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ABSTRACT

Usage-dependent phenomenon has been commonly observed 
in computer information systems (CIS). Since the 
performance of CIS greatly depends on the phenomenon, how to 
model it is an important CIS design issue. A usage process 
model (the Simon-Yule model) for modeling the usage- 
dependent phenomenon is proposed. The model is modified and 
successfully applied to the performance evaluation of self
organizing linear search heuristics. Analytical and 
empirical results indicate that the model provides a 
realistic performance evaluation of the heuristics and 
presents a solution to the research open problems which have 
been unsolved for more than two decades. Furthermore, the 
results lead to develop a self-organizing mechanism 
incorporating the usage process model for continuous speech 
recognition systems in the artificial intelligence arena.

vlii



CHAPTER 1
INTRODUCTION

Conventional wisdom has it that the more one uses 
something, the more the same thing will be used again. The 
phenomenon has commonly been observed in computer 
information systems (CIS). For example, a simple statement 
of the phenomenon is the 80-20 rule which states that 80% of 
computer usage involves only 20% of the resources (Heising 
1953). It is logical to consider this usage-dependent 
phenomenon in information systems design in order to improve 
the usefulness and efficiency of CIS. When the information 
systems are defined as the usage-dependent information 
systems (UDIS), various applications can be found as a 
result of incorporating the usage-dependent phenomenon.

1.1 Usage-Dependent Information Systems
The literature indicates that UDIS have been proposed 

for use in various fields including telecommunications, 
computer science, and text modeling. Applications of UDIS 
are listed in Table 1.

Huffman Coding (1986) provides the most efficient and 
reliable representation of information storage and 
transmission in fields such as telecommunications and

1



Table 1: Applications of UDIS

Applications References
Huffman coding Hamming (1986)
Text compression Salton (1989)
Usage-dependent 
menu design

Bayman et al. (1989)

Self-organizing files Knuth (1973)
- VLSI circuit

simulation program
Bently and McGeoch 
(1985)

- Interpreter design Bitner (1979) 
Rivest (1976)

- Collision resolution 
in hashing files

Knuth (1973)

Index selection Wiederhold (1987)
Type-token analysis of 
text generation

Wiederhold (1987)



computer science. In this type of code, characters are 
represented by a variable number of bits depending on the 
relative frequency of occurrence of the character. It is 
desirable to represent the most frequently occurring 
characters with the shorter bit patterns and the less 
frequently occurring ones with longer bit patterns.

A typical example is the Morse code, which uses the 
dot, dash, and space to express the letters of the alphabet 
or symbols. Sequences of codes are assigned to the letters 
of the alphabet based on the frequency of use for each 
letter; i.e., (.) for the highly frequent letter "E" and

for the less frequently used letter "J". This 
technique significantly reduces the number of codes sent 
through transmission.

Another example is text (or data) compression. A study 
of composition text samples indicates the unevenness with 
which linguistic text elements occur. If the typical length 
of bits (i.e., 8- or 16-bit) is assigned to represent each 
word regardless of its frequency, a lot of processing time 
and storage space will be wasted. Huffman coding can be 
used to solve this problem. For example, the most 
frequently used character "O'1 is represented by a single-bit 
0, and the least frequently used (%) is represented by a 16- 
bit pattern for a certain application.



Bayman et al. (1989) propose the usage-dependent menu 
design with Huffman coding. Most current menu systems 
employ static menu structures, requiring users to gain 
familiarity with large and complex fixed menu 
configurations. Against this, they suggest a dynamic menu 
system that continuously refines the menu tree based on 
users1 search patterns so that users can access the 
information they need with few selections. It is obvious 
that usage-dependent menus would have an advantage over 
static ones during usage. Quattro, a spreadsheet software, 
allows users to change the menu structures to suit their 
preferences. Some users, however, might be uncomfortable 
with the dynamically changing, unstable menu structures.
For this reason, it is essential to conduct studies of user 
preference to determine the utility of usage-dependent menu 
systems.

In a linear search list, initially unordered records are 
searched sequentially. In general, a record ^  will be 
accessed with probability pif where px + p2 + . . . . +  pN = 1. 
The time required to conduct a successful search is 
essentially proportional to the number of comparisons, C, 
which has the average value

C = px + 2p2 + .... + NpN>
If we have the option of arranging the records in a linear



list in any desired order, then the above expression is 
minimized when

Pi — P2 — • • • • — Pn *
That is, by arranging the most frequently used records near 
the beginning, we can minimize the search time.

In most typical situations, however, the access 
probability p̂  ̂ is not known a priori so that we cannot 
arrange the records by descending frequency of access (Knuth 
1973, Bitner 1979). Several self^organizing linear search 
heuristics (Hester and Hirschberg 1986) are proposed to 
handle this problem. A list that is initially unordered can 
be dynamically reorganized according to usage patterns. By 
applying the heuristics, the most frequently used records 
will be moved to the front of the list and the less 
frequently used ones will move to the end as time goes by.

Wiederhold (1987) states that it is very important to 
choose the most selective index among various attributes for 
a query; i.e., choose the most frequently used attributes as 
the index. He also indicates the possible application of 
UDIS in type-token analyses of text generation, which are 
concerned with relationships between the number of different 
words (types) and the total number of words (tokens) in a 
literary text.



1.2 Problem Statement
As described above, UDIS have several advantages over 

information systems that do not consider the usage-dependent 
phenomenon; i.e., they save storage space, reduce the run 
time of programs, reduce communication time, and decrease 
search time. Because the performance of UDIS, however, 
depends on the distribution of usage patterns, one must 
determine the exact pattern in order to take full advantage 
of usage-dependent phenomenon and incorporate it effectively 
into systems design. For example, Bitner (1979) shows that, 
if the keys in data structures are optimally arranged 
according to the exact distribution of their usage patterns, 
substantial decreases in access time can result.
Especially, if the distribution is in accordance with Zipf's 
law, the minimum cost is four or five times less than the 
random cost. Modeling exact usage patterns is essential, 
therefore, in designing UDIS. Two immediate questions 
follow: (1) how does one model the usage-dependent pattern?
; and (2) how does one take advantage of the patterns?

With regard to the first question, many approaches have 
been proposed during the last 50 to 60 years to describe the 
usage pattern. These include usage index, usage 
distribution, and usage process. Limitations inherent in 
the first two approaches, however, restrict their usefulness 
in real-world situations. The usage index approach shows



empirical results only, for example, without theoretical 
justification. The usage distribution approach provides the 
empirical distributions, but has two limitations: (1)
estimating the parameters associated with the models is a 
very difficult task; and (2) the necessary statistical 
theory for making a rigorous test is not available (Chen 
1988). To avoid these problems, the usage process approach 
is preferred. It provides a more constructive approach in 
modeling the usage-dependent phenomenon.

One way to answer the second question is to use the 
self-organizing linear search technique to take advantage of 
the usage-dependent phenomenon. Many self-organizing linear 
search heuristics have been proposed in order to dynamically 
rearrange the list according to usage patterns. This would 
involve moving more frequently accessed records near the 
front of the list and less frequently accessed ones near the 
end.

The literature shows that a lot of effort has been 
focused on performance evaluations of the heuristics to 
determine which is the most efficient under certain 
circumstances. The results of these evaluations provide 
valuable information to practitioners. For the purpose of 
evaluating the heuristics, three approaches are proposed: 
asymptotic, worst case, and amortized. These approaches



have provided many theoretical and empirical results of 
performance evaluation during the last two decades.

Despite the availability of evaluation results, several 
open problems remain (Rivest 1976, Hester and Hirschberg 
1985) . These are: (1) unrealistic assumptions of usage
patterns; (2) the absence of theoretical bounds for the 
heuristics with reasonable assumptions; (3) the lack of a 
reasonable scheme for optimizing the heuristics; and (4) no 
good approach capturing the locality phenomenon in the 
request sequences. There is a strong need, therefore, for a 
more realistic performance evaluation approach, which would 
use reasonable assumptions of the usage pattern and at the 
same time solve the open problems previously identified.

1.3 Dissertation Purpose and Organization
The purpose of this dissertation is threefold. First, 

we propose to develop a usage process model that accurately 
describes the usage-dependent phenomenon, but is not subject 
to many limitations and is simple enough to use in the 
field. After a thorough literature review, we have chosen 
the Simon-Yule model of text generation (Simon 1955) as a 
promising approach. Second, we propose to apply the Simon- 
Yule model to the performance evaluation of the heuristics 
and, at the same time, solve the open problems described 
above. Third, a self-organizing mechanism for continuous



speech recognition is developed to show how the previous two 
findings can be incorporated into a UDIS design.

As a prelude to examining the research proposal,
Chapter 2 discusses the various approaches to modeling usage 
patterns and their respective limitations. Also included in 
Chapter 2 is an overview of the Simon-Yule model which we 
propose to use in modeling the usage-dependent phenomenon.
In Chapter 3, self-organizing linear search heuristics and 
the open problems previously cited are discussed. In 
Chapter 4, the analytical study of the performance 
evaluation of the heuristics using the Simon-Yule model are 
presented. In Chapter 5, the simulation results are 
presented. In Chapter 6, a self-organizing mechanism 
incorporating the usage process model for continuous speech 
recognition is proposed. Finally, the conclusion and 
further research issues are presented in Chapter 7.



CHAPTER 2 
DESCRIPTION OF USAGE PATTERNS

There are three approaches to describing usage 
patterns: usage index, usage distribution, and usage 
process. We introduce these approaches in terms of text 
generation. The same concept can be applied to other 
applications without loss of generality.

2.1 The Usage Index Approach
The simplest way to describe a usage pattern is 

probably the usage index approach. Two usage indices are 
reviewed below: the 80/20 rule and the ABC analysis.

80/20 Rule
In 1953, Heising stated that 80% of a transaction deals 

with the most active 20% of a file and that the same rule 
applies to this 20%. More formally, the 80/20 rule can be 
described as

Pi + P2 + ...... + P. 20n------------------------------  “ .80 for all n, (2.1)
Pi + P2 +   + Pn

10



11
where pĵ  is the probability that a record i would be 
accessed. In terms of library management, the rule might 
state that approximately 80% of the circulations are 
accounted for by about 20% of the holdings.

ABC Analysis
In industrial engineering applications, an equivalent 

form of the 80/20 rule is the ABC analysis (Herron 1976), 
which ranks the items of a population in descending order of 
some activity, then develops the most appropriate techniques 
for handling the high-activity "A" group of items, the 
medium-activity "B" items, and the low-activity "C" items. 
The analysis is normally represented by the ABC curve, which 
is obtained by plotting the percent of ranked-to-total 
population against the corresponding cumulative percent of 
total activity value represented by that percent of the 
ranked population. In general, the ABC analysis shows that 
20% of the ranked items account for 80% or more of the 
total activity, which is consistent with the 80/20 rule.

Drawbacks
The usage index approach is well accepted in the field 

because of its simplicity, but its lack of theoretical 
justification limits its application.
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2.2 The Usage Distribution Approach

A more general description of the usage pattern is the 
usage distribution approach. Zipf's two laws of usage 
distribution are probably the most well known.

Zipf's First Law
In his book, Human Behavior and the Principle of Least 

Effort, Zipf (1949) stated that "if one takes the words 
making up an extended body of text and ranks them by 
frequency of occurrence, then the rank r multiplied by its 
frequency of occurrence, f(r), will be approximately 
constant." In symbolic form, this can be expressed as 

f(r) = c/1, c/2, ...., c/r
= cr-1, r =  1,2,3,...., (2.2)

where c is a positive constant. That is, if we plot f(r) 
vs. r on a log-log scale, then we see an approximately 
straight line with a slope of -l.

Zipf's first law attracted tremendous attention from 
many researchers and has been widely applied to many areas 
of computer science and text modeling, including: the 
applications listed in Table 1, program complexity in 
software engineering (Shooman 1983), key word distribution 
in bibliographic database design (Fedorowicz 1982a, 1982b), 
and information retrieval (Lancaster 1979). One of the



problems in the application of Zipf's law, however, is that 
its observation reveals only a crude approximation of the 
phenomenon; i.e., its simplicity cannot explain the 
concavity to the origin, as is usually the case with 
empirical log-log distributions. Several new formulations 
of Zipf's law, therefore, have been proposed. These new 
formulations strengthened the suitability of Zipf's law 
beyond the experimental evidence, which is strong in its own 
right. The most general formulation is perhaps the one 
proposed by Mandelbrot (1953):

f(r) = a(r + b)c, r = 1,2,3,..., (2.3)
where a > 0, c < 0, and b > -l. The formulation is
generally referred to as Mandelbrot's law of word freguency. 
Recent applications of this formulation include: secondary 
key indexing by Samson and Bendell (1985), and program 
complexity measures by Shooman (1983).

Zipf's Second Law
The study of Zipf's first law focuses mainly on words 

of high frequency. In contrast, Zipf's second law was 
motivated by two remarkable phenomena associated with words 
of low frequency of occurrence. If we observe and analyze
the frequency of different words in long sequences of text
and count f(n) as the number of words appearing n times,
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then the ratio of the number of words occurring once (f(l)) 
to the number of different words in the text is 
approximately a constant 0.5. Also, the values of 
f(n)/f(l), n = 1,2,3,4,5, show an approximate pattern of l, 
0.33, 0.17, 0.10, and 0.07 (Booth 1967). Based on his first 
law, Zipf derived a formulation which he stated as the 
second law (1949). Booth (1967) argued that Zipf's 
formulation is only partially true and proposed a more 
general form as follows:

f(n) = a'(nc’ - (n+l)c'), n = 1,2,3,..., (2.4)
where a' > 0  and c' <0. The formulation is referred to as 
Booth's law of word frequency (1967). Recent applications 
of this formulation include: indexed file performance 
evaluation by Fedorowicz (1987), and automatic text analysis 
by Pao (1978).

Drawbacks
A major difficulty in using Zipfian distribution is the 

estimation of the parameters associated with the formulation 
(e.g., a, b, c in equation (2.3)). To justify the estimated 
parameters, goodness-of-fit tests, which are a statistical 
test of a hypothesis that the sampled population is 
distributed in a specific way, are commonly used. There are 
several statistics used for a goodness-of-fit test. Among
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those, the chi-square test is probably the most commonly 
used. The crucial assumption underlying the chi-square 
procedure is that the sample is randomly selected; i.e., the 
observations are independently and identically distributed. 
In practice, however, the observations may have substantial 
dependence, as when Zipfian data are collected as a time 
series; e.g., the data from a literary text.

As Ijiri and Simon (1977) pointed out, this is a 
questionable approach, because the necessary statistical 
theory for making a rigorous test is not available.
Instead, they suggest that research should focus on the 
underlying mechanisms that can (1) explain the simplest form 
of Zipf's law as a first approximation, and (2) look for an 
additional mechanism that could be incorporated into the 
theory so as to lead to a better second approximation.

2.3 The Usage Process Approach
The most general approach to describe the usage pattern 

is the usage process, which provides the generating 
mechanism that are used to explain the phenomenon of Zipf's 
law. In this section, the performance of the three commonly 
used process models are discussed by examining their 
abilities to explaining Zipf's two laws.
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The Multinomial Urn Model

In the multinomial urn model, the number s of an 
author's available vocabulary vlf v2, ...,vs is assumed 
fixed, and each word, vif i = 1, 2, ..., s, is assumed to 
have a fixed probability p£ of being used each time the 
author writes a word, so that the probability of writing vi;L 
v i2  vin is pix pi2 ... Pin, Where ij e {1, 2, .., s},
j 1, 2 j , n »

In general, since the occurrence of the next word 
strongly depends on the previous several words and the 
probability pi is changing over the text generation, the 
model's assumptions (i.e., independence and fixed p ^  are 
unrealistic. In addition, Chen (1989) shows that the 
expected frequencies of words is inconsistent with equation 
(2.4); i.e., Zipf's second law. Thus, a dynamic 
probabilistic model, called Markov chain, was recognized as 
being a more realistic model for describing the usage 
pattern.

Markov Chain Model
In 1913 Markov showed that some verse by Pushkin, when 

reduced to a sequence of vowels and consonants, could be 
accurately represented as a first-order Markov chain. Let 
Y2, Y2, ..., Yk+i' •••, Yt' be a k-th order Markov chain



17
and Yj = ij if the word j, ij e {1, 2, ..., s}, is selected 
at the j's token of the text generation process. The Markov 
chain can be characterized by the initial probability:

p (Yk = ik' Yk-i = ik-l' — • Yi = î) 
and by the following transition probabilities:

P ik+1 I ^ k - i^-f  • • • f i i

= P (Yt+1 = I Yt = -*-t !••••! Yt-k+l = ^t-k+l) •
= p (Yt+1 = H+l I Yt = '**••' Yt-k+l = H-k+l) '

= i^-kI ••••/ Y2 — i2 ,••••, Y^ i^)f (2.5)
where k = 1, 2, ..., t = k ,  k+1, .... That is, the text
generation process uses the word v^, ij e {1,2,..., s}, at 
the j's token. A succession of such models with increasing 
k can be regarded as a succession of approximations to 
strings of text. The first model is a stochastic process in 
which the words are selected according to a first-order 
Markov chain. This simple limitation makes it inadequate as 
a model of text generation since sentences exhibit 
constraints operating over much greater time spans. The 
second and succeeding models are stochastic processes in 
which the words are selected according to second and higher 
order Markov chains.

Among the several researchers sharing the idea of a 
Markov chain, Claude Shannon (1951) states that "The writing 
of English sentences can be thought of as a process of



choice: Choosing a first word from possible first words with 
various probabilities; then a second with probabilities 
depending on the first; etc. This kind of statistical 
process is called stochastic process, and information 
sources are thought of, in information theory, as stochastic 
processes." Nevertheless, there are critics opposed to 
using the use of the Markov chain as a model of text. For 
example, Miller and Chomsky (1963) showed that increasing 
the order of Markov chains does not, in the limit, yield an 
exact set of grammatically correct sentences. Chen (1989) 
also shows that the Markov chain model can hardly explain 
the Zipf's two laws.

The Simon-Yule Model
Simon (1955) proposed a more constructive approach 

which has the following steps:
(1) Begin with empirical data, not hypotheses.
(2) Draw a simple generation that approximately 

summarizes striking features of the data.
(3) Find limiting conditions under which deviations 

from a generalization are small.
(4) Construct simple mechanisms to explain the simple 

generalizations.
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(5) Propose the explanatory theories that go beyond

simple generalizations and make experiments for new 
empirical observations.

Based on his theory of modeling, Simon (1955) proposed the 
generating mechanism discussed below.

Basic Model
According to Simon (1955), the process of text 

generation can be described as a stochastic process. The
stochastic process by which words are chosen to be included 
in written text is a twofold process. Words are selected by 
an author by processes of association (i.e., sampling 
earlier segments of his word sentences) and imitation (i.e., 
sampling from other works, by himself or other authors). 
Simon's selection processes are stated in the following 
assumptions, where f(n,t) is the number of different words 
that have occurred exactly n times in the first t words.

Assumption I; There is a constant probability, a, that 
the (t+l)-st word will be a new word-a word that
has not occurred in the first t words.

Assumption II: The probability that the (t+l)-st word 
is a word that has appeared n times is
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proportional to n»f(n,t)-that is, to the total
number of occurrences of all the words that have
appeared exactly n times.

That is, assumption I and assumption II describe a
stochastic process, in which the probability that a
particular word will be the next one written depends on what
words have been written previously. Based.on the two
assumptions, Simon derived

h(n) = pB(n,p+l), n = 1,2,3,..., (2.6)
where h(n) is the expected relative frequency of words

1
appearing n times, p = ------  and B(n, p+1) is the beta

1 -  a
function with parameters n and p+1. Simon called equation 
(2.6) a Yule distribution because Yule's paper (1944), which 
predicted the modern theory of stochastic processes, derived 
the same equation in a study of a biological problem.
Simon's approach is frequently cited as the Simon-Yule model 
of text generation.

From equation (2.6) and the index approach proposed by 
Chen and Leimkuhler (1989a), Chen (1989b) derived a more 
realistic formulation of equation (2.5), which provides a 
theoretical justification for the estimation and 
interpretation of the parameters associated with Zipf's 
first law.



21
Refinements of the Two Assumptions
Simon (1963) noted that the basic model is only a first 

approximation to the striking features of Zipfian data. He 
recommended further refinements of his model by modifying 
the assumptions so as to better represent the real world.

With regard to the first assumption of a constant 
probability a, a modification is introduced so that the 
entry rates for new words are a decreasing function of the 
length of the text. That is,

Assumption 1 1: There is a decreasing probability
function a(t), 0 < a(t) < 1, that the (t+l)-st word 
be a new word - a word that has not occurred in the 
first t words.

Even with this slight modification, the problem is 
analytically difficult. Computer simulation methods, 
carried out by Simon and Van Wormer (1963), show a 
significant finding: the slight concavity toward the origin 
on a log-log plot is a result of a decreasing rate of entry 
of new words. In other words, the empirical data will 
continue to approximate the Simon-Yule distribution with a 
slight concavity to the origin, if the change in the rate of 
entry is not too rapid.



During 1964-1974, Simon successively modified 
Assumption II, in terms of business firms, to increase the 
realism of the model and show the effect of public policy on 
the size of firms. All the papers were collected in the 
monograph, Skew Distribution and the Size of Business Firms 
(1977). The modifications were based on empirical data and 
supported by economic theory. The two main refinements are: 
auto-correlated growth of firms, and mergers and 
acquisitions. They provide two different economic 
explanations for the concavity of the bilogarithmic firm- 
size distributions as observed in empirical data.

2.4 Summary
The several methods used to describe the usage pattern 

can be summarized as follows:
(1) The usage index approach is simple, but does not 

provide any theoretical justification.
(2) The usage distribution approach is more general than 

the usage index approach, but it has some difficulty 
estimating the parameters associated with the 
formulation and does not provide any rigorous 
statistical goodness-of-fit test to validate the 
distributions.
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(3) The usage process models provide the most 

constructive approach in modeling the usage pattern. 
The multinomial urn model is simple, but its 
underlying assumptions— independence and fixed 
probability— are unrealistic and the result is 
inconsistent with Zipf's second law. The more 
dynamic and complicated model, the first-order 
Markov chain, was proposed, but its simple 
limitation makes it inadequate as a model of text 
generation since sentences exhibit constraints 
operating over much greater word spans.
Furthermore, the Markov chain model involves too 
many parameters. This makes the model difficult to 
use to explain the simplicity of Zipf's law (Chen 
1989).

(4) The Simon-Yule model of text generation is identified 
as the most promising approach for describing usage 
patterns. This is due to the following findings: (i) 
the model is simple, with only one parameter in the 
formulation; (ii) the model is constructive, 
providing a theoretical justification for the 
estimation of the parameter associated with
Zipf's two laws; (iii) the model captures the 
dependent nature of record accesses in the request



search sequences, providing a realistic generating 
mechanism of text generation; (iv) the model is 
general, providing the explanation for such diverse 
phenomena as scientific publications, city sizes, 
income distribution, and biological species; and (v) 
the model is flexible, enabling successive 
refinements to increase realism.



CHAPTER 3
SELF-ORGANIZING LINEAR SEARCH

Linear search, a very simple way to retrieve data, has 
long been studied in the literature. In a linear search of 
a list of initially unordered records, the search progresses 
linearly; i.e., from the first record to the last until the 
requested record is found. In practice, it is seldom the 
case that all records are equally likely to be searched; 
some records will be accessed much more frequently than 
others. To take advantage of this usage-dependent 
phenomenon and enhance the performance of linear search, the 
order of the list must be dynamically changed so that 
frequently accessed records are moved to the front of the 
list, and less frequently accessed records are moved to the 
end.

During the last few decades, various self-organizing 
heuristics have been proposed to dynamically arrange the 
more frequently accessed records closer to the front of the 
list. Several measures have been developed to evaluate the 
relative performance of these heuristics.

In this chapter, we discuss applications of the self- 
organizing linear search, then review the details of all the

25



permutation heuristics, their performance evaluation, and 
open problems.

3.1 Applications
Bently and McGeoch (1985) justify the use of self

organizing linear search as follows:
(1) When n is small (i.e., at most, several dozen), the 

simplicity of the code can make it faster than more 
complex algorithms. This occurs, for example, when 
linked lists are used to resolve collisions in a hash 
table.

(2) When space is severely limited, sophisticated data 
structures may require too much storage space.

(3) If the performance of linear search is almost (but 
not quite) good enough, a self-organizing linear 
search list may give acceptable performance without 
adding more than a few lines of code.

Within these contexts, there are several applications of 
self-organizing linear search.

One common application is a list of identifiers 
maintained by a compiler or interpreter (Bitner 1979). The 
list cannot be initially ordered since frequencies are 
unknown, but, since most programs tend to access some 
identifiers much more often than others, the more frequently
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accessed identifiers should be nearer the front of the 
search list.

One example is the list of identifiers maintained by a 
compiler or interpreter in the scatter table used by the 
LISP system at the University of California at Irvine 
(Hester and Hirschberg 1985). In this system, identifiers 
are hashed into a list of buckets, each of which is an 
unordered linear list of identifier descriptions. Virtually 
every command interpreted by the system involves one or more 
accesses to elements in the scatter table. Since most 
programs tend to access some identifiers more often than 
others, a lower average search cost can be obtained by 
moving the more frequently accessed identifiers to the front 
of the list.

Bently and McGeoch (1985) also describe that self- 
organizing linear search heuristics can improve the 
performance of a very large-scale integration (VLSI) 
circuit-simulation program that had two primary phases. The 
first phase read the description of the circuit from the 
symbol table, and the second phase simulated the circuit.
The program spent five minutes in a set-up phase, most of 
which time was devoted to a linear search through a symbol 
table. Since this simulator was run on an on-line system, 
the five minute set-up phase was annoying to users. 
Incorporating a simple self-organizing search with about a
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half-dozen additional lines of code reduced the set-up time 
to about 30 seconds.

3.2 Permutation Heuristics
The main feature that differs among heuristics is the 

moving distance of the accessed record. The heuristics move 
the accessed record forward by various distances according 
to their respective schemes, either constant or based on the 
location of the record or past events. The methods 
associated with these heuristics are explained using an 
initial linear list with four records: (A B C D).

Move-to-Front fMTF^
When the accessed record is found, it is moved to the 

front of the list, if it is not already there. All the 
records that the accessed record passes are moved back one 
to make room.

Transpose
In this heuristic, the accessed record, if not at the 

front of the list, is moved up one position by transposing 
it with the record just ahead of it.
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Table 3.1: Example of MTF
Access Order Probe Times Self-Organizing Linear
_______________________ 1 2 3_4_________________Search List____

A * A B C D
B * * B A C D
C * * * C B A D
D * * * * D C B A
A * * * * A D C B
B * * * * B A D C
C * * * * C B A D
D * * * * D C B A

COST = SUM OF PROBE TIMES/# OF ACCESS = 26/8 =3.25
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Table 3.2: Example of Transpose
Access Order Probe Times Self-Organizing Linear
_____________________ 1 2 3 4_________________Search List_____

A * A B C D
B * * B A C D
C * * * B C A D
D * * * * B c D A
A * * * * B c A D
B * B c A D
C * * C B A D
D * * * * D C B A

COST = 21/8 =2.63

Count
When the record is accessed, the count of the accessed 

record is incremented and that record is moved forward to 
the first position in front of all records with lower 
counts. Thus, the list is always in decreasing order by the 
value of the counts of the records involved. This is the 
most accurate method; unfortunately, it requires substantial 
additional space for storage. Because of the additional 
space required, the count method has been considered in a 
different class from MTF and transpose, and has received 
less attention (Bently and McGeoch 1985) in the literature.
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Table 3.3: Example of Count
Access Order Probe Times Self-Organizing Count
__________________ 1 2 3 4_______ Linear Search List_________

A * A B C D 2 1 1 1
B * * A B C D 2 2 1 1
B * * B A C D 3 2 1 1
D * * * * B A D C 3 2 2 1
C * * * * B A D C 3 2 2 2
A * * B A D C 3 3 2 2
C * * * * B A C D 3 3 3 2
A * * A B c D 4 3 3 2

COST = 21/8 =2.63

Move-Ahead-k
Rivest (1976) and Gonnet et al. (1979) proposed the 

move-ahead-k rule as a compromise between the relative 
extremes of the move-to-front and the transpose rules. It 
moves the record forward k positions, where k can be decided 
by users according to the distribution of accessed record 
order.



Table 3.4: Example of Move-Ahead-k (k = 2)
Access Order Probe Times Self-Organizing Linear
_____________________ 1 2 3 4_________________Search List_____

A * A B C D
B * * B A C D
C * * * C B A D
D * * * * C D B A
A * * * * c A D B
B * * * * c B A D
C * c B A D
D * * * * c D B A

COST = 23/8 = 2.88

Jump
Proposed by Hester and Hirschberg (1985), this rule 

uses a back pointer during the search. The pointer is later 
used as the destination for moving a record forward. The 
pointer is advanced to the probed record if and only if the 
probed record is not the accessed record. Jump can be a 
function of variables such as the current position of the 
back pointer, the position of the probed record, and/or the 
number of accessed records preceding the current one.
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Table 3.5: Example of Jump

(Pointer Position: The Probed Record, and Suppose 
C in a Row)

Access Order Probe Times Self-Organizing Linear
_____________________ 1 2 3 4______________Search List_____

A B (C) D
D * * * * A B (C) D
C * * * A B C D
B * * A C B D
A * C A B D
D * * * * c A B D
C * c A B D
B * * * c A B D
A * * c A B D

COST = 20/8 =2.5

Meta-Alaorithm
The purpose of the meta-algorithm, applied in 

conjunction with the heuristic, is to slow the convergence 
of the latter by not moving records on the basis of single 
accesses only, thereby reducing the effects of a one-time 
access to a record. With regard to this method, four 
heuristics are suggested: (1) move-every-kth access; (2) k- 
in-a-row; (3) batched k; and (4) wait c and move.



Move-Everv-kth Access
McCabe (1965) considers applying the permutation 

algorithm only once every k accesses to reduce the time 
spent reordering the list.
Table 3.6: Example of Move-Every kth Access

(Suppose k = 2 and Use MTF)
Access Order Probe Times Self-Organizing Linear
______________________ 1 2 3 4_________________Search List_____

A * A B C D
B * * A B C D
C * * * C A B D
D * * * * c A B D
A * * A C B D
B * * * A C B D
C * * C A B D
D * * * * c A B D
COST = 20/8 =2.5

k-in-a-row
This heuristic is applied only if the accessed record 

has been accessed k times in a row. If the record is 
accessed even twice in a row, the chances are greater that 
it will have additional accesses in the near future. This 
heuristic has the advantage of not requiring as much memory
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as do count rules, since it is necessary to remember only
the last record accessed and a single counter for the number
of recent consecutive accesses to that record.
Table 3.7: Example of k-in-a row

(Suppose k = 3 and Use MTF; for k < 3, No 
Heuristic Is Used):

Access Order Probe Times Self-Organizing Linear
_______ 1 2 3 4________________Search List_____

A * A B C D
B * * A B C D
C * * * A B C D
D * * * *  A B C D
A * A B C D
B * * A B C D
C * * * A B C D
D * * * * A B C D

-> (The accessed record has been accessed twice in a row,
so we apply the permutation algorithm - MTF.)
C * * * * C A B D

COST = 24/9 =2.67

Batched k
Gonnett et al. (1979) suggest the batched k heuristic 

with minor modification. This heuristic groups accesses
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into batches of size k and applies the permutation algorithm 
only when all k accesses in a batch are to the same record. 
This tends to slow convergence down a bit more than k-in-a- 
row and provides a lower asymptotic cost.

Table 3.8: Example of Batched Heuristics
(Suppose k = 2 and Use MTF)

Access Order Probe Times Self-Organizing Linear
______________________ 1 2 3 4_______________Search_List_______

A * A B C D
D * * *  * A B C D
B (Access same * * A B C D
B record here. )* * B A C D
C * * * B A C D
A * * B A C D
B * B A C D
D * * *  * B A C D
C ( " II * * * B A C D
C ii

" ) * * * C B A D
COST = 25/10 =2. 5

Wait C and Move
Bitner (1979) modified the k-in-a-row strategy and 

suggested the wait c and move heuristic, which incorporates
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finite counters for each record. After a record has been 
accessed c times (not necessarily in a row), the heuristic
is applied and the counter for that record is reset.

Table 3.9: Example of Wait C and Move
(Suppose c = 3; After That, the MTF Is Applied)

Access Order Probe Times Self-Organizing Count
__________________1 2 3 4_______ Linear Search List___________

A * A B C D 1 0 0 0
B * * A B C D 1 1 0 0
B * * A B C D 1 2 0 0
D * * * * A B C D 1 2 0 1
C * * * A B C D 1 2 1 1
A * A B C D 2 2 1 1
B * * B A C D 3 2 1 1
-> Reset counter for B to 0.
D * * * * B A C D 0 2 1 2
C * * * B A C D 0 2 2 2

COST = 22/9 = 2.44

Hybrids
The MTF and transpose rules clearly have trade-offs 

concerning convergence and asymptotic cost. If it is known



in advance that the number of accesses will be small, move- 
to-front is probably the better heuristic. The transpose 
rule is better, however, if the number of accesses is 
expected to be large. A hybrid is a natural attempt to 
incorporate the best of both heuristics. Tenenbaum and 
Nemes (1982) suggest two classes of hybrids: POS(k) and 
SWITCH(k).

Hybrids - P O S m
If the accessed record is found in a position <= k, it 

is transposed with its predecessor; otherwise, it is moved 
to the kth position, shifting all intervening records back 
one. Note that P0S(1) is move-to-front, whereas POS(n - 1) 
is transpose.

Hybrid - SWITCH fk̂
This method is the same as POS except that the use of 

move-to-front and transpose are reversed.
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Table 3.10: Example of Hybrid - POS(k)

(Suppose k = 4 and Use MTF)
Access Order Probe Times Self-Organizing Linear
__________________1 2 3 4__________________Search List_______

A * A B C D
B * * B A C D
C * * * B C A D
D * * * * B C D A
— > Use transpose method.
A * * * * A B C D
B * * B A C D
C * * *  C B A D
D * * * * D C B A

COST = 23/8 = 2.875



Table 3.11: Example of Hybrid - Switch (k)
(Suppose k = 4 and Use MTF)

Access Order Probe Times Self-Organizing Linear
_____________________ 1 2 3 4______________ Search List_______

A * A B C D
B * * B A C D
C * * * C B A D
D * * * * D C B A
— > Use MTF method.

A * * * * D C A B
B * * * * D C B A
C * * C D B A
D * * D C B A
A * * * * D C A B
B * * * * D C B A
C * * C D B A
D * * D C B A
— > Use transpose method. 

COST = 34/12 = 2.83

3.3 Performance Evaluation
For performance evaluation of the heuristics, several 

measurements have been suggested: asymptotic cost,
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amortized cost, and rate of convergence (Hester and 
Hirschberg 1985). In general, the average search cost of a 
permutation heuristic for a given initial configuration of 
the list and a search sequence can be obtained by dividing 
the number of probes required to find the accessed record by 
the number of records accessed. The corresponding examples 
are given in the previous section.

A relative comparison can be obtained based on any 
heuristic, but costs of a heuristic are often compared with 
the cost of the optimal static ordering, in which the keys 
are initially arranged in decreasing order by their static 
probabilities and never reordered through the access 
sequence. Although the optimal static ordering is not 
optimal over all rules (because it is static rather than 
dynamic), it has been used as a basis for comparing the 
performance of the heuristics. Since the first three 
heuristics (i.e., MTF, transpose, and count rule) are 
representative of a large section, we will focus on these 
heuristics first and investigate the move-ahead-k heuristic 
in order to determine effects of a moving distance for an 
accessed record.

Asymptotic Cost
The asymptotic cost of a heuristic is the average cost 

for a single key over a search sequence and its initial
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configuration of the list. As indicated above, the cost can 
be measured as the number of probes required to find the 
accessed records. A common assumption for analyses of 
asymptotic cost is that each record rL independently 
accesses with a fixed probability p£ according to the 
probability distribution P = {px, p2,...Pi}.

Asymptotic cost a m  (P) of the move-to-front (MTF) rule 
for probability distribution P has been derived by many 
researchers: McCabe (1965), Burville and Kingman (1973), 
Knuth (1973), Hendricks (1976), Rivest (1976), and Bitner 
(1979). The formula shows that a m  (P) is, at most, twice the 
cost of the optimal static ordering, A0(P). However, Knuth 
(1973) shows that, under Zipf's distribution of search 
request, the MTF rule is approximately 1.386 times the 
optimal cost as n -* ».

Rivest (1976) also shows that the asymptotic cost of 
transpose AT is less than or equal to that of AM (P) for 
every probability distribution. He also conjectured the 
transpose rule to be the optimal rule of all permutation 
rules.

Bitner (1979) shows that the search cost of the count 
rule is asymptotically equal to that of the optimal static 
ordering, and that the difference in cost between the two 
decreases exponentially with time, so that the count rule 
produces the ordering with the lowest expected cost for each



request.
In summary, for any probability distribution P, the 

previous asymptotic approach shows that
Am (P) < 2A0 (P),
A^P) < Am (P) , and 
AC(P) = A0(P) .

Worst-Case Cost
The worst-case cost of a permutation heuristic can be 

obtained by counting the worst-case number of comparisons 
over a given request sequence and an initial configuration, 
and multiplying that number by the number of accesses (i.e., 
the maximum value of the average search costs). By the 
given definition of cost, the worst case is bounded above by 
the total number of records in the list (i.e., n) since the 
cost is measured by the number of comparisons.

The worst-case cost of MTF has been shown by many 
(Bently and McGeoch (1985); Bitner (1979); Burville and 
Kingman (1973); Hendricks (1976); Knuth (1973); Rivest 
(1976); Sleator and Tarjan (1985)) to be no more than twice 
that of the optimal static ordering.

Amortized Cost
In many search processes, it is very rare that the 

worst case occurs at every step. Amortized analysis
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considers this fact and combines aspects of worst-case and 
average-case analysis, and for many problems provides a 
measure of algorithmic efficiency that is more robust than 
average-case analysis and more realistic than wors-case 
analysis (Bently and McGeoch 1985, Sleator and Tarjan 1985). 
Compared to asymtotic cost or worst-case cost which 
determines a search cost for a single key, amortized 
analysis counts the worst-case number of comparisons made by 
a heuristic for any particular sequence of requests; because 
the cost is distributed over a series of requests.

Using an amortized argument, Bently and McGeosh (1985) 
show the different result from the asymptotic cost analysis; 
MTF and count rule are no more than twice that of optimal 
static ordering, but the worst-case performance of transpose 
could be far worse. They suggest that count and especially 
MTF rule are much more efficient than transpose. Sleator 
and Tarjan (1985) confirmed the results of Bently and 
McGeoch.

Rate of Convergence
In addition to the search costs, rate of convergence 

measures how quickly the permutation rules approach their 
steady states, where many further permutations are not 
expected to increase or decrease the expected search time 
significantly.
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3.4 Open Problems

Despite the ample results of the previous performance 
analyses, there are several open problems which have 
remained unsolved for a long time. These are unrealistic 
assumptions, theoretical bounds, the optimization of 
heuristics, and locality.

Unrealistic Assumptions
A primary problem with most performance analyses is 

their unrealistic assumptions: incoming requests are 
independent of each other; and the probability of access for 
each record is equally fixed. It is well known (Hester and 
Hirschberg 1985) that incoming requests are dependent on the 
previous search performed and the access probability is 
being dynamically changed over the search sequence.
Therefore, performance evaluation under more reasonable 
assumptions such that the search request is dependent on the 
previous search performed and the probability of access for 
a record is being changed over the search sequence would be 
valuable.

The Absence of Theoretical Bounds with Reasonable 
Assumptions

Most previous works have extensively analyzed the 
performance of MTF due to its wide acceptance from
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practitioners, even though it is believed that transpose is 
theoretically better than MTF. The limitation of previous 
works again are the unrealistic assumptions such as the 
independence of the request sequence and the fixed 
probability of access to records.

The literature shows that the upper bound of MTF is 
asymptotically at most two times of that of the optimal 
static ordering (AM < 2Aq ). Because of a dependency in the 
request sequence, the upper bound of MTF should be tighter 
than two times that of optimal static ordering.

Optimizing the Heuristics
Bitner (1979) shows that the MTF converges quickly and 

initially has a lower expected cost than transpose, but has 
a large asymptotic cost as the number of accesses increases.

The reason for this is obvious. In the initial random 
ordering list, many records with high access probability are 
far down in the list. These records should be moved to the 
front of the list to reduce the search cost. Obviously, MTF 
will perform well here since these records make large jumps 
and quickly rise to the front, thus converging quickly into 
its steady-state condition. Every time a record with a low 
access probability is accessed, however, it is moved to the 
front, thus increasing the cost of future accesses to many 
other records.
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Rivest (1976) showed that transpose has a lower 

asymptotic cost than MTF. He also conjectured that this 
result extends to all the heuristics.

Intuitively, this conjecture is reasonable. After a 
long time, the frequently accessed records are near the 
front of the list, and the less frequently accessed records 
near the bottom. Occasionally, a low probability record 
will be accessed, and the MTF rule will move it all the way 
to the front on the basis of a single access. Unless that 
record is accessed again in the near future, its position 
will increase the expected search cost for other records 
since high probability records have moved down one position. 
The transpose avoids this potential error, and it is 
difficult for the less frequently accessed records to be 
advanced to the front. However, because of its conservative 
record movement, the rate of convergence is much slower than 
MTF.

A few hybrids were suggested to combine the best 
features of heuristics, such as using MTF initially and then 
switching to transpose; initially it converges quickly and 
maintains a low asymptotic cost. It is very difficult, 
however, to know the best switching time from MTF to 
transpose, and, as yet, no reasonable switching time has 
been suggested.
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For example, Bitner (1979) proposed a hybrid rule that 

switches from MTF to transpose when the number of requests 
falls within a certain range. For Zipf's law he suggests 
switching from the MTF to the transpose rule when the number 
of requests is in the range of 9(N) to 8(N2).

Since MTF performs better when the search request has a 
strong locality or unstable situation (i.e., large insertion 
rate), it is undesirable if the switching time can be 
determined only by a fixed number of accesses. When the 
number of requests falls within the range of switching time, 
for example, the list may not approach certain steady-state 
condition in which transpose tends to perform best. In 
addition to a fixed number of accesses, therefore, the 
steady-state condition of the list should be considered to 
determine a more accurate and realistic switching time.

Locality
It is well known (Rivest 1976, Hester and Hirschberg 

1985, Bently and McGeoch 1985, Bellow 1987) that if the 
request sequence is a reference string generated from 
computer software, such a search sequence includes so-called 
"locality," where the relative frequency of sub-sequences of 
the request sequences may be significantly different from 
the overall relative frequencies. For example, we can 
consider the several occurrences of "integer" at the start
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of a program, assignment of the form "x[i] := x[i] + 1", and 
"end;end;end” sequence.

The previous study (Bently and McGeoch (1985) and 
Bellows (1988)) shows that MTF performs better than 
transpose if there is a strong temporal locality in the 
request sequence. Bently and McGeoch (1985), however, just 
provide the empirical results without any model which can 
describe the locality. Bellows (1988) attempts to model the 
locality of the search sequence by applying the discrete 
auto-regressive process of order T or DAR (T), but he fails 
to relax the equal probability of access.

Since taking advantage of locality is one of the main 
reasons for using the heuristics in the first place, the 
performance analyses under the assumption of a strong 
locality in the request search sequence would be valuable.
As yet, no good approach capturing the locality of accesses 
has been applied to the problem of measuring the performance 
of the heuristics (Hester and Hircheberg 1985).



CHAPTER 4
ANALYTICAL STUDY

The Simon-Yule model, which provides a promising 
approach to describing the usage pattern, is applied to the 
performance evaluation of self-organizing heuristics in this 
chapter. By applying the Simon-Yule model, the unrealistic 
assumptions identified in the previous chapter can be 
relaxed, allowing reasonable performance analyses of the 
heuristics. The theoretical bound of MTF is derived with 
realistic assumptions. Furthermore, the expected search 
cost of optimal static ordering is also derived for 
measuring the relative efficiency of MTF. Before discussing 
the analytical study, the major steps of the analysis are 
described.

4.1 Maj or Steps
Assume that N is the total number of record accesses, 

that t is the order of a record access, where t is 1 < t < N 
and f(n,t) is the number of distinct records that have 
occurred exactly n times in the first t record accesses.

50
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The steps are mainly divided into two parts. The first 

two steps correspond, respectively, to Simon's two basic 
assumptions. The next two steps are added to incorporate 
the performance of self-organizing heuristics within the 
Simon-Yule approach.

[STEP 1]: Determine whether a new or an old record is 
accessed.

For each t (1 < t < N), a random number, a, is 
generated from the rectangular distribution with 
range 0 < a < 1. If a < a(t), f(l,t) = 
f(l,t-l) + 1, where f(l,0) = 0; a new record is added 
to the end of the linear search list. Otherwise, GO TO 
[STEP 2].

[STEP 2]: Determine which group of old records is accessed.
A random number, b, is drawn from the rectangular 
distribution with range l < b < t. Starting 
with j = 1, the cumulant of j«f(j,t-l) is 
computed, and compared with b until an n is found 
such that E j»f(j,t-l) > b. Then f(n,t-l) is 
decreased by 1, and f(n+l, t-1) is increased by 
1; f(n,t) = f(n,t-l) -1; and f(n+l,t) = f(n+l,t-l) + 1. 
This is equivalent as the t-th record accesses the 
group of records that had previously occurred n times.
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[STEP 3]: Find a specific record from the group of records 

chosen in STEP 2.
Create the cumulative distribution for the records 
within the group chosen in STEP-2, assuming that each 
record in the group will be equally accessed. A random 
number, c, is generated from the rectangular 
distribution with range 0 < c < 1. Find a specific 
record by comparing c with the cumulative distribution. 

[STEP 4]: Perform the heuristic.
Rearrange the linear search list according to each 
heuristic. If search sequences finish, stop.
Otherwise, GO TO STEP 1.

4.2 A Theoretical Bound of MTF
As discussed in Chapter 3, one of the open problems is 

obtaining direct theoretical bounds on the behavior of the 
heuristics with reasonable assumptions. In this section, 
we derive the theoretical bound of the expected search cost 
of MTF based on the major steps described above.

Theorem 1: For a given t and a, the bound of the expected 
search cost of MTF, E(CH), under the Simon-Yule 
model of record accesses is
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E(Ch) < 1/t [c1at'1+c2at'2(l-a)+c2at'3(l-a)2,....,

+ c^l-a)*"2 + ct(l-a)t_1], (4.1)
t(t+l)

where c1 = --------
2

1 (t-2)
c2 = —  (t-1) {t2 -   ), and

2 2
ct = t.

Proof: To determine the expected search cost, the search 
trees are constructed for MTF according to the major steps. 
An example of the search trees is shown in Figure 4.1.
Let a be an entry rate of a new record (Simon-Yule's 
Assumption I) and (1 - a) be an entry rate of an old

nf(n,t)
record. Then (1 - a)• -------  is the joint probability

t
that the (t+l)-st record accesses to the group of records 
that has appeared n times (Simon-Yule1s Assumption II).
In addition, the access probability to a specific record in 
the group is

nf(n,t) 1 n
(1 - a)* -------  • ------  = (1 - a)---  (4.2)

t f(n,t) t
Based on the search trees, the expected search cost of MTF
(E(Ch)) can be obtained as follows:

t = 1, E(C„) = 1
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t = 3 

t = 4

t= 5, 

E (Ch)

+

+

1
E(Ch) = ---  {3a + (1-a) (1+1) }

2
1 (4+5) 4

E(C„) =   [6a2 + a (1-a) { ---  + —  } + 3 (1-a)2]
3 2 1
1 _ _ (7+8+9) (7+8) 7

" +  — —  - f  —

3 2 1
E(C„) = --  [10a3 + a2 (1-a) {   +   + —  }

(6+7) (5+6+6) 10 5
+ a (1-a)2 { ------  +   + —  + — }

6 3 3 1
+ 4 (1-a)3]

1
= —  [ 15a4 

5
(11+12+13+14) (11+12+13) (11+12) 11

a3 (1-a) {   +   +   + —  }
4 3 2 1

(9+10+10+11+11+12) (9+10+9+11)
a2(1-a)2 { -------------------  + ------------

12 8
(8+9+10+9+9) (8+8+8) (8+9+8)

+   +   + -------
6 4 3

8
+   (2) + 8}

3
(7+7+8+8+9) (6+7+7) (7+7+8) 3

a(l-a)3 {   +   +   + — (6)
12 4 6 4

6
2

+ -- + 1) + 5(l-a)4]



Figure 4.1: Example of Search Tree of MTF
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a2 (1-a) 7/4

5/4
6/4

(1-a)
a (1-a) 5/4

(1) (1-a)
* ( ) indicates the list after permutation of MTF.
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From these results, we derived the general form of the 
variables and the coefficients. The variable patterns are

t = 1, 1
t = 2, a + (1-a)
t = 3, a2 + a(l-a) + (1-a)2
t = 4, a3 + a2 (1-a) + a (1-a)2 + (1-a)3
t = 5, a4 + a3(1-a) + a2(1-a)2 + a(1-a)3 + (1-a)4

t = k, ak'1 + ak'2(l-a) + ak_3(l-a)2 +,...., + 
a(l-a)k"2 + (l-a)k'1

When we define c,. as the coefficient of the ith variable, 
the coefficient patterns are derived through the following 
analyses:

i) c1 = 1, 3, 6, 10, 15, 21, .
W W W  W  WDiff. = 2  3 4 5 6, ...

t = l  2 3  4 5 6, .

t t
Therefore, c, = S (1 + (k-1)) = t + S (k-1)

k=l k=l

(t-1)= t {1 +  }
2

t(t+l)
= -------  (4.3)
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ii) C2 = { 1 } , t = 1
= {2/1} , t = 2

(4+5) 4
= {   +   } , t = 3

2 1
(7+8+9) (7+8) 7

= {   +   +---------- } , t = 4
3 2 1

(11+12+13+14) (11+12+13) (11+12) 11
= {   +   +   +   },4 3 2 1

t = 5
The general form of c2 is derived by the following steps 
a) and b).

a) First element: 1, 2, 4, 7, 11, 16, ...
\ / \ / \ / \ /  \ /Diff. = 1 2 3 4 5, ___

Thus, the general form of the first element is:
(t-1) (t-l)t

a, = 1 + 2 k = 1 +  ------  (4.4)
k-1 2

b) Using equation (4.4) and t, we can further
generalize the coefficient patterns. For example,
for a given t,

(a,+ (a.,+1) + (a.,+2) + ....+ (â + (t—2)) )
C2 = C---------------------------------------------------------t-1

{a^+ (a.j+1) + (a.j+2) + ....+ (a^+(t—2))}
+ -----------------------------------------

t-2
a.,+ ̂ +1) a,

+ .... +   +   ]
t-(t-2) t-(t-l)
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(t-1)a, + (1+2 + ... + (t-2)))
=  [ --------------------------------------------------------t-1

(t-2) a1 + (1+2 + _____+ (t-3) ) )
+ ------------------------------------

t-2
(t-(t-2))a.j+1 (t-(t-l))ai

+ .... +   +   ]
t-(t—2) t-(t-l)

(t-1)(l+t(t-l)/2) + (1+2 + ... + (t-2))}
[ ----------------------------------------t-1

(t-2)(l+t(t-l)/2) + (1+2 + ... + (t-3))}
+   :------------------

t-2

(t-(t-2))(1+t(t-1)/2) + 1 
+ .... + --------------------------

t-(t-2)

(t-(t-l))(l+t(t-l)/2)
+   ]t-(t-l)

(t-1)(t(t-l)/2) + (1+2+...+(t-2)+(t-1))
[ ----------------------------------------t-1

(t-2)(t(t-l)/2) + (1+2+...+(t-3)+(t-2))
+ ---------------------------------------------

t-2
(t-(t-2))(t(t-l)/2) + (1+2)

+ .... + -----------------------------
t-(t-2)

(t-(t-l))(t(t-l)/2) + 1
+   ]t-(t-l)
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t(t-l) t-1

(t-1)   + 2 k
2 k=l

[   +t-1
t(t-l) t-2

(t-2) -------  + 2 k
2 k=l

+ -------------------------------
t-2

t(t-l) t-(t-2)
(t- (t-2) ) ------- + 2 k

2 k=l
+ .... H---------------------------------

t-(t-2)
t(t-l) t-(t-l)

(t-(t-l)) - + 2 k
t-(t-l) k=l

+   ]t-(t-l)

t(t-l) (t-l)t(t_ 1}   + -------

= [ t-1

t(t-l) (t-2)(t-1)
(t-2)   + ---------

t-2

t(t-l) (t-(t-2))(t-(t-3)) 
(t— (t-2) )-------  +-------------------

t-(t-2)

t(t-l) (t-(t-l))(t-(t-2)) 
(t-(t-l)) -------  +-------------------

t-(t-l)
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= [

t(t-l) + t (t_1} {   }

t-1

t(t-l) + (t-1) 
(t-2) { --------------- }

t-2

+  ...  +  ■

t(t-l) + (t-(t-3)) 
(t- (t-2) ) { -------------------  )

t-(t-2)

t(t-l) + (t-(t-2)) 
(t-(t-l) ) { -------------------  )

+

1
2

t-(t-l)

[{t(t-l)+t} + (t(t-l)+(t-l)} +..+ {t(t-1)+ (t-(t-3)))
+ {t(t-1)+ (t-(t-2)))]

1
  [(t-l)t(t-l)+t+(t-l)+(t-2)+ .. + (t-(t-3) ) + (t-(t-2))]
2
1
  [(t-l)2t + (t+t+..+ t) - (0+1+2+ .. + (t-3)+(t-2))]
2
1  t - 1
—  [(t-l)2t + (t-l)t - S (k-1)]
2 k=l

1_ _ (t-2)(t-1)
2

[ (t-l)2t + (t-l)t------------- ]

1 (t-2)
—  (t-1) [ (t-l)t + t --------- ]
2 2
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1
(t-1) [ t2

(t-2)
) (4.5)

2 2

iii) There is no regular pattern for c3 and c4, but its 
value is less than c2. In general cases, it is obvious that 
c2 is larger than the following coefficients (i.e., c3, 
c4,..,ct_1). In Figure 4.1, for example, c2 is composed of 
all the worst cases (i.e., an insertion of a new record) for 
each search branch, and c3 is composed of average cases 
(i.e., access to old records). Let us define c2j to be the 
component of c2 and c3j to be that of the component of c3 in 
ith search branch, respectively. Since c2 consists of all 
the worst cases, each component of c2 is larger than that of 
c3, which is the case accessing to an old record. That is,

C21 > C31 ' C22 > C32' * * • C2i > C3i' • • • '  C2N > C3N (4. 6)
N N

= E C2l- > S c3j (4.7)
i = l  i = l

= c2 > c3. (4.8)

When this concept is extended to more general cases, the 
following results are obtained.

Thus, based on the results of i), ii), and iii) we prove 
that for a given t and a,

c2 > c3 > c4 > (4.9)
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E(Ch) = 1/t [c1at_1 + c2at'2(l-a) + c3at'3(l-a)2J 

+ c ^ a  (1-a) t‘2 + c^l-a)*"1]
< 1/t [c^1*1 + c2at'2(l-a) + c2at'3(l-a)2 

+ Cgafl-a)1'2 + ct(l-a)t_1],

r • •  9

(4.10)

t(t+l)
where c

2
1

(t-1) { t2 -
(t-2)

c.2 }, and
2 2

ct t.

Table 4.1 shows that how much the bound is tight. The 
results show that the expected search cost from the bound 
(i.e., equation 4.10) is about 23 % increase over the E(CH) 
until t = 5. The bound seems to be tight enough for small 
number of accesses. Since the further analytical study is 
so difficult, a simulation study would be necessary to 
obtain more insight of the behavior of the bound. The 
simulation study to measuring the relative efficiency of the 
bound over the optimal static ordering is conducted and will 
be discussed in detail in Section 4.3.



Table 4.1: Comparisions Between the Bound and E(CM)

4- a = 0.1 a = 0.35 a = 0.5
Bound E(MTF) Bound/ 

E(MTF)
Bound E(MTF) Bound/ 

E(MTF)
Bound E(MTF) Bound/ 

E(MTF)
1 1.000 1.000 1. 000 1.000 1.000 1.000 1.000 1.000 1.000
2 1.050 1.050 1.000 1.175 1.175 1.000 1.250 1.250 1.000
3 1.115 1.115 1.000 1.388 1.388 1.000 1.542 1.542 1.000
4 1.238 1.175 1.091 1.662 1.427 1.164 1.844 1.646 1.120
5 1.426 1.185 1.204 1.876 1.524 1.231 2.013 1.726 1.166

E(MTF) = E(Cm)

G\w
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Corollary 1: At the initial stage (i.e., t < 5) the expected 
search cost of MTF is less than that of transpose.
Proof: Using the same procedure, we construct the search 
tree to calculate the expected search cost of transpose, 
E(Ct). The result shows that until t = 4 and E(CH) = E(CT). 
However, when t = 5,

1 
5

E(Ct) = -- [15a4

(11+12+13+14) (11+12+13) (11+12) 11
+ a3(l-a) {   +   +   + —  }

4 3 2 1
(9+10+10+11+10+12) (9+10+9+11)

+ a2(l-a)2 (  + -----------
12 8

(8+9+11+9+9) (8+8+8) (8+9+8)
+   +   + -------

6 4 3
2

+   (8) + 8 }
3

(7+7+8+8+9) (6+7+7) (7+7+8) 3
+ a (1-a)3 {   +   +   +  (6)

12 4 6 4

6
+ —  + 1} + 5(l-a)4]

2

1
= E(C„) + a2 (1-a)2 —  (4.10)

12
1

Since a2(1-a)2 —  >0, E(C„) < E(CT). (4.11)
12



However, we found that the other coefficients, c3, c4, . . . . , 
ct.1 are having differences as the number of accesses 
increases. Since the literature shows (Bitner 1979) that 
transpose is superior to MTF when the list reaches its 
steady-state where many further permutation are not expected 
to increase or decrease the expected search time 
significantly (i.e., the number of accesses increases), we 
may conjecture that the upper bound of transpose would be 
less than that of MTF as the number of accesses increases. 
However, further analytical study becomes intractable since 
the number of possible occurrences to be considered 
increases by approximately 2* as t increases. Because of 
this, it is necessary to use the simulation method to obtain 
insights into the relative performance of different 
heuristics as the model parameters vary.

4.3 Relative Efficiency of MTF
The literature shows that the relative efficiency of 

heuristics is compared with the expected search cost of 
optimal static ordering. Most previous approaches, assuming 
independence of search sequences and equal access 
probability, conclude that the average search cost of MTF is 
at most two times that of optimal static ordering; i.e., A,,
< 2Aq. Since the Simon-Yule model relaxes the previous 
unrealistic assumptions, the theoretical bound of the 
expected search cost of MTF should be less than two times
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that of optimal static ordering. For measuring the relative 
efficiency of MTF, therefore, the expected search cost of 
optimal static ordering must be derived.

The Expected Search Cost of Optimal Static Ordering
A sequential search (Knuth 1973, Bitner 1979, Bently 

and McGeoch 1985) begins at the beginning of a file and goes 
through each record until a desired record is found or the 
end of the file is reached. Suppose there are N records in 
the file, and let p( be the probability that record k{ will 
occur, then

N
2 Pj + q = 1, (4.12)
i=l

where q is the probability that the record is not in the
file. Supposing the file is huge, we can reasonably assume

N
that q = 0, then 2 p. = 1. Let E(C0) be the expected

i=l
number of comparisons to search a record, then 

N
E(C0) = 2 ipf. If we have an option to arrange the records

i=l
in any order we desire, then E(C0) reaches its minimum if

p, > p2 > -----> pN. (4.13)
In other words, the records are arranged by descending 
frequency of access, such that the most frequently used 
records appear close to the beginning.

Chen (1990) derived a more realistic formulation of 
Mendelbrot's law of word frequency from the Simon-Yule
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distribution. That is, the three parameters of equation
(2.3) can be estimated as follows:

1/p

a = (vpr(p)) ,where p =------  and v is the total
(1-a)number of distinct words.

1
b = ---- 2 (—e (nf)), when efn,.), 1 < i < m are

m
approximately equal, and

c = -1/p.
If the two underlying assumptions of the Simon-Yule model 
hold and the error terms e(nj), i = 1,2, 3, ...., m, are 
approximately equal, then an appropriate distribution for pi 
i = 1, 2, 3, ..., N would be

p5 = a(i+b)c, i = 1, 2, ...., N, (4.14)
1/p

where a = (vpT(p)) , b = --  2 (-e(nj)), and c = -1/p.
m

Note that equation (4.14) is equivalent to the more 
realistic formulation of Mendelbrot's law of word frequency 
which are derived by Chen (1990). When b = 0 and c = -1-0, 
for a small positive value of 0, the equation (4.14) reduces 
to Schwartz's proposal for Zipf's law. Thus, the expected 
search cost of optimal static ordering is

N
E(C0) = 2 ai(i+b)c.

i=l
(4.15)
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Measuring The Relative Efficiency of MTF

The relative efficiency of MTF over the optimal static 
ordering can be measured by E(CM)/E(CQ) . However, it is 
observed that it is hard to find a closed-form for the ratio 
of E(Cm)/E(C0) . The difficulty comes from the fact that it 
involves so many parameters which cannot be reduced. This 
leads to the simulation method for measuring the relative 
efficiency of MTF.

The simulation study based on the eguation (4.1) and 
(4.15) was conducted with various entry rates ranging from a 
= 0.1 to 0.9 until the total number of accesses is 500. The 
results shown in Table 4.2 indicates that the expected 
search cost of MTF is at most 1.58 times of that of the 
optimal static ordering. The upper bound of 1.58 is 
significantly lower than two proposed by most previous 
approaches, which employ the unrealistic assumptions such as 
independence and fixed probability of request accesses.
Note that as a increases, the relative efficiency of MTF is 
also improved.

Another important characteristic of the bound of MTF 
would be that the vaules of the bound depend on the number 
of accesses and the entry rates. Figures 4.2 and 4.3 
indicate how the bound is changed for different a and t 
values. Figure 4.2 shows that as a increases with the fixed 
number of accesses (i.e., t = 500), the bound also increases



more rapidly. On the other hand, Figure 4.3 shows that as 
the number of accesses increases, the bound increases very 
rapidly for the large values of a (i.e., a = 0.35 and 0.5), 
but it increases gradually for the small vaule of a (i.e., a 
=  0.1).

Table 4.2: Relative Efficiency of a Bound of MTF

The Values 
of Alpha

E(C0) Bound Bound/E (CQ)

0.10 7.21 11.37 1.58
0.18 15.43 23.61 1.53
0.25 25.01 35.97 1.43
0. 35 48.54 69.02 1.42
0.40 63.29 90.96 1.43
0.50 82.15 115.66 1.41
0.70 116.22 162.71 1.40
0.90 166.16 229.30 1.38

E(C0): The 
Bound: The

average search 
bound of MTF

cost of optimal static <

4.4 Findings of Analytical Study
Using the Simon-Yule model, the previous unrealistic 

assumptions are relaxed, providing reasonable performance



analyses. In order to solve one of the open problems as 
well as to provide realistic comparisons between the 
heuristics, the theoretical bound of MTF is derived based on 
the search tree incorporating the Simon-Yule model and the 
corresponding heuristic. For measuring the relative 
efficiency of MTF, the expected cost of optimal static 
ordering is also derived. The results show that the bound 
of the expected search cost of MTF is at most 1.58 times 
that of optimal static ordering. This bound is 
significantly lower than two times proposed by previous 
approaches, which assume that request sequences are 
independent and the accessed probabilities are fixed. It is 
also interesting that as a increases, the relative 
efficiency of MTF over optimal static ordering improves.
This observation clearly supports the corollary 1; i.e., at 
an initial stage, MTF performs better.

Despite the theoretical bound of MTF with reasonable 
assumptions, there is room to do more complete analyses. 
First, a tighter bound of MTF would be derived. Second, a 
bound of transpose which would be different from that of MTF 
should be derived to allow more realistic comparison.
Third, a closed-form for the ratio between MTF and optimal 
static ordering would be desirable.



Figure 4.2: The Bound of MTF
According to the Values of Alpha
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Figure 4.3: The Bound of MTF
According to the Number of Accesses
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CHAPTER 5
SIMULATION RESULTS

In this chapter, simulation analyses are performed to 
further study the behavior of the heuristics as well as to 
solve the open problems, which are identified in Chapter 3. 
We first focus on the three widely used heuristics: MTF, 
transpose, and count followed by further analyses on move- 
ahead-k. The chapter is divided into five sections. In 
section 5.1, results with constant entry rates (Assumption 
I) ranging from 0.1 to 0.5 are presented. In section 5.2, 
results with decreasing entry rates (Assumption I ') are 
presented. In section 5.3, a proposed hybrid rule which is 
developed by the results from the sections 5.1 and 5.2 is 
discussed. In section 5.4, the Simon-Yule model is modified 
to fully capture the locality in the request sequence. In 
section 5.5, all the findings are summarized.

The simulation program follows the major steps 
described in Chapter 4. To start the process, some initial 
conditions are needed (Simon 1955). The initial condition 
we use is f(l,3) = 3, (i.e, three different records were
used in the first three accesses). Throughout the analyses, 
the maximum number of accesses was 500.

73
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5.1 Constant Entry Rates

With Simon's first assumption (i.e., constant entry 
rate ranging from 0.1 to 0.5), the average search cost - 
defined as the total number of probe records divided by the 
total number of accesses - for each heuristic is reported in 
Table 5.2 through Table 5.7. Figures 5.1 and 5.2 describe 
the results of the tables. For better understanding, 
however, several of tables and figures are summarized.

Many shows that request frequencies in many contexts 
obey Zipf's law. In addition, Knuth (1973) proved that the 
average search cost for Zipf's law is roughly D/lnD, where D 
is the number of distinct records. Table 5.1 shows how well 
the Simon-Yule model describes the usage pattern in terms of 
Zipf's law. For each a, the second column gives the cost of 
the optimal static ordering for requests from the Simon-Yule 
model. Comparing that column with the cost of Zipf's law 
(D/lnD) shows that the request frequencies from the Simon- 
Yule model is much closer to Zipf's distribution than to a 
uniform distribution (random ordering). It appears that the 
average search cost of optimal static ordering (Ag) is 
almost the same as Zipf's distribution when a is between 
0.25 and 0.35. When a is less than 0.25, A0 is less than 
that of Zipf's law. As a becomes progressively larger than 
0.35, the gap between A0 and Zipf's law also increases, but



• Table 5.1: Comparisons Between Zipf's Law and the Simon-Yule Model (Constant a)

R II o 1 a  =  0 . 1 8 R II O . 2 5

T D Z i p f ' s
Law

OPT RAND D Z i p f ' s  
Law

OPT RAND D Z i p f ' s
La w

OPT RAND

1 0 0 1 9 6 . 4 5 4 . 0 3 9 . 5 2 7 8 . 1 9 6 . 0 8 1 3 . 5 3 0 8 . 8 2 6 .  5 7 1 5 . 0

2 0 0 2 4 7 . 5 5 4 . 8 1 1 2 . 0 4 2 1 1 . 2 3 8 . 4 8 2 1 . 0 5 7 1 4 . 0 9 1 1 . 2 3 2 8 . 5

3 0 0 3 1 9 . 0 3 5 . 6 4 1 5 . 5 5 6 1 3  J 9 1 1 0 . 1 6 2 8 . 0 8 3 1 8 . 7 8 1 6 .  3 8 4 1 . 5

4 0 0 4 1 1 1 . 0 4 6 . 3 8 2 0 . 5 7 5 1 7 . 3 7 1 2 .  6 9 3 7 . 5 1 0 6 2 2 . 7 3 2 1 . 3 4 5 3 . 0

5 0 0 5 5 1 3 . 7 2 7 . 7 4 2 7 . 5 9 9 2 1 . 5 4 1 6 . 0 9 4 9 . 5 1 3 9 2 8 . 1 7 2 7 . 1 2 6 9 . 5

a  = 0 . 3 5

oIIa

4 a = 0 . 5

T D Z i p f ' s
Law

OPT RAND D Z i p f ' s  
La w

OPT RAND D Z i p f ' s
La w

OPT RAND

1 0 0 3 9 1 0 . 6 4 1 0 . 5 4 1 9 . 5 3 9 1 0 . 6 4 1 1 . 2 7 1 9 . 5 5 3 1 3 . 3 5 1 5 . 2 1 2 6 . 5

2 0 0 7 7 1 7 . 7 3 1 8 . 4 5 3 8 . 5 8 9
1

1 9 . 8 3 2 5 . 1 2 4 4 . 5 1 0 5 2 2 . 5 6 3 4 . 3 8 5 2 . 5

3 0 0 1 0 6 2 2 . 7 3 2 5 . 2 1 5 3  . 0 1 2 9 2 6 . 5 4 3 5 . 7 9 6 4 . 5 1 6 1 3 1 .  6 8 5 1 . 6 7 8 0 .  5

4 0 0 1 4 6 2 9 . 3 0 3 5 . 9 8 7 3  . 0 1 7 6 3 4 . 0 4 4 7 . 9 6 8 8 . 0 2 1 3 3 9 . 7 2 6 8 . 5 0 1 0 6 . 5

5 0 0 1 8 6 3 5 . 5 9 4 4 . 3 6 9 3 . 0 2 1 8 4 0 . 4 9 6 0 . 3 4 1 0 9 . 0 2 5 3 4 5 . 7 2 8 6 . 1 1 1 2 6 . 5

T:  T o t a l  n u m b e r  o f  a c c e s s e s  ■
D: T h e  n u m b e r  o f  d i s t i n c t  r e c o r d s
OPT: T h e  a v e r a g e  s e a r c h  c o s t  o f  o p t i m a l  s t a t i c  o r d e r i n g  u n d e r  t h e  S i m o n - Y u l e  

m o d e l .
RAND: T h e  a v e r a g e  s e a r c h  c o s t  o f  r a n d o m  o r d e r i n g
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is still closer to Zipf's distribution than random ordering. 
This result clearly supports the performance evaluation of 
the heuristics with the Simon-Yule model.

From Table 5.2 to Table 5.7, we can observe several 
interesting facts.

(1) The heuristics are very effective. Under a randomly 
ordered list, the average search cost is D/2, where 
D is the number of distinct records in the list.
The results show that, with the various values of 
alpha, all heuristics search less than half the list 
(which is the expected amount searched in a randomly 
ordered list).

(2) Figure 5.1 clearly shows that count always performs 
better than MTF and transpose, and its average cost 
is very close to that of optimal static ordering.
On the average, the cost for count shows an increase 
of about 5% over optimal static ordering. For MTF, 
the increase is 20% - 31%; and for transpose, 10% - 
22%. Count tends to converge to optimal static 
ordering as the number of accesses increases.

(3) Initially, MTF performs better, but as the number of 
accesses increases transpose works better (see 
Figure 5.2). This result is consistent with 
corollary 1 in Chapter 4 and clearly supports the 
need of a hybrid rule to optimize the heuristics.
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Table 5.2 : The Average Search Costs for a = 0.1

t D MTF Trans Count Optima Diff, Dif f2 Dif f3
4 4 2.50 2.50 2.50 2.50 0.00 0.00 0.00

20 7 3.00 3.02 2.75 2.40 25.00 27.00 14.58
40 8 3.40 3.52 2.97 2.72 25.00 29.41 9.19
60 14 4.22 4.38 3.73 3.55 18.87 23.38 5.07
80 17 4.50 4.64 4.02 3.80 18.42 22.11 5.79

100 19 4.82 4.92 4.22 4.03 19.60 22.08 4.71
120 21 5.30 5.30 4.63 4.42 19.91 19.91 4.75
140 23 5.81 5.63 4.64 4.68 24.15 20.30 5.56
160 23 5.92 5.70 4.92 4.65 27.31 22.58 5.81
180 23 6.02 5.54 4.83 4.58 31.44 20.96 5.46
200 24 6.13 5.67 4.96 4.81 27.44 17.88 3 .12
240 25 6.12 5.62 4.91 4.81 27.23 16.84 2.08
260 31 6.79 6.28 5.64 5.54 22.56 13.36 1.81
300 31 7.09 6.42 5.77 5.64 25.71 13.83 2.30
340 33 7.25 6.61 5.58 5.84 24.14 13.18 0. 68
380 40 7.88 7.10 6. 38 6.31 24.88 12.52 1.11
400 41 8.03 7.20 6.47 6.38 25.86 12.85 1.41
500 55 9.56 8.67 7.84 7.74 23.51 12.02 1.29

t = total number of accesses
D = number of distinct records
Diff1 = the increase of MTF over optmal (%)
Diff2 = the increase of transpose over optimal (%)
Diff3 = the increase of count over optimal (%)



Table 5.3: The Average Search Costs for a = 0.18
78

t D MTF Trans Count Optima Dif f t Dif f2 Dif f3
4 4 2.50 2.50 2.50 2.50 0.00 0.00 0. 00

20 8 3.20 3.30 3.12 3.00 6.67 10.00 4.13
40 13 4.13 3.92 3.80 3.75 10.43 4.53 1.33
60 20 5. 67 5.63 5.32 5.20 9.04 8.27 2.31
80 26 6.79 6.61 6.39 6.26 8.47 5.59 2.08

100 27 6.69 6.49 6. 16 6. 08 10.03 6.74 1.32
120 31 7.68 7.27 6.89 6.75 13.78 7.70 2.07
140 35 8.44 8.01 7.52 7.31 15.46 9.58 2.87
160 38 9.34 8.75 8.06 7.72 20.98 13.34 4 .40
180 38 9.43 9.22 7.96 7.62 23.75 21. 00 4.46
200 42 10.39 10.07 8.81 8.48 22 .52 18.75 3.89
240 48 11.29 10.91 9.49 9.14 23.52 19.37 3.83
280 52 11.89 11.36 9.86 9. 69 22.70 17.23 1. 75
300 56 12.47 11.92 10.38 10.16 22.74 17.32 2 .17
340 63 13.55 12.72 11.13 10.82 25.23 17.56 2 .87
380 67 14 .23 13.52 11.68 11.52 23.52 17.36 1.39
400 75 15.42 14.73 12.88 12.69 21.51 16. 08 1.50
500 99 19.26 18.40 16.25 16. 09 19.70 14.36 0.99

t = total number of accesses
D = number of distinct records
Diff1 = the increase of MTF over optmal (%)
Diff2 = the increase of transpose over optimal (%)
Diff3 = the increase of count over optimal (%)



Table 5.4: The Average Search Costs for a = 0.25
79

t D MTF Trans Count Optima Dif f2 Dif f2 Dif f 3

4 4 2.50 2.50 2.50 0.00 0.00 0.00 0.00
20 8 3.20 3.30 3.10 3.00 6.67 10.00 3.33
40 13 4.13 3.92 3.80 3.45 19.71 17.97 10.14
60 21 6.15 6.27 5.90 5.22 17.82 20.11 13.03
80 26 7.10 7.15 6.61 6.12 16.01 16.83 8. 01

100 30 7.73 7.58 7.03 6.57 17.66 15.37 7.00
120 35 8.62 8.57 7.92 6.98 23 .50 22.78 13 .46
140 45 10.89 10.64 10.04 9.01 20.87 18.09 11.43
160 49 11.71 11.44 10.81 9.78 19.73 16.97 10.53
180 56 13.68 13.31 12.54 11.34 20.63 17.37 10.58
200 57 14.11 13.67 12.51 11.23 25.65 21.73 11.40
240 69 16.81 16.19 14.89 13.23 27.06 22.37 12.55
280 78 18.51 18.01 16.45 15.01 23.32 19.99 9.59
300 83 19.51 18.82 17.22 16.38 19.11 14.90 5.13
340 92 21.82 20.94 18.94 18.04 20.95 16.08 4 .99
380 102 24.40 23.55 21.00 19.99 22.06 17.81 5.05
400 106 25.33 24.44 21.66 21.34 18.70 14.53 1.50
500 139 32.10 31.03 27.75 27.12 18.36 14.42 2.32



Table 5.5: The Average Search Costs for a = 0.35
80

t D MTF Trans Count Optima Dif f 2 Diff2 Dif f -

4 4 2.50 2.50 2.50 2.50 0. 00 0.00 0.00
20 12 5.56 5.58 5.40 5.20 7.50 7.88 3.85
60 17 6.22 6.85 5.80 5.41 14.97 26. 62 7.21
80 36 11.97 11.95 11.09 10.11 18.40 18.20 9.69
100 39 12.58 12.06 11.15 10.56 19.13 14.20 5.69
120 47 14.34 14.32 13.10 12.34 16.21 16.05 6.16
140 57 16.85 16.74 15.55 14.65 15. 02 14.27 6.14
160 65 19.01 18.81 17.60 16.81 13.09 11.90 4.70
180 71 20.81 20.49 19.26 18.21 14.28 12.52 5.77
200 77 22.85 22.20 20.96 19.84 15.17 11.90 5.65
240 88 25.87 25.12 23.41 22.36 15.70 12.34 4 .70
280 101 29.20 28.90 26.40 24.91 17.22 16.02 5.98
300 106 30.44 30.18 27.34 25.86 17.71 16.71 5.72
340 121 34.59 34.34 31.06 29.81 16.03 15.20 4.19
380 137 38.84 38.59 34.91 33.74 15.12 14.37 3.47
400 146 41.23 40.69 37.12 35.98 14.59 13.09 3.17
500 186 52.55 52.48 46.90 46.02 14.19 14.04 1.91



Table 5.6: The Average Search Costs for a = 0.4 0
81

t D MTF Trans Count Optima Diffi Dif f 2 Dif f3

4 4 2.50 2.50 2.50 2.50 0.00 0. 00 0. 00
20 12 5.75 6.00 5.25 5.00 15.00 20. 00 5.00
40 17 6.32 6.20 5.67 5.34 18.35 16.10 6.18
60 29 9.53 9.57 9.03 8.12 17. 36 17. 86 11.21
80 36 12.00 12.04 11.20 10. 02 19.76 20.16 11.78

100 39 14.19 13.79 12.49 11.27 25.91 22.36 10.83
120 52 17.57 17.18 15.88 13.97 25.77 22.98 13.67
140 63 20.61 20.74 19.02 17.75 16.11 16.85 7.15
160 73 23.82 23.52 21.82 20.34 17.11 15.63 7.28
180 81 26.22 26.44 24.11 22.85 14.75 15.71 5.51
200 89 28.75 28.95 26.45 25.12 14.45 15.25 5.29
240 102 32.48 32.70 29.45 28.13 15.46 16.25 4.69
280 123 38.96 40.16 36.11 34.28 13.65 17.15 5.34
300 129 40.01 42.37 37.54 35.79 11.79 18. 39 4.89
340 148 47.16 48.46 43.27 41.11 14.72 17.88 5.25
380 164 52.69 54.28 47.01 45.13 16.75 20.27 4.17
400 176 56. 69 57.90 50.17 47.96 18.20 20.73 4.61
500 218 71.12 72.55 62.25 60.34 17.87 20.24 3.17



Table 5.7: The Average Search Costs for a = 0.50
82

t D MTF Trans Count Optima Dif f 2 Dif f 2 Dif f ̂

4 4 2.50 2.50 2.50 2.50 0. 00 0.00 0. 00
20 15 7.00 7.10 6.75 6.11 14.57 16.20 10.47
40 19 7.77 8.50 7.13 6.67 16.49 27.44 6.90
60 32 11.37 11.82 10.01 9.45 20.32 25.08 5.93
80 45 15.61 16.15 15.16 13.31 17.28 21.34 13.90

100 53 18.36 18.73 17.56 15.21 20.71 23. 14 15.45
120 64 21.72 22.07 20.72 18.45 17.72 19. 62 12.30
140 75 25.39 26.11 24,39 22.01 15.36 18.63 10.81
160 87 29.74 30.40 28.59 26.28 13.17 15.68 8.79
180 97 32.91 33.31 31.52 28.83 14.15 15.54 9.33
200 105 36.20 36.97 34.38 32.12 12.70 15.10 7.04
240 128 43.02 43.71 40.55 37.78 13.87 15.70 7.33
280 149 51.35 51.41 47.26 44.55 15.26 15.40 6.08
300 161 56.41 56.57 51.67 48.74 15.74 16.06 6.01
340 182 64.76 65.91 59.22 57.15 13.32 15.33 3.62
380 203 71.40 72.79 66.06 64.63 10.48 12.63 2.21
400 213 75.37 76.37 68.50 66.24 13.78 15.29 3.41
500 253 88.09 90.01 83.09 84.14 8.69 10.80 2.34
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Figure 5.1: The Average Search
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Figure 5.2: Effects of Alpha (Constant Entry Rates)
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Figure 5.2.1: Effects of Alpha (Constant Entry Rates)
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In summary, the simulation results seem to be 
consistent with the asymptotic approach rather than the 
amortized analysis, except that the performance between MTF 
and transpose depends on the value of a: (1) AM < 2A0; (2)
Ac = A0; and (3) AM > AT if a > 0.4 and AM < AT if a < 0.4. 
Clearly, count is the best of the heuristics considered 
here. However, since count requires substantial additional 
space for counter fields, it cannot be considered a 
memoryless heuristic like MTF and transpose. Unless the 
counter fields can be used for other purposes, either MTF or 
transpose should be considered as an optimal heuristic.

The question then arises as to which heuristic is 
better, MTF or transpose? Figures 5.2 and 5.2.1 clearly 
show that neither MTF nor transpose outperforms all the time 
over each other. We conclude that it is better to use MTF 
and then to switch to transpose as the number of 
accesses increases. If a is larger than 0.4, however, MTF 
tends to work better than transpose all the time.

Effects of A Moving Distance
MTF and transpose is the relatively extreme case of a 

moving distance for an accessed record. If k is the 
distance to the front, MTF is move-ahead-k and transpose is 
move-ahead-1. Thus, the effects of an intermediate moving 
distance for an accessed record as parameters vary would be
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interesting. The simulation was conducted with the various 
constant entry rates and moving distances ranging from 2 to 
7. As usual, if the distance to be moved exceeds the 
distance to the front, the record is only moved to the 
front.

The result shown in Table 5.8 indicates that there is 
no optimal value of k, but the best value of k can be 
determined by the values of alpha. The overall trend also 
shows that initially (i.e., a > 0.5) move an accessed record 
with a large distance and as the number of accesses 
increases (i.e., a = 0.1), reduce the moving distance.

Table 5.9: The Effects of a Moving Distance

The Value 
of a

The Best k

0.1 2
0.18 3
0.25 5
0.35 6
0.4 7
0.5 7
0.7 7
0.9 7
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5.2 Decreasing Entry Rates

It is well known that the entry rate a decreases as the 
number of accesses increases (Simon 1955). For a more 
realistic performance analysis, therefore, the simulation 
should be experimented with the decreasing entry rate a. In 
Chapter 2, we stated that Simon refined his basic model 
(i.e., constant entry rates) and proposed the new model 
assuming decreasing entry rate a. The simulation was 
conducted with three different cases of the decreasing entry 
rate. The results using Simon's refined model (decreasing 
entry rates) are shown in Tables 5.9 through 5.11. Again, 
Table 5.1.1 shows that the Simon-Yule model also describes 
the usage pattern very well with the decreasing entry rates. 
That is, the average search cost of optimal static ordering 
is almost the same as that of Zipf's distribution.

Figures 5.3 and 5.4 indicate that the results are 
consistent with the constant entry case; heuristics are very 
effective; count is superior to MTF and transpose; and MTF 
performs better initially, but as the number of accesses 
increases (i.e., a decreases), transpose outperforms MTF.

5.3 A Proposed Hybrid Rule
As discussed earlier, Bitner (1979) suggests a hybrid 

rule and a switching time from MTF to transpose based solely 
on the number of accesses, which is unreasonable. For 
practical purposes, therefore, we need clearer and more



Table 5.1.1: Comparisons Between Zipf's Law and the Simon-Yule Model (Decreasing a)

Case 1 Case 2 Case 3
T D Zipf's 

Law
OPT RAND D Zipf's 

Law
OPT RAND D Zipf's

Law OPT RAND

100 30 8.82 6.87 15.0 38 10.45 9.81 19.0 39 10.64 11.98 19.5
200 43 11.43 8.74 21.5 52 13.16 11.95 26.0 45 11.82 12.21 22.5
300 56 13.91 9.95 28.0 63 15*. 21 12.91 31.5 52 13.16 13.01 26.0
400 73 17.01 11.89 36.5 78 17.90 14.98 39.0 61 14.84 13.78 30.5
500 96 21.03 15.01 48.0 100 21.71 18.57 50.0 74 17.19 15.11 37.0

Case 1: a = 0.5t-0-2
Case 2: a 0.386, if t < 50

a = 0.217, if 50 < t < 100
a = 0.160, if 100 < t < 150
a = 0.204, if 150 < t < 200
a = 0.160, if 200 < t < 250
a = 0.139, if 250 < t

Case 3: a ss 0.386, if t < 100
a = 0.1, otherwise

T: Total number of accesses 
D: The number of distinct records
OPT: The average search cost of optimal static ordering under the Simon-Yule model 1
RAND: The average search cost of random ordering
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Table 5.9: The Average Search Costs for Decreasing a

(Case 1)

t D MTF Trans Count Optima Dif f 1 Dif f2 Diff3

4 4 2.50 2.50 2.50 2.50 0. 00 0. 00 0.00
20 8 3.20 3.35 3.05 3 .00 6. 67 11. 67 1. 67
40 13 4.10 4.20 3.77 3 .75 9.33 12.00 0.53
60 21 6.13 6.28 5.88 5.67 8.11 10.76 3 .70
80 26 7.07 7.09 6.55 6.45 9 . 61 9.92 1.55

100 30 7.62 7.48 6.97 6.87 10.92 8.88 1.46
120 32 8. 08 7.92 7.22 7.08 14.12 11.86 1.98
140 38 9.25 9.08 8.31 8.15 13.50 11.41 1.96
160 41 10.21 9.90 8.96 8.75 16. 69 13. 14 2.40
180 41 10.42 10.20 8.76 8.51 22.44 19.86 2.94
200 43 10.77 10.35 9.02 8.74 23.23 18.42 3.20
240 48 11. 30 11.39 9.55 9.28 21.77 22.74 2.91
280 52 11.89 11.94 9.95 9.69 22.70 23.22 2.68
300 56 12.46 12.52 10.48 9.95 25.23 25.83 5.33
340 60 13.04 12.96 10.76 10.48 24.43 23.66 2.67
380 65 13.87 13.66 11.38 10.91 27.13 25.21 4.31
400 73 15.08 14.74 12.53 11.89 26.83 23.97 5.38
500 96 18.70 18.15 15.78 15.01 24.58 20.92 5.13

* Decreasing rate of a 
a = 0.50*t'°-2



91
Table 5.10: The Average Search Costs for Decreasing a

(Case 2)

t D MTF Trans Count Optima Diff1 Dif f2 Dif f3

4 4 2.50 2.50 2.50 2.50 0.00 0.00 0. 00
50 8 7.80 7.82 7.24 6.98 11.75 12. 03 3.72

100 13 11. 37 11.48 10.47 9.81 15.90 17. 02 6.73
200 21 14.93 14.83 12.75 11.98 24.62 23.79 6.43
300 63 16.31 16.29 13.72 13.01 25.37 25.21 5.46
400 78 19.08 18.67 15. 65 14.98 27.37 24.63 4.47
500 102 23 .27 22.28 19.21 18.57 25.31 19.98 3.45

* Decreasing rate of a

a = 0.386, if t < 50 
a = 0.217, if 50 < t < 100 
a = 0.160, if 100 < t < 150
a = 0.204, if 150 < t < 200
a = 0.160, if 200 < t < 250
a = 0.139, if 250 < t
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Table 5.11: The Average Search Costs for Decreasing a

(Case 3)

t D MTF Trans Count Optima Dif f, Diff2 Dif f3

4 4 2.50 2.50 2.50 2.50 0.00 0.00 0.00
50 23 7.82 7.94 7.24 6.98 12.03 13.75 3.72
100 39 14.19 13.79 12.49 11.98 18.45 15.11 4.26
200 45 15.69 15.65 12.59 12.21 28.50 28.17 3.11
300 52 16.53 16.45 13.32 13.01 27.06 26.44 2.38
400 61 18.05 17.21 14.08 13.78 30.99 24.89 2.18
500 74 19.77 18.79 15.71 15.11 30.84 24.35 3.97

* Decreasing rate of a
a = 0.386, if t < 100 
a = 0.1, if t > 100
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Figure 5.3: The Average Search Costs (Decreasing Alphas)

Decreasing alpha (case 2) Decreasing alpha (case 3)

25
Th
• 20
A
g

8
9
aroh
C0 81 S

100 200 300 400 500504
The Number of A ccesses

• MTF 
COUNT

' TRANS 
OPTIMAL

25
rho

20
A
g

s
9
arch
Co
ar
a

100 200 3 0 0  400 600

The Number of Accesses
60

' MTF
COUNT

■ TRANS 
• OPTfMAL

Decreasing alpha (case 1)

20
Th
e
A
v
9

S
e
a
r
c
h

Co
s
t
s

200 4004
The Number of Accesses

— ~  MTF - t -  TRANS - * - C N T  - B -  O PT



94

Figure 5.4: Effects of Alpha (Decreasing Entry Rates)
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reasonable guidelines concerning switching time (Hester and 
Hirschberg 1986).

From Figures 5.2, 5.2.1, and 5.4, we derive a more 
reasonable switching time. Figures 5.2 and 5.2.1 show that 
when a is larger than 0.35, MTF tends to outperform 
transpose. However, when a is less than or equal to 0.35, 
the performance depends on the number of accesses; if the 
number of accesses is approximately larger than 110, 
transpose performs better than MTF. With the cases of 
decreasing a shown in Figure 5.4, we also observe the same 
phenomenon. Since the difference between MTF and transpose 
tends to be narrow down again for a = 0.35, however, the 
simulation study with t = 1000 is conducted. The results 
shown in Table 5.12 and Figure 5.2.2 indicates that for a = 
0.35 there is some fluctuation on the performance between 
MTF and transpose, but for a > 0.4 MTF tends to outperform 
transpose after the number of accesses exceeds 180.
Therefore, the proposed switching time is to switch from MTF 
to transpose if a. < 0.40 and t > 180.

This switching time is more reasonable because it 
additionally incorporates the steady-state condition of the 
list, which can be determined by a value of alpha. Since 
the entry rate a can be easily obtained by dividing the 
number of distinct records in the list by the number of 
accesses, no significant overhead of a hybrid rule would be
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Table 5.12: The Average Search Costs of MTF and Transpose 

Until t = 1000

4- a = 0.35 a = 3.4 a = 3.5
t

MTF Trans MTF Trans MTF Trans
600 62.62 62.01 84.42 86.82 109.01 113.77
700 72.37 74.03 96.61 101.17 129.08 133 .25
800 80.91 83.94 109.03 115.71 148.41 154.45
900 91.25 94.08 118.43 128.13 165.17 174.06

1000 99.70 104.68 131.43 143.04 178.45 192.99



Figure 5.2.2: E ffects of Alpha (t - 1000)
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incurred. Using this scheme, we may obtain a much better 
performance than with the application of either MTF or 
transpose only. If the number of accesses is relatively 
small compared with the number of records (i.e., a large a 
or t < 180), however, applying MTF only is preferred. If 
the number of accesses is large enough to offset the 
advantage of a hybrid rule, using transpose only is 
attractive.

5.4 Capturing Locality
As discussed in Chapter 3, if there is a strong 

locality in the reguest sequence, MTF performs better than 
transpose all the time (Bently and McGeoch 1985, Sleater and 
Tarjan 1985, Bellow 1987). Bently and McGeoch (1985) 
compared the performance of MTF and transpose by using words 
in four pascal files and six English text files as input 
data, indicating that MTF always outperforms transpose.

The proposed Simon-Yule approach seems that it does not 
fully capture the locality phenomenon in the request 
sequence, although it relaxes the previous unrealistic 
assumptions (i.e., independent accesses and fixed access 
probability). In order to model the locality, therefore, 
the proposed approach is modified (specifically STEP 3) and 
applied to the performance analyses for MTF and transpose.
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In STEP 3, a specific record is chosen from the records 

of the group determined in STEP 2 with an equal probability. 
Then the record is moved to the very last position of the 
list of the next higher group. Suppose that a list is 
obtained as follows and a record 5 is chosen as an accessed 
record in STEP 3:

1 2 3 / 4  5 6 / 7  8 9/10 11 12 13 (5.1)
Number of = (4) / (3) / (2) / (1)
Occurrences
Since the record 5 is accessed four times, it is necessary 
to keep this information to generate a next accessed record 
and move it to the very last position of the next group.
The result of updating the list is as follows:

1 2 3 5/ 4 6/ 7 8 9/ 10 11 12 13 (5.2)
Then the list (5.1) is arranged according to the 
corresponding heuristic in STEP 4. For example, if MTF is 
applied, the list would be:

5 1 2 3 4 6 7 8 9 10 11 12 13 (5.3)
In summary, the very recently accessed record for each

group is the very last one. Since locality shows that there
is a strong correlation between most recently accessed 
records and a future access, it is logical to choose the 
very last record as an accessed one in STEP 3 in order to
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capture the locality phenomenon. The STEP 3, thus, is 
revised as follows.

[STEP 3 1]: Find a specific record from the group of records 
chosen in STEP 2
Choose the very last one within the group chosen 
in STEP 2.

The empirical study is also performed to support how 
well the modified approach captures the locality phenomenon. 
Three pascal and two English text files are used as input 
data. The results summarized in Table 5.13 show that MTF 
performs better than transpose and the simulation results 
using the modified approach is also consistent with the 
empirical study.

It seems that the modified approach reasonably captures 
the locality phenomenon in the request sequence. It is also 
confirmed that MTF performs better than transpose if the 
search sequence involves a strong locality.

5.5 Summary
Using the Simon-Yule model, we conducted a more 

reasonable and realistic performance evaluation of self
organizing linear search heuristics. The analyses focus 
mainly on the representative of a large section: MTF,
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transpose, count, and move-ahead-k. The simulation was 
performed with the constant entry rates ranging from 0.1 to 
0.5 and with the decreasing entry rates. The results from 
both constant and decreasing entry rate are the same and are 
consistent with the asymptotic approach; i.e.,

- The heuristics are effective.
- Count is superior to MTF and transpose, which is

close to optimal static ordering. Therefore, if counter
fields would be needed for a special purpose or storage 
space is not limited, count would be the best.

- The average search cost of MTF is less than twice that 
of optimal static ordering. Specifically, its 
theoretical bound under the Simon-Yule model is 58% 
increase over that of optimal static ordering.
We also find some exceptions. Initially, MTF performs 

better, but later transpose outperforms MTF. Using the 
number of accesses and the entry rate, we suggest the more 
reasonable switching time from MTF to transpose without the 
significant overhead of a hybrid rule. The specific
guideline suggests a switch from MTF to transpose if (a <
0.40) and (t > 180).

The Simon-Yule approach is also modified in order to 
fully capture a strong locality phenomenon in the request 
sequence. The modified approach shows that it captures the 
locality phenomenon very well. It also provides the
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possible way for estimating the expected search cost of the 
heuristics under the assumption of the strong locality in 
the request sequence.

In conclusion, we find that the results seem to be 
consistent with the asymptotic approach except for the 
performance between MTF and transpose. Since MTF performs 
better initially and later transpose outperforms MTF, we 
suggest a more reasonable switching time, which would be 
valuable information for practitioners. However, it is also 
confirmed that MTF performs always better than transpose if 
there is a strong locality in the request sequence.
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Table 5.13: Simulation Results Using The Modified Approach

Input t d
Actual Data Simulation Results

MTF Trans MTF Trans

PI 405 83 23.89 34.78 18.34 23.76
P2 563 133 36.07 42.46 30.85 42.17
P3 703 158 42.63 58.26 35.16 51.15
T1 1048 500 147.60 162.68 172.23 225.76
T2 847 389 95.23 126.41 115.34 162.78

* PI, P2, P3 are PASCAL files
* T1 : "The Injustice of the Death Penalty," written by

Neal Devins and R. B. Herron, The Christian 
Science Monitor, 1983.

* T2 : "A Draft Isn't Needed," written by D. Bandow,
The New York Times, 1982.



CHAPTER 6
CONTINUOUS SPEECH RECOGNITION: AN APPLICATION

Recent study of continuous speech recognition (CSR) in 
the artificial intelligence arena has called for the use of 
statistical models of text (Jelinek et al. 1983, Young et 
al. 1989, White 1990). A major issue in this field is the 
lack of effective and objective evaluation of the models as 
well as a more adaptive framework for CSR. In Chapter 2, we 
evaluate the statistical models of text and identify the 
Simon-Yule model is the most promising one. From Chapter 3 
to Chapter 5, it is also found that count is superior to MTF 
and transpose. If counter fields are needed for some 
special purposes or storage space is not limited, count 
would be the best choice. In this chapter, thus, we will 
show how the two findings can be incorporated into a UDIS 
design like CSR. Based on Simon's explanatory processes of 
imitation and association, we suggest an adaptive framework 
for CSR. Furthermore, a self-organizing mechanism 
incorporating count rule is developed for a statistical 
language model for CSR.
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6.1 Continuous Speech Recognition (CSR)

The basic CSR system where sentences are produced 
continuously in a natural manner consists of an acoustic 
processor (AP) followed by a linguistic decoder (LD) as 
shown in Figure 6.1. Traditionally, the AP is designed to 
act as a phonetician, transcribing the speech waveform into 
a string of phonetic symbols, while the LD translates the 
possible garbled phonetic string into a string of words.

In Figure 6.2 speech recognition is formulated as a
problem in IBM's communication theory view (Jelinek et al.
1983). The IBM's approach combines the speaker and acoustic 
processor into an acoustic channel. The speaker is 
transforming the text into a speech waveform and the 
acoustic processor is acting as a data transducer and 
compressor.

6.2 Statistical Models of Text
The AP produces an output string y. From this string

y, the linguistic decoder (LD) makes an estimate of the
word string w produced by the text generator (see. Figure 
6.2). To minimize the probability error, wA must be chosen 
so that Pfw^ly) = max P(w\y).

By Bayes' rule:



P(w)P(y\vr)
P(w\y) = -----------

P(y)
(6.1)

Let P(wfy) be the probability of the joint observation of 
the input-output pair w and y. Since P(y) does not depend 
on w and thereby maximizing P(w\y) is equivalent to 
maximizing the likelihood P(w,y) = P(w)P(y\w), the goal of 
the linguistic decoder is to find that word string w* which 
maximizes P(w,y). Let P(w) be the probability that w was 
generated by the text generator and P(y\w) the probability 
that the acoustic processor output the word string y after 
the speaker read w. To estimate P(w) and P(y\w), the LD 
requires two models (Jelinek et al. 1983): (1) a statistical
language model of text which provides the information about 
which words are most probable with respect to previous other 
words in the word string w, and (2) an acoustic channel 
model which provides the information about which words are 
most probable based on a sound string w read by the speaker. 
Once the information for computing P(w) and P(y\w) is 
available from the two models, it is possible for the LD to 
compute the likelihood of each sentence in language and 
determine the most likely w* directly. In this study, we 
focus on the statistical language model only.
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Figure 6.1: A Continuous Speech Recognition System.
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Figure 6.2: The IBM Approach of Continuous Speech 
Recognition (Jelinek et al. 1983).
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6.3 Evaluating the Statistical Models of Text

In the IBM approach, the kth order (or k-gram)
Markov chain is used for a statistical language model for 
CSR. Particulary, k = 2 (i.e., trigram Markov chain model) 
is used. However, there has been some negative aspects 
about trigram Markov chain model. Jelinek (1985) pointed 
out that there is "nothing to recommend the trigram language 
model (k = 2) except its simplicity and ease of construction 
from training text." He also pointed out that "the 
selection of the exact classification scheme (for the 
conditional words), and its use in determining a large 
amount of text, is an unsolved problem that will claim 
increasing attention of researchers." These comments 
indicate the need for an effective and objective evaluation 
procedure for statistical models of text.

As discussed in Chapter 2, there are several other 
statistical models of text which were originally proposed 
for explaining the empirical phenomenon identified by Zipf 
(1949), i.e., if one takes the words making up an extended 
body of text and ranks them by their number of occurrences, 
then for each word the rank r multiplied by its 
corresponding frequency of occurrence will be approximately 
constant. A more simplified version of the Markov chain 
model is the multinomial urn model which assumes that (1)
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the author's vocabulary is fixed, and (2) the probability of 
using each word is fixed.

A further generalization of the Markov chain model was 
proposed by Simon in 1955. Simon viewed the choice of modes 
of language as a two-fold process: by imitation and 
association. According to Simon, an author writes by 
process of imitation: sampling segments of word sequences 
from other words he has written, from words of other 
authors, and from segments he has heard. Suppose that there 
are two texts, A and B. In text A, the word "He", which 
occurs 1000 times and ranks 20th, has very nearly the same 
rank - 21th - in text B. A more interesting observation is 
that, of the 100 most frequent words in text A, 78 are among 
the top 100 in text B. Simon explained that the similarity 
in ranking of "common" words is due to the process of 
imitation.

An author writes also by process of association: 
sampling earlier segments of the word sequences. In text A, 
the proper noun "Bloom" occurs 926 times and ranks 3 0th in 
frequency. Simon argued that if the author had named the 
proper noun as "Smith", that noun, instead of "Bloom", would 
have ranked 30th.

In summary, Simon (1955) believed that both imitation 
and association will tend to dictate the occurrence of a
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particular word with a probability somewhat proportional to 
its frequency of occurrence in the language, and to its 
previous frequency of use by a communicator.

6.4 Implication of Imitation for CSR
As discussed earlier, the continuous speech recognition 

system illustrated in Figure 6.2 indicates that the LD 
requires a statistical language model to provide the 
probability, P(w), that the text generator produces a word 
string w. If the text used is artificial, e.g., generated 
by the grammar of a Raleigh language (Jelinek et al. 1983), 
then the computation of P(w) is relatively easy. For 
natural texts, however, the computation is much more 
difficult.

The trigram Markov chain model might be the most common 
approach for providing P(w) for natural text (Jelinek 1985). 
In such a model,

n
P(w) = ir P (w. | w±_lf wi-2) , (6.2)

i=l
where w = w2, w2, •••, wn, denoting a string of n words. By 
analyzing a large set of training sentences a matrix of word 
transition probabilities | wi_1, wi-2) is constructed
(Young et al. 1989). Specifically, the transition 
probabilities are constructed by counting the number of
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times the words wi-2/ occur adjacent to each other,
without regard to all the histories resulting in the same 
two words.

Depending on the training sentences used, the estimated 
probability P(w) represents the frequency of occurrence of w 
in the language. Thus, if the training sentences are from 
an office text, then P(w) is the chance that the sentence w 
is written or spoken in the office environment. The process 
of estimating equation (6.2) is based on the assumption that 
the choice of any sentence depends, in large measure, upon 
the choices of other writers or speakers. This assumption 
is consistent with Simon's process of imitation involving 
language communication.

6.5 Implication of Association for CSR
According to Simon, language production also involves 

the process of association, because a writer has a tendency 
to sample earlier segments of his/her writing. As we can 
see from Table 6.1, the productivity of an old word at a 
certain point of time is roughly proportional to the number 
of its previous appearances, which is consistent with the 
concept of the rich-get-richer. The process of association 
implies that the probability P(w) in equation (6.2) will be 
dynamic, adaptive, and increasing as the same sentence is
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repeated in the course of communication. Thus, we suggest 
in Figure 6.3 a revised version of Figure 6.2. This new 
framework of a continuous speech recognition system adapts 
to a speaker's usage pattern by attempting to constantly 
update the probability P(w) in the text generator, thus 
generating texts in a more natural manner.

Figure 6.3: A Revised Version of Figure 6.2 Based on Simon's 
Process of Association.
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Acoustic Channel

Update p(w)
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Table 6.1: The Realization of the Sentences.
Example of Text:

"Text modeling is the study of how a literary text is 
generated. The field is a relatively old discipline that 
has taken on new life due to recent developments in 
artificial intelligence."

Time Series Representation:
Sum

Text 1 1 2
modeling 1 1
is 1 1 1 3
the 1 1 2
study 1 1
of 1 1
how 1 1
a 1 1 2
literary 1 1
generated 1 1
field 1 1
relatively 1 1
old 1 1
discipline 1 1
that 1 1
has 1 1
taken 1 1
on 1 1
new 1 1
life 1 1
due 1 1
to 1 1
recent 1 1
developments 1 1
in 1 1
artificial 1 1
intelligence 1 1
Sum = 27
No. of Types = 27

32
No. of Tokens = 32
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6.6 A Self-Organizing Language Model

In this section, we develop the self-organizing 
mechanism for the proposed adaptive framework for CSR by 
incorporating count rule. Since text files tend to 
represent a strong locality and MTF performs better on the 
locality phenomenon, MTF might be a right choice for this 
case. However, a most important factor for a statistical 
language model in the proposed adaptive framework is to 
provide a detailed mechanism for updating dynamic and 
adaptive probabilities P(w) constantly. Clearly, MTF would 
not the right choice for this purpose, because it does not 
keep any information of the usage frequencies due to its 
memoryless characteristics.

As discussed in Chapter 5, count performs bettern than 
MTF and transpose. Its only disadvantage is to take some 
storage space for counter fields. If counter fields are 
needed for a special purpose or storage space is not an 
important design issue, however, count would be the best. 
Since we need some mechanisms to keep track of usage 
frequencies for each word in order to update P(w), which are 
provided by count, count is recommended to be incorporated 
into a statistical language model.

Figure 6.4 is the model of the artificial Raleigh 
language (Jelinek et al. 1983). For each word, there are
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initial fixed trigram transition probabilities, which are 
stored in a secondary storage device. When CSR system is 
activated, counter fields added to each word to keep track 
of its usage frequencies would be allocated into a primary 
memory for storge efficiency. During the transactions of 
CSR, the usage frequencies for each word are cumulated.
After CSR finishes its transactions, a self-organizing 
mechanism incorporating count would be activated in order to 
update P(w) .

Suppose that the previous two words are "the" and "bus" 
(e.g., taken from the part circled in Figure 6.4) and the 
initial transition probabilities for next words are given in 
Figure 6.5. After transactions, the frequencies for each 
word shown in Table 6.2 will be obtained. Then, the updated 
probabilities can be obtained by multiplying the 
probabilities P(w) with the weighted frequencies. Since the 
summation of the updated frequencies is not equal to one, 
the normalization processes are conducted again, thus 
providing final updated probabilities P(W). The 
probabilities P(w') would be stored in the secondary storage 
and be used for a next transaction. Of course, the counter 
fields would be deleted from a primary storage after 
transactions for other computer usages. In summary, this 
proposed new framework of CSR system incorporating self-
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organizing statistical language model adapts to a speaker by 
attempting to constantly update the probabilities P(w) in 
the text generator, thus generating texts in a more natural 
manner.



Figure 6.4: Grammar of the Raleigh language.
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Figure 6.5 : The Transition Probabilities before Update.

the bus

Words P(W)

across 0.35
at 0.25
from 0.20
on 0.10
forward 0.05
under 0.05

Table 6.2 : The Transition Probabilities after Update.

Words P(w) FREQ Updating (a) P (W )

across 0.35 3 0.35 X (3/20) = 0.0525 0.1813
at 0.25 6 0.25 X (6/20) = 0.1620 0.5597
from 0.20 5 0.20 X (5/20) = 0.0500 0.1727
on 0.10 4 0.10 X (4/20) = 0.0200 0.0691
forward 0.05 1 0.05 X (1/20) = 0.0025 0.0086
under 0.05 1 0.05 X (1/20) = 0.0025 0.0086

SUM 1.00 20
(b)

0.2895 1.0000

P(w') = the normalized probability calculated by (a)/(b).



CHAPTER 7
CONCLUSION

Most computer information systems involve the usage- 
dependent phenomenon and their performance depends on the 
pattern of the phenomenon. Thus, modeling the usage- 
dependent phenomenon is significantly important in order to 
take full advantage of the phenomenon and incorporate it 
effectively into systems design. A usage process model (the 
Simon-Yule model) is proposed for modeling the usage- 
dependent phenomenon. The model is constructive, not 
subject to many limitations of the other approaches (i.e., a 
usage index or a usage distribution approach), and simple 
enough to use by practitioners.

The usage process model is modified and successfully 
applied to the performance evaluation of the self-organizing 
linear search heuristics. By applying the model, a more 
realistic performance evaluation of the heuristics is 
provided and the open problems which remain unsolved for a 
long time are solved; i.e., (1) relaxes the previous 
unrealistic assumptions; (2) derives the theoretical bounds 
of the heuristics with reasonable assumptions; (3) provides

119
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a reasonable scheme for optimizing the heuristics; and (4) 
successfully captures the locality phenomenon in the request 
sequences.

The results obtained from the theoretical and empirical 
study show that count is the best among the three heuristics 
being widely used by practitioners. If counter fields are 
needed for a special purpose, count would be the right 
choice. Since count takes up storage space for counter 
fields, however, memoryless heuristics like MTF or transpose 
are preferred. Based on the results, we suggest the initial 
use of MTF and the switch to transpose later. A new hybrid 
rule to providing a more reasonable switching time from MTF 
to transpose is also proposed. Specifically, if a < 0.4 and 
t > 180, then switch from MTF to transpose. If there is a 
strong locality tendency in the request sequences, however, 
MTF is preferred to transpose all the time.

To show how the previous findings can be incorporated 
into a UDIS design, an adaptive framework incorporating a 
self-organizing mechanism is proposed for continuous speech 
recognition systems based on the Simon's theoretical point 
of view of the text generation (i.e., imitation and 
association). For a self-organizing mechanism, count is 
incorporated into a statistical language model for CSR in 
order to update the transition probabilities P(w)



121
constantly. This proposed adaptive framework for CSR would 
provide a more reliable statistical model of text for CSR.

One possible extension of this research is to derive 
more theoretical bounds of other heuristics for realistic 
comparisons between the heuristics. In addition, a tighter 
bound of MTF and a closed-form of the relative efficiency of 
MTF would be desirable. Another possible extension is to 
apply the usage process model and self-organizing linear 
search heuristics to other application areas which are 
identified in Chapter 1. One interesting application would 
be a usage-dependent menu design. Most current computer 
information systems are required to provide more user- 
friendly user interfaces. A menu system is clearly one of 
the prevalent user interfaces, due to its nature of being 
easy-to-use and easy-to-learn. As discussed in Chapter 1, 
however, most current menu systems employ static menu 
structures, requiring users to adjust to large and complex 
fixed menu configuration. By incorporating the heuristics 
into menu systems, we might develop a self-organizing 
dynamic menu systems so that users can reduce the number of 
menu selections to access the information they need.
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