
Louisiana State University Louisiana State University

LSU Scholarly Repository LSU Scholarly Repository

LSU Historical Dissertations and Theses Graduate School

1990

Usage-Dependent Information Systems Design. Usage-Dependent Information Systems Design.

Jin-soo Kim
Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://repository.lsu.edu/gradschool_disstheses

Recommended Citation Recommended Citation
Kim, Jin-soo, "Usage-Dependent Information Systems Design." (1990). LSU Historical Dissertations and
Theses. 5065.
https://repository.lsu.edu/gradschool_disstheses/5065

This Dissertation is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It
has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU
Scholarly Repository. For more information, please contact gradetd@lsu.edu.

https://repository.lsu.edu/
https://repository.lsu.edu/gradschool_disstheses
https://repository.lsu.edu/gradschool
https://repository.lsu.edu/gradschool_disstheses?utm_source=repository.lsu.edu%2Fgradschool_disstheses%2F5065&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/gradschool_disstheses/5065?utm_source=repository.lsu.edu%2Fgradschool_disstheses%2F5065&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

U niversi ty Microfilms In te rna t iona l
A Bell & Howell Inform ation C o m p a n y

3 0 0 N or th Z e e b R o a d . A nn Arbor. Mi 4 8 1 0 6 - 1 3 4 6 USA
3 1 3 / 7 6 1 - 4 7 0 0 8 0 0 5 2 1 -0 6 0 0

O rder N u m b er 9123208

U sage-dependent inform ation system s design

Kim, Jin-Soo, Ph.D.
The Louisiana State University and Agricultural and Mechanical Col., 1990

UMI
300 N. ZeebRd.
Ann Arbor, MI 48106

Usage-Dependent Information Systems Design

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in
Interdepartmental Program in Business Administration

by
Jin-Soo Kim

B.S., Yonsei University, 1982
M.B.A., University of Texas at Arlington, 1986

December 1990

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my
major professor, Dr. Ye-Sho Chen, for his invaluable
guidance, suggestions, and support throughout the period of
this research.

I would also like to thank the members of my doctoral
committee, Dr. James Pruett, Dr. Kwei Tang, Dr. Peter Kelle,
and Dr. Bush Jones, for their constructive criticism and
helpful suggestions. Especially, Dr. Peter Kelle's valuable
suggestions made this research more worthwhile.

Special thanks are given to my mother and parents-in-
law for their love and support. Finally, I am very thankful
to my wife, Mi-Hyang Kim and my two children for their love,
pray, understanding, and patience throughout my graduate
studies in the United States.

ii

TABLE OF CONTENTS

page
ACKNOWLEDGEMENTS ii
LIST OF TABLES V

LIST OF FIGURES vii
ABSTRACT viii

CHAPTER
1 INTRODUCTION 1

1.1 Usage-Dependent Information Systems . . 1
1.2 Problem Statement 6
1.3 Dissertation Purpose and Organization . 9

2 DESCRIPTION OF USAGE PATTERNS 10
2.1 The Usage Index A p p r o a c h 10
2.2 The Usage Distribution Approach 12
2.3 The Usage Process Approach 15
2.4 Summary............................. 22

3 SELF-ORGANIZING LINEAR SEARCH 25
3.1 Applications....................... 26
3.2 Permutation Heuristics 28
3.3 Performance Evaluation 40
3.4 Open Problems 45

TABLE OF CONTENTS (continued)

4 ANALYTICAL STUDY 50
4.1 Major S t e p s 50
4.2 A Theoretical Bound of M T F 52
4.3 Relative Efficiency of M T F 65
4.4 Findings of Analytical Study 69

5 SIMULATION RESULTS 73
5.1 Constant Entry Rates 74
5.2 Decreasibg Entry Rates................. 88
5.2 A Proposed Hybrid Rule 88
5.4 Capturing Locality 98
5.5 S u m m a r y100

6 CONTINUOUS SPEECH RECOGNITION:
AN APPLICATION 104
6.1 Continuous Speech Recognition (CSR). . 104
6.2 Statistical Models of T e x t105
6.3 Evaluating the Statistical Models

of T e x t 108
6.4 Implication of Imitation for CSR . . . 110
6.5 Implication of Association for CSR . . Ill
6.6 A Self-Organizing Language Model . . . 114

7 CONCLUSION..................................... 119
REFERENCES ...122
VITA ... 132

iv

LIST OF TABLES

Table page
1 Applications of UDIS 2

3.1 Example of MTF 29
3.2 Example of Transpose 30
3.3 Example of Count 31
3.4 Example of Move-Ahead-k............... 32
3.5 Example of J u m p 33
3.6 Example of Move-Every kth Access . . . 34
3.7 Example of k-in-a row 35
3.8 Example of Batched k 36
3.9 Example of Wait C and Move 37

3.10 Example of Hybrid - Pos (k) 39
3.11 Example of Hybrid - Switch (k) 40
4.1 Comparisons Between the Bound and E(CH)

...................................... 63
4.2 Relative Efficiency of a Bound of MTF. . 67
5.1 Comparisions Between Zipf's Law and

the Simon-Yule Model (Constant a) . . . 75
5.2 The Average Search Costs for a = 0.1 . . 77
5.3 The Average Search Costs for a = 0.18 . 78
5.4 The Average Search Costs for a = 0.25 . 79

v

F

LIST OF TABLES (Continued)

5.5 The Average Search Costs for a = 0.35 . 80
5.6 The Average Search Costs for a = 0.40 . 81
5.7 The Average Search Costs for a = 0.50 . 82
5.8 Effects of A Moving Distance 87

5.1.1 Comparsions Between Zipf's Law and
the Simon-Yule Model (Decreasing a) . . 89

5.9 The Average Search Costs for
Decreasing a (Case 1) 90

5.10 The Average Search Costs for
Decreasing a (Case 2) 91

5.11 The Average Search Costs for
Decreasing a (Case 3) 92

5.12 The Average Search Costs of MTF
and Transpose Until t = 1000 96

5.13 Simulation Results Using the
Modified Approach 103

6.1 The Realization of the Sentences . . . 113
6.2 The Transition Probabilities after

Update.................................... 118

vi

71

72

83
84
85

93

94
97

107

107

112
117

118

LIST OF FIGURES

Example of Search Tree of MTF
The Bound of MTF According to the Values
of Alpha
The Bound of MTF According to the Number
of Accesses
The Average Search Costs
(Constant Entry Rates)
Effects of Alpha (Constant Entry Rates)
Effects of Alpha (Constant Entry Rates)
The Average Search Costs
(Decreasing Alphas)
Effects of Alpha
(Decreasing Entry Rates)
Effects of Alpha (t = 1000)
A Continuous Speech Recognition System . .
The IBM Approach of Continuous Speech
Recognition
A Revised Version of Figure 6.2 Based on
Simon's Process of Association
Grammar of the Releigh Language
The Transition Probabilities before
Update

vii

ABSTRACT

Usage-dependent phenomenon has been commonly observed
in computer information systems (CIS). Since the
performance of CIS greatly depends on the phenomenon, how to
model it is an important CIS design issue. A usage process
model (the Simon-Yule model) for modeling the usage-
dependent phenomenon is proposed. The model is modified and
successfully applied to the performance evaluation of self­
organizing linear search heuristics. Analytical and
empirical results indicate that the model provides a
realistic performance evaluation of the heuristics and
presents a solution to the research open problems which have
been unsolved for more than two decades. Furthermore, the
results lead to develop a self-organizing mechanism
incorporating the usage process model for continuous speech
recognition systems in the artificial intelligence arena.

vlii

CHAPTER 1
INTRODUCTION

Conventional wisdom has it that the more one uses
something, the more the same thing will be used again. The
phenomenon has commonly been observed in computer
information systems (CIS). For example, a simple statement
of the phenomenon is the 80-20 rule which states that 80% of
computer usage involves only 20% of the resources (Heising
1953). It is logical to consider this usage-dependent
phenomenon in information systems design in order to improve
the usefulness and efficiency of CIS. When the information
systems are defined as the usage-dependent information
systems (UDIS), various applications can be found as a
result of incorporating the usage-dependent phenomenon.

1.1 Usage-Dependent Information Systems
The literature indicates that UDIS have been proposed

for use in various fields including telecommunications,
computer science, and text modeling. Applications of UDIS
are listed in Table 1.

Huffman Coding (1986) provides the most efficient and
reliable representation of information storage and
transmission in fields such as telecommunications and

1

Table 1: Applications of UDIS

Applications References
Huffman coding Hamming (1986)
Text compression Salton (1989)
Usage-dependent
menu design

Bayman et al. (1989)

Self-organizing files Knuth (1973)
- VLSI circuit

simulation program
Bently and McGeoch
(1985)

- Interpreter design Bitner (1979)
Rivest (1976)

- Collision resolution
in hashing files

Knuth (1973)

Index selection Wiederhold (1987)
Type-token analysis of
text generation

Wiederhold (1987)

computer science. In this type of code, characters are
represented by a variable number of bits depending on the
relative frequency of occurrence of the character. It is
desirable to represent the most frequently occurring
characters with the shorter bit patterns and the less
frequently occurring ones with longer bit patterns.

A typical example is the Morse code, which uses the
dot, dash, and space to express the letters of the alphabet
or symbols. Sequences of codes are assigned to the letters
of the alphabet based on the frequency of use for each
letter; i.e., (.) for the highly frequent letter "E" and

for the less frequently used letter "J". This
technique significantly reduces the number of codes sent
through transmission.

Another example is text (or data) compression. A study
of composition text samples indicates the unevenness with
which linguistic text elements occur. If the typical length
of bits (i.e., 8- or 16-bit) is assigned to represent each
word regardless of its frequency, a lot of processing time
and storage space will be wasted. Huffman coding can be
used to solve this problem. For example, the most
frequently used character "O'1 is represented by a single-bit
0, and the least frequently used (%) is represented by a 16-
bit pattern for a certain application.

Bayman et al. (1989) propose the usage-dependent menu
design with Huffman coding. Most current menu systems
employ static menu structures, requiring users to gain
familiarity with large and complex fixed menu
configurations. Against this, they suggest a dynamic menu
system that continuously refines the menu tree based on
users1 search patterns so that users can access the
information they need with few selections. It is obvious
that usage-dependent menus would have an advantage over
static ones during usage. Quattro, a spreadsheet software,
allows users to change the menu structures to suit their
preferences. Some users, however, might be uncomfortable
with the dynamically changing, unstable menu structures.
For this reason, it is essential to conduct studies of user
preference to determine the utility of usage-dependent menu
systems.

In a linear search list, initially unordered records are
searched sequentially. In general, a record ^ will be
accessed with probability pif where px + p2 + + pN = 1.
The time required to conduct a successful search is
essentially proportional to the number of comparisons, C,
which has the average value

C = px + 2p2 + + NpN>
If we have the option of arranging the records in a linear

list in any desired order, then the above expression is
minimized when

Pi — P2 — • • • • — Pn *
That is, by arranging the most frequently used records near
the beginning, we can minimize the search time.

In most typical situations, however, the access
probability p̂ ̂ is not known a priori so that we cannot
arrange the records by descending frequency of access (Knuth
1973, Bitner 1979). Several self^organizing linear search
heuristics (Hester and Hirschberg 1986) are proposed to
handle this problem. A list that is initially unordered can
be dynamically reorganized according to usage patterns. By
applying the heuristics, the most frequently used records
will be moved to the front of the list and the less
frequently used ones will move to the end as time goes by.

Wiederhold (1987) states that it is very important to
choose the most selective index among various attributes for
a query; i.e., choose the most frequently used attributes as
the index. He also indicates the possible application of
UDIS in type-token analyses of text generation, which are
concerned with relationships between the number of different
words (types) and the total number of words (tokens) in a
literary text.

1.2 Problem Statement
As described above, UDIS have several advantages over

information systems that do not consider the usage-dependent
phenomenon; i.e., they save storage space, reduce the run
time of programs, reduce communication time, and decrease
search time. Because the performance of UDIS, however,
depends on the distribution of usage patterns, one must
determine the exact pattern in order to take full advantage
of usage-dependent phenomenon and incorporate it effectively
into systems design. For example, Bitner (1979) shows that,
if the keys in data structures are optimally arranged
according to the exact distribution of their usage patterns,
substantial decreases in access time can result.
Especially, if the distribution is in accordance with Zipf's
law, the minimum cost is four or five times less than the
random cost. Modeling exact usage patterns is essential,
therefore, in designing UDIS. Two immediate questions
follow: (1) how does one model the usage-dependent pattern?
; and (2) how does one take advantage of the patterns?

With regard to the first question, many approaches have
been proposed during the last 50 to 60 years to describe the
usage pattern. These include usage index, usage
distribution, and usage process. Limitations inherent in
the first two approaches, however, restrict their usefulness
in real-world situations. The usage index approach shows

empirical results only, for example, without theoretical
justification. The usage distribution approach provides the
empirical distributions, but has two limitations: (1)
estimating the parameters associated with the models is a
very difficult task; and (2) the necessary statistical
theory for making a rigorous test is not available (Chen
1988). To avoid these problems, the usage process approach
is preferred. It provides a more constructive approach in
modeling the usage-dependent phenomenon.

One way to answer the second question is to use the
self-organizing linear search technique to take advantage of
the usage-dependent phenomenon. Many self-organizing linear
search heuristics have been proposed in order to dynamically
rearrange the list according to usage patterns. This would
involve moving more frequently accessed records near the
front of the list and less frequently accessed ones near the
end.

The literature shows that a lot of effort has been
focused on performance evaluations of the heuristics to
determine which is the most efficient under certain
circumstances. The results of these evaluations provide
valuable information to practitioners. For the purpose of
evaluating the heuristics, three approaches are proposed:
asymptotic, worst case, and amortized. These approaches

have provided many theoretical and empirical results of
performance evaluation during the last two decades.

Despite the availability of evaluation results, several
open problems remain (Rivest 1976, Hester and Hirschberg
1985) . These are: (1) unrealistic assumptions of usage
patterns; (2) the absence of theoretical bounds for the
heuristics with reasonable assumptions; (3) the lack of a
reasonable scheme for optimizing the heuristics; and (4) no
good approach capturing the locality phenomenon in the
request sequences. There is a strong need, therefore, for a
more realistic performance evaluation approach, which would
use reasonable assumptions of the usage pattern and at the
same time solve the open problems previously identified.

1.3 Dissertation Purpose and Organization
The purpose of this dissertation is threefold. First,

we propose to develop a usage process model that accurately
describes the usage-dependent phenomenon, but is not subject
to many limitations and is simple enough to use in the
field. After a thorough literature review, we have chosen
the Simon-Yule model of text generation (Simon 1955) as a
promising approach. Second, we propose to apply the Simon-
Yule model to the performance evaluation of the heuristics
and, at the same time, solve the open problems described
above. Third, a self-organizing mechanism for continuous

speech recognition is developed to show how the previous two
findings can be incorporated into a UDIS design.

As a prelude to examining the research proposal,
Chapter 2 discusses the various approaches to modeling usage
patterns and their respective limitations. Also included in
Chapter 2 is an overview of the Simon-Yule model which we
propose to use in modeling the usage-dependent phenomenon.
In Chapter 3, self-organizing linear search heuristics and
the open problems previously cited are discussed. In
Chapter 4, the analytical study of the performance
evaluation of the heuristics using the Simon-Yule model are
presented. In Chapter 5, the simulation results are
presented. In Chapter 6, a self-organizing mechanism
incorporating the usage process model for continuous speech
recognition is proposed. Finally, the conclusion and
further research issues are presented in Chapter 7.

CHAPTER 2
DESCRIPTION OF USAGE PATTERNS

There are three approaches to describing usage
patterns: usage index, usage distribution, and usage
process. We introduce these approaches in terms of text
generation. The same concept can be applied to other
applications without loss of generality.

2.1 The Usage Index Approach
The simplest way to describe a usage pattern is

probably the usage index approach. Two usage indices are
reviewed below: the 80/20 rule and the ABC analysis.

80/20 Rule
In 1953, Heising stated that 80% of a transaction deals

with the most active 20% of a file and that the same rule
applies to this 20%. More formally, the 80/20 rule can be
described as

Pi + P2 + + P. 20n------------------------------ “ .80 for all n, (2.1)
Pi + P2 + + Pn

10

11
where pĵ is the probability that a record i would be
accessed. In terms of library management, the rule might
state that approximately 80% of the circulations are
accounted for by about 20% of the holdings.

ABC Analysis
In industrial engineering applications, an equivalent

form of the 80/20 rule is the ABC analysis (Herron 1976),
which ranks the items of a population in descending order of
some activity, then develops the most appropriate techniques
for handling the high-activity "A" group of items, the
medium-activity "B" items, and the low-activity "C" items.
The analysis is normally represented by the ABC curve, which
is obtained by plotting the percent of ranked-to-total
population against the corresponding cumulative percent of
total activity value represented by that percent of the
ranked population. In general, the ABC analysis shows that
20% of the ranked items account for 80% or more of the
total activity, which is consistent with the 80/20 rule.

Drawbacks
The usage index approach is well accepted in the field

because of its simplicity, but its lack of theoretical
justification limits its application.

12
2.2 The Usage Distribution Approach

A more general description of the usage pattern is the
usage distribution approach. Zipf's two laws of usage
distribution are probably the most well known.

Zipf's First Law
In his book, Human Behavior and the Principle of Least

Effort, Zipf (1949) stated that "if one takes the words
making up an extended body of text and ranks them by
frequency of occurrence, then the rank r multiplied by its
frequency of occurrence, f(r), will be approximately
constant." In symbolic form, this can be expressed as

f(r) = c/1, c/2,, c/r
= cr-1, r = 1,2,3,...., (2.2)

where c is a positive constant. That is, if we plot f(r)
vs. r on a log-log scale, then we see an approximately
straight line with a slope of -l.

Zipf's first law attracted tremendous attention from
many researchers and has been widely applied to many areas
of computer science and text modeling, including: the
applications listed in Table 1, program complexity in
software engineering (Shooman 1983), key word distribution
in bibliographic database design (Fedorowicz 1982a, 1982b),
and information retrieval (Lancaster 1979). One of the

problems in the application of Zipf's law, however, is that
its observation reveals only a crude approximation of the
phenomenon; i.e., its simplicity cannot explain the
concavity to the origin, as is usually the case with
empirical log-log distributions. Several new formulations
of Zipf's law, therefore, have been proposed. These new
formulations strengthened the suitability of Zipf's law
beyond the experimental evidence, which is strong in its own
right. The most general formulation is perhaps the one
proposed by Mandelbrot (1953):

f(r) = a(r + b)c, r = 1,2,3,..., (2.3)
where a > 0, c < 0, and b > -l. The formulation is
generally referred to as Mandelbrot's law of word freguency.
Recent applications of this formulation include: secondary
key indexing by Samson and Bendell (1985), and program
complexity measures by Shooman (1983).

Zipf's Second Law
The study of Zipf's first law focuses mainly on words

of high frequency. In contrast, Zipf's second law was
motivated by two remarkable phenomena associated with words
of low frequency of occurrence. If we observe and analyze
the frequency of different words in long sequences of text
and count f(n) as the number of words appearing n times,

14
then the ratio of the number of words occurring once (f(l))
to the number of different words in the text is
approximately a constant 0.5. Also, the values of
f(n)/f(l), n = 1,2,3,4,5, show an approximate pattern of l,
0.33, 0.17, 0.10, and 0.07 (Booth 1967). Based on his first
law, Zipf derived a formulation which he stated as the
second law (1949). Booth (1967) argued that Zipf's
formulation is only partially true and proposed a more
general form as follows:

f(n) = a'(nc’ - (n+l)c'), n = 1,2,3,..., (2.4)
where a' > 0 and c' <0. The formulation is referred to as
Booth's law of word frequency (1967). Recent applications
of this formulation include: indexed file performance
evaluation by Fedorowicz (1987), and automatic text analysis
by Pao (1978).

Drawbacks
A major difficulty in using Zipfian distribution is the

estimation of the parameters associated with the formulation
(e.g., a, b, c in equation (2.3)). To justify the estimated
parameters, goodness-of-fit tests, which are a statistical
test of a hypothesis that the sampled population is
distributed in a specific way, are commonly used. There are
several statistics used for a goodness-of-fit test. Among

15
those, the chi-square test is probably the most commonly
used. The crucial assumption underlying the chi-square
procedure is that the sample is randomly selected; i.e., the
observations are independently and identically distributed.
In practice, however, the observations may have substantial
dependence, as when Zipfian data are collected as a time
series; e.g., the data from a literary text.

As Ijiri and Simon (1977) pointed out, this is a
questionable approach, because the necessary statistical
theory for making a rigorous test is not available.
Instead, they suggest that research should focus on the
underlying mechanisms that can (1) explain the simplest form
of Zipf's law as a first approximation, and (2) look for an
additional mechanism that could be incorporated into the
theory so as to lead to a better second approximation.

2.3 The Usage Process Approach
The most general approach to describe the usage pattern

is the usage process, which provides the generating
mechanism that are used to explain the phenomenon of Zipf's
law. In this section, the performance of the three commonly
used process models are discussed by examining their
abilities to explaining Zipf's two laws.

16
The Multinomial Urn Model

In the multinomial urn model, the number s of an
author's available vocabulary vlf v2, ...,vs is assumed
fixed, and each word, vif i = 1, 2, ..., s, is assumed to
have a fixed probability p£ of being used each time the
author writes a word, so that the probability of writing vi;L
v i2 vin is pix pi2 ... Pin, Where ij e {1, 2, .., s},
j 1, 2 j , n »

In general, since the occurrence of the next word
strongly depends on the previous several words and the
probability pi is changing over the text generation, the
model's assumptions (i.e., independence and fixed p ^ are
unrealistic. In addition, Chen (1989) shows that the
expected frequencies of words is inconsistent with equation
(2.4); i.e., Zipf's second law. Thus, a dynamic
probabilistic model, called Markov chain, was recognized as
being a more realistic model for describing the usage
pattern.

Markov Chain Model
In 1913 Markov showed that some verse by Pushkin, when

reduced to a sequence of vowels and consonants, could be
accurately represented as a first-order Markov chain. Let
Y2, Y2, ..., Yk+i' •••, Yt' be a k-th order Markov chain

17
and Yj = ij if the word j, ij e {1, 2, ..., s}, is selected
at the j's token of the text generation process. The Markov
chain can be characterized by the initial probability:

p (Yk = ik' Yk-i = ik-l' — • Yi = î)
and by the following transition probabilities:

P ik+1 I ^ k - i^-f • • • f i i

= P (Yt+1 = I Yt = -*-t !••••! Yt-k+l = ^t-k+l) •
= p (Yt+1 = H+l I Yt = '**••' Yt-k+l = H-k+l) '

= i^-kI ••••/ Y2 — i2 ,••••, Y^ i^)f (2.5)
where k = 1, 2, ..., t = k , k+1, That is, the text
generation process uses the word v^, ij e {1,2,..., s}, at
the j's token. A succession of such models with increasing
k can be regarded as a succession of approximations to
strings of text. The first model is a stochastic process in
which the words are selected according to a first-order
Markov chain. This simple limitation makes it inadequate as
a model of text generation since sentences exhibit
constraints operating over much greater time spans. The
second and succeeding models are stochastic processes in
which the words are selected according to second and higher
order Markov chains.

Among the several researchers sharing the idea of a
Markov chain, Claude Shannon (1951) states that "The writing
of English sentences can be thought of as a process of

choice: Choosing a first word from possible first words with
various probabilities; then a second with probabilities
depending on the first; etc. This kind of statistical
process is called stochastic process, and information
sources are thought of, in information theory, as stochastic
processes." Nevertheless, there are critics opposed to
using the use of the Markov chain as a model of text. For
example, Miller and Chomsky (1963) showed that increasing
the order of Markov chains does not, in the limit, yield an
exact set of grammatically correct sentences. Chen (1989)
also shows that the Markov chain model can hardly explain
the Zipf's two laws.

The Simon-Yule Model
Simon (1955) proposed a more constructive approach

which has the following steps:
(1) Begin with empirical data, not hypotheses.
(2) Draw a simple generation that approximately

summarizes striking features of the data.
(3) Find limiting conditions under which deviations

from a generalization are small.
(4) Construct simple mechanisms to explain the simple

generalizations.

19
(5) Propose the explanatory theories that go beyond

simple generalizations and make experiments for new
empirical observations.

Based on his theory of modeling, Simon (1955) proposed the
generating mechanism discussed below.

Basic Model
According to Simon (1955), the process of text

generation can be described as a stochastic process. The
stochastic process by which words are chosen to be included
in written text is a twofold process. Words are selected by
an author by processes of association (i.e., sampling
earlier segments of his word sentences) and imitation (i.e.,
sampling from other works, by himself or other authors).
Simon's selection processes are stated in the following
assumptions, where f(n,t) is the number of different words
that have occurred exactly n times in the first t words.

Assumption I; There is a constant probability, a, that
the (t+l)-st word will be a new word-a word that
has not occurred in the first t words.

Assumption II: The probability that the (t+l)-st word
is a word that has appeared n times is

20
proportional to n»f(n,t)-that is, to the total
number of occurrences of all the words that have
appeared exactly n times.

That is, assumption I and assumption II describe a
stochastic process, in which the probability that a
particular word will be the next one written depends on what
words have been written previously. Based.on the two
assumptions, Simon derived

h(n) = pB(n,p+l), n = 1,2,3,..., (2.6)
where h(n) is the expected relative frequency of words

1
appearing n times, p = ------ and B(n, p+1) is the beta

1 - a
function with parameters n and p+1. Simon called equation
(2.6) a Yule distribution because Yule's paper (1944), which
predicted the modern theory of stochastic processes, derived
the same equation in a study of a biological problem.
Simon's approach is frequently cited as the Simon-Yule model
of text generation.

From equation (2.6) and the index approach proposed by
Chen and Leimkuhler (1989a), Chen (1989b) derived a more
realistic formulation of equation (2.5), which provides a
theoretical justification for the estimation and
interpretation of the parameters associated with Zipf's
first law.

21
Refinements of the Two Assumptions
Simon (1963) noted that the basic model is only a first

approximation to the striking features of Zipfian data. He
recommended further refinements of his model by modifying
the assumptions so as to better represent the real world.

With regard to the first assumption of a constant
probability a, a modification is introduced so that the
entry rates for new words are a decreasing function of the
length of the text. That is,

Assumption 1 1: There is a decreasing probability
function a(t), 0 < a(t) < 1, that the (t+l)-st word
be a new word - a word that has not occurred in the
first t words.

Even with this slight modification, the problem is
analytically difficult. Computer simulation methods,
carried out by Simon and Van Wormer (1963), show a
significant finding: the slight concavity toward the origin
on a log-log plot is a result of a decreasing rate of entry
of new words. In other words, the empirical data will
continue to approximate the Simon-Yule distribution with a
slight concavity to the origin, if the change in the rate of
entry is not too rapid.

During 1964-1974, Simon successively modified
Assumption II, in terms of business firms, to increase the
realism of the model and show the effect of public policy on
the size of firms. All the papers were collected in the
monograph, Skew Distribution and the Size of Business Firms
(1977). The modifications were based on empirical data and
supported by economic theory. The two main refinements are:
auto-correlated growth of firms, and mergers and
acquisitions. They provide two different economic
explanations for the concavity of the bilogarithmic firm-
size distributions as observed in empirical data.

2.4 Summary
The several methods used to describe the usage pattern

can be summarized as follows:
(1) The usage index approach is simple, but does not

provide any theoretical justification.
(2) The usage distribution approach is more general than

the usage index approach, but it has some difficulty
estimating the parameters associated with the
formulation and does not provide any rigorous
statistical goodness-of-fit test to validate the
distributions.

23
(3) The usage process models provide the most

constructive approach in modeling the usage pattern.
The multinomial urn model is simple, but its
underlying assumptions— independence and fixed
probability— are unrealistic and the result is
inconsistent with Zipf's second law. The more
dynamic and complicated model, the first-order
Markov chain, was proposed, but its simple
limitation makes it inadequate as a model of text
generation since sentences exhibit constraints
operating over much greater word spans.
Furthermore, the Markov chain model involves too
many parameters. This makes the model difficult to
use to explain the simplicity of Zipf's law (Chen
1989).

(4) The Simon-Yule model of text generation is identified
as the most promising approach for describing usage
patterns. This is due to the following findings: (i)
the model is simple, with only one parameter in the
formulation; (ii) the model is constructive,
providing a theoretical justification for the
estimation of the parameter associated with
Zipf's two laws; (iii) the model captures the
dependent nature of record accesses in the request

search sequences, providing a realistic generating
mechanism of text generation; (iv) the model is
general, providing the explanation for such diverse
phenomena as scientific publications, city sizes,
income distribution, and biological species; and (v)
the model is flexible, enabling successive
refinements to increase realism.

CHAPTER 3
SELF-ORGANIZING LINEAR SEARCH

Linear search, a very simple way to retrieve data, has
long been studied in the literature. In a linear search of
a list of initially unordered records, the search progresses
linearly; i.e., from the first record to the last until the
requested record is found. In practice, it is seldom the
case that all records are equally likely to be searched;
some records will be accessed much more frequently than
others. To take advantage of this usage-dependent
phenomenon and enhance the performance of linear search, the
order of the list must be dynamically changed so that
frequently accessed records are moved to the front of the
list, and less frequently accessed records are moved to the
end.

During the last few decades, various self-organizing
heuristics have been proposed to dynamically arrange the
more frequently accessed records closer to the front of the
list. Several measures have been developed to evaluate the
relative performance of these heuristics.

In this chapter, we discuss applications of the self-
organizing linear search, then review the details of all the

25

permutation heuristics, their performance evaluation, and
open problems.

3.1 Applications
Bently and McGeoch (1985) justify the use of self­

organizing linear search as follows:
(1) When n is small (i.e., at most, several dozen), the

simplicity of the code can make it faster than more
complex algorithms. This occurs, for example, when
linked lists are used to resolve collisions in a hash
table.

(2) When space is severely limited, sophisticated data
structures may require too much storage space.

(3) If the performance of linear search is almost (but
not quite) good enough, a self-organizing linear
search list may give acceptable performance without
adding more than a few lines of code.

Within these contexts, there are several applications of
self-organizing linear search.

One common application is a list of identifiers
maintained by a compiler or interpreter (Bitner 1979). The
list cannot be initially ordered since frequencies are
unknown, but, since most programs tend to access some
identifiers much more often than others, the more frequently

27
accessed identifiers should be nearer the front of the
search list.

One example is the list of identifiers maintained by a
compiler or interpreter in the scatter table used by the
LISP system at the University of California at Irvine
(Hester and Hirschberg 1985). In this system, identifiers
are hashed into a list of buckets, each of which is an
unordered linear list of identifier descriptions. Virtually
every command interpreted by the system involves one or more
accesses to elements in the scatter table. Since most
programs tend to access some identifiers more often than
others, a lower average search cost can be obtained by
moving the more frequently accessed identifiers to the front
of the list.

Bently and McGeoch (1985) also describe that self-
organizing linear search heuristics can improve the
performance of a very large-scale integration (VLSI)
circuit-simulation program that had two primary phases. The
first phase read the description of the circuit from the
symbol table, and the second phase simulated the circuit.
The program spent five minutes in a set-up phase, most of
which time was devoted to a linear search through a symbol
table. Since this simulator was run on an on-line system,
the five minute set-up phase was annoying to users.
Incorporating a simple self-organizing search with about a

28
half-dozen additional lines of code reduced the set-up time
to about 30 seconds.

3.2 Permutation Heuristics
The main feature that differs among heuristics is the

moving distance of the accessed record. The heuristics move
the accessed record forward by various distances according
to their respective schemes, either constant or based on the
location of the record or past events. The methods
associated with these heuristics are explained using an
initial linear list with four records: (A B C D).

Move-to-Front fMTF^
When the accessed record is found, it is moved to the

front of the list, if it is not already there. All the
records that the accessed record passes are moved back one
to make room.

Transpose
In this heuristic, the accessed record, if not at the

front of the list, is moved up one position by transposing
it with the record just ahead of it.

29
Table 3.1: Example of MTF
Access Order Probe Times Self-Organizing Linear
_______________________ 1 2 3_4_________________Search List____

A * A B C D
B * * B A C D
C * * * C B A D
D * * * * D C B A
A * * * * A D C B
B * * * * B A D C
C * * * * C B A D
D * * * * D C B A

COST = SUM OF PROBE TIMES/# OF ACCESS = 26/8 =3.25

30
Table 3.2: Example of Transpose
Access Order Probe Times Self-Organizing Linear
_____________________ 1 2 3 4_________________Search List_____

A * A B C D
B * * B A C D
C * * * B C A D
D * * * * B c D A
A * * * * B c A D
B * B c A D
C * * C B A D
D * * * * D C B A

COST = 21/8 =2.63

Count
When the record is accessed, the count of the accessed

record is incremented and that record is moved forward to
the first position in front of all records with lower
counts. Thus, the list is always in decreasing order by the
value of the counts of the records involved. This is the
most accurate method; unfortunately, it requires substantial
additional space for storage. Because of the additional
space required, the count method has been considered in a
different class from MTF and transpose, and has received
less attention (Bently and McGeoch 1985) in the literature.

31
Table 3.3: Example of Count
Access Order Probe Times Self-Organizing Count
__________________ 1 2 3 4_______ Linear Search List_________

A * A B C D 2 1 1 1
B * * A B C D 2 2 1 1
B * * B A C D 3 2 1 1
D * * * * B A D C 3 2 2 1
C * * * * B A D C 3 2 2 2
A * * B A D C 3 3 2 2
C * * * * B A C D 3 3 3 2
A * * A B c D 4 3 3 2

COST = 21/8 =2.63

Move-Ahead-k
Rivest (1976) and Gonnet et al. (1979) proposed the

move-ahead-k rule as a compromise between the relative
extremes of the move-to-front and the transpose rules. It
moves the record forward k positions, where k can be decided
by users according to the distribution of accessed record
order.

Table 3.4: Example of Move-Ahead-k (k = 2)
Access Order Probe Times Self-Organizing Linear
_____________________ 1 2 3 4_________________Search List_____

A * A B C D
B * * B A C D
C * * * C B A D
D * * * * C D B A
A * * * * c A D B
B * * * * c B A D
C * c B A D
D * * * * c D B A

COST = 23/8 = 2.88

Jump
Proposed by Hester and Hirschberg (1985), this rule

uses a back pointer during the search. The pointer is later
used as the destination for moving a record forward. The
pointer is advanced to the probed record if and only if the
probed record is not the accessed record. Jump can be a
function of variables such as the current position of the
back pointer, the position of the probed record, and/or the
number of accessed records preceding the current one.

33
Table 3.5: Example of Jump

(Pointer Position: The Probed Record, and Suppose
C in a Row)

Access Order Probe Times Self-Organizing Linear
_____________________ 1 2 3 4______________Search List_____

A B (C) D
D * * * * A B (C) D
C * * * A B C D
B * * A C B D
A * C A B D
D * * * * c A B D
C * c A B D
B * * * c A B D
A * * c A B D

COST = 20/8 =2.5

Meta-Alaorithm
The purpose of the meta-algorithm, applied in

conjunction with the heuristic, is to slow the convergence
of the latter by not moving records on the basis of single
accesses only, thereby reducing the effects of a one-time
access to a record. With regard to this method, four
heuristics are suggested: (1) move-every-kth access; (2) k-
in-a-row; (3) batched k; and (4) wait c and move.

Move-Everv-kth Access
McCabe (1965) considers applying the permutation

algorithm only once every k accesses to reduce the time
spent reordering the list.
Table 3.6: Example of Move-Every kth Access

(Suppose k = 2 and Use MTF)
Access Order Probe Times Self-Organizing Linear
______________________ 1 2 3 4_________________Search List_____

A * A B C D
B * * A B C D
C * * * C A B D
D * * * * c A B D
A * * A C B D
B * * * A C B D
C * * C A B D
D * * * * c A B D
COST = 20/8 =2.5

k-in-a-row
This heuristic is applied only if the accessed record

has been accessed k times in a row. If the record is
accessed even twice in a row, the chances are greater that
it will have additional accesses in the near future. This
heuristic has the advantage of not requiring as much memory

35
as do count rules, since it is necessary to remember only
the last record accessed and a single counter for the number
of recent consecutive accesses to that record.
Table 3.7: Example of k-in-a row

(Suppose k = 3 and Use MTF; for k < 3, No
Heuristic Is Used):

Access Order Probe Times Self-Organizing Linear
_______ 1 2 3 4________________Search List_____

A * A B C D
B * * A B C D
C * * * A B C D
D * * * * A B C D
A * A B C D
B * * A B C D
C * * * A B C D
D * * * * A B C D

-> (The accessed record has been accessed twice in a row,
so we apply the permutation algorithm - MTF.)
C * * * * C A B D

COST = 24/9 =2.67

Batched k
Gonnett et al. (1979) suggest the batched k heuristic

with minor modification. This heuristic groups accesses

36
into batches of size k and applies the permutation algorithm
only when all k accesses in a batch are to the same record.
This tends to slow convergence down a bit more than k-in-a-
row and provides a lower asymptotic cost.

Table 3.8: Example of Batched Heuristics
(Suppose k = 2 and Use MTF)

Access Order Probe Times Self-Organizing Linear
______________________ 1 2 3 4_______________Search_List_______

A * A B C D
D * * * * A B C D
B (Access same * * A B C D
B record here.)* * B A C D
C * * * B A C D
A * * B A C D
B * B A C D
D * * * * B A C D
C (" II * * * B A C D
C ii

") * * * C B A D
COST = 25/10 =2. 5

Wait C and Move
Bitner (1979) modified the k-in-a-row strategy and

suggested the wait c and move heuristic, which incorporates

37
finite counters for each record. After a record has been
accessed c times (not necessarily in a row), the heuristic
is applied and the counter for that record is reset.

Table 3.9: Example of Wait C and Move
(Suppose c = 3; After That, the MTF Is Applied)

Access Order Probe Times Self-Organizing Count
__________________1 2 3 4_______ Linear Search List___________

A * A B C D 1 0 0 0
B * * A B C D 1 1 0 0
B * * A B C D 1 2 0 0
D * * * * A B C D 1 2 0 1
C * * * A B C D 1 2 1 1
A * A B C D 2 2 1 1
B * * B A C D 3 2 1 1
-> Reset counter for B to 0.
D * * * * B A C D 0 2 1 2
C * * * B A C D 0 2 2 2

COST = 22/9 = 2.44

Hybrids
The MTF and transpose rules clearly have trade-offs

concerning convergence and asymptotic cost. If it is known

in advance that the number of accesses will be small, move-
to-front is probably the better heuristic. The transpose
rule is better, however, if the number of accesses is
expected to be large. A hybrid is a natural attempt to
incorporate the best of both heuristics. Tenenbaum and
Nemes (1982) suggest two classes of hybrids: POS(k) and
SWITCH(k).

Hybrids - P O S m
If the accessed record is found in a position <= k, it

is transposed with its predecessor; otherwise, it is moved
to the kth position, shifting all intervening records back
one. Note that P0S(1) is move-to-front, whereas POS(n - 1)
is transpose.

Hybrid - SWITCH fk̂
This method is the same as POS except that the use of

move-to-front and transpose are reversed.

39
Table 3.10: Example of Hybrid - POS(k)

(Suppose k = 4 and Use MTF)
Access Order Probe Times Self-Organizing Linear
__________________1 2 3 4__________________Search List_______

A * A B C D
B * * B A C D
C * * * B C A D
D * * * * B C D A
— > Use transpose method.
A * * * * A B C D
B * * B A C D
C * * * C B A D
D * * * * D C B A

COST = 23/8 = 2.875

Table 3.11: Example of Hybrid - Switch (k)
(Suppose k = 4 and Use MTF)

Access Order Probe Times Self-Organizing Linear
_____________________ 1 2 3 4______________ Search List_______

A * A B C D
B * * B A C D
C * * * C B A D
D * * * * D C B A
— > Use MTF method.

A * * * * D C A B
B * * * * D C B A
C * * C D B A
D * * D C B A
A * * * * D C A B
B * * * * D C B A
C * * C D B A
D * * D C B A
— > Use transpose method.

COST = 34/12 = 2.83

3.3 Performance Evaluation
For performance evaluation of the heuristics, several

measurements have been suggested: asymptotic cost,

41
amortized cost, and rate of convergence (Hester and
Hirschberg 1985). In general, the average search cost of a
permutation heuristic for a given initial configuration of
the list and a search sequence can be obtained by dividing
the number of probes required to find the accessed record by
the number of records accessed. The corresponding examples
are given in the previous section.

A relative comparison can be obtained based on any
heuristic, but costs of a heuristic are often compared with
the cost of the optimal static ordering, in which the keys
are initially arranged in decreasing order by their static
probabilities and never reordered through the access
sequence. Although the optimal static ordering is not
optimal over all rules (because it is static rather than
dynamic), it has been used as a basis for comparing the
performance of the heuristics. Since the first three
heuristics (i.e., MTF, transpose, and count rule) are
representative of a large section, we will focus on these
heuristics first and investigate the move-ahead-k heuristic
in order to determine effects of a moving distance for an
accessed record.

Asymptotic Cost
The asymptotic cost of a heuristic is the average cost

for a single key over a search sequence and its initial

42
configuration of the list. As indicated above, the cost can
be measured as the number of probes required to find the
accessed records. A common assumption for analyses of
asymptotic cost is that each record rL independently
accesses with a fixed probability p£ according to the
probability distribution P = {px, p2,...Pi}.

Asymptotic cost a m (P) of the move-to-front (MTF) rule
for probability distribution P has been derived by many
researchers: McCabe (1965), Burville and Kingman (1973),
Knuth (1973), Hendricks (1976), Rivest (1976), and Bitner
(1979). The formula shows that a m (P) is, at most, twice the
cost of the optimal static ordering, A0(P). However, Knuth
(1973) shows that, under Zipf's distribution of search
request, the MTF rule is approximately 1.386 times the
optimal cost as n -* ».

Rivest (1976) also shows that the asymptotic cost of
transpose AT is less than or equal to that of AM (P) for
every probability distribution. He also conjectured the
transpose rule to be the optimal rule of all permutation
rules.

Bitner (1979) shows that the search cost of the count
rule is asymptotically equal to that of the optimal static
ordering, and that the difference in cost between the two
decreases exponentially with time, so that the count rule
produces the ordering with the lowest expected cost for each

request.
In summary, for any probability distribution P, the

previous asymptotic approach shows that
Am (P) < 2A0 (P),
A^P) < Am (P) , and
AC(P) = A0(P) .

Worst-Case Cost
The worst-case cost of a permutation heuristic can be

obtained by counting the worst-case number of comparisons
over a given request sequence and an initial configuration,
and multiplying that number by the number of accesses (i.e.,
the maximum value of the average search costs). By the
given definition of cost, the worst case is bounded above by
the total number of records in the list (i.e., n) since the
cost is measured by the number of comparisons.

The worst-case cost of MTF has been shown by many
(Bently and McGeoch (1985); Bitner (1979); Burville and
Kingman (1973); Hendricks (1976); Knuth (1973); Rivest
(1976); Sleator and Tarjan (1985)) to be no more than twice
that of the optimal static ordering.

Amortized Cost
In many search processes, it is very rare that the

worst case occurs at every step. Amortized analysis

44
considers this fact and combines aspects of worst-case and
average-case analysis, and for many problems provides a
measure of algorithmic efficiency that is more robust than
average-case analysis and more realistic than wors-case
analysis (Bently and McGeoch 1985, Sleator and Tarjan 1985).
Compared to asymtotic cost or worst-case cost which
determines a search cost for a single key, amortized
analysis counts the worst-case number of comparisons made by
a heuristic for any particular sequence of requests; because
the cost is distributed over a series of requests.

Using an amortized argument, Bently and McGeosh (1985)
show the different result from the asymptotic cost analysis;
MTF and count rule are no more than twice that of optimal
static ordering, but the worst-case performance of transpose
could be far worse. They suggest that count and especially
MTF rule are much more efficient than transpose. Sleator
and Tarjan (1985) confirmed the results of Bently and
McGeoch.

Rate of Convergence
In addition to the search costs, rate of convergence

measures how quickly the permutation rules approach their
steady states, where many further permutations are not
expected to increase or decrease the expected search time
significantly.

45
3.4 Open Problems

Despite the ample results of the previous performance
analyses, there are several open problems which have
remained unsolved for a long time. These are unrealistic
assumptions, theoretical bounds, the optimization of
heuristics, and locality.

Unrealistic Assumptions
A primary problem with most performance analyses is

their unrealistic assumptions: incoming requests are
independent of each other; and the probability of access for
each record is equally fixed. It is well known (Hester and
Hirschberg 1985) that incoming requests are dependent on the
previous search performed and the access probability is
being dynamically changed over the search sequence.
Therefore, performance evaluation under more reasonable
assumptions such that the search request is dependent on the
previous search performed and the probability of access for
a record is being changed over the search sequence would be
valuable.

The Absence of Theoretical Bounds with Reasonable
Assumptions

Most previous works have extensively analyzed the
performance of MTF due to its wide acceptance from

46
practitioners, even though it is believed that transpose is
theoretically better than MTF. The limitation of previous
works again are the unrealistic assumptions such as the
independence of the request sequence and the fixed
probability of access to records.

The literature shows that the upper bound of MTF is
asymptotically at most two times of that of the optimal
static ordering (AM < 2Aq). Because of a dependency in the
request sequence, the upper bound of MTF should be tighter
than two times that of optimal static ordering.

Optimizing the Heuristics
Bitner (1979) shows that the MTF converges quickly and

initially has a lower expected cost than transpose, but has
a large asymptotic cost as the number of accesses increases.

The reason for this is obvious. In the initial random
ordering list, many records with high access probability are
far down in the list. These records should be moved to the
front of the list to reduce the search cost. Obviously, MTF
will perform well here since these records make large jumps
and quickly rise to the front, thus converging quickly into
its steady-state condition. Every time a record with a low
access probability is accessed, however, it is moved to the
front, thus increasing the cost of future accesses to many
other records.

47
Rivest (1976) showed that transpose has a lower

asymptotic cost than MTF. He also conjectured that this
result extends to all the heuristics.

Intuitively, this conjecture is reasonable. After a
long time, the frequently accessed records are near the
front of the list, and the less frequently accessed records
near the bottom. Occasionally, a low probability record
will be accessed, and the MTF rule will move it all the way
to the front on the basis of a single access. Unless that
record is accessed again in the near future, its position
will increase the expected search cost for other records
since high probability records have moved down one position.
The transpose avoids this potential error, and it is
difficult for the less frequently accessed records to be
advanced to the front. However, because of its conservative
record movement, the rate of convergence is much slower than
MTF.

A few hybrids were suggested to combine the best
features of heuristics, such as using MTF initially and then
switching to transpose; initially it converges quickly and
maintains a low asymptotic cost. It is very difficult,
however, to know the best switching time from MTF to
transpose, and, as yet, no reasonable switching time has
been suggested.

48
For example, Bitner (1979) proposed a hybrid rule that

switches from MTF to transpose when the number of requests
falls within a certain range. For Zipf's law he suggests
switching from the MTF to the transpose rule when the number
of requests is in the range of 9(N) to 8(N2).

Since MTF performs better when the search request has a
strong locality or unstable situation (i.e., large insertion
rate), it is undesirable if the switching time can be
determined only by a fixed number of accesses. When the
number of requests falls within the range of switching time,
for example, the list may not approach certain steady-state
condition in which transpose tends to perform best. In
addition to a fixed number of accesses, therefore, the
steady-state condition of the list should be considered to
determine a more accurate and realistic switching time.

Locality
It is well known (Rivest 1976, Hester and Hirschberg

1985, Bently and McGeoch 1985, Bellow 1987) that if the
request sequence is a reference string generated from
computer software, such a search sequence includes so-called
"locality," where the relative frequency of sub-sequences of
the request sequences may be significantly different from
the overall relative frequencies. For example, we can
consider the several occurrences of "integer" at the start

49
of a program, assignment of the form "x[i] := x[i] + 1", and
"end;end;end” sequence.

The previous study (Bently and McGeoch (1985) and
Bellows (1988)) shows that MTF performs better than
transpose if there is a strong temporal locality in the
request sequence. Bently and McGeoch (1985), however, just
provide the empirical results without any model which can
describe the locality. Bellows (1988) attempts to model the
locality of the search sequence by applying the discrete
auto-regressive process of order T or DAR (T), but he fails
to relax the equal probability of access.

Since taking advantage of locality is one of the main
reasons for using the heuristics in the first place, the
performance analyses under the assumption of a strong
locality in the request search sequence would be valuable.
As yet, no good approach capturing the locality of accesses
has been applied to the problem of measuring the performance
of the heuristics (Hester and Hircheberg 1985).

CHAPTER 4
ANALYTICAL STUDY

The Simon-Yule model, which provides a promising
approach to describing the usage pattern, is applied to the
performance evaluation of self-organizing heuristics in this
chapter. By applying the Simon-Yule model, the unrealistic
assumptions identified in the previous chapter can be
relaxed, allowing reasonable performance analyses of the
heuristics. The theoretical bound of MTF is derived with
realistic assumptions. Furthermore, the expected search
cost of optimal static ordering is also derived for
measuring the relative efficiency of MTF. Before discussing
the analytical study, the major steps of the analysis are
described.

4.1 Maj or Steps
Assume that N is the total number of record accesses,

that t is the order of a record access, where t is 1 < t < N
and f(n,t) is the number of distinct records that have
occurred exactly n times in the first t record accesses.

50

51
The steps are mainly divided into two parts. The first

two steps correspond, respectively, to Simon's two basic
assumptions. The next two steps are added to incorporate
the performance of self-organizing heuristics within the
Simon-Yule approach.

[STEP 1]: Determine whether a new or an old record is
accessed.

For each t (1 < t < N), a random number, a, is
generated from the rectangular distribution with
range 0 < a < 1. If a < a(t), f(l,t) =
f(l,t-l) + 1, where f(l,0) = 0; a new record is added
to the end of the linear search list. Otherwise, GO TO
[STEP 2].

[STEP 2]: Determine which group of old records is accessed.
A random number, b, is drawn from the rectangular
distribution with range l < b < t. Starting
with j = 1, the cumulant of j«f(j,t-l) is
computed, and compared with b until an n is found
such that E j»f(j,t-l) > b. Then f(n,t-l) is
decreased by 1, and f(n+l, t-1) is increased by
1; f(n,t) = f(n,t-l) -1; and f(n+l,t) = f(n+l,t-l) + 1.
This is equivalent as the t-th record accesses the
group of records that had previously occurred n times.

52
[STEP 3]: Find a specific record from the group of records

chosen in STEP 2.
Create the cumulative distribution for the records
within the group chosen in STEP-2, assuming that each
record in the group will be equally accessed. A random
number, c, is generated from the rectangular
distribution with range 0 < c < 1. Find a specific
record by comparing c with the cumulative distribution.

[STEP 4]: Perform the heuristic.
Rearrange the linear search list according to each
heuristic. If search sequences finish, stop.
Otherwise, GO TO STEP 1.

4.2 A Theoretical Bound of MTF
As discussed in Chapter 3, one of the open problems is

obtaining direct theoretical bounds on the behavior of the
heuristics with reasonable assumptions. In this section,
we derive the theoretical bound of the expected search cost
of MTF based on the major steps described above.

Theorem 1: For a given t and a, the bound of the expected
search cost of MTF, E(CH), under the Simon-Yule
model of record accesses is

53
E(Ch) < 1/t [c1at'1+c2at'2(l-a)+c2at'3(l-a)2,....,

+ c^l-a)*"2 + ct(l-a)t_1], (4.1)
t(t+l)

where c1 = --------
2

1 (t-2)
c2 = — (t-1) {t2 -), and

2 2
ct = t.

Proof: To determine the expected search cost, the search
trees are constructed for MTF according to the major steps.
An example of the search trees is shown in Figure 4.1.
Let a be an entry rate of a new record (Simon-Yule's
Assumption I) and (1 - a) be an entry rate of an old

nf(n,t)
record. Then (1 - a)• ------- is the joint probability

t
that the (t+l)-st record accesses to the group of records
that has appeared n times (Simon-Yule1s Assumption II).
In addition, the access probability to a specific record in
the group is

nf(n,t) 1 n
(1 - a)* ------- • ------ = (1 - a)--- (4.2)

t f(n,t) t
Based on the search trees, the expected search cost of MTF
(E(Ch)) can be obtained as follows:

t = 1, E(C„) = 1

54

t = 3

t = 4

t= 5,

E (Ch)

+

+

1
E(Ch) = --- {3a + (1-a) (1+1) }

2
1 (4+5) 4

E(C„) = [6a2 + a (1-a) { --- + — } + 3 (1-a)2]
3 2 1
1 _ _ (7+8+9) (7+8) 7

" + — — - f —

3 2 1
E(C„) = -- [10a3 + a2 (1-a) { + + — }

(6+7) (5+6+6) 10 5
+ a (1-a)2 { ------ + + — + — }

6 3 3 1
+ 4 (1-a)3]

1
= — [15a4

5
(11+12+13+14) (11+12+13) (11+12) 11

a3 (1-a) { + + + — }
4 3 2 1

(9+10+10+11+11+12) (9+10+9+11)
a2(1-a)2 { ------------------- + ------------

12 8
(8+9+10+9+9) (8+8+8) (8+9+8)

+ + + -------
6 4 3

8
+ (2) + 8}

3
(7+7+8+8+9) (6+7+7) (7+7+8) 3

a(l-a)3 { + + + — (6)
12 4 6 4

6
2

+ -- + 1) + 5(l-a)4]

Figure 4.1: Example of Search Tree of MTF
55

Probability Cost

10/4

(1,2,3)
7/4
8/4

(1-a)
9/4

7/4

5/4
6/4

(1-a)
8/4

1-
(2 ,1) 7/4

6/4

(1-a)
a2 (1-a) 7/4

5/4
6/4

(1-a)
a (1-a) 5/4

(1) (1-a)
* () indicates the list after permutation of MTF.

56
From these results, we derived the general form of the
variables and the coefficients. The variable patterns are

t = 1, 1
t = 2, a + (1-a)
t = 3, a2 + a(l-a) + (1-a)2
t = 4, a3 + a2 (1-a) + a (1-a)2 + (1-a)3
t = 5, a4 + a3(1-a) + a2(1-a)2 + a(1-a)3 + (1-a)4

t = k, ak'1 + ak'2(l-a) + ak_3(l-a)2 +,...., +
a(l-a)k"2 + (l-a)k'1

When we define c,. as the coefficient of the ith variable,
the coefficient patterns are derived through the following
analyses:

i) c1 = 1, 3, 6, 10, 15, 21, .
W W W W WDiff. = 2 3 4 5 6, ...

t = l 2 3 4 5 6, .

t t
Therefore, c, = S (1 + (k-1)) = t + S (k-1)

k=l k=l

(t-1)= t {1 + }
2

t(t+l)
= ------- (4.3)

57

ii) C2 = { 1 } , t = 1
= {2/1} , t = 2

(4+5) 4
= { + } , t = 3

2 1
(7+8+9) (7+8) 7

= { + +---------- } , t = 4
3 2 1

(11+12+13+14) (11+12+13) (11+12) 11
= { + + + },4 3 2 1

t = 5
The general form of c2 is derived by the following steps
a) and b).

a) First element: 1, 2, 4, 7, 11, 16, ...
\ / \ / \ / \ / \ /Diff. = 1 2 3 4 5, ___

Thus, the general form of the first element is:
(t-1) (t-l)t

a, = 1 + 2 k = 1 + ------ (4.4)
k-1 2

b) Using equation (4.4) and t, we can further
generalize the coefficient patterns. For example,
for a given t,

(a,+ (a.,+1) + (a.,+2) ++ (â + (t—2)))
C2 = C---t-1

{a^+ (a.j+1) + (a.j+2) ++ (a^+(t—2))}
+ ---

t-2
a.,+ ̂ +1) a,

+ + +]
t-(t-2) t-(t-l)

58

(t-1)a, + (1+2 + ... + (t-2)))
= [--t-1

(t-2) a1 + (1+2 + _____+ (t-3)))
+ ------------------------------------

t-2
(t-(t-2))a.j+1 (t-(t-l))ai

+ + +]
t-(t—2) t-(t-l)

(t-1)(l+t(t-l)/2) + (1+2 + ... + (t-2))}
[--t-1

(t-2)(l+t(t-l)/2) + (1+2 + ... + (t-3))}
+ :------------------

t-2

(t-(t-2))(1+t(t-1)/2) + 1
+ + --------------------------

t-(t-2)

(t-(t-l))(l+t(t-l)/2)
+]t-(t-l)

(t-1)(t(t-l)/2) + (1+2+...+(t-2)+(t-1))
[--t-1

(t-2)(t(t-l)/2) + (1+2+...+(t-3)+(t-2))
+ ---

t-2
(t-(t-2))(t(t-l)/2) + (1+2)

+ + -----------------------------
t-(t-2)

(t-(t-l))(t(t-l)/2) + 1
+]t-(t-l)

59
t(t-l) t-1

(t-1) + 2 k
2 k=l

[+t-1
t(t-l) t-2

(t-2) ------- + 2 k
2 k=l

+ -------------------------------
t-2

t(t-l) t-(t-2)
(t- (t-2)) ------- + 2 k

2 k=l
+ H---------------------------------

t-(t-2)
t(t-l) t-(t-l)

(t-(t-l)) - + 2 k
t-(t-l) k=l

+]t-(t-l)

t(t-l) (t-l)t(t_ 1} + -------

= [t-1

t(t-l) (t-2)(t-1)
(t-2) + ---------

t-2

t(t-l) (t-(t-2))(t-(t-3))
(t— (t-2))------- +-------------------

t-(t-2)

t(t-l) (t-(t-l))(t-(t-2))
(t-(t-l)) ------- +-------------------

t-(t-l)

60

= [

t(t-l) + t (t_1} { }

t-1

t(t-l) + (t-1)
(t-2) { --------------- }

t-2

+ ... + ■

t(t-l) + (t-(t-3))
(t- (t-2)) { -------------------)

t-(t-2)

t(t-l) + (t-(t-2))
(t-(t-l)) { -------------------)

+

1
2

t-(t-l)

[{t(t-l)+t} + (t(t-l)+(t-l)} +..+ {t(t-1)+ (t-(t-3)))
+ {t(t-1)+ (t-(t-2)))]

1
 [(t-l)t(t-l)+t+(t-l)+(t-2)+ .. + (t-(t-3)) + (t-(t-2))]
2
1
 [(t-l)2t + (t+t+..+ t) - (0+1+2+ .. + (t-3)+(t-2))]
2
1 t - 1
— [(t-l)2t + (t-l)t - S (k-1)]
2 k=l

1_ _ (t-2)(t-1)
2

[(t-l)2t + (t-l)t-------------]

1 (t-2)
— (t-1) [(t-l)t + t ---------]
2 2

61

1
(t-1) [t2

(t-2)
) (4.5)

2 2

iii) There is no regular pattern for c3 and c4, but its
value is less than c2. In general cases, it is obvious that
c2 is larger than the following coefficients (i.e., c3,
c4,..,ct_1). In Figure 4.1, for example, c2 is composed of
all the worst cases (i.e., an insertion of a new record) for
each search branch, and c3 is composed of average cases
(i.e., access to old records). Let us define c2j to be the
component of c2 and c3j to be that of the component of c3 in
ith search branch, respectively. Since c2 consists of all
the worst cases, each component of c2 is larger than that of
c3, which is the case accessing to an old record. That is,

C21 > C31 ' C22 > C32' * * • C2i > C3i' • • • ' C2N > C3N (4. 6)
N N

= E C2l- > S c3j (4.7)
i = l i = l

= c2 > c3. (4.8)

When this concept is extended to more general cases, the
following results are obtained.

Thus, based on the results of i), ii), and iii) we prove
that for a given t and a,

c2 > c3 > c4 > (4.9)

62
E(Ch) = 1/t [c1at_1 + c2at'2(l-a) + c3at'3(l-a)2J

+ c ^ a (1-a) t‘2 + c^l-a)*"1]
< 1/t [c^1*1 + c2at'2(l-a) + c2at'3(l-a)2

+ Cgafl-a)1'2 + ct(l-a)t_1],

r • • 9

(4.10)

t(t+l)
where c

2
1

(t-1) { t2 -
(t-2)

c.2 }, and
2 2

ct t.

Table 4.1 shows that how much the bound is tight. The
results show that the expected search cost from the bound
(i.e., equation 4.10) is about 23 % increase over the E(CH)
until t = 5. The bound seems to be tight enough for small
number of accesses. Since the further analytical study is
so difficult, a simulation study would be necessary to
obtain more insight of the behavior of the bound. The
simulation study to measuring the relative efficiency of the
bound over the optimal static ordering is conducted and will
be discussed in detail in Section 4.3.

Table 4.1: Comparisions Between the Bound and E(CM)

4- a = 0.1 a = 0.35 a = 0.5
Bound E(MTF) Bound/

E(MTF)
Bound E(MTF) Bound/

E(MTF)
Bound E(MTF) Bound/

E(MTF)
1 1.000 1.000 1. 000 1.000 1.000 1.000 1.000 1.000 1.000
2 1.050 1.050 1.000 1.175 1.175 1.000 1.250 1.250 1.000
3 1.115 1.115 1.000 1.388 1.388 1.000 1.542 1.542 1.000
4 1.238 1.175 1.091 1.662 1.427 1.164 1.844 1.646 1.120
5 1.426 1.185 1.204 1.876 1.524 1.231 2.013 1.726 1.166

E(MTF) = E(Cm)

G\w

64
Corollary 1: At the initial stage (i.e., t < 5) the expected
search cost of MTF is less than that of transpose.
Proof: Using the same procedure, we construct the search
tree to calculate the expected search cost of transpose,
E(Ct). The result shows that until t = 4 and E(CH) = E(CT).
However, when t = 5,

1
5

E(Ct) = -- [15a4

(11+12+13+14) (11+12+13) (11+12) 11
+ a3(l-a) { + + + — }

4 3 2 1
(9+10+10+11+10+12) (9+10+9+11)

+ a2(l-a)2 (+ -----------
12 8

(8+9+11+9+9) (8+8+8) (8+9+8)
+ + + -------

6 4 3
2

+ (8) + 8 }
3

(7+7+8+8+9) (6+7+7) (7+7+8) 3
+ a (1-a)3 { + + + (6)

12 4 6 4

6
+ — + 1} + 5(l-a)4]

2

1
= E(C„) + a2 (1-a)2 — (4.10)

12
1

Since a2(1-a)2 — >0, E(C„) < E(CT). (4.11)
12

However, we found that the other coefficients, c3, c4, ,
ct.1 are having differences as the number of accesses
increases. Since the literature shows (Bitner 1979) that
transpose is superior to MTF when the list reaches its
steady-state where many further permutation are not expected
to increase or decrease the expected search time
significantly (i.e., the number of accesses increases), we
may conjecture that the upper bound of transpose would be
less than that of MTF as the number of accesses increases.
However, further analytical study becomes intractable since
the number of possible occurrences to be considered
increases by approximately 2* as t increases. Because of
this, it is necessary to use the simulation method to obtain
insights into the relative performance of different
heuristics as the model parameters vary.

4.3 Relative Efficiency of MTF
The literature shows that the relative efficiency of

heuristics is compared with the expected search cost of
optimal static ordering. Most previous approaches, assuming
independence of search sequences and equal access
probability, conclude that the average search cost of MTF is
at most two times that of optimal static ordering; i.e., A,,
< 2Aq. Since the Simon-Yule model relaxes the previous
unrealistic assumptions, the theoretical bound of the
expected search cost of MTF should be less than two times

66
that of optimal static ordering. For measuring the relative
efficiency of MTF, therefore, the expected search cost of
optimal static ordering must be derived.

The Expected Search Cost of Optimal Static Ordering
A sequential search (Knuth 1973, Bitner 1979, Bently

and McGeoch 1985) begins at the beginning of a file and goes
through each record until a desired record is found or the
end of the file is reached. Suppose there are N records in
the file, and let p(be the probability that record k{ will
occur, then

N
2 Pj + q = 1, (4.12)
i=l

where q is the probability that the record is not in the
file. Supposing the file is huge, we can reasonably assume

N
that q = 0, then 2 p. = 1. Let E(C0) be the expected

i=l
number of comparisons to search a record, then

N
E(C0) = 2 ipf. If we have an option to arrange the records

i=l
in any order we desire, then E(C0) reaches its minimum if

p, > p2 > -----> pN. (4.13)
In other words, the records are arranged by descending
frequency of access, such that the most frequently used
records appear close to the beginning.

Chen (1990) derived a more realistic formulation of
Mendelbrot's law of word frequency from the Simon-Yule

67
distribution. That is, the three parameters of equation
(2.3) can be estimated as follows:

1/p

a = (vpr(p)) ,where p =------ and v is the total
(1-a)number of distinct words.

1
b = ---- 2 (—e (nf)), when efn,.), 1 < i < m are

m
approximately equal, and

c = -1/p.
If the two underlying assumptions of the Simon-Yule model
hold and the error terms e(nj), i = 1,2, 3,, m, are
approximately equal, then an appropriate distribution for pi
i = 1, 2, 3, ..., N would be

p5 = a(i+b)c, i = 1, 2,, N, (4.14)
1/p

where a = (vpT(p)) , b = -- 2 (-e(nj)), and c = -1/p.
m

Note that equation (4.14) is equivalent to the more
realistic formulation of Mendelbrot's law of word frequency
which are derived by Chen (1990). When b = 0 and c = -1-0,
for a small positive value of 0, the equation (4.14) reduces
to Schwartz's proposal for Zipf's law. Thus, the expected
search cost of optimal static ordering is

N
E(C0) = 2 ai(i+b)c.

i=l
(4.15)

68
Measuring The Relative Efficiency of MTF

The relative efficiency of MTF over the optimal static
ordering can be measured by E(CM)/E(CQ) . However, it is
observed that it is hard to find a closed-form for the ratio
of E(Cm)/E(C0) . The difficulty comes from the fact that it
involves so many parameters which cannot be reduced. This
leads to the simulation method for measuring the relative
efficiency of MTF.

The simulation study based on the eguation (4.1) and
(4.15) was conducted with various entry rates ranging from a
= 0.1 to 0.9 until the total number of accesses is 500. The
results shown in Table 4.2 indicates that the expected
search cost of MTF is at most 1.58 times of that of the
optimal static ordering. The upper bound of 1.58 is
significantly lower than two proposed by most previous
approaches, which employ the unrealistic assumptions such as
independence and fixed probability of request accesses.
Note that as a increases, the relative efficiency of MTF is
also improved.

Another important characteristic of the bound of MTF
would be that the vaules of the bound depend on the number
of accesses and the entry rates. Figures 4.2 and 4.3
indicate how the bound is changed for different a and t
values. Figure 4.2 shows that as a increases with the fixed
number of accesses (i.e., t = 500), the bound also increases

more rapidly. On the other hand, Figure 4.3 shows that as
the number of accesses increases, the bound increases very
rapidly for the large values of a (i.e., a = 0.35 and 0.5),
but it increases gradually for the small vaule of a (i.e., a
= 0.1).

Table 4.2: Relative Efficiency of a Bound of MTF

The Values
of Alpha

E(C0) Bound Bound/E (CQ)

0.10 7.21 11.37 1.58
0.18 15.43 23.61 1.53
0.25 25.01 35.97 1.43
0. 35 48.54 69.02 1.42
0.40 63.29 90.96 1.43
0.50 82.15 115.66 1.41
0.70 116.22 162.71 1.40
0.90 166.16 229.30 1.38

E(C0): The
Bound: The

average search
bound of MTF

cost of optimal static <

4.4 Findings of Analytical Study
Using the Simon-Yule model, the previous unrealistic

assumptions are relaxed, providing reasonable performance

analyses. In order to solve one of the open problems as
well as to provide realistic comparisons between the
heuristics, the theoretical bound of MTF is derived based on
the search tree incorporating the Simon-Yule model and the
corresponding heuristic. For measuring the relative
efficiency of MTF, the expected cost of optimal static
ordering is also derived. The results show that the bound
of the expected search cost of MTF is at most 1.58 times
that of optimal static ordering. This bound is
significantly lower than two times proposed by previous
approaches, which assume that request sequences are
independent and the accessed probabilities are fixed. It is
also interesting that as a increases, the relative
efficiency of MTF over optimal static ordering improves.
This observation clearly supports the corollary 1; i.e., at
an initial stage, MTF performs better.

Despite the theoretical bound of MTF with reasonable
assumptions, there is room to do more complete analyses.
First, a tighter bound of MTF would be derived. Second, a
bound of transpose which would be different from that of MTF
should be derived to allow more realistic comparison.
Third, a closed-form for the ratio between MTF and optimal
static ordering would be desirable.

Figure 4.2: The Bound of MTF
According to the Values of Alpha

250

200
T
h
e

o
f

M
T
F

50

0.18 0.25 0.35 0.4 0.90.1 0.5 0.7

The Values of A lp ha

72

Figure 4.3: The Bound of MTF
According to the Number of Accesses

T
h
e

B
o
u
n
d
o
f

M
T
F

120

100

80

60

40

20

0
2 3 4 5 50 100 150 200 3 0 0 4 0 0 500

The N u m b e r of A c c e s s e s

alpha=0.l —f- alpha=0.35 a lpha=0.5

CHAPTER 5
SIMULATION RESULTS

In this chapter, simulation analyses are performed to
further study the behavior of the heuristics as well as to
solve the open problems, which are identified in Chapter 3.
We first focus on the three widely used heuristics: MTF,
transpose, and count followed by further analyses on move-
ahead-k. The chapter is divided into five sections. In
section 5.1, results with constant entry rates (Assumption
I) ranging from 0.1 to 0.5 are presented. In section 5.2,
results with decreasing entry rates (Assumption I ') are
presented. In section 5.3, a proposed hybrid rule which is
developed by the results from the sections 5.1 and 5.2 is
discussed. In section 5.4, the Simon-Yule model is modified
to fully capture the locality in the request sequence. In
section 5.5, all the findings are summarized.

The simulation program follows the major steps
described in Chapter 4. To start the process, some initial
conditions are needed (Simon 1955). The initial condition
we use is f(l,3) = 3, (i.e, three different records were
used in the first three accesses). Throughout the analyses,
the maximum number of accesses was 500.

73

74
5.1 Constant Entry Rates

With Simon's first assumption (i.e., constant entry
rate ranging from 0.1 to 0.5), the average search cost -
defined as the total number of probe records divided by the
total number of accesses - for each heuristic is reported in
Table 5.2 through Table 5.7. Figures 5.1 and 5.2 describe
the results of the tables. For better understanding,
however, several of tables and figures are summarized.

Many shows that request frequencies in many contexts
obey Zipf's law. In addition, Knuth (1973) proved that the
average search cost for Zipf's law is roughly D/lnD, where D
is the number of distinct records. Table 5.1 shows how well
the Simon-Yule model describes the usage pattern in terms of
Zipf's law. For each a, the second column gives the cost of
the optimal static ordering for requests from the Simon-Yule
model. Comparing that column with the cost of Zipf's law
(D/lnD) shows that the request frequencies from the Simon-
Yule model is much closer to Zipf's distribution than to a
uniform distribution (random ordering). It appears that the
average search cost of optimal static ordering (Ag) is
almost the same as Zipf's distribution when a is between
0.25 and 0.35. When a is less than 0.25, A0 is less than
that of Zipf's law. As a becomes progressively larger than
0.35, the gap between A0 and Zipf's law also increases, but

• Table 5.1: Comparisons Between Zipf's Law and the Simon-Yule Model (Constant a)

R II o 1 a = 0 . 1 8 R II O . 2 5

T D Z i p f ' s
Law

OPT RAND D Z i p f ' s
Law

OPT RAND D Z i p f ' s
La w

OPT RAND

1 0 0 1 9 6 . 4 5 4 . 0 3 9 . 5 2 7 8 . 1 9 6 . 0 8 1 3 . 5 3 0 8 . 8 2 6 . 5 7 1 5 . 0

2 0 0 2 4 7 . 5 5 4 . 8 1 1 2 . 0 4 2 1 1 . 2 3 8 . 4 8 2 1 . 0 5 7 1 4 . 0 9 1 1 . 2 3 2 8 . 5

3 0 0 3 1 9 . 0 3 5 . 6 4 1 5 . 5 5 6 1 3 J 9 1 1 0 . 1 6 2 8 . 0 8 3 1 8 . 7 8 1 6 . 3 8 4 1 . 5

4 0 0 4 1 1 1 . 0 4 6 . 3 8 2 0 . 5 7 5 1 7 . 3 7 1 2 . 6 9 3 7 . 5 1 0 6 2 2 . 7 3 2 1 . 3 4 5 3 . 0

5 0 0 5 5 1 3 . 7 2 7 . 7 4 2 7 . 5 9 9 2 1 . 5 4 1 6 . 0 9 4 9 . 5 1 3 9 2 8 . 1 7 2 7 . 1 2 6 9 . 5

a = 0 . 3 5

oIIa

4 a = 0 . 5

T D Z i p f ' s
Law

OPT RAND D Z i p f ' s
La w

OPT RAND D Z i p f ' s
La w

OPT RAND

1 0 0 3 9 1 0 . 6 4 1 0 . 5 4 1 9 . 5 3 9 1 0 . 6 4 1 1 . 2 7 1 9 . 5 5 3 1 3 . 3 5 1 5 . 2 1 2 6 . 5

2 0 0 7 7 1 7 . 7 3 1 8 . 4 5 3 8 . 5 8 9
1

1 9 . 8 3 2 5 . 1 2 4 4 . 5 1 0 5 2 2 . 5 6 3 4 . 3 8 5 2 . 5

3 0 0 1 0 6 2 2 . 7 3 2 5 . 2 1 5 3 . 0 1 2 9 2 6 . 5 4 3 5 . 7 9 6 4 . 5 1 6 1 3 1 . 6 8 5 1 . 6 7 8 0 . 5

4 0 0 1 4 6 2 9 . 3 0 3 5 . 9 8 7 3 . 0 1 7 6 3 4 . 0 4 4 7 . 9 6 8 8 . 0 2 1 3 3 9 . 7 2 6 8 . 5 0 1 0 6 . 5

5 0 0 1 8 6 3 5 . 5 9 4 4 . 3 6 9 3 . 0 2 1 8 4 0 . 4 9 6 0 . 3 4 1 0 9 . 0 2 5 3 4 5 . 7 2 8 6 . 1 1 1 2 6 . 5

T: T o t a l n u m b e r o f a c c e s s e s ■
D: T h e n u m b e r o f d i s t i n c t r e c o r d s
OPT: T h e a v e r a g e s e a r c h c o s t o f o p t i m a l s t a t i c o r d e r i n g u n d e r t h e S i m o n - Y u l e

m o d e l .
RAND: T h e a v e r a g e s e a r c h c o s t o f r a n d o m o r d e r i n g

76
is still closer to Zipf's distribution than random ordering.
This result clearly supports the performance evaluation of
the heuristics with the Simon-Yule model.

From Table 5.2 to Table 5.7, we can observe several
interesting facts.

(1) The heuristics are very effective. Under a randomly
ordered list, the average search cost is D/2, where
D is the number of distinct records in the list.
The results show that, with the various values of
alpha, all heuristics search less than half the list
(which is the expected amount searched in a randomly
ordered list).

(2) Figure 5.1 clearly shows that count always performs
better than MTF and transpose, and its average cost
is very close to that of optimal static ordering.
On the average, the cost for count shows an increase
of about 5% over optimal static ordering. For MTF,
the increase is 20% - 31%; and for transpose, 10% -
22%. Count tends to converge to optimal static
ordering as the number of accesses increases.

(3) Initially, MTF performs better, but as the number of
accesses increases transpose works better (see
Figure 5.2). This result is consistent with
corollary 1 in Chapter 4 and clearly supports the
need of a hybrid rule to optimize the heuristics.

77

Table 5.2 : The Average Search Costs for a = 0.1

t D MTF Trans Count Optima Diff, Dif f2 Dif f3
4 4 2.50 2.50 2.50 2.50 0.00 0.00 0.00

20 7 3.00 3.02 2.75 2.40 25.00 27.00 14.58
40 8 3.40 3.52 2.97 2.72 25.00 29.41 9.19
60 14 4.22 4.38 3.73 3.55 18.87 23.38 5.07
80 17 4.50 4.64 4.02 3.80 18.42 22.11 5.79

100 19 4.82 4.92 4.22 4.03 19.60 22.08 4.71
120 21 5.30 5.30 4.63 4.42 19.91 19.91 4.75
140 23 5.81 5.63 4.64 4.68 24.15 20.30 5.56
160 23 5.92 5.70 4.92 4.65 27.31 22.58 5.81
180 23 6.02 5.54 4.83 4.58 31.44 20.96 5.46
200 24 6.13 5.67 4.96 4.81 27.44 17.88 3 .12
240 25 6.12 5.62 4.91 4.81 27.23 16.84 2.08
260 31 6.79 6.28 5.64 5.54 22.56 13.36 1.81
300 31 7.09 6.42 5.77 5.64 25.71 13.83 2.30
340 33 7.25 6.61 5.58 5.84 24.14 13.18 0. 68
380 40 7.88 7.10 6. 38 6.31 24.88 12.52 1.11
400 41 8.03 7.20 6.47 6.38 25.86 12.85 1.41
500 55 9.56 8.67 7.84 7.74 23.51 12.02 1.29

t = total number of accesses
D = number of distinct records
Diff1 = the increase of MTF over optmal (%)
Diff2 = the increase of transpose over optimal (%)
Diff3 = the increase of count over optimal (%)

Table 5.3: The Average Search Costs for a = 0.18
78

t D MTF Trans Count Optima Dif f t Dif f2 Dif f3
4 4 2.50 2.50 2.50 2.50 0.00 0.00 0. 00

20 8 3.20 3.30 3.12 3.00 6.67 10.00 4.13
40 13 4.13 3.92 3.80 3.75 10.43 4.53 1.33
60 20 5. 67 5.63 5.32 5.20 9.04 8.27 2.31
80 26 6.79 6.61 6.39 6.26 8.47 5.59 2.08

100 27 6.69 6.49 6. 16 6. 08 10.03 6.74 1.32
120 31 7.68 7.27 6.89 6.75 13.78 7.70 2.07
140 35 8.44 8.01 7.52 7.31 15.46 9.58 2.87
160 38 9.34 8.75 8.06 7.72 20.98 13.34 4 .40
180 38 9.43 9.22 7.96 7.62 23.75 21. 00 4.46
200 42 10.39 10.07 8.81 8.48 22 .52 18.75 3.89
240 48 11.29 10.91 9.49 9.14 23.52 19.37 3.83
280 52 11.89 11.36 9.86 9. 69 22.70 17.23 1. 75
300 56 12.47 11.92 10.38 10.16 22.74 17.32 2 .17
340 63 13.55 12.72 11.13 10.82 25.23 17.56 2 .87
380 67 14 .23 13.52 11.68 11.52 23.52 17.36 1.39
400 75 15.42 14.73 12.88 12.69 21.51 16. 08 1.50
500 99 19.26 18.40 16.25 16. 09 19.70 14.36 0.99

t = total number of accesses
D = number of distinct records
Diff1 = the increase of MTF over optmal (%)
Diff2 = the increase of transpose over optimal (%)
Diff3 = the increase of count over optimal (%)

Table 5.4: The Average Search Costs for a = 0.25
79

t D MTF Trans Count Optima Dif f2 Dif f2 Dif f 3

4 4 2.50 2.50 2.50 0.00 0.00 0.00 0.00
20 8 3.20 3.30 3.10 3.00 6.67 10.00 3.33
40 13 4.13 3.92 3.80 3.45 19.71 17.97 10.14
60 21 6.15 6.27 5.90 5.22 17.82 20.11 13.03
80 26 7.10 7.15 6.61 6.12 16.01 16.83 8. 01

100 30 7.73 7.58 7.03 6.57 17.66 15.37 7.00
120 35 8.62 8.57 7.92 6.98 23 .50 22.78 13 .46
140 45 10.89 10.64 10.04 9.01 20.87 18.09 11.43
160 49 11.71 11.44 10.81 9.78 19.73 16.97 10.53
180 56 13.68 13.31 12.54 11.34 20.63 17.37 10.58
200 57 14.11 13.67 12.51 11.23 25.65 21.73 11.40
240 69 16.81 16.19 14.89 13.23 27.06 22.37 12.55
280 78 18.51 18.01 16.45 15.01 23.32 19.99 9.59
300 83 19.51 18.82 17.22 16.38 19.11 14.90 5.13
340 92 21.82 20.94 18.94 18.04 20.95 16.08 4 .99
380 102 24.40 23.55 21.00 19.99 22.06 17.81 5.05
400 106 25.33 24.44 21.66 21.34 18.70 14.53 1.50
500 139 32.10 31.03 27.75 27.12 18.36 14.42 2.32

Table 5.5: The Average Search Costs for a = 0.35
80

t D MTF Trans Count Optima Dif f 2 Diff2 Dif f -

4 4 2.50 2.50 2.50 2.50 0. 00 0.00 0.00
20 12 5.56 5.58 5.40 5.20 7.50 7.88 3.85
60 17 6.22 6.85 5.80 5.41 14.97 26. 62 7.21
80 36 11.97 11.95 11.09 10.11 18.40 18.20 9.69
100 39 12.58 12.06 11.15 10.56 19.13 14.20 5.69
120 47 14.34 14.32 13.10 12.34 16.21 16.05 6.16
140 57 16.85 16.74 15.55 14.65 15. 02 14.27 6.14
160 65 19.01 18.81 17.60 16.81 13.09 11.90 4.70
180 71 20.81 20.49 19.26 18.21 14.28 12.52 5.77
200 77 22.85 22.20 20.96 19.84 15.17 11.90 5.65
240 88 25.87 25.12 23.41 22.36 15.70 12.34 4 .70
280 101 29.20 28.90 26.40 24.91 17.22 16.02 5.98
300 106 30.44 30.18 27.34 25.86 17.71 16.71 5.72
340 121 34.59 34.34 31.06 29.81 16.03 15.20 4.19
380 137 38.84 38.59 34.91 33.74 15.12 14.37 3.47
400 146 41.23 40.69 37.12 35.98 14.59 13.09 3.17
500 186 52.55 52.48 46.90 46.02 14.19 14.04 1.91

Table 5.6: The Average Search Costs for a = 0.4 0
81

t D MTF Trans Count Optima Diffi Dif f 2 Dif f3

4 4 2.50 2.50 2.50 2.50 0.00 0. 00 0. 00
20 12 5.75 6.00 5.25 5.00 15.00 20. 00 5.00
40 17 6.32 6.20 5.67 5.34 18.35 16.10 6.18
60 29 9.53 9.57 9.03 8.12 17. 36 17. 86 11.21
80 36 12.00 12.04 11.20 10. 02 19.76 20.16 11.78

100 39 14.19 13.79 12.49 11.27 25.91 22.36 10.83
120 52 17.57 17.18 15.88 13.97 25.77 22.98 13.67
140 63 20.61 20.74 19.02 17.75 16.11 16.85 7.15
160 73 23.82 23.52 21.82 20.34 17.11 15.63 7.28
180 81 26.22 26.44 24.11 22.85 14.75 15.71 5.51
200 89 28.75 28.95 26.45 25.12 14.45 15.25 5.29
240 102 32.48 32.70 29.45 28.13 15.46 16.25 4.69
280 123 38.96 40.16 36.11 34.28 13.65 17.15 5.34
300 129 40.01 42.37 37.54 35.79 11.79 18. 39 4.89
340 148 47.16 48.46 43.27 41.11 14.72 17.88 5.25
380 164 52.69 54.28 47.01 45.13 16.75 20.27 4.17
400 176 56. 69 57.90 50.17 47.96 18.20 20.73 4.61
500 218 71.12 72.55 62.25 60.34 17.87 20.24 3.17

Table 5.7: The Average Search Costs for a = 0.50
82

t D MTF Trans Count Optima Dif f 2 Dif f 2 Dif f ̂

4 4 2.50 2.50 2.50 2.50 0. 00 0.00 0. 00
20 15 7.00 7.10 6.75 6.11 14.57 16.20 10.47
40 19 7.77 8.50 7.13 6.67 16.49 27.44 6.90
60 32 11.37 11.82 10.01 9.45 20.32 25.08 5.93
80 45 15.61 16.15 15.16 13.31 17.28 21.34 13.90

100 53 18.36 18.73 17.56 15.21 20.71 23. 14 15.45
120 64 21.72 22.07 20.72 18.45 17.72 19. 62 12.30
140 75 25.39 26.11 24,39 22.01 15.36 18.63 10.81
160 87 29.74 30.40 28.59 26.28 13.17 15.68 8.79
180 97 32.91 33.31 31.52 28.83 14.15 15.54 9.33
200 105 36.20 36.97 34.38 32.12 12.70 15.10 7.04
240 128 43.02 43.71 40.55 37.78 13.87 15.70 7.33
280 149 51.35 51.41 47.26 44.55 15.26 15.40 6.08
300 161 56.41 56.57 51.67 48.74 15.74 16.06 6.01
340 182 64.76 65.91 59.22 57.15 13.32 15.33 3.62
380 203 71.40 72.79 66.06 64.63 10.48 12.63 2.21
400 213 75.37 76.37 68.50 66.24 13.78 15.29 3.41
500 253 88.09 90.01 83.09 84.14 8.69 10.80 2.34

«t>
<
>

a>
zr

—i
w
—
to
OO

 ̂
c>

to
o>

(/)
• c
d
<
>

©
u
—I

83

Figure 5.1: The Average Search
Alpha ■ 0.1

200 4004

T h e N u m b e r o f A c c e s s e s

MTF TRANS - # ~ C N T **e-O P T

Costs (Constant Entry Rates)
Alpha ■ 0.25

Th
e

A 25 v
8

20
S
e
a
roh
Co
s
t
s

200 4004

T h e N u m b e r o f A c c e s s e s

— MTF TRANS - * - C N T - B - O P T

Alpha ■ 0.40

80

60

200 4004

The Number of Accesses
■MTF —F- TRaNS -*-CNT -e-OPT

Alpha ■ 0.5

100
Th
e 80
A
Vg• eo
s
e
a
r
ch 40

C
a 20
t
s

200 4004

T h e N u m b e r o f A c c e s s e s

■MTF -+ -T R A N S - * - C N T “ « “ 0PT

84

Figure 5.2: Effects of Alpha (Constant Entry Rates)
Alpha ■ 0.1 Alpha ■ 0.18

Th
e

D ° '8
i
f
' 0.6

01
0.4

S
e
a
r 0.2
ch
Co
s
t
s

-0.2
200 4004

1

0.6

0.4

0.2

0
- 0.2

T h e N u m b e r o f A c c e s s e s

200 400

T h e N u m b e r of A c c e s s e s

Alpha ■ 0.25 Alpha * 0.35

1.2

1

0.8

0.6

0.4

0.2

0
- 0.2

4 200 400

T h e N u m b e r of A c c e s s e s

0.6

0.4

0.2

o
- 0.2

-0.4

- 0.8
200 4004

T h e N u m b e r of A c c e s s e s

* The d i f f e r e n c e of search costs » M T F - Trans

Figure 5.2.1: Effects of Alpha (Constant Entry Rates)
Alpha ■ 0.4

0.5

0

-0 .5

1

1.5

2

-2 .5
200 4 0 04

The Number of A ccesses

Alpha ■ 0.5

o

-0 .5

1

1.5

2
2004 4 0 0

The Number of Accesses

T h e d i f f e r e n c e o f s e a r c h c o s t s • M T F - T r a n s

In summary, the simulation results seem to be
consistent with the asymptotic approach rather than the
amortized analysis, except that the performance between MTF
and transpose depends on the value of a: (1) AM < 2A0; (2)
Ac = A0; and (3) AM > AT if a > 0.4 and AM < AT if a < 0.4.
Clearly, count is the best of the heuristics considered
here. However, since count requires substantial additional
space for counter fields, it cannot be considered a
memoryless heuristic like MTF and transpose. Unless the
counter fields can be used for other purposes, either MTF or
transpose should be considered as an optimal heuristic.

The question then arises as to which heuristic is
better, MTF or transpose? Figures 5.2 and 5.2.1 clearly
show that neither MTF nor transpose outperforms all the time
over each other. We conclude that it is better to use MTF
and then to switch to transpose as the number of
accesses increases. If a is larger than 0.4, however, MTF
tends to work better than transpose all the time.

Effects of A Moving Distance
MTF and transpose is the relatively extreme case of a

moving distance for an accessed record. If k is the
distance to the front, MTF is move-ahead-k and transpose is
move-ahead-1. Thus, the effects of an intermediate moving
distance for an accessed record as parameters vary would be

87
interesting. The simulation was conducted with the various
constant entry rates and moving distances ranging from 2 to
7. As usual, if the distance to be moved exceeds the
distance to the front, the record is only moved to the
front.

The result shown in Table 5.8 indicates that there is
no optimal value of k, but the best value of k can be
determined by the values of alpha. The overall trend also
shows that initially (i.e., a > 0.5) move an accessed record
with a large distance and as the number of accesses
increases (i.e., a = 0.1), reduce the moving distance.

Table 5.9: The Effects of a Moving Distance

The Value
of a

The Best k

0.1 2
0.18 3
0.25 5
0.35 6
0.4 7
0.5 7
0.7 7
0.9 7

88
5.2 Decreasing Entry Rates

It is well known that the entry rate a decreases as the
number of accesses increases (Simon 1955). For a more
realistic performance analysis, therefore, the simulation
should be experimented with the decreasing entry rate a. In
Chapter 2, we stated that Simon refined his basic model
(i.e., constant entry rates) and proposed the new model
assuming decreasing entry rate a. The simulation was
conducted with three different cases of the decreasing entry
rate. The results using Simon's refined model (decreasing
entry rates) are shown in Tables 5.9 through 5.11. Again,
Table 5.1.1 shows that the Simon-Yule model also describes
the usage pattern very well with the decreasing entry rates.
That is, the average search cost of optimal static ordering
is almost the same as that of Zipf's distribution.

Figures 5.3 and 5.4 indicate that the results are
consistent with the constant entry case; heuristics are very
effective; count is superior to MTF and transpose; and MTF
performs better initially, but as the number of accesses
increases (i.e., a decreases), transpose outperforms MTF.

5.3 A Proposed Hybrid Rule
As discussed earlier, Bitner (1979) suggests a hybrid

rule and a switching time from MTF to transpose based solely
on the number of accesses, which is unreasonable. For
practical purposes, therefore, we need clearer and more

Table 5.1.1: Comparisons Between Zipf's Law and the Simon-Yule Model (Decreasing a)

Case 1 Case 2 Case 3
T D Zipf's

Law
OPT RAND D Zipf's

Law
OPT RAND D Zipf's

Law OPT RAND

100 30 8.82 6.87 15.0 38 10.45 9.81 19.0 39 10.64 11.98 19.5
200 43 11.43 8.74 21.5 52 13.16 11.95 26.0 45 11.82 12.21 22.5
300 56 13.91 9.95 28.0 63 15*. 21 12.91 31.5 52 13.16 13.01 26.0
400 73 17.01 11.89 36.5 78 17.90 14.98 39.0 61 14.84 13.78 30.5
500 96 21.03 15.01 48.0 100 21.71 18.57 50.0 74 17.19 15.11 37.0

Case 1: a = 0.5t-0-2
Case 2: a 0.386, if t < 50

a = 0.217, if 50 < t < 100
a = 0.160, if 100 < t < 150
a = 0.204, if 150 < t < 200
a = 0.160, if 200 < t < 250
a = 0.139, if 250 < t

Case 3: a ss 0.386, if t < 100
a = 0.1, otherwise

T: Total number of accesses
D: The number of distinct records
OPT: The average search cost of optimal static ordering under the Simon-Yule model 1
RAND: The average search cost of random ordering

90
Table 5.9: The Average Search Costs for Decreasing a

(Case 1)

t D MTF Trans Count Optima Dif f 1 Dif f2 Diff3

4 4 2.50 2.50 2.50 2.50 0. 00 0. 00 0.00
20 8 3.20 3.35 3.05 3 .00 6. 67 11. 67 1. 67
40 13 4.10 4.20 3.77 3 .75 9.33 12.00 0.53
60 21 6.13 6.28 5.88 5.67 8.11 10.76 3 .70
80 26 7.07 7.09 6.55 6.45 9 . 61 9.92 1.55

100 30 7.62 7.48 6.97 6.87 10.92 8.88 1.46
120 32 8. 08 7.92 7.22 7.08 14.12 11.86 1.98
140 38 9.25 9.08 8.31 8.15 13.50 11.41 1.96
160 41 10.21 9.90 8.96 8.75 16. 69 13. 14 2.40
180 41 10.42 10.20 8.76 8.51 22.44 19.86 2.94
200 43 10.77 10.35 9.02 8.74 23.23 18.42 3.20
240 48 11. 30 11.39 9.55 9.28 21.77 22.74 2.91
280 52 11.89 11.94 9.95 9.69 22.70 23.22 2.68
300 56 12.46 12.52 10.48 9.95 25.23 25.83 5.33
340 60 13.04 12.96 10.76 10.48 24.43 23.66 2.67
380 65 13.87 13.66 11.38 10.91 27.13 25.21 4.31
400 73 15.08 14.74 12.53 11.89 26.83 23.97 5.38
500 96 18.70 18.15 15.78 15.01 24.58 20.92 5.13

* Decreasing rate of a
a = 0.50*t'°-2

91
Table 5.10: The Average Search Costs for Decreasing a

(Case 2)

t D MTF Trans Count Optima Diff1 Dif f2 Dif f3

4 4 2.50 2.50 2.50 2.50 0.00 0.00 0. 00
50 8 7.80 7.82 7.24 6.98 11.75 12. 03 3.72

100 13 11. 37 11.48 10.47 9.81 15.90 17. 02 6.73
200 21 14.93 14.83 12.75 11.98 24.62 23.79 6.43
300 63 16.31 16.29 13.72 13.01 25.37 25.21 5.46
400 78 19.08 18.67 15. 65 14.98 27.37 24.63 4.47
500 102 23 .27 22.28 19.21 18.57 25.31 19.98 3.45

* Decreasing rate of a

a = 0.386, if t < 50
a = 0.217, if 50 < t < 100
a = 0.160, if 100 < t < 150
a = 0.204, if 150 < t < 200
a = 0.160, if 200 < t < 250
a = 0.139, if 250 < t

92
Table 5.11: The Average Search Costs for Decreasing a

(Case 3)

t D MTF Trans Count Optima Dif f, Diff2 Dif f3

4 4 2.50 2.50 2.50 2.50 0.00 0.00 0.00
50 23 7.82 7.94 7.24 6.98 12.03 13.75 3.72
100 39 14.19 13.79 12.49 11.98 18.45 15.11 4.26
200 45 15.69 15.65 12.59 12.21 28.50 28.17 3.11
300 52 16.53 16.45 13.32 13.01 27.06 26.44 2.38
400 61 18.05 17.21 14.08 13.78 30.99 24.89 2.18
500 74 19.77 18.79 15.71 15.11 30.84 24.35 3.97

* Decreasing rate of a
a = 0.386, if t < 100
a = 0.1, if t > 100

93

Figure 5.3: The Average Search Costs (Decreasing Alphas)

Decreasing alpha (case 2) Decreasing alpha (case 3)

25
Th
• 20
A
g

8
9
aroh
C0 81 S

100 200 300 400 500504
The Number of A ccesses

• MTF
COUNT

' TRANS
OPTIMAL

25
rho

20
A
g

s
9
arch
Co
ar
a

100 200 3 0 0 400 600

The Number of Accesses
60

' MTF
COUNT

■ TRANS
• OPTfMAL

Decreasing alpha (case 1)

20
Th
e
A
v
9

S
e
a
r
c
h

Co
s
t
s

200 4004
The Number of Accesses

— ~ MTF - t - TRANS - * - C N T - B - O PT

94

Figure 5.4: Effects of Alpha (Decreasing Entry Rates)

(case 2) (case 3)

Th• 10l
{ a s

0
t

Coai
a

100 2 00 3 0 0 4 0 0 600

The Number of Accesses
60

1.2Th
e0I
J 08

o 0 6f
* a .
a

S a2
Co
at3

5 0 100 200 30 0 400 > 500

The Number of A ccesses

(case 1)

0.6
Th
e

D

} 0.4
f

o
f

0.2
S
e
a
r
c
h
Co
s
t
s

- 0.2
4002004

The Number of A c c e s se s

* The D i f fe re nce of Search Costs • M TF - T ra nspose

95
reasonable guidelines concerning switching time (Hester and
Hirschberg 1986).

From Figures 5.2, 5.2.1, and 5.4, we derive a more
reasonable switching time. Figures 5.2 and 5.2.1 show that
when a is larger than 0.35, MTF tends to outperform
transpose. However, when a is less than or equal to 0.35,
the performance depends on the number of accesses; if the
number of accesses is approximately larger than 110,
transpose performs better than MTF. With the cases of
decreasing a shown in Figure 5.4, we also observe the same
phenomenon. Since the difference between MTF and transpose
tends to be narrow down again for a = 0.35, however, the
simulation study with t = 1000 is conducted. The results
shown in Table 5.12 and Figure 5.2.2 indicates that for a =
0.35 there is some fluctuation on the performance between
MTF and transpose, but for a > 0.4 MTF tends to outperform
transpose after the number of accesses exceeds 180.
Therefore, the proposed switching time is to switch from MTF
to transpose if a. < 0.40 and t > 180.

This switching time is more reasonable because it
additionally incorporates the steady-state condition of the
list, which can be determined by a value of alpha. Since
the entry rate a can be easily obtained by dividing the
number of distinct records in the list by the number of
accesses, no significant overhead of a hybrid rule would be

96
Table 5.12: The Average Search Costs of MTF and Transpose

Until t = 1000

4- a = 0.35 a = 3.4 a = 3.5
t

MTF Trans MTF Trans MTF Trans
600 62.62 62.01 84.42 86.82 109.01 113.77
700 72.37 74.03 96.61 101.17 129.08 133 .25
800 80.91 83.94 109.03 115.71 148.41 154.45
900 91.25 94.08 118.43 128.13 165.17 174.06

1000 99.70 104.68 131.43 143.04 178.45 192.99

Figure 5.2.2: E ffects of Alpha (t - 1000)
A lpha - 0 .4 Alpha • 0 .6

9 7

Th
e

DI
f
f

O - 4
f

f -6
a

Co
s
ts

- 1 2
2004

T he N um ber of A c c e s s e s

T
h
e

D

r ’4
f

0
f

S
e

s
- 1 6

4002004

T h e num ber of A c c e s s e s

Alpha • 0.35

1

0

1

2

- 3

- 4

5

-6
6 0 0 10004 0 02004

The Number of Accesses

* The difference of search costs ■ MTF - Trans

98
incurred. Using this scheme, we may obtain a much better
performance than with the application of either MTF or
transpose only. If the number of accesses is relatively
small compared with the number of records (i.e., a large a
or t < 180), however, applying MTF only is preferred. If
the number of accesses is large enough to offset the
advantage of a hybrid rule, using transpose only is
attractive.

5.4 Capturing Locality
As discussed in Chapter 3, if there is a strong

locality in the reguest sequence, MTF performs better than
transpose all the time (Bently and McGeoch 1985, Sleater and
Tarjan 1985, Bellow 1987). Bently and McGeoch (1985)
compared the performance of MTF and transpose by using words
in four pascal files and six English text files as input
data, indicating that MTF always outperforms transpose.

The proposed Simon-Yule approach seems that it does not
fully capture the locality phenomenon in the request
sequence, although it relaxes the previous unrealistic
assumptions (i.e., independent accesses and fixed access
probability). In order to model the locality, therefore,
the proposed approach is modified (specifically STEP 3) and
applied to the performance analyses for MTF and transpose.

99
In STEP 3, a specific record is chosen from the records

of the group determined in STEP 2 with an equal probability.
Then the record is moved to the very last position of the
list of the next higher group. Suppose that a list is
obtained as follows and a record 5 is chosen as an accessed
record in STEP 3:

1 2 3 / 4 5 6 / 7 8 9/10 11 12 13 (5.1)
Number of = (4) / (3) / (2) / (1)
Occurrences
Since the record 5 is accessed four times, it is necessary
to keep this information to generate a next accessed record
and move it to the very last position of the next group.
The result of updating the list is as follows:

1 2 3 5/ 4 6/ 7 8 9/ 10 11 12 13 (5.2)
Then the list (5.1) is arranged according to the
corresponding heuristic in STEP 4. For example, if MTF is
applied, the list would be:

5 1 2 3 4 6 7 8 9 10 11 12 13 (5.3)
In summary, the very recently accessed record for each

group is the very last one. Since locality shows that there
is a strong correlation between most recently accessed
records and a future access, it is logical to choose the
very last record as an accessed one in STEP 3 in order to

100
capture the locality phenomenon. The STEP 3, thus, is
revised as follows.

[STEP 3 1]: Find a specific record from the group of records
chosen in STEP 2
Choose the very last one within the group chosen
in STEP 2.

The empirical study is also performed to support how
well the modified approach captures the locality phenomenon.
Three pascal and two English text files are used as input
data. The results summarized in Table 5.13 show that MTF
performs better than transpose and the simulation results
using the modified approach is also consistent with the
empirical study.

It seems that the modified approach reasonably captures
the locality phenomenon in the request sequence. It is also
confirmed that MTF performs better than transpose if the
search sequence involves a strong locality.

5.5 Summary
Using the Simon-Yule model, we conducted a more

reasonable and realistic performance evaluation of self­
organizing linear search heuristics. The analyses focus
mainly on the representative of a large section: MTF,

101
transpose, count, and move-ahead-k. The simulation was
performed with the constant entry rates ranging from 0.1 to
0.5 and with the decreasing entry rates. The results from
both constant and decreasing entry rate are the same and are
consistent with the asymptotic approach; i.e.,

- The heuristics are effective.
- Count is superior to MTF and transpose, which is

close to optimal static ordering. Therefore, if counter
fields would be needed for a special purpose or storage
space is not limited, count would be the best.

- The average search cost of MTF is less than twice that
of optimal static ordering. Specifically, its
theoretical bound under the Simon-Yule model is 58%
increase over that of optimal static ordering.
We also find some exceptions. Initially, MTF performs

better, but later transpose outperforms MTF. Using the
number of accesses and the entry rate, we suggest the more
reasonable switching time from MTF to transpose without the
significant overhead of a hybrid rule. The specific
guideline suggests a switch from MTF to transpose if (a <
0.40) and (t > 180).

The Simon-Yule approach is also modified in order to
fully capture a strong locality phenomenon in the request
sequence. The modified approach shows that it captures the
locality phenomenon very well. It also provides the

102
possible way for estimating the expected search cost of the
heuristics under the assumption of the strong locality in
the request sequence.

In conclusion, we find that the results seem to be
consistent with the asymptotic approach except for the
performance between MTF and transpose. Since MTF performs
better initially and later transpose outperforms MTF, we
suggest a more reasonable switching time, which would be
valuable information for practitioners. However, it is also
confirmed that MTF performs always better than transpose if
there is a strong locality in the request sequence.

103

Table 5.13: Simulation Results Using The Modified Approach

Input t d
Actual Data Simulation Results

MTF Trans MTF Trans

PI 405 83 23.89 34.78 18.34 23.76
P2 563 133 36.07 42.46 30.85 42.17
P3 703 158 42.63 58.26 35.16 51.15
T1 1048 500 147.60 162.68 172.23 225.76
T2 847 389 95.23 126.41 115.34 162.78

* PI, P2, P3 are PASCAL files
* T1 : "The Injustice of the Death Penalty," written by

Neal Devins and R. B. Herron, The Christian
Science Monitor, 1983.

* T2 : "A Draft Isn't Needed," written by D. Bandow,
The New York Times, 1982.

CHAPTER 6
CONTINUOUS SPEECH RECOGNITION: AN APPLICATION

Recent study of continuous speech recognition (CSR) in
the artificial intelligence arena has called for the use of
statistical models of text (Jelinek et al. 1983, Young et
al. 1989, White 1990). A major issue in this field is the
lack of effective and objective evaluation of the models as
well as a more adaptive framework for CSR. In Chapter 2, we
evaluate the statistical models of text and identify the
Simon-Yule model is the most promising one. From Chapter 3
to Chapter 5, it is also found that count is superior to MTF
and transpose. If counter fields are needed for some
special purposes or storage space is not limited, count
would be the best choice. In this chapter, thus, we will
show how the two findings can be incorporated into a UDIS
design like CSR. Based on Simon's explanatory processes of
imitation and association, we suggest an adaptive framework
for CSR. Furthermore, a self-organizing mechanism
incorporating count rule is developed for a statistical
language model for CSR.

105
6.1 Continuous Speech Recognition (CSR)

The basic CSR system where sentences are produced
continuously in a natural manner consists of an acoustic
processor (AP) followed by a linguistic decoder (LD) as
shown in Figure 6.1. Traditionally, the AP is designed to
act as a phonetician, transcribing the speech waveform into
a string of phonetic symbols, while the LD translates the
possible garbled phonetic string into a string of words.

In Figure 6.2 speech recognition is formulated as a
problem in IBM's communication theory view (Jelinek et al.
1983). The IBM's approach combines the speaker and acoustic
processor into an acoustic channel. The speaker is
transforming the text into a speech waveform and the
acoustic processor is acting as a data transducer and
compressor.

6.2 Statistical Models of Text
The AP produces an output string y. From this string

y, the linguistic decoder (LD) makes an estimate of the
word string w produced by the text generator (see. Figure
6.2). To minimize the probability error, wA must be chosen
so that Pfw^ly) = max P(w\y).

By Bayes' rule:

P(w)P(y\vr)
P(w\y) = -----------

P(y)
(6.1)

Let P(wfy) be the probability of the joint observation of
the input-output pair w and y. Since P(y) does not depend
on w and thereby maximizing P(w\y) is equivalent to
maximizing the likelihood P(w,y) = P(w)P(y\w), the goal of
the linguistic decoder is to find that word string w* which
maximizes P(w,y). Let P(w) be the probability that w was
generated by the text generator and P(y\w) the probability
that the acoustic processor output the word string y after
the speaker read w. To estimate P(w) and P(y\w), the LD
requires two models (Jelinek et al. 1983): (1) a statistical
language model of text which provides the information about
which words are most probable with respect to previous other
words in the word string w, and (2) an acoustic channel
model which provides the information about which words are
most probable based on a sound string w read by the speaker.
Once the information for computing P(w) and P(y\w) is
available from the two models, it is possible for the LD to
compute the likelihood of each sentence in language and
determine the most likely w* directly. In this study, we
focus on the statistical language model only.

107
Figure 6.1: A Continuous Speech Recognition System.

Speaker
Acoustic
ProcessorText

Generator
Linguistic
Decoder

Figure 6.2: The IBM Approach of Continuous Speech
Recognition (Jelinek et al. 1983).

— ►Speaker
Acoustic
ProcessorText

Generator
Linguistic
Decoder

Acoustic Channel

108
6.3 Evaluating the Statistical Models of Text

In the IBM approach, the kth order (or k-gram)
Markov chain is used for a statistical language model for
CSR. Particulary, k = 2 (i.e., trigram Markov chain model)
is used. However, there has been some negative aspects
about trigram Markov chain model. Jelinek (1985) pointed
out that there is "nothing to recommend the trigram language
model (k = 2) except its simplicity and ease of construction
from training text." He also pointed out that "the
selection of the exact classification scheme (for the
conditional words), and its use in determining a large
amount of text, is an unsolved problem that will claim
increasing attention of researchers." These comments
indicate the need for an effective and objective evaluation
procedure for statistical models of text.

As discussed in Chapter 2, there are several other
statistical models of text which were originally proposed
for explaining the empirical phenomenon identified by Zipf
(1949), i.e., if one takes the words making up an extended
body of text and ranks them by their number of occurrences,
then for each word the rank r multiplied by its
corresponding frequency of occurrence will be approximately
constant. A more simplified version of the Markov chain
model is the multinomial urn model which assumes that (1)

109
the author's vocabulary is fixed, and (2) the probability of
using each word is fixed.

A further generalization of the Markov chain model was
proposed by Simon in 1955. Simon viewed the choice of modes
of language as a two-fold process: by imitation and
association. According to Simon, an author writes by
process of imitation: sampling segments of word sequences
from other words he has written, from words of other
authors, and from segments he has heard. Suppose that there
are two texts, A and B. In text A, the word "He", which
occurs 1000 times and ranks 20th, has very nearly the same
rank - 21th - in text B. A more interesting observation is
that, of the 100 most frequent words in text A, 78 are among
the top 100 in text B. Simon explained that the similarity
in ranking of "common" words is due to the process of
imitation.

An author writes also by process of association:
sampling earlier segments of the word sequences. In text A,
the proper noun "Bloom" occurs 926 times and ranks 3 0th in
frequency. Simon argued that if the author had named the
proper noun as "Smith", that noun, instead of "Bloom", would
have ranked 30th.

In summary, Simon (1955) believed that both imitation
and association will tend to dictate the occurrence of a

110
particular word with a probability somewhat proportional to
its frequency of occurrence in the language, and to its
previous frequency of use by a communicator.

6.4 Implication of Imitation for CSR
As discussed earlier, the continuous speech recognition

system illustrated in Figure 6.2 indicates that the LD
requires a statistical language model to provide the
probability, P(w), that the text generator produces a word
string w. If the text used is artificial, e.g., generated
by the grammar of a Raleigh language (Jelinek et al. 1983),
then the computation of P(w) is relatively easy. For
natural texts, however, the computation is much more
difficult.

The trigram Markov chain model might be the most common
approach for providing P(w) for natural text (Jelinek 1985).
In such a model,

n
P(w) = ir P (w. | w±_lf wi-2) , (6.2)

i=l
where w = w2, w2, •••, wn, denoting a string of n words. By
analyzing a large set of training sentences a matrix of word
transition probabilities | wi_1, wi-2) is constructed
(Young et al. 1989). Specifically, the transition
probabilities are constructed by counting the number of

Ill
times the words wi-2/ occur adjacent to each other,
without regard to all the histories resulting in the same
two words.

Depending on the training sentences used, the estimated
probability P(w) represents the frequency of occurrence of w
in the language. Thus, if the training sentences are from
an office text, then P(w) is the chance that the sentence w
is written or spoken in the office environment. The process
of estimating equation (6.2) is based on the assumption that
the choice of any sentence depends, in large measure, upon
the choices of other writers or speakers. This assumption
is consistent with Simon's process of imitation involving
language communication.

6.5 Implication of Association for CSR
According to Simon, language production also involves

the process of association, because a writer has a tendency
to sample earlier segments of his/her writing. As we can
see from Table 6.1, the productivity of an old word at a
certain point of time is roughly proportional to the number
of its previous appearances, which is consistent with the
concept of the rich-get-richer. The process of association
implies that the probability P(w) in equation (6.2) will be
dynamic, adaptive, and increasing as the same sentence is

112
repeated in the course of communication. Thus, we suggest
in Figure 6.3 a revised version of Figure 6.2. This new
framework of a continuous speech recognition system adapts
to a speaker's usage pattern by attempting to constantly
update the probability P(w) in the text generator, thus
generating texts in a more natural manner.

Figure 6.3: A Revised Version of Figure 6.2 Based on Simon's
Process of Association.

Speaker
Acoustic
ProcessorText

Generator
Linguistic
Decoder

Acoustic Channel

Update p(w)

, 113
Table 6.1: The Realization of the Sentences.
Example of Text:

"Text modeling is the study of how a literary text is
generated. The field is a relatively old discipline that
has taken on new life due to recent developments in
artificial intelligence."

Time Series Representation:
Sum

Text 1 1 2
modeling 1 1
is 1 1 1 3
the 1 1 2
study 1 1
of 1 1
how 1 1
a 1 1 2
literary 1 1
generated 1 1
field 1 1
relatively 1 1
old 1 1
discipline 1 1
that 1 1
has 1 1
taken 1 1
on 1 1
new 1 1
life 1 1
due 1 1
to 1 1
recent 1 1
developments 1 1
in 1 1
artificial 1 1
intelligence 1 1
Sum = 27
No. of Types = 27

32
No. of Tokens = 32

114
6.6 A Self-Organizing Language Model

In this section, we develop the self-organizing
mechanism for the proposed adaptive framework for CSR by
incorporating count rule. Since text files tend to
represent a strong locality and MTF performs better on the
locality phenomenon, MTF might be a right choice for this
case. However, a most important factor for a statistical
language model in the proposed adaptive framework is to
provide a detailed mechanism for updating dynamic and
adaptive probabilities P(w) constantly. Clearly, MTF would
not the right choice for this purpose, because it does not
keep any information of the usage frequencies due to its
memoryless characteristics.

As discussed in Chapter 5, count performs bettern than
MTF and transpose. Its only disadvantage is to take some
storage space for counter fields. If counter fields are
needed for a special purpose or storage space is not an
important design issue, however, count would be the best.
Since we need some mechanisms to keep track of usage
frequencies for each word in order to update P(w), which are
provided by count, count is recommended to be incorporated
into a statistical language model.

Figure 6.4 is the model of the artificial Raleigh
language (Jelinek et al. 1983). For each word, there are

115
initial fixed trigram transition probabilities, which are
stored in a secondary storage device. When CSR system is
activated, counter fields added to each word to keep track
of its usage frequencies would be allocated into a primary
memory for storge efficiency. During the transactions of
CSR, the usage frequencies for each word are cumulated.
After CSR finishes its transactions, a self-organizing
mechanism incorporating count would be activated in order to
update P(w) .

Suppose that the previous two words are "the" and "bus"
(e.g., taken from the part circled in Figure 6.4) and the
initial transition probabilities for next words are given in
Figure 6.5. After transactions, the frequencies for each
word shown in Table 6.2 will be obtained. Then, the updated
probabilities can be obtained by multiplying the
probabilities P(w) with the weighted frequencies. Since the
summation of the updated frequencies is not equal to one,
the normalization processes are conducted again, thus
providing final updated probabilities P(W). The
probabilities P(w') would be stored in the secondary storage
and be used for a next transaction. Of course, the counter
fields would be deleted from a primary storage after
transactions for other computer usages. In summary, this
proposed new framework of CSR system incorporating self-

116
organizing statistical language model adapts to a speaker by
attempting to constantly update the probabilities P(w) in
the text generator, thus generating texts in a more natural
manner.

Figure 6.4: Grammar of the Raleigh language.

c o n t i d m d
C M O l t d

t»k » d
mod*
m o v t d
p a i m l l l i d
n a n l a d

m o t i o n

c n o n g n
d o l l
l i g l i l * lull
g o t *
li-rai
p r u p o i a i
YOltl

l * h p h o n *
b l o c k
g a n l l r
g » i o l pn'nory
p i o l i c » * n l
q u i a i

i c o t j n t l i o n
i m o l jlullJtlloL.

> t * o p o nd u i o l l o n
g i n t i o l
p r l v o f *
i i f o i o n l
I r o l n
vlllog*

c o n w i b u l t d

e o p l o l n
c o u » » eily
c e u n l / y l*l|*/
m o j o /
m a n
n o t i o n

I f l c i t
l « p o / l
t h o u g h t

C M l l e i J l dtfldurbid
g o v » r n * d lo««ofd

u n d uf l p p i d f Ih o w * d
opprov**
d / i n k i
ho*U
look*
l o l m
Ko/ka

o g o l n i l
U j v i i f o n
p or f
p i d o d
p o w t r
i im *
(ow n
WOf

Q c c * p l * d
o p p h o d
b r o u g h t
t M t t U d

I h i o u g h
o n o f n
j t C l l i l n l y
l i o i l

f o u n d
I I O w i mo|UMv■ i t i c l i d m l

■no* I I f
not
o n ly
pMACrpOl lj r
i'ioi'tiir
■ o m i l l m * * liulj

mi lk *

| (n o C« * l < (mollt/i
m « n
p a u p U
p t o d l c i i
l l i t t l i
(■•oil
X U l k l f *

o i o u n j
I o n

d u n n g llvv/
| >n»l
xiin

b i
c o l l
c o n y
c u n l i o l
n u v *Ihink
»«r.IMS

Mi l *
p t a d i c o l

e^ey k
I molly Inquinlly
inoi*

I liuilnOvtd tlmnq F illiv *
Co m *

OWOul
o f l l l
a m o n g
b i l w i t n bf
x i l h o u l

o c c o i i o n o l l yd m c l
f o l l o w
p i o c « * d
i * « n i
i l o n d

bocVwoid
b i g
d o t *
g u o d

01 lan |

ollin
O Cl io n i
b a i
b a l l l M ndi
foiml gioitndt
£lu£*i _

U » UO ll f
luitlp
»e Idomly

p o n m
i w g o i d
i i p o / o t *
U l l l l t l

i-O-0ii3-O-

\ > G i D O -

- 0 - 0 3 0

S o - S - O

o p p f o o c F i i • pyniiii

i i o J l o n i

p i c b l i m il l*i
l o n i v

o l F p l o n *
b u i m i n
m g t n i
m o c b i n *
m i i i i i *
i n o m i n l
out*/
p i o d u d
ui*
y t o r

c o p i l o t
c o n c u n com
d o y
| n l i r * a l
Ilf
p u / p o n
l a c r l l l c *
Y i h l t l *
=111

M i d i
h o u i u
mlMiH imilhodl
i c l i n l l i l i
t i r r i c n
t o l d ! * / *

f i c h n l

S o u r c e : J e l i n e k , F . , M e r c e r , R . L . , a n d B a h l , L . R . , "A
m axim u m l i k e l i h o o d a p p r o a c h t o c o n t i n u o u s s p e e c h
r e c o g n i t i o n , " IEEE Transactions on Patterns
Analysis and Machine Intelligence, V o l . 5 - P A M I ,
N o . 2 , p p . 1 7 9 - 1 9 0 , 1 9 8 1 .

117

118
Figure 6.5 : The Transition Probabilities before Update.

the bus

Words P(W)

across 0.35
at 0.25
from 0.20
on 0.10
forward 0.05
under 0.05

Table 6.2 : The Transition Probabilities after Update.

Words P(w) FREQ Updating (a) P (W)

across 0.35 3 0.35 X (3/20) = 0.0525 0.1813
at 0.25 6 0.25 X (6/20) = 0.1620 0.5597
from 0.20 5 0.20 X (5/20) = 0.0500 0.1727
on 0.10 4 0.10 X (4/20) = 0.0200 0.0691
forward 0.05 1 0.05 X (1/20) = 0.0025 0.0086
under 0.05 1 0.05 X (1/20) = 0.0025 0.0086

SUM 1.00 20
(b)

0.2895 1.0000

P(w') = the normalized probability calculated by (a)/(b).

CHAPTER 7
CONCLUSION

Most computer information systems involve the usage-
dependent phenomenon and their performance depends on the
pattern of the phenomenon. Thus, modeling the usage-
dependent phenomenon is significantly important in order to
take full advantage of the phenomenon and incorporate it
effectively into systems design. A usage process model (the
Simon-Yule model) is proposed for modeling the usage-
dependent phenomenon. The model is constructive, not
subject to many limitations of the other approaches (i.e., a
usage index or a usage distribution approach), and simple
enough to use by practitioners.

The usage process model is modified and successfully
applied to the performance evaluation of the self-organizing
linear search heuristics. By applying the model, a more
realistic performance evaluation of the heuristics is
provided and the open problems which remain unsolved for a
long time are solved; i.e., (1) relaxes the previous
unrealistic assumptions; (2) derives the theoretical bounds
of the heuristics with reasonable assumptions; (3) provides

119

120
a reasonable scheme for optimizing the heuristics; and (4)
successfully captures the locality phenomenon in the request
sequences.

The results obtained from the theoretical and empirical
study show that count is the best among the three heuristics
being widely used by practitioners. If counter fields are
needed for a special purpose, count would be the right
choice. Since count takes up storage space for counter
fields, however, memoryless heuristics like MTF or transpose
are preferred. Based on the results, we suggest the initial
use of MTF and the switch to transpose later. A new hybrid
rule to providing a more reasonable switching time from MTF
to transpose is also proposed. Specifically, if a < 0.4 and
t > 180, then switch from MTF to transpose. If there is a
strong locality tendency in the request sequences, however,
MTF is preferred to transpose all the time.

To show how the previous findings can be incorporated
into a UDIS design, an adaptive framework incorporating a
self-organizing mechanism is proposed for continuous speech
recognition systems based on the Simon's theoretical point
of view of the text generation (i.e., imitation and
association). For a self-organizing mechanism, count is
incorporated into a statistical language model for CSR in
order to update the transition probabilities P(w)

121
constantly. This proposed adaptive framework for CSR would
provide a more reliable statistical model of text for CSR.

One possible extension of this research is to derive
more theoretical bounds of other heuristics for realistic
comparisons between the heuristics. In addition, a tighter
bound of MTF and a closed-form of the relative efficiency of
MTF would be desirable. Another possible extension is to
apply the usage process model and self-organizing linear
search heuristics to other application areas which are
identified in Chapter 1. One interesting application would
be a usage-dependent menu design. Most current computer
information systems are required to provide more user-
friendly user interfaces. A menu system is clearly one of
the prevalent user interfaces, due to its nature of being
easy-to-use and easy-to-learn. As discussed in Chapter 1,
however, most current menu systems employ static menu
structures, requiring users to adjust to large and complex
fixed menu configuration. By incorporating the heuristics
into menu systems, we might develop a self-organizing
dynamic menu systems so that users can reduce the number of
menu selections to access the information they need.

REFERENCES

Anderson, E. J., et al., "A counter example to optimal
list ordering," Journal of Applied Probability,
Vol. 19, No. 3, pp. 730-732, 1982.

Bahl, L. R., et al., "A tree based statistical language
model for natural language speech recognition,11
IEEE Trans. on Acoustic, Speech, and Signal
Processing, Vol. 37, No. 7, pp. 1001-1008, 1989.

Bayman, P., Civanlar, S., and Whitten, W. B., "Usage-
sensitive menu design with Huffman coding,"
Proceedings of the 22nd Annual Hawaii
International Conference on Systems Science,
pp. 436-437, 1989.

Bellow, M. L, "Autoregressive performance analysis of
self-organizing data structures," Computer
Science and Statistics: Proceedings of the 19th
Symposium on the Interface, pp. 417-421,

Bentley, J. L. and McGeoch, C. C., "Amortized analyses
of self-organizing sequential search heuristics,11
Communications of the ACM, Vol. 24, No. 4, pp.
404-411, 1985.

122

123
Bitner, J. R., "Heuristics that dynamically organize

data structures," SIAM Journal of Computing, Vol.
8, No. 1, pp. 82-110, 1979.

Booth, A. D., "A law occurrences for words of low
frequency," Information and Control, Vol. 10,
NO. 4, pp. 386-393, 1967.

Burville, P. J., and Kingman, E. C., "On a model for
storage and search," Journal of Applied
Probability, Vol. 10, No. 3, pp. 697-701, 1973.

Chen, W. C., "On the weak form of Zipf's law," Journal
of Applied Probability, Vol. 17, pp. 611-622,
1980.

Chen, Y. S. and Leimkuhler F. F., "Analysis of Zipf's
law: An index approach," Information Processing
and Management, Vol. 23, No. 3, pp. 171-182,
1987.

Chen, Y. S., "An exponential recurrence distribution in
the Simon-Yule model of text," Cybernetics and
Systems: An International Journal, Vol. 19, pp.
521-545, 1988.

Chen, Y. S., "Zipf's laws in text modeling,"
International Journal of General Systems, Vol.
15, pp. 233-252, 1989.

124
Chen, Y. S. and Leimkuhler F. F., "A type-token

identity in the Simon-Yule model of text,"
Journal of the American Society for Information
Science, Vol. 40, No. 1, pp. 45-53, 1989.

Chen, Y. S., "Statistical models of text in continuous
speech recognition," Kybernets, forthcoming-1.

Chen, Y. S., "A type-token study of statistical models
of text," Cybernetica, forthcoming-2.

Chung, F. R. K., et al., "Self-organizing sequential
search and Hilbert's inequalities," Journal of
Computer and Systems Science, Vol. 36, pp. 148-
157, 1988.

Ellis, S. R. and Hitchcock, R. J., "The emergence of
Zipf's law: Spontaneous encoding optimization by
users of a command language," IEEE Transactions
on Systems, Man, and Cybernetics, Vol. SMC-16,
No. 3, May/June 1986.

Frederickson, G. N., "Self-organizing heuristics for
implicit data structures," SIAM Journal of
Computing, Vol. 13, No. 2, pp. 277-291, 1984.

Fedorwicz, J., "A Zipfian model of an automatic
bibliographic system: an approach to MEDLINE,"
Journal of the American Society for Information
Science, pp. 223-232, July 1982.

125
Fedorwicz, J., "The theoretical foundation of Zipf's

law and its application to the bibliographic
database environment," Journal of the American
Society for Information Science, pp. 285-293,
September 1982.

_______________, "Database performance evaluation in an
indexed file environment," ACM Transactions on
Database Systems, Vol. 12, No. 1, pp. 85-110,
March 1987.

Gleser, C. J. and Moore, D. S., "The effect of
dependence on Chi-Squared and empiric
distribution tests of fit," The Annals of

Statistics, Vol. 11, No. 4, pp. 1100-1108, 1983.
Gonnet, G. H., et al., "Toward self-organizing linear

search," Proceedings of the 20th IEEE Symposium
on Foundations of Computer Science (San Juan,
Puereto Rico, Oct. 1979), IEEE, New York, pp.
169-174.

Good, I. J., Good Thinking: The Foundations of
Probability and Its Applications, Minneapolis
University of Minnesota Press, 1983.

Halstead, M. H., Elements of Software Science,
Elsevier/North-Holland, New York, 1977.

Hamming, R. W., Coding and Information Theory, 2nd ed.,
Prentice-Hall, 1986.

126
Heising, W. P., "Note on random addressing techniques,11

IBM Systems Journal, Vol. 2, No. 2, pp. 112-116,
June 1953.

Hendricks, W. J., "The stationary distribution of an
interesting Markov chain," Journal of Applied
Probability, Vol. 9, No. 1, pp. 231-233, 1972.

Hendricks, W. J., "An extension of a theorem concerning
an interesting Markov chain," Journal of Applied
Probability, Vol. 10, No. 4, pp. 886-890, 1973.

Hendricks, W. J., "An account of self-organizing
systems," SIAM Journal of Computing, Vol. 5, No.
4, pp. 715-723, 1976.

Herron, D., "Industrial engineering applications of
ABC curves," AIIE Transactions, Vol. 8, No. 2,
pp. 210-218, 1976.

Hester, J. H., and Hirschberg, D. S., "Self-organizing
search lists using probabilistic back-pointers,11
Tech Rep. 85-14, Dept, of Information and
Computer Science, Univ. of California, Irvine.

Hester, J. H., and Hirschberg, D. S., "Self-organizing
linear search," Computing Surveys, Vol. 17,
No. 3, pp. 295-311, 1985.

Ijiri, Y., and Simon, H. A., Skew Distributions and the
Sizes of Business Firms, North-Holland
Publishing Co., 1977.

127
Jelinek, F., Mercer, R. L., and Bahl, L. R., "A maximum

likelihood approach to continuous speech
recognition," IEEE Transactions on Patterns
Analysis and Machine Intelligence, Vol. 5-PAMI,
No. 2, pp. 179-190, 1983.

Jelinek, F., "The development of an experimental
discrete dictation recognizer," Proceedings of
IEEE, Vol. 73, NO. 11, pp. 1616-1624, 1985.

Kan, Y. C., and Ross, S. M., "Optimal list order under
partial memory constraints," Journal of Applied
Probability, Vol. 17, No. 4, pp. 1004-1015, 1980.

Knuth, D. E., The Art of Computer Programming, Vol. 3 -
Sorting and Searching, Addison Wesley Co., 1973.

Lancaster, F. W., Information Retrieval Systems:
Characteristics, Testing, and Evaluation, 2nd
Ed., John Wiley and Sons, Inc. 1979.

Mandelbrot, B., "An information theory of statistical
structure of language," Proceedings of the

Symposium on Applications of Communications
Theory, (London, September 1952), London:
Butterworths, 1953, pp. 486-500.

Markov, A. A., "An example of a statistical
investigation of the text of 'Eugen Onegin'
illustrating the connection of trials in a
chain," Bulletin de L ‘Academie Imperials des

Science de St. Petersburg, Vol. 7, 153, 1913.
McCabe, J., "On serial files with relocatable records,

Operations Research, Vol. 12, pp. 609-618, 1965.
McKeown, K. R., Text Generation, Cambridge University

Press, 1985.
Pao, M. L., "Automatic text analysis based on

transition phenomena of word occurrences,"
Journal of the American Society for Information
Science, Vol. 29, No. 3, pp. 121-124, 1978.

Prather, R. E., "Comparison and extension of theories
of Zipf and Halstead," The Computer Journal, Vol
31, No. 3, pp. 248-252, 1988.

Rivest, R., "On self-organizing seguential search
heuristics," Communications of the ACM, Vol. 19,
No. 2, pp. 63-67, 1976.

Salton, G., Automatic Text Processing, Addison-Wesley
Publishing Co., 1989.

Samson, W. B., and Bendell, A., "Rank order
distribution and secondary key indexing," The
Computer Journal, Vol. 28, No. 3, pp. 309-312,
1985.

129
Sleater, D. D., and Tarjan, R. E., "Amortized

efficiency of list update and paging rules,"
Communications of the ACM, Vol. 28, No. 2,
pp. 202-208, 1985.

Shannon, C. E., "Prediction and entropy of printed
English," Bell Syst. Tech. J., Vol. 30, pp. 50-
64, January 1951.

Shooman, M. L., Software Engineering: Design,
Reliability, and Management, McGraw-Hill, 1983.

Simon, H. A., "On a class of skew distribution
functions," Biometrika, Vol. 42, pp. 425-440,
1955.

Simon, H. A., "On judging the plausibility of theories,
in B. van Rootselaar and J. F. Staal (eds.),"
Logic, Methodology and Philosophy of Sciences,

Vol. Ill, Amsterdam: North-Holland, 1968.
Simon, H. A., and Van Wormer, T. A., "Some Monte Carlo

estimates of the Yule distribution," Behavior
Science, Vol. 8, pp. 203-210, 1963.

Rivest, R., "On self-organizing sequential search
heuristics," Communications of the ACM, Vol. 19,
No. 2, pp. 63-67, 1976.

130
Tague, J., and Nicholls, P., "The maximal value of a

Zipf size variable: sampling properties and
relationship to other parameters," Information
Processing & Management, Vol. 23, No. 3 pp. 155-
170, 1987.

Tenenbaum, A., "Simulations of dynamic sequential
search algorithms," Communications of the ACM,
Vol. 21, No. 9, pp. 790-791, 1978.

Tenenbaum, A., and Nemes, R. M., "Two spectra of
self-organizing sequential search algorithms,"
SIAM Journal of Computing, Vol. 14, No. 3,
pp. 557-566, 1982.

White, G. M., "Natural language understanding and
speech recognition," Communications of the ACM,
Vol. 33, No. 8, pp. 72-82, 1990.

Wiederhold, G., File Organization for Database Design,
McGraw-Hill, Inc., 1987.

Young, S. R., et al., "High level knowledge sources
in usable speech recognition systems,"
Communications of the ACM, Vol. 32, No. 2,
pp. 183-184, 1989.

Yule, G. U., A Statistical Study of Vocabulary,
Cambridge, England: Cambridge University Press,
1944.

131
Zipf, G. K., Human Behavior and the Principle of Least

Effort. Cambridge, MA: Addison-Wesley, 1949.

VITA

Jin-Soo Kim was born in Chung Yang, Korea on November
21, 1956. He is the third son of Mr. Dong Gi Kim and Mrs.
Hae Dong Kim. He received his elementary and high school
education in Seoul, graduating from the Senior High School
Affiliated to A College of Education at Seoul National
University. He received his Bachelor of Economics from
Yonsei University in Seoul, Korea in 1982. From December
1981 to July 1983, he worked as a financial analyst at Sam
Sung Life Insurance Co., Seoul, Korea. In 1984, He came to
the United States and received Master of Business
Administration in Management Information Systems from
University of Texas at Arlington in summer 1986. After
working on the Ph.D program at University of Texas at
Arlington for one year, he transferred to the Louisiana
State University in Baton Rouge and continued the pursuit of
a Doctor of Philosophy with a major in Management
Information Systems and a minor in Computer Science.

132

DOCTORAL EXAMINATION AND DISSERTATION REPORT

Candidate: J in -S o o Kim

Major Field: Q u a n t it a t iv e B u s in e s s A n a ly s is

Title of Dissertation: U sage-D ep en d en t In fo rm a tio n System s D e s ig n

Approved: P
Major Professor and Chairman

Dean of the Graduate School

EXAMINING COMMITTEE:

Date of Examination:

November 16, 1990

	Usage-Dependent Information Systems Design.
	Recommended Citation

	00001.tif

