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The mathematician’s patterns, like the painter’s or the poet’s must be beautiful;
the ideas, like the colours or the words must fit together in a harmonious way.
– Godfrey Hardy
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Abstract

This dissertation studies quantum algebras at roots of unity in regards to cluster

structure and Poisson structure. Moreover, quantum cluster algebras at roots of

unity are rigorously defined. The discriminants of these algebras are described, in

terms of frozen cluster variables for quantum cluster algebras and Poisson primes

for specializations of quantum algebras. The discriminant is a useful invariant for

representation theoretic and algebraic study, whose laborious computation deters

direct evaluation. The discriminants of quantum Schubert cells at roots of unity

will be computed from the two distinct approaches. These methods can be applied

to many other quantum algebras.

v



Chapter 1
Introduction

This work studies quantum algebras at roots of unity from two perspectives,

the cluster structure of quantum cluster algebras at roots of unity and the Poisson

structure of quantum algebras specialized from an indeterminate to a root of unity.

There is overlap and interplay between these points of view, but each is distinct

and interesting in itself. We consider the discriminants of these algebras and give

methods to determine them. Discriminants have seen much use recently as a tool in

studying noncommutative algebras. For example they have been used to determine

automorphism groups [7, 8], to resolve the Zariski cancellation problem for certain

algebras [1], and to classify Azumaya loci [6].

For many quantum algebras that are specialized to a “good” root of unity, there

is a canonical central subalgebra over which the quantum algebra is a free module.

The discriminant of these quantum algebras at roots of unity is closely related to

the canonical Poisson structure that the discriminant inherits. In particular the

discriminant is a Poisson normal element. In the case that the quantum algebra

is a UFD or a Poisson UFD, we can give a description of the composition of the

discriminant.

Theorem Let R be a K[q±1]-algebra for a field K of characteristic 0 and ε ∈ K×.

Assume that Rε := R/(q − ε)R is a free module of finite rank over a Poisson

subalgebra Cε of its center, and that Cε is a unique factorization domain as a

commutative algebra or a noetherian Poisson unique factorization domain. Then,

d(Rε/Cε) = 0 or

d(Rε/Cε) =C×ε

m∏
i=1

pi

for some (not necessarily distinct) Poisson prime elements p1, . . . , pm ∈ Cε.
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Quantum cluster algebras at roots of unity will be given a rigorous definition

in chapter 4. Properties fundamental to cluster theory are proven, such as the

(quantum) Laurent phenomenon. Moreover, it is shown that classical, commutative

cluster algebras embed into these quantum cluster algebras when one avoids certain

roots of unity.

Theorem Suppose the quantum seed (Mε, B̃,Λ) and the primitive `th root of unity

ε satisfy a certain condition C. Then the Z-subalgebra

Z〈M ′
ε(ei)

`,M ′
ε(ej)

−` | (M ′
ε,Λ

′, B̃′) ∼ (Mε,Λ, B̃), i ∈ [1, N ], j ∈ inv 〉

of Aε(Mε,Λ, B̃, inv) is isomorphic to A(B̃, inv).

Initial steps to study the representation theory of these algebras are taken by

describing their discriminant. The discriminant is actually given for a large class of

subalgebras of the quantum cluster algebra. In particular, it is expressed in terms

of noninverted frozen cluster variables.

Theorem Suppose the quantum seed (Mε, B̃,Λ) of rank N and the primitive `th

root of unity ε satisfy a certain condition C. Suppose that the collection of seeds Θ

is a nerve and that Aε(Θ) is free and finite rank over Cε(Θ). Then the discriminant

of Aε(Θ) over Cε(Θ) is given as a product of noninverted frozen variables raised

to the `th power,

d (Aε(Θ)/Cε(Θ)) =Cε(Θ)× `
(N`N )

∏
i∈[1,N ]\extinv

(
Mε(ei)

`
)ai

for some integers ai.

The Quantum Schubert cell algebra U−[w] was introduced by Lusztig and De

Concini, Kac, and Procesi for a simple Lie group g and Weyl group element w ∈ W .

This algebra is a subalgebra of the quantized universal enveloping algebra Uq(g)

and is, itself, a deformation of U(n− ∩ w(n+)) for the nilradicals n± of a pair

of opposite Borel algebras of g. After specialization to an `th root of unity ε, a
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canonical central subalgebra generated by the `th powers of Lusztig’s root vectors

appears that is isomorphic to the coordinate ring of the Schubert cell B+ · wB+.

The quantum Schubert cells are anti-isomorphic to the quantum unipotent cells

defined by Geiß, Leclerc, and Schröer [24]. Recently, Goodearl and Yakimov have

given an explicit (integral) quantum cluster algebra structure on these quantum

unipotent cells [27].

In this dissertation, the two distinct methods that have been introduced will be

illustrated by determining the discriminant of U−ε [w] over C−ε [w] ' K[B+w · B+].

For the method using the Poisson structure of C−ε [w], we will rely De Concini, Kac,

and Procesi’s work on specializations of U−[w] and quantum groups and will also

rely on results for Poisson-Lie groups and Poisson homogeneous spaces. Because

of this, we will require that g be a simple Lie algebra. For the method using

the Cluster structure, the explicit quantum cluster algebra structure on quantum

unipotent cells will be translated to a cluster structure on U−[w]. From there, we

will describe U−ε [w] as a quantum cluster algebra at root of unity. The following

theorem for quantum Schubert cells will be proven for the finite dimensional case

from a Poisson geometric viewpoint and in the general case by the cluster approach.

Theorem Let g be a symmetrizable Kac–Moody algebra, w a Weyl group element

and ` > 2 an odd integer which is coprime to dik for each k. Assume that K is a

field of characteristic 0 which contains a primitive `th root of unity ε. Then

d(U−ε [w]/C−ε [w]) =K× ∆L
ρ,wρ =K×

∏
i∈S(w)

∆L
$i,w$i

=K×
∏
k 6∈ex

D`L
$ik ,w$ik

where L := `N−1(`− 1), ∆$i,w$i are certain generalized minors, and D$ik ,w$ik
are

certain quantum minors.

3



Chapter 2
Preliminaries on Poisson Geometry

Poisson algebraic and geometric structures have been studied since the nine-

teenth century by Poisson, Jacobi, and Lie. However, the modern study of these

structures began in 1980s with fundamental work by Weinstein [37] and others. For

an excellent survey on Poisson geometry and Poisson-Lie groups, see Weinstein’s

Poisson Geometry [38]. For an informative introduction to quantum groups from

the viewpoint of Poisson geometry, see the texts Lectures on Quantum Groups by

Etingof and Schiffmann [18] and also A Guide to Quantum Groups by Chari and

Pressley [10].

2.1 Poisson Algebras

Definition 2.1.1. A commutative, associative algebra A over K is a Poisson alge-

bra when it is equipped with a K-bilinear Lie bracket { , } : A⊗A→ A that satisfies

the Leibniz identity. More explicitly, the bracket satisfies for any e, f, g ∈ A,

{ef, g} = e{f, g}+ {e, g}f.

When it is clear in context which Poisson structure is being, we will denote their

Poisson algebra by A rather than (A, { , }). When there are two (or more) Poisson

algebras, A and B, it may be necessary to denote the respective Poisson brackets

by { , }A and { , }B. A map φ : A → B between Poisson algebras is Poisson if it

preserves the Poisson bracket:

φ({x, y}A) = {φ(x), φ(y)}B.

For any element f in a Poisson algebra A, the Leibniz identity gives us a deriva-

tion on the algebra defined by

Xf (g) = {f, g} for g ∈ A.
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The map Xf is called the Hamiltonian derivation of f on A.

We will consider some examples. First, we examine the algebra of polynomial

functions on the symplectic plane R2, A = K[x, p]. Let e, f, g ∈ A. Define the

bracket by

{f, g} =
∂f

∂x

∂g

∂p
− ∂f

∂p

∂g

∂x
.

It is clear that this bracket is bilinear over K and that it is alternating, {f, f} = 0

for all f ∈ A. That this bracket satisfies the Leibniz identity follows from the

product rule,

{ef, g} =
∂ef

∂x

∂g

∂p
− ∂ef

∂p

∂g

∂x

=

(
e
∂f

∂x
+
∂e

∂x
f

)
∂g

∂p
−
(
e
∂f

∂p
+
∂e

∂p
f

)
∂g

∂x

= e

(
∂f

∂x

∂g

∂p
− ∂f

∂p

∂g

∂x

)
+

(
∂e

∂x

∂g

∂p
− ∂e

∂p

∂g

∂x

)
f

= e{f, g}+ {e, g}f.

Using the Leibniz identity and bilinearity, we can verify the Jacobi identity,

{e, {f, g}}+ {f, {g, e}}+ {g, {e, f}} = 0.

Thus we have shown that the algebra equipped with the bracket is a Poisson

algebra.

This simple example of the algebra of polynomial functions on the symplectic

plane can be generalized to the algebra of smooth functions of a symplectic mani-

fold. This will form an important class of Poisson algebras. A symplectic manifold

M is a smooth manifold with a nondegenerate closed 2-form ω. A Poisson bracket

can be defined on C∞(M) using ω. For f, g ∈ C∞(M), we defined the bracket by

{f, g} = ω(Vf , Vg)

5



where Vf is the vector field determined by

df(U) = ω(U, Vf ) for all vector fields U.

In the case of M = R2n with coordinates (xi, pi) and ω =
∑

i dxi ∧ dpi,

{f, g} =
∑
i

(
∂f

∂xi

∂g

∂pi
− ∂f

∂pi

∂g

∂xi

)
.

Another important example of a Poisson algebra, for our purposes, will be the

center of a specialization of an algebra A over K[q±1]. Suppose ε ∈ K× and denote

the quotient algebra A/(q− ε)A by Aε. Let κε : A→ Aε be the canonical quotient

map. The center Z(Aε) carries a canonical Poisson structure. Define the bracket

for a, b ∈ Z(Aε) by

{a, b} = κε

(
xy − yx
q − ε

)
(2.1)

where κε(x) = a and κε(y) = b. Note that the right hand side is defined as long

as either a or b is central, as [x, y] ∈ (q − ε)A. To see the bracket is well defined,

consider x, x′ ∈ κ−1(a). We have that x = x′ + (q − ε)w for some w ∈ A and thus

κε

(
xy − yx
q − ε

)
− κε

(
x′y − yx′

q − ε

)
= κε(wy − yw) = 0,

remembering that b = κε(y) ∈ Z(Aε). To see that {a, b} ∈ Z(Aε), let c ∈ Aε and

κε(z) = c. We have that

[{a, b}, c] = κε

([
[x, y]

q − ε
, z

])
= κε

(
1

q − ε
[ [x, y], z]

)
= κε

(
− 1

q − ε
[ [y, z], x]− 1

q − ε
[ [z, x], y]

)
= −

[
κε

(
[y, z]

q − ε

)
, a

]
−
[
κε

(
[z, x]

q − ε

)
, b

]
= 0

6



since a, b ∈ Z(Aε). Thus { , } : Z(Aε) ⊗ Z(Aε) → Z(Aε) is a well defined map.

It is then a Poisson bracket, since the commutator bracket is a Lie bracket that

satisfies the Leibniz identity.

2.2 Poisson Manifolds and Poisson-Lie Groups

Definition 2.2.1. A Poisson manifold is a smooth manifold M that admits a

Poisson structure on its algebra of smooth functions C∞(M).

An alternative definition would be given in terms of a Poisson bivector Π ∈

Γ(M,Λ2TM), which is uniquely determined by

{f, g} = Π(df ∧ dg).

When Poisson structure is understood, we will just denote the Poisson manifold

by M instead of (M,Π).

A smooth map between Poisson manifolds is called Poisson when the induced

pullback map on algebras of smooth functions is a Poisson algebra map. Explicitly

for φ : M → N , this means for f, g ∈ C∞(N) that

{f ◦ φ, g ◦ φ}M = {f, g}N ◦ φ.

In terms of the Poisson bivector, φ : (M,Π) → (N, π) is Poisson if π is φ-related

to Π, i.e.

Txφ(Πx) = πφ(x) for all x ∈M

where Txφ is the tangent map expanded to multi-tangent vectors.

When we have two Poisson manifolds, (M,Π) and (N, π), the direct product

inherits a Poisson structure, (M×N,Π+π). Rephrased in terms of Poisson brackets,

{ , }M and { , }N , the Poisson bracket between f, g ∈ C∞(M × N) on any point

7



(x, y) ∈M ×N is given by

{f, g}M×N(x, y) = {f(·, y), g(·, y)}M(x) + {f(x, ·), g(x, ·)}N(y).

This Poisson structure on M × N is the unique one such that the projections

pr1 : M ×N →M and pr2 : M ×N → N are Poisson maps.

This notion of a Poisson manifold can be generalized to the notion of a Poisson

variety Y . If Y is an affine algebraic variety such that its coordinate ring, K[Y ], is

a Poisson algebra, then Y is a Poisson variety. When K = C and Y is smooth, the

two notions align by extending the Poisson bracket from C[Y ] to C∞(Y ).

Any symplectic manifold is a Poisson manifold. Moreover, any Poisson manifold

M can be decomposed into a disjoint union of immersed symplectic manifolds of

various dimension. These immersed manifolds will be called the symplectic leaves

of M .

A symplectic leaf in a Poisson manifold is a maximal submanifold such that the

Poisson structure restricts to a symplectic structure on the submanifold. Another

description is in terms of Hamiltonian paths. For a Poisson manifold M , a smooth

path γ : [0, 1] → M is called Hamiltonian if there is some f ∈ C∞(M) such that

γ′(t) = Xf for 0 < t < 1. The symplectic leaves of M are then equivalence classes

of points under the relation of being connected by Hamiltonian curves.

When a manifold has a group structure that is smooth, it is a Lie group. In the

case that a manifold is both a Poisson manifold and a Lie group, we would be

interested when the structures are compatible.

Definition 2.2.2. A Poisson-Lie Group is a Lie group G with a Poisson struc-

ture Π such that multiplication m : G × G → G is a map of Poisson manifolds.

Analogously for a Poisson algebraic group, an algebraic group is equipped with a

Poisson structure that is compatible with multiplication.

8



Explicitly, a Lie group G with a Poisson structure is a Poisson-Lie group if

{f, g}(xy) = {f ◦ ρy, g ◦ ρy}(x) + {f ◦ λx, g ◦ λx}(y)

for any f, g ∈ C∞(G) and x, y ∈ G, where λx, ρy : G → G are the smooth maps

given, respectfully, by left multiplication by x and right multiplication by y. Note

in particular that

{f, g}(e) = {f ◦ ρe, g ◦ ρe}(e) + {f ◦ λe, g ◦ λe}(e) = 2{f, g}(e),

and hence {f, g}(e) = 0 for any f, g ∈ C∞(G). Thus Π vanishes at e (i.e. Πe = 0)

for a Poisson-Lie group (G,Π).

The tangent space g = TeG at e for a Lie group G is a Lie algebra. So the

tangent space g = TeG for a Poisson-Lie group G is as well, but the Poisson

structure endows more structure on g making it into a Lie bialgebra.

For Lie groups, the correspondence between Lie groups and Lie algebras is a

crucial result. In particular, the category of simply connected Lie groups is equiva-

lent to the category of finite dimensional Lie algebras via the functor G→ Lie(G).

In the Poisson-Lie case, Drinfeld proved that the category of simply connected

Poisson-Lie groups is equivalent to the category of finite dimensional Lie bialge-

bras (via the functor G→ Lie(G) again).

The action of a Poisson-Lie group (G, π) on a Poisson manifold (M,Π) is Poisson

if the map

(G, π)× (M,Π)→ (M,Π)

is Poisson. The Poisson manifold (M,Π) is then a Poisson homogeneous space of

(G, π) if M is a homogeneous G-space. If Π vanishes at a point x in the Poisson

homogeneous G-space M , then (M,Π) is a Poisson quotient of (G, π) via the map

(G, π)→ (M,Π), g 7→ g · x. (2.2)

9



In the case that Π vanishes at x, we have the map (G, π)→ (G, π)× (M,Π) given

by g 7→ (g, x) is Poisson. Hence (2.2) is Poisson as it is the composition of this

Poisson map and the group action, and it is surjective since M is a homogeneous

G-space. Moreover, for (2.2) to be Poisson, it is necessary that Π vanishes at x,

since π vanishes at e for a Poisson-Lie group (G, π).

2.3 Poisson Prime and Normal Elements

The concept of Poisson primes will be central to our work on discriminants. Let

(A, {·, ·}) be a Poisson algebra over a base field K of characteristic 0.

Definition 2.3.1. An element a ∈ A is called Poisson normal if for every x ∈ A,

{a, x} = ay for some y ∈ A.

In other words, a is Poisson if the principal ideal (a) is a Poisson ideal,

{(a), x} ⊆ (a) for all x ∈ A.

When A is an integral domain as a commutative algebra, then a is Poisson normal

if and only if there is some Poisson derivation ∂ such that

{a, x} = a∂(x) for all x ∈ A.

Definition 2.3.2. Assume that A is an integral domain as an algebra. An element

p ∈ A is called Poisson prime if it is a prime element of the algebra which is Poisson

normal.

Equivalently, an element p is Poisson prime if and only if the ideal (p) is nonzero,

prime and Poisson. There is also a geometrical interpretation of Poisson prime,

which will be very useful.

10



Lemma 2.3.3. Assume that the base field is C and SpecA is smooth. View the

elements of A as regular functions on the Poisson variety SpecA. A prime element

p ∈ A is Poisson prime if and only if its zero locus V(p) is a union of symplectic

leaves of SpecA.

Proof. If V(p) is a union of symplectic leaves of SpecA, then for all g ∈ A, {p, g}

vanishes on the smooth locus of V(p). Thus {p, g} vanishes on V(p) and belongs

to (p). In the opposite direction, assume that (p) is Poisson. If L is a symplectic

leaf of SpecA such that L ∩ V(p) 6= ∅ and L 6⊆ V(p), then for every smooth point

m ∈ L ∩ V(p) ( L there will exist g ∈ A such that {p, g}(m) 6= 0. This would

contradict the assumption that (p) is a Poisson ideal.

The Poisson algebra A is called noetherian if it is noetherian when considered as

a commutative algebra. A noetherian Poisson algebra A is called a Poisson unique

factorization domain if it is an integral domain as an algebra and every non-zero

Poisson prime ideal of A contains a Poisson prime element.

Lemma 2.3.4. Assume that A is a Poisson algebra over a field of characteristic

0 which is a unique factorization domain as a commutative algebra. If a ∈ A is a

Poisson normal element and p ∈ A is a prime element such that p | a, then p is a

Poisson prime element.

Proof. Let a = pkb for some b ∈ A such that p - b. For every x ∈ A, there exists

y ∈ A such that {a, x} = ay. Then

k{p, x}pk−1b+ pk{b, x} = pkby.

Since the base field has characteristic 0, we have pk | {p, x}pk−1b for every x ∈ A,

and so p | {p, x}.

11



This lemma shows that in integral domains, Poisson normal elements are the

products of Poisson primes.

Proposition 2.3.5. Let A be a Poisson algebra over a field of characteristic 0,

satisfying one of the following 2 conditions:

• A is a unique factorization domain as a commutative algebra or

• A is a noetherian Poisson unique factorization domain.

Then every non-zero, non-unit Poisson normal element a ∈ A has a unique fac-

torization of the form

a =
m∏
i=1

pi

for some set of (not necessarily distinct) Poisson prime element p1, . . . , pm ∈ A.

The uniqueness is up to taking associates and permutations.

The case that A is a UFD follows from the previous lemma. The case of noethe-

rian Poisson UFDs is analogous to the unique factorization property of normal

elements in (noncommutative) noetherian UFDs proved by Chatters [11, Proposi-

tion 2.1], see also [26, Proposition 2.1].
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Chapter 3
Preliminaries on Cluster Structures

Cluster algebras were introduced by Fomin and Zelevinsky in the early 2000s as

a tool in the study of total positivity in semisimple groups and canonical bases in

their quantum analogs [22]. A quantized version of cluster algebras were created

by Berenstein and Zelevinsky in 2005 to prepare the algebraic foundations for the

notion of a canonical basis of a cluster algebra [3]. This single parameter version

with ground ring Z[q±1/2] has been generalized to a multiparameter version over any

commutative domain [26]. In this chapter, we will briefly review cluster algebras

and the single parameter quantum cluster algebras, which will be the model for

root of unity quantum cluster algebras.

3.1 Cluster Algebras

Here we recall the definition of the classical, commutative cluster algebras (of

geometric type). Let N be a positive integer, ex be an n-element subset of [1, N ],

and F be the field of rational functions in N variables over Q. We will often use

ex instead of n to give a labeling of [1, n]. A seed is a pair (x̃, B̃) if

• x̃ = {x1, . . . , xN} is a transcendence basis of F over Q which generates F

• B̃ ∈ MN×ex(Z) has a skew-symmetrizable ex × ex submatrix B given by

rows labeled by ex (called the principal part of B̃).

Such a transcendence basis x̃ will be called a free generating set of F . In the

context of a seed (x̃, B̃), we call x̃ the cluster of the seed and call the elements xi

the cluster variables.

Mutation of a matrix in direction k ∈ ex (the exchangeable indices) is given as

µk(B̃) = EsB̃Fs where s = ± is a sign and matrices Es ∈ MN(Z), Fs ∈ Mex(Z)
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depend on B̃:

Es = (eij) =



δij if j 6= k

−1 if i = j = k

max(0,−sbik) if i 6= j = k

Fs = (fij) =



δij if i 6= k

−1 if i = j = k

max(0, sbkj) if j 6= i = k

Note that for B̃ = (bij),

µk(B̃) = (b′ij) =


−bij if i = k or j = k

bij +
|bik|bkj+bik|bkj |

2
else

,

but we will follow the matrix interpretation of mutation as it will be useful in

defining the quantum version.

Lemma 3.1.1 ([2], [22]). Mutation µk has the following properties.

1. The principal part of µk(B̃) is the mutation of the principal part of B̃, µk(B).

2. Mutation is an involution, µ2
k(B̃) = B̃

3. B is integer and skew-symmetrizable if and only if µk(B) is.

4. The rank of µk(B̃) equals the rank of B̃

Mutation µk of the seed (x̃, B̃) in the direction of k ∈ ex is given by µk(x̃, B̃) =

(x̃′, µkB̃) where the mutation of x̃ depends on B̃: x̃′ = {x′k} ∪ x̃\{xk} where

xkx
′
k =

∏
bik<0

x−biki +
∏
bik>0

xbiki . (3.1)
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Since µk(B̃) has a skew-symmetrizable principal part by the first and third parts of

the lemma and x̃′ is a free generating set, then µk(x̃, B̃) is a seed. Considering the

mutation equation (3.1) for (x′k)
′ ∈ µ2

k(x̃, B̃), one concludes that µk is an involution

on seeds from the second part of the lemma.

We say that two seeds (x̃1, B̃1), (x̃2, B̃2) are mutation-equivalent if (x̃2, B̃2)

can be obtained from (x̃1, B̃1) via a finite sequence of mutations. Denote this by

(x̃1, B̃1) ∼ (x̃2, B̃2). All seeds that are mutation-equivalent to (x̃, B̃) contain the

same subset c ⊂ x̃ of cluster variables corresponding to indices [1, N ]\ex. These

cluster variables are called the frozen variables.

For a mutation-equivalence class S, the cluster algebra A(S) is defined as the

Z[c±]-subalgebra of F generated by all cluster variables from seeds in S. Since S

is uniquely determined by any seed (x̃, B̃) ∈ S, we often denote A(S) by A(x̃, B̃).

We may even denote it by A(B̃), as changing the free generating set from x̃1 to x̃2

will induce an automorphism of F and A(x̃1, B̃) ' A(x̃2, B̃). Instead of inverting

all frozen variables, we could pick a subset inv ⊆ c to invert. Then A(x̃, B̃, inv),

or A(B̃, inv), denotes the Z[c, inv−1]-subalgebra generated by all cluster variables

from seeds mutation equivalent to (x̃, B̃).

3.2 Quantum Cluster Algebras

Here we will review the construction and properties of quantum cluster algebras

in the generic case, which will guide the construction when dealing with roots of

unity. Let Λ : ZN × ZN → Z be a skew-symmetric bilinear form, which at times

will be treated as a matrix Λ = (λij). Using a formal variable q1/2, we work with

Laurent polynomials Z[q±1/2].
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Definition 3.2.1. The based quantum torus Tq(Λ) associated with Λ is defined as

the Z[q±1/2]-algebra with a Z[q±1/2]-basis {Xf | f ∈ ZN} and multiplication given

by

XfXg = qΛ(f,g)/2Xf+g where f, g ∈ ZN .

Note that XfXg = qΛ(f,g)XgXf and that Λ can be recovered from the commu-

tation relations of {Xe1 , . . . , XeN}. In particular, this commutation relation is why

we chose to define the based quantum torus over Z[q±1/2] rather than Z[q±1]. We

denote by F the skew-field of fractions of Tq(Λ), which is a Q(q1/2)-algebra.

Given σ ∈ GLN(Z), we can create another based quantum torus Tq(Λ′) where

Λ′(f, g) = Λ(σf, σg) is a skew-symmetric form. Note that if we consider Λ′ as

a matrix, then Λ′ = σTΛσ. Also, we have a Z[q±1/2]-algebra isomorphism Ψσ :

Tq(Λ)→ Tq(Λ′) given by Xσf 7→ Xf .

Definition 3.2.2. Let F be a division algebra over Q(q1/2). A toric frame M is

defined as a map M : ZN → F such that there exists a skew-symmetric matrix

Λ ∈MN(Z) satisfying

1. there is a Z[q±1/2]-algebra embedding φ : Tq(Λ) ↪→ F with φ(Xf ) = M(f)

for all f ∈ ZN

2. F = Fract(φ(Tq(Λ))).

A toric frame M is then an embedding of a based quantum torus into an algebra

isomorphic to its skew-field of fractions. The skew-symmetric matrix associated to

a toric frame M is often denoted by ΛM . For any σ ∈ GLN(Z), ρ ∈ Aut(F), and

toric frame M , the map ρMσ is a toric frame with ΛρMσ = σTΛσ. The embedding

φ for M gives rise to an embedding φ′ : Tq(ΛρMσ) ↪→ F by φ′ = ρ ◦φ ◦Ψσ−1 , which

satisfies the two properties above for ρMσ.
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Let ex be an n-element subset of [1, N ], view Λ as a skew-symmetric matrix,

and let B̃ be an N × ex matrix. We call a pair (Λ, B̃) compatible if

N∑
k=1

bkjλki = δijdj for all i ∈ [1, N ], j ∈ ex

for some positive integers dj. Equivalently B̃TΛ = D̃ where dii = di for i ∈ ex are

positive integers and otherwise dij = 0. Similar to the principal part B of B̃, we

denote by D the ex × ex submatrix of D̃. When B̃ is part of a compatible pair

(Λ, B̃), then B̃ is nice in the following sense.

Lemma 3.2.3 ([3, Proposition 3.3]). If (Λ, B̃) is a compatible pair, then B̃ has

full rank and its principle part B is skew-symmetrized by D.

A pair (Λ, B̃) may be mutated in the direction of k ∈ ex, by µk(Λ, B̃) = (Λ′, B̃′)

where B̃′ = EsB̃Fs as in the classical case and Λ′ = ET
s ΛEs (note skew-symmetric).

The pair µk(Λ, B̃) is independent of choice of sign s, µk(Λ, B̃) is compatible if (Λ, B̃)

was, and mutation µk of compatible pairs is an involution [3, Propositions 3.4, 3.5].

We call a pair (M, B̃) a quantum seed if the pair (ΛM , B̃) is compatible. We call

{M(ej) | j ∈ [1, N ]} the cluster variables of the seed (M, B̃). The subset of cluster

variables {M(ej) | j 6∈ ex} are called frozen variables.

Lemma 3.2.4. Suppose M is a toric frame, k ∈ [1, N ] and g =
∑N

i=1 niei ∈ ZN

is such that ΛM(g, ej) = 0 for j 6= k and nk = 0. Then for each s = ±, there is an

automorphism ρg,s = ρMg,s of F , such that

ρg,s(M(ej)) =


M(ek) +M(ek + sg) if j = k

M(ej) if j 6= k
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Proof. The proof follows similarly to [3, Proposition 4.3], starting by constructing

a Z[q±1/2]-linear map Tq(ΛM)→ F by defining on the basis elements

M(f) 7→


PM,mk
g,s,+ M(f) if mk ≥ 0

(PM,−mk
g,s,− )−1M(f) if mk < 0

for f =
∑N

j=1mjej ∈ ZN , where

PM,mk
g,s,± =

mk∏
p=1

(
1 + q∓s(2p−1)ΛM (g,ek)/2M(sg)

)
.

This map is a Z[q±1/2]-algebra homomorphism since M(g)M(ej) = M(ej)M(g) if

j 6= k and M(sg)M(ek) = q−sΛM (g,ek)M(ek)M(sg), and it extends to an endomor-

phism of F . Lastly, the map is an automorphism as ρg,s ◦ρ′ = ρ′ ◦ρg,s = IdF where

one defines the endomorphism ρ′ in a similar fashion such that

ρ′(M(ej)) =


(P 1

g,s,+)−1M(ek) if j = k

M(ej) if j 6= k

.

An important application of these maps are for g = bk, where bk is the kth

column of a matrix B̃ that forms a compatible pair with ΛM . It is easily checked

that the compatibility condition ensures the conditions of the lemma are met.

Remark 3.2.5. The notation used here does not match perfectly with that of

[3]. Unlike [3], ρM−g,−s 6= (ρMg,s)
−1. However, these automorphisms match up with

the multiparameter case of [26]. It should be noted that for compatible (ΛM , B̃),

the map ρbk,s from [3] matches ρM
bk,s

on generators M(ei) and hence is the same

automorphism. This does not cause a contradiction, since ρM−bk,−s is not the map

ρ−bk,−s of [3]. The bilinear form ΛM cannot be compatible with a matrix that has

−bk as the kth column, as we know
∑N

l=1−blkλlk = −dk < 0.
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Mutation µk(M, B̃) of a quantum seed in the direction of k is defined as

(µk(M), µk(B̃)) = (ρM
bk,s
MEs, EsB̃Fs). Here the mutation of the toric frame uses

the automorphisms above and as in the classical case, depends on B̃. Since Es ∈

GLN(Z) (E2
s = Id) and ρM

bk,s
∈ Aut(F), then ρM

bk,s
MEs is a toric frame. Now the

skew-symmetric matrix Λµk(M) is equal to µk(ΛM) by [3, Proposition 4.7]. So the

pair (Λµk(M), µk(B̃)) is compatible, and µk(M, B̃) is a quantum seed.

Lemma 3.2.6. Quantum seed mutation is independent of sign and is an involu-

tion.

Proof. These properties are clear for matrix mutation, and so we show them for

the toric frame mutation. As noted above, a toric frame is determined by where it

sends the standard basis vectors of ZN . Note that Esej = ej for j 6= k. From their

construction, ρM
bk,+

(M(ej)) = M(ej) = ρM
bk,−(M(ej)) for j 6= k. For ek,

ρMbk,−ME−(ek) =ρMbk,−M(−ek + [bk]+) = (PM,1
bk,−,−)−1M(−ek + [bk]+)

=(1 + q−ΛM (bk,ek)/2M(−bk))M(−ek + [bk]+)

=M(−ek + [bk]+) +M(−ek − [bk]−)

ρMbk,+ME+(ek) =ρMbk,+M(−ek − [bk]−) = (PM,1
bk,+,−)−1M(−ek − [bk]−)

=(1 + qΛM (bk,ek)/2M(bk))M(−ek − [bk]−)

=M(−ek − [bk]−) +M(−ek + [bk]+)

where [bk]− =
∑

bik<0 bikei and [bk]+ =
∑

bik>0 bikei.

For the involutive property, note that E ′± coming from µkB̃ is in fact E∓ since

µk negates the kth column. Then

µk(µk(M)) = ρµkM−bk,+ρ
M
bk,−ME−E

′
+ = ρµkM−bk,+ρ

M
bk,−ME−E−

= ρµkM−bk,+ρ
M
bk,−M = M

which can be checked on the standard basis.
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A key property of mutation of quantum seeds was shown in the above proof (see

also [3, Proposition 4.9]),

µk(M)(ej) = M(ej) for j 6= k

µk(M)(ek) = M(−ek + [bk]+) +M(−ek − [bk]−)

(3.2)

From this, we see that setting q = 1 would “recover” the commutative case of

mutation.

Because mutation is involutive, we again can consider the equivalence classes

of quantum seeds under finite sequences of mutation. Since µk(M)(ej) = M(ej) if

j 6= k, then for any (M ′, B̃′) ∼ (M, B̃) we have that M ′(ej) = M(ej) for j 6∈ ex. So

the frozen variables of these quantum seeds are the same and only depend on the

mutation-equivalence class. We will fix a subset inv ⊆ [1, N ]\ex corresponding to

frozen variables that will be set as invertible.

Definition 3.2.7. The quantum cluster algebra Aq(M, B̃, inv) is the Z[q±1/2]-

subalgebra of F generated by all cluster variables M ′(ej), j ∈ [1, N ] of quantum

seeds (M ′, B̃′) mutation equivalent to (M, B̃) and by the inverses M(ej)
−1 for

j ∈ inv.

Some authors use a different domain, such as K[q±1/2] for a field K, in defining

their quantum tori and quantum cluster algebra. We will refer to these as non-

integral quantum cluster algebras. Quantum cluster structures defined as above

using Z[q±1/2] for the base domain will be called integral. If one has an integral

quantum cluster algebra, extending scalars will give a non-integral cluster struc-

ture.

As before, when the subset inv is understood, we often leave it out of the nota-

tion. If M ′ is another toric frame such that (ΛM ′ , B̃) is compatible, then there is

an isomorphism Aq(M, B̃, inv) ' Aq(M ′, B̃, inv).
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The upper quantum cluster algebra Uq(M, B̃, inv) is defined as the intersection

over quantum seeds (M ′, B̃′) ∼ (M, B̃) of all Z[q±1/2]-subalgebras of F of the form

Z[q±1/2]〈M ′(ei),M
′(ej)

−1 | i ∈ [1, N ], j ∈ ex t inv〉.

These subalgebras of F are called mixed quantum tori. We denote by Tq(M) the

based quantum torus with basis 〈M(f) | f ∈ ZN〉. The relation between generators

is given by M(f)M(g) = qΛM (f,g)M(f + g). So, we have an isomorphism Tq(M) '

Tq(ΛM). For inv = [1, N ]\ex, we can rephrase the above definition for the quantum

upper cluster algebra as

Uq(M, B̃) =
⋂

(M ′,B̃′)∼(M,B̃)

Tq(M ′).

Theorem 3.2.8 (The Quantum Laurent Phenomenon [3], [26]). The quantum

cluster algebra Aq(M, B̃, inv) is contained in the mixed quantum torus

Z[q±1/2]〈M ′(ei),M
′(ej)

−1 | i ∈ [1, N ], j ∈ ex t inv〉

for any quantum seed (M ′, B̃′) ∼ (M, B̃), and we have an inclusion

Aq(M, B̃, inv) ↪→ Uq(M, B̃, inv).

Berenstein and Zelevinsky proved the theorem when all frozen variables are

inverted, inv = [1, N ]\ex. The quantum Laurent phenomenon was shown for the

more general setting in [26].

The exchange graph for a cluster algebra A(x, B̃) or quantum cluster algebra

Aq(M, B̃) is the graph with vertices corresponding to (quantum) seeds mutation-

equivalent to (x, B̃), or (M, B̃) respectfully, and with edges given by seed mutation.

We will denote the exchange graph for a cluster algebra A(B̃) by E(B̃) and the

exchange graph of Aq(M, B̃) by Eq(ΛM , B̃)
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Theorem 3.2.9 ([3]). There is a canonical isomorphism between the exchange

graphs E(ΛM , B̃) and Eq(B̃) obtained by matching an initial seed of the two alge-

bras A(x, B̃) and Aq(M, B̃) and then matching the rest of the seeds by following

the same mutation sequences.

The identification of exchange graphs was shown in [3] for inv = [1, N ]\ex.

The statement then holds for any inv, as the localization of Aq(M, B̃, inv) to

Aq(M, B̃, [1, N ]\ex) does not change the set of seeds.
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Chapter 4
Quantum Cluster Algebras at Roots of Unity

The quantum cluster algebra at a root of unity will be constructed from quan-

tum seeds similarly to the generic case. Specializing a quantum cluster algebra to

a root of unity requires care and attention. In the case that a (non-integral) quan-

tum cluster algebra A = Aq(M, B̃) is equal to its quantum upper cluster algebra

Uq(M, B̃) and the algebra satisfies some grading criteria, then the specialization

to 1, A1 = A/ (q1/2 − 1)A, is isomorphic to the cluster algebra A(B̃) as shown by

Geiß, Leclerc, and Schröer [25]. However, it is not true that specializing any quan-

tum cluster algebra to 1 will recover a cluster algebra. For instance, a quantum

Weyl algebra has a cluster structure. However, its specialization to 1 is isomorphic

to the Weyl algebra, a noncommutative algebra which cannot be a cluster algebra.

4.1 The Root of Unity Case

To match the presentation of quantum cluster algebras, we let ε1/2 be a primitive

`th root of unity. Let Λ be a skew-symmetric bilinear form, often thought of as a

N×N matrix. Let ex be an n-element subset of [1, N ]. As before, we will often use

ex instead of n to give a labeling of [1, n]. The root of unity based quantum torus

Tε(Λ) is the Z[ε1/2]-algebra with a Z[ε1/2]-basis {Xf | f ∈ ZN} and multiplication

given by

XfXg = εΛ(f,g)/2Xf+g where f, g ∈ ZN .

Hence XfXg = εΛ(f,g)XgXf . Unlike the previous case, Λ cannot be recovered from

commutation relations of basis elements. If Λ ≡ Λ′ as elements of MN(Z/`Z), then

Tε(Λ) = Tε(Λ′).
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Lemma 4.1.1. There is an isomorphism of algebras Tq(Λ)/(Φ`(q
1/2)) ' Tε(Λ)

where Φ`(q
1/2) is the `th cyclotomic polynomial. We denote by κε : Tq(Λ)→ Tε(Λ)

the canonical projection.

Proof. We have Z[q±1/2]/(Φ`(q
1/2)) ' Z[ε1/2]. It follows that Tq(Λ)/(Φ`(q

1/2)) '

Tε(Λ) since the free Z[q±1/2]-module Tq(Λ) and the free Z[ε1/2]-module Tε(Λ) both

have the basis {Xf | f ∈ ZN}.

Let Fε be a division algebra over Q(ε1/2). A root of unity toric frame Mε is defined

as a map Mε : ZN → Fε such that there is a skew-symmetric matrix Λ ∈ MN(Z)

satisfying

1. There is a Z[ε1/2]-algebra embedding φ : Tε(Λ) ↪→ Fε with φ(Xf ) = Mε(f)

for all f ∈ ZN

2. Fε = Fract (φ(Tε(Λ))).

We will now denote toric frames by Mq to distinguish them from root of unity toric

frames Mε. We will typically call root of unity toric frames just toric frames when

context is clear.

Again, ρMεσ is a toric frame for any σ ∈ GLN(Z), ρ ∈ Aut(Fε), and toric frame

Mε. If conditions (1) and (2) for Mε are satisfied by Λ and φ, then the conditions

for ρMεσ are satisfied by σTΛσ and ρ ◦ φ ◦ Ψσ−1 where Ψσ−1 is the isomorphism

Tε(σTΛσ)
∼−→ Tε(Λ).

We say Λ′ ∈MN(Z) is related to toric frame Mε if Mε(f)Mε(g) = εΛ
′(f,g)/2Mε(f+

g). Then Λ′ is related to Mε if and only if conditions (1) and (2) are satisfied for

Mε by Λ′. We denote by Tε(Mε) the based quantum torus with basis {Mε(f) | f ∈

ZN} ⊆ Fε, noting that for Λ related toMε we have an isomorphism Tε(Mε) ' Tε(Λ).

We will call a triple (Mε,Λ, B̃) a root of unity quantum seed if Mε is a toric frame,

B̃ ∈MN×ex(Z), and Λ is a skew-symmetric bilinear form such that Λ is related to
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Mε and (Λ, B̃) is a compatible pair. Similar to before, we have automorphisms on

Fε that will be used in mutating seeds.

Lemma 4.1.2. Suppose Mε is a toric frame, Λ is related to Mε, k ∈ [1, N ] and

g =
∑N

i=1 niei ∈ ZN is such that Λ(g, ej) = 0 for j 6= k and nk = 0. Then for each

s = ±, there is an automorphism ρg,s = ρMε
g,s of Fε, such that

ρg,s(Mε(ej)) =


Mε(ek) +Mε(ek + sg) if j = k

Mε(ej) if j 6= k

Proof. The proof follows the same argument as before but with the change

PMε,mk
g,s,± =

mk∏
p=1

(
1 + ε∓s(2p−1)Λ(g,ek)Mε(sg)

)
.

We define mutation in the direction of k ∈ ex by

µk(Mε,Λ, B̃) = (ρMε

bk,s
MεEs, EsB̃Fs, E

T
s ΛEs).

Let φΛ : Tε(Λ)→ Fε denote the appropriate embedding.

Lemma 4.1.3. Given a root of unity quantum seed (Mε,Λ, B̃), the following rela-

tions hold in Fε for either sign s = ±:

ρMε

bk,s
MεEs(ej) = Mε(ej) for j 6= k

ρMε

bk,s
MεEs(ek) = Mε(−ek + [bk]+) +Mε(−ek − [bk]−)

Proof. Since Esej = ej for j 6= k, the first equation follows from the definition

of ρMε

bk,s
. We will use the generic case of the second equation to show the equation

holds in the root of unity as well, although one could directly copy the proof steps

from the generic case.
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Since Λ is related to M : ZN → Fε, there is an embedding φ : Tε(Λ) ↪→ Fε.

Consider Tq(Λ) and label Fract(Tq(Λ)) by Fq. Construct a toric frame Mq : ZN →

Fq by Mq(f) = Xf , noting ΛMq = Λ. Compatibility of B̃ and Λ gives us a quantum

seed (Mq, B̃). Mutation in the kth direction is given by (ρ
Mq

bk,s
MqEs, EsB̃Fs) where

ρ
Mq

bk,s
∈ Aut(Fq). Let κε : Tq(Λ) → Tε(Λ) be the quotient map of Lemma 4.1.1.

Viewing Mε(f) as an element of Tε(Λ), we may write κε(Mq(f)) = Mε(f).

We know that ρ
Mq

bk,s
: Fq → Fq is defined by its action on Mq(f). The Z[q±1/2]-

subalgebras generated by the images of Mq and Mqσ are the same for any σ ∈

GLN(Z). So we may reduce the problem of understanding µk(Mε) in terms of

µk(Mq) to the problem of understanding ρMε

bk,s
Mε in terms of ρ

Mq

bk,s
Mq

Note that κε(P
Mq ,mk
bk,s,± ) = PMε,mk

bk,s,± . For f =
∑
miei with mk ≥ 0,

ρ
Mq

bk,s
(Mq(f)) = P

Mq ,mk
g,s,+ M(f) ∈ Tq(Λ) ⊆ Fq

which we are viewing as an element of Tq(Λ). We may apply κε, and we find that

κε(ρ
Mq

bk,s
(Mq(f)) = ρMε

bk,s
(Mε(f)).

If mk < 0, consider

P
Mq ,−mk
bk,s,− ρ

Mq

bk,s
(Mq(f)) = Mq(f) ∈ Tq(Λ).

Applying κε which we derive,

κε

(
P
Mq ,−mk
bk,s,− ρ

Mq

bk,s
(Mq(f))

)
= Mε(f) = PMε,−mk

bk,s,− ρMε

bk,s
(Mε(f)).

Hence the desired equation holds for the mutation of a root of unity toric frame

by considering f = Esek.

More properties of root of unity quantum seeds follow from the generic case such

as the next natural result.
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Lemma 4.1.4. If (M, B̃,Λ) is a root of unity quantum seed, then so is µk(M, B̃,Λ).

Moreover, mutation is an involution and does not depend on the sign used.

Proof. The pair (EsB̃Fs, E
T
s ΛEs) is the mutation of the compatible pair of matrices

(B̃,Λ), which is compatible and independent of sign by [3, Proposition 3.4]. The

involutive property of mutation of compatible pairs comes from [3, Proposition

3.6].

As discussed previously, µk(Mε) = ρM
bk,s
MEs is a toric frame since ρM

bk,s
∈ Aut(Fε)

and Es ∈ GLN(Z), and Λ′ = ET
s ΛEs is related to µk(M). From Lemma 4.1.3, we

have that µk(Mε) does not depend on sign s. Moreover, from the proof of Lemma

4.1.3, we see that the equations satisfied by µ2
k(Mq) must also be satisfied by

µ2
k(Mε). Hence µ2

k(Mε) = Mε by its image of ej.

We consider the equivalence classes under finite sequences of mutations of root

of unity quantum seeds. Fix a subset inv ⊆ [1, N ]\ex corresponding to frozen

variables that will set as invertible.

Definition 4.1.5. Given a root of unity quantum seed (Mε,Λ, B̃), we define

the quantum cluster algebra at a root of unity Aε(Mε,Λ, B̃, inv) as the Z[ε1/2]-

subalgebra of Fε generated by all cluster variables M ′
ε(ej), j ∈ [1, N ] of quantum

seeds (M ′
ε,Λ

′, B̃′) mutation equivalent to (Mε,Λ, B̃) and by the inverses of appro-

priate frozen variables Mε(ej)
−1, j ∈ inv.

We will sometimes denote Aε(Mε,Λ, B̃, inv) by Aε(Mε,Λ, B̃) if the subset inv

is understood. If (M ′
ε,Λ

′, B̃) is another quantum seed for the same ambient skew-

field Fε, there is an induced isomorphism Aε(Mε,Λ, B̃, inv) ' Aε(M ′
ε,Λ

′, B̃, inv).

As such, we may denote the exchange graph of Aε(Mε,Λ, B̃) by Eε(Λ, B̃).

We will need the following result concerning opposite algebras when working with

the cluster structure of quantum Schubert cells. Note for the opposite algebras of
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quantum tori that Tq(Λ)op ' Tq(ΛT ) via Xf 7→ Xf as

Xf ·Xg = XgXf = q−Λ(f,g)/2Xf+g = q−Λ(f,g)Xg·Xf for any f, g ∈ ZN ,

where · is the opposite multiplication. Similarly Tε(Λ)op ' Tε(ΛT ). From these facts,

we see that Fract(Tq(Λ))op ' Fract(Tq(ΛT )) and Fract(Tε(Λ))op ' Fract(Tε(ΛT )).

Theorem 4.1.6. The opposite algebra of a quantum cluster algebra Aq(Mq, B̃, inv)op

is a quantum cluster algebra isomorphic to Aq(M op
q ,−B̃, inv), where M op

q is the

toric frame to Fract(Tq(ΛT )) whose image is equal to Mq under the canonical vector

space isomorphism. Likewise, the opposite algebra of a quantum cluster algebra at

a root of unity Aε(Mε,Λ, B̃, inv)op is isomorphic to Aε(M op
ε ,Λ

T ,−B̃, inv).

Proof. Given a cluster algebra Aq(Mq, B̃), we have a compatible pair (B̃,ΛMq) and

a quantum seed (Mq, B̃). Denote ΛMq by Λ for clarity. Since (Λ, B̃) is compatible,

we can deduce (ΛT ,−B̃) is compatible from

D = B̃TΛ = (−B̃)T (−Λ) = (−B̃)TΛT .

Since Tq(ΛT ) ' Tq(Λ) as Q(q1/2)-vector spaces, let M op
q be the map that sends

f ∈ ZN to the canonical image of Mq(f) in (Tq(ΛT )). Since Fract(Tε(Λ))op is

isomorphic to Fract(Tε(ΛT )), then

M op
q (f)M op

q (g) = q−Λ(f,g)M op
q (g)M op

q (f) = qΛT (f,g)M op
q , (g)M op

q (f)

Hence the map Xf 7→M op
q (f) is indeed a embedding of Tq(ΛT ) into Fract(Tq(ΛT )),

and M op
q is a toric frame. Since ΛMop

q
= ΛT , the pair (M op

q ,−B̃) is a quantum seed.

We now show that the exchange graphs for Aq(Mq, B̃) and Aq(M op
q ,−B̃)) are

isomorphic. First we consider toric frame mutation. Let (M̂q, B̂) ∈ Eq(Λ, B̃). As

elements of FractTq(ΛT ), we have the following, µk(M̂
op)(ej) = M̂ op(ej) = M̂(ej) =
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ukM̂(ej) = (µkM̂)op(ej) for j 6= k. For j = k,

µk(M̂
op)(ek) = M̂ op(−ek + [−b̂k]+) + M̂ op(−ek − [−b̂k]−)

= M̂(−ek − [̂bk]−) + M̂(−ek + [̂bk]+)

= µkM̂(ek) = (µkM̂)op(ek)

where M̂ mutates with respect to B̂, M̂ op mutates with respect to −B̂, and b̂k is

the kth column of B̂.

Now for matrix mutation, consider matrices C and −C. Then µk(C) = E±CF±

and µk(−C) = E ′±(−C)F ′± for the appropriate matrices E±, F±, E ′±, and F ′±. But

from their definition, E ′± = E∓ and F ′± = F∓. As matrix mutation doesn’t depend

on sign, µk(−C) = −µk(C). Similarly for skew-symmetric matrices, µk(Λ̂
T ) =

µk(Λ̂)T .

Hence the map between exchange graphs Eq(Λ, B̃) and Eq(Λ
T ,−B̃) given by

op : (M̂q, B̂) 7→ (M̂ op
q ,−B̂) is an isomorphism of graphs with edges mapping appro-

priately since µk and op commute appropriately for seeds. For the roots of unity

case, everything follows the same, except now the note on skew-symmetric matri-

ces is necessary. The isomorphism of exchange graphs Eε(Λ, B̃) and Eε(Λ
T ,−B̃) is

given by op : (M̂ε, Λ̂, B̂) 7→ (M̂ op
ε , Λ̂

T ,−B̂).

Now for any finite sequence of mutations µi1 ...µim , we have µi1 ...µim(M op) =

(µi1 ...µimM)op. Thus the vector space map from Ψ : Fract(Tq(Λ))→ Fract(Tq(ΛT )),

defined by M(ei) 7→ M op(ei) for all i, is an anti-isomorphism that restricts to an

anti-isomorphism between Aq(Mq, B̃) and Aq(M op
q ,−B̃). It is also clear that Ψ

restricted to Aq(Mq, B̃, inv) induces an anti-isomorphism with Aq(M op
q ,−B̃, inv).

The root of unity case follows similarly.
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4.2 Exchange Graphs and the Quantum Laurent Phenomenon

Recall that for a root of unity quantum seed (Mε,Λ, B̃), we can construct a

quantum torus Mq with Λ = ΛMq and hence a quantum seed (Mq, B̃).

Proposition 4.2.1. For a root of unity quantum seed (Mε,Λ, B̃), there is a canon-

ical surjection of graphs from Eq(Λ, B̃) onto Eε(Λ, B̃).

Proof. Denote the skew-field of Tq(Λ) by Fq. Let Mq : ZN → Fq be the toric

frame given by Mq(f) = Xf , so that (Mq,Λ) is a quantum seed. We fix the initial

seeds (Mε,Λ, B̃) in Eε(Λ, B̃) and (Mq, B̃) in Eq(Λ, B̃). By the quantum Laurent

phenomenon 3.2.8,

Aq(Mq, B̃) ↪→ Uq(Mq, B̃) ⊆ Tq(Mq)

so that κε(µim · · ·µi1Mq(ej)) is well defined, where κε : Tq(Mq) → Tε(Mε) is the

canonical projection adjusted by isomorphisms Tq(Mq) ' Tq(Λ) and Tε(Mε) '

Tε(Λ). We will prove that for any sequence of mutations µim · · ·µi1 that

κε (µim · · ·µi1Mq(ej)) = µim · · ·µi1Mε(ej) for all j ∈ [1, N ],

by induction on m. Hence µim · · ·µi1(Mq, B̃) = µjp · · ·µj1(Mq, B̃) implies that

µim · · ·µi1(Mε,Λ, B̃) = µjp · · ·µj1(Mε,Λ, B̃), and we have our surjective map from

Eq(Λ, B̃) to Eε(Λ, B̃).

The base case of m = 1 is given by Lemma 4.1.3 and (3.2). We will denote

M ′
q = µim · · ·µi1Mq and M ′′

q = µim−1 · · ·µi1Mq. Denote M ′
ε and M ′′

ε similarly. By

(3.2), we have that M ′
q(ej) = M ′′

q (ej) for j 6= im and that

M ′
q(eim) = M ′′

q (−eim + [ck]+) +M ′′
q (−eim − [ck]−)

where ck is the kth column of C̃ = µim−1 · · ·µi1B̃. Hence

M ′′
q (eim)M ′

q(eim) = q−Λ(−eim , [ck]+)/2M ′′
q ([ck]+) + q−Λ(−eim , −[ck]−)/2M ′′

q (−[ck]−).
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The left and right hand side are contained in Tq(Mq) by the quantum Laurent

phenomenon, so we may apply κε. It follows from induction that

M ′′
ε (eim)κε

(
M ′

q(eim)
)

= ε−Λ(−eim , [ck]+)/2M ′′
ε ([ck]+) + ε−Λ(−eim , −[ck]−)/2M ′′

ε (−[ck]−).

Thus

κε
(
M ′

q(eim)
)

= M ′′
ε (−eim + [ck]+) +M ′′

ε (−eim − [ck]−) = M ′
ε(eim).

which finishes the proof.

The proof of the proposition also gives us that the quantum Laurent phenomenon

holds in the root of unity case. We naturally define the upper quantum cluster

algebra at a root of unity Uε(Mε,Λ, B̃, inv) as

Uε(Mε,Λ, B̃, inv) =
⋂

(Mε,Λ,B̃)∼(M ′ε,Λ
′,B̃′)

Z[ε1/2]〈M ′
ε(ei),M

′
ε(ej)

−1 | i ∈ [1, N ], j ∈ ex t inv〉.

for a root of unity quantum seed (Mε,Λ, B̃) and a choice inv ⊆ [1, N ]\ex.

Theorem 4.2.2. The quantum cluster algebra Aε(Mε,Λ, B̃, inv) is contained in

the mixed root of unity quantum torus

Z[ε1/2]〈M ′
ε(ei),M

′
ε(ej)

−1 | i ∈ [1, N ], j ∈ ex t inv〉

for any quantum seed (M ′
ε,Λ

′, B̃′) ∼ (Mε,Λ, B̃), and we have an inclusion

Aε(Mε,Λ, B̃, inv) ↪→ Uε(Mε,Λ, B̃, inv).

Proof. Let (M ′
ε,Λ

′, B̃′) ∼ (Mε,Λ, B̃). As Aε(Mε,Λ, B̃) = Aε(M ′′
ε ,Λ

′′, B̃′′) for any

seed (M ′′
ε ,Λ

′′, B̃′′) ∼ (Mε,Λ, B̃), we need only show that

Mε(ej) ∈ Z[ε1/2]〈M ′
ε(ei),M

′
ε(ej)

−1 | i ∈ [1, N ], j ∈ ex t inv〉.

Note for i 6∈ ex, that Mε(ei) = M ′
ε(ei) and M ′′

ε (ej)
−1 = M ′

ε(ej)
−1 for j ∈ inv.
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Consider a quantum seed (M ′
q, B̃

′,Λ′) such that κε(M
′
q) = M ′

ε. Since (Mε,Λ, B̃) ∼

(M ′
ε,Λ

′, B̃′), there is a finite series of mutations such that µim . . . µi1M
′
ε = M ′′

ε . The

quantum Laurent phenomenon, theorem 3.2.8, gives us that

Aq(M, B̃, inv) ↪→ Z[q±1/2]〈M ′(ei),M
′(ej)

−1 | i ∈ [1, N ], j ∈ ex t inv〉.

Hence for some finite sum,

µim . . . µi1M
′
q(ej) =

∑
f∈ZN

pf (q
1/2)M ′

q(f),

where pf (q
1/2) ∈ Z[q±1/2]. Applying κε it follows from Proposition 4.2.1 that

M ′′
ε (ej) =

∑
f∈ZN

pf (ε
1/2)M ′

ε(f).

Thus each generator of Aε(Mε,Λ, B̃, inv) is contained in the mixed quantum torus

Z[ε1/2]〈M ′(ei),M
′(ej)

−1 | i ∈ [1, N ], j ∈ ex t inv〉 ⊆ Fε.

4.3 Embedding Commutative Cluster Algebras

The main result of this section is the identification of a central Z-subalgebra of

Aε(Mε,Λ, B̃) that is isomorphic to the classical cluster algebra A(B̃).

Lemma 4.3.1. If (M ′
ε,Λ

′, B̃′) is mutation-equivalent to (Mε,Λ, B̃), then the ele-

ment M ′
ε(ej)

l ∈ Aε(Mε,Λ, B̃) is central for any j ∈ [1, N ].

Proof. We need only show Mε(ej)
l ∈ Z(Aε(Mε,Λ, B̃)) for j ∈ [1, N ], since

Aε(Mε,Λ, B̃) = Aε(M ′
ε,Λ

′, B̃′). Now Mε(ej)
l is central in Tε(Mε) as

Mε(ej)
lMε(f) = Mε(lej)Mε(f) = εΛ(lej ,f)Mε(f)Mε(lej) = Mε(f)Mε(ej)

l.

Thus, it is central in Fract(Tε(Mε)) and in Aε(Mε,Λ, B̃).
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For a root of unity quantum seed (Mε,Λ, B̃) and for j ∈ ex, consider the com-

mutation of elements Mε(−ej + [bj]+) and Mε(−ek − [bj]−). The relation in the

quantum torus is

Mε(−ej−[bj]−)Mε(−ej+[bj]+) = εΛ(−ej−[bj ]−,−ej+[bj ]+)Mε(−ej+[bj]+)Mε(−ej+[bj]−).

We set tj = Λ(−ej−[bj]−,−ej+[bj]+) as a convenient way to express this exponent.

Lemma 4.3.2. Let (Mε,Λ, B̃) be a root of unity quantum seed. Denote by D = (dj)

the ex × ex diagonal submatrix of B̃TΛ, which skew-symmetrizes B. Then for

j ∈ ex, tj = dj.

Proof. We have that

tj = Λ(−ej − [bj]−,−ej + [bj]+)

= Λ(−ej,−ej) + Λ(−ej, [bj]+) + Λ(−[bj]−,−ej) + Λ(−[bj]−, [b
j]+)

= 0 + Λ([bj]+, ej) + Λ([bj]−, ej) + Λ([bj]+, [b
j]−)

= Λ(bj, ej) + Λ([bj]+, [b
j]−)

= dj + Λ([bj]+, [b
j]−)

Now we must consider Λ([bj]+, [b
j]−). Note that bj − [bj]+ = [bj]− and

Λ([bj]+, [b
j]−) = Λ([bj]+, b

j)− Λ([bj]+, [b
j]+) = Λ([bj]+, b

j).

Since bjj = 0,

Λ([bj]+, [b
j]−) = Λ([bj]+, b

j)

=
∑
bij>0

bijΛ(ei, b
j)

=
∑
bij>0

−bijδi,jdj

= 0.

Thus tj = dj.
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We will often require the following condition on our root of unity quantum seed

(Mε,Λ, B̃).

( C )
Denoting the ex× ex submatrix of B̃TΛ which skew-symmetrizes

B by D = (dj), ` is coprime to dk for each k ∈ ex.

We may view C as a condition on an odd, primitive `th root of unity ε and a

compatible pair (Λ, B̃) rather than on a quantum seed. The main use of Lemma

4.3.2 is the following result. The formula appearing should be compared to the

mutation relation of (3.1).

Corollary 4.3.3. Let (Mε,Λ, B̃) be a root of unity quantum seed satisfying condi-

tion C.

Then

Mε(ek)
` (µkMε(ek))

` =
∏
bik>0

(Mε(ei)
`)bik +

∏
bik<0

(Mε(ei)
`)|bik|.

Proof. Let Mq : ZN → Fract(Tq(Λ)) be the toric frame given by Mq(f) = Xf ,

and consider the quantum seed (Mq, B̃). As Tε(Mε) ' Tq(Mq)/(Φ`(q
1/2)), denote

Y = Mq(−ek + [bk]+) and Z = Mq(−ek − [bk]−) in Tq(Mq). Since ZY = qdkY Z,

(Y + Z)` =
∑̀
p=0

[
`

p

]
qdk

Y pZk−p

where [
`

p

]
x

=
(x` − 1) . . . (x− 1)

(xp − 1) . . . (x− 1)(x`−p − 1) . . . (x− 1)
∈ Z[x±1]

Denote the canonical projection by κε : Tq(M − q) → Tε(Mε) as before. Since dk

is coprime to `, we may evaluate κε(
[
`
p

]
qdk

) using the rational form of
[
`
p

]
qdk

above.

Hence for 1 ≤ p ≤ `− 1,

κε

([
`

p

]
qdk

)
=

(ε`dk − 1) . . . (εdk − 1)

(εpdk − 1) . . . (εdk − 1)(ε(`−p)dk − 1) . . . (εdk − 1)
= 0.
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Thus

(µkMε(ek))
` =

(
Mε(−ek + [bk]+) +Mε(−ek − [bk]−)

)`
= κε

(
(Y + Z)`

)
= Mε(−ek + [bk]+)` +Mε(−ek − [bk]−)`

= Mε(−`ek + `[bk]+) +Mε(−`ek − `[bk]−)

= Mε(−`ek)
∏
bik>0

Mε(`bikei) +Mε(−`ek)
∏
bik<0

Mε(`|bik|ei)

Remark 4.3.4. If the constraint that ` is coprime to dk is dropped, then κε

([
`
p

]
qdk

)
need not be zero as εdk need not be a primitive `th root of unity. Consider the fol-

lowing example when ` = 9. Let

ε1/2 = e2πi/9, Λ =

 0 1

−1 0

 , B̃ = B =

 0 1

−3 0

 .
Setting F = Fract (Tε(Λ)) andMε : Z2 → F byMε(f) = Xf , we see that (Mε, B,Λ)

is a root of unity quantum seed. Here we have

BtΛ =

3 0

0 1


and d1 = 3. Then denoting Y = Mε(−e1 + [b1]+) = Mε(−e1) and Z = Mε(−e1 −

[b1]−) = Mε(−e1 + 3e2), a direct computation shows

(Y + Z)9 = Y 9 + 3Y 6Z3 + 3Y 3Z6 + Z9.

In a similar way, dropping the odd root of unity condition will result in a failure

of the statement. Consider the same case as above except for ε1/2 = i, a primitive

fourth root of unity. Then ε = −1 and

(Y + Z)4 = Y 4 + (1 + ε+ 2ε2 + ε3 + ε4)Y 2Z2 + Z4

= Y 4 + 2Y 2Z2 + Z4.
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The issue in the even case is that ε is a primitive `
2

th
root of unity and not a

primitive `th root of unity.

The following theorem holds in light of Corollary 4.3.3.

Theorem 4.3.5. Suppose (Mε,Λ, B̃) satisfies condition C. Then the Z-subalgebra

Z〈 M ′
ε(ei)

`,M ′
ε(ej)

−` | (M ′
ε, B̃

′,Λ′) ∼ (Mε,Λ, B̃), i ∈ [1, N ], j ∈ inv〉

of Aε(Mε,Λ, B̃, inv) is isomorphic to A(B̃, inv).

Proof. SinceA({x1, . . . , xN}, B̃,∅) is constructed as a subalgebra of Q(x1, . . . , xN),

consider the isomorphism φ : Q(x1, . . . , xN) → Fract(Z[Mε(e1)`, . . . ,Mε(eN)`])

given by xj 7→ Mε(ej)
`. Corollary 4.3.3 gives us that φ(µi(xj)) = (µiM(ej))

` for

all i ∈ ex, j ∈ [1, N ]. By induction on the length of the mutation sequence,

φ(µik . . . µi1(xj)) = (µik . . . µi1Mε(ej))
`.

Since the generators of Z〈M ′
ε(ei)

` | (M ′
ε, B̃

′,Λ′) ∼ (Mε,Λ, B̃), i ∈ [1, N ]〉 are the

images of the generators of A({x1, . . . , xN}, B̃,∅) under the isomorphism φ, then

we have an isomorphism of Z-algebras. The more general case, when inv 6= ∅, is

obtained by adjoining the appropriate inverses of frozen variables.

Corollary 4.3.6. Let (B̃,Λ) be a compatible pair and ε be a primitive, odd `th root

of unity. When condition C is satisfied, there are canonical isomorphisms between

the exchange graphs Eq(Λ, B̃), Eε(Λ, B̃), and E(B̃).

Proof. In light of the canonical isomorphism between Eq(Λ, B̃) and E(B̃) of Theo-

rem 3.2.9, only the injectivity of the surjection Eq(Λ, B̃)→ Eε(Λ, B̃) from Propo-

sition 4.2.1 is needed. Pick an initial seed (Mq, B̃) in Eq(Λ, B̃). Label its image in

Eε(Λ, B̃) by (Mε, B̃).

Suppose µim . . . µi1(Mq, B̃) and µjp . . . µj1(Mq, B̃) are distinct seeds in Eq(Λ, B̃).

These correspond to distinct seeds in E(B̃). Consider their images in Eε(Λ, B̃).
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By the isomorphism of Theorem 4.3.5, (µim . . . µi1Mε(ek))
` must be distinct from

(µjp . . . µj1Mε(ek))
` for some k. Thus µim . . . µi1(Mε, B̃) and µjp . . . µj1(Mε, B̃) must

be distinct seeds.
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Chapter 5
Discriminants

Discriminants of number fields, introduced by Dedekind in 1871, have proven an

invaluable tool in number theory. The notion of a discriminant has also been an

important tool in the study of orders and lattices in central simple algebras, see

Reiner’s book Maximal Orders [35]. More recently, this discriminant has found new

applications in the noncommutative setting. Bell, Ceken, Palmieri and Zhang used

the discriminant as an invariant in determining the automorphism groups of certain

polynomial identity algebras [7, 8]. In particular, if the discriminant has certain

properties, they showed that the automorphisms must be tame. Bell and Zhang

used the discriminant to resolve the Zariski cancellation problem (A[t] ' B[t]

implies A ' B) in the case of several classes of Artin–Schelter regular algebras [1].

Brown and Yakimov have shown for a prime affine algebra finitely generated over

its center (with some mild conditions), that the zero set of the discriminant ideal

equals the complement of the Azumaya locus [6].

5.1 Definition and Motivation

For an algebraic number field K, consider an Z- basis {y1, y2, . . . , yN} of its ring

of integers OK . Let Tr = TrK/Q be the trace map from K to Q. One definition of

the discriminant ∆K of K is

The material of section 5.2 was previously published in B. Nguyen, K. Trampel,
and M. Yakimov, Noncommutative discriminants via Poisson primes, Adv. Math.
322 (2017), 269–307. Reprinted by permission.
https://www.sciencedirect.com/science/article/pii/S0001870816305692
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∆K = det



Tr(y1y1) Tr(y1y2) . . . Tr(y1yN)

Tr(y2y1) Tr(y2y2) . . . Tr(y2yN)

...
...

. . .
...

Tr(yNy1) Tr(yNy2) . . . Tr(yNyN)


.

This definition is easily generalized to algebras with trace.

Definition 5.1.1. An algebra with trace is an algebra R with a linear map tr : R→

R such that for all x, y ∈ R:

tr(xy) = tr(yx), tr(x)y = y tr(x), and tr(tr(x)y) = tr(x) tr(y).

In particular, the image of tr is a subalgebra of the center of R. We can now

define the discriminant of a set and the discriminant ideal, for an algebra with such

a map.

Definition 5.1.2. The discriminant of the set Y := {y1, . . . , yN} ⊆ R is defined

to be

dN(Y : tr) := det
(
[tr(yiyj)]

N
i,j=1

)
∈ Z(R).

The N-discriminant ideal DN(R/C) is the C-submodule of Z(R) generated by

dN(Y : tr) for the N -element subsets Y ⊆ R.

It is clear that matrix algebras MN with the traditional trace map Tr are exam-

ples of algebras with trace. From these, we can equip more algebras with a trace

map. Consider an algebra R that is free and of finite rank N over some central

subalgebra C ⊆ Z(R). Then the embedding R ↪→MN(C) gives rise to a trace map

tr for R:

tr : R ↪→Mn(C)
Tr−→ C ⊆ R
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Note that this map is independent of the choice of C-basis used to construct the

embedding.

Definition 5.1.3. Say R is a free, rank N module over a subalgebra C of the

center Z(R). The discriminant of R over C is defined by

d(R/C) :=C× dN(Y : tr)

where Y = {y1, . . . , yN} is a C-basis of R and tr is the canonical trace map.

This definition of d(R/C) is well defined up to associates in C, which we de-

note by “=C×”. More specifically, if we were to choose a different C-basis X :=

{x1, . . . , xN} of R, then the discriminant would change by multiplication by a unit

in C. In particular,

dN(X : tr) = det(b)2dN(Y : tr) (5.1)

where b := (bij) ∈MN(C) is the change of bases matrix given by xi =
∑

j bijyj.

5.2 Discriminants of Specializations

5.2.1 General Theorems

In this section we prove two general theorems on discriminants and discrimi-

nant ideals of algebras obtained as specializations. We also give a recipe about

computing discriminants from the first theorem. In the last subsection we obtain

extensions of these results to the setting of Poisson orders introduced by Brown

and Gordon [5]. In order to keep the exposition more transparent we first prove

the results in the more common setting of specializations, and then extend them

to the setting of Poisson orders.

Proposition 5.2.1. Assume that R is an algebra with trace tr : R → C ⊆ Z(R)

which is a free module over C ⊆ Z(R) of rank N .
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(i) If ∂ is a derivation of R such that tr(∂x) = ∂ tr(x) for all x ∈ R, then

∂dN(Y : tr) = 2 tr(b)dN(Y : tr)

for any C-basis Y := {y1, . . . , yN} of R, where b = (bij) ∈ MN(C) is the matrix

with entries given by ∂yi =
∑

j bijyj.

(ii) Let tr : R→ C be the canonical trace map from the embedding R ⊆MN(C)

associated to any C-basis of R. Then every derivation ∂ of R, satisfying ∂(C) ⊆ C,

has the property tr(∂x) = ∂ tr(x), ∀x ∈ R.

Proof. (i) Since Y is a C-basis of R, it is also a C[t]/(t2) of R[t]/(t2). We can extend

our trace map to tr : R[t]/(t2) → C[t]/(t2), in which case it is clear that the dis-

criminant dN(Y : tr) is the same when it is computed for the pair of algebras (R,C)

and (R[t]/(t2), C[t]/(t2)). Consider (1 + t∂)Y := {(1+ t∂)y1, . . . , (1+ t∂)yN} which

is another C[t]/(t2)-basis of R[t]/(t2). We can extend our derivation to R[t]/(t2)

by ∂(t) = 0, so that ∂(tx) = t∂x for x ∈ R. Note that (1 + t∂) is an isomorphism

of R[t]/(t2),

(1 + t∂)(xy) = xy + t∂(xy) = (1 + t∂)x · (1 + t∂)y.

Since the derivation ∂ commutes with trace, then (1+t∂) will as well, tr((1+t∂)x) =

tr(x)+t tr(∂x) = (1+t∂)tr(x). It is now clear from the definition of the discriminant

that

dN((1 + t∂)Y : tr) = (1 + t∂)dN(Y : tr).

But by (5.1) we get

dN((1 + t∂)Y : tr) = det(IN + tb)2dN(Y : tr).

The first part now follows from the fact that dN(Y : tr) ∈ C by comparing the

coefficients of t in

(1 + t∂)dN(Y : tr) = det(IN + tb)2dN(Y : tr).
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(ii) The trace map is independent of basis used for the embedding R[t]/(t2) ↪→

MN(C[t]/(t2)). In particular, consider a basis Y of R over C. Comparing tr(x)

calculated by embedding x with respect to Y to tr((1 + t∂)x) calculated by em-

bedding (1 + t∂)x into MN(C[t]/(t2)) with respect to (1 + t∂)Y , we find that

tr((1 + t∂)x) = (1 + t∂) tr(x) for all x ∈ R. This implies the statement since

tr(x), tr(∂x) ∈ C.

The second part is valid in much greater generality for orders in central simple

algebras [35, Ch. 9-10], but we will not need this here.

Let R be an algebra over K[q±1]. For ε ∈ K×, we denote the specialization of

R at ε by Rε := R/(q − ε)R and the canonical projection by κε : R → Rε. The

center Z(Rε) has a canonical Poisson algebra structure defined by 2.1. Recall that

is given as follows. For z1, z2 ∈ Z(Rε), choose xi ∈ κ−1
ε (zi) and set

{z1, z2} := κε

(
x1x2 − x2x1

q − ε

)
.

Proposition 5.2.2. [12, 28] For every z ∈ Z(Rε), the Hamiltonian derivation

y 7→ {z, y} of the Poisson algebra (Z(Rε), {·, ·}) has a lift to an algebra derivation

of Rε given by

∂x(κε(ỹ)) := κε

(
xỹ − ỹx
q − ε

)
, x ∈ κ−1

ε (z), ỹ ∈ R.

Note that κε(x) ∈ Z(Rε) implies that κε(xỹ− ỹx) = 0, so xỹ− ỹx ∈ (q−ε)R. The

lifts coming from different elements x, x′ ∈ κ−1
ε (z) differ by the inner derivation of

Rε corresponding to κε((x− x′)/(q − ε)).

Theorem 5.2.3. Let R be a K[q±1]-algebra for a field K of characteristic 0 and

ε ∈ K×. Assume that Rε := R/(q − ε)R is a free module of finite rank over a

Poisson subalgebra Cε of its center.

(i) Then d(Rε/Cε) is a Poisson normal element of (Cε, {·, ·}).
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(ii) Assume, in addition, that Cε is a unique factorization domain as a commu-

tative algebra or a noetherian Poisson unique factorization domain. Then,

d(Rε/Cε) = 0 or

d(Rε/Cε) =C×ε

m∏
i=1

pi

for some (not necessarily distinct) Poisson prime elements p1, . . . , pm ∈ Cε.

As usual, a product of 0 primes is considered to be 1. Let (A, {·, ·}) be a Poisson

algebra and u ∈ A×. Then a ∈ A is Poisson normal if and only if ua is Poisson

normal. The discriminant d(Rε/Cε) is defined up to a unit of Cε, but because of

this property it does not matter which representative is considered in part (i) of

the theorem.

If Rε is an order in a central simple algebra, then the discriminant d(Rε/Cε) is

nonzero. Specializations of iterated skewpolynomial extensions fall in this class by

[14, Theorem 1.5]. In particular, this is true for the families of algebras considered

in the next two sections. The nonvanishing of the discriminants of those algebras

also follows from the fact that these algebras have filtrations whose associated

graded algebras are quasipolynomial algebras, see (6.19); by [8, Proposition 4.10]

the leading terms of the discriminants are nonzero. Generally, nonvanishing of

discriminants for Cayley–Hamilton algebras follows from the description of the

kernel of the trace form in [16, Proposition 3.4 (2)].

By [30, Example 5.12], there are examples of Poisson structures on polynomial

algebras that are not Poisson UFDs. In the opposite direction, it is easy to construct

Poisson UFDs that are not UFDs as commutative algebras. In other words the two

classes of algebras in Theorem 5.2.3 (ii) are not properly contained in each other.

The next result is an explicit version of the statement in Theorem 5.2.3 (i).
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Proposition 5.2.4. In the setting of Theorem 5.2.3 (i), let Y := {y1, . . . , yN} be

a Cε-basis of Rε. For all z ∈ Cε and x ∈ κ−1
ε (z), we have

{z, dN(Y : tr)} = 2 tr(b(x))dN(Y : tr)

where b(x) := (bij) ∈MN(Cε) is the matrix with entries given by

∂x(yi) :=
∑
j

bijyj.

Proof. Set δ := dN(Y : tr). The proposition follows by combining Propositions

5.2.1 and 5.2.2:

{z, δ} = ∂xδ = 2 tr(b(x))δ.

Part (i) of Theorem 5.2.3 follows from Proposition 5.2.4. The second part follows

from the first and Proposition 2.3.5.

5.2.2 Scheme for Determining Discriminants

In the situations in which the problem for computing the discriminant d(Rε/Cε)

was posed, Cε differs only slightly from the full center Z(Rε). The restriction of

the Poisson structure {·, ·} to Cε is very nontrivial because of the nature of the

definition in (2.1). This causes the collection of Poisson primes of Cε to be a small

subset of the set of all prime elements of Cε. Theorem 5.2.3 places a strong restric-

tion on the possible form of the discriminant d(Rε/Cε). One can fully determine it

using the following 4 methods and sets of existing results from Poisson geometry

and algebra:

(1) If the algebra Rε is Zn-graded and Cε is a homogeneous subalgebra, then

one can choose a homogeneous Cε-basis Y of Rε. Since, in this case, the trace map

tr : Rε → Cε will be homogeneous, dN(Y : tr) will be graded and

deg dN(Y : tr) = 2
∑
y∈Y

deg y.
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Furthermore, the grading assumption implies C×ε = (Cε)
×
0 , thus the class of asso-

ciates for d(Rε/Cε) will consist of homogeneous elements of the same degree. The

primes in Theorem 5.2.3 (ii) will need to be homogeneous and their degrees will

satisfy
m∑
i=1

deg pi = deg d(Rε/Cε) = 2
∑
y∈Y

deg y.

(2) (A) The symplectic foliations of the Poisson manifolds coming up in the

theory of quantum groups are well understood: the Belavin–Drinfeld Poisson struc-

tures [39], the varieties of Lagrangian subalgebras [19, 20], the Poisson homoge-

neous spaces of non-standard Poisson structures on simple Lie groups [32]. In light

of Lemma 2.3.3, these facts can be translated into results for the Poisson primes of

the corresponding coordinate rings. The results will be for the case when the base

field is C, but the algebras in the theory of quantum groups are defined over Q[q±1]

and by base change one can convert the results to any base field of characteristic

0.

(B) The Poisson primes of all algebras in the very large class of so called Poisson–

CGL extensions are described in [26].

Combining (A) and (B), gives a description of the Poisson primes needed for

Theorem 5.2.3 (ii) for broad classes of algebras.

(3) If Cε is a domain, Theorem 5.2.3 (i) implies that dN(Y : tr) gives rise to a

derivation ∂discr of Cε such that

{dN(Y : tr), z} = dN(Y : tr)∂discr(z), ∀z ∈ Cε.

This derivation is explicitly given by Proposition 5.2.4. Every Poisson prime p ∈ Cε

also gives rise to a derivation ∂p of Cε such that

{p, z} = p∂p(z), ∀z ∈ Cε.
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The primes in Theorem 5.2.3 need to satisfy

m∑
i=1

∂pi = ∂discr.

In fact, when phrased differently, the procedure (3) can be applied to the general

situation when the conditions in Theorem 5.2.3 (ii) are not satisfied. Proposition

5.2.4 determines the Poisson brackets of dN(Y : tr) with all Hamiltonians on SpecCε

from which one can determine the evolution of dN(Y : tr) under all Hamiltonian

flows on SpecCε.

(4) Say A is a filtered algebra that is free of finite rank over a central sub-

algebra Z with Z-basis Y = {y1, . . . , yN}. Then the leading term of the dis-

criminant is closely related to the discriminant of the associated graded algebra

gr A, given the nontrivial condition that gr A is a free gr Z-module with a basis

gr Y = {lt y1, . . . , lt yN} where lt takes the leading term of an element with respect

to the filtration.

Proposition 5.2.5. [8] Under the notation above, assuming gr A is a free gr Z-

module with a basis gr Y. If the discriminant d(A/Z) is nonzero, then

lt d(A/Z) = disc(gr A/gr Z).

Filtrations of R or Rε can then be used to obtain leading term results for

d(Rε/Cε). This puts further restrictions on what Poisson primes can appear in

the expansion in Theorem 5.2.3 (ii) by comparing the leading terms of the two

sides. In concrete situations these filtrations are different from the gradings in (1).

Remark 5.2.6. In [7, 8, 9] the more general problem of computing discriminants

of algebras over integral domains A was considered. One can obtain extensions

of Theorems 5.2.3 (ii) and the results below for specializations of algebras R over

A[q±1] for an integral domain A as follows. First, apply the theorems to the algebras
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R ⊗A Q(A) over Q(A)[q±1] where Q(A) is the field of fractions of A; this would

compute the discriminants dN(Rε⊗AQ(A), Cε⊗AQ(A)). Then compute the leading

term of d(Rε/Cε) over A using [8, Proposition 4.10], i.e., step (4) in section 5.2,

and convert the formula for dN(Rε ⊗A Q(A), Cε ⊗A Q(A)) to one for d(Rε/Cε) by

clearing the denominators and introducing the necessary extra factor from A in

d(Rε/Cε).

5.2.3 Generalizations to Discriminant Ideals

Next we prove two general results for the n-discriminant ideals of specializations

of algebras. Recall Definition 5.1.2 and see [35, p. 126] for more background on

this notion. These results do not assume any freeness conditions like the one in

Theorem 5.2.3.

Theorem 5.2.7. Let R be a K[q±1]-algebra for an infinite field K and ε ∈ K×.

Assume that Cε is a Poisson subalgebra of the center of Rε := R/(q − ε)R and

that Rε is equipped with a trace function tr : Rε → Cε which commutes with all

derivations ∂ of Rε such that ∂(Cε) ⊆ Cε.

Then, for all positive integers n, the discriminant ideal Dn(Rε/Cε) is a Poisson

ideal of Cε. Furthermore, it has the property that ∂(Dn(Rε/Cε)) ⊆ Dn(Rε/Cε) for

all derivations ∂ of Rε such that ∂(Cε) ⊆ Cε.

The first statement in the theorem follows from the second in view of Proposition

5.2.2. The second statement of the theorem follows from the next proposition.

Proposition 5.2.8. Assume that tr : S → C ⊆ Z(S) is a trace for an algebra

S over an infinite field K which commutes with all derivations ∂ of S such that

∂(C) ⊆ C. Then ∂(Dn(S/C)) ⊆ Dn(S/C) for all derivations ∂ of S such that

∂(C) ⊆ C.
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Given a positive integer n, define

〈·, ·〉 : Sn × Sn → C by 〈X ,Y〉 := det
(
[tr(xiyj)]

n
i,j=1

)
for X := (x1, . . . , xn), Y := (y1, . . . , yn) ∈ Sn. This is obviously a symmetric form

on Sn which is C-polylinear in the sense that 〈(x1, . . . , cxk, . . . , xn),Y〉 = c〈X ,Y〉

for all c ∈ C and k ∈ [1, n]. For a derivation ∂ of S, define

∂(X ) := (∂(x1), . . . , ∂(xn))

and

∂(X ) :=
n∑
k=1

(x1, . . . , ∂(xk), . . . , xn).

Proof of Proposition 5.2.8. For p(t) ∈ S[t], denote by coefftip(t) ∈ S the coeffi-

cient of ti in p(t). Using several times the differentiation property of ∂ and the

assumption that ∂ commutes with tr, gives

∂(dn(X : tr)) = 2〈X , ∂(X )〉 = coefft(dn(X + t∂(X ) : tr))

for all X ∈ Sn. The proposition follows from the fact that dn(X + t∂(X ) : tr) ∈

Dn(S/C), ∀t ∈ K and the assumption that K is infinite.

Theorem 5.2.7 and Proposition 5.2.8 have natural bilinear analogs. Let S be

an algebra with trace tr : S → C where C is a subalgebra of Z(S). Following [8,

Definition 1.2 (2)], define the n-th modified discriminant ideal MDn(S/C) to be

the ideal of C, generated by

〈X ,Y〉 for all X ,Y ∈ Sn.

Thus, Dn(S/C) ⊆ MDn(S/C). If S is a free rank N module over C with a basis

X ∈ SN , then

MDN(S/C) = DN(S/C) = (dN(X : tr))
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by an argument similar to the identity (5.1). We refer the reader to [8, Sect. 1] for

other properties of modified discriminant ideals.

Theorem 5.2.9. Assume that k is an infinite field and n is a positive integer.

(i) Let tr : S → C ⊆ Z(S) be a trace for a k-algebra S which commutes with all

derivations ∂ of S such that ∂(C) ⊆ C. Then ∂(MDn(S/C)) ⊆MDn(S/C) for all

derivations ∂ of S such that ∂(C) ⊆ C.

(ii) In the setting of Theorem 5.2.7, for all ε ∈ k×, the modified discriminant

ideal MDn(Rε/Cε) is a Poisson ideal of Cε with respect to the induced Poisson

structure on Cε. Moreover, ∂(MDn(Rε/Cε)) ⊆ MDn(Rε/Cε) for all derivations ∂

of Rε such that ∂(Cε) ⊆ Cε.

Theorem 5.2.9 (i) is proved analogously to Proposition 5.2.8 using the identity

∂〈X ,Y〉 = 〈X , ∂(Y)〉+ 〈∂(X ),Y〉 = coefft〈X + t∂(X ),Y + t∂(Y)〉

for all X ,Y ∈ Sn, obtained by applying the differentiation property of ∂ and the

assumption that ∂ commutes with tr. The second part of the theorem follows from

the first.

5.2.4 In the Setting of Poisson Orders

We finish the section with a generalization of the results in sections 5.2.1 and

5.2.3 to the framework of Poisson orders introduced by Brown and Gordon.

Definition 5.2.10. [5] Assume that S is an affine algebra over a field k of char-

acteristic 0 which is a finite module over a central subalgebra C. The algebra S is

called a Poisson C-order if there is a k-linear map ∆: C → Derk(S) such that

1. C is stable under ∆z for all z ∈ C and

2. the induced bracket {·, ·} on C given by {z1, z2} := ∆z1(z2) turns C into a

Poisson algebra.

49



Proposition 5.2.2 implies that, in the setting of the proposition, Rε is a Poisson

Z(Rε)-order. The map ∆ is given as follows. Choose a K-linear map ω : Z(Rε)→ R

such that κεω = idZ(Rε) and set ∆z = ∂ω(z).

Theorem 5.2.11. Let S be a K-algebra over a field K (of characteristic 0) which

is a Poisson C-order. Let tr : S → C be a trace map that commutes with all

derivations of S that preserve C.

(i) If S is a free C-module (of finite rank), then d(S/C) is a Poisson normal

element of C. If, in addition, C is a unique factorization domain as a commutative

algebra or a noetherian Poisson unique factorization domain, then either d(S/C) =

0 or

d(S/C) =C×

m∏
i=1

pi

for some (not necessarily distinct) Poisson prime elements p1, . . . , pm ∈ C.

(ii) For all positive integers n, the discriminant and modified discriminant ideals

Dn(S/C) and MDn(S/C) are Poisson ideals of C. Furthermore, ∂(Dn(S/C)) ⊆

Dn(S/C) and ∂(MDn(S/C)) ⊆ MDn(S/C) for all derivations ∂ of S such that

∂(C) ⊆ C.

The theorem follows from Propositions 5.2.1, 2.3.5 and 5.2.8 and Theorem 5.2.9

(i).

5.3 Discriminants of Quantum Cluster Algebras

We introduce certain subalgebras of quantum cluster algebras at roots of unity

that contain canonical central subalgebras. In special cases, one of these subal-

gebras might be the whole quantum cluster algebra with the canonical central

subalgebra corresponding to the classical cluster algebra (with extended scalars).
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LetAε(Mε,Λ, B̃, inv) be a quantum cluster algebra with exchange graphEε(Λ, B̃).

Let Θ be a collection of seeds in Eε(Λ, B̃), in other words Θ ⊆ Eε(Λ, B̃)0. We define

Aε(Θ, inv) to be the Z[ε1/2]-subalgebra of Aε(Mε,Λ, B̃, inv) generated by M ′
ε(ej)

for j ∈ [1, N ] and M ′
ε(ei)

−1 for i ∈ inv, for all (M ′
ε,Λ

′, B̃′) ∈ Θ.

We define Cε(Θ, inv) to be the Z[ε1/2]-subalgebra generated by M ′
ε(ej)

` for j ∈

[1, N ] and M ′
ε(ei)

−` for i ∈ inv, for all (M ′
ε,Λ

′, B̃′) ∈ Θ. Assuming that (Mε,Λ, B̃)

meets condition C, then Cε(Θ, inv) is a central subalgebra of Aε(Θ, inv). When

the context is clear, we will drop inv from the notation and write Aε(Θ) or Cε(Θ).

Definition 5.3.1. A finite set of seeds Θ that meets the following condition is

called a nerve:

(N)


The subgraph in Eε(Λ, B) induced by Θ is connected.

For each mutable direction k ∈ ex, there are at least two seeds in Θ

mutation equivalent by µk.

The concept of nerves was introduced in [21] for a practical way of specifying a

quasi-homomorphism of a cluster algebra. A basic example of a nerve would be a

star neighborhood in Eε(Λ, B) of any particular seed.

Theorem 5.3.2. Let ε1/2 be an `th root of unity. Suppose (Mε,Λ, B̃) satisfies

condition C and that Θ is a nerve. Suppose Aε(Θ) is a free Cε(Θ)-module of rank

N . Then the discriminant of Aε(Θ) over Cε(Θ) is given as a product of noninverted

frozen variables raised to the `th power,

d (Aε(Θ)/Cε(Θ)) =Cε(Θ)× `
(N`N )

∏
i∈[1,N ]\extinv

(
Mε(ei)

`
)ai

for some integers ai.

Proof. Suppose (Mε,Λ, B̃) ∈ Θ, noting that all seeds mutation equivalent will

satisfy condition C. From a result on discriminants of skew polynomial algebras

[8, Proposition 2.8], we deduce that

d(Tε(Λ)/Z[ε1/2][x±1
i ]Ni=1) =(Z[ε1/2][x±1

i ]Ni=1)× `
(N`N ).
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where xi is identified with X`
i . Note that our algebras have the following isomor-

phisms,

Aε(Θ)[Mε(ei)
−`]Ni=1 = Tε(Mε) ' Tε(Λ)

and similarly

Cε(Θ)[Mε(ei)
−`]Ni=1 ' Z[ε1/2][x±1

i ]Ni=1.

By inverting the `th powers of the cluster variables, the discriminant d(Aε(Θ)/Cε(Θ))

in comparison to d(Tε(Λ)/Z[ε1/2][x±1
i ]Ni=1) was reduced to `(N`N ). Hence d(Aε(Θ)/Cε(Θ))

must be `(N`N ) multiplied by a unit of (Cε(Θ)[Mε(ei)
−`]Ni=1)×. Hence for some in-

tegers ai,

d(Aε(Θ)/Cε(Θ)) =Cε(Θ)× `
(N`N )

∏
i∈[1,N ]

(
Mε(ei)

`
)ai

We will assume the convention ai = 0 for i ∈ inv. Thus all ai are non-negative.

For some k ∈ ex, the seed µk(Mε,Λ, B̃) lies in Θ. We could have similarly computed

the discriminant as

d(Aε(Θ)/Cε(Θ)) =Cε(Θ)×

∏
i∈[1,N ]

(
µkMε(ei)

`
)a′i .

Since µkMε(ei) = Mε(ei) for i 6= k and µkMε(ek) = Mε(−ek + [bk]+) + Mε(−ek −

[bk]−) is not a monomial in terms of Mε(ej)’s, we must have

ak = 0 = a′k

ai = a′i for i 6= k.

If we compute d(Aε(Θ)/Cε(Θ)) in terms of any (M ′
ε,Λ

′, B̃′) ∈ Θ, then M ′
ε(ek) is

absent from the determinant expression since the nerve Θ is connected. Because

every possible mutation direction k′ ∈ ex occurs as µk′(M
′
ε,Λ

′, B̃′) = (M ′′
ε ,Λ

′′, B̃′′)

for some seeds (M ′
ε,Λ

′, B̃′) and (M ′′
ε ,Λ

′′, B̃′′) in Θ, then ak = 0 for all k ∈ ex and

only frozen variables occur in the discriminant.
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Remark 5.3.3. If we extend scalars for the quantum cluster algebra from Z[ε1/2] to

another domain, we will only have to adjust the discriminant by the integer outside

the product of non-inverted frozen variables. Say we extend scalars of Aε(Θ) and

Cε(Θ) to Q(ε1/2), i.e. set

Aε(Θ)Q(ε1/2) = Aε(Θ)⊗Z Q,

Cε(Θ)Q(ε1/2) = Cε(Θ)⊗Z Q.

Then the discriminant of this algebra is given by

d(Aε(Θ)Q[ε1/2]/Cε(Θ)Q[ε1/2]) =
∏

i∈[1,N ]\extinv

(
µkMε(ei)

`
)ai

up to a multiplication by a unit in Cε(Θ)×Q[ε1/2]
as usual.
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Chapter 6
Quantum Schubert Cells

In this section we prove an explicit formula for the discriminants of quantum

Schubert cell algebras at roots of unity for all symmetrizable Kac–Moody algebras

g and Weyl group elements w ∈ W . Quantum Schubert cells U−[w] are defined

as a subalgebra of Uq(g), but can also be seen as a deformation of U(n− ∩ w(n+))

for the nilradicals n± of a pair of opposite Borel algebras of g. The specialization

of these algebras to roots of unity U−ε [w] were studied by De Concini, Kac, and

Procesi [14]. In particular, a central subalgebra C−ε [w] was identified, over which

U−ε [w] is a free module of finite rank. It is in the context of this central subalgebra

that we will find the discriminants of quantum Schubert cells. To illustrate each

method given in chapter 5, these discriminants will be found first by using the

Poisson structure and second by using the cluster structure of these algebras.

6.1 Background

For two subgroups B1 and B2 of a group G, we will denote by g ·B2 the elements

of G/B2, by B1g ·B2 the B1-orbit of g ·B2 ∈ G/B2, and by B1gB2 the corresponding

double coset in G. Let [cij] ∈ Mr(Z) be a Cartan matrix (of finite type for now)

and Uq(g) be the corresponding quantized universal enveloping algebra defined

over K(q) where K is a field of characteristic 0. We will follow the notation of [29]

except for denoting the Chevalley generators of Uq(g) by Ei, Fi, K
±1
i , i ∈ [1, r] (in

[29] they were indexed by the simple roots of g). Continuing to follow the notation

of [29], we denote the subalgebras generated by {Ei}, {Ki}, and {Fi} respectfully

The material of sections 6.2 and 6.3 was previously published in B. Nguyen,
K. Trampel, and M. Yakimov, Noncommutative discriminants via Poisson primes,
Adv. Math. 322 (2017), 269–307. Reprinted by permission.
https://www.sciencedirect.com/science/article/pii/S0001870816305692
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by U+, U0, and U−. The Hopf subalgebras generated by {Ei, Ki} and {Fi, Ki}

are denoted as U≥ and U≤. Note that some authors denote these subalgebras by

Uq(n+), Uq(h), Uq(n−), Uq(b+), and Uq(b−).

Let W be the Weyl group of [cij], Π = {α1, . . . , αr} the set of simple roots (often

not denoted by Π to limit confusion with Poisson structures), and {s1, . . . , sr} ⊆ W

the corresponding set of simple reflections. Denote by 〈·, ·〉 the W -invariant bilinear

form on
⊕

j Qαi normalized by ‖αi‖2 = 2 for short roots αi. Set qi := q‖αi‖/2.

Given a Weyl group element w and a reduced expression

w = si1 . . . siN ,

consider the roots βj = si1 . . . sij−1
(αij), j ∈ [1, N ]. They are precisely the roots

of the nilpotent Lie algebra n+ ∩ w(n−) where n± are the nilradicals of a pair of

opposite Borel subalgebras of g. The quantum Schubert cell algebras U−[w] are

the K[q±1]-subalgebras of Uq(g) generated by the quantum root vectors

Fβj := Ti1 . . . Tij−1
(Fij), j ∈ [1, N ] (6.1)

where Ti refers to the action [29, 33] of the braid group of W on Uq(g). In particular,

Ti(Ei) = −FiKi, Ti(Ej) = ad(E
−〈αi,αj〉
i )(Ej) for j 6= i,

Ti(Fi) = −K−1
i , Ei Ti(Fj) = ad(F

−〈αi,αj〉
i )(Fj) for j 6= i,

Ti(Kλ) = Ksi(λ)

where Kλ = Ka1
1 K

a2
2 . . . Kar

r for λ =
∑r

i=1 aiαi. Similarly, we have the quantum

Schubert cells U+[w] generated by root vectors

Eβj := Ti1 . . . Tij−1
(Eij), j ∈ [1, N ].

We will restrict our attention to U−[w] for now. Of course, all statements for U−[w]

have appropriate corresponding statements for U+[w]. We will denote, especially in
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section 6.4, Ti1 . . . Tik−1
by Tw[1,k−1]

or Tw≤k−1
. More generally, for w′ = si′1 . . . si′m ∈

W , we write Tw′
[j,k]

= Ti′j . . . Ti′k .

The algebras U−[w] do not depend on the choice of a reduced expression of w [33,

14]. Their generators satisfy the Levendorskii–Soibelman straightening relations:

for 1 ≤ j < m ≤ N ,

FβmFβj − q−〈βm,βj〉FβjFβm =
∑

kj+1,...,kn−1∈N

tkj+1,...,kn−1F
kj+1

βj+1
. . . F

kn−1

βn−1
(6.2)

for some tkj+1,...,kn−1 ∈ Q[q±1]. As a consequence, U−[w] has the PBW basis

{
F k1
β1
. . . F kN

βN
| k1, . . . , kN ∈ N

}
. (6.3)

Remark 6.1.1. The algebras U−[w] can be defined as the algebras with generators

Fβ1 , . . . , FβN and relations (6.2). In particular, they are defined over Q[q±1] and

their specializations at a root of unity ε are defined over Q(ε). All formulas for

discriminants proved for one field of characteristic 0 are valid for any other field of

characteristic 0 by a direct base change.

Let ε ∈ K be a primitive `th root of unity. Denote the specialization U−ε [w] :=

U−[w]/(q − ε)U−[w] and the canonical projection κε : U−[w]→ U−ε [w]. Set

zβj := (ε‖αij ‖/2 − ε−‖αij ‖/2)`κε(Fβj)
` ∈ U−ε [w], j ∈ [1, N ]. (6.4)

Denote by C−ε [w] the K-subalgebra of U−ε [w] generated by zβj , j ∈ [1, N ].

Theorem 6.1.2. [12] For all integers ` > 1, C−ε [w] is a subalgebra of Z(U−ε [w]).

It is isomorphic to the polynomial algebra in the generators zβj , j ∈ [1, N ] and is

independent of the choice of reduced expression of w.

The last part was stated in [12, Proposition 3.3] for the longest element of W ;

the proof works for all w ∈ W . The algebra U−ε [w] is a free C−ε [w]-module with
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basis

Y := {κε(Fβ1)m1 . . . κε(FβN )mN | m1, . . . ,mN ∈ [0, `− 1]}. (6.5)

This and the second part of Theorem 6.1.2 follow from the PBW basis (6.3).

Denote by G the split, connected, simply connected algebraic K-group with Lie

algebra g. Let B± be a pair of opposite Borel subgroups of G and U± be their

unipotent radicals. Let {ei, fi} be a set of Chevalley generators of g that generate

Lie (U±). Denote by ṡi the representatives of si in the normalizer of the maximal

torus H := B+ ∩B− of G given by

ṡi := exp(fi) exp(−ei) exp(fi).

They are extended (in a unique way) to Tits’ representatives of the elements u ∈ W

in NG(H) by setting v̇ := u̇ṡi if v = usi and l(v) = l(u) + 1 where l : W → N is

the length function. For a positive root β of g, denote the root vectors

eβ = Adu̇(eαi) and fβ := Adu̇(fαi) (6.6)

where u ∈ W is any element satisfying β = u(αi) (it is well known that this does

not depend on the choice of u ∈ W and αi).

Consider the Schubert cell B+w · B+ in the full flag variety G/B+ and the

isomorphisms

C−ε [w] ' K[U+ ∩ w(U−)] ' K[B+w ·B+]. (6.7)

The first one is given by

f ∈ K[U+ ∩ w(U−)] 7→ f
(

exp(zβ1eβ1) . . . exp(zβN eβN )
)
∈ C−ε [w]

and the second is the pull-back map for the algebraic isomorphism B+w · B+ '

U+ ∩ w(U−), given by g ∈ U+ ∩ w(U−) 7→ gw · B+. (The first isomorphism is

the presentation of U+ ∩ w(U−) as the product of the one-parameter unipotent
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subgroups of G corresponding to the roots β1, . . . , βN whose coordinate rings are

identified with K[zβj ].)

Denote by P+ the set of dominant integral weights of g and by {$1, . . . , $r} the

set of fundamental weights. Let

ρ = $1 + · · ·+$r.

For λ ∈ P+ and u, v ∈ W , one defines the generalized minors

∆uλ,vλ ∈ K[G]

as follows. Consider the irreducible highest weight g-module L(λ) with highest

weight λ. Let bλ be a highest weight vector of L(λ) and ξλ be a vector in the dual

weight space, normalized by 〈ξλ, bλ〉 = 1. Set

∆uλ,vλ(g) := 〈ξλ, u̇−1gv̇bλ〉, g ∈ G.

Finally, recall that the support of a Weyl group element w is defined by

S(w) := {i ∈ [1, r] | si occurs in one and thus in any reduced expression of w}.

Theorem 6.1.3. Let g be a simple Lie algebra, w a Weyl group element and

` > 2 an odd integer which is 6= 3 in the case of G2. Assume that K is a field of

characteristic 0 which contains a primitive `th root of unity ε. Then

d(U−ε [w]/C−ε [w]) =K× ∆L
ρ,wρ =K×

∏
i∈S(w)

∆L
$i,w$i

in the first isomorphism in (6.7) where L := `N−1(`− 1).

More explicitly, under the first isomorphism in (6.7), the minor ∆λ,wλ corre-

sponds to

〈ξλ, exp(zβ1eβ1) . . . exp(zβN eβN )ẇbλ〉. (6.8)
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The equality between the second and third term in Theorem 6.1.3 follows from the

product property

∆uλ,vλ∆uµ,vλ = ∆u(λ+µ),v(λ+µ), u, v ∈ W,λ, µ ∈ P+

and the fact that ∆$i,w$i |U+∩w(U−) = 1 for i /∈ S(w).

The algebras U−ε [w] and C−ε [w] are defined over Q(ε) and the structure constants

for the C−ε [w]-action on the basis Y belong to Q(ε) because of (6.2). This implies

that it is sufficient to prove Theorem 6.1.3 for any extension K of Q(ε).

In sections 6.4 and 6.5, we will generalize the discriminant result to any sym-

metrizable Kac–Moody. In particular, we will give the discriminant as a product

of the frozen variables which are quantum minors rather than the generalized mi-

nors. The `th powers of these quantum minors can be matched up with generalized

minors to reconcile the two theorems, see Remark 6.5.4 for more details.

6.2 Poisson Structure

Here and in 6.3, we will assume that K = C to avoid technicalities with Poisson

manifolds over general fields of characteristic 0. (All arguments work for general

fields of characteristic 0.)

For a G-action on a manifold M , denote by χ : g → Γ(M,TM) the corre-

sponding infinitesimal action and its extension to multi-tangent vectors, ∧•g →

Γ(M,∧•TM).

Let ∆+ denote the set of positive roots of g. Recall the definition of the root

vectors (6.6) of g. The standard r-matrix for g is the element

r :=
∑
β∈∆+

‖β‖2

2
eβ ∧ fβ ∈ ∧2g. (6.9)

Define the Poisson bivector field

π := −χ(r) ∈ Γ(G/B+,∧2T (G/B+)),
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called the standard Poisson structure of the flag variety G/B+. Denote the open

Richardson varieties

Rv,w := B−v ·B+ ∩B+w ·B+ ⊆ G/B+, v ≤ w ∈ W,

see [4, 17, 36]. We will make repeated use of the following facts:

(A) The H-orbits of symplectic leaves of (G/B+, π) are Rv,w.

(B) Rv,w ∩B+w ·B+ =
⊔
u∈W,u≤v Ru,w,

see [20, Theorem 4.14] and [36, Theorem 3.2].

Theorem 6.2.1. The composition of the two isomorphisms in (6.7) is an isomor-

phism of Poisson algebras

(C−ε [w], {·, ·})→ (C[B+w ·B+], `2ε−1{·, ·}π).

For the proof of Theorem 6.2.1 we will need several constructions for Poisson

algebraic groups and Poisson homogeneous spaces, see [10, Ch. 1] for background.

The standard Poisson structure on G is defined by

πst := χR(r)− χL(r) ∈ Γ(G,∧2TG),

in terms of (6.9). Here χR and χL denote the infinitesimal actions for the actions of

G on itself on the right and the left. The groups B± are Poisson algebraic subgroups

of (G, πst). The r-matrix for the Drinfeld double of the Poisson algebraic group

(G, πst) is

rD :=
∑
β∈∆+

‖β‖2

2
((eβ, eβ) ∧ (fβ, 0)− (fβ, fβ) ∧ (0, eβ))

+
1

2

∑
i

(hi, hi) ∧ (hi,−hi) ∈ (g⊕ g)⊗2

where {hi} is an orthonormal basis of Lie (H) with respect to the bilinear form

〈·, ·〉, extending the one in section 6.1. The double of (G, πst) is the group G × G
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equipped with the Poisson structure

πD := χR(rD)− χL(rD).

The group

G∗ := {(u−h−1, u+h) | u± ∈ U±, h ∈ H} ⊆ G×G

is a Poisson submanifold of (G×G, πD); the pair (G∗,−πD) is the dual Poisson alge-

braic group of (G, πst). The projection onto the first component η : (G×G, πD)→

(G, πst), η(g1, g2) = g1 is Poisson. It restricts to the Poisson quotient map

η : (G∗,−πD)→ (B−,−πst). (6.10)

Denote by τ and θ the unique anti-automorphism and automorphism of G which

on the Lie algebra level are given by

τ(ei) = ei, τ(fi) = fi, τ(α∨i ) = −α∨i and θ(ei) = fi, θ(fi) = ei, θ(α
∨
i ) = −α∨i

for the Chevalley generators of g. It follows from the definition of πst that θτ : (G, πst)→

(G,−πst) is a Poisson map. This gives rise to the Poisson isomorphism

θτ : (B−,−πst)
'−→ (B+, πst). (6.11)

The commutation relations

τAdṡi = Adṡ−1
i
τ and θAdṡi = Adṡ−1

i
θ

and the involutivity of τ and θ imply

θτ(fβ) = eβ for β ∈ ∆+. (6.12)

The nonrestricted rational form of Uq(g) is the C[q±1]-subalgebra, generated

by Ei, Fi, K
±1
i and (Ki − K−1

i )/(qi − q−1
i ). It will be denoted by Unrf

q (g). Con-

sider the specialization Unrf
ε (g) := Unrf

q (g)/(q − ε)Unrf
q (g) and the canonical pro-

jection ν : Unrf
q (g) → Unrf

ε (g). De Concini, Kac and Procesi [12, 13] proved that
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ν(Ei)
`, ν(Fi)

`, ν(Ki)
±` ∈ Z(Unrf

ε (g)) and that, for good integers `, the subalgebra

Cnrf
ε (g), generated by them, is a Poisson subalgebra of Z(Unrf

ε (g)) that contains all

elements ν(Fβj)
`.

Extend the reduced expression w = si1 . . . siN to a reduced expression w◦ =

si1 . . . siM of the longest element of W (here M := dim n−). Extend the set of root

vectors Fβ1 , . . . , FβN to a set of root vectors Fβ1 , . . . , FβN , . . . , FβM by (6.1) applied

for j ∈ [1,M ]. The algebra U−[w◦] is the C[q±1]-subalgebra of Unrf
q (g) generated

by all negative Chevalley generators F1, . . . , Fr.

By the definition of the induced Poisson structure for specializations (see section

2.1), the embeddings of C[q±1]-algebras U−[w] ↪→ U−[w◦] ↪→ Unrf
q (g) give rise to

the canonical embeddings of Poisson algebras

(C−ε [w], {·, ·}) ↪→ (C−ε [w◦], {·, ·}) ↪→ (Cnrf
ε (g), {·, ·}) (6.13)

where all three Poisson structures are the ones from (2.1). The first embedding

is given by sending zβj ∈ C−ε [w] to zβj ∈ C−ε [w◦] for j ∈ [1, N ], recall (6.4). The

second one is given by κε(Fβj)
` 7→ ν(Fβj)

`.

Proof of Theorem 6.2.1. De Concini, Kac and Procesi [12, Theorem 7.6] constructed

an explicit isomorphism of Poisson algebras

IDKP : (Cnrf
ε (g), {·, ·}) '−→ (C[G∗],−`2ε−1{·, ·}πD).

It restricts to the Poisson isomorphism

IDKP : (C−ε [w0], {·, ·}) '−→ (C[F\G∗],−`2ε−1{·, ·}πD)

where F := {(h−1, hu+) | u+ ∈ U+, h ∈ H} and C[F\G∗] is viewed as a Pois-

son subalgebra of C[G∗]. The second isomorphism is explicitly given by f(zβj) =

zj, j ∈ [1,M ] where z1, . . . zM are the coordinate functions on F\G∗ from the
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parametrization

F\G∗ = {F · exp(zMfβM ) . . . exp(z1fβ1) | z1, . . . , zM ∈ C}.

The explicit statement of this result is given in [13, Eq. (4.4.1)]. The factor −`2ε−1

comes from the normalization made in [12, §7.3] and [13, p. 420] for the induced

Poisson bracket on Z(Unrf
ε (g)). The extra factor of 2 in [12, 13] comes from the

fact that the Poisson structure πD differs by a factor of 2 from that in [12, 13].

Composing IDKP with the Poisson maps η∗ and τ ∗θ∗ (see (6.10) and (6.11)) gives

the Poisson isomorphism

τ ∗θ∗η∗IDKP : (C−ε [w0], {·, ·}) '−→ (C[B+/H], l2ε−1{·, ·}πst) (6.14)

where C[B+/H] is viewed as a Poisson subalgebra of (C[B+], l2ε−1{·, ·}πst). The

definition of IDKP and the property (6.12) of τθ imply that the explicit form of the

isomorphism (6.14) is τ ∗θ∗η∗IDKP (zβj) = z̃j, j ∈ [1,M ] where z̃j are the coordinate

functions on C[B+/H] from the parametrization

B+/H = {exp(z̃1eβ1) . . . exp(z̃MeβM ) ·H | z1, . . . , zM ∈ C}.

The flag variety (G/B+, π) is a Poisson homogeneous space for (G, πst). Thus, it

is a Poisson (B+, πst)-space. The property (A), from earlier in the section, implies

that the Schubert cell (B+w · B+, π) is a Poisson homogeneous space for Poisson

algebraic group (B+, πst). By a direct calculation one checks that π vanishes at the

base point w ·B+. Thus, the fact (2.2) implies that the quotient map

(B+, πst)→ (B+w ·B+, π), b+ 7→ b+w ·B+

is Poisson. In the z̃j coordinates the map is given by exp(z̃1eβ1) . . . exp(z̃MeβM ) 7→

exp(z̃1eβ1) . . . exp(z̃NeβN )w · B+. The pull-back map is an embedding of Poisson

algebras

(C[B+w ·B+], {·, ·}π) ↪→ (C[B+/H], {·, ·}πst).
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The theorem follows by combining this embedding, the isomorphism (6.14) and

the first embedding in (6.13).

Denote by Q the root lattice of g. The algebras g, Uq(g), U−ε [w] and C−ε [w] are Q-

graded and the projection κε : U−[w]→ U−ε [w] is graded. The graded components

of these algebras of degree γ ∈ Q will be denoted by (.)γ.

Proposition 6.2.2. The homogeneous prime elements of (C−ε [w], {·, ·}) are ∆$i,w$i

for i ∈ S(w), in terms of the first identification in (6.7). They satisfy

{∆$i,w$i , z} = −`ε−1〈(w + 1)$i, γ〉∆$i,w$iz, ∀z ∈ (C−ε [w])γ.

Proof. For i ∈ S(w), the vanishing ideal of Rsi,w ∩ B+w · B+ in C[B+w · B+] is

(∆$i,w$i), [40, Theorem 4.7]. Each of these sets is irreducible and is a union of

H-orbits of symplectic leaves. This follows from the properties (A)-(B) from the

beginning of the section and the well known fact that the open Richardson varieties

Rv,w are irreducible. Lemma 2.3.3 implies that ∆$i,w$i ∈ C−ε [w] are homogeneous

Poisson prime elements.

Assume that f ∈ C−ε [w] is another homogeneous Poisson prime element. By

Lemma 2.3.3, the zero locus V(f) of f should be a union of H-orbits of symplectic

leaves of (B+w ·B+, π). Since

B+w ·B+ =
⊔

v∈W,v≤w

Rv,w

and dimRv,w = dim(B+w ·B+)− l(v), either V(f)∩R1,w 6= ∅ or V(f)∩Rsi,w 6= ∅

for some i ∈ S(w). The first case is impossible since by (A)-(B), R1,w is a single

H-orbit of symplectic leaves and R1,w ⊃ B+w · B+. In the second case, V(f) ⊇

Rsi,w ∩ B+w · B+ because Rsi,w is a single H-orbit of leaves. Since f is prime,

f =C× ∆$i,w$i .

The formulas for Poisson brackets in the proposition are the specializations at

q = 1 of eq. (5.1) in [41] for y1 = 1.
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6.3 Proof via Poisson Geometry

We proceed with the proof of Theorem 6.1.3. Recall the C−ε [w]-basis Y of U−ε [w]

from (6.5). By Theorem 5.2.3 (ii) and Proposition 6.2.2,

d`N (Y : tr) =C× ∆λ,wλ (6.15)

for some λ ∈ P+. (C−ε [w] is a polynomial algebra and thus a UFD.) We determine

λ by using the methods (1) and (3) in section 5.2: We compare the degrees of the

two sides of the equality (in the Q-grading) and their Poisson brackets with the

elements of C−ε [w]. (Since ∆$i,w$i |U+∩w(U−) = 1 for i /∈ S(w), λ is only defined up

to adding an element of ⊕i/∈S(w)Z$i.) Firstly,

deg ∆λ,wλ = `(w − 1)λ.

This follows for instance from (6.8) by using that deg zβj = −`βj. For the reduced

expression w = si1 . . . siN , recall the notation

w≤j := s1 . . . sij .

Then we have

−βj = −w≤j−1(αij) = w≤jρ− w≤j−1ρ. (6.16)

Since the map tr : U−ε [w]→ C−ε [w] is graded,

deg dlN (Y : tr) = 2
∑
y∈Y

deg y = 2
`−1∑

k1,...,kN=0

deg κε(F
k1
β1
. . . F kN

βN
)

= 2
`−1∑

k1,...,kN=0

k1(w≤1ρ− ρ) + · · ·+ kN(w≤Nρ− w≤N−1ρ)

= (`− 1)`N(w − 1)ρ.

Hence, by comparing degrees in (6.15),

(w − 1)(λ− (`− 1)`N−1ρ) = 0. (6.17)
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Proposition 6.2.2 and the fact that deg zβj = −`βj imply

{∆λ,wλ, zβj} = `2ε−1〈(w + 1)λ, βj〉∆λ,wλzβj , j ∈ [1, N ]. (6.18)

To evaluate {dlN (Y : tr), zβj}, we use Proposition 5.2.4. Since Y is a C−ε [w]-basis

of U−ε [w] and C−ε [w] ' C[zβ1 , . . . , zβN ],

U−ε [w] = ⊕y∈YC[zβ1 , . . . , zβN ]y.

For a monomial µ in zβ1 , . . . , zβN , a basis element y ∈ Y and r ∈ U−ε [w], denote by

coeffµ,y(r) the coefficient of µy in r. For k = (k1, . . . , kN) ∈ NN , denote the PBW

basis element

F k := F k1
1 . . . F kN

N ∈ U−[w].

Lemma 6.3.1. For all k ∈ [1, `− 1]×N and j ∈ [1, N ],

(ε‖αij ‖/2−ε−‖αij ‖/2)` coeffzβj ,κε(Fk)

(
∂F lβj

(κε(F
k))
)

=
( N∑
m=1

sign(m−j)km〈βm, βj〉
)
`ε−1.

Proof. Consider the right-to-left lexicographic order ≺ on NN given by

(k1, . . . , kN) ≺ (m1, . . . ,mN) if kN = mN , . . . , kj+1 = mj+1 and kj < mj for some j.

Recursively applying the straightening law (6.2) gives

F kFm = q−
∑
j>a kjma〈βj ,βa〉F k+m +

∑
k′≺k+m

F k′ . (6.19)

Thus,

F `
βj
F k − F kF `

βj
=
(
q−`

∑
a<j kj〈βj ,βa〉 − q−`

∑
a>j kj〈βj ,βa〉

)
F k+`ej +

∑
k′≺k+`ej

F k′

where {e1, . . . , eN} denotes the standard basis of ZN . The lemma follows from this

by dividing by q − ε and applying κε.
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It follows from (6.15) and (6.18) that

{d`N (Y : tr), zβj}
d`N (Y : tr)zβj

∈ C.

Now, from Proposition 5.2.4 we have

{d`N (Y : tr), zβj}
d`N (Y : tr)zβj

= −2
`−1∑

k1,...,kN=0

(ε‖αij ‖/2 − ε−‖αij ‖/2)` coeffzβj ,κε(Fk)

(
∂F `βj

(κε(F
k))
)

= −2
`−1∑

k1,...,kN=0

( N∑
m=1

sign(m− j)km〈βm, βj〉
)
`ε−1

= (`− 1)`N+1〈(w + 1)ρ, βj〉ε−1.

In the last equality we used the identity−〈(w+1)ρ, βj〉 =
∑N

m=1 sign(m−j)〈βm, βj〉

which follows from (6.16). Comparing this with (6.18), leads to

〈(w + 1)(λ− (`− 1)`N−1ρ), βj〉 = 0 for j ∈ [1, N ].

The definition of βj implies βj − αij ∈ ⊕m<jZαim , and thus,

N⊕
j=1

Zβj =
⊕
i∈S(w)

Zαi.

Therefore,

〈(w + 1)(λ− (`− 1)`N−1ρ), αi〉 = 0 for i /∈ S(w).

This and the degree formula (6.17) give

〈λ− (`− 1)`N−1ρ, αi〉 = 0 for i /∈ S(w),

that is

λ− (`− 1)`N−1ρ ∈
⊕
i/∈S(w)

Z$i.

Theorem 6.1.3 now follows from the fact that ∆$i,w$i |U+∩w(U−) = 1 for i /∈ S(w).
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6.4 Cluster Structure

6.4.1 Quantum Unipotent Cells and Integral Forms

Recently, Goodearl and Yakimov have given an integral cluster algebra struc-

ture to the quantum unipotent cell algebras Aq(n+(w)) for any symmetrizable

Kac–Moody algebra g and Weyl element w. As quantum unipotent cells are anti-

isomorphic to quantum Schubert cells, we will use Theorem 4.1.6 to translate this

cluster structure appropriately.

We now let g be a symmetrizable Kac–Moody algebra rather than a simple Lie

algebra. Fixing notation, we will let [cij] ∈Mr(Z) be its generalized Cartan matrix,

P be its weight lattice, P∨ := HomZ(P ,Z) be its coweight lattice, Π = {α1, . . . , αr}

the set of simple roots, Π∨ the set of simple coroots, and {$1, . . . , $r} the set of

fundamental weights.

We have two anti-isomorphisms ∗ and φ of Uq(g), which are given by

∗(Ei) = Ei, ∗(Fi) = Fi, ∗(Ki) = K−1
i ,

and ϕ(Ei) = Fi, ϕ(Fi) = Ei, ϕ(Ki) = Ki.

The image of the quantum Schubert cells ∗(U±[w]) can be denoted by Uq(n±(w)).

These are also called quantum Schubert cells by some authors and, for w =

si1 . . . siN , can given as the subalgebras generated by the root vectors

T−1

w−1
≤k−1

(Eik) or T−1

w−1
≤k−1

(Fik) for all i ∈ [1, N ]

appropriately for Uq(n+(w)) and Uq(n−(w))

The Rosso-Tanisaki form will be used in defining quantum unipotent cells and in

establishing integral forms for them and for quantum Schubert cells. Recall that a

Hopf pairing between Hopf K-algebras A and H is a bilinear form (·, ·) : A×H → K

such that for any a, b ∈ A and g, h ∈ H,
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1. (ab, h) = (a, h(1))(b, h(2))

2. (a, gh) = (a(1), g)(a(2), h)

3. (a, 1) = εA(a) and (1, h) = εH(h)

in terms of Sweedler notation.

Let d ∈ Z>0 be the integer such that (P∨,P∨) ⊆ Z/d. The Rosso-Tanisaki form

(·, ·)RT : U≤ × U≥ → Q(q1/d) is the Hopf pairing defined by

(Fi, Ej)RT = δij
1

qi − q−1
i

, (Ki, Kj)RT = q−(αi,αj), (Fi, Kλ)RT = 0 = (Kλ, Ei)RT

for all i ∈ [1, r]. Its restriction to U<×U> takes values in Q(q). The Rosso-Tanisaki

form has the following useful properties,

(xKλ, yKµ)RT = (x, y)RT q
−(λ,µ), (U<−γ,U>δ )RT = 0

for x ∈ U<, y ∈ U>, and γ, δ ∈ Q+ with γ 6= δ, see [30].

Let Aq(n+) be the subalgebra of the full dual (U≥)∗ of elements f that satisfy

1. f(xKλ) = f(x) for any x ∈ U> and λ ∈ P and

2. f(x) = 0 for all x ∈ U>γ for γ ∈ Q+\ S where S is a finite subset of Q+.

Then the map ι : U< → (U≥)∗ given by

〈ι(x), y〉 = (x, y)RT for all x ∈ U<, y ∈ U≥,

is an algebra homomorphism since the Rosso-Tanisaki form is a Hopf pairing.

The image of ι is contained in Aq(n+) by the properties highlighted above for

the form. Since the Rosso–Tanisaki form is non-degenerate, ι can be shown to be

an isomorphism onto Aq(n+). The quantum unipotent cells Aq(n+(w)) ⊆ Aq(n+)
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are then defined as the image of U(n+(w)) ⊆ U< under ι. Moreover, we have an

anti-isomorphism

ι ◦ ∗ : U−[w]→ Aq(n+(w)).

Kashiwara defined the quantized coordinate ring Aq(g) for a Kac-Moody al-

gebra g as a subalgebra of the full dual of the quantized enveloping algebra of

g, Aq(g) ⊆ Uq(g)∗ [31]. The dual Uq(g)∗ inherits an algebra structure from the

coalgebra structure of Uq(g), i.e. for c, d ∈ Uq(g)∗ and x ∈ Uq(g)

cd(x) = c⊗ d(∆(x)) = c(x(1))d(x(2))

εd(x) = ε(x(1))d(x(2)) = d(x) = dε(x)

where ∆, ε form the coalgebra structure for Uq(g).

Moreover, Uq(g)∗ is a Uq(g)-bimodule by

〈x · c · y, z〉 = 〈c, yzx〉 for all c ∈ Uq(g)∗, x, y, z ∈ Uq(g).

Recall that a Uq(g)-module is integrable if Ei and Fi act locally nilpotent. The

quantized coordinate ring Aq(g) is then defined as the unital subalgebra of Uq(g)∗

of elements c ∈ Uq(g)∗ such that

Uq(g) · f ∈ Oint(g) and f · Uq(g) ∈ Oint(g
op)

where Oint(g) is the category of integrable left Uq(g)-modules with a condition

on graded subspaces (nontrivial graded subspaces have weights in ∪j(µj +Q) for

finitely many weights µ1, . . . , µn ∈ P) and Oint(g
op) is similarly the category of

integrable right Uq(g)-modules meeting the condition.

Another way to express the quantized coordinate algebra is in terms of matrix

coefficients, which was how they were first defined in the finite dimensional case.

For a module M ∈ Oint(g), define DϕM to be the restricted dual module with
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respect to ϕ,

DϕM := ⊕µ∈PV ∗µ

where Uq(g) is given an action on this dual via ϕ. The matrix coefficient cξv ∈ Uq(g)∗

is defined by

〈cξv, x〉 = 〈ξ, x · v〉

for v ∈ M ∈ Oint(g) and ξ ∈ DϕM . The quantized coordinate ring is then the

subalgebra of U(g)∗ consisting of matrix coefficients,

Aq(g) = {cξv | M ∈ Oint(g), ξ ∈ DϕM, v ∈M}.

It is P × P graded by

Aq(g)µ,λ = {cξv | M ∈ Oint(g), ξ ∈ (Mµ)∗, v ∈Mλ}

for any µ, λ ∈ P .

Let vµ be a highest weight vector of V (µ). For w ∈ W , denote vwµ = Twvµ. In

V (µ)∗wµ, let ξwµ be such that 〈ξwµ, vwµ〉 = 1 The quantum minors of Aq(g) are the

specific matrix coefficients cξuµ,vwµ for u,w ∈ W and µ ∈ P . The set of minors

Ew = {cξwµ,vµ | µ ∈ P+} form a multiplicative set. For a P × P graded algebra

R, let R0 = ⊕ν∈PRν,0. In the case of Aq(g)[E−1
w ], there is an induced Q-grading

on (Aq(g)[E−1
w ])0 rather than just a P-grading. There is a Q-graded surjection

ψw : (Aq(g)[E−1
w ])0 → Aq(n+(w)).

The quantum minors of the quantum unipotent cell Aq(n+(w)) are defined for

u ∈ W , µ ∈ P+ by

Duµ,wµ := ψw(cξuµ,vµc
−1
ξwµ,vµ

).

These can be described directly as the elements of Aq(n+(w))(u−w)µ such that

〈Duµ,wµ, xKλ〉 = 〈ξuµ, xvwµ〉
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for any x ∈ U> and λ ∈ Q. The image of these minors under the anti-automorphism

∗−1◦ι−1 will be defined as the quantum minors of the quantum Schubert cell U−[w].

These quantum minors will play a crucial role in describing the cluster structure

of quantum unipotent cells and quantum Schubert cells.

6.4.2 Quantum Cluster Structure

To discuss the integral quantum cluster algebra structure, we need to establish

integral forms of quantum Schubert cells, U−[w]∨Z[q±1], and quantum unipotent cells,

Aq(n+(w))Z[q±1]. These should be Z[q±1]-algebras such that extending scalars to

Q[q±1] recovers the appropriate algebra, i.e.

U−[w]∨Z[q±1] ⊗Z[q±] Q[q±1] ' U−[w]

Aq(n+(w))Z[q±1] ⊗Z[q±] Q[q±1] ' Aq(n+(w)).

These integral forms are given by the Rosso-Tanisaki form. For the quantum

Schubert cell the dual integral form is given by

U−[w]∨Z[q±1] := {x ∈ U−[w] | (x,U>)RT ⊆ Z[q±1]}.

It is generated as an algebra by rescaled root vectors,

F ′βk =
1

(Fβk , Eβk)RT
Fβk = (q−1

ik
− qik)Fβk ,

which generate the dual PBW basis of U−[w]∨Z[q±1]. The integral form of the quan-

tum unipotent cell is then given by

Aq(n+(w))Z[q±1] := ι ◦ ∗(U−[w]∨Z[q±1]).

The quantum cluster algebra structure technically needs an integral form of the

quantum algebras over Z[q±1/2]. So we will extend the scalars Q[q±1] to Q[q±1/2]

for the algebras and also extend the scalars of the integral forms to Z[q±1/2]. For
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ease of notation we will often denote U−[w]∨Z[q±1/2]
by U−[w]Z and Aq(n+(w))Z[q±1/2]

by Aq(n+(w))Z.

We introduce the quantum seed for quantum unipotent cells in a fashion that

will ease our presentation of the cluster structure of quantum Schubert cells and

will differ slightly from [27] for that purpose. Recall that we have fixed a reduced

expression w = si1 . . . siN . Let p : [1, N ] → [1, N − 1] ∪ {−∞} and s : [1, N ] →

[2, N ] ∪ {∞} be the predecessor and successor maps given by

p(k) = max{j < k | ij = ik} where max∅ = −∞

and s(k) = min{j > k | ij = ik} where min ∅ =∞.

The mutable directions will be given by

ex(w) = {k ∈ [1, N ] | s(k) 6=∞}.

This set includes |ex(w)| = N −S(W ) indices, as each t ∈ S(w) will have one and

only j ∈ [1, N ] such that ij = t and s(j) = ∞. Let B̃w be the N × ex(w) matrix

with entries

(B̃w)j,k =



−1, if j = p(k)

1, if j = s(k)

−cijik if j < k < s(j) < s(k)

cijik if k < j < s(k) < s(j)

0, otherwise

The principal part Bw is skew-symmetric. Moreover, B̃w is compatible with the

N ×N matrix,

(Λw)j,k =
(

(w≤j + 1)$ij , (w≤k − 1)$ik

)
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see [27, Proposition 7.2]. The specific quantum minors D$ik ,w≤k$ik
, for k ∈ [1, N ],

q-commute in the following way,

D$ij ,w≤j$ik
D$ik ,w≤k$ik

= q(−(Λw)j,k)D$ik ,w≤k$ik
D$ij ,w≤j$ij

, k < j.

There is a unique toric frame M̂w
q : ZN → Fract(Tq(ΛT

w)) ' Fract(Aq(n+(w))Z)

with corresponding matrix ΛT
w given by

M̂w
q (ek) = qa[1,k]D$ik ,w≤k$ik

for any k ∈ [1, N ]

where a[1, k] = ‖(w[j,k]−1$ik)‖/4 ∈ Z/2.

Theorem 6.4.1 ([27]). Let g be any symmetrizable Kac–Moody algebra and w ∈ W

a Weyl element with a fixed reduced expression, w = si1 . . . siN . Then the inte-

gral form of quantum unipotent cells has a cluster structure, Aq(n+(w))Z[q±1/2] =

Aq(M̂w
q ,−B̃w,∅). Moreover, for the nerve ΞN , Aq(M̂w

q ,−B̃w,∅) = Aq(ΞN).

The subset ΞN of the symmetric group SN is the collection of permutations σ

such that σ([1, k]) is an interval for any k. We can combinatorially describe this

subset in terms of one-line notation: first move 1 as far right as desired, then move

2 as far right as desired up to where 1 now is, then moving 3 right possibly up to

2, et cetera.

[1 2 3 4 . . . N ] [2 1 3 4 . . . N ] [2 3 1 4 . . . N ] [2 3 4 1 . . . N ] . . .

[3 2 1 4 . . . N ] [3 2 4 1 . . . N ] . . .

...
. . .

The nerve denoted by ΞN is a collection of quantum seeds linked by sequences

of one-step mutations from the seed (M̂w
q ,−B̃w), see [27, Theorem 7.3]. These

quantum seeds contain toric frames given by cluster variables

M̂w
q,σ(el) = qa[j,k]Dw≤j−1$ij ,w≤k$ij

= qa[j,k]Tw≤j−1
D$ij ,w[j,k]$ij
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where j = min{m ∈ σ([1, l]) | im = iσ(l)} and k = max{m ∈ σ([1, l]) | im = iσ(l)}

(noting that ij = ik). In particular, M̂w
q,id = M̂w

q .

The quantum seeds in ΞN are connected by mutations in the following way. Let

σ, σ′ ∈ ΞN be permutations such that σ′ = σ ◦ (k, k + 1) in cycle notation. Note

that the permutation group SN acts on seeds on the right by reordering the basis,

denoted by (M, B̃) · σ or M · σ. If iσ(k) 6= iσ(k+1), then the corresponding quantum

seeds are equivalent up to ordering the basis by switching k and k + 1,

M̂w
q,σ′ = M̂w

q,σ · (k, k + 1).

If iσ(k) = iσ(k+1), then the seeds are linked by mutation,

M̂w
q,σ′ = µk(M̂

w
q,σ) · (k, k + 1).

It is clear by the combinatorial description of ΞN ⊂ SN that any two permutations

of ΞN are linked by a finite sequence of simple transpositions. Thus we see that

the corresponding collection of seeds ΞN is a nerve.

By Theorem 4.1.6 and the anti-isomorphism ι ◦ ∗, we get a cluster structure for

dual integral form quantum Schubert cells, given by quantum seed ((M̂w
q )op, B̃w).

Denote (M̂w
q )op by Mw

q for convenience. We will abuse notation and denote the

images of the quantum minors ι ◦ ∗(Dµ,uµ) in U−[w]Z by Dµ,uµ. In particular, we

are writing

Mw
q (ek) = qa[1,k]D$ik ,w≤k$ik

∈ U−[w]Z.

The nerve ΞN in the exchange graph of Aq(M
w, B̃w) will be the connected subset

of seeds that is isomorphic to ΞN in the exchange graph of Aq(M̂
w,−B̃w), mapping

(Mw, B̃w) to (M̂w,−B̃w) and matching mutation appropriately. We record this all

as the following corollary.
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Corollary 6.4.2. The dual integral form of quantum Schubert cells has a cluster

structure and it is equal to the subalgebra given by nerve ΞN ,

U−[w]Z = Aq(Mw, B̃w,∅) = Aq(ΞN)

We now argue that this quantum cluster structure descends to a root of unity

quantum cluster structure on quantum Schubert cells at a root of unity.

Proposition 6.4.3. There exists an integral form of the quantum Schubert cell at

a root of unity U−ε [w]Z isomorphic to the quantum cluster algebra at a root of unity

Aε(Mw
ε ,Λw, B̃

w). Moreover, it is equal to the subalgebra given by the nerve ΞN ,

U−ε [w]Z = Aε(Mw
q ,Λw, B̃

w) = Aε(ΞN).

Proof. Let U−[w] be defined over a K = Q(ε1/2), a field of characteristic zero that

contains an `th root of unity. The choice of this field will make the argument cleaner

to express, but is not necessary.

We have that the integral quantum cluster algebra U−[w]Z is a subalgebra of

Tq(Λw) by the quantum Laurent phenomenon, where we are identifying Tq(Λw) '

Tq(Mw). Consider κε : Tq(Λw) → Tε(Λw), the quotient map with kernel (Φ`(q
1/2))

as in Lemma 4.1.1.

U−[w]Z Tq(Λw) Fract(Tq(Λw))

Tε(Λw)

κε

The generators Mw
q (ei) of Tq(Λw) map to the canonical generators of Tε(Λw). Note

this gives us a root of unity toric frame Mw
ε : ZN → Frac(Tε(Λw)), where Mw

ε (ei) =

κε(M
w
q (ei)).

Restricting κε to U−[w]Z, we get a subalgebra of Tε(Λw). The kernel of this re-

striction is the ideal generated by Φ`(q
1/2) inside of U−[w]Z. Examining the K[q±1/2]

map U−[w]→ κε(U−[w]Z)⊗Q which maps generators to generators and q1/2 7→ ε1/2,
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we find that the kernel is (q1/2 − ε1/2) and κε(U−[w]Z) ⊗ Q ' U−ε [w]. Hence this

subalgebra of Tε(Λw) is an integral form of U−ε [w], which we will label by U−ε [w]Z.

Since we have a surjection Eq(Λw, B̃
w) � Eε(Λw, B̃

w), let XiN in the context

of Eε(Λw, B̃) mean the image of Ξn. For instance, we have Mw
ε ∈ ΞN . As the

image of κε restricted to U−[w]Z, it is clear that U−ε [w]Z is generated by M ′
ε(ei)

for M ′
ε ∈ ΞN as U−[w]Z = Aq(ΞN). Thus as subalgebras of Fract(Tε(Λw)), we have

U−ε [w]Z = Aε(ΞN). Since Aq(ΞN) = Aq(Mw
q , B̃

w) and Eq(Λw, B̃
w) � Eε(Λw, B̃

w),

we must have Aε(ΞN) = Aε(Mw
ε ,Λw, B̃

w).

6.5 Proof via Quantum Cluster Algebras

By Proposition 6.4.3, we have a quantum cluster algebra structure on U−ε [w]Z.

Moreover, it is equal to its subalgebra Aε(Ξ). In using the cluster structure and

Theorem 5.3.2 to solve for the discriminants d(U−ε [w]/C−ε [w]), we first need to show

that the subalgebras Cε(Ξ) and C−ε [w] are equal after extending scalars appropri-

ately. We start with the following exercise.

Lemma 6.5.1. The quantum minor D$ij ,w[j,j]$ij
is a scalar multiple of Fij . More-

over, the root vectors Fβj are given by the cluster variables Mw
q,σ (or Mw

ε,σ as ap-

propriate), up to rescaling, for σ = [j j + 1 . . . N j − 1 . . . 2 1] ∈ ΞN .

Proof. Consider the Uqij (sl2)-subalgebra of Uq(g) given by

E 7→ Eij , F 7→ Fij , K 7→ Kij .

Note w[j,j] = sij and the quantum minor gets mapped D$1,s1$1 7→ D$ij ,sij$ij
.

77



Let us consider ι(F ) ∈ Aqij (n+) ⊆ (U≥qij (sl2))∗. Recall that

〈ι(F ), y〉 = (F, y)RT for any y ∈ U≥qij (sl2),

〈ι(F ), xKn〉 = 〈ι(F ), x〉 for any x ∈ U>qij (sl2),

and 〈ι(F ), x〉 = 0 for any x ∈ U>qij (sl2)µ, µ 6= 0.

This along with 〈ι(F ), E〉 = (F,E)RT = (qij − q−1
ij

)−1 completely describes ι(F ).

Now vs1$1 = Ts1v$1 = −qijFv$1 . Hence for x ∈ U>qij (sl2), we have

〈D$1,s1$1 , xK
n〉 = −qij〈ξ$1 , xFv$1 .〉

From this we see that 〈D$1,s1$1 , E〉 = −qij and 〈D$1,s1$1 , x〉 = 0 for x ∈ (U>qij (sl2))µ

where µ 6= 1. Hence D$1,s1$1 = qij(q
−1
ij
− qij)ι(F ) for Uqij (sl2). Thus in U−[w]

ι−1(D$ij ,w[j,j]$ij
) = qij(q

−1
ij
− qij)Fij .

We have that Tw≤j−1
ι−1(D$ij ,w[j,j]$ij

) = qij(q
−1
ij
− qij)Fβj . For

σ = [j j + 1 . . . N 1 2 . . . j − 1],

recall that the cluster variables associated with σ are

Mw
q,σ(el) = qa[n,k]Tw≤n−1

D$in ,w[n,k]$in

where n = min{m ∈ σ[1, l] | im = iσ(l)} and k = max{m ∈ σ[1, l] | im = iσ(l)}. So

for l = 1, we have n = j, k = j, and

Mw
q,σ(el) = qa[j,j]Tw≤j−1

D$ij ,w[j,j]$ij
= qij(q

−1
ij
− qij)qa[j,j]Fβj .

This implies the root of unity case as well by considering κε.

Proposition 6.5.2. Suppose ε is a root of unity such that (Mw
ε ,Λw, B̃

w) satisfies

condition C. Given any Kac–Moody algebra g and Weyl element w, the canonical

central subalgebra Cε(ΞN) ⊗ Q of Aε(Ξ) ⊗ Q = U−ε [w] is equal to the canonical

central subalgebra C−ε [w].
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Proof. By Lemma 6.5.1, we have that C−ε [w] ⊆ Cε(ΞN). To show the reverse in-

clusion, we will show that the `th powers of the quantum minors of Cε(ΞN) can be

written in terms of F `
β1

, . . . , F `
βN

.

We need only show that D`
$iN ,w$iN

can be written in terms of the `th pow-

ers of Lusztig’s root vectors. The cases of D`
$ij ,w≤j$ij

will follow by induction

on the length of w, noting that U−ε [w≤k] ↪→ U−ε [w]. Then the general case of

D`
w≤j−1$ij ,w≤k$ij

(noting ik = ij) also follows by induction on the length of w, since

Dw≤j−1$ij ,w≤k$ij
= Tw≤j−1

D$ij ,w[j,k]$ij
can be seen as an element of Tw≤j−1

(U−ε [w[j,k]]).

Suppose that p(N) = −∞, i.e. in 6= ij for all j < N . Then w≤N−1$iN = $iN

and D$iN ,w$iN
= Tw≤N−1

D$iN ,siN$iN
. Thus D`

$iN ,w$iN
is a scalar multiple of F `

βN

by Lemma 6.5.1.

Now suppose that p(N) = j for some j < N . In this case, s(j) = N and

B̃w
N,j = −1. By Lemma 4.3.1, we have that

Mw
ε (ej)

` (µjM
w
ε (ej))

` =
∏
B̃wij>0

(Mw
ε (ei)

`)bij + Mw
ε (eN)`

∏
B̃wij<0, i6=N

(Mw
ε (ei)

`)|B̃
w
ik|

and hence

D`
$iN ,w$iN

= q−`a[1,N ]Mw
ε,σ(ej)

` =
P (F `

β1
, . . . , F `

βN
)

Q(F `
β1
, . . . , F `

βN
)

for some polynomials P,Q in N variables over Z(q±1/2). However, D`
$iN ,w$iN

is

an element of U−ε [w] and can be written in terms of Fβ1 , . . . , FβN . Hence Q must

divide P , and it must be possible to write D`
$iN ,w$iN

in terms of F `
β1
, . . . , F `

βN
.

We are now ready to prove the main theorem on discriminants for quantum

Schubert algebras. We could present the theorem for the integral version, U−ε [w]Z,

but for clarity of the proof we will present it for U−ε [w] over Q(ε1/2). Recall from

Remark 6.1.1, that finding the formula of the discriminant d(U−ε [w]/C−ε [w]) for

any field that contains a primitive `th root of unity ε will solve the formula for
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any other. From Remark 5.2.6, we are able to compute the discriminant in the

integral version from the discriminant over the field. In this particular case, the

only difference between the two discriminants is a scalar that can calculated from

the discriminant d(Tε(Λw)/Z[ε1/2][X±`i ]Ni=1).

Theorem 6.5.3. Let g be a symmetrizable Kac–Moody algebra, w a Weyl group

element and ` > 2 an odd integer which is coprime to dik for all k. Assume that K

is a field of characteristic 0 which contains a primitive `th root of unity ε. Then

d(U−ε [w]/C−ε [w]) =K×
∏
k 6∈ex

DL
$ik ,w≤k$ik

where L := `N(`− 1).

Proof. By Proposition 6.4.3, the quantum Schubert cell has a (non-integral) cluster

structure,

U−ε [w] = Aε(Mw
q ,Λw, B̃

w)⊗Q = Aε(ΞN)⊗Q

noting that Z[ε1/2] = Z[ε] and Q(ε1/2) = Q(ε) since ` is odd. From Proposition

6.5.2, our central subalgebras align Cε(ΞN) ⊗ Q = C−ε [w]. By the PBW basis of

U−[w], we have that the algebra Aε(ΞN) ⊗ Q is a free Cε(ΞN) ⊗ Q-module with

same basis from (6.5),

Y = {κε(Fβ1)m1 . . . κε(FβN )mN | m1, . . . ,mN ∈ [0, `− 1]}.

Since ` is coprime to all dik , we have that (Mw
q ,Λw, B̃

w) meets condition C from

section 4.3. It is now clear that all hypotheses of Theorem 5.3.2 are met and that

the discriminant is given by a product of frozen variables,

d (Aε(ΞN)⊗Q/Cε(ΞN)⊗Q) =
∏
k 6∈ex

(Mw
ε (ek))

ak

up to multiplication by a unit in Cε(ΞN) ⊗ Q, keeping in mind Remark 5.3.3. As

these cluster variables ε-commute and ε is a unit of central subalgebra, there is no

ambiguity about order of multiplication.
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In particular, the frozen variables are Mw
ε (ek) = D$ik ,w≤k−1$ik

for k ∈ [1, N ]

such that s(k) = ∞. Note that there is one and only one t ∈ S(w) with ik = t.

Hence the number of frozen variables is |S(w)|. Finding the multiplicities of these

quantum minors will finish the proof.

A ZN -filtration can be put on U−[w] by the reverse lexicographical ordering on

the PBW basis (6.3). This descends to a ZN -filtration on U−ε [w]. Note that the

associated graded algebra gr U−ε [w] also is graded by G = (Z/`Z)N , and with

respect to this grading, C−ε [w] is homogeneous of degree 0. Note that gr U−ε [w] is

a free gr C−ε [w] algebra with basis gr Y since both the basis and the subalgebra

are homogeneous. By Proposition 5.2.5, the discriminant satisfies

degG
(
lt d(U−ε [w]/C−ε [w])

)
= degG

(
d(gr U−ε [w]/gr C−ε [w])

)
= 2

∑
0≤mi≤`−1

degG (κε(Fβ1)
m1 . . . κε(FβN )mN )

= `N(`− 1)(e1 + e2 + · · ·+ eN)

where {ei} is the standard basis of G.

The leading terms of the quantum minors D$ik ,w≤k−1$ik
are given in terms of

the predecessors pn(k) of k,

lt D$ik ,w≤k−1$ik
= Fβpmk (k)

. . . Fβp(k)Fβk

where mk is the maximal integer such that pmk(k) 6= −∞, see [27]. We find for the

discriminant that

lt d(U−ε [w]/C−ε [w]) =
∏
k 6∈ex

lt Dak
$ik ,w≤k−1$ik

=
∏
k 6∈ex

(Fβpmk (k)
. . . Fβp(k)Fβk)

ak

in the associated graded algebra gr U−ε [w]. Since each t ∈ S(w) corresponds to

only one k 6∈ ex, then Fβj , for each j ∈ [1, N ], is a component of only one of the
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multiplicands above. In terms of degree,

`N(`− 1)
N∑
i=1

ei = degG
(
lt d(U−ε [w]/C−ε [w])

)
=
∑
k 6∈ex

ak(epmk (k) + · · ·+ ep(k) + ek).

Hence the multiplicities are given by ak = `N(`− 1) = L.

Remark 6.5.4. We can reconcile Theorem 6.1.3 and Theorem 6.5.3 by matching

up `th powers of quantum minors D`
$ik ,w≤k$ik

with appropriate generalized minors

∆$ik ,w$ik
. In the context of the theorem, D$ik ,w≤k$ik

= D$ik ,w$ik
since k is such

that s(k) = ∞. The matching of these quantum and generalized minors can be

seen by noting that the `th powers of the frozen quantum cluster variables of

Aε(Mw
q ,Λw, B̃

w) align with the frozen cluster variables of A(B̃w) via Theorem

4.3.5. These frozen variables of the cluster structure on the coordinate ring of the

Schubert cell are the generalized minors. Note this explains that the L’s differ by

a factor of ` in the two theorems.
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