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Abstract  

 Nitrogen (N) fertilization is a key component in producing profitable, maximized rice 

grain yields because yield is directly affected by N fertilizer applications. Economical optimum 

N rate (EONR) is used to estimate where the N fertilization rate impacts rice grain yield but is 

still economically efficient. Three common response models, linear-plateau, quadratic-plateau, 

and quadratic models were used to determine the response of rice to N fertilizer to determine the 

optimum N fertilization rate. The objective of the first part of this study was to evaluate the 

models by assessing the coefficients of determination (R2), maximum rice grain yields each 

model produced, and the estimated EONRs of fertilization. Coefficients of determination (R2) of 

the linear-plateau, quadratic-plateau, and quadratic were found to be similar (0.77, 0.79, 0.78). 

Other factors beyond just R2 alone need to be taken into consideration when choosing which 

response model best fits a data set and should be used to estimate the EONR of fertilization for 

an individual variety.  

 Normalized difference vegetation index (NDVI) is a known indication of yield potential, 

one component needed to determine mid-season N requirements. The GreenSeeker has been the 

pre-dominant tool used to collect NDVI measurements. Unmanned aerial systems (UAS) have 

shown potential to collect NDVI measurements also. The objectives of the second part of this 

study were to: 1) evaluate the relationship between GreenSeeker (an active sensor) derived 

NDVI and UAS (a passive sensor) derived NDVI, and 2) evaluate the ability of GreenSeeker and 

UAS derived NDVI to estimate rice yield potential. This research was done in 2017 and 2018 at 

5 locations in Louisiana. Remote sensor data was taken between panicle initiation and panicle 

differentiation using a GreenSeeker and UAS mounted remote sensor. All 5 locations showed a 

highly significant correlation between GreenSeeker and UAS derived NDVI. The linear 
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relationship between GreenSeeker and UAS derived NDVI to rice grain yield were not similar. 

The different relationships could have been caused by the differences between ground and air-

borne based sensors. More research will need to be conducted before UAS mounted sensors can 

be used to accurately predict mid-season N needs in rice. 
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Chapter 1. Introduction  

 Rice (Oryza sativa) is one of the most important cereal grains in the world today. Rice is 

grown in many countries around the world producing roughly 162 million hectares of rice 

(USDA, 2019). The United States grows approximately 1 million hectares of rice in the states of 

California, Arkansas, Louisiana, Texas, Missouri, and Mississippi (USDA, 2019). Louisiana is 

the third leading state in the United States for rice production, producing approximately 176,000 

hectares of rice harvested in 2018 (USDA, 2019). Rice is a highly valuable, edible starchy grain 

that is grown using management techniques that enhance growth and development and maximize 

rice grain yields.  

 The average growth and development of rice from germination to maturity ranges 

between 105 to 145 days depending on the variety and climatic conditions. The Louisiana State 

University (LSU) AgCenter researchers conduct several date-of-planting studies that are used to 

determine and adjust the optimum planting date recommendations of new and popular varieties 

(Saichuk and Harrell, 2014). In Southwest Louisiana rice is recommended to be planted between 

March 10th and April 15th and in North Louisiana between April 1st and May 5th (Saichuk and 

Harrell, 2014). The planting date ranges give farmers flexibility on when to plant depending on 

the field and environmental conditions. Planting rice during the recommended planting date 

window will typically produce the highest rice grain yield potential and the rice will be easier to 

manage throughout the growing season (Saichuk and Harrell, 2014). Once the rice seeds are 

planted, rice has two distinct growth phases: 1) vegetative and 2) reproductive. The vegetative 

growth phase is the growth stages between germination and panicle initiation. The reproductive 

growth phase is the growth stages between panicle initiation and heading. Once rice has reached 
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maturity, the whole grain is hard, and rice has reached a moisture of approximately 20 to 22%, 

then rice will be ready for harvest (Arkansas Rice Production Handbook, 2013).  

 Rice growth and development is influenced by nutrient availability in the soil. A rice 

nutrient management program should identify available nutrients and address any nutrient 

deficiencies. The nutrient availability and nutrient needs of rice should be monitored with the 

proper fundamental management strategy. Rice should obtain an adequate amount of nutrients 

for rice to produce maximum grain yields, higher profitability, enhanced nutrient efficiency, and 

reduced inputs (Fageria, 2001; Singh and Singh, 2017). There are three macronutrients that are 

highly valuable to rice: nitrogen (N), phosphorus (P), and potassium (K). Nitrogen is typically 

often the most limiting nutrient in rice and has a heavy impact on rice grain yields (Yoshida, 

1981). Nitrogen stimulates the growth and development of the vegetative parts of rice (Leghari, 

2016). The amount of N supplied to rice can either positively or negatively affect the 

development of rice. Inadequately supplying N to rice can lead to N deficiency across the whole 

rice field. The symptoms of N deficiency are recognized as chlorosis of the older leaves, reduced 

tillering, and shorter plant heights. Abundantly applying N to rice also have a negative impact on 

the growth of rice. The symptoms of over-application of N are presented in the field as excessive 

vegetative growth, increased disease pressure, lodging, and ultimately decrease in grain yield. 

The proper management of N fertilization is accomplished by determining the right N source, 

right N rate, right N application, and right placement of N to diminish the possibility of N having 

a detrimental effect on rice. The key outcome of rice fertilization is to produce high rice grain 

yields while minimizing N losses and costs associated with N fertilization (Singh and Singh, 

2017).  
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 Nitrogen has a very dynamic behavior in the soil and plant, it is important to have a basic 

understanding of the N-cycle processes and N losses that can occur when N is applied to rice. 

Obtaining an understanding of the N-cycle processes will help when making decisions about rice 

to N fertilization requirements so that maximum grain yields are profitably produced with 

minimal N losses. The main N source that makes up 78% of the Earth’s atmosphere is N gas (N2) 

(Havlin et al., 2014). Rice can only uptake N when N2 is converted into a plant available N form. 

Organic and inorganic-N are two classes of N found in the soil and available to the plant. The 

inorganic-N forms are most abundantly found and used in a plant (Fageria, 2001). There are two 

inorganic forms of N taken up by the rice; nitrate (NO3
-) and ammonium (NH4

+).  

Nitrate-N exists at great quantities in the soil as extractable N (Bronson, 2008). Nitrate has 

become a concern to our environment because of the increase in NO3
- levels in the surface and 

ground water coming from the crop production systems (Bronson, 2008). Rice is grown in 

flooded, anaerobic field conditions, which causes NO3
- to be unstable and lost quickly through 

N-loss pathways. Leaching is one of the major loss pathways for NO3
- due to its solubility and 

mobility characteristics (Havlin et al., 2014). Ammonium-N fertilizer sources are recommended 

over NO3
- fertilizer sources because NH4

+ fertilizers are found to have greater stability under 

flooded, anaerobic conditions (Snyder and Slaton, 2002). Ammonium-N will remain available 

and not lost during the flood establishment on rice. Nitrification is a potential risk and loss 

pathway for NH4
+ fertilizers if the flood is not maintained throughout the growing season. The 

N-loss pathways are highly influenced by environmental conditions, management practices, N 

application rates, N application method, and irrigation techniques 

 Nitrogen can be supplied to rice by fertilizer applications. Nitrogen is the most expensive 

fertilizer input to rice. Determining the right N fertilizer requirement is important to rice growers 
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to decrease excessive N applications and increase the economic return of investment of rice. 

Current N recommendations are based on fertilizer response trials conducted each year on an 

individual cultivar basis, by state experiment scientists, across multiple locations (Neeteson and 

Wadman, 1987). The N fertilizer response trials result in optimum N rates, or N rate ranges, that 

should be further refined by growers by considering their soils and past crop performance. The 

nitrogen use efficiency (NUE) of rice can be affected by the field conditions at the time of N 

application (wet, dry, or flood soils). The soil type, environmental conditions, and type of N 

application should also be taken into consideration by an individual grower when modifying the 

recommended N rate for that grower’s rice field and N application conditions.  

 Nitrogen is an expensive fertilizer input of rice but is of high demand and required for 

proper growth and development of rice. Despite the range of N rates provided to the rice 

growers, there is only one economic optimum N rate (EONR). The rice grain yield response to N 

fertilization trials conducted to determine the N rate recommendations for individual cultivars 

can be done to determine the economic optimum N rate (EONR). The optimum N fertilization 

rate is determined by fitting certain statistical response models to rice grain yield data (Cerrato 

and Blackmer, 1990). Three popular response models include: 1) linear-plateau, 2) quadratic-

plateau, and 3) quadratic. These response models evaluate the response curve determined by 

fitting the response model to data for various trials. Increasing N fertilizer rates may greatly 

increase rice grain yield, but the producer might not be able to cover the additional expenses of 

added fertilizer applications (Harrell et al., 2011). The response curve evaluates the value of 

additional grain yield as additional N fertilizer is applied until an economic increase associated 

with grain yield and N fertilizer application is no longer observed. Predicting the EONR for 
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individual variety-site-year is fundamental for maximizing rice grain yield, grain quality, 

profitability, and decreasing environmental risks (Belanger et al., 2000).  

 The three popular response models that the data is evaluated through can project three 

different EONR’s. The three response models have the potential to estimate different EONR and 

grain yield outcome which, in turn, can highlight how different the three response models fit 

different data sets for individual variety-site-years. It is not always known why one statistical 

model is chosen over another when fitting a response model to a data set. The choice of which 

response model to use will have a strong impact on the predicted optimum N fertilizer rate. 

Choosing the less accurate response model could result in an inaccuracy of determining the 

optimal N recommendations and reduce the profitability of producers (Tumusiime et al., 2011). 

The response model choice can be validated by testing multiple statistical models for a valid 

description of yield response to N fertilization to justify why one model should be selected over 

another (Cerrato and Blackmer, 1990).  

 Nitrogen fertilizer application methods in rice can impact the spatial distribution of N 

and, in turn, impact the nitrogen use efficiency (NUE) of the N fertilizer rate applied. The 

application method of N fertilizer to rice is an important to help lessen N-losses and optimize 

rice grain yield and quality. The conventional method of applying N fertilizer to rice is to 

uniformly apply the N fertilizer to the whole field, at one time, on a certain date. The 

conventional N fertilizer application results in an imbalance between the N supplied and N 

demanded because it does not consider variability and the potential of N-losses during rice 

growth and development (Xue & Yang, 2008). In the mid-southern United States, the preferred 

N fertilizer application method is referred to as the two-way split application. The advantage of 

the two-way split method is the methods practicality in areas where the flood establishment and 
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maintenance of the flood can be difficult (Snyder and Slaton, 2002). The two-way split N 

application can lower the potential of N-losses and gives growers the possibility to adjust the 

second N application to accommodate for the N needs of rice. 

Fertilizer N is applied at 2 different application times when using the split-application 

method. The first N fertilizer application is applied just before flooding, when rice is at the 4- to 

5-leaf growth stage. The pre-flood N fertilizer recommendation rate in Louisiana is determined 

by N response trials conducted by research scientists, at the Louisiana State University 

AgCenter, evaluating multiple rice varieties. The recommended pre-flood N fertilizer rate is two-

thirds of the recommended rate provided by LSU AgCenter on a variety basis (Harrell et al., 

2018). The LSU AgCenter provides a N rate range for every currently available variety grown. 

The range of recommended N fertilizer rates gives individual growers leverage to adjust the N 

fertilizer rates based off the soil texture, rice variety, and environmental factors that could affect 

the N uptake by rice. The pre-flood N fertilizer is incorporated into the dry soil bed by 

establishing a flood onto the field within 1- 3-days after the N fertilizer application. The flood 

establishment decreases the possibilities of N losses through nitrification and denitrification 

when the N fertilizer is incorporated down into the root zone in a timely manner (Snyder & 

Slaton, 2002).  

 The second N fertilizer application time is completed at mid-season. Mid-season is the 

beginning of reproductive growth between panicle initiation (green ring or beginning internode 

elongation [BIE]) and panicle differentiation (1/2-inch IE) growth stages. The timing for the 

second N fertilizer application can be applied during the window between these two growth 

stages because of the short developmental period between panicle initiation and panicle 

differentiation (Harrell et al., 2011). However, N fertilizer applications applied closer to panicle 
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initiation will have a greater effect on rice grain yield than N fertilizer applied at the later growth 

stage, panicle differentiation when N is limiting (Harrell et al., 2011). The mid-season N 

fertilizer recommendations are determined by visual observation done by the grower or 

consultant. The determination of mid-season N fertilizer rates can be inaccurately estimated 

because not all in-season characteristics of rice can be determined solely by the eye of a grower 

or consultant. Mid-season N fertilizer applications are highly valuable to the outcome of rice 

grain yield and quality (Nguyen and Lee, 2006). Therefore, accurate strategies and methods for 

prescribing in-season N fertilizer rates at mid-season are crucial to rice producers.   

 Precision agriculture tools have become increasingly important in determining a crops 

health status since the management system emerged in the mid-1980’s. Agricultural producers 

must make strategical, tactical, and operational management decisions based on the future of the 

farm, potential yields, profitability, environmental quality, crop varieties, fertilization 

requirements, when to fertilize, and so on (Bouma, 1997).  In today’s agriculture, where farm 

size exceeds 800 hectares it would be difficult for producers to manually switch between certain 

established production practices without an advancement in technology to evaluate the spatial 

variability across fields (Stafford, 2000). Site-specific recommendations derived from precision 

agriculture techniques which evaluate the spatial and temporal variability of a field may provide 

more accurate recommendations than traditional mid-season N recommendations (Geebers & 

Adamchuk, 2010). Spatial variability is the variability across the field due to difference in soil 

structure, soil fertility, irrigation applications, pests and diseases, and plant genetics. Temporal 

variability describes how these factors vary over time.  

Precision agriculture includes an abundance of data which can be used to optimize 

nutrient recommendations to reduce input fertilizer cost and improve environmental quality 
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(Stafford, 2000). Nutrient recommendations can now be based on a variable-rate fertilizer 

application with the use of precision agricultural tools. These tools will play a part in limiting N 

losses and allowing for varying N applications that fit specific areas of a field (Bronson, 2008). 

Site-specific management systems are a source used to increase crop productivity allowing for 

greater economical returns and maximizing crop yield.   

Before the advancement of the use of precision farming tools to estimate crop health and 

N status of a crop, N fertilization requirements have been a challenge to accurately determine. A 

crop yield goal has been used to help predict N fertilization requirements. A yield goal should be 

based on crop yield history, soil characteristics, management practices, and the crop variety 

being planted to manage the unpredictability of the factors affecting yield. Nitrogen requirements 

based off a yield goal can be adjusted to establish N rates that result in an efficient crop 

production system (Stanford, 1973). Crop yield potential is influenced by soil-related, 

anthropogenic, topographic, biological, and meteorological spatial variability factors (Corwin, 

USDA). Along with spatial variation, temporal variation must be taken into consideration also 

when adjusting a crop yield goal because yield varies from year-to-year due to an influence from 

environmental conditions (Yao et al., 2012; Schlegel, 2005; Shanahan et al., 2008). Spatial and 

temporal variation characteristics encompass many uncertainties and fluctuations. Therefore, it is 

very difficult to determine accurate N requirements based solely on a crop yield goal without 

having another tool to assess spatial and temporal variability.   

Remote sensing technology has shown to be promising in predicting practical on-site 

management applications evaluating spatial and temporal variability. Variables of a crop’s 

growth and development can be obtained in a fast, reliable, non-destructive method by using 

remote sensing technology (Nguyen et al., 2006). Fertilizer recommendations, irrigation 
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strategies, and variable crop seeding rate can all be determined via remote sensing technology. 

Crop field assessments have progressed with the use of remote sensing technologies delivering 

quantitative data of the crop’s spatial variability properties (Elarab, 2016).  

Active crop canopy sensors, a remote sensing tool, can be used to estimate crop health 

and N status of a crop (Xue et al., 2004; Lee et al., 2008). Active crop canopy sensors may 

potentially be effective in a flooded production system when mid-season N fertilizer needs are 

difficult to determine and often inaccurately assessed by visual physical characteristics only. An 

imbalance between N demand and supply can result in an under or over application of N 

fertilizer. Active remote sensing technology has the potential to decrease the uncertainty in 

determining N needs at mid-season. According to Foster et al. (2017), mid-season N 

requirements based from remote sensing decision making showed the potential to lower the total 

N application rate by 18 to 108 kg ha-1. In return, this will optimize yield and NUE. Active crop 

canopy sensors can develop a more sustainable agricultural approach by determining correct 

application rates at critical fertilization timings to diminish N losses.  

The predominant remote sensing tool used to aid in predicting a rice crop’s health during 

major growth and developmental phases is the GreenSeeker handheld sensor. Growers have 

become more sustainable farmers and made more suitable in-season fertilizer applications using 

GreenSeeker based technology (Yao et al., 2012, AR yearly fertilization guide or handbook). 

The GreenSeeker tool is unaffected by environmental conditions because it is equipped with a 

pre-calibrated, active, optical light sensor. Specific regions in the red (670 ± 10 nm) and near-

infrared (780 ± 10 nm) wavelength bands of the electromagnetic spectrum are used to measure 

the canopy reflectance derived with the GreenSeeker remote sensing tool. Canopy reflectance 

measurements can determine the chlorophyll level of the rice crop to conclude the amount of N 
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present. GreenSeeker evaluates the reflectance value of the crop canopy by calculating the 

normalized difference vegetation index (NDVI) using the red and near-infrared wavelengths in 

the following equation: 

                                                                𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 + 𝑅)

(𝑁𝐼𝑅 − 𝑅)
                                                               [1.1]   

where:  

NIR = Reflectance at the near-infrared region of the electromagnetic spectrum  

R = Reflectance at the red region of the electromagnetic spectrum  

 Absorption and reflectance of the rice crop canopy is measured with the calculation of 

NDVI. The visible region (red) tends to absorb light, but the vegetation reflects light in the NIR 

regions. Normalized difference vegetation index (NDVI) has been shown to be effective in 

determining disease damage, leaf area index, and fertilization requirements. The assessment of 

GreenSeeker NDVI measurements evaluates the variations of a rice fields crop response to N 

fertilizer applied at pre-flood and the different rates of N needed at future critical growth stages 

(Xue & Yang, 2008). The GreenSeeker NDVI has shown to be a more reliable source to predict 

a crop’s overall health status because the tool collects an average of readings over an entire area 

unlike past techniques of leaf color charts and chlorophyll meters (Girma et al., 2006; Lee et al., 

2008).  

GreenSeeker derived NDVI can currently be used in an on-site sensor-based N rate 

calculator to determine mid-season N requirements. Three factors must be known for mid-season 

N rates to be determined by the on-site sensor-based N rate calculator: 1) response index, 2) rice 

grain yield potential, and 3) rice response to N fertilization (Harrell et al., 2011). The collection 

of NDVI by the GreenSeeker must be done at critical timings for it to be used in this calculator 

to determine in-season plant needs. The calculated algorithm has potential to be an economical 



11 

 

and environmental benefit to farmers predicting the N fertilization requirement needs for 

adequate rice growth and development.  

The response index portion of the algorithm is the crops quantitative response to N 

fertilizer within a field. A controlled, strip with no N fertilizer applied must be stationed in an 

area that most represents the characteristics of the field in order to calculate the response index. 

The check plot is used to exhibit the supply of soil N without any fertilization additions. The rice 

response to N fertilization is calculated by dividing the average NDVI from the non-N-limiting 

strip by the average NDVI from a highly representative strip across the field in an area where N 

was applied by the farmers practice (Raun et al., 2001). The response index was the first part in 

developing the algorithm because it can be multiplied by the predicted yield potential to 

determine the potential yield with additions of N fertilizer. Raun et al. (2002), demonstrated a 

positive correlation with the response index of applied N using the sensor-based approach to the 

grain yield response.  

The second and third parts of the algorithm are calculating the yield potential with no N 

fertilizer additions (YP0) and the yield potential with N fertilizer additions (YPN). Nitrogen 

fertilizer rates are strongly influenced by crop yield potential and N responsiveness (Ruan et al., 

2010). The GreenSeeker NDVI has been shown to be an accountable measurement of crop yield 

potential and final grain yield (Girma et al., 2006; Teal et al., 2006; Tubana et al., 2008; Harrell 

et al., 2011).  Therefore, NDVI and rice grain yield can exist as components to predict rice grain 

yield potential in the computed algorithm for the sensor-based N requirement decision tool 

(Raun et al., 2002; Harrell et al., 2011). Raun et al. (2001), found a strong, correlated relationship 

between actual grain yield and estimated grain yield enabling the alteration of N fertilization 

rates by estimated yield potential during the crops growing season. The yield potential with N 
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fertilizer additions has been shown to be accurately estimated as the product of response index 

and YP0 (Raun et al., 2005).  

The computed algorithm has already shown to be successful with the ground-based 

remote sensor, GreenSeeker, derived NDVI. The algorithm has not been extensively adopted by 

growers or consultants because the GreenSeeker handheld sensor does not justify for variation 

across a whole field and the slow timing of collecting NDVI readings manually through a field. 

Air-borne remote sensors have progressed with the advancements in technology and are now 

being evaluated for their potential in collecting data for a crop’s overall health status. Unmanned 

aerial systems (UAS) have produced a related ability to other remote sensing tools in evaluating 

different crop responses (Rasmussen et al., 2016).  

The GreenSeeker collects NDVI measurements on a point-to-point basis over a small 

site-specific portion of a rice field. The UAS collects readings accounting for variation on a 

whole field basis increasing the field scale average. Both tools have the ability to lower N 

fertilizer inputs, equalize N demand and supply, and increase NUE. A larger data collection, 

flexible transport, and rapid data collection are advantages of the UAS technology system.  

UAS remote sensors generate data easier than handheld sensors and can be navigated with pre-

programmed flight plans (Huang et al., 2013). The UAS mounted remote sensor collects readings 

at a high spatial resolution compared to the ground-sensor NDVI readings, but there is still a 

high correlation between air-borne and ground-sensor based NDVI measurements (Primicero et 

al., 2012). The maneuvering in a flooded rice field can be difficult however UAS mounted 

remote sensors can be transported in the field much easier.  The UAS can limit the time 

producers spend on field assessments and crop decision making producing a more time-efficient 

management system to estimate a rice crops health status (Zhu et al., 2009).  
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All UAS mounted remote sensors are considered passive light sensors.  Passive light 

sensors use the sunlight as a light source which can introduce variability in collective data. In the 

process of collecting data with an UAS mounted sensor, variability results from: 1) intensity of 

the light, 2) bidirectional reflectance, and 3) environmental conditions. There are 

accommodations to overcome the variability of the UAS mounted sensors data collection. 

Variability in remote sensing collective data can be reduced by flying in low cloud cover, flying 

mid-day between 10 a.m. and 2 p.m. (reducing the variability in the angle of sunlight incidence), 

equipping the UAS with a sunshine normalizing sensor, and by using advanced multispectral 

image software. Variability can also be decreased by including georeferencing points to help 

stabilize geographical and geometrical data (Lelong et al., 2008). Despite the concern of 

variation in remote sensing data, the technology still shows potential for successful data 

collection in crop production systems and a significant relationship with ground-level sensors. 

For example, remote sensors have been shown to accurately predict the chlorophyll 

measurements in corn and were shown to have a strong relationship with ground-level 

chlorophyll meters (Quemada et al., 2014).  

Time-management for large producers is a difficult skill to master. Remote sensing can 

help make crop management decisions and can minimize the time producers spend on field 

sampling and field assessments (Zhu et al., 2009). Many studies have been conducted using the 

UAS remote sensing technology to evaluate chlorophyll and nitrogen content in cereals (Li et al., 

2015; Zheng et al., 2016), weed mapping (Stroppiana et al., 2018), and disease damage (Yang et 

al., 2017). The UAS remote sensors show similarities to the GreenSeeker technology in relation 

to collecting NDVI readings at critical growth stages to evaluate grain yield. Swain et al. (2010) 

showed a high correlation with yield and NDVI measurements taken at panicle initiation with the 
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UAS mounted remote sensor.  This relationship between GreenSeeker and UAS derived NDVI 

to evaluate rice grain yield can mean there is a possibility of only using a UAS sensor to 

determine mid-season N fertilization rates with a computed algorithm similar to the GreenSeeker 

based algorithm. Mid-season fertilization rate decisions made in-season could be determined 

faster and more accurately with the use of a UAS remote sensor.   

The on-site sensor-based N fertilization rate decision tool using GreenSeeker derived NDVI 

has been shown to be an effective decision tool. An on-site sensor-based N rate fertilization tool 

has not been derived for UAS remote sensors. Vegetative indices derived from a UAS remote 

sensor has the potential to improve rice grain yield, reduce fertilizer inputs, and economically 

benefit producers due to UAS’s ability to collect information about the nutrient status of rice at 

critical growth stages on a whole field basis. The objectives of this study were to: 1) determine 

the economical optimum N rates for multiple rice varieties and hybrids using three common 

response models, 2) evaluate the relationship between GreenSeeker and UAS remote sensor 

derived NDVI, and 3) evaluate the GreenSeeker and UAS remote sensor derived NDVI 

relationships to rice grain yield.  
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Chapter 2. Determination of Rice Grain Yield Response to Nitrogen 

Fertilization  
 

2.1. Introduction  

Rice (Oryza sativa) is one of the major nutritional sources for the world’s population. 

The worldwide production of rice is approximately 162 million hectares (USDA, 2019). The 

growth and development of rice depends heavily on the nutrients supplied to the crop throughout 

the growing season. Nitrogen (N) is the most essential nutrient to rice due to the heavy impact 

this nutrient has on rice grain yield. Nitrogen is the most abundantly applied fertilizer of all 

fertilizer nutrients and makes up the bulk of the fertilizer budget in a rice crop. Nitrogen 

sti1mulates the growth and development of rice and gives rice its dark-green pigmentation 

(Leghari, 2016). Rice will not develop efficiently if the demand of N is not adequately met. 

Nitrogen deficiency symptoms in rice include chlorosis of the older leaves, reduced tillering, 

shorter plant heights, and ultimately a decrease in rice grain yield. Over application of N to rice 

will result in excessive vegetative growth, increased disease pressure, lodging, and reduced yield 

potential. 

 Nitrogen fertilizer application methods in rice can impact the spatial distribution of N 

and, in turn, impact nitrogen use efficiency (NUE). In the mid-southern U.S., N is typically 

applied using two split applications in rice. The two-way split application method is most 

practical in areas where N losses are prone due to the difficulty of the flood establishment and 

maintenance of the flood (Snyder and Slaton, 2002). The first N fertilizer application is done just 

before flooding when the rice is at the 4- to 5 -leaf growth stage. In Louisiana, the recommended 

N rate applied at this growth stage is two-thirds of the recommended rate on a variety basis 

provided by the LSU AgCenter (Harrell et al., 2018). The LSU AgCenter recommends a N rate 

range for every currently available variety grown. The recommended N range is determined from 
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N response trials conducted by research scientists at different sites, evaluating multiple varieties 

over multiple years. Refinements of the recommended pre-flood N rate should be made by a 

farmer based on the soil texture, environmental factors at the time of fertilizer application, and 

past performance. A flood should be established between one to three days after the N 

application to incorporate the N fertilizer into the soil, decreasing the chances of N losses 

through nitrification and denitrification (Snyder and Slaton, 2002). The pre-flood N fertilizer 

application is the most important N application because it directly impacts the yield potential of 

rice (Saichuk and Harrell, 2014). The second N fertilizer application time is completed at mid-

season, the end of vegetative growth and the beginning of reproductive growth, between the 

panicle initiation (green ring or beginning internode elongation [BIE]) and panicle differentiation 

(1/2-inch IE) growth stages.   

 Current N recommendations are based on N fertilizer response trials conducted each year 

by state experiment scientists across multiple locations (Neeteson and Wadman, 1987). These 

studies result in optimum N rates, or N rate ranges, on an individual cultivar basis which are 

recommended to rice growers. These recommendations are further refined by the individual 

growers by considering their soils and past crop performance. Field conditions at the time of 

application (wet, dry, or flooded soils) can greatly affect the efficiency of the pre-flood N 

application and should also be considered by growers. A rice producer should also consider the 

soil type, environmental conditions, and type of application when modifying the recommended N 

rate. Over application of N fertilizer can lead to excessive N losses, which can greatly affect the 

economic value of rice and have a negative impact on the environment. Chen et al. (2010) found 

that N loss will exceed N uptake when the N fertilizer applications exceed the optimum N rate. 
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The main objectives of N fertilization are to produce high rice grain yields while minimizing N 

losses and costs associated with N fertilization (Singh and Singh, 2017). 

 Predicting the optimum N fertilization rate is fundamental for maximizing rice grain 

yield, grain quality, profitability, and decreasing environmental risks (Belanger et al., 2000). 

Increasing N rates may greatly increase rice grain yield, but the producer might not be able to 

cover the additional expenses of added fertilizer applications (Harrell et al., 2011). The 

economical optimum N rate (EONR) is used to estimate where the N fertilization rate impacts 

rice grain yield but is still economically efficient. The optimum N fertilization rate is determined 

by fitting certain statistical models to rice grain yield data (Cerrato and Blackmer, 1990). There 

are several different statistical models that can be used to determine the EONR. Three popular 

models include: 1) linear-plateau, 2) quadratic-plateau, and 3) quadratic. These models evaluate 

the value of additional grain yield as additional fertilizer is applied until an economic increase 

associated with yield and fertilizer application is no longer observed. The response curve 

determined by fitting the model to the data for various trials can define the relationship between 

the rice grain yield response to numerous N fertilizer applications (Neeteson and Wadman, 

1987). 

The estimated EONR can vary between each of the statistical models even when using 

the same data set. It is not well known why one model is chosen over the others, but a valid 

reason should be given as to why a certain statistical model was chosen over another (Cerrato 

and Blackmer, 1990). The reasoning for this is because the models may produce the same 

coefficient of determination (R2) but might determine different optimum N fertilizer rates. Only 

considering the highest R2 for the 3 statistical models is not always reliable when selecting the 

best model for determining the EONR. Cerrato and Blackmer (1990) concluded the R2 values 
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and maximum yields were relatively similar from the five models evaluated in their study but 

found the quadratic-plateau model the best to describe the yield responses. Harrell et al. (2011) 

found the linear-plateau model to estimate the best economic return estimates because the model 

estimated lower maximum grain yields and EONRs. Other studies showed the quadratic-plateau 

model to be preferred over the linear-plateau model. Alivelu et al. (2003) found that the 

quadratic-plateau model produced the same maximum rice grain yield as the linear-plateau 

model, but with a lower EONR. Tumusiime et al. (2011) also found that both the plateau 

statistical models were found to fit the data sets better than the quadratic model. Cerrato and 

Blackmer (1990) found that the quadratic model estimated optimum N rates which were too high 

to give a valid explanation of yield responses to N fertilization. Harrell et al. (2011) however, 

when basing the data on economical estimates, found the quadratic model estimated much higher 

EONRs in rice and was superior to the quadratic-plateau model. Belanger et al. (2000) 

discovered a decrease in the potential of economic losses when estimating optimum N rates 

when using the quadratic model (Belanger et al., 2000). The results from these studies show how 

different each model can fit different data sets and how each model has a different outcome 

EONR and grain yield. The model of choice will have a strong effect on the estimated optimum 

N fertilizer rate.  

Economical optimum N rates vary significantly between varieties and locations (Belanger 

et al., 2000). Determining a different optimum N rate is necessary for different soils, 

environmental conditions, and varieties. Optimum N rates that produce maximum rice grain 

yield, profitability, and decrease N losses to the environment need to be determined for new 

varieties coming into the market.  
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It is not always known why one statistical model is chosen over another when fitting a 

model to a data set. Inaccuracy of determining optimal N recommendations can occur between 

the different statistical models and reduce the profitability of producers (Tumusiime et al., 2011). 

Multiple statistical models should be evaluated for a valid description of yield response to N 

fertilization to justify why one model should be selected over another (Cerrato and Blackmer, 

1990). The objectives of this study were to: 1) evaluate rice grain yield response to N 

fertilization using three regression models (linear-plateau, quadratic-plateau, and quadratic 

models) and 2) determine the EONR for each model. This study evaluated the models by 

assessing the coefficients of determination (R2), maximum rice grain yields each model 

produced, and the estimated EONRs of fertilization.  

2.2. Materials and Methods  

2.2.1. Site Description, Planting Method, Treatment Structure, and Trial Establishment  

 Field trials were conducted in Louisiana at two locations in 2017 and four locations in 

2018. A total of seventeen difference rice cultivars were evaluated for their response to N 

fertilization. Cultivars evaluated included: ‘Aura 115’, ‘CLJ01’, ‘CLXL745’, ‘CL153’, ‘CL172’, 

‘CL272’, ‘CLX6 1030’, ‘CLX6 1111’, ‘CLX6 1133’, ‘Diamond’, ‘FullPage RT7321’, ‘FullPage 

RT 7323’, ‘PVL01’, ‘Titan’, ‘XL760’, ‘XP113’, and ‘XP760’. Not all seventeen varieties were 

included at each location for each year. Data were collected from each individual variety-site-

year trial for use in the fertilizer response analyses. The locations of each site, year, and soil 

information for the trials are shown in Table 2.1. 
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Table 2.1. The soil series, taxonomy, and taxonomic classification for each individual location-year.  

 

Location GPS Location Year Series  Taxonomy  Taxonomic Classification  

      

Crowley, LA 

  

30°14’50.8”N 

92°20’56.8”W 

2017-2018 Crowley Silt loam  Fine, smectitic, thermic Typic  

Albaqualf 

  
Palmetto, LA 

  

30°47’41.9”N 

91°53’29.9”W 

2017-2018 Dundee Silty clay loam Fine-silty, mixed, active, thermic, 

Typic Endoalqualf 

  
Monroe, LA  32°23’23.8”N 

91°58’47.2”W 

2018 Herbert Silty clay Fine-silty, mixed, active, thermic, 

Aeric Eqiaqualf  

  
Saint Joseph, 

LA 

31°56’41.3”N 

91°13’54.0”W 

2018 Commerce Silt loam  Fine-silty, mixed, superactive, 

nonacid, thermic Fluvaquentic 

Endoaquepts 
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A drill-seeded delayed flood production system was used to grow rice in all trials. The 

seed treatment for the rice varieties consisted mancozeb (Dithane - fungicide), gibberellic acid 

(Release), Zinc Plus (10% Zn & 4.9% combined S), and anthraquinone (AV-1011 - bird 

repellent), and chlorantraniliprole (Dermacor – insecticide). Hybrid seed was treated with 

Clothianidin (Nipsit Inside), Fludioxonil (Spirato 480FS), Fludioxonil (Maxim 4FS), gibberellic 

acid, zinc, and anthraquinone (AV-1011 -bird repellent). The rice cultivars were planted to a 

depth of 1.27 cm at 366 seeds per m2 for varieties and 111 seeds per m2 for hybrids using a small 

plot grain drill (Almaco, Iowa). Plot length was 4.88 m consisting of 7 rows with 20 cm spacing. 

The variety N rates included 0, 34, 67, 101, 135, 168, 202, and 235 kg ha-1. The hybrid N rates 

included 0, 67, 101, 135, 168, and 202 kg ha-1.  The N pre-flood rates were surface broadcast 

applied on rice at the 4- to 5- leaf physiological growth stage. A flood was established between 

one to three days after the pre-flood N fertilizer applications. The planting, pre-flood N fertilizer 

applications, and flood establishments dates are presented in Table 2.2. The rice was managed 

according to state recommendations during the growing season (Rice Management Tips, 2018). 

A small plot combine equipped with a HarvestMaster H2 high capacity graingage (Logan, Utah) 

was used to determine the weight and moisture of the harvested rice plots.  

Table 2.2. Important agronomic dates including planting date, pre-flood N application timing, 

flood establishment, and sensor reading dates for each location-year.  

 

Location Year Planting Date Pre-Flood N Application Flood Establishment 

     

Crowley, LA 2017 13-Mar 2-May 3-May 

     

Palmetto, LA 2017 21-Mar 11-May 12-May 

     

Crowley, LA 2018 14-Mar 1-May 3-May 

(Table 2.2 Cont’d.)    
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Location Year Planting Date Pre-Flood N Application Flood Establishment  

Palmetto, LA 2018 27-Mar 17-May 18-May 

     

Monroe, LA 2018 1-May 23-May 25-May 

     

Saint Joseph, LA 2018 3-May 22-May 23-May 

 

2.2.2. Statistical Data Analysis  

 Statistical analysis was performed on all data collected for each variety-site-year using R-

Studio 1.1.456 (RStudio, Inc., 2009-2018). The linear-plateau, quadratic-plateau, and quadratic 

models were fit to the fertilizer response data from each variety-site-year trial using R-Studio. 

Linear-plateau model is defined by  

𝑌 =  𝑎 + 𝑏𝑁, 𝑁 < 𝐶                                                     [2.1] 
𝑌 = 𝑃, 𝑁 ≥ 𝐶 

 

where Y is rice grain yield (kg ha-1) and N is the rate of pre-flood N fertilizer application (kg ha-1), 

a is the yield when no N is applied (intercept), b is the linear coefficient, C is the critical rate of 

fertilization that occurs at the intersection of the linear and plateau response lines and P 

corresponds  to the plateau yield. The parameters of a, b, P, and C are defined by fitting the linear-

plateau model to the data.  

 The quadratic-plateau model for a given variety-site-year is defined by 

𝑌 = 𝑎 + 𝑏𝑁 + 𝑐𝑁2, 𝑁 < 𝐶                                                       [2.2] 
𝑌 = 𝑃, 𝑁 ≥ 𝐶  

 

where Y is rice grain yield (kg ha-1) and N is the rate of N application (kg ha-1), a is the yield 

when no N is applied (intercept), b is the linear coefficient, c is the quadratic coefficient, C is the 

critical rate of fertilization that occurs at the intersection of the quadratic and plateau response 
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lines and P is the plateau yield. The parameters for a, b, c, P, and C are defined by fitting the 

quadratic-plateau model to the data.  

 The quadratic model is defined by 

𝑌 = 𝑎 + 𝑏𝑁 + 𝑐𝑁2                                                               [2.3] 

where Y is rice grain yield (kg ha-1) and N is the rate of N application (kg ha-1), a is the yield 

when no N is applied (intercept), b is the linear coefficient, c is the quadratic coefficient. The 

parameters explaining a, b, and c are determined by fitting the quadratic model to the data.  

 Non-linear (linear-plateau and quadratic-plateau) and linear (quadratic) regression 

analyses were performed to determine the coefficients of determination (R2) values for all 

variety-site-year trials. The economical optimal nitrogen rate (EONR) of fertilization was 

determined for the linear-plateau, quadratic-plateau, and quadratic models. The linear-plateau 

models EONR were shown as the intersection line of the linear and plateau lines from the linear-

plateau regression model (Cerrato and Blackmer, 1990; Harrell et al., 2011). The quadratic-

plateau and quadratic models EONR of fertilization were determined by calculating the first 

derivative of the quadratic-plateau and quadratic equations to a fertilizer-to-rice price ratio and 

solving for N (Nelson et al., 1985; Harrell et al., 2011).  

2.3. Results and Discussion  

The rice grain yield response to N fertilization for each variety-site-year trial was derived 

from the R2 determined from the results of the linear-plateau, quadratic-plateau, and quadratic 

non-linear regression analyses are presented in Table 2.3. An example of the data fit to the 

linear-plateau, quadratic-plateau, and quadratic fertilizer response models for one variety-site-

year is presented in Figure 2.1. 
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Figure 2.1. Example of (a) linear-plateau, (b) quadratic-plateau, and (c) quadratic fertilizer 

response models for one variety-site-year (CLX6-1030-Crowley, LA-2018). 

 

The mean R2 value for the linear-plateau, quadratic-plateau, and quadratic models were: 

0.80, 0.82, and 0.81, respectively, indicating how similar the three models are to each other when 

determining the rice grain yield response to N fertilization applications in this data set. Alivelu et 



25 

 

al. (2003) also found the R2 values to be relatively similar between non-linear regression models 

when evaluating the rice grain yield response to N fertilization. Similarities were also observed 

between the ranges of the R2 values derived from each of the three non-linear regression models 

(linear-plateau: 0.46-0.92; quadratic-plateau: 0.46-0.94; quadratic: 0.48-0.94).  Deciding which 

of the three models is the most appropriate fit for estimating the optimum N fertilizer rate, is 

difficult when basing the decision solely off the R2. This data set presents highly related R2 

values therefore, deciding which of the three models best estimates the optimum N fertilizer rate 

would be difficult to estimate based solely off the R2  However the three different models may 

estimate different optimum N fertilizer rates despite the similar coefficients of determination 

used to evaluate the rice grain yield response to N fertilizer (Belanger et al., 2000; Cerrato and 

Blackmer, 1990). Estimated economical optimum N fertilization rates may vary between models 

however, there can only be one true EONR for a certain variety-site-year (Cerrato and Blackmer, 

1990; Belanger et al., 2000; Harrell et al., 2011). Therefore, the R2 should not be the only factor 

taken into consideration when choosing one model over another to estimate the optimum N 

fertilizer rate for a given variety-site-year.

Table 2.3. Coefficients of determination (R2) results for the linear-plateau, quadratic-plateau, and 

quadratic regression models describing the relationship between N fertilizer application rate and 

rice grain yields.  

 

   
Linear-Plateau  Quadratic-Plateau  Quadratic  

Variety Location Year R2 R2 R2 

Aura 115 CM 2017 0.85 0.91 0.91 

Aura 115 SLP 2017 0.77 0.80 0.80 

CL153 CM 2017 0.92 0.92 0.92 

CL153 SLP 2017 0.80 0.82 0.82 

CL153 CM 2018 0.75 0.82 0.82 

CL172 CM 2017 0.81 0.81 0.81 

CL172 SLP 2017 0.60 0.69 0.68 

(Table 2.3 Cont’d.)     
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Linear-Plateau  Quadratic-Plateau  Quadratic  

Variety Location Year R2 R2 R2 

CL172 CM 2018 0.68 0.76 0.76 

CL272 CM 2017 0.90 0.92 0.92 

CL272 SLP 2017 0.69 0.71 0.66 

CLJ01 CM 2018 0.91 0.94 0.94 

CLJ01 SLP 2018 0.82 0.84 0.83 

CLX6-1030 SJ 2018 0.88 0.89 0.84 

CLX6-1030  CM 2018 0.90 0.90 0.91 

CLX6-1111 CM 2018 0.89 0.91 0.89 

CLX6-1111 RP 2018 0.76 0.77 0.76 

CLX6-1111 SJ 2018 0.88 0.89 0.89 

CLX6-1111 SLP 2018 0.84 0.88 0.82 

CLX6-1133 CM 2018 0.88 0.88 0.88 

CLXL745 CM 2018 0.85 0.85 0.82 

Diamond CM 2017 0.85 0.83 0.81 

Diamond SLP 2017 0.61 0.60 0.58 

Diamond CM 2018 0.86 0.89 0.89 

Diamond SJ 2018 0.74 0.76 0.74 

FullPage RT 7321 CM 2018 0.89 0.90 0.89 

FullPage RT 7321 RP 2018 0.89 0.91 0.91 

FullPage RT 7321 SLP 2018 0.75 0.85 0.84 

FullPage RT 7323 RP 2018 0.71 0.74 0.75 

FullPage RT 7323 SLP 2018 0.64 0.74 0.72 

PVL01 CM 2018 0.91 0.91 0.88 

PVL01 SJ 2018 0.83 0.83 0.83 

PVL01 SLP 2018 0.86 0.88 0.84 

Titan SLP 2017 0.64 0.75 0.74 

Titan CM 2018 0.82 0.81 0.82 

XL760 CM 2017 0.85 0.84 0.84 

XP113 CM 2018 0.87 0.83 0.83 

XP760 CM 2018 0.88 0.90 0.90 

XP760 SLP 2018 0.75 0.82 0.82 

 

The estimated maximum rice grain yield (kg ha-1) determined by the linear-plateau, 

quadratic-plateau, and quadratic models are presented in Table 2.4. Mean maximum grain yields 

for the linear-plateau, quadratic-plateau, and quadratic models were all relatively similar and 
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were 11,513, 11,483, and 11,723 kg ha-1, respectively. The range of estimated maximum grain 

yield values was similar amongst the three models also (linear plateau: 8,298 – 14,048 kg ha-1; 

quadratic-plateau: 8,378 – 14,164 kg ha-1; quadratic: 8,618 – 14,503 kg ha-1). Harrell et al. 

(2011) found the quadratic model to estimate higher maximum grain yields 78% of the time, 

which is similar to the findings in this study where the quadratic model estimated higher 

maximum grain yields 79% of the time. The linear-plateau model estimated higher grain yields 

18% of the time. The quadratic-plateau model estimated the highest grain yields 5% of the time. 

While the quadratic model was shown to be the most suitable model to describe rice grain yield 

responses to N fertilization in previous studies (Cerrato and Blackmer, 1990; Chen et al., 2011), 

the variability in the estimated maximum rice grain yield between the models in the current study 

indicates why the determination of the optimum N fertilization rate should not be the only factor 

in determining the appropriate prediction model.   

Table 2.4. Maximum rice grain yields (kg ha-1) estimated by the linear-plateau, quadratic-

plateau, and quadratic response models.  

 

Variety Location Year 
Linear-Plateau 

Max yield (kg ha-1) 

Quadratic-Plateau 

Max yield (kg ha-1) 

Quadratic  

Max yield (kg ha-1) 

Aura 115 CM 2017 12391 12835 12835 

Aura 115 SLP 2017 11848 11913 12062 

CL153 CM 2017 10960 11179 11246 

CL153 SLP 2017 8925 8957 8989 

CL153 CM 2018 10539 10069 10151 

CL172 CM 2017 9482 9678 9718 

CL172 SLP 2017 11421 10778 11043 

CL172 CM 2018 10392 9751 9925 

CL272 CM 2017 10377 10413 10432 

CL272 SLP 2017 10039 10021 10318 

CLJ01 CM 2018 12313 12307 12440 

CLJ01 SLP 2018 9216 9257 9426 

CLX6-1030 SJ 2018 10118 10225 10773 

CLX6-1030  CM 2018 12779 12857 13054 

(Table 2.4 Cont’d.)     
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Variety Location Year 
Linear-Plateau 

Max yield (kg ha-1) 

Quadratic-Plateau 

Max yield (kg ha-1) 

Quadratic  

Max yield (kg ha-1) 

CLX6-1111 CM 2018 12261 12283 12619 

CLX6-1111 RP 2018 10875 10907 11024 

CLX6-1111 SJ 2018 12818 13021 13146 

CLX6-1111 SLP 2018 10711 10679 11114 

CLX6-1133 CM 2018 11107 11124 11687 

CLXL745 CM 2018 12401 12401 12870 

Diamond CM 2017 9060 9161 9555 

Diamond SLP 2017 11240 11219 11480 

Diamond CM 2018 13276 13346 13407 

Diamond SJ 2018 11171 11135 11743 

FullPage RT 7321 CM 2018 13944 14164 14503 

FullPage RT 7321 RP 2018 12756 12932 12992 

FullPage RT 7321 SLP 2018 13895 13315 13527 

FullPage RT 7323 RP 2018 12101 12072 12318 

FullPage RT 7323 SLP 2018 13690 13162 13582 

PVL01 CM 2018 10833 10879 11294 

PVL01 SJ 2018 8298 8378 8618 

PVL01 SLP 2018 8627 8657 8935 

Titan SLP 2017 11685 11164 11373 

Titan CM 2018 11453 11538 12056 

XL760 CM 2017 12391 12552 12551 

XP113 CM 2018 12865 12935 13081 

XP760 CM 2018 14048 14104 14404 

XP760 SLP 2018 13768 13522 13705 

 

The economical optimum N rate of fertilization estimated by the linear-plateau, 

quadratic-plateau, and quadratic response models for each variety-site-year trial is presented in 

Table 2.5. The economical N rate of fertilization ranges for the linear-plateau, quadratic-plateau, 

and quadratic models were 54-219, 81-229, and 149-229 kg ha-1, respectively. The linear-plateau 

model estimated a wider range of EONR of fertilization across the variety-site-year trials while 

the quadratic model estimated the narrowest range of EONR of fertilization. The average EONR 

of fertilization for the linear-plateau, quadratic-plateau, and quadratic models were 123, 155, and 

181 kg ha-1, respectively.  The EONR of fertilization values presented in Table 2.5 highlight how 
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the EONR of fertilization varies between the response models, and the rice varieties, sites, years. 

A study by Belanger et al. (2000) demonstrated how varieties, sites, and annual environmental 

variations from year-to-year cause the EONR of fertilization to fluctuate between the response 

models.  The EONR of fertilization differences between the three response models in the current 

study  further supports why R2 values should not be the only factor considered when determining 

which response model to choose for estimating the optimum N fertilization rate (Cerrato and 

Blackmer, 1990; Belanger et al., 2000; Alivelu et al., 2003; Harrell et al., 2011). The quadratic 

model resulted in a greater EONR of fertilization 87% of the time. Harrell et al. (2011) 

concluded that the quadratic model estimated a higher EONR of fertilization 61% of the time. In 

this study, the linear-plateau model estimated the highest EONR of fertilization 8% of the time 

while the quadratic-plateau model estimated the highest EONR of fertilization only 3% of the 

time. Choosing one model over another can effect N fertilization recommendations (Harrell et 

al., 2011). The differences observed between the EONR of fertilization values estimated by the 

response models highlight why a range of the N fertilizer recommendations are often 

recommended to growers. Recommending an optimum N rate range gives farmers leverage to 

adjust the N recommendations based on their soil and environmental conditions.

Table 2.5. Economical optimum nitrogen rates (EONR) of fertilization estimated by the linear-

plateau, quadratic-plateau, and quadratic regression models for each variety-site-year trial.  

 

Variety Location Year 

Linear-Plateau 

EONR 

Quadratic-

Plateau EONR 

Quadratic 

EONR 

Aura 115 CM 2017 121 229 229 

Aura 115 SLP 2017 113 162 176 

CL153 CM 2017 134 201 206 

CL153 SLP 2017 142 186 193 

CL153 CM 2018 205 209 217 

CL172 CM 2017 129 197 197 

CL172 SLP 2017 219 141 200 

CL172 CM 2018 218 179 209 

(Table 2.5 Cont’d.)     
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Variety Location Year 

Linear-Plateau 

EONR 

Quadratic-

Plateau EONR 

Quadratic 

EONR 

CL272 CM 2017 155 209 210 

CL272 SLP 2017 79 101 172 

CLJ01 CM 2018 140 184 192 

CLJ01 SLP 2018 109 153 183 

CLX6-1030 SJ 2018 54 96 158 

CLX6-1030  CM 2018 122 175 181 

CLX6-1111 CM 2018 116 160 188 

CLX6-1111 RP 2018 121 167 183 

CLX6-1111 SJ 2018 124 188 195 

CLX6-1111 SLP 2018 70 81 153 

CLX6-1133 CM 2018 87 124 156 

CLXL745 CM 2018 106 126 179 

Diamond CM 2017 94 144 180 

Diamond SLP 2017 98 125 165 

Diamond CM 2018 149 205 208 

Diamond SJ 2018 81 103 158 

FullPage RT 7321 CM 2018 88 140 157 

FullPage RT 7321 RP 2018 119 180 185 

FullPage RT 7321 SLP 2018 174 157 183 

FullPage RT 7323 RP 2018 103 128 149 

FullPage RT 7323 SLP 2018 146 91 166 

PVL01 CM 2018 92 133 171 

PVL01 SJ 2018 96 144 170 

PVL01 SLP 2018 75 110 167 

Titan SLP 2017 203 156 192 

Titan CM 2018 97 142 162 

XL760 CM 2017 131 190 189 

XP113 CM 2018 110 158 163 

XP760 CM 2018 105 145 161 

XP760 SLP 2018 147 163 183 

 

In Louisiana, the recommended N fertilizer application range for most rice varieties is 

between 135 – 180 kg ha-1 (Louisiana Rice Management Tips, 2018). The optimum N 

fertilization rates given in the Louisiana Rice Management Tips publication differentiates 

between the rice varieties and soil textures of the different locations in Louisiana. Clay soils 

typically have higher N rate recommendations compared to silt loam soils (Saichuk et al., 2008; 
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Harrell et al., 2011). However, the EONR of fertilization values calculated from our data show 

that the silt loam soil textures at Crowley, LA and Saint Joseph, LA resulted in the highest 

optimum N fertilizer recommendations. The models in the current study estimated some EONRs 

of fertilization to be outside of the recommended range for currently grown varieties.  (Table 

2.5.). The linear-plateau EONR of fertilization fell below the lowest recommended N range for 

Louisiana 69% of the time, while the quadratic-plateau EONR of fertilization fell below the 

lowest N fertilizer recommendation 28% of the time and 1% of the time the quadratic model fell 

below the lowest N fertilizer recommendation. Harrell et al. (2011) also found the linear-plateau 

model to estimate the lower optimum N fertilizer recommendations more than the quadratic-

plateau and quadratic model. The quadratic EONR values fell into the Louisiana N 

recommendation range 46% of the time, compared to the 58% for the quadratic-plateau model 

and 18% for the linear-plateau model. The different EONR of fertilization estimated from each 

of the linear-plateau, quadratic-plateau, and quadratic models are not logical because only one 

EONR of fertilization can be determined for a given variety-site-year (Cerrato and Blackmer, 

1990; Belanger et al., 2000; Harrell et al., 2011).  

The estimated rice grain yield at the EONR of fertilization for the linear-plateau, 

quadratic-plateau, and quadratic models are present in Table 2.6. When the EONR of fertilization 

was averaged across all variety-site-years for each of the models, the results were very similar 

(11,513, 11,475, and 11,621 kg ha-). The quadratic model estimated the greatest range of yields 

at the EONR of fertilization (6554 – 14,497 kg ha-1). The linear-plateau model estimated the 

second greatest range of yields at the EONR of fertilization (8298 – 14,048 kg ha-1). The 

quadratic-plateau model estimated the smallest range of yield at the EONR of fertilization (8363 

– 14152 kg ha-1). The highest estimated EONR of fertilization across variety-site-years didn’t 
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estimate the highest yield as compare to the other variety-site-years. The linear-plateau model 

tended to produce reasonable and similar grain yields and produced low EONRs of fertilization 

as compared to the quadratic-plateau and quadratic models. Rice grain yield can be significantly 

affected by the amount of N fertilizer inputs during the growth and development of rice. 

Inaccurate N fertilizer rate applications can negatively impact rice grain yield and reduced 

profitability of rice production. The EONR of fertilization are highly dependent on current N 

fertilizer and rice prices (Harrell et a., 2011).  The one economical optimum N fertilization rate 

that can exist for a given variety-site-location, will be affected by any change in input (N 

fertilizer) or output (rice grain yield) prices. The optimum N rate estimation models evaluated in 

this study had similar R2 values and grain yields, however the estimated range of EONR of 

fertilization were quite different. Justification for choosing one model over the others could not 

be made.   

Table 2.6. Yield (kg ha-1) at the economical optimal nitrogen rate (EONR) of fertilization for 

linear-plateau, quadratic-plateau, and quadratic models for each individual trial. 

 

   Linear-Plateau Quadratic-Plateau Quadratic 

Variety Location Year 
EONR Yield 

(kg ha-1) 

EONR Yield  

(kg ha-1) 

EONR Yield 

(kg ha-1) 

Aura 115 CM 2017 12391 12799 12799 

Aura 115 SLP 2017 11848 11917 12055 

CL153 CM 2017 10960 11169 11223 

CL153 SLP 2017 8925 8930 8969 

CL153 CM 2018 10539 10092 6554 

CL172 CM 2017 9482 9682 9690 

CL172 SLP 2017 11421 10768 11005 

CL172 CM 2018 10392 9719 9931 

CL272 CM 2017 10377 10409 10417 

CL272 SLP 2017 10039 10014 10321 

CLJ01 CM 2018 12313 12292 12449 

CLJ01 SLP 2018 9216 9256 9424 

CLX6-1030 SJ 2018 10118 10222 10758 

CLX6-1030  CM 2018 12779 12862 13037 

(Table 2.6 Cont’d.)     
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   Linear-Plateau Quadratic-Plateau Quadratic 

Variety Location Year 
EONR Yield 

(kg ha-1) 

EONR Yield  

(kg ha-1) 

EONR Yield 

(kg ha-1) 

CLX6-1111 CM 2018 12261 12271 12631 

CLX6-1111 RP 2018 10875 10820 11010 

CLX6-1111 SJ 2018 12818 13026 13110 

CLX6-1111 SLP 2018 10711 10678 11096 

CLX6-1133 CM 2018 11107 11123 11683 

CLXL745 CM 2018 12401 12392 12854 

Diamond CM 2017 9060 9162 9541 

Diamond SLP 2017 11240 11222 11476 

Diamond CM 2018 13276 13346 13409 

Diamond SJ 2018 11171 11127 11763 

FullPage RT 7321 CM 2018 13944 14152 14497 

FullPage RT 7321 RP 2018 12756 12940 12987 

FullPage RT 7321 SLP 2018 13895 13308 13530 

FullPage RT 7323 RP 2018 12101 12070 12322 

FullPage RT 7323 SLP 2018 13690 13163 13559 

PVL01 CM 2018 10833 10881 11297 

PVL01 SJ 2018 8298 8363 8597 

PVL01 SLP 2018 8627 8658 8926 

Titan SLP 2017 11685 11165 11343 

Titan CM 2018 11453 11539 12044 

XL760 CM 2017 12391 12544 12545 

XP113 CM 2018 12865 12926 13075 

XP760 CM 2018 14048 14112 14392 

XP760 SLP 2018 13768 13502 13699 

 

The quadratic model estimated the greatest EONR of fertilization and rice grain yield at 

EONR of fertilization more times than the linear-plateau and the quadratic-plateau response 

models did in this study. However, since one true EONR of fertilization can exist for each 

variety-site-year, these three models are purely empirical (Harrel et al., 2011). The EONR of 

fertilization will vary between the different rice varieties, different locations of where the crop is 

being grown, and different economical estimates from year to year. Determining the actual 

economic estimates of the response models will portray a more logical outlook of the response 

models in determining which model is the most economically efficient. Rice grain yield at the 
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EONR of fertilization, economic estimates of net returns and net return margins of choosing one 

models EONR of fertilization over another for each variety-site-year trial are presented in Table 

2.7. The net returns and net return margins were calculated to determine which response model 

was the most economically efficient. Net returns are calculated by determining the difference of 

the price of rice for the check plot (no N fertilizer additions) and the price of rice at the EONR of 

fertilization for each of the three response models. In this study, the price of rice that was used in 

the calculation was $0.245per kg rough rice and the cost of N was $0.538 per kg N. The net 

return margins are calculated by determining the difference between the selected response model 

and the response model with the highest net return for each variety-site-year trial. The response 

model with the highest net returns is shown by the response model that estimates a zero for a 

certain variety-site-year trial. The quadratic response model was estimated to have a higher net 

return margin 71% of the time compared to the linear-plateau and quadratic-plateau response 

models. The linear-plateau response model estimated to have a higher net return margin only 

26% of the time. Harrell et al. (2011) found the opposite with the linear-plateau response model 

estimating the highest net return margin 70% of the time compared to the quadratic and 

quadratic-plateau response models. This signifies how the response model providing the greatest 

net returns can change throughout the years, locations, and rice varieties. The trend of this data in 

this study indicates the net returns derived from the response models were in the following order: 

quadratic > linear-plateau > quadratic-plateau. However, the trend of the R2 data derived from 

the response models in Table 2.3 were in the following order: quadratic-plateau > 

quadratic > linear-plateau. The data from this study shows how net return estimations can be 

shifted between the three response models. The differences in these two trends indicates why 



35 

 

other factors besides the R2 data should be evaluated when choosing which response 

model should be used to predict the EONR of fertilization. 
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Table 2.7. Rice grain yields, net returns, and net return margins for linear-plateau, quadratic-plateau, and quadratic response models 

for each variety-site-year. 

 

      Yield † Net Returns Net Return Margins‡  

Variety Location  Year  LP QP Q LP QP Q LP QP Q 

   -----------kg ha-1------------ --------------------------$ ha-1------------------------- 

Aura 115 CM 2017 12391 12799 12799 1510 1552 1552 -42 0 0 

Aura 115 SLP 2017 11848 11917 12055 959 950 976 -17 -26 0 

CL153 CM 2017 10960 11169 11223 1555 1570 1581 -26 -11 0 

CL153 SLP 2017 8925 8930 8969 569 547 553 0 -22 -17 

CL153 CM 2018 10539 10092 6554 1421 1309 438 0 -112 -983 

CL172 CM 2017 9482 9682 9690 1340 1352 1354 -14 -2 0 

CL172 SLP 2017 11421 10768 11005 876 758 784 0 -118 -92 

CL172 CM 2018 10392 9719 9931 1022 878 914 0 -144 -108 

CL272 CM 2017 10377 10409 10417 1396 1374 1376 0 -21 -20 

CL272 SLP 2017 10039 10014 10321 777 759 796 -19 -37 0 

CLJ01 CM 2018 12313 12292 12449 1763 1734 1768 -5 -34 0 

CLJ01 SLP 2018 9216 9256 9424 793 779 804 -11 -25 0 

CLX6-1030 SJ 2018 10118 10222 10758 1199 1202 1299 -101 -98 0 

CLX6-1030  CM 2018 12779 12862 13037 1785 1777 1817 -31 -40 0 

CLX6-1111 CM 2018 12261 12271 12631 1828 1806 1879 -52 -73 0 

CLX6-1111 RP 2018 10875 10820 11010 814 775 813 0 -38 0 

CLX6-1111 SJ 2018 12818 13026 13110 1782 1799 1816 -33 -17 0 

CLX6-1111 SLP 2018 10711 10678 11096 844 830 893 -50 -64 0 

CLX6-1133 CM 2018 11107 11123 11683 1441 1425 1545 -104 -120 0 

CLXL745 CM 2018 12401 12392 12854 1802 1789 1874 -72 -85 0 

Diamond CM 2017 9060 9162 9541 1482 1480 1553 -72 -73 0 

(Table 2.7. Cont’d.)            
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   Yield † Net Returns Net Return Margins‡ 

Variety Location  Year  LP QP Q LP QP Q LP QP Q 

   ------------kg ha-1----------- ---------------------------$ ha-1---------------------------- 

Diamond SLP 2017 11240 11222 11476 810 791 832 -22 -41 0 

Diamond CM 2018 13276 13346 13409 2291 2278 2292 -1 -14 0 

Diamond SJ 2018 11171 11127 11763 1457 1434 1561 -104 -126 0 

FullPage RT 7321 CM 2018 13944 14152 14497 1940 1963 2038 -98 -75 0 

FullPage RT 7321 RP 2018 12756 12940 12987 1264 1276 1285 -21 -9 0 

FullPage RT 7321 SLP 2018 13895 13308 13530 1291 1156 1197 0 -135 -94 

FullPage RT 7323 RP 2018 12101 12070 12322 1053 1032 1082 -29 -50 0 

FullPage RT 7323 SLP 2018 13690 13163 13559 1046 947 1004 0 -100 -43 

PVL01 CM 2018 10833 10881 11297 1442 1432 1513 -71 -81 0 

PVL01 SJ 2018 8298 8363 8597 966 956 1000 -33 -43 0 

PVL01 SLP 2018 8627 8658 8926 747 736 771 -24 -35 0 

Titan SLP 2017 11685 11165 11343 1046 944 968 0 -102 -78 

Titan CM 2018 11453 11539 12044 1673 1670 1783 -110 -113 0 

XL760 CM 2017 12391 12544 12545 1541 1547 1547 -7 -1 0 

XP113 CM 2018 12865 12926 13075 1782 1771 1805 -23 -34 0 

XP760 CM 2018 14048 14112 14392 1909 1903 1963 -54 -60 0 

XP760 SLP 2018 13768 13502 13699 1418 1345 1382 0 -74 -36 
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2.4. Conclusions  

 The economic optimum N rate of fertilization determined for currently used and newly 

developed rice cultivars will allow rice producers to make N fertilizer decisions that are most 

profitable and more prone to produce high rice grain yields. Developing a profitable N fertilizer 

recommendation that still produces high rice grain yields is an important goal of rice producers. 

The input (N fertilizer) and output (rice grain yield) prices are used to determine the 

recommended optimum N fertilizer rate. The EONR will be affected if any change exists in input 

or output prices. Rice grain yield is affected by N fertilizer applications directly. Inaccurate 

determination of N fertilization rate can result in a negative impact on rice grain yield and 

potential economic losses. Therefore, determining an accurate, useful, and reliable EONR of 

fertilization, for current and new rice varieties, is important to rice producers and rice 

agronomists.  

 The EONR of fertilization for individual rice varieties in our study was estimated by 

fitting the linear-plateau, quadratic-plateau, and quadratic response models to the response of rice 

grain yields to N fertilizer applications. The R2 averages for the linear-plateau, quadratic-plateau, 

and quadratic fertilizer response models were all found to be similar (linear-plateau: 0.80; 

quadratic-plateau: 0.82; quadratic: 0.81). The high R2 values were an indication that each of the 

response models fit the data equally well and that each should be able to estimate useful EONR 

of fertilization for the individual variety-site-years.  However, the estimated EONR of 

fertilization for a given variety-site-year in this data set was drastically different between the 

linear-plateau, quadratic-plateau, and quadratic models despite the similar R2 values. Careful 

consideration should be used when choosing an estimation model to determine the EONR of 

fertilization.  Selecting an estimation model based solely from the R2 criteria may result in 
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unrealistic EONR of fertilization.  Choosing the EONR of fertilization from the less accurate 

response model can lead to an insufficient or over application of N fertilizer and produce a 

negative impact on rice growth and development. There can only be one true EONR of 

fertilization for a given variety. Therefore, other factors beyond just R2 alone need to be taken 

into consideration when choosing which response model best fits a data set and should be used to 

estimate the EONR of fertilization for an individual variety.   

The linear-plateau model estimated lower rice grain yields and EONRs of fertilization 

compared to the quadratic-plateau and quadratic response models. The quadratic model produced 

the highest EONRs of fertilization and rice grain yields. The differences between the two 

fertilizer response models EONR of fertilization and rice grain yield further explains why 

justification should be given when choosing which response model should be used to fit the data 

of the rice grain yield response to N fertilization. In our study, the linear-plateau models 

estimated EONR of fertilization was more likely to fall below the Louisiana N fertilizer 

recommendation range (130 to 180 kg ha-1) compared to the other two response models. The 

quadratic response model estimated EONR’s of fertilization within the Louisiana N fertilizer 

recommendation range 46% of the time. Determining which response model would be the most 

reliable to estimate accurate EONRs of fertilization for currently used and newly released 

varieties is important to rice growers and agronomists. The selection of the model producing the 

most appropriate EONR of fertilization will ultimately increase the profitability and economical 

return estimates of growing rice. Conducting more research evaluating the different N 

fertilization response models will help determine which response model most accurately 

estimates EONRs of fertilization for currently used and newly released cultivars.  
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Chapter 3. Evaluation of the Linear Relationship Between GreenSeeker and 

UAS Derived Normalized Difference Vegetation Index (NDVI)  
 

3.1. Introduction 

Rice is a major cereal crop belonging to the grass family and providing an abundance of 

mineral nutrition to the world’s population (Oryza sativa). Rice is grown in several countries 

around the world producing approximately 162 million hectares of rice (USDA, 2019). The 

United States produces about one million hectares of rice in the states of California, Arkansas, 

Mississippi, Texas, and Missouri (USDA, 2019). In 2018, Louisiana was ranked as the third 

leading state for rice production in the United States. The semi-aquatic plant can be grown in a 

diverse set of environments, but greatly thrives in wet and warm conditions.  

 The average days to maturity rice ranges between 105 to 145 days depending on the rice 

variety and climate conditions. For rice to be managed easier throughout the growing season, rice 

should be planted within the appropriate planting date ranges. Louisiana State University (LSU) 

AgCenter researchers conduct several date-of-planting studies used to determine and adjust 

optimum planting date recommendations of new and popular rice varieties (Saichuk and Harrell, 

2014). The recommended planting date range for Southwest Louisiana is between March 10 and 

April 15. The recommended planting date range for North Louisiana is between April 1 and May 

5. The growth of rice will be easier managed, and rice will have greater potential of producing 

maximum grain yield if rice is planted during the planting date range recommended by the LSU 

AgCenter (Saichuk and Harrell, 2014). The developmental stages of rice are designated between 

two categories: 1) vegetative growth phases and 2) reproductive growth phases. The vegetative 

phase includes 4 stages: 1) emergence, 2) seedling development, 3) tillering, and 4) internode 

elongation (Dunand and Saichuk, 2014). Active tillering, plant height increase, and leaf 

emergence begin to take place during the vegetative growth phases. The reproductive phase 
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consists of five stages: 1) pre-booting, 2) booting, 3) heading, 4) grain-filling, and 5) maturity 

(Dunand and Saichuk, 2014). The characteristics of the reproductive growth phase is increased 

plant height, tiller number decrease, emergence of the flag leaf, heading, and flowering.   

 Monitoring the mineral nutrition of rice is important for the growth and development of 

rice. There are three main macronutrients supplied to rice to provide adequate mineral nutrition: 

nitrogen (N), phosphorus (P), and potassium (K). Maximum rice grain yields, increased 

profitability, enhanced nutrient efficiency, and reduced inputs will be accomplished if a balance 

supply of these nutrients is provided to the rice crop (Fageria, 2001). Nitrogen is the most 

abundantly applied fertilizer input stimulating the growth of rice and giving rice its dark-green 

pigmentation (Leghari, 2016). An inadequate supply of N will cause a N deficiency to occur 

within a rice field. Symptoms of N deficiency are present in the field as chlorosis of the older 

leaves, reduced tillering, and shorter plant heights. The extent of these deficiencies will depend 

upon soil type, agronomic management practices, and crop history (Saichuk and Harrell, 2014). 

Excessive application of N can have a negative impact on rice. An over-application of N result in 

excessive vegetative growth, increased disease pressure, lodging, and ultimately economic 

losses. A proper management strategy of rice should be developed to diminish the possibility of 

N deficiency in rice or an over-application of N.  

 Nitrogen can be supplied to rice by different synthetic fertilizers. The behavior of N 

within the soil and plant is dynamic. Nitrogen exist in both the organic and inorganic forms. 

Inorganic-N is more abundantly found and used in plants (Fageria, 2001). Nitrate (NO3
-) and 

ammonium (NH4
+) are the two inorganic-N forms available for uptake by rice. These two 

inorganic N forms have potential to be quickly lost through the major loss pathways in the N-

cycle. Ammonium-N fertilizer sources are recommended to be used over NO3
- fertilizer sources 
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because rice is grown in a flooded, anaerobic environment (Snyder and Slaton, 2002). 

Ammonium-N remains stable under the anaerobic field conditions of rice, whereas NO3
- is 

unstable and lost quickly in an anaerobic environment from denitrification. Another major loss 

pathway for NO3
- due to its solubility and mobility characteristics is leaching (Havlin et al., 

2014). The leaching of NO3
- has a negative impact on crop production systems and surrounding 

environments when NO3
- is leached from the agricultural soils. The fertilizer sources for rice are 

incorporated into the soil by the flood establishment to help eliminate the occurrence of N-

fertilizer losses. If the flood establishment is not established in a timely manner or maintained 

throughout the growing season, NH4
+ can be converted to NO3

- by nitrification. The N-loss 

pathways of N fertilizers are highly influenced by environmental conditions, management 

practices, N application rates, and irrigation techniques.  

 The application method of N fertilizer can help eliminate N losses and enhance the 

growth and development of rice. The preferred application method of N fertilizer in rice is by 

using a two-way split application. The two-way split application method is most practical in 

areas where N losses are prone to occur due to a delayed flood establishment and maintenance of 

the flood (Snyder and Slaton, 2002). There are two N fertilizer application times for this method. 

The first fertilizer application is done at pre-flood, at the 4- to 5- leaf growth stage (or just before 

tillering). In Louisiana, the recommended N rate applied at this growth stage is two-thirds of the 

seasonal recommended rate provided by the LSU AgCenter on a variety basis. Adjustments of 

the recommended pre-flood N rate should be made depending upon soil texture, rice variety, and 

environmental conditions at the time of fertilizer application. After the pre-flood N fertilizer is 

applied to a dry-soil bed, a flood should be established within one to three days. The flood 

establishment will incorporate the N fertilizer into the soil decreasing the chances of N losses 
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through nitrification and denitrification (Snyder and Slaton, 2002). The flood establishment is 

important to eliminate moisture deficiencies, increase availability of essential plant nutrients, 

minimize weed competition, and provide an appropriate climate for the growth and development 

of rice (Harrell and Saichuk, 2014).  

 The second N fertilizer application time is completed at mid-season, at the beginning of 

reproductive growth between panicle initiation [green ring or beginning internode elongation 

(IE)] and panicle differentiation (1/2-inch IE) growth stages. Mid-season N application rates are 

determined by the rice grower or consultant based on their observations of the characteristics of 

the crop. Fertilizer N rates recommended at mid-season can be inaccurately determined because 

some in-season characteristics cannot be seen by the human eye. Mid-season N fertilizer 

applications are vital to the growth and development of rice in the latter growth stages. Mid-

season N fertilizer applications are important in times when the pre-flood N fertilizer 

applications do not supply all the seasonal N needs of the crop or when N was inadequately 

taken up by the rice plant. Nitrogen fertilizer applications applied at mid-season during the 

panicle initiation growth stage, have a profound effect on rice grain yield and quality (Nguyen & 

Lee, 2006). Therefore, it is crucial to have a method or tool to accurately determine mid-season 

N fertilizer rates for rice.   

Precision agricultural tools emerged in the mid-1980’s to improve the determination of 

mid-season N rates and increase the efficiency of N applications. Rice producers must make 

strategical, tactical, and operational management decisions based on the future of the farm, 

potential yields, profitability, environmental quality, crop varieties, and fertilization requirements 

(Bouma, 1997). Rice producers today are growing rice across larger acres and larger production 

systems, making it difficult to monitor the growth of rice and accurately determine the N 
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requirements. Before the advancement of precision farming tools, the N status of rice and 

determination of mid-season N fertilizer requirements have been a challenge to accurately 

determine. In the past, a crop yield goal was used to help estimate N fertilization requirements. 

The crop yield goal should be based on crop yield history, soil characteristics, management 

practices, and the crop variety being planted. A disadvantage of using the crop yield goal in rice 

to determine N fertilizer needs is that crop yield goal is greatly affected by spatial and temporal 

variation. Precision agricultural tools can determine N fertilizer rates based on site-specific 

regions creating variable N rates in a rice field. Data collected by precision agricultural tools can 

be used to optimize N fertilizer recommendations which in turn will improve the profitability, 

decrease N losses, and improve environmental quality.  

Remote sensing technology is a popular precision agricultural tool in estimating practical 

on-site N fertilizer rates and eliminating uncertainties of a producer’s N fertilizer rates 

determinations. Remote sensing technology is a site-specific management system accounting for 

the spatial and temporal variation throughout a rice field. Variables of a crops growth and 

development can be obtained in a fast, reliable, non-destructive method with remote sensing 

technology (Nguyen et al., 2006). Crop field assessments have progressed with the usage of 

remote sensing technologies delivering quantitative data of the crop’s spatial variability 

properties (Elarab, 2016). 

Active crop canopy sensors are a type of remote sensing tool used to evaluate the health 

and N status of crops (Xue et al., 2004; Lee et al., 2008). Active crop canopy sensors could be 

extremely effective in a flooded production system, such as rice, when mid-season N fertilizer 

requirements are difficult or inaccurately determined. Active crop canopy sensors have shown 

the potential in lowering the amount of N applied to a rice field which, in turn, will optimize 
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grain yield and N use efficiency (NUE) (Foster et al., 2017). The predominant remote sensing 

and active crop canopy sensor used to aid in estimating the health status of rice and N fertilizer 

requirements of rice during major growth stages is the GreenSeeker handheld sensor. The 

GreenSeeker handheld sensor is equipped with an active, pre-calibrated optical light sensor. The 

active light sensor of the GreenSeeker measures the canopy reflectance of rice using two specific 

wavelength regions on the electromagnetic spectrum: red (670 ± 10 nm) and near-infrared (780 ± 

10 nm). The active crop canopy reflectance measurement of rice is calculated using the 

normalized difference vegetation index (NDVI) computed from the red and near-infrared values 

collected by the GreenSeeker in the following NDVI equation: 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 + 𝑅)

(𝑁𝐼𝑅 − 𝑅)
                                                                 [3.1] 

where:  

NIR = Reflectance at the near-infrared region of the electromagnetic spectrum  

R = Reflectance at the red region of the electromagnetic spectrum  

 The GreenSeeker derived NDVI values can be used to evaluate the pre-flood N fertilizer 

response in rice which can be used to predict mid-season N fertilization needs. (Xue and Yang, 

2008). GreenSeeker derived NDVI has increased farmers ability to make crucial management 

decisions, estimate more suitable in-season N fertilization requirements, and create a more 

sustainable production approach (Yao et al., 2012). Many studies have been done to show 

GreenSeeker derived NDVI to be a more reliable source in estimating a crops overall health 

status unlike past techniques of leaf color charts and chlorophyll meters (Girma et al., 2006; Lee 

et al., 2008).  

 Advancements in remote sensing technology have developed an air-borne, remote 

sensing tool that has potential to collect NDVI measurements of a rice field. Unmanned aerial 
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systems (UAS) equipped with remote sensors can provide information on a crop’s growth and 

development from a remote location from outside of the field. Spectral cameras attached onto the 

UAS collect data on the crop from a remote location.  The UAS mounted spectral cameras have 

been shown to produce a similar ability to evaluate crop responses compared to other remote 

sensing tools (Rasmussen et al., 2015). One advantage of UAS mounted sensors is that NDVI 

readings are collected from a higher spatial resolution, unlike the GreenSeeker which collects 

NDVI readings at a lower spatial resolution. Despite the differences of spatial resolution between 

the two types of remote sensors research has shown a correlation between air-borne and ground-

sensor based NDVI measurements (Primicero et al., 2012).   

The GreenSeeker collects NDVI readings on a point-to-point basis accounting for 

information only in site-specific portions of a rice field. UAS mounted sensors collects NDVI 

readings on a whole field basis increasing the field scale average of the data collection and 

accounts for variation across the entire field. Data is generated in a faster, more rapid method 

through the autonomous flight navigation of the UAS through pre-programmed flight plans 

(Huang et al., 2013). The ability to maneuver within the rice field and from field to field is more 

difficult with the handheld GreenSeeker. UAS mounted sensors are easily to use to collect data 

within and between rice fields because they can be flown autonomously. The faster data 

collection and ease of use of the UAS mounted sensors allows farmers to spend less time on field 

assessments and make timelier, more efficient crop decisions (Zhu et al., 2009). 

 The GreenSeeker has an active light sensor that is used to collect NDVI measurements, 

while the UAS has a passive light sensor.  A passive light sensor relies on the sunlight for the 

tools light source and can have a negative impact on the data collected from the UAS remote 

sensor. Variability of the NDVI data can occur when using a tool with a passive light sensor. 
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Intensity of the sunlight, bidirectional reflectance, and environmental conditions are three of the 

main factors that cause variability to exist in the UAS’s remote sensor data collection. Variability 

can be overcome with the appropriate precautions and setup before the flight takes place. Flying 

the UAS in the appropriate flight conditions will help eliminate the influence of the light from 

the sun on the multispectral images collected. A pre-flight tactic to help decrease variability 

among vegetative indices is to include georeferencing points to help stabilize the geographical 

and geometric data (Lelong et al., 2008). Advanced technological software applications have 

been developed for UAS’s to stitch the multispectral images together accounting for variation in 

the images and decreasing the chances of the UAS remote sensors producing invaluable 

information.  

 Many studies have been conducted using the UAS technology evaluating chlorophyll and 

N content in cereals (Li et al., 2015; Zheng et al., 2016), weed mapping (Stropiana et al., 2018), 

and disease damage (Yang et al., 2017). UAS mounted remote sensor have shown a similar, high 

correlation between yield and NDVI measurements taken at panicle initiation like the 

GreenSeeker has shown in the past (Swain et al., 2010). The GreenSeeker and UAS mounted 

remote sensors, used together or separately, provide producers with valuable information to 

determine different crop needs. GreenSeeker and UAS mounted sensors have the ability to lower 

N fertilizer inputs, create a balance between N demand and N supply, determine disease 

infestations, and increase the economic value of rice.  

 In-season determination of the health status of rice has been done with the GreenSeeker 

derived vegetative indices.  If a strong relationship exists between GreenSeeker and UAS 

mounted remote sensor derived data, then there is a possibility that the UAS remote sensor could 

also be a possible source in determining mid-season N needs of rice. However, variability of 
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collected NDVI data is still a concern due to the passive light sensor used on UAS’s. If the 

variability of the UAS remote sensor derived NDVI data can be accounted for, then the UAS 

remote sensor will provide more timely and faster NDVI data as compared with the handheld 

sensors.  The objective of this study was to evaluate the linear relationship between GreenSeeker 

and UAS remote sensor derived NDVI in rice.   

3.2. Materials and Methods  

3.2.1. Site Description, Planting Method, Treatment Structure, and Trial Establishment  

Table 3.1. presents the soil series, taxonomy, and taxonomic classification for each 

location in 2017 and 2018. Site one was established in 2017 and 2018 at the Rice Research 

Station in Crowley, LA on a Crowley silt loam (Fine, smectitic, thermic Typic Albaqualfs) soil. 

In 2017, ten rice cultivars were evaluated, while fifteen rice cultivars were evaluated in 2018.  

 The second site was located in St. Landry Parish in Palmetto, LA in 2017 and 2018 on a 

Dundee silty clay loam (Fine-silty, mixed, active, thermic Typic Endoaqualfs). The data were 

collected from ten rice cultivars in 2017 and eleven rice cultivars in 2018.  

 The third site was located in Calcasieu Parish in Iowa, LA on a Crowley-vidrine complex 

(Fine, smectitic, thermic Typic Albaqualfs and Aquic Glossudalfs) in 2018. There were twelve 

rice cultivars evaluated at this site.  

 The fourth site was located in Saint Joseph, LA in Tensas Parish in 2018 on a on a 

Commerce silt loam (Fine-silty, mixed, superactive, nonacid, thermic Fluvaquentic 

Endoaquepts) and sharkey clay (Very-fine, smectitic, thermic Chromic Epiaquerts). There were 

seven rice cultivars evaluated at this site.  
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 The fifth site was located in Richland Parish near Monroe, LA in 2018 on a Herbert silty 

clay (Fine-silty, mixed, active, thermic Aeric Epiaqualfs) There were seven rice cultivars 

evaluated at this site. 
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Table 3.1. The soil series, taxonomy, and taxonomic classification for each individual location-year. 

 

Location GPS Location Year Series  Taxonomy  Taxonomic Classification  

      

Crowley, LA 30°14’50.8”N 

92°20’56.8”W 

2017-2018 Crowley Silt loam  Fine, smectitic, thermic Typic Albaqualf 

  
      

Palmetto, LA 30°47’41.9”N 

91°53’29.9”W 

2017-2018 Dundee Silty clay loam Fine-silty, mixed, active, thermic, Typic 

Endoalqualf 

  
Iowa, LA 30°13’08,9”N 

93°03’52.7”W 

2018 Crowley Vidrine-complex Fine, smectitic, thermic Typic Albaqualf  

& Aquic Glossudalf 

  
Monroe, LA 32°23’23.8”N 

91°58’47.2”W 

2018 Herbert Silty clay Fine-silty, mixed, active, thermic, Aeric 

Eqiaqualf  

  
Saint Joseph, LA 31°56’41.3”N 

91°13’54.0”W 

2018 Commerce Silt loam  Fine-silty, mixed, superactive, nonacid, 

thermic Fluvaquentic Endoaquepts 
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Important agronomic dates including planting date, pre-flood N application timing, flood 

establishment, and sensor reading dates for each location-year are presented in Table 3.2. The 

seed treatment for the rice varieties consisted of mancozeb (Dithane - fungicide), gibberellic acid 

(Release), zinc plus (10% Zn & 4.9% combined S), anthraquinone (AV-1011 - bird repellent), 

and chlorantraniliprole (Dermacor – insecticide). The hybrid seed was treated with clothianidin 

(Nipsit Inside), fludioxonil (Spirato 480FS), fludioxonil (Maxim 4FS), gibberellic acid, zinc, and 

anthraquinone (AV-1011 - bird repellent). A small-plot grain drill (Almaco, Iowa) was used to 

plant the rice seeds to a depth of 1.27 cm at a seeding rate of 366 seeds per m2  for varieties and 

111 seeds per m2 for the hybrid rice varieties. Each plot was a length of 4.88 m consisting of 7 

rows with 20 cm spacing. Eight pre-flood N rate treatments were used for the conventional rice 

varieties (0, 34, 67, 101, 135, 168, 202, and 235 kg ha-1). Six pre-flood N rate treatments were 

used for the hybrid rice varieties (0, 67, 101, 135, 168, and 202 kg ha). The pre-flood N rate 

treatments were broadcast applied at the 4- to 5- leaf rice growth stage. A flood was established 

one to three days after the pre-flood N fertilizer application to incorporate the N fertilizer into the 

soil and root zone. A small plot combine equipped with a HarvestMaster H2 high capacity 

graingage (Logan, Utah) was used to determine the weight and moisture of the harvested rice 

plots. 

Table 3.2. Important agronomic dates including planting date, pre-flood N application timing, 

flood establishment, and sensor reading dates for each location-year. 

  

Location Year 
Planting 

Date 

Pre-Flood 

N 

Application 

Flood 

Establishment 

Sensor 

Readings 

Growth Stage at 

Sensor Readings 

 

Crowley, LA 

 

2017 

 

13-Mar 

 

2-May 

 

3-May 

 

26-May 

 

PD 

       

Palmetto, LA 2017 21-Mar 11-May 12-May 8-Jun PD 

(Table 3.2 Cont’d.)      
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Location Year 
Planting 

Date 

Pre-Flood 

N 

Application 

Flood 

Establishment 

Sensor 

Readings 

Growth Stage at 

Sensor Readings 

       

Crowley, LA 2018 14-Mar 1-May 3-May 28-May PD 

 

Palmetto, LA 

 

2018 

 

27-Mar 

 

17-May 

 

18-May 

 

7-Jun 

 

PD   
     

Iowa, LA 2018 20-Mar 2-May 3-May 25-May PI 

       

Monroe, LA 2018 1-May 23-May 25-May 20-Jun PD 

       

Saint Joseph, LA 2018 3-May 22-May 23-May 19-Jun PI 

 

3.2.2. Remote Sensing Data Collection  

Sensor data was collected between the panicle initiation and panicle differentiation 

growth stages of rice. A GreenSeeker handheld optical active sensor was used to collect data 

from each variety-site-year trial. The Red (670 ± 10nm) and NIR (780 ± 10nm) wavelength 

regions of the electromagnetic spectrum were collected by the active light sensor of the 

GreenSeeker. The red and NIR measurements collected by the GreenSeeker were used to 

compute the NDVI algorithm (equation 3.1) and measure the canopy reflectance of the rice 

canopy for each variety-site-year trial. Canopy reflectance data was collected manually by 

consistently holding the GreenSeeker sensor head in a nadir position at about 1 m above the rice 

canopy. The GreenSeeker was walked at a constant pace through each of the rice plots when 

collecting NDVI readings from each variety-site-year trial for this study.  

 The UAS used to collect sensor data for this study was a Phantom 4 Pro unmanned aerial 

vehicle (UAV) mounted with a RedEdge-M multispectral camera by MicaSense. Multispectral 

images were collected with five narrowband electromagnetic wavelength regions: blue (475 nm 

center, 20 nm bandwidth), green (560 nm center, 20 nm bandwidth), red (668 nm center, 10 nm 
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bandwidth), red-edge (717 nm center, 10 nm bandwidth), and near-infrared (840 nm center, 40 

nm bandwidth). NDVI was calculated by using the red (668 nm center, 20 nm bandwidth) and 

near-infrared (840 nm center, 40 nm bandwidth) wavelengths of the RedEdge-M multispectral 

camera as shown in equation 3.1.  The UAS was flown autonomously at an altitude of 30 m and 

collected multispectral images at a rate of 10 m/s with a 75% side and frontal overlap.  

Flight operations of the UAS were controlled through the DJI GO 4 application software. 

DJI GO 4 connects the Phantom 4 Pro to the UAS remote controller used to fly the UAS 

manually or autonomously. Main controller settings, visual navigation settings, remote controller 

settings, image transition settings, aircraft battery information, and gimbal settings were all 

controlled through DJI GO 4 software.  

The RedEdge-M multispectral camera by MicaSense multispectral camera operations and 

flight route were controlled through the MicaSense Atlas application software. The MicaSense 

Atlas software was used for collecting and process the data and generate a reflectance map. The 

flight route can be uploaded into MicaSense Atlas in 2 ways: 1) manually drawn by the UAS 

remote pilot, which consists of a series of waypoints (x,y,z coordinates) or 2) UAS remote pilot 

can pre-choose the field or area of interest for the flight in the persons personal Atlas account 

and upload the field from the Atlas account to use as the flight boundaries. The speed, altitude, 

and overlap percentage is set to the desired settings for the collection of multispectral images 

after the flight route is established. For this particular study, the speed was set to 10 m/s, the 

altitude was set to 30 m, and the overlap percentage was set to 75%. The application software 

will automatically calculate the flight time and the number of images the multispectral camera 

will take during in the flight is dependent on the flight size and area.  
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The calibration of the RedEdge-M multispectral camera by MicaSense is done to help 

stabilize and decrease the chances of variability from the collected multispectral images. The 

calibration of the RedEdge-M was calibrated using a reflectance panel and the MicaSense Atlas 

software.  The calibration reflectance panel was placed flat on the ground, away from any objects 

that could affect the light or present shadows over the panel. The UAS remote sensor was held 

over the reflectance panel with the person holding the UAS remote sensor back towards the sun. 

The RedEdge-M multispectral camera was held directly over the reflectance panel at chest level, 

avoiding any chance of shadows, and pointed so that the panel was centered in the field of view. 

The picture of the calibrated reflectance panel was saved on the memory card with the other 

multispectral images that were collected and was used to normalize the data in PIX4D.   

A pre-flight checklist and mission summary were presented before the flight was set to 

launch. The mission summary provided the UAS remote pilot with the following information: 

camera updates, capture mode, internal storage availability, flight mode, picture distance, flight 

size coverage, and flight time. Once the MicaSense Atlas application software ensured all these 

settings were completed successfully, the UAS was then ready to be launched to conduct the 

assigned missions for each variety-site-year trial.  

3.2.3. Multispectral Image Stitching and Data Manipulation/Collection  

 The multispectral images collected from the Phantom 4 Pro mounted with the RedEdge-

M multispectral camera by MicaSense were stitched together and manipulated through the 

PIX4D software after the flight was conducted and finished. A new project was created for each 

site-year set of multispectral images in the PIX4D software. After a new project was selected in 

the software, PIX4D automatically goes through a series of steps to prepare the multispectral 

images for stitching. The multispectral images were then selected from the appropriate folder on 
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the computer desktop and added to the PIX4D software to begin the stitching process, PIX4D 

automatically set the image properties to the appropriate coordinate system (World Geodetic 

System 1984; Coordinate System: WDG 84 (egm96)), automatically set the geolation and 

orientation and accuracy, and the camera model was selected (Ag Multispectral). The output 

coordinate system selected was auto detected to WGS 84 / UTM zone 15N with the ‘meters unit’ 

selected. The processing options template selected was the ‘ag multispectral’ under the standard 

set of options. Then ‘finished’ was pressed and the next step before processing the images was 

the radiometric process and calibration to accurately develop a reflectance map.  

Before the multispectral image processing could occur, the radiometric processing and 

calibration settings had to be set. The radiometric processing and calibrations tabs were found on 

the left-hand side, bottom set of tab options under the ‘processing’ tab. The index calculator was 

then selected under the DSM, ortho-mosaic, and index tab. The appropriate images of the 

calibrated reflectance panel and numbers provided on the calibrated reflectance panel were added 

to each of the appropriate sections (blue, green, red, NIR, and red-edge). The resolution was set 

to automatic and the GeoTIFF and merge tiles were both checked for the reflectance map. For 

this particular study, NDVI, was the vegetative indices evaluated and selected. The export grid 

size for index values as point shapefiles and index values and rates as polygon shapefiles were 

changed to 5 cm/grid. The processing of stitching the multispectral images together could begin 

after those settings were applied. The processing of the multispectral images goes through 3 

steps: 1) initial processing, 2) point cloud and mesh, and 3) DSM, orth-mosaic, and index. 

 The NDVI reflectance map was then generated once PIX4D completed the multispectral 

images stitching process. After the processing of the multispectral images was completed, the 

‘Index Calculator’ tab on the left-hand side bar was selected to input the appropriate index 
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calculator equation. In the index calculator tab, there are three steps. The first is the reflectance 

map step, which shows the wavelength band measurements used to develop the reflectance map. 

The second step shows the regions of the map. For this study, the whole map was selected for the 

regions of the reflectance map. The third step was for developing the actual reflectance map by 

inputting the appropriate NDVI equation. The NDVI equation was the formula input for this 

study. The number of classes chosen were twenty, set at equal areas, with a minimum value of 0 

and a maximum value of 1. The reflectance map was then exported as index values and rates as 

polygon shapefiles (SHP) with grid size [cm/grid], colored index map (GeoTIFF), and GeoJPG 

(JPG).  

 Once the NDVI reflectance map was developed and exported from PIX4D, the NDVI 

values could then be collected from the NDVI reflectance map. The SHP file developed in 

PIX4D of the NDVI reflectance map was then imported into Farm Works Trimble Ag software. 

The Farm Works Trimble Ag Software allowed for the manual collection of the NDVI values 

from each reflectance map for each individual variety-site-year trial.  

3.2.4. Data Analysis 

 Statistical analyses were performed on all data collected for each variety-site-year using 

R-Studio 1.1.456 (RStudio, Inc., 2009-2018). Linear regression statistical analysis was 

conducted in RStudio to determine the relationship between GreenSeeker and UAS remote 

sensor derived NDVI measurements for each site-year. The coefficients of determination (R2) of 

the linear regression analysis were used to determine if a significant relationship was present 

between GreenSeeker and UAS derived NDVI measurements. A sensitivity analysis was also 

performed to remove outliers from each of the site-year data sets.  

 



57 

 

3.3. Results and Discussion  

 

3.3.1. Evaluation of the linear regression relationship between GreenSeeker and UAV 

derived normalized difference vegetation index (NDVI) 

 

Table 3.3 provides the slopes and coefficients of determination (R2) of the linear 

regression analysis obtained from the linear relationship between the GreenSeeker and UAS 

remote sensor derived NDVI measurements for each site-year trial. The estimated linear 

relationship between the GreenSeeker and UAS remote sensor derived NDVI were based on 

NDVI measurements collected at either the panicle initiation or panicle differentiation growth 

stage, depending on the location and time of remote sensing for the data collected at each 

location. The R2 values range were found to be between 0.57 to 0.89 for 2017 and 2018 at the 

five separate locations (Table 3.3). All linear regression analysis between the GreenSeeker and 

UAS remote sensor derived NDVI were found to be statistically significant (P<0.001). The linear 

relationships formed were inconsistent between each of the locations. The differences of these 

relationships between each location is potentially from the different climatic conditions during 

the growth and development of rice. Planting dates among the five locations for this study vary 

between early-March to early-May. The different planting dates can result in different growing 

conditions and, in return, can dramatically affect the growth and development of rice resulting in 

a change in the NDVI measurements between each location. Panicle differentiation was the 

growth stage for collecting NDVI measurements for five out of the seven locations NDVI 

measurements were collected with each of the remote sensing tools. Panicle initiation was the 

growth stage for collecting NDVI measurements for the other two locations. Lower linear 

relationships between GreenSeeker and UAS remote sensor derived NDVI were found at the two 

locations where sensor data was collected at panicle initiation.  
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Table 3.3. Linear regression relationship of GreenSeeker and UAS remote sensor derived NDVI 

in 2017 and 2018 at all 5 locations. 

 

    GreenSeeker vs. UAS derived NDVI Model 

Location Year R2 Linear Regression Equation 

    

Crowley, LA 2017 0.632*** Y = 0.7598x + 0.1995 

Palmetto, LA 2017 0.641*** Y = 0.3905x + 0.5955 

Crowley, LA 2018 0.899*** Y = 0.7988x + 0.1354 

Palmetto, LA 2018 0.792*** Y = 0.4249x + 0.5207  

Iowa, LA  2018 0.319*** Y = 0.283x + 0.593 

Monroe, LA  2018 0.682*** Y = 0.3196x + 0.590 

Saint Joseph, LA  2018 0.575*** Y = 0.354x + 0.5576 

*** P-value<0.001 

 

 Besides a difference in NDVI measurements between each of the locations, there were 

also differences found between the two different years of the data collection for this study. 

Figure 3.1 shows the relationship between GreenSeeker and UAS derived NDVI in 2017 at 

Crowley, LA. Figure 3.2 shows the relationship between GreenSeeker and UAS derived NDVI 

in 2018 at Crowley, LA. A stronger linear relationship at the Rice Research Station in Crowley, 

LA was produced in 2018, compared to the linear relationship produced in 2017. The linear 

relationship between GreenSeeker and UAS remote sensor derived NDVI at the Rice Research 

Station in 2017 estimated an R2 value of 0.63 and the R2 value rose to 0.89 in 2018. In 2017, the 

‘Diamond’ rice variety is distinctly separated from the other rice varieties. The ‘Diamond’ 

variety didn’t result in that separation in 2018 which could’ve caused the higher estimated 

relationship between the NDVI of the two remote sensors. 
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Figure 3.1. Relationship between GreenSeeker and Unmanned Aerial Vehicle (UAV) derived NDVI at the Rice Research Station in 

Crowley, LA in 2017. 

Y = 0.7958x + 0.1995 

R2 = 0.63, P<0.001 
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Figure 3.2. Relationship between GreenSeeker and Unmanned Aerial Vehicle (UAV) derived NDVI at the Rice Research Station in 

Crowley, LA in 2018. 

Y = 0.7988x + 0.1354 

R2 = 0.899, P<0.001 
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Figure 3.3 shows the relationship between GreenSeeker and UAS derived NDVI in 2017 

at the St. Landry Parish location. Figure 3.4 shows the relationship between the GreenSeeker and 

UAS derived NDVI in 2018 at St. Landry Parish. The R2 value in 2017 was 0.641, which is a 

relatively high R2 value. However, the linear relationship in 2018 at St. Landry Parish showed an 

increase in the linear relationship. The linear relationship at St. Landry Parish increased to an R2 

value of 0.79 in 2018 (Figure 3.4). Variation occurs between the different years of crop 

production systems due to the environmental changes, soil nutrient variations, and different rice 

varieties grown from year to year. Figure 3.3 and Figure 3.4 show the GreenSeeker remote 

sensor tool resulting in greater separation of NDVI values on the NDVI scale. The UAS remote 

sensor derived NDVI values show greater saturation on the higher end of the NDVI scale. This 

could mean the GreenSeeker derived NDVI could be a greater and more accurate predictor of 

NDVI than the UAS remote sensor derived NDVI. Rasmussen et al. (2015) argues that the most 

challenging aspect of UAS multispectral image data collection is the multispectral image 

analysis and interpretation. The advancement of technology for the UAS remote sensors is 

steadily increasing as is the software used for the analysis and interpretation of the multispectral 

images. Therefore, with more practice and experience with using the UAS and the UAS software 

applications will help analyze more accurate, closely related NDVI measurements when 

compared to the GreenSeeker derived NDVI.  
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Figure 3.3. Relationship between GreenSeeker and Unmanned Aerial Vehicle (UAV) derived NDVI at St. Landry Parish in Palmetto, 

LA in 2017. 

Y = 0.3905x + 0.5955 

R2 = 0.641, P<0.001 
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Figure 3.4. Relationship between GreenSeeker and Unmanned Aerial Vehicle (UAV) derived NDVI at St. Landry Parish in Palmetto, 

LA in 2018. 

Y = 0.4249x + 0.5207 

R2 = 0.792, P<0.001 
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The relationship between GreenSeeker and UAS derived NDVI in 2018 at Tensas Parish 

in Saint Joseph, LA is shown in Figure 3.5. The relationship between GreenSeeker and UAS 

derived NDVI in 2018 at Richland Parish near Monroe, LA is shown in Figure 3.6. A similar 

linear relationship and R2 value was found between the GreenSeeker and UAS derived NDVI 

measurements at Tensas Parish in Saint Joseph, LA and Richland Parish near Monroe, LA. The 

R2 value at Tensas Parish in Saint Joseph, LA was 0.575 and the R2 value at Richland Parish near 

Monroe, LA was 0.682. The two linear relationships between GreenSeeker derived NDVI and 

UAS remote sensor derived NDVI at the two locations were both relatively high relationships. 

The two locations are both located near each other in the Northern region of Louisiana and the 

NDVI measurements for the two locations were taken within one day of each other. The closely 

related climatic conditions and growth stages of the rice plots at the time of sensing for these two 

locations could be why similar NDVI measurements were produced from these two locations 

with each of the remote sensing tools. These two locations also show higher saturation of NDVI 

measurements on the higher end of the NDVI scale with most of the NDVI measurements sitting 

around the 0.6 value. A potential reasoning for this could be for the UAS remote sensor 

collecting data at higher spatial resolutions having a harder time differentiating between the 

NDVI values of the rice crop and other features present in the rice field during the time of remote 

sensing. The higher saturation of the UAS remote sensor could also be from the passive light 

sensor equipped onto the UAS which can easily be affected by climatic conditions at the time of 

remote sensing.  
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Figure 3.5. Relationship between GreenSeeker and Unmanned Aerial Vehicle (UAV) derived NDVI at Saint Joseph, LA in Tensas 

Parish in 2018. 

Y = 0.354x + 0.5576 

R2 = 0.575, P<0.001 
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Figure 3.6. Relationship between GreenSeeker and Unmanned Aerial Vehicle (UAV) derived NDVI in Richland Parish near Monroe, 

LA in 2018.

Y = 0.3196x + 0.590 

R2 = 0.682, P<0.001 
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The lowest linear relationship between GreenSeeker and UAS derived NDVI was 

produced at Calcasieu Parish in Iowa, LA in 2018 shown in Figure 3.7. Approximately only 32% 

of the variation in GreenSeeker derived NDVI could be explained by UAS derived NDVI. 

Calcasieu Parish was situated on a Crowley-Vidrine complex soil type. Bacterial panicle blight 

and rice sheath blight were recorded at high levels in almost all rice plots for this location. A 

successful rice production system is strongly restricted if rice diseases, such as rice sheath blight, 

are present in the field during rice growth and development. Most of the NDVI measurements 

collected with the GreenSeeker and UAS remote sensor are situated between 0.6 to 0.8 meaning 

the crop at mid-season was relatively healthy. However, sheath blight begins in the lower crop 

canopy and may not be detectable using remote sensors until after the infection reaches the top of 

the canopy. Unmanned aerial systems have been shown to be able to detect diseases such as 

sheath blight. Zhang et al. (2017) found a strong correlation between UAS-extracted NDVIs and 

disease severity with an accuracy of disease detection 63% of the time. However, any change in 

growing conditions post-sensing could lead to vegetative indices, such as NDVI, inaccurately 

determine the growth and development of rice (Forestieri, 2017).  The UAS remote sensor NDVI 

values were heavily saturated between 0.7 and 0.9 NDVI values. The GreenSeeker showed more 

separation of NDVI values between 0.3 and 0.8. This indicates the GreenSeeker could be a better 

predictor in collecting more accurate and representative NDVI values of the rice plots.  
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Figure 3.7. Relationship between GreenSeeker and Unmanned Aerial Vehicle (UAV) derived NDVI in Calcasieu Parish in Iowa, LA 

in 2018.

Y = 0.283x + 0.593 

R2 = 0.319, P<0.001 
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The linear relationships between the GreenSeeker and UAS remote sensor derived NDVI 

values at each of the five locations in either year were not on a 1:1 basis. The reasoning for the 

data not sitting on a 1:1 basis could have been caused from residuals and outliers present in the 

dataset. Table 3.4. shows the R2 values for each site-year trial consisting of outliers and the R2 

values for each site-year trial with the outliers removed. A sensitivity analysis was performed to 

remove a certain percentage of outliers. In this case, 5% of the outliers were removed for each 

site-year trial. The data that is sitting more closely on a 1:1 basis with the linear regression line 

formed is the data that is kept when removing the outliers from the data set that are not as close 

to the linear regression line. There was an increase in the R2 value for each site-year trial when 

5% of the outliers were removed from each of the data sets. The relationship between 

GreenSeeker and UAS remote sensor derived NDVI at Crowley, LA in 2017 had a distinct set of 

outliers that weren’t sitting on a 1:1 basis with the rest of the NDVI measurements (Figure 3.1). 

The relationship in 2017 with outliers had an R2 value of 0.632, but when those outliers were 

removed the R2 value increased to 0.718. The outliers in each of the data sets could’ve came 

from any of the factors that can cause skewed data when using remote sensing tools; human 

error, cloud cover at the time of sensing with the UAS remote sensor, or different growth stages 

of the rice varieties at the time of sensing.  

Table 3.4. The R2 values of the linear relationship between GreenSeeker and UAS derived 

NDVI with outliers and without outliers for each site-year trial.  

    Outliers  No Outliers  

Variety Year R2 

Linear Regression 

Equation R2 

Linear Regression 

Equation  

Crowley, LA 2017 0.632 Y = 0.7598x + 0.1995 0.718 Y = 0.828x + 0.026 

Palmetto, LA 2017 0.641 Y = 0.3905x + 0.5955 0.861  Y = 1.85x - 0.896 

(Table 3.4 Cont’d.)     
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Figure 4.7. Linear regression analysis between A) GreenSeeker derived normalized difference vegetation index (NDVI) and rice grain 

yield (kg ha-1) at Saint Joseph, LA in 2018 and B) Unmanned aerial system (UAS) derived NDVI and rice grain yield (kg ha-1) at 

Saint Joseph, LA in 2018. 

Y = 8538.2x + 3349.9 

R2 = 0.28, P<0.001 
Y = 18318.7x - 5571 

R2 = 0.28, P<0.001 

A) 
B) 
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The relationships of GreenSeeker and UAS remote sensor derived NDVI to rice grain 

yield both changed between each year and site the data was collected from. A change in both 

NDVI values and rice grain yield can occur between years because of the effect from different 

environmental conditions on the growth and development of rice. The drastic change in 

environmental conditions or inadequate environmental conditions for sensing can cause the 

ability of rice grain yield to be estimated from NDVI values to decrease. Rice grain yield is 

highly affected by temporal variation and possesses a major challenge in estimating mid-season 

N recommendations when crop yield is used because of the variation of conditions between each 

crop year (Krienke et al., 2017). 

The strongest relationship developed between GreenSeeker and UAS remote sensor 

derived NDVI to rice grain yield was at the Rice Research Station in Crowley, LA. Even though 

the relationships are closely related, the NDVI values weren’t found to be based on the same 1:1 

basis in neither 2017 nor 2018. These results showed that the NDVI values of each of the two 

remote sensing tools compared to rice grain yield were not found to be exactly alike. An 

explanation for this could be the different wavelength band measurements of the red and near-

infrared regions used by each of the remote sensing tools to collect the NDVI measurements. The 

UAS remote sensor also captures multispectral images at a higher spatial resolution compared to 

the GreenSeeker. We can conclude from this the UAS remote sensor could have a hard time 

depicting certain characteristics of the rice due to the high spatial resolutions. Geometric 

deformations can be caused by multispectral images collected with the UAS remote sensor from 

the lack of accurate geographical data (LeLong et al., 2008).  
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4.4. Conclusions 

 The data accumulated for this study in 2017 and 2018 showed how the UAS has potential 

to be another successful tool in collecting NDVI measurements. However, the UAS derived 

NDVI measurements are not exactly the same as the GreenSeeker derived NDVI measurements. 

The linear relationships between GreenSeeker derived NDVI to rice grain yield and UAS derived 

NDVI to rice grain yield changed between each of the locations and years. The linear 

relationship between GreenSeeker derived NDVI to rice grain yield was reduced from 2017 to 

2018, while the linear relationship between UAS derived NDVI to rice grain yield was increased 

from 2017 to 2018. The different relationships formed between the two remote sensors and rice 

grain yield could lead to skewed data and different mid-season N rates calculated. The variability 

between the two remote sensors could be from the GreenSeeker obtaining an active light sensor 

and the UAS obtaining a passive light sensor. The passive light sensor mounted onto the UAS 

can easily be affected by conditions that cause change in the sunlight and climatic conditions. 

The high spatial resolution of the UAS data collection can also cause different NDVI 

measurements compared to the low spatial resolution of the GreenSeeker derived NDVI. This 

could potentially be a reason for the different relationships found between GreenSeeker and UAS 

derived NDVI to rice grain yield. The high spatial resolution could also account for some of the 

reasoning of the high saturation from the UAS derived NDVI data points. The UAS derived 

NDVI values were all highly saturated between 0.7 and 0.9 at most of the locations. 

 The LSU AgCenter has already successfully developed an algorithm used to calculate 

mid-season N fertilization requirements using the handheld GreenSeeker active remote sensor. 

The LSU AgCenter mid-season N rate calculator must obtain three numeric features in the 

algorithm to calculate the mid-season N requirement: 1) yield potential, 2) response index, and 3) 
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rice response to N fertilization. The GreenSeeker and UAS would currently present different 

numbers for each of these factors based on our data and the GreenSeeker and UAS derived 

NDVI forming different relationships with rice grain yield. This study demonstrates how the 

UAS derived NDVI and GreenSeeker derived NDVI are inconsistent of each other. Therefore, 

more research needs to be done for the UAS derived NDVI to be successfully used in the LSU 

AgCenter mid-season N rate calculator. This study showed how an algorithm to calculate mid-

season N requirements based solely using data collected with the UAS remote sensor should be 

developed for the UAS remote sensor to be successfully used by people in the rice industry. In 

addition, additional research with other vegetative indices might be helpful and prove to be better 

predictors of rice grain yield.  
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Chapter 5. Conclusions  

Nitrogen (N) fertilization is a key component in producing maximum rice grain yields 

because rice grain yield is directly affected by N fertilizer applications. An effective management 

strategy used to determine N fertilization requirements is essential in optimizing rice 

productivity. The potential of under-and-over N fertilizer applications can occur if the 

appropriate N fertilization rates aren’t applied to the rice. Developing a profitable N fertilizer 

recommendation rate is important to rice producers. The first goal of this research was to 

determine the economical optimum N rate (EONR) of fertilization based on 3 response models: 

1) linear-plateau, 2) quadratic-plateau, and 3) quadratic. The EONR of fertilization will be 

affected by any changes in input (N fertilizer) or output (rice grain yield) prices. 

The EONR of fertilization was estimated by fitting the linear-plateau, quadratic-plateau, 

and quadratic response models to the response of rice grain yields to N fertilizer applications. 

The data resulted in high R2 values for the linear-plateau, quadratic-plateau, and quadratic 

response models (0.77, 0.79, and 0.78). This is an indication that each of the response models fits 

the data equally well and should be able to predict useful EONR of fertilization for the individual 

variety-site-years. However, determining which of the three response models to use in predicting 

the EONR of fertilization should not be based solely of the R2 data. The linear-plateau, 

quadratic-plateau, and quadratic models could each estimate different EONR of fertilization 

despite the relatively similar R2 values. Therefore, other factors should be taken into 

consideration when choosing which of the three response models best fits the data set and should 

be used to estimate the EONR of fertilization for an individual variety. The profitability and 

economical return of rice could be increased by selecting the response model with the most 

appropriate EONR of fertilization.   
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The second goal of this study was to compare GreenSeeker and unmanned aerial system 

(UAS) remote sensor derived normalized difference vegetative index (NDVI). NDVI collected 

with remote sensors can be used to estimate mid-season N fertilization rate recommendations. 

The GreenSeeker has been the predominant remote sensor in collecting NDVI measurements of 

crops. Unmanned aerial system (UAS) remote sensors have shown the possibility of having the 

ability to collect NDVI measurements like the GreenSeeker. The data from this study in 2017 

and 2018 predicted GreenSeeker and UAS remote sensor derived NDVI to have a strong linear 

relationship. However, the relationships estimated between the GreenSeeker and UAS remote 

sensor derived NDVI at each of the five locations and years were inconsistent of each other. The 

relationship difference between locations could be a result from the different soil properties at 

each location, different rice growth stages at the time of NDVI readings, and different climatic 

conditions on the day of remote sensing. Soil fertility differences will cause rice varieties to 

develop at different rates which, in turn, could skew the NDVI values produced and create 

different GreenSeeker and UAS remote sensor derived NDVI relationships.  Time of remote 

sensing is an important consideration in collecting NDVI measurements. In addition, the UAS 

remote sensor is a passive sensor that relies on sunlight as its light source. A passive light sensor 

can create variability in NDVI measurements from the angle and intensity of the sunlight, 

bidirectional reflectance, and cloud cover at the time of readings. UAS remote sensor derived 

NDVI values were heavily saturated between the 0.65 and 0.9 NDVI values at each site-year 

compared to the GreenSeeker derived NDVI measurements. The high altitude and high spatial 

resolution of the UAS remote sensor may account for some of the increased saturation of the 

UAS remote sensor derived NDVI. Other vegetative indices could potentially reduce the heavy 

saturation from the UAS derived NDVI and should be evaluated.  
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The third goal of this research was to evaluate the linear relationship between 

GreenSeeker derived NDVI and UAS derived NDVI to rice grain yield for each location-year. 

GreenSeeker derived NDVI had a different linear relationship to rice grain yield at each location 

compared to the UAS derived NDVI. UAS derived NDVI showed an increased relationship (R2 

= 0.52) in 2018 compared to the relationship in 2017 (R2 = 0.32). The GreenSeeker derived 

NDVI showed a decreased relationship (R2 = 0.44) in 2018 compared to the relationship in 2017 

(R2 = 0.54). Calcasieu Parish and St. Landry Parish produced the lowest linear relationships 

between GreenSeeker and UAS derived NDVI to rice grain yield. Sheath blight occurred in the 

field at both Calcasieu and St. Landry Parish which, in turn, may have potentially been a 

reasoning for the poor linear relationships at these two locations. The linear relationship between 

GreenSeeker derived NDVI and rice grain yield (R2 = 0.35) was higher compared to the UAS 

derived NDVI relationship to rice grain yield (R2 = 0.24) at Richland Parish. Time of remote 

sensing was done at panicle differentiation. UAS remote sensors are flown at a higher spatial 

resolution compared to GreenSeekers, which may have caused the UAS to potentially have 

harder time differentiating NDVI values when the rice is at latter growth stages. The linear 

relationship between GreenSeeker derived NDVI to rice grain yield (R2 = 0.27) was the same 

linear relationship between UAS derived NDVI to rice grain yield (R2 = 0.27) at Saint Joseph, 

LA in 2018. However, the UAS remote sensor derived NDVI values were heavily saturated 

between 0.7 and 0.9 compared to the wider spread of GreenSeeker derived NDVI measurements. 

UAS remote sensors are flown at high altitudes with high spatial resolution which could 

potentially cause the heavy saturation.    

Overall, the linear relationships between GreenSeeker derived NDVI to rice grain yield 

were not the same as the linear relationship between UAS derived NDVI to rice grain yield at six 
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of the seven locations. GreenSeeker and UAS remote sensors in the data from this study collect 

different NDVI measurements. Different NDVI measurements can cause the two remote sensors 

to predict different mid-season N requirements in an on-site sensor-based N rate calculator. 

Additional research using different vegetative indices collected from the two remote sensors 

should be evaluated to determine if other vegetative indices prove to have a stronger relationship 

with rice grain yield to predict accurate mid-season N rates. The algorithm already successfully 

used with the GreenSeeker derived NDVI could result in different mid-season N rate 

requirements from the UAS derived NDVI because of the different relationships shown with this 

data between the two remote sensors. Therefore, an algorithm should be developed for UAS 

remote sensor derived NDVI to have the ability to predict reliable mid-season N requirements.  
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