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Abstract 

Reliability of blowout preventers (BOPs) is crucial for drilling and production 

operations. Erosion of BOP components and hydrodynamic forces on rams may cause failure 

of BOP elements to seal the well.  Transient computational fluid dynamics (CFD) simulations 

of fluids within the wellbore and BOP offer quantitative and qualitative data related to this 

reliability during the closure of various BOP components. Since limited research has been 

published in transient CFD simulations of closing BOPs, this thesis discusses challenges and 

solutions to simulating closing blowout preventers. Single component fluids are simulated 

through several BOP geometries such as annular preventers, pipe rams, and shear rams. 

Cavitation, pressure fields, velocity fields, and shear rates along walls are monitored during 

the simulations. The present work provides a basis to which future directions may be built 

upon, such as more complex fluid properties. 
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 Chapter 1. Introduction 

1.1. Background  

During the drilling process, influx of fluid from a formation may occur into the 

wellbore. Influx of fluid may occur for many reasons, such as an insufficient pressure 

provided by the drilling fluid. In cases as these, a blowout preventer (BOP) may be closed to 

control the well. A BOP is essentially a series of valves located at the top of a well that serves 

as a secondary means of controlling the well. An illustration of a BOP stack with labeled 

components is provided in Figure 1.1.  A BOP consists of various sealing mechanisms such 

as pipe rams, shear rams, and an annular preventer. Each of these components can be 

investigated separately through simulation.  

During a well shut-in, valves are hydraulically activated to seal the well. However, 

issues may occur during the shut-in process for various reasons. The most well-known event 

of such an issue occurring in the last decade is the Macondo Blowout in 2010. Many issues 

led to the blowout of this well, one of those being the BOP failing to seal the flow path. In the 

Transocean report (2011), it was documented that various component within the BOP stack 

eroded, including both drill pipe and blind shear rams. The report from BSEE (2011) also 

concluded erosion of blind shear rams and stated that the “Agency should consider 

researching the effects of a flowing well on Subsea BOP to shear Pipe.”  

1.2. Motivation 

CFD software packages have demonstrated over the years to be a powerful tool in 

various industries. Some common software packages include OpenFOAM, ANSYS Fluent, 

COMSOL, and Star CCM+. When utilized by a knowledgeable user, CFD tools such as these are 

a proven means in saving costs and improving work efficiency. CFD can provide an engineer 
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with several important design related information quantities. John Slater (2008) classifies 

these results into three different categories, organized in order of required accuracy. 

 

Figure 1.1. Illustration showing typical components of a BOP stack, including 
subcomponents that facilitate closure and opening of the annular preventer 

First, CFD may provide qualitative information of the flow field. Contour plots, 

streamlines, and other data visualization techniques can be applied to view and analyze 

solution variables from the simulation. Qualitative information can be used to make basic 

design choices and to gain further understanding of a problem. 



3 
 

Second, CFD may provide incremental quantities. For example, CFD may be used to 

analyze how various input parameters affect quantities of interest. This provides useful 

information to which input parameters should be carefully considered during the design 

process, since some parameters will have a much larger impact than others. 

Third, CFD may provide absolute quantities. Forces, shear rates, mixing processes, and 

other similar quantities of interest may be needed to make critical design decisions. When 

properly implemented, CFD can be used to gain this information. 

The work in this thesis will demonstrate how CFD can be utilized for simulation of 

closing blowout preventers. In line with the discussion above, CFD simulation of blowout 

preventers can provide various avenues of details not otherwise possible. Qualitative 

information from the flow field (which cannot be easily viewed experimentally) may be 

analyzed through simulation. Simulation of blowout preventers can also be used to 

understand and analyze dynamic forces on the rams during shut in. This information 

provides useful insight for many reasons. Shear rams, for example, require a certain force to 

be able to shear pipe. In using CFD, this dynamic response of ram motion from hydrodynamic 

forces may be investigated. 

Such simulations also deliver a cost-efficient method of analyzing the problem since 

various geometries and conditions can be tested before investing in the manufacturing of 

components. For example, off-center pipe can be investigated, and different ram resigns can 

be compared. Information related to optimizing ram designs and ensuring reliability of 

certain BOP components during a shut in can be gained through CFD simulation. Some 

example designs are shown in Figure 1.2. 
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Simulation can also provide information related to erosional analysis. Erosion may be 

significant for several reasons, such as high flowrates, presence of corrosive fluids, and 

transported particles that collide with walls. During the case of shutting in during the drilling 

process, drilling mud will be flowing through the annulus. Drilling fluid will be carrying drill 

cuttings, which may significantly contribute to erosion when the well is shut-in. Even in the 

case of shutting in on produced fluids, sand will be produced, adding to the erosional effect.  

 
Figure 1.2. Example geometries created in Inventor, demonstrating possibilities in varying 
geometric features. 

Another purpose for this study is to explore and report on dynamic meshing 

applications to closing valves. The dynamic meshing options in Fluent, as well as other 
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simulation software packages, were not specifically created for valve closures. Instead, the 

dynamic meshing options were created for geometry movement problems in general. As a 

result, dynamic meshing applied to closing blowout preventers has not been extensively 

discussed. 

While similar previous published works on CFD simulation of blowout preventers 

have been completed, few have included time-dependent simulations to analyze a blowout 

preventer as it closes. Additionally, none of the published works have been coupled to 1D 

pipeline simulators. Successful completion of this work improves understanding of flow 

fields and dynamic characteristics through various geometries in the event of a kick. 

Additionally, simulation provides a safe method of testing hazardous conditions such as high 

flowrates and multiphase flow. ANSYS Fluent is capable of approximating multiphase flow 

through various models, discussed in a later section.  

1.3. Problem Statement  

A blowout preventer is connected to thousands of feet of wellbore during the drilling 

process. Because the length of a wellbore may span thousands of feet, 3D CFD simulations of 

an entire wellbore are practically impossible. While it may technically be possible 

considering the computational resources available today, using CFD to solve such a problem 

is simply inefficient. Therefore, only a section of the wellbore should be modelled using CFD, 

such as a couple of feet above and below the BOP’s fluid domain. However, an issue arises 

when only modelling a portion of the wellbore: inlet boundary conditions must be applied to 

the CFD domain, such as a specified flowrate. Since the inlet boundary condition depends on 

information from the unmodeled section of the wellbore, a constant inlet boundary condition 

should not be applied to the CFD domain.  
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Two physical phenomena must be captured to provide accurate inlet boundary 

conditions. The first is that the velocity profile throughout the wellbore and BOP depends on 

the dynamic pressure gradient throughout the system, such as shown in  

Figure 1.3. As the blowout preventer closes, pressure differential across the BOP 

increases. Since all fluids have some compressibility associated with them, this pressure 

wave will not instantly travel to bottomhole. There will be some sonic velocity, associated 

with the fluid properties, at which this pressure wave will travel. A pressure and velocity 

profile will develop until a new steady state condition is reached. For additional information 

related to how these profiles develop given a variety of situations of compressible flow 

transients, refer to Hati, Verma, and Chhabra (2001).  

The other physical situation that must be captured is flowrate response from the 

reservoir. The wellbore is also connected to a constant pressure reservoir. The closure time, 

sonic velocity, and wellbore length may be such that the pressure wave reaches the reservoir 

while the BOP is still closing. If this situation occurs, flowrate from the reservoir into the 

wellbore will reduce. This velocity reduction may travel back up the wellbore and reach the 

BOP before complete closure. This process is illustrated in Figure 1.4.  

To model these two processes, a 1-D transient simulation approach is implemented. 

The pressure transients within the 1D pipeline simulator are to be attained by numerically 

solving the 1D conservative form of mass and momentum balance for unsteady, 

compressible, and single-phase flow.  Current work includes the coupling of this 1D pipeline 

simulator with 3D BOP simulations to provide accurate inlet boundary conditions to the CFD 
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simulation. Since the current implementation is only for single phase flow, future work 

would include the extension to multiphase wellbore flow. 

  
Figure 1.3. Example situation for transient pressure and velocity profiles throughout the 
wellbore. A valve on one end of the wellbore is slightly closed, increasing the pressure that 
propagates to the reservoir. 

       
Figure 1.4. Flow response from the reservoir in the event of a kick taken and consequent BOP 
closure. 

1.4. Scope of Problem 

The aim of this study is to carry out a comprehensive investigation of simulation for a 

closing BOP in the event of a kick. This includes: 

• Validation and verification study for transient CFD blowout preventer simulations with 

dynamic meshing. For example, grid independence studies are to be completed for each 

drastically different geometry. While not much experimental data is available for fluid 
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flow through closing blowout preventers, experimental data from closing valves is 

widely available. CFD simulations will be compared to data from these closing valve 

experiments, including comparisons of information such as hydrodynamic forces, 

stresses, pressure transients, and flow rates. 

• Development of a basic 1D wellbore simulator using the Method of Characteristics 

(MOC) for handling hydraulic transients within the wellbore. The 1D hydraulic 

simulator is coded in C to be compiled and used as a user defined function (UDF) within 

ANSYS Fluent.  

• Implementation of explicit MOC(1D)-CFD(2D, 3D) coupling between wellbore and 

closing BOP. 

• Discussing implementation of ram motion dynamics to account for change in velocity of 

rams due to fluid forces acting on the surfaces. 

• Transient analysis of closing a BOP using the coupled simulations for single and 

multiphase flow. 

1.5. Previous Work 

1.5.1. Simulation through Valves 

A blowout preventer is essentially a large valve. While simulation of blowout 

preventers is not a research topic that has been fully explored through publications, 

simulation of valves throughout various industries has been a topic of extensive research. 

Some relevant literature of simulation through valves is briefly reviewed. Leutwyler and 

Dalton (2008) demonstrate applicability of CFD for accurately predicting hydrodynamic 

forces on a butterfly valve for single phase flow. Davis and Stewart (2002) used CFD in order 

to attempt to predict performance of a control valve. Steady simulations were run at various 
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valve closures from 0% to 90% closure. Axisymmetric CFD simulation of the valve was able 

to accurately predict flow characteristics of the valves.  

Srikanth and Bhasker (2009) utilize dynamic meshing to analyze the flow in a typical 

puffer type chamber. Spring-like dynamic meshing, described in a later section, is used here 

to simulate moving geometry. Similarly, a study by Song et al.  (2014) used spring-like 

dynamic meshing techniques to analyze flow in a safety valve. Here, the grid motion is 

governed by the force balance on the valve. The grid’s acceleration is calculated from the 

force balance between mechanical spring force, flow force, and gravitational forces from a 

moving component of the valve. Damper effects were ignored during this study. A sensitivity 

analysis was performed on various inputs such as spring stiffness, geometric variations, and 

inlet/outlet boundary conditions. The authors demonstrated dynamic meshing techniques 

applicability to capture dynamic motion of grid in response to fluid flow.  

Beune, Keuren, and Heumen (2012) perform a similar study for fluid structure 

interaction in high pressure safety valves. However, a multi-grid approach is used instead 

for this study. Pre-defined meshes are set up for various closure points in the simulation 

process. The authors take this approach due to the large deformation in the mesh which will 

cause low quality elements. Further discussion of these issues is presented in a later section 

which illustrates a similar issue when using dynamic meshing. 

1.5.2. Previous Work in BOP CFD Simulation 

Springett et al. (2016) develop a patent for a seal based on erosion analysis from CFD 

simulations through a BOP. Various simulations were performed in this work, including 

studying cavitation/choking under multiple conditions and studying erosion on variable 

bore rams. For the base case of their simulations, dynamic meshing capabilities in ANSYS 
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FLUENT were utilized to simulate single phase flow through closing BOPs. A constant inlet 

pressure boundary condition was used for the work in the patent, unlike the work in this 

thesis where a 1D hydraulic transient simulator provides the inlet boundary condition. 

Another patent work similar to this includes a patent by Khandoker and Hydril (2008). 

McCleney et al. (2018) combine FEA and CFD to analyze the fluid structure interaction 

during the shearing of a drillpipe. Due to computational expenses, complete fluid structure 

interaction was not modelled and CFD was only used to compute steady state simulations at 

five different instances. Similarly, Tulimilli et al. (2014) also utilize CFD to simulate the flow 

field throughout a BOP at several different instances. However, the CFD simulations are 

performed separately from the structural analysis in this case and is not coupled. Similar 

studies have also been completed on devices such as subsea surface safety valves. Xu et al. 

(2014) use CFD to calculate turbulent intensity and velocity fields throughout a subsea 

surface valve for erosion analysis. 

1.5.3. Water Hammer and Coupled Simulations 

Using OLGA, Han et. al (2013) study the water hammer effect for multiphase flows in 

wellbores during start up and shut in. It was determined that water hammer effect was 

mainly affected by wellbore fluid volume and fluid compressibility. Additionally, they 

concluded that a small amount of compressible fluid will reduce the effect of water hammer 

significantly. However, in OLGA, a predetermined flow coefficient is needed to calculate 

pressure drop across a valve. For the work in this thesis, a flow coefficient will not be needed 

to determine pressure drop because CFD is utilized to solve for the 3D flow field through a 

closure. This allows increased flexibility as different valve geometries can be investigated in 
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combination with the additional input variables such as closure time, wellbore volume, and 

fluid influx rate. 

While coupling BOP CFD simulations with water hammer simulations has not been 

completed in any of the referenced papers, the concept is not entirely new. A similar process 

has been accomplished by Feng et al. (2017) where the complex flow field throughout a valve 

is modelled through CFD and a thermal-hydraulic code handles water hammer calculations 

throughout a complex pipeline. Wu et al. (2015) coupled a MOC pipeline simulator to a 

transient, fast-closure pump CFD simulation for more accurate inlet boundary conditions of 

the CFD domain. Zhang et al. (2016) analyze water hammer during collapse of a draft tube 

by simulation of a complex geometric portions using CFD and a MOC approach to model the 

rest of the domain. 

  



12 
 

 Chapter 2. Theory and Methodology 

Simulation of a shut-in is carried out through CFD simulation of a BOP coupled to a 

hydraulic transient simulation of the wellbore. Here, governing equations and discretization 

methods are described for all simulations included in this study. Additionally, the 

methodology behind the simulation and coupling process will be described in this section. 

2.1. Governing Equations 

2.1.1. Fluid Flow through Wellbore 

Similar governing equations of fluid flow to the CFD calculations are discretized for 

solving transient flow throughout the pipeline. The one-dimensional equations of continuity 

and momentum are presented here in a more convenient form using piezometric head and 

flowrate: 

 𝜕𝐻

𝜕𝑡
+

𝑐2

𝑔

𝜕𝑣

𝜕𝑥
= 0 (1) 

 𝜕𝐻

𝜕𝑥
+

1

𝑔

𝜕𝑣

𝜕𝑡
+

𝑓

2𝑔𝐷
𝑣|𝑣| = 0  (2) 

Where piezometric head, H, can be related to pressure through the following relationship: 

 
𝐻 =

𝑃

𝜌𝑔
 (3) 

2.1.2. Fluid Flow through the BOP  

The fluid flow throughout a blowout preventer and the wellbore is again governed 

by the continuity and Navier Stokes Equations, except now presented in 3D form. 

 𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌�⃗�) = 0 (4) 

 
𝜌

𝜕�⃗�

𝜕𝑡
+ 𝜌(�⃗� ∙ ∇)�⃗� = −∇P + 𝜌�⃗� + ∇ ∙ 𝜏𝑖𝑗 (5) 
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2.1.3. Multiphase Flow 

As an extension to single phase flow throughout a BOP, it is also important to consider 

multiphase flows. During shut, fluid will likely not be a single phase. In the case of drilling 

fluid, cuttings may be flowing with the fluid throughout the BOP stack. When petroleum 

fluids are flowing through the wellbore, two phases of liquid and gas are probable to exist at 

pressure and temperature conditions at the BOP. For the work in this thesis, gas-liquid flow 

will be investigated through simulation. 

 Through multiphase flow analysis, various scenarios can be investigated. Some 

examples include the impact of slugs on hydrodynamic forces on shear rams, cavitation of a 

fluid flowing through small restrictions, choking conditions for worst case discharge 

estimates, and mass transfer between phases. Various models exist in commercial CFD 

software packages for simulating multiphase flow. The three main models that will be 

utilized during this study are the volume of fluid (VOF) approach, the mixture model, and the 

Eulerian-Eulerian approach. The VOF approach is an interface tracking method with a shared 

momentum equation between the phases. The phases are tracked through the continuity 

equation of each phase: 

 
1

𝜌𝑞
[
𝜕

𝜕𝑡
(𝛼𝑞𝜌𝑞) + ∇ ∙ (αq𝜌𝑞�⃗�𝑞) = 𝑆𝛼𝑞

+ ∑(�̇�𝑝𝑞

𝑛

𝑝=1

− �̇�𝑞𝑝)] (6) 

Since the momentum is shared between phases and only a single equation is needed, the 

same momentum equation as in equation 2 is used for the VOF model. Applications of the 

VOF model include flows where the interface should be tracked, such as in stratified flows.  

Similar to VOF, the Eulerian-Eulerian approach calculates volume fractions for each 

phase using equation 6. However, the interface between fluids is no longer of interest, so a 
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surface tracking technique is no longer applied. An additional contrast to the VOF model is 

that the momentum equation is no longer shared between the phases, resulting in a 

momentum equation for each phase: 

 𝜕

𝜕𝑡
(𝛼𝑞𝜌𝑞𝑣𝑞⃗⃗⃗⃗⃗) + ∇ ∙ (𝛼𝑞𝜌𝑞�⃗�𝑞�⃗�𝑞) = −𝛼𝑞∇p + ∇ ∙ τ̿q + 𝛼𝑞𝜌𝑞�⃗� + ∑(�⃗� 𝑝𝑞 + �̇�𝑝𝑞�⃗�𝑝𝑞

𝑛

𝑝=1

− �̇�𝑞𝑝�⃗�𝑞𝑝) + �⃗� (7) 

The Eulerian-Eulerian model is a popular choice for flows such as bubble columns or 

fluidized beds. 

 The final and simplest of the models is the mixture model. Rather than modelling each 

phase, the properties are averaged. For example, the continuity equation would now consist 

of terms such as an average density and velocity: 

 𝜕𝜌𝑚

𝜕𝑡
+ ∇ ∙ (𝜌𝑚�⃗�𝑚) = 0 (8) 

The same assumption of averaged properties is used for other flow equations. Using this 

model, even though properties are averages, velocities may slip past one another based on a 

drift velocity between the two phases. Aside from the multiphase models described above, 

other multiphase models exist to simulate phenomena such as mass transfer, choking, and 

cavitation. 

2.1.4. Fluid Flow from Reservoir  

Flow into the wellbore from the reservoir is assumed to be single phase. Given a 

productivity index (J), flowrate can be estimated through:  

 𝑄 = 𝐽 ∙ (𝑃𝑟 − 𝑃𝐵𝐻𝑃) (9) 

Where Q is flowrate, 𝑃𝑟  is reservoir pressure and 𝑃𝐵𝐻𝑃  is bottomhole pressure of the 

wellbore. A more complicated model (such as reservoir simulation) may be used to simulate 

fluid flow from the reservoir. However, a simple model is used here to save on computational 
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resources and because reservoir simulation is not the focus of this thesis. Additionally, it is 

important to note that fluid response from the reservoir will not affect the solution in many 

cases. This will be further discussed in a later section of the thesis and demonstrated with 

simulation results. 

2.1.5. Turbulence Modelling 

Turbulent flow is a flow field which has fluctuations in variables such as velocity. A 

turbulent flow regime will begin to develop within the annulus as velocity increases. During 

various processes in drilling and production, turbulence within the wellbore is a common 

occurrence. Because of this, it is important that turbulence is accurately modelled. Methods 

of modelling turbulence include Reynolds-Averaged Navier-Stokes models (RANS), Large 

Eddy Simulation (LES) and Direct Numerical Simulation (DNS). RANS methods are used in 

this study because of the computational demands required by LES and DNS. 

The concept behind RANS modelling is that flow field variables can be decomposed 

into two terms: a fluctuating component and a time-averaged component.  After these 

variables are decomposed, new terms are introduced into the governing differential 

equations, and relationships to solve for the variables are needed for problem closure. 

Various turbulence models exist for this purpose, such as the k-epsilon and k-omega models. 

The k-epsilon model (Launder and Spalding 1973) is used widely due to its robustness and 

accuracy for engineering problems. 

 𝜕

𝜕𝑡
(𝜌𝑘) +

𝜕

𝜕𝑥𝑖

(𝜌𝑘𝑢𝑖) =
𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗
] + 𝐺𝑘 + 𝐺𝑏 − 𝜌𝜖 − 𝑌𝑀 + 𝑆𝑘 (10) 

 𝜕

𝜕𝑡
(𝜌𝜖) +

𝜕

𝜕𝑥𝑗

(𝜌𝜖𝑢𝑖) =
𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝑘
)

𝜕𝜖

𝜕𝑥𝑗
] + 𝐶1𝜖

𝜖

𝑘
(𝐺𝑘 + 𝐶3𝜖𝐺𝑏) − 𝐶2𝜖𝜌

𝜖2

𝑘
+ 𝑆𝜖 (11) 
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The standard k-epsilon model will over-predict the turbulent eddy viscosity for flows 

with large separation. Known as the realizeable k-epsilon turbulence model and proposed 

by Shih et al. (1994), new formulations to calculate eddy viscosity and turbulent dissipation 

rate were developed and tested. Shih et al. (1994) demonstrated the model’s superior 

performance for backwards step-facing flow, boundary free shear flows, and adverse 

pressure gradients. Such flows are extremely common during simulations of a closing BOP, 

as shown in Figure 2.1.  

Despite improvements to the model, an issue with the k-epsilon model is that several 

terms in the equation have correlations that are difficult to measure, making problem closure 

approximations difficult to attain as well (Wilcox 1998). A popular alternative two-equation 

turbulence model is the k-omega model, initially developed by Kolmogorov (1942) and 

reassessed by Wilcox (1988). Investigation of this turbulence model is left for a further study. 

Another aspect important to turbulence is the boundary layer. This region is the 

region of fluid nearest the wall, where fluid velocity is transitioning from stationary to free 

stream velocity. The turbulence models previously described are not applicable in this 

region because they assume fully developed turbulent flow. In order to accurately model the 

forces and pressures on the wall, the sub viscous boundary layer should be properly 

resolved. Turbulence models such as k-epsilon can approximately resolve this region 

through wall functions. Wall functions (Patankar and Spalding 1967) describe the 

logarithmic function of the boundary layer, as illustrated in Figure 2.2. Wall functions will 

severely loosen the requirements of the near wall mesh. However, wall functions are not 

always applicable. For example, in regions of flow separation, wall functions will not 

accurately describe the boundary layer velocity profile. 
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Figure 2.1. Example simulation demonstrating typical causes for recirculation zones in 
closing valves. The lower image depicts an enlarged view of flow recirculation, enlarged from 
the upper image. 
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Figure 2.2.  Illustration of boundary layer and unresolved meshing of the layer. 

For the realizable k-epsilon model, 𝑦+ values for the first cell’s height normal to a wall 

should remain within the range of 30 to 300. The 𝑦+ value can be estimated through the 

equation, which is important to calculate before mesh creation. 

 𝑦+ =
𝑢∗𝑦

𝜈
 (12) 

2.2. Fluid and Transport Properties 

Fluids flowing through a BOP may include drilling fluids or hydrocarbons. Fluids such 

as these have more complex properties than single-phase Newtonian fluid properties, which 

are the default properties of a fluid in ANSYS Fluent. Drilling fluids are typically non-

Newtonian fluids, which differ from Newtonian fluids in that the stresses are not linearly 

proportional to the strain rate for non-Newtonian fluids. An exception to this is the Bingham 

plastic, which differs from a Newtonian fluid in that Bingham Plastic fluids will not begin to 

flow until a yield point shear stress is applied. Examples are illustrated in Figure 2.3. ANSYS 

Fluent has capabilities of modelling non-Newtonian Fluids.  

Another property of fluids to mention is the vapor pressure. At constant temperature, 

when a single component liquid falls below the vapor pressure, formation of gas bubbles will 

occur. Since large pressure differences develop across the BOP, and since low pressure will 

exist in areas of flow separation, extremely low pressures will develop during the transient 

process. Cavitation can be enabled in ANSYS Fluent to model this mass transfer interaction 
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between gas and liquid. However, hydrocarbons are not single component liquids. Instead, 

hydrocarbon liquids consist of many different components. As a result, there is no single 

pressure at which the liquid will completely change to gas. Instead, a bubble point exists at 

which the first gas bubbles will form.  From there, as pressure decreases, increasing amounts 

of gas will evolve from the liquid. Refer to McCain (2017) for a more comprehensive 

discussion of petroleum fluid properties. Modelling such fluid properties may require the 

use of user defined functions to properly implement. 

 
Figure 2.3. Shear stress/rate relationship for Newtonian and non-Newtonian fluids. 

 

                         
Figure 2.4. Mass transfer for single component (left) and multi-component (right) fluids. 
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2.3. Dynamic Meshing 

To simulate moving rams closing in against the pipe, dynamic meshing methods are 

utilized. Dynamic meshing is a process through which nodes and volumes move or re-mesh 

based on a motion description specified by the user. When implementing one of these 

dynamic meshing options, an additional condition, the geometric conservation law (GCL), 

must be satisfied: 

 𝜕

𝜕𝑡
∫𝑑𝑉

 

𝑉

= ∫𝑊𝑗𝑑𝑛𝑗

 

𝑠

 (13) 

The GCL states that the rate of change of each control volume must be equal to the volume 

swept by its boundaries. Additional information can be found in ANSYS Theory Guide (2001) 

for FLUENT and Weller et al. (1998) for OpenFOAM. 

Several methods of dynamic meshing options exist in ANSYS Fluent, including 

layering, remeshing, and smoothing. A summary of advantages and disadvantages of each 

method in ANSYS Fluent from the experiences during this project are presented below. A 

more in-depth discussion demonstrating these issues related to BOP closure is included in 

this section. Additionally, more advanced meshing options are discussed in the ANSYS Fluent 

user manual. 

2.3.1 Layering 

 As a boundary moves, elements will split or merge with other elements in the mesh. 

The process is illustrated in Figure 2.5. The cell height at which the layering remeshes is 

specified in ANSYS Fluent as a constant value. Therefore, a constant sized mesh must be used 

across the direction of ram wall motion. 
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Figure 2.5. Illustration of the layering technique: a moving boundary collapses cells as it 
closes in on the fluid domain. 

• Advantages 

1. Can maintain high quality cells. Most of the cells in domain remain 

undisturbed, and even the cells that become remeshed still remain hexahedral. 

2. Can be used with hexahedral cells, unlike standard remeshing. 

3. Area of remeshing can be easily controlled, since it is known exactly where and 

how the remeshing will occur. 

• Disadvantages 

1. Must be used with hexahedral meshes, and this may be an issue since 

structured meshes are not always easy or even possible to create. 

2. Remeshing may occur in areas where remeshing is undesirable. For example, 

remeshing may occur on a wall where physical quantities of interest are 

extracted. When using layering, this issue may be difficult to avoid depending 

on the geometry motion and mesh setup. 

3. If layering is applied along a wall, the first cell height along this wall will be 

drastically varying throughout the entire process. First cell height must be 

within a specific range depending on the turbulence model and fluid velocity, 
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so this may be difficult to control when using layering. Specific setups can be 

created to avoid this issue, though the process may be too tedious to consider. 

4. Depending on the geometry, layering may require a specific setup that 

involves interfaces. Interfaces between fluid domains will introduce additional 

error in the solution, since interpolation across the domains is involved in this 

process. 

2.3.2. Spring Based Smoothing 

In using the spring-based method, elements will act as a spring. As a boundary moves, 

the elements of the mesh will stretch or compress depending on the motion of the boundary 

and specified spring constants. An illustration of this process is shown in Figure 2.6. 

 
Figure 2.6. Illustration of spring-based smoothing: a boundary moves and compresses a set 
of cells. 

• Advantages 

1. Easiest implementation of the three options listed here. 

2. Can be used with hexahedral cells, though the cells will deform. 

3. Fluid cells will not remesh. This may be advantageous in certain situations, 

since remeshing involves interpolation of solutions onto the new mesh, 

introducing some error to the simulation process. There is also no risk of 

remeshing prism layers. 

• Disadvantages 
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1. In cases of large deformation, cells will extensively stretch and twist, causing 

extremely low-quality elements. In other cases, these deformations will be so 

extreme that cells “overlap” each other, causing a negative cell volume error 

and stopping the simulation. 

2.3.3. Smoothing and Remeshing 

 For this dynamic meshing option, a cell skewness or size criteria can be input by the 

user. During boundary motion, cells will deform through spring-based smoothing. As cells 

deform, the cells that do not meet these specified criteria are selected to be remeshed at the 

next timestep.  

• Advantages 

1. Extremely robust in comparison to the other mentioned options. When 

enabled, this option will allow for a much wider possibility of geometric setups 

and deformations to occur. 

• Disadvantages 

1. Remeshing may be difficult to control. Prism layers may remesh. Fluid cells 

along walls may remesh. Simulations with a large variance in cell size may also 

be particularly difficult to control. These issues require specific setups to 

avoid. This will be explained in a following section.  

2.4. Discretization and Solution Methods to Governing Differential Equations 

To solve the governing differential equations of fluid flow, numerical methods must 

be implemented since no analytical solution is available unless major simplifications are 

made. The governing equations can be discretized to approximate a solution. Various 

discretization methods exist, such as finite volume (FVM), finite element (FEA), method of 
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characteristics (MOC), finite difference, and spectral methods. The choice of discretization 

method is problem specific, depending on advantages and disadvantages of the chosen 

method. The chosen discretization for each domain is discussed in this section. 

2.4.1. Discretization of Wellbore Domain 

As described earlier, CFD is only used to model the BOP domain. An additional 

discretization is needed for the wellbore, where pressure propagates through the system. A 

comprehensive investigation of water hammer theory and practice was completed by 

Ghidaoui et al. (2006). It was stated that a common approach to solving propagation 

problems is the method of characteristics approach. It’s accuracy, efficiency, and ease of 

implementation makes the method of characteristics a widespread choice among many 

commercial hydraulic transient simulators. The concept of MOC is to reduce the governing 

differential equations into a set of ordinary differential equations. The first step is linear 

combination of the governing equations: 

 
𝐿1 =

𝜕𝐻

𝜕𝑥
+

1

𝑔

𝜕𝑉

𝜕𝑡
+

𝑓

2𝑔𝐷
𝑉|𝑉|  (14) 

 
𝐿2 =

𝜕𝐻

𝜕𝑡
+

𝑐2

𝑔

𝜕𝑉

𝜕𝑥
 (15) 

 𝐿 = 𝐿1 + 𝜆𝐿2 = 0 (16) 

 
𝐿 =  

𝜕𝐻

𝜕𝑥
+

1

𝑔

𝜕𝑉

𝜕𝑡
+

𝑓

2𝑔𝐷
𝑉|𝑉| + 𝜆 ( 

𝜕𝐻

𝜕𝑡
+

𝑐2

𝑔

𝜕𝑉

𝜕𝑥
) = 0 (17) 

 

Rearranging gives: 

(
𝜕𝐻

𝜕𝑥
+ 𝜆 ( 

𝜕𝐻

𝜕𝑡
)) + (

1

𝑔

𝜕𝑉

𝜕𝑡
+ 𝜆 ( 

𝑐2

𝑔

𝜕𝑉

𝜕𝑥
)) +

𝑓

2𝑔𝐷
𝑉|𝑉| = 0 (18) 
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From the material derivative: 

𝑑𝑉

𝑑𝑡
=

𝜕𝑉

𝜕𝑡
+

𝜕𝑉

𝜕𝑡
+

𝜕𝑉

𝜕𝑥

𝑑𝑥

𝑑𝑡
  (19) 

𝑑𝐻

𝑑𝑡
=

𝜕𝐻

𝜕𝑡
+

𝜕𝐻

𝜕𝑡
+

𝜕𝐻

𝜕𝑥

𝑑𝑥

𝑑𝑡
 (20) 

By solving the 3 equations above, 𝜆 can be solved for as  

 
𝜆 = ± 

1

𝑐
=

𝑑𝑥

𝑑𝑡
 (21) 

Substitution of this solution and the material derivative into the original governing equation 

results in: 

𝑑𝑉

𝑑𝑡
+

𝑔

𝑐

𝑑𝐻

𝑑𝑡
+

𝑓

2𝐷
𝑉|𝑉| = 0                   𝑓𝑜𝑟 𝜆 = +

1

𝑐
  (22) 

𝑑𝑉

𝑑𝑡
−

𝑔

𝑐

𝑑𝐻

𝑑𝑡
+

𝑓

2𝐷
𝑉|𝑉| = 0                   𝑓𝑜𝑟 𝜆 = −

1

𝑐
 (23) 

A forward finite difference can be applied to discretize the differential equations, and the 

equations can be arranged to solve for the next timestep’s variable: 

𝑉𝑥
𝑡+1 =

1

2
(𝑉𝑥−1 + 𝑉𝑥+1 +

𝑔

𝑐
(𝐻𝑥−1 − 𝐻𝑥+1) − 𝑓

Δ𝑡

2𝐷
(𝑉𝑥−1|𝑉𝑥−1| + 𝑉𝑥+1|𝑉𝑥+1|))  (24) 

𝐻𝑥
𝑡+1 =

1

2
(𝐻𝑥−1 + 𝐻𝑥+1 +

𝑐

𝑔
(𝑉𝑥−1 − 𝑉𝑥+1) − 𝑓

Δ𝑡 𝑐

2𝐷𝑔
(𝑉𝑥−1|𝑉𝑥−1| − 𝑉𝑥+1|𝑉𝑥+1|)) (25) 

 A standalone python code is provided in the appendix. It is important to note the 

assumptions made here:  

• Single phase flow is assumed. Single phase flow will affect several of the assumptions 

below. In reality, flow throughout the wellbore will most likely not be single phase. 

Evolution of gas from the oil is expected as the fluid travels up the wellbore. 
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• Constant friction factor is assumed in the model. In reality, friction factor would not be 

constant for two main reasons. As fluid velocity changes within the wellbore, friction 

factor will also change. Additionally, friction factor will be different in varying regions 

of multiphase flow. 

• Constant wave speed is assumed. Wave speed will vary depending upon two 

parameters. Varying gas void fractions throughout the entire wellbore will cause wave 

speed to be different throughout the wellbore. Additionally, flow pattern will influence 

wave speed. 

• Diameter is assumed to be an equivalent diameter expression from annulus to pipe. 

Because the focus for this thesis is in simulation of closing BOP and not developing a 

flexible multiphase hydraulic transient simulator, the assumptions will be left as is. To 

improve on the simulations, these issues would need to be addressed. Since the wellbore 

simulator is explicitly coupled, the most practical solution would be to couple ANSYS Fluent 

to an already existing commercial hydraulic transient simulator or to a wellbore simulator. 

Coupling of ANSYS Fluent to OLGA (an oil and gas pipeline simulator) has already been 

accomplished by Xing, Yeung, and Lo (2011). 

2.4.2. Discretization of Blowout Preventer Domain 

For simulation of fluid flow throughout the blowout preventer, the finite volume 

method is utilized. Because the finite volume method can handle complex geometries and 

has an inherent capability of conservation, it is popular choice in the discretization of the 

mass, momentum, and energy conservation equations for fluid flow. FVM is implemented by 

discretizing a domain into finite volumes, and the governing equation is integrated over an 

arbitrary control volume. The gauss-divergence theorem is then used to convert volume 
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integrals to surface integrals to finally obtain the integral form of the governing equations. 

Specific algorithms and further discretization of nonlinear terms are still required for solving 

the set of generated algebraic equations. Rather than develop the code for a finite volume 

solver, a commercial software package is used to discretize and solve the governing 

equations. For a more in-depth explanation of the finite volume method, refer to an 

introductory text such as Patankar (1980), Versteeg and Malasekera (2007), or Anderson 

and Wendt (1995). 

2.5. Boundary Conditions  

 Along with the discretization of the governing differential equations, boundary 

conditions must be applied to solve for fluid flow in both domains. The boundary conditions 

and derivation of the boundary conditions for the wellbore simulator are described here. 

Boundary conditions are also described here for the CFD BOP domain. Since a commercial 

package is used for the CFD simulations, the derivation of boundary conditions is not 

described in this section. Refer to the introductory CFD texts mentioned in the previous 

section for derivation and implementation of these boundary conditions. 

2.5.1 MOC (1D) Wellbore Simulation Boundary Conditions 

Boundary conditions are needed at each end of the wellbore. On the reservoir side, a 

constant pressure throughout the reservoir is assumed since change in fluid volume of the 

reservoir is assumed to be insignificant. On the blowout preventer side of the wellbore 

domain, a pressure boundary condition is provided from the CFD simulation during the 

coupling process. This process will be described in a later section. The velocities on each end 

of the wellbore domain may also be calculated by rearranging equation 24, as demonstrated 

in Appendix B. 
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2.5.2. CFD (2D,3D) Blowout Preventer Boundary Conditions 

CFD simulations require boundary conditions to be applied on the surfaces of a 

computational domain. The blowout preventer geometries contain three different types of 

faces. The first is the physical walls of the blowout preventer. This includes the pipe walls, 

annulus walls, and ram component walls. Conditions such as no-slip velocity along the walls 

are applied on these surfaces. The second is an outlet boundary condition, applied at the top 

of the domain. In this case, it is assumed that the blowout preventer’s outlet is at 0-50,000 

gauge psi. More complex boundary conditions may be implemented to take into 

consideration frictional pressure loss in the pipe above the BOP as flow through the system 

decreases. A third inlet boundary condition is needed on the lower face of the domain, where 

generally some flowrate, velocity, or pressure boundary condition is specified. The boundary 

condition in the case of a closing blowout preventer is more complicated than simply 

assigning a constant value of flow or pressure.  An inlet velocity boundary condition is 

provided here by coupling the CFD simulation to a 1D wellbore simulation. The wellbore 

simulation provides this inlet boundary condition and is further explained in following 

sections 

2.6. MOC (1D) – CFD (2D,3D) Coupling Description 

 The coupling process between MOC and CFD is similar to that in the study by Feng at 

al. (2015) and is illustrated in Figure 3.. The flow field is initialized at steady state. From this 

point, the transient simulation starts with a single time step of the BOP CFD simulation. 

Pressure information from this simulation is recorded by averaging the properties over a 

selection of cells. This pressure information is sent to MOC code and serves as a pressure 

boundary condition at the top of the wellbore domain. One time-step of the MOC hydraulic 
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transient simulator is computed, and the velocity value at the top of the MOC code is 

recorded. This information is then used as a velocity inlet boundary condition for the BOP 

CFD simulation.  

 
Figure 2.7. Explicit coupling algorithm between MOC and CFD simulation used in this thesis. 

2.7. Validation and Verification Process 

Verification and validation are important processes to ensuring reliable CFD 

simulation results. Some basic validation and verification work have been completed to 

demonstrate accuracy and credibility of current results. Examples are shown here, but all 

verification and validation examples are not shown for the sake of brevity. Validation is 

defined as determining if the computed simulation results agree with physical reality. On the 

other hand, verification is related to checking if the implementation and models are correct. 

An example of verification is a grid independence study. Grid independence studies can be 

conducted to determine if a grid has guaranteed spatial convergence. A CFD study generally 
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starts on a coarse grid. The grid may be refined until the solution has insignificant changes 

after successive refinements. An example grid independence study is shown in Figure 2.7. 

Four grid sizes for an axisymmetric closing BOP were simulated. It can be seen that after the 

grid is refined to 44,000 cells, the change in solution with further gird refinement becomes 

insignificant.  

 

        
Figure 2.7. Grid independence study example using four different mesh sizes for closing 
valve with a closing time of 20 seconds. 

Other verification processes are also completed to build confidence in the solution. 

Residuals, computed from each equation solved in ANSYS Fluent, are monitored over the 

entire process. Physical quantities of interest are also monitored to ensure that convergence 

is achieved. Wall y+ values are also monitored to maintain appropriate mesh sizing along 



31 
 

walls during the dynamic meshing process. Validation against experimental results are 

shown in later sections. For the work in this thesis, comparison to pressure drops across 

valves is included. 

2.8. General Workflow Process and Tools Utilized 

2.8.1. Software 

All geometries are created in Autodesk Inventor, a commercial CAD software 

available on the virtual engineering desktop through LSU’s resources. After the CAD file is 

created, it is saved as a .step file and imported into ANSYS ICEM CFD, a meshing software 

also available through LSU’s resources. This mesh file is saved and imported into ANSYS 

FLUENT. After simulation is completed, postprocessing is completed through ParaView or 

CFD Post. In addition to the above-mentioned software, some coding is implemented for User 

Defined Functions (UDFs) in ANSYS Fluent. UDFs are used in fluent to enhance the standard 

features of Fluent, such as implementing advanced boundary conditions. These UDFs are 

written in C. Python is used for initial development and testing of codes. The Python codes 

are then translated into C to be compiled as a UDF in ANSYS Fluent. 

2.8.2. Computational Resources 

Most of the preliminary and testing simulations are run on a standard desktop. 

However, as grids become refined, computational demands increase. Particularly, 

multiphase flow simulations on the 3D grids require HPC resources. LSU’s Center for 

Computation and Technology (CCT) maintains a high-performance computing environment 

with several different clusters. Of those resources, SuperMike-II is used when necessary for 

the simulations in this study. SuperMike-II is a 146 TFlops Peak Performance 440 compute 
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node cluster, with nodes that contain two 8-Core Sandy Bridge Xeon 64-bit processors that 

function at a core frequency of 2.6 GHz. 

 
Figure 2.8. Software package workflow for this thesis from geometry creation to solution 
analysis. 
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 Chapter 3. Numerical Setup and Implementation 

3.1. MOC (1D) Wellbore Simulation Implementation 

The hydraulic simulator was initially created in python for testing and development 

purposes. A standalone python code is included in Appendix B. This python code is 

eventually converted to C and then included as a UDF in ANSYS Fluent.  

The code begins with initialization of important variables such as gravitational 

acceleration, initial fluid velocity, wellbore length, wave speed, and timestep. Because of the 

relationship between timestep and discretization length (as described in the theory section 

for MOC applied to water hammer), discretization length is not predefined. Instead, 

discretization length is calculated from timestep and wavespeed.  

𝑑𝑥 = 𝑑𝑡 ∗ 𝑐 (26) 

 After the variables are created, [N x T] arrays are created for storage of piezometric 

head and velocity values, where N is the number of length discretizations and T is the number 

of time discretizations. This is modified in the later C code, where the spatial discretization 

values are stored only for the previous and current timestep, being constantly overwritten 

during simulation progress. Flow is then initialized by assuming constant velocity at all 

locations in the wellbore. Piezometric head is initialized by assuming constant reservoir 

pressure, then calculating the frictional head loss based on friction factor, velocity, and 

length. 

Δ𝑝𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 =
𝑓 𝐿(𝑉𝑖𝑛𝑖𝑡)

2

2𝑔𝐷
 (27) 
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3.2. General Setup for CFD (2D, 3D) BOP Simulations 

While many input variables will vary across the simulation results shown in this 

thesis, several setups remain constant. The consistent setups are described here. Any 

simulation-specific properties and setups will be described in the relevant sections. 

3.2.1. Implemented Fluid and Transport Properties 

All fluids in the simulations within this thesis are specified as single component fluids. 

Multi-component fluids, such as hydrocarbons, are left for future work. Hydrostatic pressure 

conditions may vary across simulations, though an outlet pressure of 50,000 Pascals was 

general applied. Fluid properties such as density and viscosity may have varied across 

simulations, but values in the range of 700-1000 kg per cubic meter and 0.5-1 cp were 

chosen. Other than for validation purposes, viscosity and density values are not significant 

for this thesis, and were chosen to be similar properties to that of oil or water. Turbulence 

properties for the models chosen were typically left as the default values. 

3.2.2. Solution Methods 

Solution methods describe the spatial and transient discretization process. Lower 

order methods are generally less accurate, but easier to converge than higher order methods. 

Simulations in this thesis are initially run using the default settings, which generally consist 

of first order discretization methods. After convergence is achieved, first-order methods are 

switched to second-order methods. Solution stability was not a major issue for any of the 

simulations in this thesis.  

An algorithm is needed to solve the set of discretized equations. This algorithm may 

be specified in the solution methods section.  The Semi Implicit Method of Pressure Linked 

Equations (SIMPLE) algorithm is used for the simulations in this thesis. This algorithm, along 
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with other available algorithms, has been discussed extensively in various CFD texts. Refer 

to Patankar (1980) for description of the SIMPLE algorithm. 

3.2.3. Solution Controls 

Solution controls are used to specify under-relaxation factors for various variables 

and equations during the solution process. Higher factors will speed up the convergence, but 

may affect stability. Lower factors will slow down the convergence process, but may ensure 

convergence of unstable problems. Solution controls were left as default for most 

simulations, since convergence was not an issue during most runs. Default values of 

relaxation values range from 0.7 to 1. For multiphase simulations, some setups may have 

been difficult to converge. Default values were cut by one-third to assist in convergence. 

3.2.4. Solution Convergence Criteria 

Unlike the MOC (1D) wellbore simulations, variables in the CFD simulations cannot 

be directly solved for. Iterations must be completed until convergence is achieved. 

Convergence is generally monitored through residuals, which are quantifications of error. 

For the simulations in this thesis, residuals convergence criteria is set to 10−5  for all 

equations. Convergence is also judged by monitoring physical quantities. Pressures and 

shear rates along the ram walls, as well as pressure drops across the BOP are monitored 

during the simulation to judge convergence. 

While not particularly difficult to attain for most of the simulations in this work, 

convergence may require some special attention, particularly for multiphase flows and 

cavitation of single-phase flow. Transient problems generally can have improved 

convergence by reducing the timestep, improving mesh quality, or changing solution 

controls.  However, some steady state simulations can be difficult to converge depending on 
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initial conditions provided. For steady-state simulation cases, convergence was easily 

obtained for all simulations using the procedure below. 

1. Set turbulence model to standard k-epsilon. This initial simulation will provide an 

initial guess for the realizable k-epsilon simulation. 

2. Initialize the solution from outlet or inlet. 

3. Run the simulation in transient at small time steps (e.g. 1e-5) for 10-100 iterations. 

4. Gradually increase the time step until flow seems somewhat adequately developed. 

5. Attempt to run the simulation in steady state until convergence is achieved. 

6. Switch the turbulence model to realizable k-epsilon and again run the simulation in 

steady state until convergence is achieved. 

7. If modelling cavitation, switch on the appropriate mass transfer model and repeat 

steps 2-4. 

3.3. Dynamic Meshing Considerations for CFD domain 

Specific setups are required for both layering and smoothing/remeshing. Some valve 

geometries are simple enough to approximate as an axisymmetric design, such as in Figure 

3.1. In geometries such as these, hexahedral meshes are not time consuming to setup, 

allowing the possibility of layering. Application of layering requires a specific setup using 

interfaces. Necessity of interfaces is purely problem and software dependent. Other problem 

setups or software packages may not require interfaces as described here. Figure 3.2 

illustrates the general setup for the simulations. Three separate fluid domains are imported 

into ANSYS Fluent and they are linked through the interface boundary condition. Standard 

wall, inlet velocity, and pressure outlet boundary conditions are then applied where 

relevant. 
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Figure 3.1. Axisymmetric representation of an annular preventer. 
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Number Boundary Condition 

1 Pressure Outlet 
2 Stationary Wall 

3 Interface 

4 Stationary Wall 
5 Interface 

6 Stationary Wall 
7 Interface 

8 Moving Wall 

9 Interface 

10 Stationary Wall 
11 Velocity Inlet 

12 Stationary Wall 

 
Figure 3.2. Description of boundary conditions for a closing annular preventer simulation 
using layering. Upper image shows the mesh and interfaces. Lower left image illustrates the 
boundary condition setup, labelled according to the table. 



39 
 

In cases where remeshing and smoothing are used, only a single fluid domain is 

needed. However, to apply boundary conditions in different regions, the fluid domain and 

surfaces are broken into several different parts during the meshing process. Moving prism 

layers must be separated from the main domain to apply a motion boundary condition to 

that section of the fluid domain. Stationary prism layers should also be separated to apply a 

rigid body boundary condition, ensuring that prism layers do not remesh. Additionally, 

deforming faces should be separated from the main body since a dynamic mesh boundary 

condition (deforming face) will need to be specified here. 

 
Figure 3.3. y+ Comparison between layering at a wall and rigid body elements at a wall. 

The importance of rigid body prism layers is demonstrated partially in Figure 3.. 

When cells near the wall are allowed to deform (such as in the mesh setup shown in Figure 

3.2), the y+ value becomes difficult to control since the cell height is always changing. More 

importantly, cells in critical regions are being remeshed when using a mesh setup as in 

Figure 3.2. Therefore, it is recommended that rigid body elements are used, such as in Figure 

3. and Figure 3.5 meshes. 
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Another important meshing consideration to discuss is the idea of using multiple pre-

defined meshes throughout the simulation process. As discussed in the turbulence modelling 

section, a y+ value between 30 and 300 should be used for the turbulence models used in 

this thesis. The simulation data in Figure 3. comes from a 20 second BOP closure simulation. 

It can be seen here that the y+ value reaches 300 at 14 seconds, which is long before the 

simulation ends. This can be managed by setting up a series of meshes that have successively 

refined prism layers, as demonstrated in Figure 3.3. An example is provided in the results 

section of this thesis. 

 
Figure 3.4. Case setup for smoothing and Remeshing with rigid body prism layers. 

Another reason why multiple pre-defined meshes are needed is because the rigid 

body prism layers will eventually collide with the edge of the domain, as shown in Figure 3.. 

The domain cannot close beyond the thickness of these prism layers. However, when 
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multiple pre-defined meshes are set up, a thinner set of prism layers may be used. This would 

allow for further closure of the BOP. 

                         
Figure 3.5. Limitation of mesh closure with rigid body prism layers. 

 
Figure 3.3. Multi-stage meshing strategy to manage wall y+ values. 

3.4. Implementation of Boundary Motion and Important Considerations 

As explained in chapter 2, the boundary motion of the rams may be described in three 

different ways. The implementation of those three methods in ANSYS Fluent are described 

                 

                  

      pp                                

            P    
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in this section. Example codes to be compiled are found in Appendix B. In general, a 

CG_MOTION UDF may be used to specify the motion of a dynamic zone. That motion may be 

applied to nodes, lines, or entire regions of cells. Only details relevant to the work in this 

thesis are provided here. Comprehensive documentation of this UDF may be found in the 

relevant ANSYS Fluent user manual.  

For a constant velocity case, implementing a UDF is as simple as specifying a constant 

value and direction. For example, “vel[1] = 0.05” would apply a constant velocity of 0.05 m/s 

in the y-direction to all nodes, lines, or cells. A time-varying motion may be specified just as 

easily, by including a time multiplier. For example, “vel[0] = -0.05*time” would apply a 

linearly changing time-varying velocity in the negative x-direction to all nodes, cells, or lines. 

The dynamic ram motion case is slightly more involved, since forces on the rams must 

first be calculated. The forces on rams may be calculated from the dot product of two relevant 

vectors: the vector pointing in the direction of ram motion, and a vector pointing in the 

direction normal to the face, as illustrated in Figure 3.4. A dot product is necessary to 

calculate the force only in the direction of ram motion. 

𝐹𝑓𝑙𝑢𝑖𝑑 = −𝑃 ∗ 𝐴 ∗ 𝑛1  ∙  𝑛2 (28) 

 
Figure 3.4. Illustration of Fluid Force and Cell Motion Vector Directions 

P is the pressure on the cell face, A is cell face area, 𝑛1 is the direction vector normal 

to the face area, and 𝑛2 is the direction vector of unit motion. A negative sign is necessary 

because the normal direction of the face always points in the opposite direction that the force 
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is acting on. In the provided UDF in Appendix B, the direction vector is always equal to ram 

motion vector, so this dot product calculation is not included. 

Additionally, using the information for calculating acceleration in Chapter 2 regarding 

hydro pneumatic systems, a velocity at each time step must still be approximated. The 

velocity can be approximated through a first order forward finite difference. 

�̈�𝑡 =
�̇�𝑡 − �̇�𝑡−1

Δ𝑡
 (29) 

The new x position may also be calculated from the old position and velocity. 

𝑥𝑡 = 𝑥𝑡−1 + �̇�𝑡−1 Δ𝑡 (30) 

These two equations may be substituted into the original equation from the section in 

chapter 2. 

𝑚𝑟𝑎𝑚 �̈�𝑡 = 𝐹𝑓𝑙𝑢𝑖𝑑 − 𝑘𝑥𝑡 − 𝑏�̇�𝑡  (31) 

 

𝑚𝑟𝑎𝑚  
�̇�𝑡 − �̇�𝑡−1

Δ𝑡
= 𝐹𝑓𝑙𝑢𝑖𝑑 − 𝑘(𝑥𝑡−1 + �̇�𝑡−1 Δ𝑡) − 𝑏�̇�𝑡  (32) 

Moving unknowns to the right hand side, and known values to the left hand side, the 

equation may be rearranged as: 

�̇�𝑡 =

(�̇�𝑡−1 +
Δ𝑡 (𝐹𝑓𝑙𝑢𝑖𝑑 − 𝑘(𝑥𝑡−1 + �̇�𝑡−1 Δ𝑡) − 𝑏�̇�𝑡)

𝑚𝑟𝑎𝑚
)

(1 +
𝑏Δ𝑡

𝑚𝑟𝑎𝑚
)

 
(33) 

When damper forces are assumed to be negligible, the equation is reduced to: 

�̇�𝑡 = �̇�𝑡−1 +
Δ𝑡 (𝐹𝑓𝑙𝑢𝑖𝑑 − 𝑘(𝑥𝑡−1 + �̇�𝑡−1 Δ𝑡))

𝑚𝑟𝑎𝑚
 (34) 
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The spring rate, “k,” can be calculated as discussed in Appendix C. This implementation is 

left for future work. 

3.5. MOC(1D) – CFD(3D) Coupling Implementation 

 A UDF to be compiled in ANSYS Fluent is provided in Appendix B. This UDF is used as 

an inlet velocity boundary condition in ANSYS Fluent. Implementation of this coupling 

process involves the code described in section 3.1, which is the section that describes the 

implementation of the MOC solution to hydraulic transients throughout the wellbore 

domain. A simple pseudocode is provided in Figure 3.5, which provides details of the 

coupling process. An important aspect to note is that all wellbore calculations are only 

calculated on the first iteration of the CFD solution at each time step. Successive iteration 

between simulations is not done in this coupling process. Maintaining stability of the solution 

is achieved through another manner, described in a later section. 

3.6. Averaging Pressure in the CFD Simulation 

 A selection of cells needs to be looped over to attain an average pressure value. This 

is implemented my splitting the fluid domain into separate zones (as was done with rigid 

body prism layers). An example setup is shown in Figure 3.6. In ANSYS Fluent, a separate 

zone will be associated with its own ID which can be accessed and looped over (see the UDF 

in the appendix for reference on how this is done). Ideally, the pressure should be averaged 

by: 

∑(𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑜𝑓 𝐶𝑒𝑙𝑙𝑖 ∗ 𝐶𝑒𝑙𝑙𝑖 𝑉𝑜𝑙𝑢𝑚𝑒)

∑(𝐶𝑒𝑙𝑙𝑖 𝑉𝑜𝑙𝑢𝑚𝑒𝑠)
 (35) 

However, since the pressure is fairly uniform in this region, this is approximated through the 

sum of cell pressures divided by the number of cells. 
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Figure 3.5. Algorithm of explicit coupling UDF for ANSYS Fluent boundary condition. The 
main loop containing pressure averaging continues until the final timestep is reached. 
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Figure 3.6. Averaged pressure region during simulations. 

3.7. Dealing with Numerical Instability During the Coupled Simulations 

Because the simulations are explicitly coupled, there may be stability issues. In most 

of the coupled simulations shown in this thesis, these stability issues caused large errors in 

the solution, particularly because the oscillations were amplified as the simulation 

progressed. An example illustration of these oscillations is provided in Figure 3.7. 

 
Figure 3.7. Oscillating inlet profile of velocity during ram closure. 

Figure 3.7 is simply an illustration for visualization purposes, not data from one of the 

simulations. As shown in a later section of the thesis, the actual simulation results’ 

oscillations are much more drastic, causing the simulations to diverge at early stages of the 

             p                                            p       
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simulation. Oscillations also amplify much more rapidly than shown here, causing the 

simulation to seem stable until sudden divergence. 

 The cause of these oscillations is most likely related to the explanation and 

illustration that follows.  It is important to note that these dynamic meshing grid movements 

are done in timesteps. For example, a simulation may have a timestep of 0.01 seconds. 

Between 0.01 and 0.02 seconds, the grid will instantly move from one location to another. 

This will cause the simulation to recalculate a new higher pressure to which the wellbore 

will then respond with a new lower velocity. This oscillation between responses will 

continue to grow until the solution diverges. 

 
Figure 3.8. Oscillating nature of the explicit coupling procedure. 

3.7.1. Some Recommended Approaches for Dealing with Numerical Instability 

The following discussion is related to recommended approaches, which come from 

other researchers and published works. However, none of these were successfully 
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implemented in this thesis, either due to time constraints or failure of the method to dampen 

oscillations. Despite failure, the assumptions made in these approaches are more valid than 

this thesis works’ current implementation, which will be discussed in the next section.  

The first recommended attempt was to reduce Δ𝑡/Δ𝑥. While this may help stability in 

some numerical cases, reducing or increasing this ratio had no significant effect on damping 

oscillations. Another approach is to successively iterate until convergence is achieved 

between the two simulation domains. Again, no improvement in solution stability was 

achieved, though this may have been attributed to improper implementation of successive 

iteration. A final approach that may be considered is to include a 3rd simulation domain, as 

done in Dobroserdova et al. (2016). A 0-dimensional domain lies between the 1D and 3D 

domain. This domain consists of an elastic sphere that will deform and appropriately absorb 

pressure oscillations. Whether or not this approach is applicable to the closing BOP 

simulations still needs to be investigated. 

 
Figure 3.9. Illustration of a 1D-0D-3D coupling procedure that can be used to dampen 
oscillations. 

3.7.2. Implemented Approaches for dealing with Numerical Instability 

To dampen numerical oscillations, the work in this thesis utilizes the idea of the 

moving average. The approach is not entirely accurate but is straightforward in 

implementation. A simple moving average (SMA) can be calculated through: 

0   1 
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𝑉𝑚𝑜𝑣𝑖𝑛𝑔 𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑡 =

𝑉𝑡 + 𝑉𝑡−1 + 𝑉𝑡−2 + ⋯+ 𝑉𝑡−𝑛−1

𝑛
 (36) 

where n is the number of points chosen to include in the average. A larger number of points 

will increase the dampening effect for a selection of points. However, a larger number of 

points will also cause the moving average to move further from the true curve, as shown in 

Figure 3.10. Since all points are equally weighted, this SMA does not take into consideration 

that the true value should be heavily weighted towards 𝑉𝑡. 

 
Figure 3.10. Demonstration of moving average in dampening oscillations for an inlet velocity 
profile. 

3.8. Dealing with Changing Timesteps 

There may be different desired timesteps throughout the entire simulation. For 

example, during the initial stages of the BOP shut-in process, pressures and velocities are 

changing slowly. A larger timestep may be used in these times to save on computation time. 

However, as the BOP rams near complete closure, pressures and velocities begin to rapidly 

change. Lower timesteps are needed here for stability of the CFD solution. The current 

implementation of the UDF requires that the 1D-MOC simulator runs at the same timestep 
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as the CFD simulation. When the 1D-MOC simulation changes in timestep, the grid size must 

also change due to the pre-defined relationship: 𝑑𝑥 = 𝑑𝑡 ∗ 𝑐. 

To deal with any changing grid size during the process, values are simply interpolated 

onto the new grid. Either spline interpolation or polynomial regression have been used, 

depending on if oscillations need to be dampened. An example of this is shown in Figure 3.11 

and Figure 3.12. 

 
Figure 3.11. Interpolation to calculate a new array for piezometric head values (magnified 
view from 0-1000 meters). 

 
Figure 3.12. Interpolation to calculate a new array for piezometric head values (total view 
from 0-4000 meters). 
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 Chapter 4. Simulation Validation, Results, and Discussion 

4.1. Wellbore Simulation Validation and Sensitivity Analysis 

To ensure that the water hammer simulation is giving reasonable results, basic 

validation and sensitivity analysis is demonstrated here. The water hammer effect is an 

increase in pressure when fluid flow is abruptly halted. This effect depends on several factors 

such as fluid velocity, closing valve time, and fluid properties. For an instant closure and 

perfectly smooth pipe the equation for change in pressure can be approximated as   

Δ𝑃 = 𝜌Δ𝑣𝐶 (37) 

where P is the change in pressure, v is the velocity of the fluid, is the density of the fluid, and 

C is the sonic velocity. Converted to piezometric head, this would be represented as:  

Δ𝐻 =
Δ𝑣𝐶

𝑔
 (38) 

The simulation is set up to match this theoretical expectation. An instant closure can 

be simulated by setting the boundary condition at the valve inlet to 0 during the first 

timestep. Input parameters are described in Table 4.1. 

Table 4.1. Input Values for Smooth Pipe Simulation 

Sonic Velocity, m/s 1000 
Pipe Length, m 100 
Friction Factor 0 

Initial velocity, m/s 10 
Number of length subdivisions 100 

Simulation Time, s 1 
Pipe Diameter, m 0.1 

Gravitational acceleration, m/𝑠2 9.81 
Initial Piezometric Head at Valve, m 1000 

From the information above, it can be calculated that theoretical expectations for the 

piezometric head increase from the water hammer effect should be 10*1000/9.81 m, or 

1019 m. It is also apparent that the wave should reflect 5 times across the entire domain, 
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based on the given properties of sonic velocity, system length, and simulation time. A 

theoretical curve can be created from this known information. The results, shown in Figure 

4.1, demonstrate that the simulation can accurately predict hydraulic transients throughout 

a smooth pipeline. 

 
Figure 4.1. Simulation and theoretical simulation data for pressures at the valve location, 
using instant valve closure and smooth pipe 

A sensitivity analysis is now performed to analyze parameters that may heavily affect 

fluid velocity during the shut-in process. A table of properties is given in Table 4.2. 

Table 4.2. Input Values for Sensitivity Analysis 

Sonic Velocity, m/s Varies 
Pipe Length, m Varies 
Friction Factor 0.01 

Initial velocity, m/s 0.1 
Simulation Time, s 40 
Pipe Diameter, m 0.1 

Gravitational acceleration, m/𝑠2 9.81 
Initial Piezometric Head at Valve, m 1000 

This wellbore simulation is not yet coupled to the CFD BOP domain. Therefore, a basic 

Piezometric Head profile is provided, shown in Figure 4.2. The function is simply 

representative of what the hydraulic profile should look like when coupled to the CFD 
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simulation. A simple exponential profile of piezometric head versus time is applied as the 

boundary condition in these cases. 

 

Figure 4.2. Hydraulic head boundary condition profile applied to simulations in Figure 4.3 
and Figure 4.4 

The effect of wellbore length is first investigated. Five different lengths are tested: 

500, 1000, 2500, 5000, and 10000-meter wellbore lengths. A sonic velocity of 1000 meters 

per second is applied to all lengths. The results are shown in Figure 4.3. As expected, 

decrease in wellbore length results in a faster reduction in velocity. This reduction is due to 

the explanation provided previously in Figure 1.4. As the domain shortens, the pressure 

wave reaches upstream constant pressure reservoir at a shorter time. The constant reservoir 

pressure responds with a decrease in fluid velocity. This explanation is also consistent with 

the reason why no noticeable solution difference is observed between lengths of 5000 and 

10000 meters. The sonic velocity in relation to total length is such that it will take either 5 or 

10 seconds to even reach the upstream reservoir pressure. From this, it can be concluded 

that if sonic velocity is small in relation to the entire wellbore length, the change in length of 
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wellbore will have no impact on the solution. Figure 4.5 illustrates this, showing that the 

pressure wave will only propagate throughout a certain distance of the domain 

 
Figure 4.3. Length Sensitivity Analysis for Wellbore Simulation, c= 1000m/s 

 
Figure 4.4. Sonic Velocity Sensitivity Analysis for 10,000 ft Wellbore Simulation 

The effect of sonic velocity is then investigated. Four different sonic velocities are 

tested: 1400, 700, 350, and 100 meters per second. The wellbore length is chosen to be 

10000 meters, such that sonic velocity will always be small in relation to total wellbore 

length. The results for varying sonic velocity are shown in Figure 4.4. As expected, a decrease 

in sonic velocity will result in more rapid reduction of fluid velocity, given identical boundary 
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conditions. This is consistent with the governing equations of fluid flow, where it can be seen 

that dV/dt is inversely related to c, sonic velocity.  

While the water hammer effect is not large for slow closure of valves, it is important 

to note that these variables will also have an effect on the hydraulic head. As shown in Figure 

4.6, these simulations can also be used to determine severity of water hammer throughout a 

system. A comprehensive study of water hammer is not completed in this thesis, but results 

can be easily stored from the UDFs and wellbore simulator described in this thesis. 

 
Figure 4.5. Visualization of pressure wave propagation throughout the wellbore. At 1500 
meters, the pressure remains constant throughout the entire simulation. 

 
Figure 4.6. Impact of sonic velocity on the water hammer effect. 

4.2. CFD (2D, 3D) Simulations Through Chokes and Valves Using Static Geometries 

An important aspect of closing BOPs to model is simulation through narrow 

restrictions. Throughout the entire transient process, there is a point in time where velocity 
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throughout the BOP will be greatest. This will likely occur during a point in time that the BOP 

rams are nearing complete closure. Accurate modelling of this process is important for 

several reasons: 

• Large fluid velocities during this time will cause high shear rates at the ram walls. This 

information provides useful insight towards erosional analysis. 

• Conditions at which the geometry chokes can be analyzed if the process is accurately 

modelled. For example, the conditions at which multiphase flows choke through various 

BOP geometries can be analyzed. 

• Cavitation may occur for single phase fluids depending on fluid velocity and BOP 

geometry. Cavitation will contribute to erosion and may choke flow. 

• Significant mass transfer between two fluid phases may occur during this process, 

depending on the fluid properties and pressure conditions at the BOP entrance. 

For simulation validation, CFD simulations are compared against experimental data 

of flow through chokes from Omana (1969). The researchers ran numerous experiments of 

gas and water flow through various choke sizings. A pressure is specified upstream and 

downstream the choke, then liquid and gas flowrates are measured. Pressures upstream and 

downstream the choke were varied from 400 to 1000 psi. Liquid flowrate was varied from 0 

to 800 barrels per day. Experiments were run for single phase water, single phase gas, and 

multiphase water/gas simulations at various gas/oil ratios. Choke sizes varied from 4/64” 

to 14/64”. Pipe diameter of the upstream and downstream the choke was 2”. Gas gravity for 

this particular experiment was 0.611. Other gas related properties can be found in the paper. 

A geometry is created in ICEM CFD for comparison against flow through 10/64” 

chokes. The geometry shown in Figure 4.7 illustrates the setup. The design is assumed to be 
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axisymmetric, and flow is assumed to be steady state. Fluid properties for that of the 

experimental studies are used in the CFD simulation. The boundary conditions used for the 

simulation are velocity inlet and a specified gauge pressure outlet. For turbulence modelling, 

the realizable k-epsilon turbulence model is used. The importance of this choice is 

demonstrated later through results. The mesh, shown in Figure 4.7, is designed such that y+ 

values will be within the range of 30-100 at both the ram and pipe walls. A finer mesh is used 

downstream the valve to capture jet flow features. 

 

       
Figure 4.7. Grid and Geometry for Narrow Restriction Simulations 

Table 4.3. Input velocities and simulated pressure ratios for experimental comparison where 
𝑃𝑑  is downstream pressure and 𝑃𝑢 is upstream pressure. 

Liquid Flowrate, bbl/day Equivalent Velocity, m/s 𝑷𝒅/𝑷𝒖 

226 0.205 0.718 
383 0.347 0.488 
490 0.444 0.368 
572 0.519 0.286 

Simulation results against single phase water experiments are initially compared. 4 

data points are recorded for the 10/64” choke for single phase flow in the study by Omana 

(1969). The experimental results are summarized in Table 4.3. Further details of the 

validation are shown in Table 4.4.  

 Comparison of simulation to measured values are plotted in  
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Figure 4.8. All simulation points lie within a 10% error range, demonstrating strong 

similarity to experimental results. Exact match of simulation results is not expected due to 

geometry differences. Velocity contours and pressure contours are shown in Figure 4.9 for a 

simulation of inlet condition 572 bopd. Patterns for the contours demonstrate nearly 

identical structures, thus only one of the contour maps is shown here. The primary difference 

between these contours lies in the magnitudes of values.  

Table 4.4. Input values with associated calculated max velocity, max pressure, and minimum 
pressure. 

Liquid Flowrate, 
bbl/day 

Max Pressure  
(Pa) 

Min Pressure  
(Pa) 

Max Velocity 
(m/s) 

226 2.99e+6 1.386e+6 52 
383 4.68 e+6 6.237e+4 88 
490 6.32 e+6 -1.222e+6 112 
572 7.91 e+6 -2.460e+6 125 

 
Figure 4.8. Simulation results for pressure ratio, solid line representing exact results from 
experimental work. 

Geometry of the chokes in the study by Omana (1969) were not completely described. 

For example, choke width is not specified. A value of 0.5” is assumed for the the simulation 

domain. Additionally, exact geometry of the choke is not specified either. For example, the 
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chance that the experimental geometry is purely axisymmetric is unlikely. These geometry 

differences will cause a difference in valve coefficient, 𝐶𝑣, meaning that pressure drop across 

the choke will slightly differ for varying flowrates. Unless the valve coefficient is matched 

through pure chance, differences between simulation and experimental results are expected. 

An important aspect of the pressure contours to highlight is the negative pressure 

values displayed for flowrates of 490 and 572 barrels per day. The pressure contours 

represent gauge pressure; however, even in adding atmospheric pressure to either of these 

solutions, it is clear that total pressures will still be negative. These low-pressure regions are 

caused by flow separating from the sharp-edged orifice, as can be seen in the velocity 

contours. Despite this, negative absolute pressures are physically unrealistic. Thus, if 

simulation results are accurate, it is implied that cavitation must be occurring.  

A simulation is set up with mass transfer between water and water-vapor. A vapor 

pressure of 3000 psi is used for the simulations, and flowrate is specified for 570 barrels per 

day. Volume fractions are displayed in Figure 4.11, demonstrating that cavitation exists for 

this scenario, as expected. While it is possible to determine the existence of cavitation simply 

by viewing pressures, shear rates along walls will not be accurately modelled without 

incorporating a cavitation simulation model.  

Another important aspect to highlight is choice of turbulence model. Differences 

between standard and realizable k-epsilon are described in a previous section. The impact 

of that choice is demonstrated here. Two simulations are run at the exact same boundary 

conditions. The only difference between these two simulations is the turbulence model 

chosen. One of the simulations is run with standard k-epsilon and the other is run with the 

realizable k-epsilon model. Again, looking at Figure 4.9 and Figure 4.10, the comparison 
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between these two models can be observed. The difference in overall pressure distribution 

is minimal. However, from the results, it is clear that the standard k-epsilon model will 

severely under predict the degree of flow separation from the wall. While this impact may 

not seem significant at first, it is important to analyze the physical variable that this will 

affect. Shear stress at the walls are plotted for three different models, shown in Figure 4.12. 

Between the three models, a major impact in shear rate is demonstrated. Therefore, when 

modelling something where shear rates have an impact, careful selection of multiphase and 

turbulence models should be employed. Turbulence model choice does not have as 

significant of an impact on the pressure values shown in Table 4.4 and  

Figure 4.8, so simply comparing simulation results to pressure values may seem 

misleading. Unfortunately, pressure values are the most commonly reported data for these 

experiments, as shear rates along walls are not as simple to measure. 

Additional analysis of turbulence models needs to be completed. While it has been 

demonstrated that realizable and standard k-epsilon models will produce different shear 

stresses, the results shown here do not imply which (if either) model will produce accurate 

results. Turbulence models that do not require the use of wall functions in ANSYS Fluent, 

such as the k-omega model, may be more applicable in these scenarios. However, in absence 

of wall functions, the strict meshing requirements near the walls are not practical for use in 

the dynamic meshing scenarios. Using a more appropriate turbulence model that does not 

require wall functions, some steady state simulations may be run at different time snapshots 

during the transient processes to determine shear rates along the walls. 
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Figure 4.9. Velocity contours for inlet velocity of 0.519 m/s at restriction of the choke using: 
(a) realizable k-epsilon model (b) standard k-epsilon model. 
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Figure 4.10. Pressure contours for inlet velocity of 0.519 m/s at restriction of the choke 
using: (a) realizable k-epsilon model (b) standard k-epsilon model. 



63 
 

      

Figure 4.11. Volume fraction contours for inlet velocity of 0.519 m/s at restriction of the 
choke using the realizable k-epsilon model and the Schnerr-Sauer cavitation model for mass 
transfer between water-liquid and water-vapor. 

 

 

Figure 4.12. Shear stress along restriction walls with 0.519 m/s inlet, comparison of 3 
modelling assumptions: single phase standard k-epsilon, single phase realizable k-epsilon, 
and realizable k-epsilon with mass transfer between water-liquid and water-vapor. 
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4.3. CFD Simulations Through Closing Valves without a Coupled Boundary Condition 

4.3.1. CFD Simulation of Fast Valve Closure 

While the coupled MOC-CFD simulations provide benefits in case of extremely long 

domains, this coupling is not always necessary. In the case of shorter domains, closure of 

valve may be simulated with a single CFD domain. An example validation study is provided 

to demonstrate this. Bergant et. al (2001) conducted various experiments to study water 

hammer through pipes. A CFD simulation is compared against these experimental results. 

Since the length is significantly longer than the diameter, the domain and mesh are not 

shown here due to the difficulty in visually presenting the geometry.  

 
Figure 4.13. Closing valve simulation comparison to experimental data for fast valve closure, 
with entire pipe and valve modelled as axisymmetric 2D domain for the simulation. 

The geometry is a 37.23-meter pipe with a diameter of 22.1 millimeters. Water is 

flowing at 0.1 meters per second throughout this pipe until steady state is achieved. 

Afterwards, the valve is closed within 0.007 seconds. The wave speed is approximated to be 

1319 meters per second. For the CFD simulations, the domain is approximated by an 

axisymmetric assumption. The valve is closed using the layering technique, and the pressure 



65 
 

below the closure is recorded and compared to an experiment from Bergant et al. (2001). As 

shown in Figure 4.13, pressure values match reasonably well. 

While these single domain simulations cannot be replicated for lengths of wellbore, 

they demonstrate accurate modelling capabilities of dynamic meshing techniques. 

Additionally, other closing valve applications throughout the oil and gas industry may be 

able to take this approach if the length of pipe is short enough. Using a single domain avoids 

issues arising in coupling of solutions, such as numerical instability, though it will always be 

more computationally expensive than coupling CFD with a 1D simulation. 

4.3.1. Examples of Closing BOP Simulations with Constant Inlet Boundary Condition 

While some sort of coupled simulation (one-way, explicit, or fully implicit) is needed 

to provide accurate inlet boundary conditions, valuable results can still be gained from 

“incorrect” boundary conditions. For example, simulations can be run with constant 

pressure or velocity inlet boundary conditions to analyze the flow field and compare designs. 

Areas of flow recirculation, pressure distributions, and forces on rams can be qualitatively 

investigated throughout the entire simulation. For any particular time instance, snapshots of 

the solution may be also be analyzed.  

Some example simulations using a constant inlet velocity boundary condition are 

shown in Figure 4.14. One design is a rough representation of pipe rams, and the other is a 

rough representation of shear rams. A snapshot at 66% closure is shown for each. Areas of 

recirculation, maximum velocity, and maximum pressure can be viewed, giving insight to 

features relevant to the BOP ram design process. 



66 
 

            

           
Figure 4.14. Streamlines at 66% closure with a constant inlet velocity of 1 m/s for (a) 
isometric view of pipe rams (b) isometric view of shear rams (c) side view of pipe rams (d) 
side view of shear rams. 

4.4. MOC(1D) – CFD(3D) Coupled Simulation Results 

All previous results shown in this thesis were from simulations that had not yet been 

coupled. In this section, demonstration of simulation coupling will be shown. Additionally, 

example cases related to simulation and mesh design are demonstrated. A 2D and 3D case 

are demonstrated here. The 2D case is meant to be an axisymmetric representation of a 

closing annular preventer. The 3D case is presented to demonstrate the same process for a 

a 

d 

b 

c 
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more geometrically complex case, being a shear ram for this work. The same process could 

ideally be applied to any geometry. 

4.4.1. Axisymmetric 2D Coupled Simulation 

 An 8” thick closing annular preventer is simulated using smoothing and remeshing. 

The geometry and mesh are shown in Figure 4.15. The region of orange prism layers moves 

towards the axis of symmetry to close on the pipe. 

    

 
Figure 4.15. Geometry and mesh for axisymmetric simulations. 

To ensure high mesh quality and proper near wall refinement as described by y+ 

values in a previous section, three successive meshes are set up for three different stages of 

the simulation. The total BOP closure time is 18.2 seconds, with a constant ram velocity. The 

first mesh simulates to 13.00 seconds, the second mesh is used until 15.77 seconds, and the 

third mesh is used until 17.98 seconds. This corresponds to around 98.8% closure. The input 

properties are shown in Table 4.5. 
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Figure 4.16. Multi-stage meshes at different times throughout the simulation. 
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Figure 4.17 shows the inlet velocity profile over the transient simulation up to 98.3% 

closure. Some minor discontinuities exist between simulation runs. This may be caused by a 

few issues in the problem setup. For example, solution values may have been incorrectly 

interpolated across each mesh. Additionally, successive geometries may not have been 

perfectly aligned. Issues such as these need to be investigated before proceeding with these 

simulations. 

Table 4.5. Input Values for Axisymmetric Simulation. 

Property Value/Description 
Initial Fluid Velocity, m/s 1.00 

Fluid Density, 𝑘𝑔/𝑚3 800.00 
Fluid Viscosity, 𝑘𝑔/(𝑚 ∗ 𝑠) 0.01 

Valve Closure Time, seconds 18.20 
Residuals (all) 10−5 

Initial Cell Count ~100,000 
Initial Timestep (Mesh#1), seconds 0.1 

Final Timestep (Mesh#2, Mesh#3), seconds 0.01 
Turbulence Model Realizeable  𝑘 − 𝜖 

Wall Function Standard 
Wellbore Length, meters 10,000 

Sonic Velocity (Wellbore), m/s 1000 
Equivalent Wellbore Diameter, m 0.1 

Wellbore Friction Factor, dimensionless 0.01 
Moving Average Number Applied for Stability 7 

The concept of a moving average is applied in this simulation to ensure stability of the 

solution. A simulation is initially run without using any moving average. As can be seen in 

Figure 4.18, the solution will not maintain stability, diverging before complete closure. 

Another simulation is run with moving average, n=2: 

𝑣𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑
𝑡 = (𝑣𝑡 − 𝑣𝑡−1)/2 (38) 

It can be seen that the solution maintains stability for 0.5 seconds longer, but again diverges 

before complete closure. A final simulation is run with moving average, n=7, and solution 

stability is achieved throughout the entire simulation. 
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Figure 4.17. Calculated inlet velocity profile from a coupled simulation over the multi-stage 
simulation process 

 

Figure 4.18. Demonstration of moving average effectiveness in dampening oscillations. Time 
scale is from 16 to 18 seconds.  
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The impact of boundary condition choice can also be analyzed by comparing the 

coupled simulation to constant velocity and pressure boundary conditions. Two more 

simulations are run. The first has a constant inlet velocity of 1 m/s. The second has a constant 

inlet pressure boundary condition that provides an initial 1 m/s velocity. As is expected, the 

constant velocity boundary condition will drastically overpredict rates, and the constant 

pressure boundary condition will drastically underpredict rates. 

 
Figure 4.19. Comparison of inlet velocity for different inlet boundary conditions. 

 
Figure 4.20. Comparison of average BOP velocity for different inlet boundary conditions. 
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 Information that is not extensively discussed in this thesis is the pressure and velocity 

values throughout the wellbore. While not particularly interesting for these simulations, 

pressure profiles throughout the wellbore are simple to record and export as well, shown in 

Figure 4.21. Information such as this could be valuable in determining pressure head 

increases during more sudden closures. 

 
Figure 4.21. Piezometric head profile at different times during the transient simulation. 

While the idea of successive meshes may seem tedious to complete, the influence that 

a proper mesh has on results is significant enough to justify the extra effort. Another 

simulation for a single mesh is run and compared against the multi-stage simulation. This 

unresolved mesh consists of the exact same geometry and mesh as in Figure 4.15 except with 

prism layers removed.  Despite the single mesh’s residuals indicating convergence (10−5), 

results will still differ significantly from a properly resolved mesh. Four variables are 

compared between the simulations: Average y+ along the ram wall, average velocity through 

the BOP, average shear stress, and average pressure below the BOP. These values are shown 

in Figure 4.22, Figure 4.23, Figure 4.24, and Figure 4.25.  It is also important to note that 

these single-mesh simulations are also run with the dampened SMA boundary condition. 
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Therefore, the undampened irregularities in the single mesh results will be even more 

drastic than the results shown. These irregularities in the single-mesh simulations are not 

due to unstable numerical solution, but instead are due to undesirable remeshing in critical 

areas. 

 
Figure 4.22. Demonstration of y+ management using a multi-stage mesh process. 

 
Figure 4.23. Demonstration of erroneous velocity values through BOP for poor quality mesh. 
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Figure 4.24. Demonstration of erroneous wall shear values for poor quality mesh. 

 
Figure 4.25. Demonstration of erroneous pressure values below BOP for poor quality mesh. 
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4.4.2. 3D Simulations 

 A second set of runs are set up to demonstrate the transient closure simulation 

process on more realistic geometry. Top, side, and isometric views of the rams are shown in 

Figure 4.26. The design does not come from any company and is simply an approximation 

and simplification of shear rams shown in various Macondo reports. After designing the rams 

in Autodesk Inventor, the ram solid bodies are subtracted from a fluid domain to get the final 

fluid domain shown in Figure 4.27. 

 A coarse mesh of around 500,000 elements is then created in ICEM CFD. The mesh 

setup and boundary conditions are shown in Figure 4.28. A coarse mesh is used here because 

the UDF boundary condition is not yet designed for parallel computations. Issues in the UDF 

implementation cause erroneous calculations in the 1D wellbore simulation. The cause of 

these issues has not been identified, but the issue may be a simple fix. Ideally, these meshes 

would have prism layers, be more refined, and then submit as a job for simulation through 

HPC resources as was done for the simulations previously shown in Figure 4.14 (which used 

a constant inlet boundary condition). For now, the UDF simulations must be run with a single 

processor, and consequently, coarser meshes are used to simulate the following results in 

this section. 

 In setting up the boundary conditions, identical boundary conditions to the 

axisymmetric simulations are used, shown in Table 4.5. Results for streamlines, velocities, 

pressures, and shear rates are plotted and discussed in a subsequent section. The 

simulations in Figure 4.30, Figure 4.31, and Figure 4.32 have the pipe removed. Since these 

simulations do not incorporate fluid structure interaction (FSI), closure beyond distance of 

the pipe would be impossible without removing it. 
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Figure 4.26. Top, side, and isometric views of shear rams. 
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Figure 4.27. Isometric view of fluid domain when solid volume of rams is subtracted out. 

               

 
Figure 4.28. Coarse mesh of the fluid domain. 
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Figure 4.29. Streamlines at four different time snapshots during the simulation. 
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Figure 4.30. Velocity contours for z=0, xy-plane at 10s. The simulation, separate from those 

in Figure 4.29, has pipe removed. 
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Figure 4.31. Static gauge pressure contours for z=0, xy-plane at 10s with pipe removed. 
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Figure 4.32. Shear rate contours on ram faces at 10s. 
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Figure 4.29 includes streamlines at time snapshots of at 10%, 20%, 30% and 40% 

cloure. These streamlines clearly demonstrate the increasingly complex flow field as the 

shear rams close. A velocity contour plane is displayed in Figure 4.30 to show critical flow 

features. The major flow recirculation area labelled “A,” is something that might normally be 

investigated during the design process. This region of recirculation could cause several 

issues during the shearing process. Shear rates against the wall in this region would be large 

in comparison to other areas of the ram. This is also demonstrated in Figure 4.32, where 

shear rates are relatively large on the middle shear ram’s face. Additionally, this recirculation 

area may trap solid particles such as sand or drill cuttings. Particles in this recirculation 

region may cause enough erosion to prevent complete sealing in this ram design. It may be 

best to consider a different ram design that does not result with such a large degree of 

recirculation if large flowrates are expected.  Region “B” in Figure 4.30 also includes some 

recirculation areas. However, these regions may always exist regardless of ram design, as 

recirculation across any sort of backward facing step is expected. 

Region “C” in Figure 4.30 shows some areas of flow separation. While this may not be 

critical at the time snapshot shown here, these areas will become critical as the shear rams 

near complete closure. Since these regions involve flow separation from the wall, low 

pressures will develop in this region. Near closure, cavitation is likely to occur in these 

regions. Erosion in this region would increase due to cavitation, making it another region 

that should be analyzed during the design process. 

Another critical component of the design is hydrodynamic forces on the rams, which 

can be calculated from static pressures and shear rates on walls. It can be seen in Figure 4.31 

that the middle and lower ram faces are exposed to a relatively high-pressure region. This is 
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due to a restriction and consequent pressure gradient at the top of the ram design. Forces 

were calculated to be around 1000 lbf on each ram. As stated in a report by McNutt et al. 

(2012), the flowrate through the BOP at closure time was around 50,000 BOPD, which would 

correspond to an initial inlet velocity of around 1.13 m/s for this design. For this snapshot at 

10s, which used an initial inlet velocity of 1 m/s, the max hydrodynamic force was 

approximately 4000 N on each ram. This is insignificant in comparison to a typical shearing 

force. For example, in simulations by Tekin (2010), it was demonstrated that shearing force 

was on the order of magnitude of 1000 kN. Another simulation was run with a significantly 

higher (and unrealistic) flowrate of around 500,000 BOPD. Even in this simulation, the max 

hydrodynamic force on rams only ended up being under 100 kN. To more accurately 

determine the impact of hydrodynamic forces on shearing force and ram motion, additional 

simulations need to be run with a dynamic ram motion boundary condition that takes into 

consideration fluid force. 

A final note and additional critical area can be clearly seen by observing Figure 4.32. 

While shear rates are relatively high in the main flow recirculation area, the highest shear is 

along walls on the upper face, highlighted in yellow. This is partly due to flow recirculation 

in this region, but primarily because it is the main flow path when the rams are nearing 

complete closure.  This region could be identified as a region to be made of a more resistant 

material than other components of the shear ram. 

  



84 
 

Chapter 5. Conclusions 

• Dynamic meshing has been used to simulate closing valves. Successive meshing is 

accomplished to demonstrate the ability to maintain high quality mesh and near wall 

refinement throughout even extreme fluid domain deformations. Importance of high-

quality mesh on desirable quantities such as shear rates is demonstrated. 

• CFD has been used to estimate features such as flow separation, cavitation, flow 

recirculation, and pressure fields during the transient process of a closing blowout 

preventer. Features such as these, particularly flow fields, would not be as easy to 

analyze experimentally. An example case of a 3D shear ram geometry demonstrates 

how CFD can be used to identify critical flow regions during the transient flow process. 

CFD could also be used to analyze designs that utilize the flow direction to provide 

additional force in sealing the well, as already done in some designs by Hydril (Springett 

et al. 2011). 

• Coupling of CFD (2D, 3D) with MOC (1D) has been accomplished to provide more 

realistic boundary conditions. Constant inlet boundary condition will provide extreme 

overestimation of velocities, and constant inlet pressure boundary condition will 

provide severed underestimation of fluid velocities. Some stability issues may arise 

when using explicit coupling; however, these can be dampened using filtering or time-

averaging methods. 

• Hydrodynamic forces for single phase flows are not significant for expected flowrates, 

as also reported in other BOP simulation studies.  
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Chapter 6. Future Work 

• For the multiphase simulations, an assumption is made that most of the gas has evolved 

from the solution. Depending on the fluid properties and pressure conditions below the 

BOP, this may not be the case. In some cases, significant mass transfer may occur 

between the liquid and gas phases. The work in this thesis has not explored mass 

transfer options outside of cavitation for single component fluid. 

• The coupled simulation could be improved to take into consideration multiphase flow 

throughout the wellbore. This can be improved by either coupling the CFD domain to a 

more advanced commercial simulator, such as that done in Xing, Yeung, and Lo (2011). 

Otherwise, the current wellbore simulator may be improved upon. 

• Ram motion dynamics can be further investigated. Current implementation ignores 

several key parameters such as damper forces during the process, due to lack of 

knowledge. 

• Simulation of multiphase flow through narrow restrictions did not match experimental 

results. Further study should be conducted on this to understand the reason for error 

and how to accurately simulate the process. 

• The CFD simulations take a significant amount of effort in both simulation time and case 

setup. Reduced order modelling of the process may be investigated for real-time 

simulation of a closing BOP. Directions to look at are those such as simple regression 

analysis or method of snapshots (Sirovich 1987). 

• Work in this thesis does not consider the scenario where drilling fluid is flowing 

through the wellbore. Drilling fluid is generally a non-Newtonian fluid and will also 
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carry drill cuttings (solid particles) to the surface. Studies related to this may be carried 

out, such as how drill cuttings impact erosion. 

• The current study in this thesis includes a basic simulation of slugging through a static 

ram to demonstrate how flow patterns may impact the solution results. A further 

investigation can be carried out for transient simulation. For example, the impact of 

slugging on ram motion dynamics can be explored. 

• Stability issues in the explicitly coupled solution nearing closure time exist with the 

current implementation. A simple moving average, applied in this work, introduces 

error. More advanced coupling algorithms may be applied to achieve stability in this 

area. 

• Off-center pipe geometries are shown, but not fully investigated. Studies can be carried 

out to demonstrate how off-center pipe will impact ability of shear rams to cut pipe.  

• Current work does not consider heat transfer to BOP in the event of a hot fluid flowing 

through the equipment. Delong et. Al (2014) discuss possible issues with hot fluid 

travelling through well control equipment. Conjugate heat transfer CFD simulations 

may be run to further investigate this issue. 
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Appendix A. Link to CAD files, CAS files, compiled UDFs 

https://github.com/dbarre5/Thesis 

  

https://github.com/dbarre5/Thesis
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Appendix B. Codes and Scripts for Simulation  

B.1 Standalone Code for Wellbore Simulation in Python 

1. import numpy as np   
2. from __future__ import division   
3.    
4. #sonic Velocity, m/s   
5. a = 1000;   
6. #gravitational acceleration, m/s^2   
7. g = 9.81;   
8. #Timestep: From Fluent normally: Set as a constant here   
9. dt = 0.001   
10. #total time simulation, seconds   
11. EndT = 20;   
12. #total length of pipe, meters   
13. Length = 1000;   
14.    
15. #number of subdivisions in time: This eventually will not be needed because fluent runs until completion   
16. nt = int(EndT/dt);   
17.    
18. #Determined from the relationship derived   
19. dx = dt*a   
20.    
21. #Calculatte the number of subsections needed   
22. nx = int(Length/dx);   
23.    
24. #friction factor   
25. f = 0.01;   
26. #pipe diameter, m   
27. D = 0.1;   
28. #Cross sectional Area, m2   
29. A = 3.14*D**2/4;   
30.    
31. #Create empty arrays for velocity and pressure head   
32. #Velocity   
33. V = np.zeros((nx,nt))   
34. #Pressure head   
35. H = np.zeros((nx,nt))   
36.    
37.    
38. #Initial Conditions and Boundary   
39. #initial Velocity, m/s (This will normally be gained from the fluent simulation)   
40. Vinit = 1;    
41. #initial hydrostatic head at the bottom of the blowout breventer, Pa   
42. PBOP = 10;   
43.    
44. #initialize velocity and Head (from the frictional pressure drop)   
45. for x in range(0,nx):   
46.     V[x,0] = Vinit;   
47.     H[x,0] = PBOP + ((nx-x-1)/nx*Length)*(Vinit)**2*f/2/g/D;   
48.    
49. #Store the Reservoir Pressure    
50. Phead = H[0,0]   
51.    
52.    
53. print('dt is %i' %dt)   
54. print('dx is %i' %dx)   
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55. print('nt is %i' %nt)   
56. print('nx is %i' %nx)   
57.    
58. #initialize variables   
59. test = 0   
60. closingTime = 20   
61. for t in range(0,nt-1):   
62.        
63.     # Simplifying some expressions into single variable   
64.     K = f*dt/2/D   
65.     C = g/a   
66.        
67.     #Hydraulic head increases until velocity through the section is 0   
68.     #Test is initially 0 (when the valve is open)   
69.     #When the valve is closed, test = test + 1, and the "else statement" boundary conditions are then applied   
70.     if test < 0.5:   
71.            
72.         #Boundary Conditions at constant reservoir pressure on one end of the pipe   
73.         V[0,t+1] = V[1,t]+C*(H[0,t]-H[1,t])-K*(V[1,t]*abs(V[1,t]))   
74.         H[0,t+1] = Phead   
75.            
76.         #At the other end of pipe, constant increasing pressure head   
77.         #This could also be set to constant decreasing velocity profile or something else   
78.         H[nx-1,t+1] = H[nx-1,0]+(t*dt)**2/100   
79.         V[nx-1,t+1] = V[nx-2,t]-C*(H[nx-1,t]-H[nx-2,t])-K*(V[nx-2,t]*abs(V[nx-2,t]))   
80.            
81.     #switch boundary condition to velocity 0 boundary condition when seal is closed   
82.     else:   
83.         V[0,t+1] = V[1,t]+C*(H[0,t]-H[1,t])-K*(V[1,t]*abs(V[1,t]))   
84.         H[0,t+1] = Phead   
85.    
86.         V[nx-1,t+1] = 0   
87.         H[nx-1,t+1] = (V[nx-2,t]-V[nx-1,t]+K*V[nx-2,t]*abs(V[nx-2,t]))/C+H[nx-2,t]   
88.        
89.     #Checks if velocity reaches 0: At this point, boundary condition switches to constant 0 velocity   
90.     if V[nx-1,t+1] < 0:   
91.         test = test+1   
92.         V[0,t+1] = V[1,t]+C*(H[0,t]-H[1,t])-K*(V[1,t]*abs(V[1,t]))   
93.         H[0,t+1] = Phead   
94.    
95.         V[nx-1,t+1] = 0   
96.         H[nx-1,t+1] = (V[nx-2,t]-V[nx-1,t]+K*V[nx-2,t]*abs(V[nx-2,t]))/C+H[nx-2,t]   
97.    
98.    
99.     #Solve for the inner nodes at next timestep   
100.     for x in range(1,nx-1):   
101.         #solve for new velocity   
102.         Coef1 = V[x-1,t]+V[x+1,t]   
103.         Coef2 = g/a*(H[x-1,t]-H[x+1,t])   
104.         Coef3 = f*dt/2/D*(V[x-1,t]*abs(V[x-1,t])+V[x+1,t]*abs(V[x+1,t]))   
105.         V[x,t+1] = 1/2*(Coef1+Coef2-Coef3)   
106.            
107.         #solve for new Pressure Head   
108.         Coef1 = a/g*(V[x-1,t]-V[x+1,t])   
109.         Coef2 = (H[x-1,t]+H[x+1,t])   
110.         Coef3 = a/g*f*dt/2/D*(V[x-1,t]*abs(V[x-1,t])-V[x+1,t]*abs(V[x+1,t]))   
111.         H[x,t+1] = 1/2*(Coef1+Coef2-Coef3)   
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B.2. Code for Wellbore Coupling to be Compiled as a UDF in ANSYS Fluent 

1. #include "udf.h"   
2. #include <stdlib.h>   
3. #include <stdio.h>   
4. #include <string.h>   
5.    
6.    
7.    
8. int n_time;             /*create variable to store integer number of timesteps*/   
9. real PressureAbove;     /*Variable that stores average pressure above BOP*/   
10. real PressureBelow;     /*Variable that stores average pressure below BOP*/   
11. real PressDiff;         /*Variable that stores piezometric head across BOP*/   
12. int TS;   
13. real nfaces;            /*Variable to store the number of faces that are being looped over - will be used to average pre

ssure values*/   
14. int counter;            /*Something strange is going on for if(first_iteration)... it's looping 3 times through first iterati

on. This counter will prevent that--->after testing it... it doesn't. Still runs 3 times*/   
15. real A,PBOP, Phead, Coef1, Coef2, Coef3,K,C; /*variables for hydraulic transient simulation*/   
16. int x,t; /*variables for hydraulic transient simulation*/   
17.    
18. real g = 9.81; /*gravity*/   
19.    
20. /*****/   
21.         real a; /*Sonic Velocity*/   
22.         real Length; /*length of pipe*/   
23.         real dt; /*timestep*/   
24.         real f; /*friction factor, constant*/   
25.         real D;  /*equivalent diameter of pipe/annulus*/   
26.         real Vinit;  /*initial velocity*/   
27.         int nx; /*number of discretizations in length-----hard coded because I can't figure out how to convert to int--

---MUST BE CHANGED APPROPRIATELY*/   
28.         FILE *inFile;   
29.         char array[256];   
30.         real ValIDM;   
31.         real numberFromFile;   
32.         int Zone_ID_Below;   
33. /******/   
34.    
35. real dx; /*discretization length*/   
36. real V[10000],Vnew[10000],Hold[10000],Hnew[10000]; /*Again hard coded... because I need to fix this. current 

issue is that nx isn't known at compile time*/   
37.    
38. real test = 0; /*Test for negative  at valve(representing shut in)*/   
39. real fraction; /*fractional frictional pressure drop per unit discretization length*/   
40.    
41.    
42. DEFINE_PROFILE(VelBC, thread, position)   
43. {   
44.        
45.    
46.    
47.        
48.     face_t face;            /*Create variable for the face to loop through and assign BC*/   
49.     Thread *tf;         /*Create variable for the thread*/   
50.     cell_t c;           /*Create variable for the cells to loop through to grab pressure*/   
51.     int Zone_ID;        /*Create variable for the zone ID which is where pressure is grabbed from*/   
52.        
53.     Domain *domain;          /* domain is declared as a variable   */   
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54.     domain = Get_Domain(1);  /* returns fluid domain pointer       */   
55.        
56.     /*Calculate and initialize some things when the initialization button is pressed in Fluent*/   
57.     if ( CURRENT_TIME == 0 )   
58.     {   
59.            
60.         n_time = 0;   
61.         Message("Initializing variables and n_time \n");   
62.         /*find file and open initial velocity reading---should also get well parameters, zone IDS, etc*/   
63.    
64.            
65.            
66.            
67.            
68.         inFile = fopen("inputDeck.dat","r");   
69.         ValIDM = 0;   
70.         if (inFile == NULL)   
71.         {   
72.             Message("Can't find input file");   
73.         }   
74.         if (inFile != NULL)   
75.         {   
76.             Message("Found File");   
77.         }   
78.            
79.         /*Read values from text file*/   
80.         fscanf(inFile, "%lg", &a);   
81.         Message("a %lg \n",a);   
82.         fscanf(inFile, "%lg", &Length);   
83.         Message("Length %lg \n",Length);   
84.         fscanf(inFile, "%lg", &dt);   
85.         Message("dt %lg \n",dt);           
86.         fscanf(inFile, "%lg", &f);   
87.         Message("f %lg \n",f);   
88.         fscanf(inFile, "%lg", &D);   
89.         Message("D %lg \n",D);   
90.         fscanf(inFile, "%lg", &Vinit);   
91.         Message("Vinit %lg \n",Vinit);   
92.         fscanf(inFile, "%d", &nx);   
93.         Message("nx %d \n",nx);   
94.         fscanf(inFile, "%d", &Zone_ID_Below);   
95.         Message("nx %d \n",Zone_ID_Below);         
96.            
97.         fclose(inFile);   
98.    
99.            
100.            
101.            
102.            
103.            
104.         A = 3.14*pow(D,2)/4; /*area of pipe*/   
105.         dx = dt*a; /*discretization length*/   
106.         K = f*dt/2./D;   
107.         C = g/a;   
108.    
109.            
110.        
111.            
112.         /* ---------------------------------------------------------------------------------------------------------------------- */   
113.         /* Grab pressure from Bottom for top of domain. We are initializing the piezometric head BC for the top of th

e pipe domain*/   
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114.         /* ---------------------------------------------------------------------------------------------------------------------- */   
115.         Zone_ID = Zone_ID_Below;   
116.         tf = Lookup_Thread(domain, Zone_ID);   
117.                
118.         nfaces = 0; /*initialize the nfaces variable back to 0*/   
119.         PressureBelow = 0; /*Initialize the pressure value*/   
120.    
121.         /* loop over all cells within the cell thread where c is just an */   
122.         /* integer number, enumerating the cells. If your thread holds for */   
123.         /* instance 100 cells the loop wil be perfomed 100 times, each time */   
124.         /* c is increased by one starting from zero --- from https://www.cfd-online.com/Forums/fluent-udf/38375-

udf-problem.html */    
125.         begin_c_loop(c,tf)    
126.             {    
127.             nfaces = nfaces + 1;   
128.             PressureBelow  = PressureBelow + C_P(c, tf); /*Sum up all pressure values across the cell faces*/   
129.             }   
130.         end_c_loop(c, tf)   
131.         PressureBelow = PressureBelow/nfaces;   
132.         PressureBelow = (PressureBelow)/9.81/1000;      /*Average the sum of all pressures*/   
133.         PBOP = PressureBelow;                           /*initial hydraulic head*/   
134.            
135.         Message("C %lf \n",C); /*Check some values to make sure they are calculated correctly/make sense*/   
136.         Message("a %lf \n",a);   
137.         Message("f %lf \n",f);   
138.         Message("dt %lf \n",dt);   
139.         Message("D %lf \n",D);   
140.         Message("A %lf \n",A);   
141.         Message("dx %lf \n",dx);   
142.         Message("K %lf \n",K);   
143.         Message("PBOP %lf \n",PBOP);   
144.            
145.            
146.         Message("Piezometric Head Values \n");   
147.         for(x = 0; x < nx; x++ ){   
148.             V[x] = Vinit;   
149.             Hold[x] = PBOP + dx*pow(Vinit,2.0)*f/2.0/g/D*(nx-x-1);/*((nx/1.-

x/1.)/nx*Length)*pow(Vinit,2)*f/2/g/D;*/   
150.             Message("Hold[x] =  %lf \n",Hold[x]);   
151.         }   
152.         Phead = Hold[0]; /*constant reservoir boundary condition*/   
153.            
154.         fraction = dx*pow(Vinit,2)*f/2.0/g/D;   
155.         Message("Hold diff =  %lf \n",Hold[55]-Hold[54]);   
156.         Message("fraction =  %lf \n",fraction);   
157.            
158.            
159.     }   
160.        
161.     counter = 0; /*reason for creation is stated above in declaration of counter*/   
162.        
163.     /*Only perform these calculations during the first iteration*/   
164.     if ( first_iteration )   
165.         {   
166.             if (counter == 0)   
167.             {   
168.             counter = 1; /*set counter to 1, so that only one set of calculations occur*/   
169.                
170.             Message("PressureAbove %lf \n",PressureAbove);   
171.                
172.             /* -------------------------------------------- */   
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173.             /* Grab pressure from Zone for bottom of domain */   
174.             /* -------------------------------------------- */   
175.                
176.             Zone_ID = Zone_ID_Below;   
177.             tf = Lookup_Thread(domain, Zone_ID);   
178.             nfaces = 0; /*initialize the nfaces variable back to 0*/   
179.             PressureBelow = 0; /*Initialize the pressure value*/   
180.                
181.             /*Again, loop through faces, but for a different zone*/   
182.             begin_c_loop(c,tf)    
183.                 {    
184.                 nfaces = nfaces + 1;   
185.                 PressureBelow  = PressureBelow + C_P(c, tf); /*Sum up all pressure values across the cell faces*/   
186.                 }   
187.             end_c_loop(c, tf)   
188.             PressureBelow = PressureBelow/nfaces; /*Average the sum of all pressures*/   
189.                
190.                
191.                
192.             PressureBelow = (PressureBelow)/9.81/1000; /*Calculate the piezometric head below the valve*/   
193.             Message("PressureBelow %lf \n",PressureBelow);   
194.                
195.                
196.             /* --------------------------------------------------------------------------------------------------------------------*/   
197.             /* ----------------------------------SECTION OF CODE FOR WATER HAMMER BELOW----------------------------------

----------*/   
198.             /* --------------------------------------------------------------------------------------------------------------------*/   
199.                    
200.             if (test < 0.5){   
201.                 Vnew[0] = V[1]+C*(Hold[0]-Hold[1])-K*(V[1]*abs(V[1]));   
202.                 Hnew[0] = Phead;   
203.                    
204.                 Hnew[nx-1] = PressureBelow;   
205.                 Vnew[nx-1] = V[nx-2]-C*(Hold[nx-1]-Hold[nx-2])+K*(V[nx-2]*abs(V[nx-2]));   
206.                 Message("VnewBoundary[x] =  %lf \n",C*(Hold[nx-1]-Hold[nx-2])+K*(V[nx-2]*abs(V[nx-2])));   
207.                 Message("VnewBoundary[x] =  %lf \n",C*(Hold[nx-1]-Hold[nx-2])+K*(V[nx-2]*abs(V[nx-2])));   
208.                 Message("VnewBoundary[x] =  %lf \n",C*(Hold[nx-1]-Hold[nx-2]+fraction));   
209.                 Message("VnewBoundary[x] =  %lf \n",C*(Hold[nx-1]-Hold[nx-2]-fraction));   
210.             }   
211.                    
212.             else{   
213.                 Vnew[0] = V[1]+C*(Hold[0]-Hold[1])-K*(V[1]*abs(V[1]));   
214.                 Hnew[0] = Phead;   
215.    
216.                 Vnew[nx-1] = 0;   
217.                 Hnew[nx-1] = (V[nx-2]-V[nx-1]+K*V[nx-2]*abs(V[nx-2]))/C+Hold[nx-2];   
218.             }   
219.    
220.             if (Vnew[nx-1] < 0){   
221.                 test = test+1;   
222.                 Vnew[0] = V[1]+C*(Hold[0]-Hold[1])-K*(V[1]*abs(V[1]));   
223.                 Hnew[0] = Phead;   
224.    
225.                 Vnew[nx-1] = 0;   
226.                 Hnew[nx-1] = (V[nx-2]-V[nx-1]+K*V[nx-2]*abs(V[nx-2]))/C+Hold[nx-2];   
227.             }   
228.    
229.             for(x = 1; x < nx-1; x++){   
230.                 Coef1 = V[x-1]+V[x+1];   
231.                 Coef2 = g/a*(Hold[x-1]-Hold[x+1]);   
232.                 Coef3 = f*dt/2/D*(V[x-1]*abs(V[x-1])+V[x+1]*abs(V[x+1]));   
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233.                 Vnew[x] = 1./2.*(Coef1+Coef2-Coef3);   
234.                    
235.                    
236.                 Coef1 = a/g*(V[x-1]-V[x+1]);   
237.                 Coef2 = (Hold[x-1]+Hold[x+1]);   
238.                 Coef3 = a/g*f*dt/2/D*(V[x-1]*abs(V[x-1])-V[x+1]*abs(V[x+1]));   
239.                 Hnew[x] = 1./2.*(Coef1+Coef2-Coef3);   
240.             }   
241.             for(x = 0; x < nx; x++){   
242.                 Hold[x] = Hnew[x];   
243.                 V[x] = Vnew[x];   
244.                 Message("Hold[x] =  %lf \n",Hold[x]);   
245.             }   
246.                
247.             /* --------------------------------------------------------------------------------------------------------------------*/   
248.             /* ----------------------------------SECTION OF CODE FOR WATER HAMMER ABOVE-----------------------------------

---------*/   
249.             /* --------------------------------------------------------------------------------------------------------------------*/   
250.                
251.             } /* end if_counter*/   
252.         } /*end if_iter*/   
253.        
254.        
255.        
256.        
257.        
258.        
259.        
260.        
261.    
262.     /*Loop through and assign velocity to the faces of the cells*/   
263.     begin_f_loop(face, thread)   
264.     {   
265.         F_PROFILE(face, thread, position) = V[nx-1];   
266.     }   
267.     end_f_loop(face, thread)   
268.        
269.        
270.        
271.     /*Output Relevant Variables in text file*/   
272.     inFile = fopen("OldPressureValues.dat", "w+");   
273.     for(x = 0; x < nx; x++ ){   
274.             fprintf(inFile, "%lg \n", Hold[x]);   
275.         }   
276.     fclose(inFile);   
277.        
278.     inFile = fopen("NewPressureValues.dat", "w+");   
279.     for(x = 0; x < nx; x++ ){   
280.             fprintf(inFile, "%lg \n", Hnew[x]);   
281.         }   
282.     fclose(inFile);   
283.        
284.        
285. }   

B.3. Input File, InputDeck.dat 

1. 1000   
2. 10000   
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3. 0.1   
4. 0.01   
5. 0.1   
6. 1   
7. 100   
8. 9   
9.    
10.    
11.    
12. VALUES ABOVE ARE IN ORDER   
13.    
14. SONIC_VELOCITY                      - a   
15. WELL_LENGTH                         - Length   
16. TIMESTEP                            - dt   
17. FRICTION_FACTOR                     - f   
18. DIAMETER                            - D   
19. INITIAL_VELOCITY                    - Vinit   
20. SPATIAL_DISCRETIZATION              - nx   
21. Zone_ID_BELOW                       - Zone_ID   

B.4. Line to Replace lines 147-151 in Appendix B 

For the cases where flow is initialized from a previous simulation’s Hydraulic Head values, 

the following code is used. The text file from which is grabs values should be titled 

“PressureValuesPrevious.dat” and the file’s data should be in the same format as the output 

files from lines 271-282 in Appendix B. 

1. /* */   
2.         /* Storing old Head Values as initialization */   
3.         /*  */   
4.         /* */    
5.         Message("Piezometric Head Values \n");   
6.         inFile = fopen("PressureValuesPrevious.dat","r");   
7.         if (inFile == NULL)   
8.         {   
9.             Message("Can't find input file");   
10.         }   
11.         if (inFile != NULL)   
12.         {   
13.             Message("Found File");   
14.         }   
15.         for(x = 0; x < nx; x++ ){   
16.             ValIDM = 0;   
17.             /*Read values from text file*/   
18.             fscanf(inFile, "%lg", &Hold[x]);   
19.             Message("Hold =  %lg \n",Hold[x]);         
20.         }   
21.         fclose(inFile);  
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B.5. Example Simple Interpolation Script 

1. import numpy as np   
2. import matplotlib.pyplot as plt   
3. from scipy import interpolate   
4.    
5. # Original dataset   
6. y = [1,4,9,16,25,36,49,64,81,100,121]   
7.    
8. # Assigning an x-array which is basically just the x-integer count   
9. x = np.zeros(len(y))   
10. for i in range (0,len(y)):   
11.     x[i] = i   
12.        
13. #using scipy intepolation function   
14. s = interpolate.InterpolatedUnivariateSpline(x, y)   
15.    
16. #new array for which data will be interpolated   
17. xnew = np.linspace(0,10,101)   
18. ynew = s(xnew)   
19.    
20. #To visualize the results   
21. plt.figure()   
22. plt.plot(x, y, "ro", markersize=7)   
23. plt.plot(xnew, ynew, "ko", markersize=2)   
24. plt.legend(['Previous Pressure Values', 'New Interpolated Pressure Values'])   
25. plt.title('Spline Interpolation Example')   
26. plt.show()   
27.    
28. #Writing results to python output   
29. for i in range (0,len(ynew)):   
30.     print(ynew[i])   
31.    
32. #Writing results to text file which will be read as BC for next simulation   
33. text_file = open("oldPressureValues.txt", "w")   
34. for i in range (0,len(ynew)):   
35.     text_file.write("%f \n" % ynew[i])   
36. text_file.close()  

B.6. Code for Constant Velocity Ram BC to be Compiled as a UDF 

1. #include "udf.h"   
2.    
3. DEFINE_CG_MOTION(test, dt, vel, omega, time, dtime)   
4. {   
5.     vel[1]=-0.006986789;   
6. }   

B.7. Code for Time-Varying Velocity Ram BC to be Compiled as a UDF 

1. #include "udf.h"   
2.    
3. DEFINE_CG_MOTION(test, dt, vel, omega, time, dtime)   
4. {   
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5.     Real Time = CURRENT_TIME 
6.     vel[1]=-0.006986789*Time;   
7. }   
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 Appendix C. Additional Information and Considerations  

C.1. Ram Motion 

The motion of a BOP ram can be described in multiple ways, such as: 

1. Setting ram motion as a constant velocity 

3. Setting ram motion as a time-varying velocity that decreases over time 

4. Modelling the kinematics of the hydropneumatic accumulator-ram system and 

calculating the time-varying velocity at each timestep. 

When a BOP ram closes, fluid velocity throughout the restricted areas will increase. This 

also increases the forces that act on the rams. When forces push against the rams, the rams’ 

motion will decline in response to the increasing fluid forces. The first two options described 

above are approximations of ram motion that will not consider these forces: the velocity is 

simply assumed based on commonly reported closure times. To understand accurate 

estimation of ram motion, details regarding the accumulator-ram system are provided. 

Blowout preventer components are activated through pressurized systems known as 

accumulator units. Accumulator bottles (Fig 1.) are used to store energy that will be used to 

close the rams. Accumulator bottles are charged by compressing fluids such as nitrogen. This 

may be done by forcing a hydraulic fluid into the accumulator with the nitrogen which is 

separated from the hydraulic fluid by a bladder. When the energy is required for closing the 

rams, the energy is released, and the hydraulic fluid is pushed against the piston which is 

attached to the BOP ram. This causes the BOP rams to close against the pipe. 

Assuming Isothermal state of change (due to relatively slow changes in gas volume), 

calculation of accumulator capacity can be calculated simply through Boyle’s Law: 
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𝑃1𝑉1 = 𝑃2𝑉2 

At lower pressures, the gas may be assumed to be ideal. At subsea depths, high pressures are 

needed within the accumulator units, causing nitrogen to trend away from an ideal gas 

(Curtiss and Buckley 2003, Good and McAdams 2001, Sattler 2002). Calculations using 

Boyle’s Law will give an estimate of usable fluid volume. This calculation is related to the 

fluid volume required to close a BOP ram. However, these calculations alone are insufficient 

to calculate dynamic motion of a BOP ram. To calculate this motion, the kinematics of the 

system must be modelled. 

  This may be modelled by considering an accumulator unit with compressible fluid as 

a spring-like system. The dynamics of a spring system can be estimated through an analysis 

of forces acting on an object. A typical spring system consists of four components: mass, 

external forces, a spring, and a damper. The force balance for a system is as follows: 

𝑚�̈� = 𝐹 − 𝐹𝑘 − 𝐹𝑏 

A simple example is provided in figure 2. The equation above for this system can be 

expressed as: 

𝑚�̈� = 𝐹 − 𝑘𝑠𝑥 − 𝑏�̇� 

 An accumulator-ram system is a hydropneumatic system and contains the four 

elements described above. The mass of interest is the mass of the ram block. External forces 

are provided by fluid flowing through the annulus, pushing against the ram block. The 

compressible fluid acts as a spring system, and frictional forces throughout the system act as 

a viscous damper. 
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Figure C.1. Illustration of Hydropneumatic Accumulator System 

 

Figure C.2. Example Force Balance of a Simple Spring System 
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A hydropneumatic system is not entirely identical to the simple mechanical spring 

system as illustrated in Fig. 2. While the nitrogen bladder may act as a spring, the “spring 

constant,” k, is not constant for a hydropneumatic system. The spring rate changes due to 

polytropic changes in the state of a gas (Bauer 2010).  This is unlike a linear wound 

mechanical spring where the spring rate will remain constant regardless of spring load. 

 

Figure C.3. Spring Rates for Mechanical and Hydropneumatic Systems 

 Spring rate must be calculated depending on piston position. Full details behind 

calculation of spring forces for hydropneumatic systems are included in Bauer 2010. A 

summarization is provided here. Considering the state equation for polytropic changes of 

state and the general mathematical expression for spring rate, the following spring rate can 

be derived as: 
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where 𝑝0 and 𝑉0 are pre-charge pressure and volume, n is the polytropic constant, and 𝐹𝐹1 is 

the force (𝑝1𝐴𝑘) acting on the area (𝐴𝑘) of the piston at state 1, a state other than initial 

conditions.  

 In addition to spring-like forces from accumulator, damper forces must also be 

calculated. In general, three different types of damper forces will exist in this 

hydropneumatic system. The first is frictional forces from contact of physical forces. If the 

ram block or components of the piston system come in contact with surrounding walls, a 

friction will be generated along these walls. Friction will also be generated from fluid velocity 

along the walls of the piston system. Finally, any sort of throttling within the system will 

cause an additional damping on the system. Unfortunately, not much is information known 

about key details (such as geometric details) throughout this system, so estimating this is 

difficult without further investigation of the system. 

 

Figure C.4:Illustration of Possible Damper Forces in the Accumulator-Ram System 

C.2. Solids Simulation 

Another important property of the fluid to discuss is solids content. In the case of 

hydrocarbons flowing, sand may be carried with the liquid. Additionally, drilling fluid will 

generally be carrying solid drill cuttings. Discrete Phase Modelling (DPM) may be used, 

which simulates a second phase of spherical particles in a Lagrangian frame of reference. 
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One limitation of using DPM is that the particle sizes must be much smaller than the grid 

sizing. Therefore, DPM should only be used in the case of fine-sized drill cuttings or sand 

production. Another limitation of DPM is that the DPM option in Fluent does not allow for 

particle-particle interaction. The discrete element method (DEM) must be enabled for this 

interaction. However, in ANSYS Fluent, DEM cannot be enabled when dynamic meshing 

motion is also enabled. To simulate larger particles, macroscopic particle modelling (MPM) 

is available to model larger particles which span the size of several cells, though MPM cannot 

be enabled with dynamic meshing. Because of the limitations discussed above, simulation of 

solid particles during the transient closure process may be too challenging of a problem for 

an inexperienced CFD user. Either Fluent can be used to investigate some steady state 

simulation cases, or another software package can be used to allow for dynamic meshing 

simulations with particle simulations. 

 

Figure C.5. Solid Particle Modelling Options in ANSYS Fluent 
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