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Abstract

First part of this dissertation studies the problem of designing metamaterial crys-

tals with double negative effective properties for applications in optics by inves-

tigating the conditions necessary for generating novel dispersion properties in a

metamaterial crystal with subwavelength microstructure. This provides novel op-

tical properties created through local resonances tied to the geometry of the media

in subwavelength regime.

In the second part, this dissertation studies the representation formula used to

describe band structures in photonic crystals with plasmonic inclusions. By using

layer potential techniques, a magnetic dipole operator describing the tangential

component of the electrical field generated by magnetic distribution is studied. Its

compactness is proved and used to obtain the spectral representation formula for

the magnetic field.
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Chapter 1
Notations

Throughout this thesis, we will denote by R3 and C3 the 3− dimensional real

and complex Euclidean spaces respectively. The differential operators ∇, ∇· and

∇× are defined in the usual way for a complex vector valued function defined

on a bounded domain D in C3. The integrals discussed in this thesis are always

understood in the sense of Lebesgue integration.

We denote by L2(D,C3) the complex vector valued square integrable functions

defined on a bounded domain D in C3 and, for u ∈ L2(D,C3)

‖u‖L2 :=
(∫

D
|u|2 dx

) 1
2

where |u| denotes the Euclidean norm of u. We denote by L2
#(D,C3) the space of

functions in L2(D,C3) that are periodic on ∂D. The inner product in L2(D,C3) is

given by

(u, v) :=
∫
D
u(x) · v(x) dx, u, v ∈ L2(D,C3)

We frequently consider vector valued functions satisfying different partial differ-

ential equations in different parts of a domain which has certain inclusions as its

subdomains. In order to better characterize the problems such functions solve in

the whole domain, we often need to consider the jump in the value of these func-

tions across boundaries of inclusions. We denote by [u]∂K the jump in u across

the boundary of K, while u
∣∣∣
∂K−

and u
∣∣∣
∂K+

represent the restriction of u to ∂K

from inside and outside of the domain K respectively. Similarly, we often denote

by n ·u
∣∣∣
∂K−

and n×u
∣∣∣
∂K−

the restriction of the normal component and tangential

trace of the vector valued function u to ∂K from inside of the domain K, while

n · u
∣∣∣
∂K+

and n × u
∣∣∣
∂K+

represent the restriction of the normal component and

tangential trace of the vector valued function u to ∂K from outside of the domain

1



K.

When the restriction of functions to the boundary of a domain is considered, it

will be necessary to study surface differential operators acting on tangential vector

fields defined the boundary of the domain. We will denote by ∇su and ∆su the

surface gradient and surface divergence of the tangential gradient of tangential

vector field u on the boundary of the domain under consideration. We follow the

definitions for these boundary differential operators given in [12].

2



Chapter 2
Metamaterial Crystal

2.1 Introduction and Problem Setup

2.1.1 Introduction

Metamaterials are known to be the materials that exhibit novel properties which

are not found in nature. They are usually synthesized from patterned compos-

ite material components in a periodic structure. When the period length of such

microstructures is designed to be much less than the wavelength of incident light,

interesting interactions occur between the material and the electromagnetic waves.

Due to such interactions, structural geometry of material can be manipulated to

obtain desired novel optical properties. One of such novel properties that has been

the focus of research in recent years is the double negative metamaterials which

has frequency dependent negative effective magnetic permeability and negative

effective dielectric permittivity. Optical metamaterials with double negative effec-

tive properties have wide range of applications such as biomedical imaging, optical

lithography and data storage.

In 1968, the novel properties of materials were studied under the assumption of

negative dielectric constant and negative magnetic permeability [13]. The double

negative effective properties of periodic array of non-magnetic metallic split-ring

resonators at microwave frequency was studied in [14]. Artificial bulk magnetism

using infinite periodic array of micro-resonators was studied in [6]. The double

negative properties of metamaterials made from arrays of metallic posts and split

ring resonators was experimentally demonstrated in [15]. Double negative prop-

erty of materials obtained for such resonators with different geometric structures in

[16, 17, 18, 19, 20, 21, 30, 31]. Double negative properties of metamaterials obtained

by employing dielectric material with large permittivity studied in [34, 35, 36].
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Obtaining double negative properties of metamaterials made from high dielectric

core with plasmonic coating at optical frequency studied in [22, 23, 38]. Metama-

terial crystals with double negative effective properties are obtained using periodic

array of unit cells consisting of two different inclusions in [7] and [8]. Negative bulk

dielectric permeability at infrared and optical frequencies using special configura-

tions of plasmonic nanoparticles studied in [39, 40].

The appearance of effective properties for describing scattering problems for

metamaterial inclusions made from subwavelength resonators is initiated in [1],

[9] in 3D. The dispersion relation and convergent power series representation for

Bloch wave in periodic high contrast media with a single inclusion are obtained

in [4] and [5]. Recently, the generation of double negative metallic media using

two scale expansions can be found in [10] and metamaterials from subwavelength

nonmagnetic resonators to control refraction was studied in [41].

Our goal in this chapter of this dissertation is to study the design of metamaterial

crystal constructed through the use of high dielectric and frequency-dependent

dielectric inclusions in the host material. The novelty in this work is that our

analysis is done based on full 3-D model. By using asymptotic expansion approach,

we obtain dispersion relation for the propagation of homogenized electromagnetic

waves through the mematerial crystal.

2.1.2 Problem Setup

The metamaterial crystal studied in this dissertation is constructed through pe-

riodic assemblage of a cube of side length d. In each cube, the region occupied

by the host material is denoted by H and it contains two types of non-magnetic

inclusions: one with a high dielectric constant and denoted by R, and the other

denoted by P has a frequency-dependent dielectric constant. A plane view of a
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typical cube in the assemblage is shown below. Since we do not assume prescribed

point charges and currents, the Maxwell system of partial differential equations

which governs the electromagnetic waves traveling through this media takes the

following form,
∇× E = −µd

∂H

∂t

∇ · (ε
d
E) = 0

∇×H = ε
d

∂E

∂t

∇ ·H = 0

(2.1)

where H and E denote the magnetic field and the electric field respectively.

The magnetic permeability µd := µ0 is given by its free space value while the

dielectric constant ε
d
(x) of metamaterial crystal of period length d with period cell

Y d = (0, d)3 is given by

εd =



εp,rel(w) in P

εr,rel
d2 in R

ε0 in H

(2.2)

where εp,rel and εr,rel represent the dielectric permittivity of the inclusions P and R

respectively, and ε0 is given by the dielectric permittivity value for the free space.

For the electromagnetic waves propagating through the crystal, we consider time-
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harmonic fields in (2.1) that take the following form

E(x, t) = E(x)e−iωt, H(x, t) = H(x)e−iωt (2.3)

where ω is the wave frequency. Substituting (2.3) into (2.1), we get

∇× E = iωµdH

∇×H = −iωε
d
E

∇ · ε
d
E = 0

∇ ·H = 0

(2.4)

and both the electrical field E and the magnetic field H are continuous across the

boundaries of inclusions R and P .

By changing the variable through y = x/d, we write (2.4) along with (2.2) as

the following problem posed in the unit cell Y = (0, 1)3

∇× E = idωµ0H [H] = 0

∇×H = −idωε0ε
d
relE [n×H] = 0

∇ · εd,relE = 0 [n ·H] = 0

∇ ·H = 0

(2.5)

εd
rel

(y) =



1− ξr/ξ in P

1/ρ2 in R

1 in H

(2.6)

with ξ = (εr,relω2)/c2, ξr = (ω2
pεr,rel)/(c2ξ), ρ = d/(√εr,rel) and ωp is the plasmon

frequency of the inclusion P . We set η = (2πd)/λ and write

E(y) =
∞∑
n=0
en(y)ηneiηk̂·y, H(y) =

∞∑
n=0
hn(y)ηneiηk̂·y,

√
ξ =

∞∑
n=0

√
ξnη

n.

We substitute them into (2.5) to get power series expansion of the Maxwell’s

equations. Our main results are obtained by collecting and studying the leading
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order terms in this expansion.

The rest of this chapter is organized as follows: We present the main results in

section 2.2 and the proofs of the main results follow in section 2.3.

2.2 Main Results

2.2.1 Characterization of Leading Order Terms

Before presenting our main theorem, we first make clear the characterization of

the leading order terms e0 and h0 in the limit η → 0. Such characterizations are

realized by identifying the leading order terms as the solutions to certain problems

expressed in the following theorems.

Theorem 2.1. (1) The leading order term e0 ∈ H̃(curl, Y ) is characterized as

e0 = 0 in R

e0 = ∇ϕ+ c in Y∫
Y
e0 dy = c ϕ ∈ W 1,2

# (Y,C)

(2.7)

where the space W 1,2
# (Y,C) is given by

W 1,2
# (Y,C) :=

{
u
∣∣∣ u ∈ L2

#(Y,C), ∂iu ∈ L2
#(Y,C), ∇ · u = 0 in Y, ∇u+ ~c = 0 in R

}
for ~c ∈ C3 with the inner product on W 1,2

# (Y,C)

(u, v) :=
∫
Y
∇u · ∇vdy u, v ∈ W 1,2(Y,C)

Also, ϕ = −c · ϕk, and ϕk is the solution to

∇ · [ap(y)(∇ϕk + ẽk)] = 0

n · εp,rel(ξ0)(∇ϕk + ẽk)
∣∣∣
∂P−

= n · (∇ϕk + ẽk)
∣∣∣
∂P+

(2.8)

where ẽk, k = 1, 2, 3 are the basis vectors, and

ap(y) =


1 y ∈ H

εp,rel(ξ0) y ∈ P
(2.9)

7



(2) The leading order term h0 ∈ H̃(curl, Y ) is characterized as

∇× h0 = 0 in Y \R

∇ · h0 = 0 in Y

∇×∇× h0 = ξ0h0 in Y

(2.10)

and

[h0]
∣∣∣
∂R

= 0, [h0]
∣∣∣
∂P

= 0 (2.11)

with

H̃(curl, Y ) := {u |u ∈∈ H#(curl, Y ), ∇ · u = 0}

H#(curl, Y ) =
{
u
∣∣∣u ∈ L2(Y,C3), ∇× u ∈ L2(Y,C3), u is unit periodic on ∂Y

}

2.2.2 Homogenization Theorem

In our asymptotic analysis, we find that the electric and magnetic activity in

the unit cell are determined by the leading order terms e0 and h0. While the

homogenized electric activity is given by the volumetric average of e0 over the

unit cell, the homogenized magnetic activity is dewscribed by a new quantity, the

geometric average
∮
h0 which is given by .

(∮
h0

)
· ek :=

∫
Γk
h0 · ek dH 1

with Γk being a curve connecting two opposite points on the faces of the unit cube

Y and orthogonal to the unit vector ek and lying outside of R. The need for the

geometric average is due to the fact that the magnetic field is curl free in Y \ R,

meaning that the magnetic field along any curve connecting two points on the

opposite faces of Y and lying in Y \ R is the same as can be observed from the

definition of
∮
h0 above.

Now we are ready to present our main theorem in this chapter.

8



Theorem 2.2. (1) The plane waves (homogenized H field) Hhom(x, t) and the

homogenized magnetic field Bhom(x) are given by

Hhom(x, t) =
(∮

h0

)
e(ikk̂·x−iω0t)

Bhom(x, t) = µ
eff
Hhom(x, t)

(2.12)

and Hhom(x, t) satisfies

∇× ε−1
eff∇×Hhom(x, t) = ω2

0
c2 µeff

Hhom(x, t) (2.13)

(2) The plane waves (homogenized E field) Ehom(x, t) and the homogenized elec-

tric displacement field Dhom(x) are given by

Ehom(x, t) =
∫
Y
e0 dx e

(ikk̂·x−iω0t)

Dhom(x, t) = ε
eff
Ehom(x, t)

(2.14)

and Ehom(x, t) satisfies

∇× µ−1
eff∇× Ehom(x, t) = ω2

0
c2 εeffEhom(x, t) (2.15)

where ε
eff

and µ
eff

are effective dielectric permittivity tensor and effective mag-

netic permeability tensor respectively.

2.2.3 Maxwell’s System of Equations For Homogenized Fields

Theorem 2.3. The homogenized fields satisfy the following Maxwell’s equations

for a homogeneous effective media

∇× Ehom = iε0ω0Bhom

∇×Hhom = −iµ0ω0Dhom

k̂ ·Dhom = 0

k̂ ·Bhom = 0

(2.16)

9



2.2.4 Homogenized Dispersion Relation

The homogenized dispersion relation for the electromagnetic waves traveling through

the metamaterial crystal is given by the following theorem.

Theorem 2.4. For given k̂ and k, the frequencies ξ0 for which plane waves can

propagate with polarization
∮
h0 in the direction k̂ at wave length λ = k

2π are the

roots of the equation

det
[
εrk

2A + ξ0µeff
(ξ0)

]
= 0 (2.17)

with Aij = Eipmk̂pEmnj
[
ε−1
eff (ξ0)

]
np
k̂p, i, p,m, n, j = 1, 2, 3 where Eipm and Emnj

are the symbols for the Levi-Civita tensors.

The admissible polarization v =
∮
h0 lie in the null space of the matrix in (2.17)

and [
εrk

2A + ξ0µeff
(ξ0)

]
v = 0 (2.18)

By equation (2.17), we can find frequency regimes whereh both µ
eff

and ε
eff

exhibit negative behavior.

To fix ideas, if we assume that the material is isotropic, then for this media, the

dispersion relation is given by

ξ0 = εrk
2α−1k̂ · k̂ γ−1 (2.19)

where α, γ are constants appearing in the the formulas ε
eff

= αI3, µ
eff

= γI3

which is the simplification of formulas of effective properties described in the next

theorem.

The equation (2.19) shows the existence of ξ0 such that both α and γ are negative

or positive. The following figures illustrate such ξ0 ∈ [x1, x2] for which α < 0, γ < 0

10



or ξ0 ∈ [x3, x4] for which α > 0, γ > 0.

2.2.5 Formulas for Effective Property Tensors

Theorem 2.5. (1) The effective magnetic permeability tensor µ
eff

describing the

overall magnetic activity of the electromagnetic wave in the periodic media is given

by

µ
eff

(ξ0) =
∞∑
1

ξ0

λn − ξ0

(∫
Y
ϕn

)
⊗
(∫

Y
ϕn

)
+ I3 (2.20)

where (λn, ϕn), n = 1, 2, · · · are the eigenpairs of the following eigenvalue

problem ∫
Y

(∇× ϕn) · (∇× w) = λn

∫
Y
ϕn · w w ∈ X (2.21)

with

X :=
{
u

∣∣∣∣u ∈ W 1,2
# (Y,C3), ∇× u = 0 in Y \R, ∇ · u = 0,

∮
u = 0

}

and

W 1,2
# (Y,C3) :=

{
u
∣∣∣ u ∈ L2

#(Y,C3), ∂iu ∈ L2
#(Y,C3)

}
with the inner product

(u, v) :=
∫
Y

(∇u) : (∇v)dy u, v ∈ W 1,2
# (Y,C3)

11



(2) The effective dielectric permittivity tensor ε
eff

describing overall electric

activity of the electromagnetic wave in the periodic media is given by

ε
eff

(ξ0) = (εp(ξ0)θP + θH)I3 −Q

Q =
∑

0≤µn≤1

ε2
p(ξ0)AP,Pµn + εp(ξ0)(AP,Hµn + AH,Pµn ) + AH,Hµn

1− µn + εp(ξ0)µn

AD1,D2
µn =

(∫
D1
∇ψµn

)
⊗
(∫

D2
∇ψµn

)
where θP , θH re the volumes of P and H respectively, and ψµn are the eigen-

functions associated to the eigenvalues µn of the following eigenvalue problem

µn

∫
Y \R
∇ψµn · ∇v =

∫
P
∇ψµn · ∇v, v ∈ W 1,2

# (Y \R,C)

where W 1,2
# (Y \R,C) is the restriction of W 1,2

# (Y,C) to Y \R.

2.3 Proof of Main Results

2.3.1 Proof of Theorem 2.1

We first prove (1) of Theorem 2.1.

Proof. Substitution of

E(y) =
∞∑
n=0
en(y)ηneiηk̂·y, H(y) =

∞∑
n=0
hn(y)ηneiηk̂·y,

√
ξ =

∞∑
n=0

√
ξnη

n

into (2.5) gives the following

• In R

τ [(∇× e0 + iηk̂ × e0) + η(∇× e1 + iηk̂ × e1) + · · · ]

= iη
√
n−1

0 (
√
ξ0 +

√
ξ1η +

√
ξ2η

2 + · · · )(h0 + ηh1 + η2h2 + · · · )
(2.22)
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[(∇× h0 + iηk̂ × h0) + η(∇× h1 + iηk̂ × h1) + · · · ]

= −i
√
n0

ρ
(
√
ξ0 +

√
ξ1η +

√
ξ2η

2 + · · · )(e0 + ηe1 + η2e2 + · · · )
(2.23)

• In P

τ [(∇× e0 + iηk̂ × e0) + η(∇× e1 + iηk̂ × e1) + · · · ]

= iη
√
n−1

0 (
√
ξ0 +

√
ξ1η +

√
ξ2η

2 + · · · )(h0 + ηh1 + η2h2 + · · · )
(2.24)

τ [(∇× h0 + iηk̂ × h0) + η(∇× h1 + iηk̂ × h1) + · · · ]

= −iη√n0(
√
ξ0 + η

√
ξ1 + · · · )(1− ξr√

ξ0 + η
√
ξ1 + · · ·)(e0 + ηe1 + · · · )

(2.25)

• In H

τ [(∇× e0 + iηk̂ × e0) + η(∇× e1 + iηk̂ × e1) + · · · ]

= iη
√
n−1

0 (
√
ξ0 +

√
ξ1η +

√
ξ2η

2 + · · · )(h0 + ηh1 + η2h2 + · · · )
(2.26)

τ [(∇× h0 + iηk̂ × h0) + η(∇× h1 + iηk̂ × h1) + · · · ]

= −iη√n0(
√
ξ0 +

√
ξ1η +

√
ξ2η

2 + · · · )(e0 + ηe1 + η2e2 + · · · )
(2.27)

• On R-H interface

n · (e0 + ηe1 + · · · )
∣∣∣
∂R−

= ρ2n · (e0 + ηe1 + · · · )
∣∣∣
∂R+

(2.28)

n× [(∇× e0 + iηk̂ × e0) + η(∇× e1 + iηk̂ × e1) + · · · ]
∣∣∣
∂R−

= n× [(∇× e0 + iηk̂ × e0) + η(∇× e1 + iηk̂ × e1) + · · · ]
∣∣∣
∂R+

(2.29)

• On P-H interface

n ·
[
(
√
ξ0 + η

√
ξ1 + · · · )2 − ξr

]
(e0 + ηξ1 + · · · )

∣∣∣
∂P−

= n · (
√
ξ0 + η

√
ξ1 + · · · )(e0 + ηξ1 + · · · )

∣∣∣
∂P+

(2.30)

n× [(∇× e0 + iηk̂ × e0) + η(∇× e1 + iηk̂ × e1) + · · · ]
∣∣∣
∂P−

= n× [(∇× e0 + iηk̂ × e0) + η(∇× e1 + iηk̂ × e1) + · · · ]
∣∣∣
∂P+

(2.31)

13



We also have

• In R

(∇ · e0 + iηk̂ · e0) + η(∇ · e1 + iηk̂ · e1) + · · · = 0 (2.32)

• In P

(
√
ξ0 + η

√
ξ1 + · · · )[(∇·e0 + iηk̂ ·e0) + η(∇·e1 + iηk̂ ·e1) + · · · ] = 0 (2.33)

• In H

(∇ · e0 + iηk̂ · e0) + η(∇ · e1 + iηk̂ · e1) + · · · = 0 (2.34)

• On R-H interface

n · 1
ρ2ei

∣∣∣
∂R−

= n · ei
∣∣∣
∂R+

(2.35)

• On P-H interface

n · εp,relei
∣∣∣
∂P−

= n · ei
∣∣∣
∂P+

(2.36)

From (2.22), (2.24) and (2.26), we have

τ(∇× e0) = 0, in R

τ(∇× e0) = 0, in P

τ(∇× e0) = 0, in H

(2.37)

From (2.29), (2.31), and (2.36), we have

n×∇× e0

∣∣∣
∂R−

= n×∇× e0

∣∣∣
∂R+

n×∇× e0

∣∣∣
∂P−

= n×∇× e0

∣∣∣
∂P+

εp,rel(ξ0)n · e0

∣∣∣
∂P−

= n · e0

∣∣∣
∂P+

(2.38)
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From (2.32)-(2.35), we have

∇ · e0 = 0, in R

∇ · εp,rele0 = 0, in P

∇ · e0 = 0, in H

n · e0

∣∣∣
∂R−

= 0

(2.39)

Using (2.37), we find that∫
Y
|∇ × e0|2dy =

∫
R
|∇ × e0|2dy +

∫
P
|∇ × e0|2dy +

∫
H
|∇ × e0|2dy

= 0
(2.40)

So e0 can be written in Y as

e0 = ∇ϕ+ c, ϕ ∈ W 1,2
# (Y,C), c ∈ C3 (2.41)

Using (2.39), we observe that∫
R
|e0|2dy =

∫
R
e0 · ∇(ϕ+ c · y)dy

=
∫
∂R−

n · e0(ϕ+ c · y)ds

= 0

(2.42)

and this imples that e0 = 0 in R. But since e0 = ∇ϕ+ c = 0 in R, we notice that

ϕ = c · ϕk, k = 1, 2, 3

ϕk = −yk, yk ∈ C3
(2.43)

with ϕ = c · ϕk, and ϕk is the solution to

∇ · [ap(y)(∇ϕk + ẽk)] = 0

n · εp,rel(ξ0)(∇ϕk + ẽk)
∣∣∣
∂P−

= n · (∇ϕk + ẽk)
∣∣∣
∂P+

(2.44)

where ẽk, k = 1, 2, 3 are the unit normal vectors originated from the origin, and

ap(y) =


1 y ∈ H

εp,rel(ξ0) y ∈ P
(2.45)
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Finally, we have
∫
Y
e0dy =

∫
Y

(∇ϕ+ c)dy∫
∂Y
n ϕ ds+ c

= c

(2.46)

which completes the proof of (1).

Now, we prove (2) of Theorem 2.1.

Proof. The equation (2.11) is obvious.

Next, we prove the first two equations in (2.10). To do this, will collect the 0th

order terms of η from (2.22)-(2.36) to identify the problem h0 satisfies.

From (2.25) and (2.27) along with the fact that [h0] = 0 across the boundaries of

inclusions, we have
∇× h0 = 0 in P

∇× h0 = 0 in H

∇ · h0 = 0 in Y

(2.47)

which directly gives the second equation in (2.10). From the fact that [h0] = 0

across the boundaries of inclusions, we have

[n×∇× h0]
∣∣∣
∂R

= 0

[n×∇× h0]
∣∣∣
∂P

= 0

and

[n · h0]
∣∣∣
∂R

= 0

[n · h0]
∣∣∣
∂P

= 0
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Now we observe that, for any ψ ∈ W 1,2
# (Y \R)

∫
Y \R
∇× h0 · ∇ψ dy

=
∫
P
∇× h0 · ∇ψ dy +

∫
H
∇× h0 · ∇ψ dy

=
∫
∂R

(n · ∇ × h0)
∣∣∣
∂R+

ψds+
∫
∂P

[n · ∇ × h0]
∣∣∣
∂P
ψds

(2.48)

If h0 = (h1, h2, h3), then

∇× h0 = (∂2h3 − ∂3h2, −(∂1h3 − ∂3h1), ∂1h2 − ∂2h1)

n · ∇ × h0 = (n1∂2h3 − n2∂1h3)− (n3∂1h2 − n1∂3h2)e2 + (n2∂3h1 − n3∂2h1)

and since n · ∇ × h0 is only involving tangential derivatives, we conclude that

∫
∂P

[n · ∇ × h0]
∣∣∣
∂P
ψds = 0 (2.49)

and we get ∫
∂R

(n · ∇ × h0)
∣∣∣
∂R+

ψds = 0 (2.50)

equations (2.48), (2.49), and (2.50) completes the proof of the first equation in

(2.10).

Finally, we prove the third equation in (2.10). To do this, we write (2.23) as

(∇+ iηk̂)× (h0 + ηh1 + · · · )

= −i
√
n0

ρ
(
√
ξ0 + η

√
ξ1 + · · · )(e0 + ηe1 + · · · )

(2.51)

and apply the differential operator (∇+ iηk̂)× to the both side of (2.51) to get

(∇+ iηk̂)× (∇+ iηk̂)× (h0 + ηh1 + · · · )

= −i
√
n0

ρ
(
√
ξ0 + η

√
ξ1 + · · · )(∇+ iηk̂)× (e0 + ηe1 + · · · )

(2.52)

Collecting the 0th order term of η in (2.52), we find

∇×∇× h0 = −iτ√n0

√
ξ0(∇× e0 + ik̂ × e0) in R (2.53)
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Collecting the first order term of η in (2.22), we find

τ
√
n0

√
ξ0(∇× e0 + ik̂ × e0) = i

√
n−1

0

√
ξ0h0 in R (2.54)

Substituting (2.54) into (2.53), we get

∇×∇× h0 = ξ0h0 in R (2.55)

Taking advantage of the first equation in (2.10) and the relevant result in [1]

completes the proof of (2).

2.3.2 Proof of Theorem 2.2

Proof. The equations (2.12) and (2.14) are obvious.

Now we prove (2.13).

Comparing the terms with the first power of η in (2.23)-(2.27), we have the fol-

lowing equations

τ(∇× e1 + ik̂ × e0) = i
√
n−1

0

√
ξ0h0 in R

τ(∇× e1 + ik̂ × e0) = i
√
n−1

0

√
ξ0h0 in P

τ(∇× e1 + ik̂ × e0) = i
√
n−1

0

√
ξ0h0 in H

(2.56)

(∇× h1 + ik̂ × h0) = −iτ√n0
√
ξ0e1 in R

τ(∇× h1 + ik̂ × h0) = −i√n0
√
ξ0εp,rel(ξ0)e0 in P

τ(∇× h1 + ik̂ × h0) = −i√n0
√
ξ0e0 in H

(2.57)

Integrating equations in (2.56) in their respective domains and adding them up,

we get

τ
∫
Y
ik̂ × e0 dy = i

√
n−1

0

√
ξ0

∫
Y
h0 dy (2.58)

We define the effective magnetic permeability to be the tensor µ
eff

such that

µ
eff

(∮
h0

)
=
∫
Y
h0(y)dy (2.59)
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Now we can write equation (2.58) as

τ ik̂ ×
(∫

Y
e0

)
= i

√
n−1

0

√
ξ0µeff

(∮
h0

)
(2.60)

By setting e∗,i = ∇(ϕi + yi), i = 1, 2, 3 where ϕi and yi are defined as in (2.43),

we notice that

e∗,i = 0 in R, ∇ · e∗,i = 0, in Y,
∫
Y
e∗,i = ẽi, i = 1, 2, 3 (2.61)

and for any function p ∈ W 1,2
# (Y,C)∫

Y
∇p · (∇ϕi + ẽi) dy =

∫
Y \R

p ∇ · e∗,i dy +
∫
R
p ∇ · e∗,i dy

+
∫
∂R
p ni · [∇ϕi + ẽi] ds+

∫
∂Y
p ni · [∇ϕi + ẽi] ds = 0

(2.62)

where ni is the ith component of the outward unit normal vector to ∂R. We

multiply e∗,i to each equation in (2.57) and integrate them over their respective

domains. Adding the resulted equations and noting that e∗,i = 0 in R, we get

τ
(∫

Y
∇× h1 · e∗,i dy +

∫
Y
ik̂ × h0 · e∗,i dy

)
= −i√n0

√
ξ0

∫
Y
εdrel(ξ0, y)e0 · e∗,i dy

(2.63)

We first observe that∫
Y
∇× h1 · ∇(ϕi + yi) dy

=
∫
Y \R
∇× h1 · ∇(ϕi + yi) dy +

∫
R
∇× h1 · ∇(ϕi + yi) dy

+
∫
Y \R

h1 · ∇ ×∇(ϕi + yi) dy +
∫
R
h1 · ∇ ×∇(ϕi + yi) dy

+
∫
∂R
h1 × ni · [∇ϕi + ẽi] ds+

∫
∂Y
h1 × ni · [∇ϕi + ẽi] ds

= 0

(2.64)

By similar calculation, we find that∫
Y
εdrel(ξ0, y)e0 · e∗,i dy

=
∫
Y
εdrel(ξ0, y)e0 · (∇ϕi + ẽi) dy

=
∫
Y
εdrel(ξ0, y)(∇χ+ e)dy · ẽi

(2.65)
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where

e0 = ∇χ+ e,
∫
Y
e0 dy = e, χ ∈ W 1,2

# (Y,C) (2.66)

Also, by the property of geometric average [1],

iτ
∫
Y
k̂ × h0 · e∗,i dy

= iτ ·
∫
Y
h0 dye

∗,i × k̂

= iτ ·
∫
Y
h0 dy(∇ϕi + ẽi)× k̂

= iτ
(
k̂ ×

∮
h0

)
· ẽi

(2.67)

Finally, applying (2.64), (2.65), and (2.67) in (2.63) gives

iτ
(
k̂ ×

∮
h0

)
· ẽi = −i√n0

√
ξ0

∫
Y
εdrel(ξ0, y)(∇χ+ e)dy · ẽi (2.68)

We now define the effective dielectric permittivity tensor to be ε
eff

such that

ε
eff
e · ẽi :=

∫
Y
εdrel(ξ0, y)(∇χ+ e)dy · ẽi (2.69)

and write (2.68) as

τ
(
k̂ ×

∮
h0

)
= −√n0

√
ξ0εeff

(∫
Y
e0

)
(2.70)

which gives ∫
Y
e0 dy = −τ 1√

ξ0n0
ε−1
eff

(
k̂ ×

∮
h0

)
(2.71)

Substituting (2.71) into (2.60), we obtain

−τ 2k̂ × ε−1
eff
k̂ ×

∮
h0 = ξ0µeff

∮
h0 (2.72)

Multiplying eiηk̂·xd to both sides of (2.72), we notice that

−τ 2
(
k̂ × ε−1

eff
k̂ ×

∮
h0

)
eiηk̂·

x
d = ξ0µeff

∮
h0 e

iηk̂·x
d (2.73)

By the relation

∂2
x

(
eiηk̂·

x
d

)
= ∂2

x(eikk̂·x) (2.74)
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and vector product identity, we arrive at

∇x × ε−1
eff
∇x ×

∮
h0 e

iκ·x = ω2
0
c2 µeff

∮
h0 e

iκ·x (2.75)

Multiplying e−iωt to the both sides of (2.75) and noting thatHhom(x, t) =
(∮

h0

)
e(ikk̂·x−iω0t)

completes the proof of (2.13).

(2) By expressing
∮
h0 in (2.60) and substituting it into (2.70), we get

−τ 2k̂ × µ−1
eff
k̂ ×

∫
Y
e0 = ξ0εeff

∫
Y
e0

Multiplying eiηk̂·xd to both sides and using relation (2.74), we get

∇x × µ−1
eff
×
∫
Y
e0 e

iκ·x = ω2
0
c2 εeff

∫
Y
e0 e

iηk̂·x
d

Multiplying e−iωt to the both sides and noting that Ehom(x, t) =
∫
Y
e0 dx e

(ikk̂·x−iω0t)

completes the proof of (2.15).

2.3.3 Proof of Theorem 2.3

Proof. By multiplying eiηk̂·xd to equation (2.60) and substituting cε0 =
√
n−1

0 ,
√
ξ0 =

ω0

c
εr, we find that

∇x ×
(∫

Y
e0 e

iκ·x
)

= iε0ω0µeff

(∮
h0 e

iκ·x
)

Multiplying e−iω0t to both sides and using (2.12) completes the proof of the first

equation in (2.3).

By multiplying eiηk̂·
x
d to equation (2.70) and substituting cε0 =

√
n−1

0 ,
√
ξ0 =

ω0

c
εr, we find that

∇x ×
(∮

Y
h0 e

iκ·x
)

= −iµ0ω0εeff

(∫
e0 e

iκ·x
)

Finally, multiplying e−iω0t to both sides and using (2.14) completes the proof of

the second equation in (2.3).
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The third and the fourth equations are the direct consequence of applying the

divergence operator to Hhom and Ehom in (2.12) and (2.14).

2.3.4 Proof of Theorem 2.4

Proof. We start with equation (2.72). Using Einstein summation notation and

Levi-Civita tensor notations, we can write

[
ε−1
eff (ξ0)k̂ ×

∮
h0
]
m

= Emnj
[
ε−1
eff (ξ0)k̂

]
n

[ ∮
h0
]
j

(2.76)

and (
k̂ ×

[
ε−1
eff (ξ0)k̂ ×

∮
h0
])

i

= Eipmk̂p
[
ε−1
eff (ξ0)k̂ ×

∮
h0
]
m

(2.77)

Using (2.76) in (2.77), we get
(
k̂ ×

[
ε−1
eff (ξ0)k̂ ×

∮
h0
])

i

= Eipmk̂pEmnj
[
ε−1
eff (ξ0)k̂

]
n

[ ∮
h0
]
j

(2.78)

We can also write [
ε−1
eff (ξ0)k̂

]
n

=
[
ε−1
eff (ξ0)

]
np
k̂p (2.79)

So finally, we get
(
k̂×

[
ε−1
eff (ξ0)k̂×

∮
h0
])

i

= Eipmk̂pEmnj
[
ε−1
eff (ξ0)

]
np
k̂p
[ ∮

h0
]
j
, i, p,m, n, j = 1, 2, 3.

(2.80)

By the matching of ith component, we can also write

ξ0µeff
(ξ0)

∮
h0 = ξ0

[
µ
eff

(ξ0)
]
ij

[ ∮
h0
]
j

(2.81)

So equation (2.72) is written by components as

0 = τ 2 k̂ × ε−1
eff (ξ0)k̂ ×

∮
h0 + ξ0µeff

(ξ0)
∮
h0

= τ 2Eipmk̂pEmnj
[
ε−1
eff (ξ0)

]
np
k̂p
[ ∮

h0
]
j

+ ξ0
[
µ
eff

(ξ0)
]
ij

[ ∮
h0
]
j

(2.82)
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Equation (2.82) implies that the determinant equation for ξ0 for a given wave

number k can be written as

det
[
τ 2A + ξ0µeff

(ξ0)
]

= 0, Aij = Eipmk̂pEmnj
[
ε−1
eff (ξ0)

]
np
k̂p, i, p,m, n, j = 1, 2, 3.

(2.83)

Noting that τ 2 = k2εr, ξ0 = ω2
0
c2 εr completes the proof.

2.3.5 Proof of Theorem 2.5

Proof. (1) We will show the formula (2.20) by applying the series expansion for

h0 in the definition of µ
eff

given by

µ
eff

(∮
h0

)
=
∫
Y
h0(y)dy (2.84)

The leading order theory shows that h0 belongs to the space H∗(curl, Y ) with

H∗(curl, Y ) := {u ∈ H#(curl, Y ) | ∇ · u = 0, ∇× u = 0 in Y \R} ,

H#(curl, Y ) =
{
u
∣∣∣u ∈ L2(Y,C3), ∇× u ∈ L2(Y,C3), u is unit periodic on ∂Y

}
and solves the following problem

∫
Y

(∇× h0) · (∇× w) =
∫
Y
ξ0h0 · w, w ∈ H∗(curl, Y ) (2.85)

If we denote the geometric average of h0 by
∮
h0 := z ∈ C3 and write h0 = h∗+ z

in Y \R, then we find that h∗ solves
∫
Y

(∇× h∗) · (∇× w)− ξ0

∫
Y
h∗ · w = ξ0

∫
Y
z · w w ∈ X (2.86)

It’s been shown in [1] that the solution h∗ to the problem (2.86) is given by

h∗ =
∞∑
n=1

anϕn where {ϕn} is the family of real valued, orthonormal family of

eigenfunctions associated to the eigenvalues λn of the eigenvalue problem
∫
Y

(∇× ϕn) · (∇× w) = λn

∫
Y
ϕn · w w ∈ X (2.87)
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and X = span{ϕn}.

We write h0 = hz0 where hz0 linearly depends on z. Since hz0 is curl free in Y \ R,

we have:

∇×∇× hz0 = ξ0h
z
0

hz0(y) = h∗z(y) + z

z =
∮
hz0, h∗z(y) ∈ X

Using linearity, we write

hz0(y) = z1h
1
0(y) + z2h

2
0(y) + z3h

3
0(y), y ∈ Y

where hi0 is the solution of the following problem:

∇×∇× hi0 = ξ0h
i
0

hi0(y) = h∗i(y) + ei

ei =
∮
hi0, h∗i(y) ∈ X

For z = ~ξ =
∮
h
~ξ
0 ∈ C3, we write

~ξ = ξ1e1 + ξ2e2 + ξ3e3

hz0 = h
~ξ
0 = ξ1h

1
0 + ξ2h

2
0 + ξ3h

3
0

(2.88)

Substituting h∗1(y) =
∞∑
n=1

anϕn into the strong form of (2.86) with z = e1, we see

that

∇×∇×
( ∞∑
n=1

anϕn + e1

)

= ∇×∇×
( ∞∑
n=1

anϕn

)

= λn
∞∑
n=1

anϕn

= ξ0

∞∑
n=1

anϕn + ξ0e1

(2.89)
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We take the dot product of both sides with ϕk and integrate over Y to get

∞∑
n=1

∫
Y
anλnϕn · ϕk = ξ0

∞∑
n=1

∫
Y
anϕk · ϕn +

∫
Y
ξ0e1 · ϕk

Using the orthogonality of the basis functions {ϕn}, we find

anλn = ξ0an + ξ0e1 ·
∫
Y
ϕn

Then, we get

an =
ξ0e1 ·

∫
Y
ϕn

λn − ξ0

h∗1(y) =
∞∑
n=1

ξ0e1 ·
∫
Y
ϕn

λn − ξ0
ϕn

h1
0 =

∞∑
n=1

ξ0e1 ·
∫
Y
ϕn

λn − ξ0
ϕn + e1

(2.90)

Repeating the above process for h∗2(y) =
∞∑
n=1

bnϕn, and h∗3(y) =
∞∑
n=1

cnϕn,

we get

bn =
ξ0e2 ·

∫
Y
ϕn

λn − ξ0

h∗2(y) =
∞∑
n=1

ξ0e2 ·
∫
Y
ϕn

λn − ξ0
ϕn

h2
0 =

∞∑
n=1

ξ0e2 ·
∫
Y
ϕn

λn − ξ0
ϕn + e2

(2.91)

and

cn =
ξ0e3 ·

∫
Y
ϕn

λn − ξ0

h∗3(y) =
∞∑
n=1

ξ0e3 ·
∫
Y
ϕn

λn − ξ0
ϕn

h3
0 =

∞∑
n=1

ξ0e3 ·
∫
Y
ϕn

λn − ξ0
ϕn + e3

(2.92)
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Now, we have

h1
0 =

∞∑
n=1

ξ0e1 ·
∫
Y
ϕn

λn − ξ0
ϕn + e1

h2
0 =

∞∑
n=1

ξ0e2 ·
∫
Y
ϕn

λn − ξ0
ϕn + e2

h3
0 =

∞∑
n=1

ξ0e3 ·
∫
Y
ϕn

λn − ξ0
ϕn + e3

(2.93)

and

h
~ξ
0 = ξ1h

1
0 + ξ2h

2
0 + ξ3h

3
0

=
∞∑
n=1

ξ0ξ1e1 ·
∫
Y
ϕn

λn − ξ0
ϕn + ξ1e1

+
∞∑
n=1

ξ0ξ2e2 ·
∫
Y
ϕn

λn − ξ0
ϕn + ξ2e2

+
∞∑
n=1

ξ0ξ3e3 ·
∫
Y
ϕn

λn − ξ0
ϕn + ξ3e3

=
∞∑
n=1

ξ0~ξ ·
∫
Y
ϕn

λn − ξ0
ϕn + ~ξ

(2.94)

Since h0 = h
~ξ
0 with ~ξ =

∮
h0, substituting (2.94) into (2.84) delivers the following

formula for µ
eff

µ
eff

(ξ0) =
∞∑
n=1

ξ0

λn − ξ0

(∫
Y
ϕn

)
⊗
(∫

Y
ϕn

)
+ I3 (2.95)

(2) We recall that the effective dielectric permitivity is defined such that

ε
eff

(ξ0)~c =
∫
H

(∇χ+ ~c) + εp(ξ0)
∫
P

(∇χ+ ~c) χ ∈ W 1,2
# (Y,C) (2.96)

where ~c :=
∫
Y
e0 is the volumetric average of the homogenized E field e0. The

formula for ε
eff

is obtained by applying the series expansion of χ in the definition
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(2.96).

By (2.44), we see that the function χ solves the following problem

div[ap(ξ0)(∇χ+ ~c)] = 0 in Y, χ ∈ W 1,2
# (Y,C)

or equivalently, in weak form

∫
H

(∇χ+ ~c) · ∇w + εp(ξ0)
∫
P

(∇χ+ ~c) · ∇w = 0, w ∈ W 1,2
# (Y,C) (2.97)

The continuity of w in Y and w = 0 in R implies that

∫
(∂R)+

∂nw = 0,
∫
∂P

[∂nw]+− = 0

and using integration by parts in (2.97) we get

∫
H
∇χ · ∇w + εp(ξ0)

∫
P
∇χ · ∇w = 0, w ∈ W 1,2

# (Y,C) (2.98)

We also introduce the bilinear form Bz(u,w) which is given by

Bz(u,w) =
∫
H
∇u · ∇w dy + z

∫
P
∇u · ∇w dy, u, w ∈ W 1,2

# (Y \R,C) (2.99)

and the bilinear form Bz(u, ·) is viewed as a linear form Tz on W 1,2
# (Y \R,C).

Our next goal is to find the series expansion of the solution χ expressed through

the spectral representation of the linear operator Tz. This done by studying the

the following eigenvalue problem

µn

∫
Y \R
∇ψµn · ∇v =

∫
P
∇ψµn · ∇v, v ∈ W 1,2

# (Y \R,C) (2.100)

We first observe that the constant functions satisfy the problem (2.100), and we

introduce the following decomposition of W 1,2
# (Y \R,C):

W 1,2
# (Y \R,C) = W1 ⊕W2 ⊕W3 ⊕ C
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with the constant solutions being uniquely determined by
∫
Y \R

u = 0 and

W1 =
{
u

∣∣∣∣∣u ∈ W 1,2
# (Y \R,C), Supp(u) ⊂⊂ P,

∫
Y \R

u = 0
}

W2 =
{
u

∣∣∣∣∣u ∈ W 1,2
# (Y \R,C), Supp(u) ⊂ H with Supp(u) ∩ ∂P = ∅,

∫
Y \R

u = 0
}

W3 ⊂ W 1,2
# (Y \R,C) is defined to be the subspace that satisfies W3 ⊥ (W1 ⊕W2)

with the orthogonality is with respect to the inner product defined as

(u, v)Y \R =
∫
Y \R
∇u · ∇vdy u, v ∈ W 1,2

# (Y \R,C)

By orthogonality, we find that u ∈ W3 is characterized as u is periodic on ∂Y , ∂nu

is antiperiodic on ∂Y and

W3 =
{
u ∈ W 1,2

# (Y \R,C)
∣∣∣∣∣∆u = 0 in P ∪H, ∂nu

∣∣∣
∂R+

= 0,
∫
Y \R

u = 0
}

Calculation shows that the problem (2.100) is directly linked to the following

eigenvalue problem

λn(uλn , w) = (Tuλn , w) = 1
2

∫
H
∇uλn · ∇w dy − 1

2

∫
P
∇uλn · ∇w dy (2.101)

for w ∈ W 1,2
# (Y \R,C) through the relation ψµn = uλn when µn = 1

2 − λn and by

[8], we have

χ = a1ψ1 + a2ψ2 +
∑

0<µn<1
aµnψµn

w = b1ψ1 + b2ψ2 +
∑

0<µn<1
bµnψµn

(2.102)

Substituting (2.102) into (2.97), we get
∫
Y \R

ε(ξ0)
[
(a1∇ψ1+a2∇ψ2+

∑
0<µn<1

aµn∇ψµn+~c)·(b1∇ψ1 + b2∇ψ2 +
∑

0<µn<1
bµn∇ψµn)

]
= 0

By choosing b2 = bµn = 0, we have
∫
Y \R

ε(ξ0)
[
(a1∇ψ1 + a2∇ψ2 +

∑
0<µn<1

aµn∇ψµn + ~c) · b1∇ψ1

]
= 0
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Using orthogonality of eigenfunctions, we have

a1

∫
H
∇ψ1 · ∇ψ1 + a1εp(ξ0)

∫
P
∇ψ1 · ∇ψ1 + ~c ·

∫
H
∇ψ1 + εp(ξ0)~c ·

∫
P
∇ψ1 = 0

a1

∫
H
∇ψ1 · ∇ψ1 + ~c ·

∫
H
∇ψ1 = 0.

So

a1 = −~c ·
∫
H
∇ψ1.

Similarly, we have

a2 = −~c ·
∫
P
∇ψ2.

Choosing all but only one of the particular bµm to be nonzero on the equation,

wee see that

0 =
∫
Y \R

ε(ξ0)
[
(a1∇ψ1 + a2∇ψ2 +

∑
0<µn<1

aµn∇ψµn + ~c) · bµm∇ψµm
]

=
∫
Y \R

ε(ξ0)aµmbµm∇ψµm · ∇ψµm + ~c ·
∫
Y \R

ε(ξ0)bµm∇ψµm

So we get

aµm =
−~c ·

∫
Y \R

ε(ξ0)∇ψµm∫
Y \R

ε(ξ0)∇ψµm · ∇ψµm
=

−~c ·
[∫
H
∇ψµm + εp(ξ0)

∫
P
∇ψµm

]
∫
H
∇ψµm · ∇ψµm + εp(ξ0)

∫
P
∇ψµm · ∇ψµm

Subtracting 1
2

∫
Y \R

(∇u) · (∇w) from both sides of equation (2.101), we find that

µn =
∫
P
∇ψµn · ∇ψµn ,

∫
H
∇ψµn · ∇ψµn = 1− µn

and

χ =
(
−~c ·

∫
H
∇ψ1

)
ψ1+

(
−~c ·

∫
P
∇ψ2

)
ψ2+

∑
0<µn<1

−~c ·
∫
H
∇ψµn + εp(ξ0)

∫
P
∇ψµn

1− µn + εp(ξ0)µn

ψµn
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Using this in (2.96) and denote the volume of P,H by θP , θH respectively, we see
∫
H

(∇χ+ ~c) + εp(ξ0)
∫
P

(∇χ+ ~c)

=
∫
H

[(
−~c ·

∫
H
∇ψ1

)
∇ψ1 +

(
−~c ·

∫
P
∇ψ2

)
∇ψ2

]

+
∫
H

 ∑
0<µn<1

−~c ·
∫
H
∇ψµn + εp(ξ0)

∫
P
∇ψµn

1− µn + εp(ξ0)µn

 ∇ψµn + ~c



+εp(ξ0)
∫
P

[(
−~c ·

∫
H
∇ψ1

)
∇ψ1 +

(
−~c ·

∫
P
∇ψ2

)
∇ψ2

]

+εp(ξ0)
∫
P

 ∑
0<µn<1

−~c ·
∫
H
∇ψµn + εp(ξ0)

∫
P
∇ψµn

1− µn + εp(ξ0)µn

 ∇ψµn + ~c



= −
(∫

H
∇ψ1

)
⊗
(∫

H
∇ψ1

)
+
(∫

P
∇ψ2

)
⊗
(∫

H
∇ψ2

) ~c+ (εp(ξ0)θP + θH) ~c

−

 ∑
0<µn<1

(∫
H
∇ψµn

)
⊗
(∫

H
∇ψµn

)
+ εp(ξ0)

(∫
P
∇ψµn

)
⊗
(∫

H
∇ψµn

)
1− µn + εp(ξ0)µn

~c

−

εp(ξ0)
(∫

H
∇ψ1

)
⊗
(∫

P
∇ψ1

)
+ εp(ξ0)

(∫
P
∇ψ2

)
⊗
(∫

P
∇ψ2

) ~c

−

 ∑
0<µn<1

εp(ξ0)
(∫

H
∇ψµn

)
⊗
(∫

P
∇ψµn

)
+ ε2

p(ξ0)
(∫

P
∇ψµn

)
⊗
(∫

P
∇ψµn

)
1− µn + εp(ξ0)µn

~c

= −
(∫

H
∇ψ1

)
⊗
(∫

H
∇ψ1

)
+ εp(ξ0)

(∫
P
∇ψ2

)
⊗
(∫

H
∇ψ2

) ~c+ (εp(ξ0)θP + θH) ~c
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−
∑

0<µn<1

(∫
H
∇ψµn

)
⊗
(∫

H
∇ψµn

)
+ εp(ξ0)

(∫
P
∇ψµn

)
⊗
(∫

H
∇ψµn

)
1− µn + εp(ξ0)µn

~c

−

εp(ξ0)
(∫

H
∇ψ1

)
⊗
(∫

P
∇ψ1

)
+ εp(ξ0)

(∫
P
∇ψ2

)
⊗
(∫

P
∇ψ2

) ~c

−
∑

0<µn<1

εp(ξ0)
(∫

H
∇ψµn

)
⊗
(∫

P
∇ψµn

)
+ ε2

p(ξ0)
(∫

P
∇ψµn

)
⊗
(∫

P
∇ψµn

)
1− µn + εp(ξ0)µn

~c

Finally, we see that∫
H

(∇χ+ ~c) + εp(ξ0)
∫
P

(∇χ+ ~c)

= −
(∫

H
∇ψ1

)
⊗
(∫

H
∇ψ1

)
+ εp(ξ0)

(∫
P
∇ψ2

)
⊗
(∫

P
∇ψ2

) ~c

−
∑

0<µn<1

ε2
p(ξ0)AP,Pµn + εp(ξ0)(AP,Hµn + AH,Pµn ) + AH,Hµn

1− µn + εp(ξ0)µn
~c+ (εp(ξ0)θP + θH) ~c

= −
∑

0≤µn≤1

ε2
p(ξ0)AP,Pµn + εp(ξ0)(AP,Hµn + AH,Pµn ) + AH,Hµn

1− µn + εp(ξ0)µn
~c+ (εp(ξ0)θP + θH) ~c

where

AD1,D2
µn =

(∫
D1
∇ψµn

)
⊗
(∫

D2
∇ψµn

)
n = 1, 2, · · ·

Therefore, we have

ε
eff

(ξ0) = (εp(ξ0)θP + θH)I3 −
∑

0≤µn≤1

ε2
p(ξ0)AP,Pµn + εp(ξ0)(AP,Hµn + AH,Pµn ) + AH,Hµn

1− µn + εp(ξ0)µn
(2.103)

where

AD1,D2
µn =

(∫
D1
∇ψµn

)
⊗
(∫

D2
∇ψµn

)
And the proof of Theorem 2.5 (2) is concluded.
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Chapter 3
Photonic Crystals

3.1 Introduction and Problem Setup

3.1.1 Introduction

Unlike metamaterial crystals, some types of photonic crystals occur in nature in

the form of structural color of animals or matter. But photonic crystals can also be

fabricated. Through the use of such fabircated photonic crystals, electromagnetic

waves from light can be manipulated to achieve a desired optical proprty.

The study of photonic crystals initiated in [24] by considering multi-layer metallic

stacks. But the investigation of three-dimensional photonic crystals in [25, 29] has

been followed by significant developments in the research on photnonic crystals

[26, 27, 28].

The design of two-dimensional lossless photonic crystals with desired electromag-

netic resonant properties studied using variational methods in [3]. Creating band

gaps in photonic crystals with different configurations was studied in [44, 42].

Our goal in this chapter of this dissertation is to derive spectral representation

formula for the Helmholtz operator for vector wave equation. Using this formula,

we show the explicit characterization of the inverse of Helmholtz operator to to

obtain spectral representation of the solution to the vector wave equation. To ob-

tain the representation formula, we proved the compactness of magnetic dipole

operator along with the use of single layer potential operator.

3.1.2 Problem Setup

We study the representation formula for the differential operator in the following

Helmholtz equation

∇× ((ε(x))−1∇× h) = ξh (3.1)
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which is satisfied by the Bloch wave solution h traveling through a photonic crystal

made from periodic assemblage of unit cube consisting of a host material denoted

by H and a non magnetic plasmonic inclusion denoted by P . The incoming wave

frequency is denoted by ξ and the dielectric constant of the material ε(x) as a

function of x is given by

ε =


εp(ω) x ∈ P

1 x ∈ H

A plain view of a typical unit cube in this photonic crystal is visualized below.

The Bloch wave solution h to (3.1) is sought in the space

J∗ = {u ∈ H#(curl, Y ), ∇ · u = 0} (3.2)

It is obvious that the constant function is a solution to (3.1). So, to simplify our

analysis, we look for solutions to (3.1) in the space J where

J =
{
u ∈ H#(curl, Y ), ∇ · u = 0,

∫
Y
u = 0

}

with the inner product

(u, v) =
∫
Y
∇× u(x) · ∇ × w(x) dx u,w ∈ J (3.3)
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The weak form of equation (3.1) is given by

∫
H

(∇×h) · (∇×w) dx+ε−1
p

∫
P

(∇×h) · (∇×w) dx = ξ
∫
Y
h ·w dx w ∈ J

(3.4)

By observing (3.4), we introduce the bilinear form Bz : J × J → C which is given

by

Bz(u,w) :=
∫
H

(∇× u) · (∇× w) dx+ z
∫
P

(∇× u) · (∇× w) dx, u, w ∈ J (3.5)

and view it as Bz(u,w) = (Tzu,w) for a linear operator Tz acting on J .

In what follows, our goal is to find the representation formula for the differential

operator ∇ × ((ε(x))−1∇× in (3.1) by expressing the linear operator Tz through

eigenpairs of a linear operator T which is directly linked to the following eigenvalue

problem

λ(u,w) = λ
∫
Y

(∇× u) · (∇× w)dy =
∫
P

(∇× u) · (∇× w)dy, w ∈ J (3.6)

which has nonzero, real eigenvalues λn and the corresponding eigenfunctions ψn

that satisfy

λn

∫
Y

(∇× ψn) · (∇× w)dy =
∫
P

(∇× ψn) · (∇× w)dy, w ∈ J

We have the following property of the eigenfunctions of the eigenvalue problem

(3.6).

Lemma 3.1. The eigenfunctions ψn, n = 1, 2, 3 · · · are a complete system of

orthogonal functions with respect to the inner product of J .

Our next goal is to decompose the solution space J into orthogonal invariant

subspaces spanned by eigenfunctions associated to the eigenvalues of problem (3.6).
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To do this, we proceed by defining J as the direct sum of orthogonal subspaces

W1, W2, and W3 as the following:

J = W1 ⊕W2 ⊕W3

where

W1 =
{
u
∣∣∣∣u ∈ J, Supp(u) ⊂⊂ P,

∫
Y
u = 0

}
(3.7)

W2 =
{
u

∣∣∣∣u ∈ J, Supp(u) ⊂ H with Supp(u) ∩ ∂P = ∅,
∫
Y
u = 0

}
(3.8)

and W3 ⊂ J is defined to be the subspace that satisfies W3 ⊥ (W1 ⊕W2) with the

orthogonality is with respect to the inner product of J .

In view of (3.7) and (3.8), we notice that the subspaces W1 and W2 are spanned

by the eigenfunctions associated to the eigenvalues 1 and 0 of the eigenvalue prob-

lem (3.6), and λ ∈ [0, 1]. The specific characterization of functions in W3 is given

by the next lemma.

Lemma 3.2. The subspace W3 ⊂ J is characterized as the following:

W3 =


u ∈ J

∣∣∣∣∣∣∣∣∣∣∣∣

∇×∇× u = 0 in H ∪ P, ∇ · u = 0,
∫
Y
u = 0

n×∇× u is antiperiodic on ∂Y, [u]+−|∂P = 0



3.2 Main Results

3.2.1 Mapping Property of Single Layer Potential Operator

In order to characterize the functions in W3, we parametrize the elements of W3

by using single layer potential operator defined as

S(ρ)(x) = S̃(ρ)(x)−
∫
Y
S̃(ρ)(y)dsy

S̃(ρ) =
∫
∂P

G(x, y)ρ(y)dsy, x 6∈ ∂P
(3.9)
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where ρ ∈ L2
t (∂P )3 and

L2
t (∂P )3 =

{
ρ ∈ L2(∂P )3

∣∣∣ n · ρ = 0 on ∂P
}

In view of Lemma 3.2, we observe that the following must hold for S(ρ) :

∇ · S(ρ)(x) =
∫
∂P

G(x, y)(Divρ(y))dsy = 0 (3.10)

So ρ has to be chosen from L2
t,0(∂P )3 where

L2
t,0(∂P )3 :=

{
ρ ∈ L2

t (∂P )3
∣∣∣∣ Divρ = 0,

∫
∂P
ρ dsy = 0

}

and the differential operator Div is understood to be surface divergence.

Also, G is the dyadic Green’s function such that : G is separately periodic in x

and y with unit Y , twice differentiable in each of x and y for x 6= y, and

∆xG(x, y) =
∑
n∈Z3

δ(x− y + n)− 1 in D := ∪n∈Z3(Y + n) (3.11)

The specific characterization of G(x, y) is given by the next lemma.

Lemma 3.3. The dyadic Green’s function G(x, y) satisfying (3.11) is given by

G(x, y) =
∑

n∈Z3\{0}

ei2πn·(x−y)

|2πn|2 I

where I is the unit dyadic.

In order to present the parametrization of elements in W3, we first establish the

following two lemmas that will be useful.

Lemma 3.4. Let the single layer potential operator S be defined as in (3.9). For

every ρ ∈ L2
t,0(∂P )3, we have S(ρ) ∈ W3.

Lemma 3.5. The space of tangential vector fields L2
t,0(∂P )3 is a dense subspace

of V −
1
2

t (∂P )3 where

L2
t,0(∂P )3 ⊂ V

− 1
2

t (∂P )3 =
{

(n×∇)f ; f ∈ H 1
2 (∂P )

}
⊆ H−

1
2 (∂P )3 (3.12)

36



wheret the space H 1
2 (∂P ) of complex scalar valued functions defined on ∂P is given

by

H
1
2 (∂P ) =

{
u ∈ L2(∂P ), |u(x)− u(y)|

|x− y|2
∈ L2(∂P × ∂P )

}

with

‖u‖
H

1
2 (∂P )

=
( ∫

∂P
|u|2dx+

∫
∂P

∫
∂P

|u(x)− u(y)|2
|x− y|4

dxdy
) 1

2
.

and the norm ‖A‖
V
− 1

2
t (∂P )3

is taken to be

‖A‖
V
− 1

2
t (∂P )3

= inf
{
‖σ + f‖

H
1
2 (∂P )

; σ ∈ C, f ∈ H
1
2 (∂P ), (n×∇)f = A

}
(3.13)

Now we are ready to present an important mapping property of the single layer

potential operator that will be crucial in characterizing the spectral property of

the sesquilinear operator T .

Theorem 3.6. The single layer potential operator S : V −
1
2

t (∂P )3 → W3 is an

isomorphism.

3.2.2 Compactness of Magnetic Dipole Operator

The magnetic dipole operator M : L2
t,0(∂P )3 → L2

t,0(∂P )3 describing the tangential

component of the electric field generated by the change in the magnetic distribution

is given by

M(ρ) =
∫
∂P
n×∇x × (G(x, y) ρ(y)) dsy, x ∈ ∂P

Theorem 3.7. M : V −
1
2

t (∂P )3 → V
− 1

2
t (∂P )3 is a compact operator and

σ
(
M ; V

− 1
2

t (∂P )3
)

= σ
(
K∗; H−

1
2

0 (∂P )
)

(3.14)

where K∗ is the scalar valued Newmann-Poicaré operator defined on H
− 1

2
0 (∂P )

which is the dual space of H 1
2 (∂P ), σ

(
M ; V −

1
2

t (∂P )3
)

and σ
(
K∗; H−

1
2

0 (∂P )
)

are the spectrum of M and K∗ respectively.
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It’s been shown [32] that the spectrum of K∗ lies in
[
−1

2 ,
1
2

]
. So by Theorem

3.7 we conclude that

σ
(
M ; V

− 1
2

t (∂P )3
)

=
[
−1

2 ,
1
2

]

3.2.3 Spectral Property of T = SMS−1

Theorem 3.8. T = SMS−1 : W3 → W3 is a Hermitian, compact operator and

σ (T ; W3) = σ
(
M ; V

− 1
2

t (∂P )3
)

(3.15)

3.2.4 Spectral Representation Theorem

Now we present the main result on the spectral representation of the Helmholtz

operator for the vector wave equation (3.1).

Theorem 3.9. we have the following identity for the spectral representation of the

differential operator

∇× ((ε(x))−1∇× = −∆T
ε−1
p

where the Laplace operator is understood to be associated with the bilinear form

B
ε−1
p

and we have the following spectral representation of the sesquilinear operator

Tεp which separates the effect of the dielectric constant ε(x) from the underlying

geometry of the photonic crystal.

T
ε−1
p

u = ε−1
p
P1u+ P2u+

∑
µn

[
(1
2 + µn) + ε−1

p
(1
2 − µn)

]
Pµnu

If z 6= −(1
2 + µn)/(1

2 − µn), then we have

T−1
z = z−1P1 + P2 +

∑
µn

z
[
z(1

2 + µn) + (1
2 − µn)

]−1
Pµn
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3.3 Proof of Lemma 3.1-3.5

Proof of Lemma 3.1

Proof. Letting n 6= k, w = ψk and conjugating both sides, we get

λk

∫
Y

(∇× ψk) · (∇× ψn)dy =
∫
P

(∇× ψk) · (∇× ψn)dy (3.16)

Taking w = ψn and conjugating both sides, we get

λn

∫
Y

(∇× ψn) · (∇× ψk)dy =
∫
P

(∇× ψn) · (∇× ψk)dy (3.17)

Comparing (3.16) and (3.17), we see

(λn − λk)
∫
Y

(∇× ψn) · (∇× ψk)dy = 0

which shows ∫
Y

(∇× ψn) · (∇× ψk)dy = 0

By (3.6), we have
∫
P

(∇× ψk) · (∇× ψn)dy = 0∫
H

(∇× ψk) · (∇× ψn)dy = 0

This along with the relevant result in [42] completes the proof.

Proof of Lemma 3.2

Proof. Since W3 ⊂ J , we only need to show that for u ∈ W3, we have

∇×∇× u = 0 in H ∪ P

n×∇× u is antiperiodic on ∂Y
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First, for u ∈ W3 and w ∈ W2, we observe

0 =
∫
Y

(∇× u) · (∇× w)dy

=
∫
H

(∇× u) · (∇× w)dy

= −
∫
∂Y

(n×∇× u) · w dsy

+
∫
∂R

(n×∇× u)|+ · w dsy

+
∫
H

(∇×∇× u) · w dy

(3.18)

Choosing Supp(w) ⊂⊂ H in the above equation implies that

∇×∇× u = 0 in H

Choosing Supp(w) ⊂ ∂Y , we have

∫
∂Y

(n×∇× u) · w dsy = 0

By defining the 6 faces of the unit cell as

L := left face of the unit cell = {(0, y2, y3) |0 < y2 ≤ 1, 0 < y3 ≤ 1}

R := right face of the unit cell = {(1, y2, y3) |0 < y2 ≤ 1, 0 < y3 ≤ 1}

T := top face of the unit cell = {(y1, y2, 1) |0 < y1 ≤ 1, 0 < y2 ≤ 1}

D := downward face of the unit cell = {(y1, y2, 0) |0 < y1 ≤ 1, 0 < y2 ≤ 1}

F := front face of the unit cell = {(y1, 0, y3) |0 < y1 ≤ 1, 0 < y3 ≤ 1}

B := back face of the unit cell = {(y1, 1, y3) |0 < y1 ≤ 1, 0 < y3 ≤ 1}

and choosing Supp(w) such that w vanishes on ∂Y except for the left and right

faces of the unit cell and using the periodicity w(0, y2, y3) = w(1, y2, y3), we get

∫ R

L
(n×∇× u(0, y2, y3)− n×∇× u(1, y2, y3) · w(1, y2, y3) dsy = 0
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Repeating this for top, downward faces and front, back faces of the unit cell re-

spectively, we get
∫ T

D
(n×∇× u(y1, y2, 1)− n×∇× u(y1, y2, 0) · w(y1, y2, 1) dsy = 0∫ B

F
(n×∇× u(y1, 1, y3)− n×∇× u(y1, 0, y3) · w(y1, 1, y3) dsy = 0

The last three equations show that n×∇× u is antiperiodic on ∂Y .

For u ∈ W3 and w ∈ W1, we have

0 =
∫
Y

(∇× u) · (∇× w)dy

=
∫
P

(∇× u) · (∇× w)dy

= −
∫
P

(∇×∇× u) · w dy

(3.19)

Since Supp(w) ⊂⊂ P , the above equation implies that

∇×∇× u = 0 in P

Proof of Lemma 3.3

Proof. we first examine ∇×∇× h(y) where

h(y) ∈ W 1,2
# (Y )3,

∫
Y
h(y) dy = 0

where

W 1,2
# (Y )3 :=

{
u
∣∣∣ u ∈ L2

#(Y,C), ∂iu ∈ L2
#(Y,C)

}
By writing h(y) in terms of Fourier series expansion, we notice that

h(y) =
∑
n∈Z3

ĥ(n) ei2nπ·y

ĥ(n) = 1
2π

∫
Y
e−i2nπ·x h(x) dx
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and

h(y) =
∫
Y

1
2π

∑
n∈Z3

ei2nπ·(y−x) h(x) dx.

Since

ei2nπ·(y−x) h(x) = (h1e
i2nπ·(y−x), h2e

i2nπ·(y−x), h3e
i2nπ·(y−x))

we see that

∇y × (h(x) ei2nπ·(y−x)) =

∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

∂y1 ∂y2 ∂y3

h1 e
i2nπ·(y−x) h2 e

i2nπ·(y−x) h3 e
i2nπ·(y−x)

∣∣∣∣∣∣∣∣∣∣∣∣

=


∂y2(h3 r(x, y)− ∂y3(h2 r(x, y))

−∂y1(h3 r(x, y))− ∂y3(h1 r(x, y))

∂y1(h2 r(x, y))− ∂y2(h1 r(x, y))


Then by calculation, we find that

∇y × (h(x) ei2nπ·(y−x)) =


(i2n2πh3 − i2n3πh2)r(x, y)

−(i2n1πh3 − i2n3πh1)r(x, y)

(i2n1πh2 − i2n2πh1)r(x, y)


Setting

a1 = (i2n2πh3 − i2n3πh2)r(x, y)

a2 = (i2n3πh1 − i2n1πh3)r(x, y)

a3 = (i2n1πh2 − i2n2πh1)r(x, y)

r(x, y) = ei2nπ·(y−x)
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We find

∇y ×∇y × (h(x) ei2nπ·(y−x)) =

∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

∂y1 ∂y2 ∂y3

a1 a2 a3

∣∣∣∣∣∣∣∣∣∣∣∣

=


(∂y2a3 − ∂y3a2)

−(∂y1a3 − ∂y3a1)

(∂y1a2 − ∂y2a1)


and calculation shows that the above is equal to

=


[(i2n2π)(i2n1π)h2 − (i2n2π)2h1 − (i2n3π)2h1 + (i2n1π)(i2n3π)h3] r(x, y)

− [(i2n1π)2h2 − (i2n1π)(i2n2π)h1 − (i2n2π)(i2n3π)h3 + (i2n3π)2h2r(x, y)]

[(i2n1π)(i2n3π)h1 − (i2n1π)2h3 − (i2n2π)2h3 + (i2n2π)(i2n3π)h2r(x, y)]


Using

∇y · (r(x, y)h(x)) = (i2n1πh1 + i2n2πh2 + i2n3πh3)r(x, y) = 0

repeatedly in the above, we get the following for ∇y ×∇y × (h(x) ei2nπ·(y−x)):

=


[(i2n2π)(i2n1π)h2 − (i2n2π)2h1 − (i2n3π)2h1 + (i2n1π)(i2n3π)h3] r(x, y)

− [(i2n1π)2h2 − (i2n1π)(i2n2π)h1 − (i2n2π)(i2n3π)h3 + (i2n3π)2h2] r(x, y)

[(i2n1π)(i2n3π)h1 − (i2n1π)2h3 − (i2n2π)2h3 + (i2n2π)(i2n3π)h2] r(x, y)



=


[−(i2n1π)2h1 − (i2n2π)2h1 − (i2n3π)2h1] r(x, y)

− [(i2n1π)2h2 + (i2n2π)2h2 + (i2n3π)2h2] r(x, y)

[−(i2n3π)2h3 − (i2n1π)2h3 − (i2n2π)2h3] r(x, y)


=
[
|2nπ|2h1e1 + |2nπ|2h2e2 + |2nπ|2h3e3

]
r(x, y)
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This shows that

∇y ×∇y × (h(x) ei2nπ·(y−x)) = |2nπ|2(ei2nπ·(y−x) h(x))

provided that i2nπ · (ei2nπ·(y−x) h(x)) = 0 or ∇ · h(y) = 0.

So, now switching x and y, we have

G(x, y) =
∑

n∈Z3\0

ei(2πn)·(x−y)

|2πn|2 I.

Proof of Lemma 3.4

Proof. It’s been shown [11] that, for ρ ∈ L2
t,0(∂P )3 and x ∈ P ∪H, we have

∇ · S(ρ)(x) =
∫
∂P

G(x, y)(Divρ(y))dsy = 0, x ∈ H ∪ P. (3.20)

For x /∈ ∂P , we have

∇×∇× S(ρ)(x) =
∫
∂P
∇x ×∇x ×G(x, y)ρ(y)dsy

=
∫
∂P

(δ(x− y)− 1)ρ(y)dsy

= 0

(3.21)

But at the same time

∇×∇× S(ρ)(x) = ∇(∇ · S(ρ))−∆S(ρ) = −∆S(ρ) (3.22)

So we get

∆S(ρ)(x) = 0, x ∈ H ∪ P (3.23)

By the property of single layer potential operator, we know that

[S(ρ)(x)]
∣∣∣
∂P

= 0, (3.24)
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which also implies

[n · S(ρ)(x)]
∣∣∣
∂P

= 0. (3.25)

Since S(ρ) is harmonic on the two sides of ∂P , equation (3.25) along with (3.20)

implies that

∇ · S(ρ) = 0, x ∈ Y (3.26)

Since ∇×G(x, y) is periodic, noticing that

n×∇× S(ρ)(x) =
∫
∂P
n×∇×G(x, y)ρ(y)dsy, (3.27)

we conclude that n×∇× S(ρ)(x) is antiperiodic.

Finally,

n×∇× S(ρ)|∂R+ =
∫
∂P
n×∇×G(x, y)|∂R+ ρ(y)dsy

=
∫
∂P
C ρ(y)dsy

= 0

(3.28)

The equations (3.21), (3.24),(3.26), (3.27), (3.28), along with the fact that

∫
Y
S(ρ) dy = 0

show that S(ρ) ∈ W3.

Proof of Lemma 3.5

Proof. We start with Helmholtz-Hodge decomposition for tangential vector fields,

for ρ ∈ L2
t (∂P )3, we have [33]

ρ = ∇sϕ+ n×∇sψ (3.29)

for some scalar functions ϕ, ψ ∈ H1(∂P,C) and ∇s is understood to be the surface

gradient acting on ϕ and ψ.
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For ρ ∈ L2
t,0(∂P )3

Divρ = 0 ⇒ ∆sϕ = 0

where ∆s is the surface divergence of tangential gradient of ϕ. A calculation using

integration by parts show that for ρ ∈ L2
t,0(∂P )3, the Helmholtz-Hodge decompo-

sition identity (3.29) is reduced to

ρ = n×∇sψ, ψ ∈ H1(∂P,C) (3.30)

We see that the density of W 1,2(∂P ) in H
1
2 (∂P ) implies that , for a given g ∈

H
1
2 (∂P ) \ C, there exists a sequence {gj}∞j=1 ∈ H

1(∂P ) \ C ⊂ H
1
2 (∂P ) \ C such

that

‖g − gj‖
H

1
2 (∂P )\C

< ε (3.31)

Because n×∇ : H1(∂P ) \ C→ L2
t,0(∂P )3 is an isomorphism [12], we have that

n×∇gj ∈ L2
t,0(∂P )3. By the continuity of the map n×∇ : H

1
2 (∂P )→ V

− 1
2

t (∂P )3

and (3.31), we have that

‖n×∇g − n×∇gj‖
V
− 1

2
t

(∂P )3
< ‖g − gj‖

H

1
2 (∂P )\C

< ε (3.32)

This shows the density that L2
t,0(∂P )3 is dense in V

− 1
2

t (∂P )3.

3.4 Proof of Main Results

3.4.1 Proof of Theorem 3.6

Proof. We prove the theorem by the following 2 steps.

First Step. We prove that S : L2
t,0(∂P )3 → W3 is a bounded map.

Given ρ ∈ L2
t,0(∂P )3 and S(ρ) ∈ W3, we have

‖S(ρ)‖W3 =
∫
Y
∇× S(ρ) · ∇ × S(ρ)
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=
∫
H
∇× S(ρ) · ∇ × S(ρ) +

∫
P
∇× S(ρ) · ∇ × S(ρ)

=
∫
∂P

[n×∇× S(ρ)]−+ · S(ρ)

= −
∫
∂P
ρ · S(ρ)

(3.33)

For a scalar function f and a vector function g, we observe that

0 =
∫
P
∇ · (∇× (fg))

=
∫
∂P
n · ∇ × (fg)

=
∫
∂P

[n · (∇f × g) + n · f(∇× g)]

=
∫
∂P
g · n×∇f +

∫
∂P
f(n · ∇ × g)

(3.34)

So we have

∫
∂P
g · n×∇f = −

∫
∂P
f(n · ∇ × g) (3.35)

By writing ρ = n×∇f for f ∈ H
1
2 (∂P ) \ C and using (3.35) in (3.33), we get

‖S(ρ)‖2
W3 = −

∫
∂P
ρ · S(ρ)

= −
∫
∂P
n×∇f · S(ρ)

=
∫
∂P
f n · ∇ × S(ρ)

(3.36)

Since n · ∇ × S(ρ) ∈ H−
1
2

0 (∂P ), for f + σ ∈ H 1
2 (∂P ), it is also true that

‖S(ρ)‖2
W3 =

∫
∂P

(f + σ) n · ∇ × S(ρ)

≤ ‖f + σ‖
H

1
2 (∂P )
‖n · ∇ × S(ρ)‖

H
− 1

2
0 (∂P )

(3.37)

Because the map n · ∇ × S : V −
1
2

t (∂P )3 → H−
1
2 (∂P ) is bounded [12], by taking

the infimum of ‖f + σ‖
H

1
2 (∂P )

over all σ ∈ C, we arrive at

‖S(ρ)‖2
W3 ≤ C‖f + σ‖

H
1
2 (∂P )
‖ρ‖

V
− 1

2
t (∂P )3

≤ ‖ρ‖2

V
− 1

2
t (∂P )3

(3.38)
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and

‖S(ρ)‖W3 ≤ ‖ρ‖
V
− 1

2
t (∂P )3

(3.39)

The inequality (3.39) implies that S(ρ) is bounded for ρ as an element in ∈

L2
t,0(∂P )3.

By the theorem on bounded linear extension of a densely defined map, we now see

that the extension map S : V −
1
2

t (∂P )3 → W3 is bounded.

Second Step. We prove that S : V −
1
2

t (∂P )3 → W3 is a bijection.

To do this, we first show that S is one-to-one. For a given ρ ∈ V −
1
2

t (∂P )3, we have

u = S(ρ) ∈ W3.Furthermore

ρ = n×∇× u
∣∣∣
∂P+
− n×∇× u

∣∣∣
∂P−

= n×∇× u
∣∣∣
∂P+
− n×∇× u

∣∣∣
∂P−

+ n×∇× u
∣∣∣
∂Y
− n×∇× u

∣∣∣
∂Y

= n×∇× u
∣∣∣
∂H
− n×∇× u

∣∣∣
∂P−
− n×∇× u

∣∣∣
∂Y

(3.40)

From the mapping property of tangential trace map, if f ∈ L2(Ω), ∇×f ∈ L2(Ω),

then we have n× f ∈ H− 1
2 (∂Ω) and

‖n× f‖
H−

1
2 (∂Ω)

≤ C(‖f‖L2(Ω) + ‖∇ × f‖L2(Ω)) (3.41)

Now we take f = ∇× u , and using ∇×∇× u = 0 in H ∪ P as well as triangle

inequality, we see that

‖ρ‖
H−

1
2 (∂P )3 = ‖n×∇× u

∣∣∣
∂P+
− n×∇× u

∣∣∣
∂P−
‖
H−

1
2 (∂P )3

≤ ‖n×∇× u‖
H−

1
2 (∂H)3 + ‖n×∇× u‖

H−
1
2 (∂P )3 + ‖n×∇× u‖

H−
1
2 (∂(Y ))3

≤ C1(‖∇ × u‖L2(H)3 + ‖∇ × u‖L2(P )3 + ‖∇ × u‖L2(Y )3)

≤ C2‖u‖H∗(curl,Y )

= C2‖S(ρ)‖W3

(3.42)
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Now for ρ1, ρ2 ∈ V
− 1

2
t (∂P )3, we have

0 ≤ ‖ρ1 − ρ2‖
H−

1
2 (∂P )3 ≤ C2‖S(ρ1)− S(ρ2)‖W3 (3.43)

The inequality (3.43) along with V −
1
2

t (∂P )3 ⊆ H−
1
2 (∂P )3 implies that S : V −

1
2

t (∂P )3 →

W3 is one-to-one.

Next we show that S is surjective. Assume that u ∈ W3 ⊂ J is given. This means

∇× u ∈ L2
#(Y,C3), ∇×∇× u = 0.

By Helmholtz decomposition of vector fields in L2(Y,C3), we can write ∇ × u as

the sum of divergence -free and curl-free parts, that is

∇× u = p+∇g, ∇ · p = 0, p ∈ L2(Y,C3), g ∈ H1(Y,C) (3.44)

Since ∇×∇× u = 0, the decomposition (3.44) gives

∇× p = 0 (3.45)

Therefore, we can write

p = ∇q, for some scalar function q ∈ H1(Y,C) (3.46)

Now, applying (3.45) and (3.46) in the decomposition (3.44) gives

∇× u(x) = ∇v(x), v = g + q ∈ H1(Y,C) (3.47)

Taking the cross product of (3.47) with the normal vector n and then letting x

go to ∂P , we get

n×∇× u
∣∣∣
∂P+

= n×∇sv
∣∣∣
∂P+

n×∇× u
∣∣∣
∂P−

= n×∇sv
∣∣∣
∂P−

(3.48)
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In view of (3.48), we conclude that

n×∇× u
∣∣∣
∂P+
∈ V

− 1
2

t (∂P )3

n×∇× u
∣∣∣
∂P−
∈ V

− 1
2

t (∂P )3
(3.49)

Now we set

ρu = n×∇× u
∣∣∣
∂P+
− n×∇× u

∣∣∣
∂P−
∈ V

− 1
2

t (∂P )3

and take w = S(ρu) to find

∇×∇×w = 0 in P∪H, ∇·w = 0 in Y, n×∇×w is antiperiodic on ∂Y.

and

(w − u,w − u)Y =
∫
Y
∇× (w − u) · ∇ × (w − u) dy

=
∫
H∪P
∇× (w − u) · ∇ × (w − u) dy

= −
∫
∂Y
n×∇× (w − u) · (w − u) dsy

+
∫
∂P

[n×∇× (w − u)]−+ · (w − u) dsy

+
∫
H∪P
∇×∇× (w − u) · (w − u) dy

Using the antiperiodicity and the fact that

[(n×∇× w)]∂P = [(n×∇× u)]∂P = ρu, ∇×∇× (w − u) = 0 in H ∪ P

we see that

(w − u,w − u) = 0 implies w − u = C

But

0 =
∫
Y
w dy −

∫
Y
u dy = C.

So we conclude that w = u. This shows that S is surjective and thus bijective.

The application of open mapping theorem on S yields that S−1 is bounded, and

then the claim of the theorem follows.
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3.4.2 Proof of Theorem 3.7

Proof. We first establish that M is a bounded map of V −
1
2

t (∂P )3. To do this, we

start with the following identity from [12]

K∗(n · ∇ × S) = n · ∇ × SM, for ρ ∈ L2
t,0(∂P )3 (3.50)

where K∗ is the scalar valued Newmann-Poicaré operator of H−
1
2

0 (∂P ) which is

a bounded linear operator. The map n · ∇ × S : V −
1
2

t (∂P )3 → H
− 1

2
0 (∂P ) is an

isomorphism [12]. On one hand, the boundedness of K∗ and the boundedness of

the inverse of the operator n · ∇ × S show that

‖K∗(n · ∇ × S(ρ))‖
H
− 1

2
0 (∂P )

≤ ‖n · ∇ × S(ρ)‖
H
− 1

2
0 (∂P )

≤ C1‖ρ‖
V
− 1

2
t (∂P )3

(3.51)

On the other hand, the boundedness of the inverse of n · ∇ × S also shows that

C2‖Mρ‖
V
− 1

2
t (∂P )3

≤ ‖n · ∇ × SM(ρ)‖
H
− 1

2
0 (∂P )

(3.52)

In view of (3.51) and (3.52), we have

‖Mρ‖
V
− 1

2
t (∂P )3

≤ C3‖ρ‖
V
− 1

2
t (∂P )3

(3.53)

So M(ρ) is bounded for ρ ∈ L2
t,0(∂P )3 ⊂ V

− 1
2

t (∂P )3.

Now we observe that, since L2
t,0(∂P )3 is dense in V

− 1
2

t (∂P )3, by the theorem on

bounded linear extension of a densely defined bounded linear map on a Banach

space, we can extend M as a map of V −
1
2

t (∂P )3 as

M(ρ) =



M(ρ) ρ ∈ L2
t,0(∂P )3

lim
n→∞

M(ρn) ρ ∈ L2
t,0(∂P )3, {ρn} ∈ L2

t,0(∂P )3, ρn → ρ ∈ V −
1
2

t (∂P )3

Since n · ∇ × S : V −
1
2

t (∂P )3 → H
− 1

2
0 (∂P ) is an isomorphism, for a bounded

sequence {ρn} ∈ V
− 1

2
t (∂P )3, we have
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‖n · ∇ × S(ρn)‖
H
− 1

2
0 (∂P )

≤ C‖ρn‖
V
− 1

2
t (∂P )3

(3.54)

Which shows

{n · ∇ × S(ρn)}∞n=1 ∈ H
− 1

2
0 (∂P ),

and there exists a bounded sequence

{n · ∇ × S(ρnk)}
∞
k=1 ∈ H

− 1
2

0 (∂P ).

By the compactness of K∗ and (3.50), we have

{K∗n · ∇ × S(ρnk)}
∞
k=1 ∈ H

− 1
2

0 (∂P ) is Cauchy

⇐⇒ {n · ∇ × S(M(ρnk))}
∞
k=1 ∈ H

− 1
2

0 (∂P ) is Cauchy.
(3.55)

Because n·∇×S : V −
1
2

t (∂P )3 → H
− 1

2
0 (∂P ) is an isomorphism and K∗ is continuous

map, we have

‖Mρnk −Mρnl‖
V
− 1

2
t (∂P )3

= ‖M(ρnk − ρnl)‖
V
− 1

2
t (∂P )3

≤ C‖n · ∇ × S(M(ρnk − ρnl))‖
H
− 1

2
0 (∂P )

= C‖K∗n · ∇ × S(M(ρnk − ρnl))‖
H
− 1

2
0 (∂P )

≤ C1‖n · ∇ × S(M(ρnk − ρnl))‖
H
− 1

2
0 (∂P )

= C1‖n · ∇ × S(M(ρnk))− n · ∇ × S(M(ρnl))‖
H
− 1

2
0 (∂P )

(3.56)

By (3.55), we conclude that

‖Mρnk −Mρnl‖
V
− 1

2
t (∂P )3

→ 0

which shows that {M(ρnk)}
∞
n=1 ∈ V

− 1
2

t (∂P )3 is Cauchy and thus M is a compact

operator on V
− 1

2
t (∂P )3.
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Finally, the identity (3.14) is the direct consequence of the application of the

compactness of M : V −
1
2

t (∂P )3 → V
− 1

2
t (∂P )3, compactness of Newmann-Poicaré

operator K∗ : H−
1
2

0 (∂P ) → H
− 1

2
0 (∂P ) as well as the isomorphic property of the

map n · ∇ × S : V −
1
2

t (∂P )3 → H
− 1

2
0 (∂P ) in the identity (3.50).

3.4.3 Proof of Theorem 3.8

Proof. First we show that T : W3 → W3 is Hermitian. For u,w ∈ W3,

(Tu,w) =
∫
Y

(∇× Tu) · (∇× w) dy

=
∫
Y

(∇× SMS−1u) · (∇× w) dy

=
∫
H

(∇× SMS−1u) · (∇× w) dy

+
∫
P

(∇× SMS−1u) · (∇× w) dy

Using integration by parts and the

∇×∇× S(MS−1u) = 0, in H ∪ P

we see ∫
Y

(∇× SMS−1u) · (∇× w) dy =
∫
∂P

[
n×∇× SMS−1u

]−
+
· w dsy

By the jump condition

n×∇x × S(ρ)
∣∣∣±
∂P

= ±1
2ρ+M(ρ)

we now have

(Tu,w) = −
∫
∂P
MS−1u · w dsy

For some β ∈ V −
1
2

t (∂P )3, we write u = Sβ, and have

(Tu,w) = −
∫
∂P
MS−1Sβ · w dsy

= −
∫
∂P
Mβ · w dsy

= −1
2

∫
∂P

[n×∇× Sβ
∣∣∣
+

+ n×∇× Sβ
∣∣∣
−

] · w dsy
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and integration by parts give

− 1
2

∫
∂P

[n×∇× Sβ
∣∣∣
+

+ n×∇× Sβ
∣∣∣
−

] · w dsy

= 1
2

∫
H

(∇× Sβ) · (∇× w) dy − 1
2

∫
P

(∇× Sβ) · (∇× w) dy

So

(Tu,w) = 1
2

∫
H

(∇× u) · (∇× w) dy − 1
2

∫
P

(∇× u) · (∇× w) dy (3.57)

Interchanging the position of u and v shows that T is Hermitian, that is

(Tu,w) = (u, Tw)

Now we prove the identity (3.15).

Let

µ ∈ σ
(
M ; V

− 1
2

t (∂P )3
)
, Mρ = µρ, (µ, ρ) ∈

[
−1

2 ,
1
2

]
× V

− 1
2

t (∂P )3.

There exists u ∈ W3 such that u = Sρ, and ρ = S−1u. Therefore, we have

MS−1u = µS−1u

This implies that

SMS−1u = µSS−1u ⇒ Tu = µu,

which shows that σ
(
M ; V −

1
2

t (∂P )3
)
⊂ σ (T ; W3).

If we have Tu = µu, then

µ(u,w) = (Tu,w) = 1
2

∫
H

(∇× u) · (∇× w) dy − 1
2

∫
P

(∇× u) · (∇× w) dy

Subtracting
∫
Y

(∇× u) · (∇× w) dy from both sides, we get∫
P

(∇× u) · (∇× w) dy = (1
2 − µ)

∫
Y

(∇× u) · (∇× w) dy

and we arrive at

λ
∫
Y

(∇× u) · (∇× w) dy =
∫
P

(∇× u) · (∇× w) dy. (3.58)

through the relation λ = 1
2 − µ and λ ∈ [0, 1].

54



3.4.4 Proof of Theorem 3.9

Proof. By Theorem 3.8, we can conclude that there exist a countable subset of the

real line given by

{µi} :=
{
−1

2 ,
1
2

}
∪ {µn}, n = 1, 2, 3, · · ·

with a single accumulation point at 0 and an associated family of orthogonal finite

dimensional projections{Pµi} such that

(u, v) = (
∞∑
i=1

Pµi , v), v ∈ J

or

(Tu, v) = (
∞∑
i=1

µiPµi , v), v ∈ J

By (3.7) and (3.8), we have

(Tu1, v) = −1
2(u1, v), u1 ∈ W1

(Tu2, v) = 1
2(u2, v), u2 ∈ W2

for all v ∈ J .

If we let Pr be the projection operator acting on the solution u ∈ J and takes it

onto the subspace spanned by the eigenfunctions corresponding to the eigenvalues

µi, then we have

u = P1u+ P2u+
∑

− 1
2<µn<

1
2

Pµnu = a1ψ1 + a2ψ2 +
∑

− 1
2<µn<

1
2

aµnψµn (3.59)

with Piu, i = 1, 2, µn are the orthogonal projections of u onto the subspaces W1,W2

and W3.

Now we have the following representation formula for the linear operator Tz asso-

ciated with the bilinear form in (3.5)

(Tzu,w) = (zP1u+ P2u+
∑
µn

[
(1
2 + µn) + z(1

2 − µn)
]
Pµnu, w) (3.60)
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for all u,w ∈ J and.

For u,w ∈ J , by (3.59) we have

Bz(Pµnu,w) =
∫
H

(∇× Pµnu) · (∇× w) dy + z
∫
P

(∇× Pµnu) · (∇× w) dy (3.61)

On the other hand, by (3.57), we know that

(TPµnu,w) = 1
2

∫
H

(∇× Pµnu) · (∇× w) dy − 1
2

∫
P

(∇× Pµnu) · (∇× w) dy

= µn

∫
H

(∇× Pµnu) · (∇× w) dy + µn

∫
P

(∇× Pµnu) · (∇× w) dy

which gives

∫
H

(∇× Pµnu) · (∇× w) dy =
1
2 + µn
1
2 − µn

∫
P

(∇× Pµnu) · (∇× w) dy (3.62)

Also, by (3.58), we have

∫
P

(∇× Pµnu) · (∇× w) dy = (1
2 − µn)

∫
Y

(∇× Pµnu) · (∇× w) dy (3.63)

and (3.62) becomes

∫
H

(∇× Pµnu) · (∇× w) dy = (1
2 + µn)

∫
Y

(∇× Pµnu) · (∇× w) dy (3.64)

Substituting (3.63) and (3.64) into (3.61), we get

Bz(Pµnu,w) =
[
(1
2 + µn) + z(1

2 − µn)
] ∫

Y
(∇× Pµnu) · (∇× w) dy (3.65)

We also note that

Bz(P1u,w) = z
∫
P

(∇× P1u) · (∇× w) dy (3.66)

Bz(P2u,w) =
∫
H

(∇× P2u) · (∇× w) dy (3.67)

So we can conclude that

Bz(u,w) = (Tzu,w) = (zP1u+ P2u+
∑
µn

[
(1
2 + µn) + z(1

2 − µn)
]
Pµnu, w)
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By setting z = ε(x))−1, we now see that

∇× ((ε(x))−1∇× = −∆T
ε−1
p

where the Laplace operator is understood to be associated with the bilinear form

B
ε−1
p

and

T
ε−1
p

u = εpP1u+ P2u+
∑
µn

[
(1
2 + µn) + εp(

1
2 − µn)

]
Pµnu

The equations (3.65)-(3.67) shows that we have

T−1
z = z−1P1 + P2 +

∑
µn

z
[
z(1

2 + µn) + εp(
1
2 − µn)

]−1
Pµn

for z 6= −(1
2 + µn)/(1

2 − µn). This concludes the proof of Theorem 3.9.
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