough surface. Hydrophilic
substrate becoming even more hydrophilic with a rough surface
(top); hydrophobic substrate becoming ”super-hydrophobic” (bot-
tom) [108].

Another factor affecting lubrication slip, is the wettability of continuous medium of

the viscoelastic mixture. Mixtures whose continuous media show small contact angles on

the solid surfaces are more likely to display lubrication slip. Figure 2.46 shows the effect

of surface roughness of solid surfaces on the wettability of hydrophilic and hydrophobic

substrates. It is has equally been found that plug flow behavior tends to be exhibited in

viscoelastic mixtures experiencing lubrication slip [94].
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In drilling fluids, the elevated concentration of dispersed particles either as part of their

design (weight-additives and viscosifiers) and/or as a result of circulation (drill cuttings)

create conditions favorable for the occurrence of slip (true, cohesive, and/or lubrication).

The dimensions of these dispersed solid particles, Figure 2.47, when coupled with narrow

and smooth conduits create conditions favorable for slip occurrence in drilling fluids.

Figure 2.47. Particle size range for common solids found in
weighted WBMs [16].

It is important to recall that large particles here refers to both individual and flocs

of smaller particles [94]. Table 2.5 shows the absolute roughness of the different pipes

commonly used in drilling operations. For instances where the dimensions of dispersed

particles and thickness of the slip layer are significantly greater than the absolute roughness

(ε), slip can be expected. The implications of the aforementioned are significantly both in

terms of pump pressure requirements (cost, energy efficiency) but equally in terms of lower
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than expected ECDs making the well more prone to kicks or blowouts (safety).

Table 2.5: Absolute Pipe Roughness for Several Types of Circular Pipes [16][104].

Pipe Type Absolute Roughness, ε, x10−3in µm

riveted steel 0.250 - 2.50 6.35 - 63.50

concrete 0.083 - 0.830 2.11 - 21.10

cast iron 0.071 1.80

galvanized iron 0.042 1.07

asphalted cast Iron 0.033 0.84

commercial steel 0.013 0.33

drawn tubing 0.0004 0.01

A lot of emphasis has been laid so far on the lubrication form of slip. For true and

cohesive slip dilatancy and hydroclustering, Figure 2.48, of the dispersed particles in non-

Newtonian fluids play a significant role in the occurrence true and/or cohesive slip. Di-

latancy is the generation of additional stresses from solid-solid friction as a result of the

increase in the volume of particulate packing causing it to push against solid boundaries

[110][111].

Hydroclustering on the other hand, is the mechanism by which dispersed particles push

together into clusters under shear, thereby causing re-arrangements which lead to increase

in the drag forces between particles [112][113]. In both semi-dilute and concentrated disper-

sions, formation of hydroclusters cause transient concentration fluctuations due to strong

hydrodynamic coupling, Figure 2.49. The aforementioned are driven and sustained by the

applied shear field due to strong hydrodynamic coupling between particles [113]. Severe

anisotropy in the fluid’s microstructure results and more importantly, leads to large stress

fluctuation [113][115].
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Figure 2.48. Sketch of different possible regimes of shear stress τ versus shear rate γ̇
for suspensions, plotted on a log-log scale. Various contributions to stresses and their
associated particle arrangements are indicated for different regimes of flow response to
applied shear: shear thinning, Newtonian and shear thickening. A particular complex fluid
may exhibit several of these regimes, depending on the material properties and dominant
forces [114].

Figure 2.49. The change in the microstructure of colloidal dispersion explains the tran-
sitions to shear thinning and shear thickening. In equilibrium, random collisions among
particles make them naturally resistant to flow. But as shear rate (shear stress) increases,
particles becomes organized in flow, which lowers their viscosity. At yet higher shear rates
hydrodynamic interactions between particles dominant over stochastic ones, a change that
spawns hydroclusters (red) - transient fluctuations in particle concentration [113].
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Anisotropy in the microstructure of semi-dilute and concentrated dispersion as a result

of hydroclustering (and dilation) can result in variations in the shear rates experienced by

the non-Newtonian mixture. This is typically the case for yield stress fluids where there

appears to be no velocity gradient in the inner core. Pasty materials are examples of the

aforementioned.

Figure 2.50 shows a kaolin suspensions with an unsheared (plug) region away from the

wall and and a sheared region along it. The effect of the occurrence of shear rate gradients

within complex fluids can be seen in Figure 2.51. At shear rates above the critical shear

rate, γ̇c, the velocity profile of the mixture has an a slope that is almost constant over a

significant distance. At rates below γ̇c, the velocity profile drops to almost zero and remains

around this value over large distances [103].

Figure 2.50. View from above the free surface of a kaolin suspension
flowing (here from left to right) in a steady state in an inclined,
rectangular open channel. A pepper line was dropped upstream
perpendicularly to the flow direction. It now appears deformed due
to shear along the walls and undeformed in the central plug region
[109].
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Figure 2.51. Typical flow curve obtained for some pasty material under imposed,
apparent shear rate: the solid line corresponds to the rheological behavior of
the material in steady-state homogeneous flow; the dotted lines correspond to the
various apparent steady-state flow curves that can be observed in practice for shear
rate below the critical value (γ̇), but which do not correspond to an effective bulk
behavior of the material. The drawings show the qualitative aspect of the velocity
profile within the gap of the shear geometry in these apparent steady-state flows
[103].

Although present, slip in one or all of its forms in the flow curves of drilling fluids

as shown in Figures 2.52 - 2.53, has rarely been addressed in literature. Minute number

of studies have looked into the effect of external conditions, particularly temperature, on

the flow curves of drilling fluids. Although certain studies have made observations on

slip occurrence in drilling fluids, fewer have dwelled on the mechanisms behind the results

observed. As mentioned in the introduction, the most important from an engineering

standpoint may possibly be characterizing the effects of slip in order to predict the flow in

some applications rather than overcoming it [95].
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Figure 2.52. Flow curves of an OBM at different temperatures [123].

Figure 2.53. Wall slip in bentonite WBM [124].
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Chapter 3
Project Variables & Experimental Procedure

3.1 Project Variables: Control & Performance

Rheology is the science of deformation and flow of matter under controlled testing

conditions [93][116]. Flow is a special case of deformation and deformation is a special case

of flow. The first goal of the research project was to experimentally determine the effect

of surfactant polarity, concentration, Oil:Water ratio and temperature on the rheology

i.e. flow curve and yield stress properties of oil-base complex fluids. Table 3.1 shows the

control and performance variables of the project, while Table 3.2 enumerates the range of

the control variables investigated.

Table 3.1: Control and Performance Variables

Control Performance

surfactant polarity flow curve

surfactant concentration yield stress

Oil:Water ratio fluid loss

temperature phase inversion

stability

wall slip
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Table 3.2: Control Variables

Conc. (wt.%) HLB OWR (vol.%) T (oC)

1 4.0 50:50 0

2 4.3 60:40 10

3 7.5 70:30 25

11.5 80:20 50

90:10 75

90

3.2 Sample Components

Two types of emulsion-suspension complex fluids were prepared for experimental in-

vestigation, namely oil-base complex fluid (OCF) and water-base complex fluid (WCF)

samples. The components used in preparing the samples were surfactants, deionized water,

synethetic paraffin oil and Wyoming bentonite as viscosifier. Tables 3.3 and 3.4 show the

relevant physical properties of the surfactants and other components.

The surfactants and paraffin oil were both purchased from Sigma Aldrich, while the

deionized water and Wyoming bentonite were obtained from Lab Depot and Vermeer Texas

respectively. The concentration of bentonite was kept constant at 9 wt.% with respect to

the water volume fraction. It should be noted that the critical micelle concentration (CMC)

of Brij 93 (Table 3.3) was not available neither from the supplier nor in literature.
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Table 3.3: Surfactant Properties

Surfactant Nature HLB CMC (g/L)

polyoxyethylene (2) oleyl ether (Brij 93) nonionic 4.0 n/a

polyoxyethylene (10) oleyl ether (Brij O10) nonionic 12.4 0.206

polyethylene glycol sorbitan monooleate (Tween 80) nonionic 15.0 0.016

sorbitan monooleate (Span 80) nonionic 4.3 0.008

sodium dodecyl sulfate (SDS) anionic 40.0 2.88

cetyltrimethylammonium bromide (CTAB) cationic 10.0 0.34

Table 3.4: Paraffin Oil, Water and Bentonite Properties

Property Paraffin Oil Water Bentonite

dynamic viscosity (mPa.s) 110 - 230 0.89 n/a

density (g/cm3) 0.83 0.99 2.46

dielectric constant 2.2 4 - 88 (80 @ 20 ◦C)

particle size (µm) n/a n/a < 44.0

boiling point (oC) 260 - 450 100 n/a

shape n/a n/a amorphous

Tables 3.5 and 3.6 show the different surfactants used to prepare the OCF and WCF

samples. As a recall, surfactants with HLBs between 3 - 6 stabilize W/O emulsions while

those having values between 8 - 18 stabilize O/W emulsion systems. The selection of two

HLB values for the WCFs was done to assess the effect of HLB on temperature induced

phase inversion (TIPI).
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Table 3.5: Oil-base Complex Fluid (OCF) Samples

Surfactant HLB Nature Sample

Span 80 4.3 nonionic OCF S1

Brij 93 4.0 nonionic OCF S2

Table 3.6: Water-base Complex Fluid (WCF) Samples

Surfactant HLB Nature Mixture Mixture HLB Sample

Brij O10 12.4 nonionic
mixture 1 (M1) 7.5, 11.5 WCF M1

Brij 93 4.0 nonionic

Tween 80 15.0 nonionic
mixture 2 (M2) 7.5, 11.5 WCF M2

Span 80 4.3 nonionic

SDS 40.0 anionic
mixture 3 (M3) 11.5 WCF M3

CTAB 10.0 cationic

The rheology of the OCF samples was investigated and contrasted to that of oil-base

mud (OBM) drilling fluid samples. The OBM samples were prepared using the components

listed in Table 3.7. Duratone is a filtration control agent, while barite and sand are both

weight additives. The surfactants used in preparing the OBMs were identical to those of

OCF samples i.e. OBM S1 and OBM S2. As in the preparation of the OCF samples, the

concentration of bentonite was kept constant at 9 wt.% with respect to the water volume

fraction.

The water-base complex fluids (WCF) were investigated for transitional (temperature

induced) phase inversion. WCF samples stabilized by ionic surfactant mixture were pre-

pared to contrast the occurrence of phase inversion in their nonionic stabilized counterparts.
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Table 3.7: Oil-based Mud Components

Oil-base Mud (OBM)

water

paraffin oil

surfactant

duratone

bentonite

barite

3.3 Sample Preparation

The OCF samples were prepared through direct emulsification, while abnormal emul-

sification was used in preparing the WCF samples to investigate TIPI. Abnormal emul-

sification involves homogenizing the surfactant(s) in the dispersed medium instead of the

continuous one as outlined in Table 3.8. This emulsification procedure is the established

method to initiate phase inversion via temperature variation for pure emulsion systems

[77][78][89]. Direct (normal) emulsification procedure was used in the preparation of the

OCF samples. The preparation of the OBM samples was done following the steps shown

in Table 3.9.
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Table 3.8: Complex Fluid Sample Preparation Procedure - MCR 52 (200 mL)

Step WCF OCF

1) addition of surfactant mixture to oil phase individual surfactant to oil phase

2) mixing at 900 rpm for 20 mins with magnetic blue stirrer

3) addition to mixer cup of water continuous phase oil mixture continuous phase

4) addition of bentonite to water water to oil mixture

5) addition of oil mixture to water phase bentonite

6) mixing at maximum speed for 3 mins with Hamilton beach mixer

7) wait 24 hrs to ensure sample stability before measurement

The weight concentration of bentonite was kept constant at 9 wt.% with respect to the

volume fraction of water for all rheology measurements with the MCR 52 rheometer and

Fann 35 viscometer. This value was lowered to 6 wt.% for microscope analysis to allow

better visualization of the sample’s microstructure variation with temperature.

Larger mixing times and speeds were used in the preparation of samples for measure-

ments with Fann 35 viscometer. These were 1,400 rpm and 30 mins in step 2, and 5.5

mins in step 6. The protocol adjustment for the viscometer was because of the greater

sample volume (350 mL) required for measurements in comparison to the rheometer (∼

3 mL). Thus the 200 mL sample volumes for the MCR 52 rheometer allowed repeated

measurements, while single measurements were conducted with the Fann 35 viscometer.
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Table 3.9: Drilling Fluid Sample Preparation Procedure

Step OBM

1) addition of individual surfactant to oil phase

2) mixing with magnetic blue stirrer

3) addition of duratone to oil-surfactant mixture

4) mixing with Hamilton beach mixer

5) addition of water

6) mixing with Hamilton beach mixer

7) addition of bentonite

8) mixing with Hamilton beach mixer

9) addition of barite

10) mixing with Hamilton beach mixer

11) wait 24 hrs to ensure sample stability before measurement

3.4 Instruments & Equipment

The instruments used in the preparation of the complex and drilling fluid samples were

the blue spin magnetic stirrer and Hamilton beach mixer, Figure 3.1. Their functions

were to homogenize the surfactant(s) into the liquid medium for the former, and the entire

sample components for the latter. Microstructure (as a function of temperature) and

surface properties (contact angle, interfacial tension) of the samples were obtained using a

DM6 Leica microscope and Thetha optical tensiometer, Figure 3.2.
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(a) Magnetic blue stirrer

(b) Hamilton beach mixer

Figure 3.1. Mixing equipment.
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(a) Leica DM6 microscope

(b) Thetha optical tensiometer

Figure 3.2. Microstructure characterization
and surface property measurement instru-
ments.
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(a) Filter press

(b) OFI emulsion stability tester

Figure 3.3. Fluid loss and stability tester instruments.
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(a) Conductivity meter

(b) Fabric mantle and power controller

Figure 3.4. Conductivity measurement instruments.
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(a) MCR 52 rheometer

(b) Fann 35 viscometer

Figure 3.5. Flow characterization instruments.
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(a) MCR - Cone & Plate (CP) geometry

(b) MCR - Parallel Plate (PP) geometry

Figure 3.6. MCR measuring geometries.

Macroscopic characterization included measurements with a LPLT Fann filter press,

Figure 3.3a, to quantify the fluid loss levels of the different emulsion-suspension complex

fluid samples. An OFI emulsion stability tester, Figure 3.3b, was used in determining their
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stability. A conductivity meter, in combination with a fabric mantle and power controller,

Figure 3.4, was used to evaluate catastrophic and transitional (temperature) phase inversion

of the samples.

Figure 3.5 shows the MCR 52 rheometer and Fann 35 viscometer which were used

in characterizing the flow behavior of the different samples. Both instruments impose

shearing through drag flow. The measuring geometry in the Fann 35 viscometer is a Couette

geometry, while both cone & plate (CP) and parallel plate (PP) measuring geometries can

be used in the MCR 52 rheometer. The CP geometry was used in flow curve and yield stress

measurements of the samples, while the PP geometry was used for wall slip characterization.

Figure 3.7. Measuring geometries [116].

The Couette flow geometry of the viscometer has a measuring gap of 1.17 mm, while

that of the CP geometry (rheometer) is 0.15 mm. The PP geometry on the other hand

has an adjustable measuring gap which makes it a popular geometry in slip assessment

of non-Newtonian fluids. The main difference between the Fann viscometer and MCR

rheometer lies in the limited shear rate range over which measurements can be carried

in the former. This is 5.1 - 1,021.4 s−1 for the viscometer, in comparison to 0.1 - 3,000
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s−1. Furthermore, viscometers are intrinsically designed to measure the flow behavior of

very low to medium viscosity materials, while CP and PP of rheometers can characterize

materials having higher apparent viscosities, Figure 3.7.

Figure 3.8. Working principle of Couette flow viscometers [117].

Below are the working equations of the Couette flow geometry of the Fann viscometer

[117]:

Shear stress (Pa):

τ21 = τrθ(Ri) =
Mi

2πR2
iL

(3.1)

Shear strain:

γ =
θR̄

Ro −Ri

or
ΩtR̄

Ro −Ri
(3.2)

for narrow gaps, k =
Ri

Ro

≥ 0.99:
ΩtR̄

Ro −Ri
(3.3)

Where Mi is torque (Nm), θ is the angular displacement, θ = Ωt, for steady motion and

R = (Ro +Ri)/2. Where R (mean radius), t and Ω have units of m, s and rad/s

respectively.
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Strain rate (1/s):

(i) for k > 0.99

γ̇(Ri) ≈ γ̇(Ro) =
ΩR̄

Ro −Ri

=
2Ωi

1− k2
(3.4)

(ii) for gaps 0.5 < k < 0.99:

γ̇(Ri) =
2Ωi

n(1− k2/n)

γ̇(Ro) =
−2Ωi

n(1− k−2/n)

(3.5)

where n = (dInMi)/(dInΩi).

Figure 3.9. Working principle of rheometer
cone & plate (CP) geometry [117].

Below are the working equations of the Cone & Plate (CP) geometry of the MCR

rheometer [117]:

Shear stress (Pa):

τ12 = τφθ =
3M

2πR3
(3.6)

Shear strain:

γ =
φ

β
(3.7)
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Shear rate (1/s):

γ̇ =
Ω

β
(3.8)

Figure 3.10. Working principle of rheometer
parallel & plate (PP) geometry [117].

Below are the working equations of the Paralle Plate (PP) geometry of the MCR

rheometer [117]:

Shear strain:

γ =
θr

h
(3.9)

Shear rate at r = R (1/s):

γ̇R =
RΩ

h
(3.10)

Shear stress (Pa):

τ12 = τθz =
M

2πR3
[3 +

dInM

dInγ̇R
] (3.11)
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3.5 Measurement Procedure

3.5.1 Microstructure Characterization

• Characterization of the microstructure of all samples was conducted using a Leica

DM6 microscope equipped with a heatable sample holder. Images were acquired

using a 63x (and 100x) magnification lens at temperatures ranging from 0 - 90 ◦C.

The temperature was ramped as follows 25 ◦C → 0 ◦C → 10 ◦C → 50 ◦C → 75 ◦C

→ 90 ◦C. A drop of the sample was placed on a slide and then fitted on a heatable

sample holder under the microscope lens.

• Contact angles of deionzed water and paraffin oil were acquired, as well as those of the

aforementioned in the presence of the different individual surfactant and surfactant

mixtures using a Thetha optical tensionmeter on a borosilicate glass surface.

• The same instrument was used in determining the interfacial properties of the oil-

water base emulsion of the complex fluids in the presence (and absence) of the different

surfactant(s). The lighter (oil) fluid was placed in a cubic receptacle while a drop

of the denser (water) fluid was suspended within it. The contour formed by the oil

droplet was fitted using the Laplace equation to determine the interfacial tension.

3.5.2 Macroscopic Characterization

• Flow curve measurements with the MCR 52 rheometer were acquired over shear rates

spanning four orders of magnitude, 0.1 - 3,000 s−1 at temperatures ranging from 0

- 90 ◦C. The measuring geometry used in these measurements was a Cone & Plate

(PP) measuring geometry. All samples were pre-sheared at a constant shear rate of

50 s−1 for 1 min to homogenize the mixture. An equilibration time of 5 mins was

observed at each temperature to ensure the samples reached thermal steady-state.

Sample volume used per measurement in the MCR was ∼ 3 mL.

• Measurements with the Fann 35 were acquired over shear rates ranging from 5.1 -
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1,021.4 s−1 and were pre-sheared at 1,021.4 s−1 for 10 mins for homogenization of the

mixture. The pre-shear value and duration were scaled-up from that set for the MCR.

Due to the limitations on its scope of temperature variation, flow curve measurements

with the Fann 35 viscometer were performed at temperatures of 25, 50 and 75 ◦C.

• All flow curve measurements with the rheometer were repeated thrice with fresh

samples at each run to ensure reproducibility, single runs were performed with the

viscometer due to the larger volume requirements (350 mL).

• Stress sweeps to determine yield stress of the samples were performed at the lowest

(0 ◦C) and highest (90 ◦C) temperature of investigation as well as room temperature

(25 ◦C). These measurements were performed with the rheometer. Shear stresses

ranging from 0 - 50 Pa were applied to the samples to determine their yield properties

via their strain deformation profile. Measurements were repeated twice to ensure

reproducibility. Yielding of the samples was indicated by an inflection in their strain

vs stress profile as shown in Figure 3.11.

Figure 3.11. Yield stress.

• Fluid loss tests were conducted at room temperature for all samples. 100 psig (∆P)

was applied and the filtrate volume (Vf ), described by Darcy’s equation (Equation

3.12) [16], was recorded over time (t). Where k represent the permeability of the

mudcake, A the filter paper cross-sectional area, µf the filtrate volume viscosity and
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hmc the mudcake thickness.

The test was carried over 7.5 mins (V7.5) and the total filtrate volume (V30) was

calculated using Equation 3.13, based on the relationship between filtrate volume and

measurement time (Vf ∝
√
t). Spurt volume losses (Vsp) observed at the beginning

of measurements were accounted for by the equation. Only the total filtrate volume

and mudcake thickness were measured.

The surfactant concentration was set to the maximum value of 3 wt.% for all samples

and bentonite concentration reduced to 6 wt.% with respect to the volume fraction

of the water phase. This was done to highlight the effect of surfactant chemistry on

fluid loss. 150 mL sample volume was used for each measurement.

dVf

dt
=
kA∆P

µfhmc
(3.12)

V30 = 2(V7.5 − Vsp) + Vsp (3.13)

• Wall slip assessment and analysis was conducted using the parallel plate (PP) mea-

suring geometry. Measurements were conducted at temperatures of 10, 25, 50 and 75

◦C at three different gaps of 0.5, 1.17 and 2.0 mm. Shear rates ranging from 0.1 - 1,020

s−1 were applied to the samples to characterize their slip properties. Measurements

were repeated twice to ensure reproducibility.

• Sample stability was determined using an OFI emulsion stability tester. Per the

instrument guidelines, the samples were pre-heated to 48 ◦C. They were then stirred

for 10 seconds using the electrode probe to reduce gradients in composition and

temperature, after which the electrical stability (ES) value is recorded. Hard, not

deionized, water was used for these measurements because of their higher electrical

conductivity.

• Catastrophic and transitional phase inversion via conductivity measurements was
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investigated. The first step consisted of inducing inversion of the oil-base complex

fluid (OCF) to a water-base complex fluid (WCF) via catastrophic phase inversion

(CPI). This step was carried out by adding 10 mL of water to the sample and mixing

it for 20 seconds using the Hamilton beach mixer, after which the conductivity value

was recorded.

This was repeated till a significant increase in conductivity was observed, indicative

of the inversion of the sample to a WCF. Following CPI, the sample was then heated

using a heatable fabric mantle from 25 to 100 ◦C and the conductivity recorded at 10

◦C intervals. Hard, not deionized, water was used for these measurements because of

their higher electrical conductivity.

3.5.3 Sample Spectrum

Figure 3.12 shows the spectrum of the samples prepared. Measurements were conducted

only in samples that were stable following an observation time of 24 hrs. As shown in the

figure all samples at the O:W of 90:10 were unstable, while those at O:W of 70:30 and

80:20 showed stability that varied based on the surfactant type, HLB and concentration.

Figure 3.12. Sample spectrum.
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Chapter 4
Experimental Results & Discussion: Oil-base Complex Fluids

4.1 Effect of Surfactant Polarity

4.1.1 Flow Curve

In this section results of the investigation of the effect of the control variable polarity

(HLB) on the performance variable flow curve of oil-base complex fluid samples OCF S1

and OCF S2 is discussed. These samples were respectively stabilized by Span 80 and Brij

93 nonionic surfactants, see Table 3.5. Span 80 has an HLB value of 4.3, while that of Brij

93 is 4.0. Figures 4.1 to 4.11 show the difference in flow curve profiles between the two

samples at room temperature (25 ◦C) and maximum surfactant concentration of 3 wt.% at

different O:W ratios. Included in Appendix A are the comparison between the samples at

all other temperatures and surfacant concentrations.

(a) Average Values (b) with Standard Deviation

Figure 4.1. O:W = 50:50, T = 25 ◦C, Csurf = 3 wt.%.

OCF S1 is observed to holistically display higher shear stresses than OCF S2 at O:W

ratios going up to 80:20. This can be explained in terms of the difference in (i) polarity

(dipole moment) of the surfactants as well as their differing (ii) critical micelle concen-

trations (CMC). Figures 4.2 and 4.3 show the chemical structure of Span 80 and Brij 93,

respective surfactant components of OCF S1 and OCF S2. Span 80 has a greater dipole
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moment than Brij 93 due to its greater number of electron withdrawing atoms (oxygen).

Figure 4.2. Span 80 (sorbitan monooleate).

Figure 4.3. Brij 93 (polyoxyethylene (2) oleyl ether).

The concept of dipole moment is best illustrated with the compound, carbon monoxide

(CO). Oxygen is a highly electronegative atom, significantly greater than carbon is for that

matter. As a result, the former pulls the electron cloud of carbon towards itself, creating a

charge imbalance as shown in Figure 4.4. This charge imbalance creates a dipole moment,

Figure 4.5, which enables nonionic surfactants to interact with charged surfaces. This

interaction is important, given that bentonite used as viscosifier in the samples has a net

electrostatic charge on its surfaces.

Figure 4.4. Carbon monoxide.
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Figure 4.5. Dipole moment of non-charged molecules.
It is a vector that points from the more negative side
of a molecule to its more positive side. Where u is the
dipole moment, Q is a single net charge and D is the
distant between the polar molecule and net charge [50].

Figure 4.6. Weakening of the electrostatic
field of bentonite particles due to adsorption
of surfactant molecules, reduction of Debye
length.

In the case of nonionic surfactants, they adsorb on the surface of bentonite particles

reducing their Debye length (λD), Equation 4.1 [50]. Where Ȧ represents the unit length

Armstrong (10−10 m) and c0 salt concentration, which for the case under consideration

represents nonionic surfactants having large dipole moments.

λD =
3.04Ȧ
√
c0

(4.1)

The greater the number of electron-withdrawing atoms present in the structure of non-

ionic surfactants, the greater is their dipole moment. The greater is their dipole moment,

the greater is their adsorption on the surface of the charged bentonite particles, weakening

their electrostatic field, Figure 4.6, which prevents edge-to-face or edge-to-edge linkage of
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the particles. Thus, bentonite particles are prone to display better linkage in OCF S2 than

OCF S1. This has implication on the degree of emulsification of these emulsion-suspension

samples, as shown in Figure 4.7.

(a) OCF S1 (b) OCF S2

Figure 4.7. O:W = 60:40, T = 25 ◦C, Csurf = 3 wt.%.

In addition to dipole moment, the greater degree of emulsification seen in the mi-

crostructure of OCF S1 accounting for the greater shear stress level observed in its flow

curve over OCF S2 can further be explained by their differing CMCs. As indicated in Table

3.3, Span 80 has a CMC of 0.008 g/L and it is assumed that of Brij 93 is greater implying

a higher mitigation of bentonite particle linkage in OCF S1.

(a) Oil + Water + S1: 3.52 mN/m (b) Oil + Water + S2: very low

Figure 4.8. Interfacial tension: T = 25 ◦C, Csurf = 3 wt.%.

Figure 4.8 shows the difference in interfacial tension between OCF S1 and OCF S2.
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The higher interfacial tension of OCF S1 in comparison to OCF S2 accounts for the large

dispersed droplets observed in the microstructure of the former. The aforementioned makes

the jamming, Figure 4.9, of the dispersed emulsion droplets an additional contributor to

the shear stresses observed in the flow curve of OCF S1.

Figure 4.9. Jamming of dispersed particles.

(a) Average Values (b) with Standard Deviation

Figure 4.10. O:W = 60:40, T = 25 ◦C, Csurf = 3 wt.%.
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(a) Average Values (b) with Standard Deviation

Figure 4.11. O:W = 70:30, T = 25 ◦C, Csurf = 3 wt.%.

At O:W ratios of 60:40 and 70:30, Figures 4.10 and 4.11, the greater shear stress in

the flow curve OCF S1 due to its greater dipole moment, lower CMC and higher interfacial

tension can be observed. At 80:20 O:W ratio however, OCF S1 was found to be unstable

as opposed to OCF S2. The instability observed at this O:W ratio, plausibly results

from depletion flocculation (see Section 2.3 of Chapter 2) where the very high micelle

concentration drives the coalescence of the 20 vol.% dispersed water phase, Figure 4.12.

(a) Depletion flocculation (b) Droplet coalescence

Figure 4.12. Instability driven by flocculation of dispersed droplets due to elevaed
micelle concentration.
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4.1.2 Yield Stress

Discussed in this section is the effect of the control variable polarity (HLB) on the

performance variable yield stress of the oil-base complex fluid samples: OCF S1 and OCF

S2. Figures 4.13 to 4.15 show the strain response of the OCF samples to applied shear

stress at room temperature and maximum surfactant concentration of 3 wt.%. Included in

Appendix A are the stress sweep responses of the samples at all other temperatures and

concentrations.

With the exception of 50:50 O:W ratio, OCF S1 is holistically observed to display higher

structuration (ability to support or transmit loads) as opposed to OCF S2 as shown by

the lower shear stain observed in Figures 4.14 and 4.15. At 60:40 O:W ratio, both samples

are observed to yield around 30 Pa, but the strain deformation of OCF S2 is significantly

greater than that of OCF S1.

(a) Average Values (b) with Standard Deviation

Figure 4.13. O:W = 50:50, T = 25 ◦C, Csurf = 3 wt.%.

This difference in strain deformation level is accentuated at 70:30 O:W ratio, where

differences in shear strain of almost 4 orders of magnitude is observed. This difference is

driven by the higher dipole moment and lower CMC of Span 80 over Brij 93, which mitigates

interaction between bentonite particles that would otherwise stifle droplet formation. The
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lower CMC of Span 80, implies for a given surfactant concentration there is a significantly

higher micelle concentration to favor emulsion formation.

(a) Run 1 (b) Run 2

Figure 4.14. O:W = 60:40, T = 25 ◦C, Csurf = 3 wt.%.

(a) Average Values (b) with Standard Deviation

Figure 4.15. O:W = 70:30, T = 25 ◦C, Csurf = 3 wt.%.

At 80:20 O:W ratio, OCF S1 is unstable and large deformations are observed in OCF

S2 due to the lower amount of bentonite (viscosifier) present within its structure. As a

recall, bentonite concentration is kept constant with respect to water volume fraction.
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4.1.3 Fluid loss

In this section the effect of the control variable polarity (HLB) on the performance

variable fluid loss is investigated in the oil-base complex fluid samples: OCF S1 and OCF

S2. Figures 4.16 and 4.17 compare the filtrate volumes and associated mudcake thickness

of the oil-base complex fluids at room temperature, maximum surfactant concentration of

3 wt.% and O:W ratios ranging from 50:50 to 80:20.

The effect of differing dipole moment and CMC between OCF S1 and OCF S2 is

reflected in their filtrate volumes and mudcake thickness. Due to the lower dipole moment

and higher CMC of OCF S2, bentonite contribution to fluid loss mitigation is greater than

in OCF S2.

Figure 4.16. Filtrate volume (mL): T = 25 ◦C, Csurf = 3 wt.%.
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Figure 4.17. Mudcake Thickness (cm): T = 25 ◦C, Csurf = 3 wt.%.

4.1.4 Stability

In this section the effect of the control variable polarity (HLB) on the performance

variable stability is investigated in the oil-base complex fluid samples: OCF S1 and OCF

S2. Table 4.1 shows the electrical stability test results of the oil-base complex fluids at

different O:W ratios and surfactant concentrations. The results are clearly indicative of

the larger stability of OCF S2 over OCF S1. The greater inhibition of linkage of bentonite

particles (i.e. deflocculation) and degree of emulsification in OCF S1 (see Figure 4.7),

makes it more prone to instability due to a higher tendency of the dispersed droplets to

flocculate and ultimately coalesce.

The higher CMC of the surfactant component of OCF S2, equally makes the possi-

bility of depletion flocculation phenomenon less pronounced as opposed to OCF S1. The

samples with the mention ’unstable’ are those that were found to demulsify after the 24 hr

observation time following preparation.
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Table 4.1: Electrical Stability

O:W Ratio Csurf (wt.%) OCF S1 (volts) OCF S2 (volts)

50:50 1 1 1

50:50 3 1 1

60:40 1 1 1

60:40 3 1 35

70:30 1 unstable unstable

70:30 3 3 62

80:20 1 unstable unstable

80:20 3 unstable 96

4.2 Effect of Oil:Water Ratio

4.2.1 Flow Curve

In this section the effect of the control variable O:W ratio on the performance vari-

able flow curve is investigated in the oil-base complex fluid samples: OCF S1 and OCF

S2. Shown in Figures 4.18 and 4.19 are the flow curves of these complex fluids at room

temperature and maximum surfactant concentration of 3 wt.%. Included in Appendix A,

are the flow curves of the samples at all other temperatures and surfactant concentrations.

OCF S1 is observed to show an increase in shear stress with increasing O:W ratio, this

can be explained by a greater contribution to the fluid’s apparent viscosity from emulsion

formation and amount of viscosifier (bentonite). As opposed to OCF S1, OCF S2 (Figure

4.19) is observed to show in its flow curve alternating instances of shear stress increase and

decrease. This flow behavior can be attributed to wall slip, which is discussed in Chapter

5. Table 3.5 shows the composition of both OCF S1 and OCF S2.
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(a) Average Values (b) with Standard Deviation

Figure 4.18. OCF S1: T = 25 ◦C, Csurf = 3 wt.%.

(a) Average Values (b) with Standard Deviation

Figure 4.19. OCF S2: T = 25 ◦C, Csurf = 3 wt.%.

Two factors account for the greater slip behavior in OCF S2 as opposed to OCF S1,

namely: (i) the lower dipole moment of Brij 93 (S2) allows linkage of bentonite particles,

however given (ii) Brij 93’s higher CMC the amount of surfactant molecules (and micelles)

at given surfactant concentration is lower than that of Span 80 (S1). In other words,

OCF S2 has a heterogeneous internal structure resulting from the combination of the two

aforementioned factors resulting in slip, see Figures 2.49, 2.51 and 4.7b. The topic of wall
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slip will be further discussed in Chapter 5.

4.2.2 Yield Stress

In this section the effect of the control variable O:W ratio on the performance variable

yield stress is investigated in the oil-base complex fluid samples: OCF S1 and OCF S2.

Figures 4.20 and 4.21 show the strain response of the complex fluids OCF S1 and OCF

S2 to the stress sweep at room temperature and maximum surfactant concentration of 3

wt.%.

(a) Run 1 (b) Run 2

Figure 4.20. OCF S1: T = 25 ◦C, Csurf = 3 wt.%.

Bentonite contribution to the internal structure of the samples of both OCF S1 and

OCF S2 decreases with increasing O:W ratio. OCF S1 was observed to display an abnormal

trend in its yield properties, with the yield of the sample at 60:40 O:W ratio. Further study

is recommended to assess this behavior. OCF S2 on the other hand was observed to display

a more normal trend in its yield properties with respect to O:W ratio. Depletion flocculation

can possibly account for the instability of the OCF S1 at 80:20 O:W ratio (see Figures 2.28

and 2.29 in Section 2.3).
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(a) Average Values (b) with Standard Deviation

Figure 4.21. OCF S2: T = 25 ◦C, Csurf = 3 wt.%.

4.2.3 Fluid loss

In this section the effect of the control variable O:W ratio on the performance variable

fluid loss is investigated in the oil-base complex fluid samples: OCF S1 and OCF S2.

Figure 4.22 shows the filtrate volumes of the different oil-base complex fluids at O:W ratios

ranging from 50:50 to 80:20. Fluid loss in OCF S1 is observed to slightly increase with

O:W ratio. The slight increase can be attributed to the increase in volume fraction of the

oil continuous phase that facilitates fluid passage through the filter.

OCF S2 on the other hand, was equally found to show a slight increase in fluid loss with

increasing O:W ratio as a result of the increase of the volume fraction of the oil continuous

phase and decrease in bentonite amount. Holistically, no significant effect of O:W ratio was

seen for either type of OCF. It should further be noted this was not a study but a single

test, thus further investigation is recommended.
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(a) OCF S1 (b) OCF S2

Figure 4.22. O:W Ratio Effect, T = 25 ◦C, Csurf = 3 wt.%.

4.2.4 Stability

In this section the effect of the control variable O:W ratio on the performance variable

stability is investigated in the oil-base complex fluid samples: OCF S1 and OCF S2. Table

4.2 shows the electrical stability of the oil-base complex fluids as a function of O:W ratio.

It can be seen that the stability of the samples increases with O:W ratio, which is an

expected trend given that the higher is the dispersed phase volume fraction, the greater is

the probability of it to coalesce and demulsify. This trend can clearly be seen in OCF S2.

In the case of OCF S1 however, additional parameters play an important role namely

the CMC of its surfactant (Span 80). The very low CMC of Span 80, makes the concen-

tration of micelles within the oil continuous medium greater with increasing O:W ratio.

This implies the driving force bringing the dispersed droplets together increases with O:W

ratio (see Figure 4.12), which explains the instability observed at 80:20 O:W ratio. Further

study is however recommended as the analysis conducted was a test.
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Table 4.2: Electrical Stability: 3 wt.% concentration

O:W Ratio OCF S1 (volts) OCF S2 (volts)

50:50 1 1

60:40 1 35

70:30 3 62

80:20 unstable 96

4.3 Effect of Temperature

4.3.1 Flow Curve

In this section the effect of the control variable temperature on the performance variable

flow curve is investigated in the oil-base complex fluid samples: OCF S1 and OCF S2.

Figures 4.23 to ?? show the flow curves of the oil-base complex fluid samples as a function

of temperature at the maximum surfactant concentration of 3 wt.%. Included in Appendix

A, are the flow curve measurements at all other O:W ratios and surfactant concentrations.

At 50:50 O:W ratio, Figure 4.23, the flow behavior of OCF S1 can be seen to progres-

sively move towards profiles with increasing and decreasing shear stresses with increasing

temperatures (> 25 ◦C). The aforementioned is the result of wall slip. With temperature

increase, thermal fluctuations of dispersed particles within the sample increases its hetero-

geneity in its internal structure (see Figure 2.51, causing it to have greater anisotropy in

its flow curve properties ).
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(a) Average Values (b) with Standard Deviation

Figure 4.23. OCF S1: O:W Ratio = 50:50, Csurf = 3 wt.%.

(a) Average Values (b) with Standard Deviation

Figure 4.24. OCF S1: O:W Ratio = 60:40, Csurf = 3 wt.%.
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(a) Average Values (b) with Standard Deviation

Figure 4.25. OCF S1: O:W Ratio = 70:30, Csurf = 3 wt.%.

With increasing O:W ratio, the amount of dispersed particles (droplets, bentonite) de-

creases reducing the level of heterogeneity of the sample’s internal structure. This explains

the less pronounced level of decreasing and increasing shear stress profiles observed at 70:30

O:W ratio, Figure 4.25. It can further be seen that with increasing O:W ratio, there is a

reduced level of intersection of the flow curves, Figures 4.23 to 4.25. As a recall, OCF S1

was found to be unstable at 80:20 O:W ratio following the 24 hr observation time.

(a) Average Values (b) with Standard Deviation

Figure 4.26. OCF S2: O:W Ratio = 50:50, Csurf = 3 wt.%.
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(a) Average Values (b) with Standard Deviation

Figure 4.27. OCF S2: O:W Ratio = 60:40, Csurf = 3 wt.%.

(a) Average Values (b) with Standard Deviation

Figure 4.28. OCF S2: O:W Ratio = 70:30, Csurf = 3 wt.%.

Figures 4.26 to ?? show the flow curves of OCF S2 at O:W ratios of 50:50 to 70:30. An

identical trend to that of OCF S1 at 50:50 O:W ratio can be observed in OCF S2, Figure

4.26, where shear stress is observed to decrease and increase indicating wall slip. The main

difference however, is that this profile can be seen at temperatures as low as 0 ◦C.

Here again, the lower dipole moment of the surfactant component of OCF S2 (Brij 93)

and its higher CMC account for the larger level of heterogeneity in the sample microstruc-
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ture. With increasing O:W ratios and with surfactant concentration remaining constant,

higher structure homogeneity of the sample accounts for the absence of slip in the flow

curve of OCF S2 with increasing O:W ratio despite increasing temperatures.

(a) 0.1 s−1 (b) 1,000 s−1

Figure 4.29. OCF S1: Csurf = 3 wt.%.

(a) 0.1 s−1 (b) 1,000 s−1

Figure 4.30. OCF S2: Csurf = 3 wt.%.

Figures 4.29 and 4.30 show the shear stress of the OCF fluid samples at 0.1 and 1,000

s−1. At the high shear rate, both types of complex fluids, OCF S1 and OCF S2, can be

seen to show a decrease in shear stress with increasing temperature. The aforementioned
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is driven by the decrease in apparent viscosity of the fluid with increasing temperature at

elevated shear rates. At low shear rate however, 0.1 s−1, no distinct trend can be observed

particularly at low O:W ratios. Further study is thus required to assess the contribution

of other phenomena on the abnormal trend observed at low shear rates.

4.3.2 Yield Stress

In this section the effect of the control variable temperature on the performance variable

yield stress is investigated in the oil-base complex fluid samples: OCF S1 and OCF S2.

The effect of temperature on the yield properties of the oil-base complex fluids is illustrated

in Figures 4.31 to 4.36. Included in Appendix A are the stress sweep measurements at all

other O:W ratios and surfactant concentrations. At 50:50 O:W ratio, Figure 4.31, OCF

S1 is observed to display high structuration (ability to support or transmit loads) at all

temperatures. The aforementioned is driven by the contributions of bentonite (viscosifier)

and emulsification to its internal structure.

(a) Average Values (b) with Standard Deviation

Figure 4.31. OCF S1: O:W Ratio = 50:50, Csurf = 3 wt.%.

With increasing O:W ratio, depletion flocculation is observed to possibly contribute

to the elastic properties of the sample (see Figures 2.27 to 2.29 in Chapter 2). This can
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be seen at 60:40 and 70:30 O:W ratios (Figures 4.32 and 4.33), where OCF S1 yields at

low but not high temperatures. The thickening of the sample as a result of floccualtion

of bentonite particles which is enhanced at high temperatures, can plausibly be another

contributing factor to the non-yielding behavior observed at elevated temperatures.

(a) Average Values (b) with Standard Deviation

Figure 4.32. OCF S1: O:W Ratio = 60:40, Csurf = 3 wt.%.

(a) Average Values (b) with Standard Deviation

Figure 4.33. OCF S1: O:W Ratio = 70:30, Csurf = 3 wt.%.

At 50:50 O:W ratio, Figure 4.34, a behavior similar to that of OCF S1 can be observed

for OCF S2. The absence of yield in this case however is to a larger extent attributed to the
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greater interaction between bentonite particles. With increasing temperatures, this inter-

action becomes more important due to the greater aggregation of the bentonite particles.

(a) Average Values (b) with Standard Deviation

Figure 4.34. OCF S2: O:W Ratio = 50:50, Csurf = 3 wt.%.

(a) Run 1 (b) Run 2

Figure 4.35. OCF S2: O:W Ratio = 60:40, Csurf = 3 wt.%.
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(a) Average Values (b) with Standard Deviation

Figure 4.36. OCF S2: O:W Ratio = 70:30, Csurf = 3 wt.%.

This aggregation has been reported in literature to lead to an increase in yield stress in

bentonite dispersions [120]. This explains the increase in elastic properties of OCF S2 at

elevated temperatures, Figures 4.34 to 4.36. It is important to recall that the lower dipole

moment and higher CMC of the surfactant component (Brij 93) of OCF S2 allows greater

interaction between bentonite particles as opposed to OCF S1.

4.3.3 Stability

In this section the effect of the control variable temperature on the performance variable

stability is investigated in the oil-base complex fluid samples: OCF S1 and OCF S2. Figures

4.37 and 4.38 show the variation in the microstructure of the oil-base complex fluid samples

with temperature. Included are the microstructure images of the samples at 25, 75 and 90

◦C, the temperature variation they were subjected to was ramped from 25 ◦C → 0 ◦C →

10 ◦C → 50 ◦C → 75 ◦C → 90 ◦C. Included in Appendix A, are the microstructure images

of the samples at all temperatures and O:W ratios.

Exemplified at 60:40 O:W ratio, Figures 4.37 and 4.38, are the microstructure images of

OCF S1 and OCF S2. They were both observed to remain stable till 90 ◦C where ultimately
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demulsification of the samples occurred. This is particularly noticeable in OCF S1, where

the flocculation and coalescence of the dispersed droplets is driven by their greater kinetic

energy.

Figure 4.37. OCF S1: O:W Ratio = 60:40, Csurf = 3 wt.%.

Figure 4.38. OCF S2: O:W Ratio = 60:40, Csurf = 3 wt.%.

Thermal instability in OCF S2 is less pronounced as is showed by its microstructure at

90 ◦C, Figure 4.38. This is because of the greater contribution of bentonite particles to its

stability. To recall, linkage of bentonite particles is more significant in OCF S2 due to the

lower dipole moment of its surfactant component. This particular O:W ratio was chosen

to illustrate the effect of temperature on stability of oil-base complex fluids because of the

higher clarity of the images.
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4.4 Phase Inversion

4.4.1 Oil-base Complex Fluids

In this section the effect of the control variables O:W ratio and temperature on the

performance variable phase inversion is investigated in the oil-base complex fluid samples:

OCF S1 and OCF S2. Figures 4.39 and 4.40 show the effect of O:W ratio on catastrophic

and transitional phase inversion on oil-base complex fluids at the maximum surfactant

concentration of 3 wt.%. OCF S1 was found invert to a water-base complex fluid between

50 - 60 vol.% of water at all O:W ratios, Figure 4.39a. Inversion to a water-base complex

fluid was indicated by a significant change of slope of conductivity with respect to water

fraction.

The relative constant value of OCF S1 following inversion to a water-complex fluid is

due to the very low CMC of its surfactant component, which translates to a very high

concentration of surfactant molecules (and micelles) that saturate the aqueous medium.

Following catastrophic phase inversion (CPI), the now water-base complex fluid was sub-

jected to temperatures ranging from 0 - 100 ◦C, Figure 4.39b, to assess transitional phase

inversion (TPI).

The conductivity profile shown by the sample was indicative of the occurrence of tem-

perature induced phase inversion (TIPI), though not at a significant level at temperatures

< 50 ◦C as is reflected by the instances of conductivity increase. TIPI was observed to be

pronounced at temperatures > 70 ◦C. It should be noted that the O:W ratio in the legend

of Figure 4.39b is that of samples before CPI.

Shown in Figure 4.40 is the phase inversion behavior of OCF S2. Similar to OCF S1,

OCF S2 was observed to invert catastrophically to a water-base complex fluid at water

volume fractions between 50 - 60 vol.%. The change of slope of conductivity with respect

to water fraction indicative of phase inversion was however different from that of OCF S1,

as shown in Figure 4.40a. This is due to the higher CMC of Brij 93 of OCF S2, thereby

saturating the water continuous medium following inversion to a lesser degree.
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(a) Catastrophic

(b) Transitional

Figure 4.39. OCF S1 - Phase inversion, Csurf = 3 wt.%.
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(a) Catastrophic

(b) Transitional

Figure 4.40. OCF S1 - Phase inversion, Csurf = 3 wt.%.
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Following CPI, a trend in TPI identical to that of OCF S1 was displayed by OCF S2,

Figure 4.40b. Shown in Figure 4.41 is the same figure without the 80:20 O:W ratio for a

better visualization of the conductivity variation with temperature at lower (initial) O:W

ratios. Following inversion to a water-base complex fluid, OCF S2 was observed to undergo

TIPI as is indicated by instances of conductivity decrease at 50:50 and 60:40 O:W ratios.

Figure 4.41. OCF S2 - Transitional phase inversion, Csurf = 3 wt.%.

Significant TIPI can be seen at 70:30 O:W ratio, as shown by the drastic drop and

relative constant conductivity observed. The substantial increase in conductivity displayed

by the sample at 80:20 O:W ratio, Figure 4.40, at around 60 ◦C is due to the phase

separation (demulsification) of the sample.

4.4.2 Water-base Complex Fluids

In this section the effect of the control variable polarity (HLB) on the performance

variable phase inversion is investigated in the water-base complex fluid (WCF) samples.

Phase inversion was observed only in the nonionic-stabilized WCF samples, which is in
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agreement with literature [12][78][89]. Figures 4.42 and 4.43, respectively show the flow

curves and microstructure of WCF M1 at 11.5 HLB as a function of temperature. A

decrease in its apparent viscosity (shear stress) is observed with increasing temperature till

75 ◦C, where an increase in its low-shear viscosity occurs at 90 ◦C.

(a) Average Values (b) with Standard Deviation

Figure 4.42. WCF M1: O:W = 60:40, HLB = 11.5, Csurf = 3 wt.%.

Figure 4.43. WCF M1: O:W = 60:40, HLB = 11.5, Csurf = 3 wt.% (63x lens).

The microstructure of the sample can be seen to change at 90 ◦C, as a result of phase

inversion. As shown in the phase inversion schematic, Figure 4.44, at the phase inversion

temperature (PIT) the droplets in the emulsion breakdown due to ultralow interfacial

tension leading to the formation of a bicontinuous phase. This explains the microstructure
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of WCF M1 at 90 ◦C. Thus, phase inversion as a result of temperature was shown to occur

in nonionic-stabilized water-base complex fluids.

Figure 4.44. Phase inversion process [78].

(a) Average Values (b) with Standard Deviation

Figure 4.45. Phase Inversion - WCF M1: O:W = 60:40, HLB = 7.5, Csurf = 3 wt.%.
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Figure 4.46. WCF M1: O:W = 60:40, HLB = 7.5, Csurf = 3 wt.% (63x lens).

A dependence of phase inversion on HLB was also found, which showed a consistent

trend to phase inversion studies for pure emulsion systems [89]. Figures 4.45 and 4.46 show

the flow curve and microstructure, as function of temperature, of WCF M1 at the lower

HLB of 7.5. The low shear rheology of the sample shows a buildup in apparent viscosity

when temperature increases from 75 to 90 ◦C. The occurrence of phase inversion accounts

for the observed increase.

Shown in Figure 4.46, is the formation of nano-sized water dispersed droplets at 90 ◦C.

The large Laplace pressure of these droplets accounts for the change in rheology observed

with temperature increase to 90 ◦C. The greater distinction of these droplets at 7.5 HLB

as opposed to 11.5, can further be explained by the dependence of phase inversion on HLB,

see Figure 2.38 in Chapter 2. Figure 4.47, shows the substantial buildup in the low-shear

apparent viscosity of WCF M1 at 7.5 HLB as a result of phase inversion.
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(a) 0 ◦C (b) 25 ◦C

(c) 90 ◦C

Figure 4.47. Low-shear viscosity: O:W = 60:40, Csurf = 3 wt.%.
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Figure 4.48. WCF M1: HLB = 7.5, O:W = 60:40, Csurf = 3 wt.%.

Figure 4.48 shows the variation of the apparent viscosity of WCF M1 (7.5 HLB) as

a function of temperature at different shear rates. It can be seen that the increase in

apparent viscosity following phase inversion is most noticeable at γ̇ < 100 s−1. At higher

shear rates, the breakdown of the complex fluid’s internal structure is more substantial

that its structure buildup as a result of phase inversion.

Not all nonionic stabilized WCF samples were however found to undergo phase inver-

sion. WCF samples stabilized by polyoxyethylene surfactants, M1 surfactants, displayed

phase inversion which is in agreement with literature studies [78][89]. However M2 surfac-

tant components were not observed to ’distinctly’ display phase inversion.

The flow curves of WCF M2 at both 7.5 and 11.5 HLB, Figures 4.49 and 4.51, did

not display any substantial build-up in apparent viscosity with increasing temperature. It

should however be pointed out that the microstructure of WCF M2 at 7.5 HLB, Figure

4.52, appeared to show the formation of dispersed water droplets at high temperatures.
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(a) Average Values (b) with Standard Deviation

Figure 4.49. WCF M2: O:W = 60:40, HLB = 11.5, Csurf = 3 wt.%.

Figure 4.50. WCF M2: O:W = 60:40, HLB = 11.5, Csurf = 3 wt.% (63x lens).

Clear visualization of the microstructure variation of WCF M2 with temperature, Fig-

ures 4.50 and 4.52, was not possible with the 63x lens used with the heatable sample holder

of the Leica DM6 microscope. The ionic stabilized WCF M3 was not observed to display

phase inversion, Figure 4.54, confirming the phenomenon is peculiar to nonionic stabilized

water-base complex fluids.

Figures 4.53 shows the flow curve of WCF M3 (ionic) as a function of temperature. The

aforementioned was observed to display, for the most part, decreasing apparent viscosity

with increasing temperatures driven by the decrease in viscosity of the liquid media. The
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increase in apparent viscosity (shear stress) observed at 90 ◦C was driven by the ’further’

aggregation of the already flocculated particles, which is consistent with literature studies

of water-bentonite mixtures [120].

The enhanced aggregation of particles with temperature increase is driven by the

greater Brownian motion of the particles, enhancing their collisions and linkage. This

increase in aggregation of the bentonite particles due to their greater kinetic energy, ulti-

mately leads to the instability (phase separation) of the sample as shown in Figure 4.54.

(a) Average Values (b) with Standard Deviation

Figure 4.51. WCF M2: O:W = 60:40, HLB = 7.5, Csurf = 3 wt.%.

Figure 4.52. WCF M2: O:W = 60:40, HLB = 7.5, Csurf = 3 wt.% (63x lens).
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(a) Average Values (b) with Standard Deviation

Figure 4.53. WCF M3 (ionic): O:W = 60:40, HLB = 11.5, Csurf = 3 wt.%.

Figure 4.54. WCF M3 (ionic): O:W = 60:40, HLB = 11.5, Csurf = 3 wt.% (63x lens).

4.5 Drilling Muds

4.5.1 Flow Curve

In this section the effect of the control variable polarity (HLB) on the performance

variable flow curve is investigated for the oil-based mud (OBM) samples. Figures 4.55 to

4.57 show the flow behavior of the oil-based mud OBM S1 at different temperatures and

O:W ratios at the maximum surfactant concentration of 3 wt.%. The mud sample can be

observed to display a smooth decrease in its shear stress profile with temperature increase
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at any given O:W ratio. Wall slip in the form of decreasing shear stress is not observed

except at 70:30 O:W ratio, Figure 4.57, at 0 and 90 ◦C.

This otherwise slip-free flow curve profile can be explained by its homogeneous mi-

crostructure as shown in Figure 4.58. Thus, the presence of fluid loss reducer (duratone)

and weight additive (barite) components in presence of Span 80 (S1) surfactant contributes

in reducing the anisotropy in the mechanical properties of the sample.

(a) Average Values (b) with Standard Deviation

Figure 4.55. OBM S1: O:W = 50:50, Csurf = 3 wt.%.

(a) Average Values (b) with Standard Deviation

Figure 4.56. OBM S1: O:W = 60:40, Csurf = 3 wt.%.
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(a) Average Values (b) with Standard Deviation

Figure 4.57. OBM S1: O:W = 70:30, Csurf = 3 wt.%.

(a) O:W = 50:50 (b) O:W = 70:30

Figure 4.58. OBM S1: T = 25 ◦C, Csurf = 3 wt.%.

This was however observed to not be the case for the oil-base mud sample OBM S2.

Figures 4.59 to 4.61 show the flow curves of OBM S2 at different temperatures and O:W

ratios at the maximum surfactant concentration of 3 wt.%. OBM S2 can be seen to display

a drastic difference in its flow behavior in comparison to OBM S1. At 50:50 O:W ratio,

Figure 4.59, significant slip can be seen at almost all temperatures, particularly at 0 ◦C. As

discussed in Section 4.1, surfactants having different dipole moments (polarity) and CMCs

129



define the end structure of non-Newtonian fluids differently.

(a) Average Values (b) with Standard Deviation

Figure 4.59. OBM S2: O:W = 50:50, Csurf = 3 wt.%.

(a) Average Values (b) with Standard Deviation

Figure 4.60. OBM S2: O:W = 60:40, Csurf = 3 wt.%.
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(a) Average Values (b) with Standard Deviation

Figure 4.61. OBM S2: O:W = 70:30, Csurf = 3 wt.%.

(a) O:W = 50:50 (b) O:W = 70:30

Figure 4.62. OBM S2: T = 25 ◦C, Csurf = 3 wt.%.

Shown in Figure 4.62 are the microstructure images of OBM S2 at 50:50 and 70:30 O:W

ratios. The presence of particles of different dimensions and shapes are distinguishable as

opposed to OBM S1 (see Figure 4.58). The pronounced slip behavior present in OBM

S2 is driven by the flocculation of bentonite particles in the presence of other solids that

are duratone and barite. The resulting heterogeneity in the mud’s structure leads to slip

behavior. With increasing O:W ratio the level slip behavior reduces, Figure 4.61, due to
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the lower amount of solids within the mud sample.

4.5.2 Comparison to Oil-base Complex Fluids

Figures 4.63 to 4.68 compare the flow curves of the oil-base complex fluid (OCF) to

the oil-based mud (OBM) samples. OCF and OBM samples stabilized by surfactant S1

(Span 80) showed almost identical profiles in their flow curves, Figures 4.63 to 4.65. The

OBM however displayed higher shear stresses, which is due to the higher concentration

of solids in the OBM (duratone, bentonite, barite) as compared to the OCF (bentonite).

With increasing O:W ratio, the difference in shear stress level can be seen to decrease due

to the lower concentration of bentonite (based on volume fraction of water phase).

(a) Average Values (b) with Standard Deviation

Figure 4.63. S1: O:W Ratio = 50:50, T = 25 ◦C, Csurf = 3 wt.%.
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(a) Average Values (b) with Standard Deviation

Figure 4.64. S1: O:W Ratio = 60:40, T = 25 ◦C, Csurf = 3 wt.%.

(a) Average Values (b) with Standard Deviation

Figure 4.65. S1: O:W Ratio = 70:30, T = 25 ◦C, Csurf = 3 wt.%.

OCF and OBM samples stabilized by surfactant 2 (Brij 93) were observed to display

similar trends in their flow curve profiles, Figures 4.66 to 4.68, particularly with respect

to their slip behavior tendency. Although OCF S2 is seen to experience wall slip, a trend

can be seen in slip mitigation with increasing O:W ratio. The main reason (as mentioned

in earlier sections) being that the flocculation of particles, particularly bentonite, reduces
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because of its lower amount at high O:W ratios, Figure 4.68. It can also be seen that OCF

S2 displays an apparent yield stress at low shear rates not present in OBM S2 at 60:40

O:W ratio.

(a) Average Values (b) with Standard Deviation

Figure 4.66. S2: O:W Ratio = 50:50, T = 25 ◦C, Csurf = 3 wt.%.

(a) Average Values (b) with Standard Deviation

Figure 4.67. S2: O:W Ratio = 60:40, T = 25 ◦C, Csurf = 3 wt.%.
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(a) Average Values (b) with Standard Deviation

Figure 4.68. S2: O:W Ratio = 70:30, T = 25 ◦C, Csurf = 3 wt.%.

4.5.3 Yield Stress

Figures 4.69 to 4.74 compare the yield properties of the oil-base complex fluids (OCF)

and drilling mud (OBM) samples stabilized by the two surfactants Span 80 (S1) and Brij

93 (S2). As shown in Figures 4.69 and 4.70, OBM S1 has a higher structuration level than

OCF S1. This is reflected by the lower strain deformation displayed at 50:50 and 60:40

O:W ratios. The higher concentration of solids in OBM S1, because of the presence of

additional additives, confers it higher elastic properties (see Figure 2.43). At 70:30 O:W

ratio, the samples show comparable strain deformation levels due to reduced amount of

solids (bentonite), Figure 4.71.
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(a) Average Values (b) with Standard Deviation

Figure 4.69. S1: O:W Ratio = 50:50, T = 25 ◦C, Csurf = 3 wt.%.

(a) Run 1 (b) Run 2

Figure 4.70. S1: O:W Ratio = 60:40, T = 25 ◦C, Csurf = 3 wt.%.
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(a) Run 1 (b) Run 2

Figure 4.71. S1: O:W Ratio = 70:30, T = 25 ◦C, Csurf = 3 wt.%.

Comparison between the OCF and OBM stabilized by Brij 93 (S2) is shown in Figures

4.72 to 4.74. OBM S2 is seen to have higher elastic properties in comparison to OCF S2.

This is once more due to the presence of additional additives (duratone, barite) in OBM

S2, conferring it a more rigid internal structure.

(a) Average Values (b) with Standard Deviation

Figure 4.72. S2: O:W Ratio = 50:50, T = 25 ◦C, Csurf = 3 wt.%.
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(a) Average Values (b) with Standard Deviation

Figure 4.73. S2 O:W Ratio = 60:40, T = 25 ◦C, Csurf = 3 wt.%.

(a) Run 1 (b) Run 2

Figure 4.74. S1: O:W Ratio = 70:30, T = 25 ◦C, Csurf = 3 wt.%.

4.5.4 Industry Field Muds

Figures 4.75 and 4.76 show the flow curves at different temperatures of two field drilling

muds provided to us by industry. The exact composition of these drilling muds cannot

be provided for confidentiality purposes. The apparent viscosity (shear stress) of these

drilling muds can be seen to smoothly decrease with increasing temperatures. Wall slip
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i.e. decreasing shear stress with increasing shear rate is for the most part absent in both

drilling muds. This can be explained by the relative homogeneity of their microstructure

as shown in Figure 4.77.

(a) Average Values (b) with Standard Deviation

Figure 4.75. Field OBM 1

(a) Average Values (b) with Standard Deviation

Figure 4.76. Field OBM 2
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(a) Field OBM 1 (b) Field OBM 2

Figure 4.77. T = 25 ◦C.
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Chapter 5
Experimental Results & Discussion: Wall Slip Occurrence

In many instances in the previous chapter did we encounter samples having flow curves

with decreasing and increasing shear stress i.e. wall slip. In this chapter, wall slip will be

investigated as function of surfactant concentration, polarity, O:W ratio and temperature.

The rheology measurements of all samples conducted in the previous chapter was en-

tirely done using the Cone & Plate (CP) measuring geometry of the MCR 52 rheometer

that has a gap of 0.15 mm (see Figure 3.6a). In this chapter, analysis of slip will involve

measurements performed with the Parallel Plate (PP) geometry (see Figure 3.6b) of the

MCR and those conducted with the Couette flow geometry of the Fann 35 viscometer (see

Figure 3.5b).

The experimental investigation in this chapter was set to the determine the effect of

surfactant concentration and polarity, temperature and O:W ratio on the occurrence of slip.

Only lubrication form of slip was quantified, further study is recommended on quantifying

the other forms of slip (true and cohesive).

• MCR PP: 0.5, 1.17 and 2.0 mm

• Fann 35: 1.17 mm

To recall, the peculiarity of the PP geometry is that it allows measurements at different

gaps to be conducted. As shown above, the gap selection of the PP geometry was as such

to allow comparison with the Fann 35 viscometer at the gap of 1.17 mm, in order to

observe trends ’independent’ of the measuring instrument. See Figure 3.7 for difference in

configuration of these three geometries.

Three types of slip behavior can be displayed by non-Newtonian fluids namely: wall

(true), cohesive and lubrication slip. See Figure 2.42. It was found that complex fluids

can exhibit all forms of slip depending on their composition and the magnitude of external

variables such as temperature.
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As it has been reported in literature, it is possible for very viscous mixtures to lose com-

plete adhesion with respect to the wall and slide along them leading to true slip [94][125].

The aforementioned is identified by the occurrence of jumps or abrupt slope changes in

curves of shear stress versus shear rate, driven by alternating periods of ’stick-slip’ [93][126].

Cohesive slip on the other hand results from the presence of shear rate or stress gradi-

ents within the probed material. This tends to be the case of fluids highly heterogeneous

with respect to their microstructure, see Figure 2.50. The aforementioned can also oc-

cur due to the clumping of dispersed particles in emulsions (and suspensions) driven by

thermodynamics [93] and often enhanced by flow, see Figure 2.49.

Finally, lubrication slip is favored when complex fluids have: large individual dispersed

particles (and/or flocs of particles), high dependence of the fluid on the dispersed phase vol-

ume fraction (concentration) and flow over smooth and narrow surfaces [94]. Viscoelastic,

hydrodynamic and steric forces and constraints acting on the dispersed phase drives them

away from the solid boundary leading to the formation of a slip layer (δ), see Figure 2.44.

Lubrication slip is always limited by the reverse osmotic forces that causes an increase in

concentration of particles near the solid boundary [94].

Ultimately, for all these different forms of slip, what may possibly be the most important

thing from an engineering standpoint is not to overcome the slippage but to characterize

these effects in order to predict the flow in some applications as they will occur in smooth

pipes and conduits [94][95].

• Slip Diagnosis

Below are the flow curves corresponding to the different types of slips. These flow curves

can serve as diagnostic tools in identifying the form of slip undergone by non-Newtonian

fluids. With respect to true and cohesive slip, this is particularly important for drilling

fluids where very low shear rates are experienced during pump startups following a trip or

connection and when the fluid is being circulated through large annuli.
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(a) Velocity profile [100] (b) Diagnostic flow curve

Figure 5.1. Wall (true) slip.

(a) Velocity profile [100] (b) Diagnostic flow curve [103]

Figure 5.2. Cohesive slip.
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(a) Velocity profile [100] (b) Diagnostic flow curve

Figure 5.3. Lubrication slip.

5.1 Effect of Surfactant Concentration

This section will highlight the effect of surfactant concentration (Csurf ) on slip behavior

on oil-base complex fluids. The flow curve measurements obtained with PP measuring

geometry of the MCR rheometer are contrasted with those of the Fann viscometer to

discern slip patterns independent of instrument type.

Results in this chapter will be shown in the following manner: (i) for instrument

comparison, all repeated runs for the MCR PP geometry are shown when comparing it

with that obtained with the Fann measurement at the same gap of 1.17 mm, (ii) for slip

layer (δ) determination, average values of measurements conducted at different gaps (H)

will be shown. In Appendix B are these measurements, and all others, with their standard

deviations included.

Figures 5.4 shows the flow curves of the OCF sample, OCF S1, at 1 and 3 wt.%

surfactant concentration. Cohesive slip can be seen to occur at very low shear rates from

the MCR measurement at 1 wt.% concentration. This form of slip cannot be seen in the

Fann instrument as it occurs at shear rates that fall out of its range of measurement.
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(a) 1 wt.% (b) 3 wt.%

Figure 5.4. Fann vs MCR - OCF S1: HLB = 4.3, O:W = 60:40, T = 25 ◦C.

With increase in surfactant concentration to 3 wt.%, Figure 5.4b, cohesive slip was

found to be suppressed. The next step was to determine if the third form of slip, lubrication

slip, was present. The procedure and equations (Equations 2.20 and 2.21) established by

Yilmazer & Kaylon [107] based off Yoshimura & Prud’homme’s method [106] were used to

identify this form of slip and its associated slip layer thickness (δ).

(a) 1 wt.% (b) 3 wt.%

Figure 5.5. MCR PP - OCF S1: HLB = 4.3, O:W = 60:40, T = 25 ◦C.

The presence of a slip layer in non-Newtonian fluids is done by conducting measure-
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ments at different gaps (H) and assessing whether there is an increase in shear stress with

measuring gap. Figure 5.5 shows flow curve measurements at different gaps for the same

sample. At both 1 and 3 wt.% surfactant concentration, measurements at 1.17 mm can be

seen to be greater than those at 0.5 mm over a given shear rate interval, this is indicative

of the presence of a slip layer.

The next step was to determine the thickness of the slip layer at both surfactant

concentrations. This was done as shown in Figure 5.6 using Yilmazer & Kaylon’s equations,

see Equations 2.20 and 2.21. Only the shear rate region in which shear stresses at 1.17

mm gap were greater than 0.5 mm was used in determining the slip layer. Table 5.1

summarizes the slip layer thickness determined at 1 and 3 wt.%. It can be seen that

increase in surfactant concentration reduces slip layer thickness which is in agreement with

literature [94][95][101].

Jamming of the dispersed particles in OCF S1 explains the ’increase’ in shear stress with

’decreasing’ measuring gap. As shown in Figure 4.9, the increase in drag forces between

particles causes them to dilate under shear leading to additional stresses from solid-solid

friction [110][111]. The aforementioned explains the increase in shear stress with decreasing

gap in the absence of lubrication slip.

Table 5.1: OCF S1: O:W = 60:40, HLB = 4.3, T = 25 ◦C.

Surf. Conc. (wt.%) δ (µm)

1 52.77

3 29.04
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(a) Curve fitting

(b) Slip velocity

(c) Slip layer

Figure 5.6. Lubrication slip analysis: OCF S1 - 1 wt.%, O:W Ratio = 60:40.

Analytical expressions used in the determination of frictional pressure losses in drilling
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fluids assume no-slip boundary conditions at the wall of solid boundaries, vw = 0. The slip

velocity equation shown in Figure 5.6 for OCF S1 at 1 wt.% surfactant concentration will

be used to determine if the presence of a slip layer invalids the aforementioned assumption,

and if yes to what extent. This is done by using the highest shear stress for which the slip

velocity equation, Figure 5.6c, is valid i.e. 65 Pa.

The results gives a slip velocity of 14.73 mm/s or 0.015 m/s, thus the presence of a slip

layer for the sample considered does not invalid the no-slip boundary condition. However,

depending on how thick the slip layer can possibly get and its interval of occurrence (low

or high shear rates) the validity of the no-slip condition may possibly decrease.

Shown in Figures 5.7 and 5.8 is the effect of surfactant concentration on the different

forms of slip on the oil-base complex fluid OCF S2 at 60:40 O:W ratio. From Figure 5.7,

it can be seen that OCF S2 displays cohesive slip at very low shear rates. Upon increase

in surfactant concentration however, this slip behavior is seen to be suppressed.

(a) 1 wt.% (b) 3 wt.%

Figure 5.7. Fann vs MCR - OCF S2: HLB = 4.0, O:W = 60:40, T = 25 ◦C.
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(a) 1 wt.% (b) 3 wt.%

Figure 5.8. MCR PP - OCF S2: HLB = 4.0, O:W = 60:40, T = 25 ◦C.

The presence of a slip layer at either concentration was determined by measurements

at different gaps shown in Figure 5.8. A 7.06 µm thick slip layer was determined at 1 wt.%

surfactant concentration. This slip layer was however observed to be suppressed at 3 wt.%

concentration, which is once more in agreement with literature.

Table 5.2: OCF S2: O:W = 60:40, HLB = 4.0, T = 25 ◦C.

Surf. Conc. (wt.%) δ (µm)

1 7.06

3 nil

5.2 Effect of Surfactant Polarity

Figures 5.9 and 5.10 highlight the effect of surfactant polarity on the slip behavior of

oil-base complex fluids at 3 wt.% surfactant concentration and different O:W ratios. True

(wall) and cohesive slip can both be seen to be absent from the flow curves of OCF S1 and

OCF S2. Included in Appendix B are slip behavior comparison for all other composition

and temperature variables.

Lubrication slip, is the form of slip for which a distinct difference could be seen between
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both types of complex fluids based on surfactant polarity. OCF S1 was associated with

thicker slip layers over OCF S2, see Table 5.3.

This is driven by the presence of (large) dispersed droplets in OCF S1, see Figure

4.7. The aforementioned being one of the major conditions favoring lubrication slip. The

greater linkage of bentonite particles in OCF S2 minimizes the formation of a slip layer

due to the lower sphericity of individual or aggregation of particles.

(a) OCF S1 (b) OCF S2

Figure 5.9. O:W = 60:40, Csurf = 3 wt.%, T = 25 ◦C.

(a) OCF S1 (b) OCF S2

Figure 5.10. O:W = 70:30, Csurf = 3 wt.%, T = 25 ◦C.

150



Table 5.3: Csurf = 3 wt.%, T = 25 ◦C.

O:W Ratio OCF S1 OCF S2

60:40 29.04 µm nil

70:30 92.58 µm 0.56 µm

5.3 Effect of Temperature

In this section the effect of temperature on the slip behavior of oil-base complex fluids

is assessed at 3 wt.% surfactant concentration for OCF S1 and OCF S2. From Figure 5.11,

it can be seen that cohesive slip is induced by temperature increase as is reflected from the

low shear stress profile at 75 ◦C.

Lubrication slip was equally found to be exacerbated from temperature increase, as

shown in Figure 5.12. The slip layer thickness was found to increase from 29.04 to 323.37

µm, as shown in Table 5.4. Additionally, it can be seen that the degree of cohesive slip

displayed by the sample increases at each measuring gap at 75 ◦C.

(a) 25 ◦C (b) 75 ◦C

Figure 5.11. Fann vs MCR - OCF S1: Csurf = 3 wt.% , O:W = 60:40.
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(a) 25 ◦C
(b) 75 ◦C

Figure 5.12. MCR PP - OCF S1: Csurf = 3 wt.%, O:W = 60:40.

Table 5.4: OCF S1: O:W = 60:40, Csurf = 3 wt.%.

Temp. (◦C) δ (µm)

25 29.04

75 323.37

Figures 5.13 and 5.14 shows the effect of temperature on the slip behavior of the oil-

base complex fluid OCF S2. The different forms of slip can be seen to be induced as a result

of temperature increase. True slip as can be seen to occur upon temperature increase to 75

◦C, as is shown by the low shear profile in Figure 5.13. Slip layer thickness, indicative of

lubrication slip, was further found to increase from a value of nil to 407.80 µm as determined

from Figure 5.14.
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(a) 25 ◦C (b) 75 ◦C

Figure 5.13. Fann vs MCR - OCF S2: Csurf = 3 wt.%, O:W = 60:40.

(a) 25 ◦C (b) 75 ◦C

Figure 5.14. MCR PP - OCF S2: Csurf = 3 wt.%, O:W = 60:40.

Table 5.5: OCF S2: O:W = 60:40, Csurf = 3 wt.%.

Temp. (◦C) δ (µm)

25 0

75 407.80
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5.4 Effect of Oil:Water Ratio

This section assesses the effect of O:W ratio on slip occurrence on complex fluids

with no surfactants (0 wt.%). The effect of dispersed phase volume fraction on slip was

assessed by conducting flow curve measurements with 0, 50 and 60 vol.% oil dispersed

phase volume fractions in a water-bentonite continuous medium. Measurements at volume

fractions greater than 60 vol.% were not possible due to the instability of the sample at

such elevated volume fractions in the absence of surfactants. Included in Appendix B are

the results of O:W ratio effect on slip in the presence of surfactants.

Figures 5.15 to 5.17 show the lubrication slip analysis of the samples at different mea-

suring gaps conducted with the MCR PP geometry. It can be seen that with increase in

volume fraction of the dispersed phase, lubrication slip becomes more pronounced. This

can be seen through the increase in slip layer thickness from nil at 0 vol.% dispersed phase,

to 0.04 µm at 60 vol.% dispersed phase.

Figure 5.15. Water + bentonite
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Figure 5.16. Water + oil + bentonite - O:W = 50:50

Figure 5.17. Water + oil + bentonite - O:W = 60:40
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Figure 5.18. Water + bentonite: T = 25 ◦C
(63x lens).

Figure 5.19. Water + oil + bentonite: O:W
= 50:50, T = 25 ◦C (63x lens).
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Figure 5.20. Water + oil + bentonite: O:W
= 60:40, T = 25 ◦C (63x lens).

Table 5.6: Effect of Oil:Water Ratio: no surfactant.

Sample Oil Vol. Frac. δ (µm)

water + bentonite 0 nil

water + bentonite + oil 50 nil

water + bentonite + oil 60 0.04

This trend can be explained by the greater steric and hydrodynamics forces acting on

the dispersed oil droplets that drive them away from the solid boundaries leading to the

formation of a slip layer. The aforementioned is in agreement with conditions favorable

to lubrication slip occurrence which are: (i) the presence of large individual or flocs of

particles and (ii) high dependence of viscosity on volume fraction (or concentration) of the

dispersed phase. Figures 5.18 to 5.20 show the microstructures of these samples.

5.5 Comparison to Drilling Muds

In this section, the effect of additives present in drilling fluids on slip behavior will

be assessed by comparing the oil-base complex fluid (OCF) to the oil-base muds (OBM)
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samples. As can be seen from Figures 5.21 to 5.24, the presence of fluid loss and weight

additives present in the OBM samples do not induce true nor cohesive slip. The afore-

mentioned observation is the case at all ratios. The main difference between the OCF and

OBM samples was in lubrication form of slip.

This was particularly the case for those stabilized by surfactant S1 (Span 80). The

presence of additives in the OBM led to the suppression of the slip layer, Table 5.7. This

result is in agreement with literature, that reports increase in concentration of dispersed

particle decrease slip layer thickness [94][95][101]. Absence of a distinct trend of the effect

of additives on lubrication slip for the OCF and OBM samples stabilized by surfactant S2

(Brij 93) was found. Included in Appendix B are the slip type determination from flow

curves of all OCF and OBM samples.

(a) OCF S1 (b) OBM S1

Figure 5.21. O:W = 60:40, Csurf = 3 wt.%, T = 25 ◦C.
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(a) OCF S2 (b) OBM S2

Figure 5.22. O:W = 60:40, Csurf = 3 wt.%, T = 25 ◦C.

(a) OCF S1 (b) OBM S1

Figure 5.23. O:W = 70:30, Csurf = 3 wt.%, T = 25 ◦C.
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(a) OCF S2 (b) OBM S2

Figure 5.24. O:W = 70:30, Csurf = 3 wt.%, T = 25 ◦C.

Table 5.7: S1: Csurf = 3 wt.%, T = 25 ◦C.

O:W Ratio OCF S1 OBM S1

60:40 52.77 µm nil

70:30 92.58 µm nil

Table 5.8: S2: Csurf = 3 wt.%, T = 25 ◦C.

O:W Ratio OCF S2 OBM S2

60:40 nil 1.75 µm

70:30 0.56 µm nil
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Chapter 6
Conclusions

6.1 Effect of Surfactant Polarity

• Oil-base complex fluids (OCF) were found to display differing flow curve and yield

properties based on the dipole moment (HLB) of the stabilizing surfactant. Difference

in HLB as small as 0.3, as is the case between Span 80 and Brij 93 were found to

lead to different outcomes in the flow curve and yield stress properties of the OCF

samples. Samples stabilized by Span 80 displayed higher apparent viscosity than

their counterparts stabilized by Brij 93. This was in great part due to the greater

mitigation of linkage between bentonite particles, thereby facilitating emulsification.

• The difference in critical micelle concentration (CMC) between both surfactants, also

contributed to the difference in flow curve and yield properties observed between

both OCFs. The very low CMC of Span 80 translated to a greater concentration

of surfactant molecules and micelles over Brij 93 at a fixed surfactant concentration.

This made the plausible occurrence of depletion flocculation, driving of dispersed

particles together, more prominent in Span 80 stabilized samples.

• Difference in dipole moment and CMC observed between complex fluids stabilized by

the Span 80 (S1) and Brij 93 (S2) was also reflected in their fluid loss and stability

properties. Lower fluid losses and higher stability were observed in OCFs stabilized

by Brij 93. The aforementioned was driven by the greater contribution of bentonite

to the end structure of the complex fluid.

6.2 Effect of Oil:Water Ratio

• Differences in flow curve and yield properties as a result of O:W ratio, were observed

particularly for oil-base complex fluids stabilized by Span 80 (S1). Increase in O:W

ratio, was associated to a decrease in apparent viscosity of the samples due to a

reduction in the contribution of bentonite to its end structure. Effect of O:W ratio in
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samples stabilized by Brij 93 was not distinct due to the contribution of other effects

such as wall slip.

• The lower dipole moment of Brij 93 in comparison to Span 80, facilitates linkage

between bentonite particles. This linkage however is not identical throughout the

fluid’s structure, resulting in anisotropy in its flow properties due to a heterogeneous

microstructure. Thereby accounting for the more pronounced slip behavior in the

flow curves of Brij 93 OCF samples as opposed to those of Span 80.

• No significant effect on fluid loss due to varying O:W ratio was found to occur samples

stabilized by either surfactant. Stability of both type of oil-base complex fluids was

found to increase with O:W ratio. This can be explained by the lower volume fraction

of the conductive aqueous phase with increasing O:W ratio.

6.3 Effect of Temperature

• The apparent viscosity of all complex fluids was found to decrease with increasing

temperature. This was driven by the weakening of the cohesive forces between liquid

molecules with temperature increase.

• An increase in the trend of slip behavior was also observed with temperature increase

for all samples. This stemmed from the increase in thermal fluctuations of dispersed

particles with temperature increase, resulting in anisotropy of the fluid’s mechanical

properties i.e. flow curve.

• Increase in the elastic properties of the samples as a result of the flocculation of

bentonite particles, and thus thickening of the complex fluid, was observed with

temperature increase. This was particularly the case of samples stabilized by Brij 93.

• OCFs stabilized by Span 80 were found to be more prone to complete demulsification

at high temperatures, due to the lower contribution of bentonite to their end structure.
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This is accounted for by the greater dipole moment and lower CMC of Span 80 in

comparison to Brij 93.

6.4 Phase Inversion

• Oil-base complex fluids were all found to undergo catastrophic phase inversion (CPI)

to water-base complex fluids at O:W ratios between 40:60 - 50:50 (i.e. 50 - 60 vol.%

water). This range of inversion was found to be independent of surfactant polarity.

Subsequent transitional phase inversion (TPI) back to an oil-base fluid was also found

to occur in all samples, albeit to different extents based on surfactant polarity. Oil-

base complex fluids stabilized by Brij 93 were found to undergo TPI to a greater

extent as a opposed to their Span 80 counterparts.

• The separate investigation on water-base complex fluids for transitional phase in-

version, showed complex fluids stabilized by polyoxyethylene oleyl ether (nonionic)

surfactants underwent distinct phase inversion to oil-base complex fluids. This was

particularly the case at 7.5 HLB, where buildup in the apparent viscosity of the

samples following temperature increase was significant.

• Phase inversion was not distinctly observed in sorbitan monooleate (nonionic) sur-

factant stabilized fluid samples, and did not occur at all in ionic surfactant stabilized

samples.

6.5 Comparison to Drilling Muds

• Comparison between oil-base complex fluids (OCF) and oil-base muds (OBM) showed

the latter to display higher apparent viscosity in their flow curve measurements. This

observation was found to be independent of the stabilizing surfactant’s polarity. The

increase in dispersed particle concentration, due to the presence of fluid loss and

weight additives, accounted for the larger apparent viscosity of the OBM samples.
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• OCF and OBM stabilized by surfactant Span 80 were observed to display identical

flow curve profiles, although higher shear stresses were observed for OBM.

• OCF and OBM stabilized by Brij 93 surfactant stabilized samples did not display

identical flow curve profiles. It was further observed when comparing the flow curves,

that greater slip behavior was displayed by OCF over OBM samples.

• Yield properties of the OBM samples were equally found to be superior to those of the

OCFs, with lower strain deformation levels observed in the former. This observation

was independent of surfactant polarity.

6.6 Wall Slip

• Investigation of the different forms of slip: true (wall), cohesive and lubrication slip

in oil-base complex fluids, showed composition and temperature to significantly affect

the occurrence of either slip form and its extent.

• Increase in surfactant concentration was found to mitigate or suppress the occurrence

of all forms of slip. This observation was independent of surfactant polarity, and was

driven by the reduction of particle clusters and droplet size with increase in surfactant

concentration.

• Surfactant polarity was not observed to affect the occurrence of true and cohesve slip,

however lubrication slip was found to be more prominent in Span 80 (S1) stabilized

fluid samples. The lower CMC and higher dipole moment of Span 80 over Brij 93

allows the formation of emulsion droplets which get depleted from the wall boundary

of solids surfaces, thereby facilitating the formation of slip layers.

• Increasing temperatures was found to exacerbate all forms of slip behavior irrespective

of the stabilizing surfactant. This was accounted for by the increase in thermal fluctu-

ation of dispersed particles, as well as the enhanced aggregation of bentonite particles.
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Both of the aforementioned increase the level of heterogeneity of the complex fluids

making them prone to exhibit slip. The increase in the depletion of dispersed parti-

cles away from solid boundaries as a result of thermal fluctuations equally increases

slip.

• Oil:Water ratio was found to primarily affect lubrication slip. Increase in Oil:Water

ratio was observed to lead to an increase in slip layer thickness.

• Comparison between OCFs and OBMs found lubrication slip to be the main form

of slip where a significant difference existed between both types of fluid. This was

particularly the case of Span 80 (S1) stabilized samples, where no slip layer was

associated to OBM as opposed to OCF.
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Appendix A
Oil-base Complex Fluids

A.1 Effect of Surfactant Polarity

(a) T = 0 ◦C

(b) T = 10 ◦C

(c) T = 25 ◦C

(d) T = 50 ◦C

(e) T = 75 ◦C

(f) T = 90 ◦C

Figure A.1. Flow Curve: O:W = 50:50, Csurf = 1 wt.%.
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(a) T = 0 ◦C

(b) T = 10 ◦C

(c) T = 25 ◦C

(d) T = 50 ◦C

(e) T = 75 ◦C

(f) T = 90 ◦C

Figure A.2. Flow Curve: O:W = 60:40, Csurf = 1 wt.%.
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(a) T = 0 ◦C

(b) T = 10 ◦C

(c) T = 25 ◦C

(d) T = 50 ◦C

(e) T = 75 ◦C

(f) T = 90 ◦C

Figure A.3. Flow Curve: O:W = 50:50, Csurf = 2 wt.%.
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(a) T = 0 ◦C

(b) T = 10 ◦C

(c) T = 25 ◦C

(d) T = 50 ◦C

(e) T = 75 ◦C

(f) T = 90 ◦C

Figure A.4. Flow Curve: O:W = 60:40, Csurf = 2 wt.%.
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(a) T = 0 ◦C

(b) T = 10 ◦C

(c) T = 25 ◦C

(d) T = 50 ◦C

(e) T = 75 ◦C

(f) T = 90 ◦C

Figure A.5. Flow Curve: O:W = 70:30, Csurf = 2 wt.%.
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(a) T = 0 ◦C

(b) T = 10 ◦C

(c) T = 25 ◦C

(d) T = 50 ◦C

(e) T = 75 ◦C

(f) T = 90 ◦C

Figure A.6. Flow Curve: O:W = 50:50, Csurf = 3 wt.%.
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(a) T = 0 ◦C

(b) T = 10 ◦C

(c) T = 25 ◦C

(d) T = 50 ◦C

(e) T = 75 ◦C

(f) T = 90 ◦C

Figure A.7. Flow Curve: O:W = 60:40, Csurf = 3 wt.%.
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(a) T = 0 ◦C

(b) T = 10 ◦C

(c) T = 25 ◦C

(d) T = 50 ◦C

(e) T = 75 ◦C

(f) T = 90 ◦C

Figure A.8. Flow Curve: O:W = 70:30, Csurf = 3 wt.%.
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(a) 0 ◦C (b) 25 ◦C

(c) 90 ◦C

Figure A.9. Stress Sweep: O:W = 50:50, Csurf . = 1 wt.%.
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(a) 0 ◦C (b) 25 ◦C

(c) 90 ◦C

Figure A.10. Stress Sweep: O:W = 60:40, Csurf . = 1 wt.%.
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(a) 0 ◦C (b) 25 ◦C

(c) 90 ◦C

Figure A.11. Stress Sweep: O:W = 70:30, Csurf . = 2 wt.%.
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(a) 0 ◦C (b) 25 ◦C

(c) 90 ◦C

Figure A.12. Stress Sweep: O:W = 50:50, Csurf . = 3 wt.%.
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(a) 0 ◦C (b) 25 ◦C

(c) 90 ◦C

Figure A.13. Stress Sweep: O:W = 60:40, Csurf . = 3 wt.%.
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(a) 0 ◦C (b) 25 ◦C

(c) 90 ◦C

Figure A.14. Stress Sweep: O:W = 70:30, Csurf . = 3 wt.%.

.
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A.2 Effect of Surfactant Concentration

(a) T = 0 ◦C

(b) T = 10 ◦C

(c) T = 25 ◦C

(d) T = 50 ◦C

(e) T = 75 ◦C

(f) T = 90 ◦C

Figure A.15. Flow Curve: OCF S1, O:W = 50:50.
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(a) T = 0 ◦C

(b) T = 10 ◦C

(c) T = 25 ◦C

(d) T = 50 ◦C

(e) T = 75 ◦C

(f) T = 90 ◦C

Figure A.16. Flow Curve: OCF S1, O:W = 60:40.
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(a) T = 0 ◦C

(b) T = 10 ◦C

(c) T = 25 ◦C

(d) T = 50 ◦C

(e) T = 75 ◦C

(f) T = 90 ◦C

Figure A.17. Flow Curve: OCF S1, O:W = 70:30.
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(a) T = 0 ◦C

(b) T = 10 ◦C

(c) T = 25 ◦C

(d) T = 50 ◦C

(e) T = 75 ◦C

(f) T = 90 ◦C

Figure A.18. Flow Curve: OCF S2, O:W = 50:50.
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(a) T = 0 ◦C

(b) T = 10 ◦C

(c) T = 25 ◦C

(d) T = 50 ◦C

(e) T = 75 ◦C

(f) T = 90 ◦C

Figure A.19. Flow Curve: OCF S2, O:W = 60:40.
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(a) T = 0 ◦C

(b) T = 10 ◦C

(c) T = 25 ◦C

(d) T = 50 ◦C

(e) T = 75 ◦C

(f) T = 90 ◦C

Figure A.20. Flow Curve: OCF S2, O:W = 70:30.
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(a) T = 0 ◦C

(b) T = 10 ◦C

(c) T = 25 ◦C

(d) T = 50 ◦C

(e) T = 75 ◦C

(f) T = 90 ◦C

Figure A.21. Flow Curve: OCF S2, O:W = 80:20.
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(a) 0 ◦C (b) 25 ◦C

(c) 90 ◦C

Figure A.22. Stress Sweep: OCF S1, O:W = 50:50.
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(a) 0 ◦C (b) 25 ◦C

(c) 90 ◦C

Figure A.23. Stress Sweep: OCF S1, O:W = 60:40.
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(a) 0 ◦C (b) 25 ◦C

(c) 90 ◦C

Figure A.24. Stress Sweep: OCF S2, O:W = 50:50.
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(a) 0 ◦C (b) 25 ◦C

(c) 90 ◦C

Figure A.25. Stress Sweep: OCF S2, O:W = 60:40.
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(a) 0 ◦C (b) 25 ◦C

(c) 90 ◦C

Figure A.26. Stress Sweep: OCF S2, O:W = 70:30.
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(a) 0 ◦C (b) 25 ◦C

(c) 90 ◦C

Figure A.27. Stress Sweep: OCF S2, O:W = 80:20.
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A.3 Effect of Oil:Water Ratio

(a) T = 0 ◦C

(b) T = 10 ◦C

(c) T = 25 ◦C

(d) T = 50 ◦C

(e) T = 75 ◦C

(f) T = 90 ◦C

Figure A.28. Flow Curve: OCF S1, Csurf = 1 wt.%.
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(a) T = 0 ◦C

(b) T = 10 ◦C

(c) T = 25 ◦C

(d) T = 50 ◦C

(e) T = 75 ◦C

(f) T = 90 ◦C

Figure A.29. Flow Curve: OCF S1, Csurf = 2 wt.%.
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(a) T = 0 ◦C

(b) T = 10 ◦C

(c) T = 25 ◦C

(d) T = 50 ◦C

(e) T = 75 ◦C

(f) T = 90 ◦C

Figure A.30. Flow Curve: OCF S1, Csurf = 3 wt.%.
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(a) T = 0 ◦C

(b) T = 10 ◦C

(c) T = 25 ◦C

(d) T = 50 ◦C

(e) T = 75 ◦C

(f) T = 90 ◦C

Figure A.31. Flow Curve: OCF S1, Csurf = 1 wt.%.
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(a) T = 0 ◦C

(b) T = 10 ◦C

(c) T = 25 ◦C

(d) T = 50 ◦C

(e) T = 75 ◦C

(f) T = 90 ◦C

Figure A.32. Flow Curve: OCF S1, Csurf = 2 wt.%.
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(a) T = 0 ◦C

(b) T = 10 ◦C

(c) T = 25 ◦C

(d) T = 50 ◦C

(e) T = 75 ◦C

(f) T = 90 ◦C

Figure A.33. Flow Curve: OCF S1, Csurf . = 3 wt.%.
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(a) 0 ◦C (b) 25 ◦C

(c) 90 ◦C

Figure A.34. Stress Sweep: OCF S1, Csurf = 1 wt.%.
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(a) 0 ◦C (b) 25 ◦C

(c) 90 ◦C

Figure A.35. Stress Sweep: OCF S1, Csurf = 3 wt.%.
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(a) 0 ◦C (b) 25 ◦C

(c) 90 ◦C

Figure A.36. Stress Sweep: OCF S2, Csurf = 3 wt.%.
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A.4 Effect of Temperature

(a) 1 wt.% (b) 2 wt.%

(c) 3 wt.%

Figure A.37. Flow Curve: OCF S1, O:W = 50:50.
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(a) 1 wt.% (b) 2 wt.%

(c) 3 wt.%

Figure A.38. Flow Curve: OCF S1, O:W = 60:40.
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(a) 1 wt.% (b) 2 wt.%

(c) 3 wt.%

Figure A.39. Flow Curve: OCF S1, O:W = 70:30.
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(a) 1 wt.% (b) 2 wt.%

(c) 3 wt.%

Figure A.40. Flow Curve: OCF S2, O:W = 50:50.
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(a) 1 wt.% (b) 2 wt.%

(c) 3 wt.%

Figure A.41. Flow Curve: OCF S2, O:W = 60:40.
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(a) 1 wt.% (b) 2 wt.%

(c) 3 wt.%

Figure A.42. Flow Curve: OCF S2, O:W = 70:30.
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(a) 1 wt.% (b) 2 wt.%

(c) 3 wt.%

Figure A.43. Flow Curve: OCF S2, O:W = 80:20.
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(a) 1 wt.% (b) 3 wt.%

Figure A.44. Stress Sweep: OCF S1, O:W = 50:50.

(a) 1 wt.% (b) 3 wt.%

Figure A.45. Stress Sweep: OCF S1, O:W = 60:40.
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(a) 1 wt.%
(b) 3 wt.%

Figure A.46. Stress Sweep: OCF S1, O:W = 70:30.

(a) 1 wt.% (b) 3 wt.%

Figure A.47. Stress Sweep: OCF S2, O:W = 50:50.
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(a) 1 wt.% (b) 3 wt.%

Figure A.48. Stress Sweep: OCF S2, O:W = 60:40.

(a) 1 wt.%
(b) 3 wt.%

Figure A.49. Stress Sweep: OCF S2, O:W = 70:30.

220



(a) 1 wt.%
(b) 3 wt.%

Figure A.50. Stress Sweep: OCF S2, O:W = 80:20.
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(a) 25 ◦C

(b) 0 ◦C

(c) 10 ◦C

(d) 50 ◦C

(e) 75 ◦C

(f)

Figure A.51. No surfactant: O:W = 50:50.
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(a) 25 ◦C

(b) 0 ◦C

(c) 10 ◦C

(d) 50 ◦C

(e) 75 ◦C - Demulsification

(f)

Figure A.52. No surfactant: O:W = 60:40.
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(a) 25 ◦C

(b) 0 ◦C

(c) 10 ◦C

(d) 50 ◦C

(e) 75 ◦C

(f) 90 ◦C - Phase Inversion

Figure A.53. WCF M1: O:W = 60:40, Csurf = 3 wt.%, HLB = 11.5.
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(a) 25 ◦C

(b) 0 ◦C

(c) 10 ◦C

(d) 50 ◦C

(e) 75 ◦C

(f) 90 ◦C - Phase Inversion

Figure A.54. WCF M1: O:W = 60:40, Csurf = 3 wt.%, HLB = 7.5.
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(a) 25 ◦C

(b) 0 ◦C

(c) 10 ◦C

(d) 50 ◦C

(e) 75 ◦C

(f) 90 ◦C

Figure A.55. WCF M2: O:W = 60:40, Csurf = 3 wt.%, HLB = 11.5.
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(a) 25 ◦C

(b) 0 ◦C

(c) 10 ◦C

(d) 50 ◦C

(e) 75 ◦C

(f) 90 ◦C

Figure A.56. WCF M2: O:W = 60:40, Csurf = 3 wt.%, HLB = 7.5.
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(a) 25 ◦C

(b) 0 ◦C

(c) 10 ◦C

(d) 50 ◦C

(e) 75 ◦C

(f) 90 ◦C - Demulsification

Figure A.57. WCF M3 (ionic): O:W = 60:40, Csurf = 3 wt.%, HLB = 11.5.
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(a) 25 ◦C

(b) 0 ◦C

(c) 10 ◦C

(d) 50 ◦C

(e) 75 ◦C

(f) 90 ◦C - Demulsification

Figure A.58. OCF S1: O:W = 60:40, Csurf = 3 wt.%, HLB = 4.3.
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(a) 25 ◦C

(b) 0 ◦C

(c) 10 ◦C

(d) 50 ◦C - Demulsification

(e) 75 ◦C

(f) 90 ◦C

Figure A.59. OCF S2: O:W = 60:40, Csurf = 3 wt.%, HLB = 4.0.
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(a) 25 ◦C

(b) 0 ◦C

(c) 10 ◦C

(d) 50 ◦C

(e) 75 ◦C

(f) 90 ◦C - Demulsification

Figure A.60. OCF S1: O:W = 70:30, Csurf = 3 wt.%, HLB = 4.3.
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(a) 25 ◦C

(b) 0 ◦C

(c) 10 ◦C

(d) 50 ◦C

(e) 75 ◦C

(f) 90 ◦C

Figure A.61. WCF M1: O:W = 70:30, Csurf = 3 wt.%, HLB = 7.5.
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A.5 Comparison to Drilling Muds

(a) T = 0 ◦C

(b) T = 10 ◦C

(c) T = 25 ◦C

(d) T = 50 ◦C

(e) T = 75 ◦C

(f) T = 90 ◦C

Figure A.62. Flow Curve: Surfactant S1 (Span 80) - O:W = 50:50, Csurf = 3 wt.%.
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(a) T = 0 ◦C

(b) T = 10 ◦C

(c) T = 25 ◦C

(d) T = 50 ◦C

(e) T = 75 ◦C

(f) T = 90 ◦C

Figure A.63. Flow Curve: Surfactant S1 (Span 80) - O:W = 60:40, Csurf = 3 wt.%.
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(a) T = 0 ◦C

(b) T = 10 ◦C

(c) T = 25 ◦C

(d) T = 50 ◦C

(e) T = 75 ◦C

(f) T = 90 ◦C

Figure A.64. Flow Curve: Surfactant S1 (Span 80) - O:W = 70:30, Csurf = 3 wt.%.
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(a) T = 0 ◦C

(b) T = 10 ◦C

(c) T = 25 ◦C

(d) T = 50 ◦C

(e) T = 75 ◦C

(f) T = 90 ◦C

Figure A.65. Flow Curve: Surfactant S2 (Brij 93) - O:W = 50:50, Csurf = 3 wt.%.
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(a) T = 0 ◦C

(b) T = 10 ◦C

(c) T = 25 ◦C

(d) T = 50 ◦C

(e) T = 75 ◦C

(f) T = 90 ◦C

Figure A.66. Flow Curve: Surfactant S2 (Brij 93) - O:W = 60:40, Csurf = 3 wt.%.
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(a) T = 0 ◦C

(b) T = 10 ◦C

(c) T = 25 ◦C

(d) T = 50 ◦C

(e) T = 75 ◦C

(f) T = 90 ◦C

Figure A.67. Flow Curve: Surfactant S2 (Brij 93) - O:W = 70:30, Csurf = 3 wt.%.
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(a) 0 ◦C (b) 25 ◦C

(c) 90 ◦C

Figure A.68. Stress Sweep: Surfactant S1 (Span 80) - O:W = 50:50, Csurf . = 3 wt.%.
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(a) 0 ◦C (b) 25 ◦C

(c) 90 ◦C

Figure A.69. Stress Sweep: Surfactant S1 (Span 80) - O:W = 60:40, Csurf . = 3 wt.%.
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(a) 0 ◦C (b) 25 ◦C

(c) 90 ◦C

Figure A.70. Stress Sweep: Surfactant S1 (Span 80) - O:W = 70:30, Csurf . = 3 wt.%.
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(a) 0 ◦C (b) 25 ◦C

(c) 90 ◦C

Figure A.71. Stress Sweep: Surfactant S2 (Brij 93) - O:W = 50:50, Csurf . = 3 wt.%.
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(a) 0 ◦C (b) 25 ◦C

(c) 90 ◦C

Figure A.72. Stress Sweep: Surfactant S2 (Brij 93) - O:W = 60:40, Csurf . = 3 wt.%.
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(a) 0 ◦C (b) 25 ◦C

(c) 90 ◦C

Figure A.73. Stress Sweep: Surfactant S2 (Brij 93) - O:W = 70:30, Csurf . = 3 wt.%.
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Appendix B
Wall Slip

B.1 Effect of Surfactant Concentration

(a) 1 wt.% (b) 3 wt.%

Figure B.1. True & Cohesive Slip Determination: OCF S1, O:W = 50:50, T = 25 ◦C.

(a) 1 wt.% (b) 3 wt.%

Figure B.2. Lubrication Slip Determination: OCF S1, O:W = 50:50, T = 25 ◦C.
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(a) 1 wt.% (b) 3 wt.%

Figure B.3. True & Cohesive Slip Determination: OCF S1, O:W = 50:50, T = 75 ◦C.

(a) 1 wt.% (b) 3 wt.%

Figure B.4. Lubrication Slip Determination: OCF S1, O:W = 50:50, T = 75 ◦C.
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(a) 1 wt.% (b) 3 wt.%

Figure B.5. True & Cohesive Slip Determination: OCF S1, O:W = 60:40, T = 25 ◦C.

(a) 1 wt.% (b) 3 wt.%

Figure B.6. Lubrication Slip Determination: OCF S1, O:W = 60:40, T = 25 ◦C
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(a) 1 wt.% (b) 3 wt.%

Figure B.7. True & Cohesive Slip Determination: OCF S1, O:W = 60:40, T = 75 ◦C.

(a) 1 wt.% (b) 3 wt.%

Figure B.8. Lubrication Slip Determination: OCF S1, O:W = 60:40, T = 75 ◦C.
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(a) 1 wt.% (b) 3 wt.%

Figure B.9. True & Cohesive Slip Determination: OCF S2, O:W = 50:50, T = 25 ◦C.

(a) 1 wt.% (b) 3 wt.%

Figure B.10. Lubrication Slip Determination: OCF S2, O:W = 50:50, T = 25 ◦C.
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(a) 1 wt.% (b) 3 wt.%

Figure B.11. True & Cohesive Slip Determination: OCF S2, O:W = 50:50, T = 75 ◦C.

(a) 1 wt.% (b) 3 wt.%

Figure B.12. Lubrication Slip Determination: OCF S2, O:W = 50:50, T = 75 ◦C.
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(a) 1 wt.% (b) 3 wt.%

Figure B.13. True & Cohesive Slip Determination: OCF S2, O:W = 60:40, T = 25 ◦C.

(a) 1 wt.% (b) 3 wt.%

Figure B.14. Lubrication Slip Determination: OCF S2, O:W = 60:40, T = 25 ◦C.
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(a) 1 wt.% (b) 3 wt.%

Figure B.15. True & Cohesive Slip Determination: OCF S2, O:W = 60:40, T = 75 ◦C.

(a) 1 wt.% (b) 3 wt.%

Figure B.16. Lubrication Slip Determination: OCF S2, O:W = 60:40, T = 75 ◦C.
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B.2 Effect of Surfactant Polarity

(a) OCF S1 (b) OCF S2

Figure B.17. True & Cohesive Slip Determination: O:W = 50:50, Csurf = 1 wt.%, T = 25
◦C.

(a) OCF S1 (b) OCF S2

Figure B.18. Lubrication Slip Determination: O:W = 50:50, Csurf = 1 wt.%, T = 25 ◦C.
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(a) OCF S1 (b) OCF S2

Figure B.19. True & Cohesive Slip Determination: O:W = 50:50, Csurf = 1 wt.%, T = 75
◦C.

(a) OCF S1 (b) OCF S2

Figure B.20. Lubrication Slip Determination: O:W = 50:50, Csurf = 1 wt.%, T = 75 ◦C.
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(a) OCF S1 (b) OCF S2

Figure B.21. True & Cohesive Slip Determination: O:W = 50:50, Csurf = 3 wt.%, T = 25
◦C.

(a) OCF S1 (b) OCF S2

Figure B.22. Lubrication Slip Determination: O:W = 50:50, Csurf = 3 wt.%, T = 25 ◦C.

255



(a) OCF S1 (b) OCF S2

Figure B.23. True & Cohesive Slip Determination: O:W = 50:50, Csurf = 3 wt.%, T = 75
◦C.

(a) OCF S1 (b) OCF S2

Figure B.24. Lubrication Slip Determination: O:W = 50:50, Csurf = 3 wt.%, T = 75 ◦C.
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(a) OCF S1 (b) OCF S2

Figure B.25. True & Cohesive Slip Determination: O:W = 60:40, Csurf = 1 wt.%, T = 25
◦C.

(a) OCF S1 (b) OCF S2

Figure B.26. Lubrication Slip Determination: O:W = 60:40, Csurf = 1 wt.%, T = 25 ◦C.
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(a) OCF S1 (b) OCF S2

Figure B.27. True & Cohesive Slip Determination: O:W = 60:40, Csurf = 1 wt.%, T = 75
◦C.

(a) OCF S1 (b) OCF S2

Figure B.28. Lubrication Slip Determination: O:W = 60:40, Csurf = 1 wt.%, T = 75 ◦C.
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(a) OCF S1 (b) OCF S2

Figure B.29. True & Cohesive Slip Determination: O:W = 60:40, Csurf = 3 wt.%, T = 25
◦C.

(a) OCF S1 (b) OCF S2

Figure B.30. Lubrication Slip Determination: O:W = 60:40, Csurf = 3 wt.%, T = 25 ◦C.
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(a) OCF S1 (b) OCF S2

Figure B.31. True & Cohesive Slip Determination: O:W = 60:40, Csurf = 3 wt.%, T = 75
◦C.

(a) OCF S1 (b) OCF S2

Figure B.32. Lubrication Slip Determination: O:W = 60:40, Csurf = 3 wt.%, T = 75 ◦C.
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(a) OCF S1 (b) OCF S2

Figure B.33. True & Cohesive Slip Determination: O:W = 70:30, Csurf = 3 wt.%, T = 25
◦C.

(a) OCF S1 (b) OCF S2

Figure B.34. Lubrication Slip Determination: O:W = 70:30, Csurf = 3 wt.%, T = 25 ◦C.
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B.3 Effect of Temperature

(a) 25 ◦C (b) 75 ◦C

Figure B.35. True & Cohesive Slip Determination: OCF S1, O:W = 50:50, Csurf = 1 wt.%

(a) 25 ◦C (b) 75 ◦C

Figure B.36. Lubrication Slip Determination: OCF S1, O:W = 50:50, Csurf = 1 wt.%.
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(a) 25 ◦C (b) 75 ◦C

Figure B.37. True & Cohesive Slip Determination: OCF S1, O:W = 50:50, Csurf = 3 wt.%.

(a) 25 ◦C (b) 75 ◦C

Figure B.38. Lubrication Slip Determination: OCF S1, O:W = 50:50, Csurf = 3 wt.%.
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(a) 25 ◦C (b) 75 ◦C

Figure B.39. True & Cohesive Slip Determination: OCF S1, O:W = 60:40, Csurf = 1 wt.%.

(a) 25 ◦C (b) 75 ◦C

Figure B.40. Lubrication Slip Determination: OCF S1, O:W = 60:40, Csurf = 1 wt.%.
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(a) 25 ◦C (b) 75 ◦C

Figure B.41. True & Cohesive Slip Determination: OCF S1, O:W = 60:40, Csurf = 3 wt.%.

(a) 25 ◦C (b) 75 ◦C

Figure B.42. Lubrication Slip Determination: OCF S1, O:W = 60:40, Csurf = 3 wt.%.
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(a) 25 ◦C (b) 75 ◦C

Figure B.43. True & Cohesive Slip Determination: OCF S2, O:W = 50:50, Csurf = 1 wt.%.

(a) 25 ◦C (b) 75 ◦C

Figure B.44. Lubrication Slip Determination: OCF S2, O:W = 50:50, Csurf = 1 wt.%.
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(a) 25 ◦C (b) 75 ◦C

Figure B.45. True & Cohesive Slip Determination: OCF S2, O:W = 50:50, Csurf = 3 wt.%.

(a) 25 ◦C (b) 75 ◦C

Figure B.46. Lubrication Slip Determination: OCF S2, O:W = 50:50, Csurf = 3 wt.%.
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(a) 25 ◦C (b) 75 ◦C

Figure B.47. True & Cohesive Slip Determination: OCF S2, O:W = 60:40, Csurf = 1 wt.%.

(a) 25 ◦C (b) 75 ◦C

Figure B.48. Lubrication Slip Determination: OCF S2, O:W = 60:40, Csurf = 1 wt.%.
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(a) 25 ◦C (b) 75 ◦C

Figure B.49. True & Cohesive Slip Determination: OCF S2, O:W = 60:40, Csurf = 3 wt.%.

(a) 25 ◦C (b) 75 ◦C

Figure B.50. Lubrication Slip Determination: OCF S2, O:W = 60:40, Csurf = 3 wt.%.
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B.4 Effect of Oil:Water Ratio

(a) O:W = 50:50 (b) O:W = 60:40

Figure B.51. True & Cohesive Slip Determination: OCF S1, Csurf = 1 wt.%, T = 25 ◦C.

(a) 50:50 (b) 60:40

Figure B.52. Lubrication Slip Determination: OCF S1, Csurf = 1 wt.%, T = 25 ◦C.
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(a) O:W = 50:50 (b) O:W = 60:40

Figure B.53. True & Cohesive Slip Determination: OCF S1, Csurf = 1 wt.%, T = 75 ◦C.

(a) 50:50 (b) 60:40

Figure B.54. Lubrication Slip Determination: OCF S1, Csurf = 1 wt.%, T = 75 ◦C.
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(a) O:W = 50:50 (b) O:W = 60:40

Figure B.55. True & Cohesive Slip Determination: OCF S1, Csurf = 3 wt.%, T = 25 ◦C.

(a) 50:50 (b) 60:40

Figure B.56. Lubrication Slip Determination: OCF S1, Csurf = 3 wt.%, T = 25 ◦C.
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(a) O:W = 50:50 (b) O:W = 60:40

Figure B.57. True & Cohesive Slip Determination: OCF S1, Csurf = 3 wt.%, T = 75 ◦C.

(a) 50:50 (b) 60:40

Figure B.58. Lubrication Slip Determination: OCF S1, Csurf = 3 wt.%, T = 75 ◦C.
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(a) O:W = 50:50 (b) O:W = 60:40

Figure B.59. True & Cohesive Slip Determination: OCF S2, Csurf = 1 wt.%, T = 25 ◦C.

(a) 50:50 (b) 60:40

Figure B.60. Lubrication Slip Determination: OCF S2, Csurf = 1 wt.%, T = 25 ◦C.

274



(a) O:W = 50:50 (b) O:W = 60:40

Figure B.61. True & Cohesive Slip Determination: OCF S2, Csurf = 1 wt.%, T = 75 ◦C.

(a) 50:50 (b) 60:40

Figure B.62. Lubrication Slip Determination: OCF S2, Csurf = 1 wt.%, T = 75 ◦C.
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(a) O:W = 50:50 (b) O:W = 60:40

Figure B.63. True & Cohesive Slip Determination: OCF S2, Csurf = 3 wt.%, T = 25 ◦C.

(a) 50:50 (b) 60:40

Figure B.64. Lubrication Slip Determination: OCF S2, Csurf = 3 wt.%, T = 25 ◦C.
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(a) O:W = 50:50 (b) O:W = 60:40

Figure B.65. True & Cohesive Slip Determination: OCF S2, Csurf = 3 wt.%, T = 75 ◦C.

(a) 50:50 (b) 60:40

Figure B.66. Lubrication Slip Determination: OCF S2, Csurf = 3 wt.%, T = 75 ◦C.
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B.5 Comparison to Drilling Muds

(a) OCF S1 (b) OBM S1

Figure B.67. True & Cohesive Slip Determination: O:W = 50:50, Csurf = 3 wt.%, T = 25
◦C.

(a) OCF S1 (b) OBM S1

Figure B.68. Lubrication Slip Determination: O:W = 50:50, Csurf = 3 wt.%, T = 25 ◦C.
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(a) OCF S1 (b) OBM S1

Figure B.69. True & Cohesive Slip Determination: O:W = 50:50, Csurf = 3 wt.%, T = 75
◦C.

(a) OCF S1 (b) OBM S1

Figure B.70. Lubrication Slip Determination: O:W = 50:50, Csurf = 3 wt.%, T = 75 ◦C.
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(a) OCF S1 (b) OBM S1

Figure B.71. True & Cohesive Slip Determination: O:W = 60:40, Csurf = 3 wt.%, T = 25
◦C.

(a) OCF S1 (b) OBM S1

Figure B.72. Lubrication Slip Determination: O:W = 60:40, Csurf = 3 wt.%, T = 25 ◦C.
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(a) OCF S1 (b) OBM S1

Figure B.73. True & Cohesive Slip Determination: O:W = 60:40, Csurf = 3 wt.%, T = 75
◦C.

(a) OCF S1 (b) OBM S1

Figure B.74. Lubrication Slip Determination: O:W = 60:40, Csurf = 3 wt.%, T = 75 ◦C.
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(a) OCF S1 (b) OBM S1

Figure B.75. True & Cohesive Slip Determination: O:W = 70:30, Csurf = 3 wt.%, T = 25
◦C.

(a) OCF S1 (b) OBM S1

Figure B.76. Lubrication Slip Determination: O:W = 70:30, Csurf = 3 wt.%, T = 25 ◦C.
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(a) OCF S1 (b) OBM S1

Figure B.77. True & Cohesive Slip Determination: O:W = 50:50, Csurf = 3 wt.%, T = 25
◦C.

(a) OCF S1 (b) OBM S1

Figure B.78. Lubrication Slip Determination: O:W = 50:50, Csurf = 3 wt.%, T = 25 ◦C.
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(a) OCF S1 (b) OBM S1

Figure B.79. True & Cohesive Slip Determination: O:W = 50:50, Csurf = 3 wt.%, T = 75
◦C.

(a) OCF S1 (b) OBM S1

Figure B.80. Lubrication Slip Determination: O:W = 50:50, Csurf = 3 wt.%, T = 75 ◦C.
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(a) OCF S2 (b) OBM S2

Figure B.81. True & Cohesive Slip Determination: O:W = 60:40, Csurf = 3 wt.%, T = 25
◦C.

(a) OCF S2 (b) OBM S2

Figure B.82. Lubrication Slip Determination: O:W = 60:40, Csurf = 3 wt.%, T = 25 ◦C.
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(a) OCF S2 (b) OBM S2

Figure B.83. True & Cohesive Slip Determination: O:W = 60:40, Csurf = 3 wt.%, T = 75
◦C.

(a) OCF S2 (b) OBM S2

Figure B.84. Lubrication Slip Determination: O:W = 60:40, Csurf = 3 wt.%, T = 75 ◦C.
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(a) OCF S2 (b) OBM S2

Figure B.85. True & Cohesive Slip Determination: O:W = 70:30, Csurf = 3 wt.%, T = 25
◦C.

(a) OCF S2 (b) OBM S2

Figure B.86. Lubrication Slip Determination: O:W = 70:30, Csurf = 3 wt.%, T = 25 ◦C.
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