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ABSTRACT 

The impact of changing inner diameter of wireless power transfer (WPT) coils on coupling 

coefficient is studied. It is demonstrated that at a certain outer and inner coil diameter, turn space 

variation has minor effect on the coupling coefficient. Next, two compensation networks, namely 

primary LCC and secondary LCC, which offer load-independent voltage transfer ratio and zero 

voltage switching for WPT, are presented. For both compensation networks, the condition for 

having zero voltage switching operation are derived. In addition, load-independent voltage transfer 

ratio (VTR) frequencies are obtained and VTR at each frequency is derived. Then, required 

equations for calculation of WPT system efficiency based on its equivalent circuit are presented. 

Eventually, by defining a time-weighted transfer average efficiency (TWTAE), and based on 

measured values of resistance and inductance of a WPT prototype and experimental charging curve 

of a Li-ion battery, a design procedure for both compensation networks is proposed. The proposed 

design leads to high TWTAE as well as low material usage. Simulation and experimental results 

verify the superiority of proposed coil and compensation design compared to conventional one.
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1. INTRODUCTION 

The problems of depletion of fossil fuels and global warming along with recently introduced 

restrictions on CO2 emission are among the major forces for driving the societies and governments 

towards plug-in hybrid electric vehicles (PHEV) and electric vehicle (EV) in the transportation 

system. The automobile industries have faced an increasing demand and EV sales is expected to 

reach 5.9 million units by 2020. One of the challenges in development of PHEVs and EVs is to 

provide convenient and safe battery charging. EV’s battery charging methods can be classified 

into two methods: wired (conductive) and wireless charging. 

In the wired charging method, the user connects a cable from the power outlet or charging 

station to the EV. Wired charging is not convenient due to handling heavy gauge cable or even is 

dangerous due to tripping hazards, especially in inclement weather. Compared with wired 

charging, wireless charging has some inherent advantages, such as safety, convenience, reliability, 

and weather proof [55], [68].  

The concept of wireless energy transmission was first proposed by Nikola Tesla in 1899. For 

the last few decades, wireless power transfer (WPT) technology has been studied and implemented 

for different applications such as biomedical implants [15], induction heating [16], mobile battery 

chargers [4], E-bicycle [56], EVs [45], electric buses [61], [69] and trains [21]. 

WPT technologies are categorized as far field electromagnetic and near field electromagnetic. 

Microwave and laser radiation, which are categorized as far field, work with radio frequency and 

can transfer relatively low power (for safety issues) over several meters [17]. On the other hand, 

near field (non-radiative) electromagnetic, such as inductive coupling, capacitive coupling and 

magnetic coupling operates with frequency in the range of tens to hundreds of kHz. In near field 

WPTs, transferred power can be in the level of tens of kW, while transfer distance is limited to a 
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range of centimeters [19]. Among near field WPTs, due to simplicity and high efficiency, inductive 

coupling and magnetic coupling are widely used technologies [32]. In both methods, there is one 

coil in the transmitter (also referred to as primary side) that creates alternating electromagnetic 

field and there is another coil in the receiver (secondary side) to receive the transferred power. 

Actually, except higher frequency and use of ferrite, magnetic coupled WPT is no different from 

inductive coupled WPT, which has been studied for many years [41]. 

Generally, magnetic coupled WPT systems can be categorized into either distributed or lumped 

topologies. A distributed system includes a transmitter coil forming a long track and receiver 

coil(s) coupled to a small portion of the transmitter coil. The distributed system is designed to 

transfer continuous power. The lumped system consists of two discrete coils at transmitter and 

receiver placed at a fixed position and is able to transfer power when coils are aligned. The lumped 

system can be categorized into closely coupled and loosely coupled systems. In closely coupled 

lumped system, air gaps between coils is relatively small and similar to charge paddles, the user 

has to plug in the primary [1], [2]. In loosely coupled lumped system, air gap is large and do not 

need user intervention.  

In this report, loosely coupled lumped WPT systems for the application of EVs and PHEVs are 

investigated. In section 2, fundamentals of magnetic coupled WPT are presented. In section 3, the 

state of the art of WPT is reviewed. In the next section, factors affecting the coupling coefficient 

variation in circular and square coils are investigated. Then, in section 5, two compensation 

topologies with load-independent voltage transfer ratio are presented, and a condition to provide 

zero voltage switching for both compensation networks are proposed. In section 6, based on 

equivalent circuit, mathematical equations to calculate efficiency of different stages of WPT 

system are presented. Next, time-weighted transfer average efficiency concept is presented and 
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primary and secondary coils are designed based on it. Matlab simulation results are shown and 

discussed in section 8. Experimental results of a 1.2 kW WPT prototype system are presented in 

section 9 to verify proposed design methods.
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2. FUNDAMENTAL OF WPT 

Figure 2.1 depicts typical block diagram of a WPT system. The main principle of operation of a 

wireless charger and a wired charger is the same. The charger is connected to an AC power. Then, 

AC voltage is rectified with an AC to DC converter with power factor correction (PFC).  

 

Figure 2.1 WPT system structure. 

Afterwards, using a high frequency (HF) DC to AC converter (inverter), DC power is converter to 

AC. The next stage, in a wired charger, is an isolated transformer, whereas in a WPT charger, is a 

set of loosely coupled coils. WPT applications may require inclusion of an HF transformer to 

provide electrical isolation of the WPT primary coupler and cabling from the utility. In the 

secondary side, there is an HF rectifier and filter. Also, to boost the power transfer capability, a 

switched mode controller may be employed before load. 

To have better idea about the difference between tightly and loosely coupled coils, Figure 2.2 

should be taken into account. In this figure, L1 and L2 are self-inductances of the primary and 

secondary coils, respectively. Also, I1 and I2 represent the current in the two coils. U12 and U21 

denote induced voltage in the primary and secondary coils, respectively. 

 
Figure 2.2 Two-coil WPT model 
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Apparent power going into the primary and secondary coils are shown with S1 and S2, 

respectively. Also, S12 and S21 are the exchanged power between the primary and secondary coils 

and calculated as follows [41] 

* *

12 12 2 1 2 1 2 12 1 2 12sin cosS U I j MI I MI I j MI I    = − = − = −  (−) 

* *

21 21 1 2 1 1 2 12 1 2 12sin cosS U I j MI I MI I j MI I    = − = − = − −  (−) 

Here, φ12 is the phase deference between 
1I  and 

2I . Active power transferred from the primary 

coil to the secondary coil can be written as follows 

12 1 2 12sinP MI I =  (−) 

Maximum active power is transferred for φ12=π/2 .Total reactive power in the two coils system 

can be expressed as 

2 2

1 1 2 2 1 2 12( 2 cos )Q L I L I MI I = + +  (−) 

Higher reactive power means higher magnetizing power, which can increase copper and core 

losses. To improve transfer efficiency, the active to reactive power ratio should be maximized. 

This ratio is defined as follows [41]  

2

1212 1 2 12

2 2

1 1 2 2 1 2 12
12

1 (cos )sin

1( 2 cos )
2 cos

kP MI I

Q L I L I MI I
x k

x

 

  

−
= =

+ +
+ +

 
(−) 

where 

1 2

M
k

L L
=  (−) 
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1 1

2 2

L I
x

L I
=  (−) 

k denotes the coupling coefficient and is a useful measure for comparing magnetic properties of 

various coupler topologies; it is the fraction of magnetic flux produced by one coil and link to the 

opposite one [10]. 

To achieve maximum active to reactive power ratio, the following equation must be satisfied 

12

2
cos

1

k

x
x

 = −

+

 
(−) 

In tightly coupled coils, k is close to 1 and since I2 is induced current by I1, x will be close to 1 (if 

L1=L2). Therefore, cosφ12≈-1 and therefore, φ12≈180°. In the case of loosely coupled coils, k is 

close to 0 and therefore, φ12 is around 90° [41]. 

In the case of loosely coupled WPTs, where k<0.5, usually compensation network is added to both 

primary and secondary sides and designed to achieve maximum power transfer. Based on (2-3) to 

achieve this goal, φ12 must be equal to 90° and this is independent of k value. This means I2 should 

lag I1 by 90°. In this case, U12 will be in phase with I2. Therefore, at the operating frequency, 

impedance seen from U12 will be pure resistive. To this end, secondary compensation network is 

designed to achieve φ12 close to 90° and therefore, reduce VA of the coils. Consequently, it will 

reduce the losses in the coils. On the other hand, primary compensation network is designed to 

cancel reactive power and consequently, reduce VA of the power electronics converter, hence their 

losses. 

The output power of a WPT system is quantified by the short-circuit current (Isc), the open-

circuit voltage (Voc) of the pickup coil and the quality factor, Q, as follows [11], [27] 

21
1 1

2

out su oc sc in

MI
P P Q V I Q MI Q V I k Q

L
= = = =  (−) 
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where, Psu is the product of Voc and Isc and represents the uncompensated power rating (without 

switch mode power supply). Also, Vin is voltage across L1. As it can be seen from (2-9), output 

power can be reduced if coupling coefficient is reduced. Switched mode controller is used to boost 

power transfer by enabling compensation network to work at a load-dependent quality factor (Q) 

and to regulate DC output. For most applications, pad is chosen to provide desired Pout with Q of 

1 when pads are ideally aligned. If a misalignment occurs, Pout is maintained by increasing the 

operational Q [11]. 

The transfer power control methods can be classified based on where control action is carried 

out. A general classification could be primary side control [7], [22], secondary side control [6], 

[8], and dual-side control [23]. In most cases with power being transferred from one primary pad 

to one receiver pad, primary and dual-side control are employed. For cases that primary pad 

transfers power to multiple receiver pads, secondary side control methods are used [41]. 

To achieve maximum power transfer capability to the load, the power supply is controlled to 

operate at a specific operating frequency and a primary current. To control the operating frequency, 

fixed- and variable-frequency control can be employed. Fixed-frequency controllers work with a 

predetermined frequency and consequently, are much simpler; however, in different operating 

conditions, such as change in load and coupling coefficient, required power rating (VA) of the 

power supply may increase. To minimize the power rating of the power supply, variable-frequency 

controllers operate at zero phase angle (ZPA) of input impedance seen from the power supply. By 

changing coupling coefficient and load impedance, more than one ZPA frequency can appear. This 

phenomenon is called bifurcation [13], [41]. If controller cannot cope with the bifurcation region, 

the operating frequency will move away from the desired frequency or set unstably to several 
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undesirable operating conditions. Under such a condition, power transfer capability will drop 

significantly [41].
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3. LITERATURE REVIEW 

Several positive features of wireless chargers compared with wired chargers, such as safe operation 

and convenience, have attracted attention of researchers in recent years. However, due to the 

structure and applications of WPTs, many new challenges that are not applicable for wired 

chargers, arise, some of which are listed below 

- Variation of coupling coefficient due to coils’ misalignment, air gap and couplers topology 

- Power output dependency on coupling coefficient 

- Power transfer efficiency dependency on coupling coefficient 

- Power transfer efficiency dependency on load status 

- Soft switching condition dependency on operating frequency, load status and coupling coefficient 

- System efficiency dependency on load status 

- Compensation network dependency on coupling coefficient and (or) load status 

- Coupler topology impact on coupling coefficient and cost. 

In the following subsections, major publications on the state of the art of WPT are reviewed. The 

papers are categorized into three main groups based on the topic they target: magnetic couplers, 

compensation networks, and power transfer efficiency. 

3.1. Magnetic Couplers 

The most common magnetic coupler for WPT chargers is circular coil. Figure 3.1 shows the 

components of a circular pad [11]. In this structure, Litz wire is used for coils to reduce skin and 

proximity losses in high frequencies. The ferrite tile or bars are employed under (above) primary 

(secondary) coil to limit magnetic field to one side of coils. Usually, aluminum shielding is added 

to the primary to prevent magnetic field from entering metal bars under the coupler and to avoid 

eddy current loss. This is used in the secondary side, as well to block the magnetic field from 
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leaking to the vehicle chassis (which causes losses) and also protect the passengers [47]. Plastic 

cover is employed to protect pad’s components from damage and water penetration. 

 

Figure 3.1 Components of a circular pad [11]. 

Coupling coefficient varies with position of coils with respect to each other. WPT is prone to 

misalignment and change of air-gap length. Typical air gap tolerance is up to 200-mm and 

horizontal misalignment tolerance from center to center should be greater than ± 200-mm [11]. As 

it is shown in (2-9), output power depends on coupling coefficient. On the other hand, as it will be 

discussed later, reduction in the coupling coefficient will result in reducing maximum transfer 

efficiency. Therefore, many efforts have been made to propose new topologies and analyze the 

parameters influencing the coupling coefficient. Due to field shaping produced based on ferrite 

structure in different topologies, mathematical analysis of coupling coefficient is complex. 

Therefore, majority of analyses are carried out with finite element analysis (FEA) software [11]. 

In [11], a comprehensive design for circular magnetic structure is proposed. Uncompensated 

power (Psu) variation in various structures of circular magnetic coupler is investigated. The effect 

of horizontal offset on Psu for specified vertical offset is shown. It is demonstrated that by 

increasing the horizontal and vertical offset, Psu is reduced. Also, at approximately 40% of pad 
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dimeter, there is a null in Psu profile. In addition, impact of other variables in pad structure, such 

as hole diameter of ferrite bars, angle of ferrite sector and ferrite arrangement, on Psu as well as 

pad volume are studied. Regarding ferrite size, simulation shows that length of ferrite has the 

highest effect on coupling coefficient and Psu, while ferrite thickness has the least influence. 

Furthermore, the leakage magnetic flux of charging system is simulated and measured. Finally, a 

magnetic coupler is designed that can meet human exposure regulations.  

The design of a unipolar square coil is studied in [47]. Based on simulation results, larger size 

of the core pad than coil pad leads to higher coupling coefficient. However, the increase rate of 

coupling coefficient is insignificant if size of the core pad exceeds the coil pad. Also, simulation 

results demonstrate that by increasing the size of the aluminum shielding, the coupling coefficient 

is reduced. Thus, its size is fixed to be the same as the coil size. Another contribution of the paper 

is to design the coils to achieve maximum coupling coefficient for misaligned coils rather than for 

aligned coils. 

In [27], two polarized coupler topologies, called double D (DD) and DDQ are proposed. The 

DD topology has highly desirable characteristics such as single-sided flux paths, insensitivity to 

aluminum shielding, an average flux path height that is proportional to half of the pad’s length and 

a very low leakage magnetic flux out of its back [27]. 

Thickness and turn number of coils are investigated in [27]. It is revealed that narrow and 

closely spaced coils shorten the flux pipe, thus reducing the coupling coefficient for a given air 

gap. Conversely, if the coils are wound with an extremely large space, magnetic flux will leak out 

of the gaps between the turns and weaken the air-gap flux. Consequently, flux pipe will be 

shortened. If the coil has large number of turns, the length of the flux pipe will increase; however, 

the inductance of the coil will increase which in turn results in high voltage over the coils. 
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A serious problem of DD pad system is its weak performance along the x-axis. Simulation 

results show that when a horizontal offset in the x-axis reaches about 34% of the pad length, 

coupling coefficient becomes close to zero. In other words, at this misalignment level, flux enters 

and exits the same coil, and consequently, no voltage is induced at the secondary coil. To solve 

this problem, a quadrature coil is added to the receiver pad. The new configuration is called DDQ. 

This configuration solves the problem of null coupling coefficient to a considerable extend. The 

quadrature coil is tuned independent of the DD coil and added to the output of the DD coil after a 

rectification stage. Although DDQ shows a charge zone five times higher than that of a circular 

pad, it requires about two times more copper, however.  

An alternative for DDQ is called bipolar pad [12]. It consists of two partially overlapped large 

D pads which are positioned such that no mutual inductance exists between them. This topology 

consumes 25% less power while it possesses similar performance to that of a DDQ pad. In [43], 

DD, DDQ and bipolar pads are compared. It is concluded that DDQ and bipolar pads can have 

good interoperation with a simple receiver pad. A drawback of DDQ and bipolar pads is that they 

need an additional power supply in the primary side. 

In [44], variations in coupling coefficient, primary inductance, leakage fluxes, quality factors, 

and size have been studied for various combinations of circular, bipolar, and solenoid. It is 

demonstrated that non-polarized pads, such as circular and solenoid, have the lowest leakage and 

coupling coefficient. It is also shown that bipolar pad shows an acceptable leakage flux and is 

interoperable with solenoid, circular and polarized topologies.  

In [39], a WPT system is optimized with respect to efficiency and power density. Losses in the 

HF inverter, transmitter and receiver coils, capacitors of compensation networks, and rectifier 

diodes are considered. In [42], it is demonstrated that mutual inductance variation with respect to 
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air gap can be minimized if radius of the transmitter and receiver coils are chosen to be different. 

Also, when radius of the transmitter is larger than the receiver, mutual inductance will be improved 

for long distances [42]. In [46], coupling coefficient variations with respect to air gap distance and 

misalignment are investigated. It is shown that if the inner diameter of the primary coils is larger 

than the outer diameter of the secondary coil, coupling coefficient is less sensitive to misalignment 

and gap distance variation, while for larger inner diameter of the primary, coupling coefficient is 

smaller than that of identical coils in a fully aligned situation.  

To improve power transfer capacity and energy efficiency, intermediate coils (also referred to 

as repeater, relay resonator, domino resonator) are proposed [63]. Figure 3.2 depicts a four-coil 

structure. The power transfer can be improved by impedance matching and tuning the parameters 

of the intermediate coils [19], [29], [30]. It is worth noting that the physical parameters, such as 

self-inductance and coupling coefficient between the source and the load coils of a multi-coil 

system, is similar to that of a two-coil system. However, power transfer capability and efficiency 

improves through increasing apparent coupling coefficient [60], [31]. 

 

Figure 3.2 Four-coil resonator [60]. 

In [63], based on circuit theory, the two- and three-coil structures are compared. Based on a 

simplified model, the condition that a three-coil structure can achieve higher power transfer 

efficiency than its two-coil counterpart is obtained. The study is carried out for the case that all 
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coils are compensated with series capacitors. It is shown that the current stress and the 

electromagnetic field emission in the three-coil structure is less than the two-coil structure. Also, 

it is demonstrated that the difference observed in energy efficiency of the two- and three-coil 

structures is due to resistance of primary coil or internal resistance of the power source [57]. The 

study shows that the three-coil structure enhances the maximum energy efficiency provided that 

the transmitter and source coils are placed close enough. 

In [60], an asymmetric four-coil system is proposed. The primary side consists of a source coil 

and two intermediate coils. In the secondary side, there is a single receiver coil. Compared to a 

symmetric four-coil structure, the proposed structure has higher efficiency because intermediate 

coils boost coupling coefficients two times around the operating frequency. It is shown that due to 

high coupling coefficient in the four-coil structure, the bifurcation phenomenon occurs, due to 

which three ZPA frequencies exist. This work proposes a method to work on an operating 

frequency that leads to constant output voltage characteristics. 

3.2. Compensation Networks 

In WPT applications, compensation networks are employed on both the primary and the secondary. 

The main purpose of using compensation network on the primary side is to minimize the VA of 

the switching power supply and its losses. Compensation network in the secondary side is designed 

to increase the short-circuit current of the secondary coil and thus, improve the power transfer 

capability [14]. 

Due to large air gap between the primary and the secondary, mutual inductance is low. 

Therefore, there is high magnetizing current. The situation gets worse when air gap increases or a 

misalignment occurs. Under this circumstance, leakage inductance is much larger than the mutual 

inductance. Thus, there is high circulating current and consequently loss in the coil. To reduce the 
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circulating current, hence the losses, the imaginary part of the input impedance must be decreased. 

This is achieved by employing a compensation network [35]. 

Four basic compensation networks, called series-series (SS), series-parallel (SP), parallel-series 

(PS) and parallel-parallel (PP), are shown in Figure 3.3. These networks are named based on the 

position of the capacitor with respect to the coils’ inductances. A common method is to select 

secondary capacitor to resonate with the self-inductance of the secondary coil. The primary 

capacitance, though, is designed to compensate the primary coil self-inductance as well as the 

reflected imaginary impedance. Through this, the zero phase angle frequency of the impedance 

seen from the source is set equal to the secondary resonant frequency [41]. 

 

Figure 3.3 Four common compensation topologies (a) SS (b) SP (c) PS (d) PP [41]. 

Table 3.1 summarizes the reflected resistance and reactance when there is series and parallel 

compensation in the secondary. In this figure, Zr denotes the reflected impedance from the 

secondary to the primary. As it can be observed, imaginary part of the reflected impedance for 

series-compensated secondary is zero, while a parallel-compensated secondary reflects a 

capacitive load. This is a major difference between series and parallel-compensated secondary [5]. 
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Table 3.1. Reflected impedance for series and parallel-compensated secondary 
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A common way for designing primary capacitance for four basic compensation networks are 

shown in Table 3.2. As it can be observed, for SS topology, the required primary compensation 

capacitance is independent of the mutual inductance and the load, while for SP topologies, 

capacitance depends on the mutual inductance. In addition, for parallel-compensated primary, the 

required primary compensation capacitance is a function of both the mutual inductance and the 

load. Therefore, the primary compensation capacitance for parallel-compensated primary must be 

designed for the required power [5]. 

Table 3.2. Conventional primary capacitor design for four basic compensation networks 
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Impedance seen from power supply, Zin, can be expressed as follows 
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If design procedure in Table 3.2 is followed, imaginary part of the input impedance will be zero, 

and thus, reactive power flow will be eliminated. Generally, there are three ZPA frequencies in 

frequency spectrum of the input impedance. To have a unique ZPA frequency, which is equal to 

secondary resonant frequency, primary quality factor should be much higher than secondary 

quality factor. Primary and secondary quality factors are defined as follows [5] 

,

, 0

VAR
( )

p s

p sQ
P

 = =  (−) 

where, VAR and P denotes reactive and transferred active power, respectively. 

For compensation networks that their primary capacitance depends on coupling coefficient and/or 

load, changes in these variables can cause a phase shift in the impedance seen by the power supply. 

If the phase shift is considerable, higher VA rating must be considered for the power supply. To 

track ZPA under variation of coupling coefficient and/or load, variable frequency control method 

can be employed. However, as aforementioned, if the phase shift is significant, instability and 

uncontrollability may occur due to onset of bifurcation phenomenon [6]. 

Although operating at ZPA frequency leads to minimizing VA rating of the power supply, it is 

desirable that the impedance seen from the power supply to be partially inductive. In this way, the 

primary current will lag the inverter’s output voltage, which will facilitate soft switching. With 

soft switching, the switches turn on while the voltage across them is zero thanks to early turn on 

of their body diode due to the residue current of the compensation network. This type of soft 
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switching is called zero voltage switching (ZVS). Under ZVS, switching loss is zero excluding the 

turn off switching loss of the active switch. By paralleling a capacitor (as lossless snubber) with 

an active switch, turn off loss can be reduced [36]. 

If the impedance seen from the inverter is capacitive, since the inverter current will lead the 

voltage, zero current switching (ZCS) can be achieved. In ZCS, turn off loss will be zero since the 

switch is turned off at the instant current crosses zero. This type of soft switching is not as much 

beneficial since all the other switching losses (turn on loss, diode recovery loss, etc) retain [36]. 

Myriad of studies have been conducted on the four basic compensation topologies. In [32], three 

ZPA frequencies of SS compensation network are analyzed. It is demonstrated that the circuit at 

two ZPA frequencies shows voltage follower characteristics, while at the third ZPA frequency at 

which compensation capacitor resonates with the self-inductance of the coils, it shows current 

follower characteristics. Because of high power transfer and efficiency, the operating frequency is 

usually set at third of the ZPA frequency. Figure 3.4 depicts voltage gain of SS versus frequency 

variations at different loads. 

 

Figure 3.4 Voltage gain variation of a two-coil system with respect to frequency [32].  
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In [36], maximum efficiency and load-independent voltage transfer ratio operating frequencies 

for SS and SP compensation networks are investigated. It is shown that at two frequencies (voltage 

follower frequency), SS shows load-independent voltage transfer ratio, while SP shows similar 

characteristic only at one frequency. The operating frequency that maximum transfer efficiency is 

achieved for SS is derived and called ωM. It is demonstrated that resonant frequency of SS is close 

to ωM, while its voltage follower frequency (ωH), which is higher than resonant frequency, is far 

from ωM. Also, it is shown that operating at ωH can lead to ZVS. However, in SS, both resonant 

frequency and ωM do not possess voltage follower characteristics. On the other hand, for SP 

compensation, a design procedure can be followed so that maximum power transfer efficiency and 

voltage follower characteristics occur at the same frequency. For such an operating frequency, soft 

switching (ZVS) can be achieved automatically. 

In [52], four basic compensation networks with voltage and current sources are compared in 

terms of five criteria: maximum efficiency, maximum load power transfer, load-independent 

output voltage and current, k-independent compensation and allowance of no magnetic coupling. 

It is found that current source SS is the only compensation that can meet all the five criteria. Also, 

current source SP compensation can meet the criteria except its weak k-dependency on the 

maximum efficiency. 

In [66], it is demonstrated that in SS compensation, if resonance frequency of the transmitter 

coil is too close to the operating frequency, the buck converter in the receiver side cannot operate 

at high duty cycles; hence power transfer efficiency is reduced. A new frequency selection 

approach is proposed to avoid the region in which the relation between the received power and 

buck converter’s duty cycle is inverse. 
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In [40], based on experimental results, it is shown that the efficiency of SS compensation is 

higher than SP compensation when the load value is small, i.e. during the constant-current stage 

and the beginning of the constant-voltage stage of the battery charging. On the contrary, the power 

transfer efficiency of the SP compensation is higher for larger values of load, i.e. during constant-

voltage charging stage of the battery. 

To address the aforementioned shortcomings, multiple modifications to the four basic 

compensation networks have been proposed [54], [59]. To achieve constant current and constant 

voltage characteristics, a dual topology is proposed in [26]. It uses semiconductor switches to 

switch between a series-compensated and parallel-compensated in the secondary side. In [9], a 

unity power factor WPT pick up is proposed that uses LCL network at the secondary. By 

minimizing the reactive current in the secondary coil and also decreasing the reflected reactive 

power on the power supply, efficiency is improved and cost is reduced. The proposed design 

compensates the effective inductive loading caused by the rectifier by adding a series capacitor. 

In [20], four basic topologies are analyzed and compared based on their misalignment behavior. 

Combining the characteristics of SS and PS compensations, a new topology called SPS is 

proposed. The proposed topology is capable of transferring rated power with high efficiency in 

presence of up to 25 % misalignment without any additional control loops. In [28], a mixed-

resonant coupling circuit, shown in Figure 3.5, is proposed. 

 

Figure 3.5 Mixed-resonant compensation for WPT [28] 
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It features higher transfer efficiency than SP since it inherits the low sensitivity characteristics of 

the SS compensation. The obtained results show that if the compensation capacitors are optimized, 

the mixed-resonant coupling circuit has stable transfer efficiency when load varies in a wide range.  

In [51], two compensation structures, i.e. SP and another one with LCL at the primary side and 

a parallel capacitor in the secondary side, are compared. It is shown that SP is 2.45% cheaper than 

LCL compensation; however, LCL compensation can achieve higher peak efficiency at rated load. 

This is due to the fact that in LCL, the inverter only handles the current required to supply active 

power and overcome the loss in the resonant tank. Also, LCL shows better efficiency than SP in 

light loads. This occurs because in light loads, the input impedance of the LCL network becomes 

very high. As a result, the inverter output current becomes low, and thus, the conduction loss 

remains low. In addition, control complexity of SP is higher than LCL due to sensitivity of the 

reflected secondary impedance of SP to changes of load. The LCL topology uses partial series 

compensation in the primary and the secondary to boost the secondary coil current and reduce the 

VA rating of components of the resonant tank.  

In [34], a compensation method is proposed that is suitable for application with one transmitter 

and multiple receivers. It is also suitable for dynamic WPTs where the receiver is highly dynamic. 

The proposed structure uses the reflected reactance of the receiver to strengthen the field in the 

coupled portions of the transmitter and the receiver and weaken it for uncoupled portions. In this 

way, power transfer can be carried out efficiently. Also, without complex shielding, 

electromagnetic field emissions standard are met.  

In [14], an LCC primary compensation is proposed. The compensation components are 

designed by taking high order harmonics into account. The LCC structure features voltage follower 

characteristic and ZCS. Also, the input current is limited in absence of the receiver or in no load 
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condition. A doubled-sided LCC compensation network is proposed in [53]. The main features of 

the proposed compensation is that its resonant frequency is independent of the coupling coefficient 

and the load. Also, by tuning the compensation network, ZVS can be realized for the HF inverter. 

In [59], a comprehensive review of compensation networks is presented. It is demonstrated that 

if a voltage source is used, the compensation network should have a T-circuit configuration in 

order to achieve a constant output voltage. Also, to achieve constant output current with an input 

current source, π-circuit configuration should be used. In [67], an LC/S compensation topology is 

introduced. The proposed method leads to constant output current. Compared with the double-

sided LCC, the LC/S topology offers higher efficiency and lower cost due to less component count. 

In [62], an LCC compensation is proposed that is robust against wide coupling coefficient 

variations. The main goal is to achieve smooth power characteristics while coupling coefficient 

varies. This feature make the LCC compensation a promising candidate for dynamic WPTs. 

3.3. Power Transfer Efficiency 

Power transfer efficiency depends on several factors including load status, coupling coefficient, 

coils structure, operating frequency, and compensation network [65]. In [48], maximum power 

transfer and maximum energy efficiency loads are derived and is shown that they are different 

from each other. To achieve maximum power transfer, several closed loop methods have been 

reported, which can be classified into three main groups: dynamic impedance matching, frequency 

tracking, and using DC/DC converters. In the first group, the system operates at a fixed frequency 

and the impedance network is dynamically adjusted through relays and semiconductor switches to 

maximize power transfer frequency [24], [31]. In the second group, operating frequency is varied 

based on the output power feedback [25]. In the third group, maximum power transfer load is 
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adjusted by changing the duty cycles of a DC/DC converter [33]. Similar methods can be employed 

for following maximum power transfer efficiency load. 

In [48], by using a switched mode controller in the receiver side, the optimal load value is 

emulated for maximum power transfer efficiency. The proposed method achieves maximum 

efficiency based on varying the input voltage to find an operating point at which the input power 

is minimized for a given output power. Since the search process is conducted in the transmitter 

side, no wireless communication feedback from the receiver side is required. 

To follow maximum power transfer efficiency load, some methods use circuit models. 

Therefore, knowledge about the coupling coefficient value is necessary. To estimate the coupling 

coefficient value, several methods have been reported. References [37] and [58] propose a method 

for dynamically estimating the coupling coefficient based on the secondary coil parameters only. 

Also, [49] proposes a method for estimation of the coupling coefficient with recursive least squares 

(RLS) filter. 

In [33], the output voltage is regulated by a boost converter in the receiver side, while a buck 

converter in the transmitter side searches for the maximum transfer efficiency by perturbing the 

operating point. Using an active single-phase rectifier with an auxiliary measurement coil, system 

maximum efficiency is tracked under load variation [64]. An inverter in the transmitter side is used 

to regulate the output voltage and an active rectifier regulates the desirable load impedance. 

In [65], based on a dynamic coupling coefficient estimation, a method is proposed that takes 

the variation in coupling coefficient, load and output controllability into account. Two DC/DC 

converters are employed in the proposed WPT system. The duty cycle of the DC/DC converter in 

the secondary side is controlled to adjust the output load to the optimum value required for 
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maximum transfer efficiency. The DC/DC converter in the transmitter side regulates the output 

voltage. 
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4. FACTORS AFFECTING THE COUPLING COEFFICIENT VARIATION 

In this section, the circular and square coils are compared in terms of achievable coupling 

coefficient and material usage. Figure 4.1 shows circular and square coils topology. Increasing the 

outer diameter of circular coils and also, external length in square coils leads to increase of the 

coupling coefficient [11]; however, in real world applications, due to physical and cost limitations, 

the outer diameter and external length of the coils are restricted. To this end, analysis are carried 

out to investigate the impact of coils structure on coupling coefficient for certain length and width. 

It is noteworthy to mention that the goal of this section is not to propose a coil design with highest 

coupling coefficient, but it is to show the trend of variation of the coupling coefficient with respect 

to physical construction of the coils. As studied in [11] and [47], thickness of Litz wires and ferrites 

has low impact on coupling coefficient. On the other hand, increasing the length of ferrite can 

enhance coupling coefficient. 

(a)  
(b) 

Figure 4.1. Coils topology and dimensions (a) circular (b) square. 
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Therefore, to reach maximum achievable coupling coefficient, ferrite length is set equal to outer 

diameter and outer length of circular and square coils, respectively. Hence, the analysis are limited 

to variations in the inner diameter (length) and the turn space of coils. 

All the tests are conducted in finite element analysis (FEA) software, ANSYS Maxwell. The 

simulation parameters match those of the prototype listed in Table 4.1. Figure 4.2 and Figure 4.3 

depict exploded view of circular and square pads modeled in ANSYS Maxwell when ferrite tile 

and ferrite bars are employed, respectively. 

Table 4.1. Ansys/Maxwell Simulation and Experimental Parameters 

Parameter Value 

Ferrite Length/Width/Height (mm) 90/10/5 

Ferrite Bars 32 

Air Gap (mm) 150 

Litz Wire 38 AWG×1000 

AC Resistance per Meter (mΩ) 15 

Outer Diameter (mm) 500 

 

 

  (a)        (b) 

Figure 4.2. Exploded view of (a) circular pad with ferrite tile (b) square pad with ferrite tile. 
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  (a)        (b) 

Figure 4.3. Exploded view of (a) circular pad with ferrite bars (b) square pad with ferrite bars. 

 
(a) 

 

  (b)  

Figure 4.4. Coupling coefficient and coil wire length of circular coupler with ferrite tile (solid 

line) and ferrite bars (dashed line) (a) for variation of DOI and with no turn space (b) for 

variation of turn number and DOI=0.38 m. 
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In the first test, the impact of inner diameter (length) variations on the coupling coefficient as 

well as the length of Litz wire is evaluated. The turn space is considered almost zero. The obtained 

results are shown in Figure 4.4. (a) and Figure 4.5 (a) for circular and square pads, respectively, 

when ferrite tile is used as pad’s core. As it can be seen, by increasing the difference between the 

outer and inner diameters (DOI) of circular pad and the difference between the outer and inner 

length (LOI) of square pad, the coupling coefficient and the wire length are increased. 

 

(a) 

 

  (b)  

Figure 4.5. Coupling coefficient and coil wire length of square coupler with ferrite tile (solid 

line) and ferrite bars (dashed line) (a) for variation of LOI and with no turn space (b) for 

variation of turn number and LOI=0.35 m. 
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Based on Figure 4.4. (a), for DOI more than 0.38 m, the coupling coefficient is almost constant, 

while the wire length increases. Also, for square pad, coupling coefficient increase for LOI more 

than 0.35 is insignificant. Figure 4.4. (b) shows the variation of the coupling coefficient and wire 

length versus the turns number for a circular pad when the outer and inner diameters are considered 

constant (DOI=0.38m). In this figure, dashed line illustrates coupling coefficient of circular pad 

when ferrite bars are used as core and the turn space or the turns number is varied. 

 

(a) 

 

(b) 

 
(c) 

 
  (d)  

Figure 4.6. Coil with (a) 25 turns (b) 14 turns (c) ferrite plane (d) experimental WPT setup. 
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As it can be observed, coupling coefficients for pads with discrete ferrites is lower than the 

same quantity for pads with ferrite tile; however, the difference is insignificant and cost and weight 

reduction of pad justify it. Figure 4.5 (b) shows the obtained results for similar test when square 

pad is used. Based on the obtained results for two pads, it can be noticed that the changes in the 

coupling coefficient are insignificant for a wide range of turns number. This feature is used in the 

next section to improve the TE of WPT. 

Figure 4.6 depicts the structure of a WPT prototype constructed in the lab with Litz wire circular 

coil, ferrite bars and aluminum shielding 

.
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5. PROPOSED COMPENSATION TOPOLOGIES 

5.1. WPT System Structure 

Various WPT system structures are proposed in the literature. The structure presented in [14] is 

employed in this work as it satisfies the requirements of the utility and the battery. In addition, it 

improves the compactness of the system. Two different WPT systems, shown in Figure 5.1, are 

employed for this work. The first system is used when the input voltage is DC (see Figure 5.1 (a)) 

and the second one is used when the input voltage is AC (see Figure 5.1 (b)). As it can be observed 

in Figure 5.1, a DC-DC converter is connected after the DC power supply and a single phase PFC 

is connected to the AC voltage. Its goal is to control the input DC voltage of the HF inverter and 

also in the case of the PFC, to provide a sinusoidal input current in phase with the input voltage. 

Voltage fed full-bridge inverter is used to produce an HF square wave with desired operating 

frequency from the input DC voltage. 

 
(a) 

 

(b) 

Figure 5.1. Architecture of the employed WPT system with (a) DC power supply, (b) AC 

grid. 
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To minimize the VA rating of the primary side converters as well as switching losses in the HF 

inverter, primary compensation network is used. Secondary compensation network is also 

employed to increase the power transfer capability. To reduce the control complexity of the 

converters and restricting the voltage rating of the WPT system components, compensation 

network with load-independent VTR capability is used. In the secondary side, to convert HF AC 

voltage to DC, a full-bridge rectifier is used. Active rectifier can be another alternative if the 

reflected load to the primary needs to be controlled. The load is a battery and is charged with 

constant voltage and constant current methods. 

5.2. Constant Voltage Compensation Networks 

Two compensation topologies are proposed and based on their derived efficiency equations, 

primary and secondary coils are designed (in the next section). Figure 5.2 depicts the structure of 

the two compensation networks. 

 
(a) 

 
(b) 

Figure 5.2. Equivalent circuit of WPT system with (a) primary LCC compensation, and (b) 

secondary LCC compensation. 
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Both topologies are designed to feature constant output voltage, i.e., load-independent VTR, 

which is of paramount importance in WPT systems.  

5.3. Primary LCC Compensation (PLCC) 

In this compensation network, LCC is adopted in the primary side and a capacitor is connected in 

series with the coil at the secondary side. Figure 5.2 (a) shows the configuration of this network. 

Based on SAE standard recommendation, operating frequency is set at 85 kHz [41]. Therefore, 

operating frequency is assumed to be known. To achieve load independent output voltage 

characteristic, the impedance seen from the load side (Zout) must be equal to zero. To this end and 

by assuming that L1 and L2 are known, the passive components must be selected such that the 

following criteria is satisfied 

21 2

0 2

1
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L
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12 2

0 11
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Here, ω0 denotes operating angular frequency. Based on (5-1) and (5-2), the load independent 

voltage transfer ratio (VTR) can be obtained. Also, by wise selection of C13, zero voltage switching 

(ZVS) can be achieved. In the following section, based on equivalent circuit of the system and 

mathematical analysis, these important features of PLCC compensation network will be 

demonstrated. 

5.3.1. Zero Voltage Switching of PLCC  

Based on equivalent circuit of WPT system with PLCC compensation network (see Figure 5.2 

(a)) the impedance seen from the input voltage source can be obtained as follows 
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Therefore, Zin can be expressed as 
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If 0

2 21 11 12

1 1

L C L C
 = = , the following expressions can be written 
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Hence, Zin can be simplified to 
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To achieve zero phase angle (ZPA), Img (Zin)=0. To this end, the following expression must be 

satisfied 
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However, to eliminate turn-on loss of inverter’s switches, zero voltage switching (ZVS) is 

interested. To achieve ZVS, the impedance seen from inverter should be inductive, and 

equivalently, Img (Zin)>0. To this end, without violating load independent VTR of the system, C13 

can be redefined as 
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Therefore, after substituting C13 defined in (5-14) into (5-12), Zin can be expressed as 
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After some simplifications and using coupling coefficient instead of mutual inductance, Zin can be 

rewritten as 
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Now, the angle of Zin can be calculated as follows 
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As it can be seen, the angle of Zin is independent of mutual inductance of the system. From the 

above equation, it can be seen that if β=1, φ will be zero and ZPA can be obtained. Also, Zin will 

be as follows 

2

11

2in

RL
Z

M
=  (−) 

This equation shows that in case of misalignment or absence of a receiving coil (where M 

becomes close to zero), Zin assumes a large value. In addition, if load is disconnected for any 

reason, its equivalent value goes high and therefore, again, Zin becomes a large value. Hence, the 

input current is automatically reduced, which is a positive feature for a WPT system and can reduce 

control effort. In addition, as it can be seen from (5-18), L11 can be selected to modify Zin. High 

values of L11 can limit the input current and therefore, efficiency of the prior stages can be 

improved; however, the equivalent series resistance (ESR) of L11 as well as core loss in L11 should 

be taken into account. Figure 5.3 shows bode plot of Zin for parameters listed in Table 5.1 and 

when β is set at 1. In this figure, frequency response of Zin is plotted for a wide range of load (R=7, 

23, 46, 67 and 200 Ω). As it can be observed, magnitude of Zin at operating frequency and for 

different values of load follows equation (5-18) and increases proportional with R. Furthermore, 

phase of Zin at operating frequency is equal to zero regardless of load values, which shows ZPA 

operation. 

Based on (5-17), if L11>L1, by choosing β<1 and if L11<L1, by choosing β>1, ZVS can be 

achieved.  

 shows the frequency response of Zin when value of β is intentionally selected bigger than one 

to achieve ZVS operation for inverter. As it can be seen from the figure, although magnitude of 

Zin at operating frequency is similar to the corresponding value for ZPA operation, phase of Zin is 
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positive for all values of load, which means impedance seen from inverter is inductive and ZVS 

operation is feasible. 

Table 5.1. Parameters of WPT system with PLCC compensation used for Zin frequency 

analysis.  

Parameter [unit] Value 

fsw-inv [kHz] 80 

k [-] 0.22 

R [Ω] 
7, 23, 46, 67 and 

200 

L1 [µH] 253 

L2 [µH] 249 

L11 [µH] 76.5 

C12 [nF] 51.7 

C13 [nF] 22.4, 21.7 

C21 [nF] 15.9 

 

 
(a) 

Figure 5.3. Frequency response of Zin for PLCC and when  β is 1 (C13=22.4 nF). (a) 

magnitude, (b) magnitude zoomed, (c) phase, (d) phase zoomed. 7 Ω (blue), 23 Ω (red), 46 Ω 

(yellow), 67 Ω (purple) and 200 Ω (green) load. 

(Figure 5.3 continued) 
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(b) 

 
(c) 

(Figure 5.3 continued) 
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(d) 

 

 

(a) 

Figure 5.4. Frequency response of Zin for PLCC and when β is higher than 1 (C13=21.7 nF). 

(a) magnitude, (b) magnitude zoomed, (c) phase, (d) phase zoomed. 7 Ω (blue), 23 Ω (red), 46 Ω 

(yellow), 67 Ω (purple) and 200 Ω (green) load. 

(Figure 5.4 continued) 
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(b) 

 
   (c) 

(Figure 5.4 continued) 
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(d) 

5.3.2. Load-Independent Voltage Transfer Ratio 

Based on Figure 5.2 (a), VTR of WPT for primary LCC compensation can be obtained as 

follows 
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Based on (5-1) and (5-2), Laplace transform of Zin can be written as follows  
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11 12( )inZ s sL Z = +  (−) 

Using (5-20) to (5-24), VTR can be simplified as follows 
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To find frequencies with load-independent VTR characteristics, the derivative of VTR with 

respect to load is calculated and set equal to zero 

0
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
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After some simplification, the following equality can be derived 
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The roots of above equation are as follows 
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Substituting (5-30) into (5-25), load-independent VTRs can be derived as follows 
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From (5-31)-(5-33), it can be concluded that VTR at operating frequency only depends on M 

and L11. If the mutual inductance in the aligned situation is known, L11 can be adjusted to achieve 

the desired VTR. When a misalignment occurs or distance of primary and secondary pads change, 

mutual inductance of two pads will change correspondingly. Under these conditions, a DC/DC 

converter or a PFC can be used to regulate the output voltage and compensate VTR variation 

between the inverter’s output and the rectifier’s input. Figure 5.5 shows frequency response of 

VTR for a WPT system with PLCC compensation network. 

 

(a) 

Figure 5.5. Frequency response of VTR of PLCC (C13=22.4 nF). (a) magnitude, (b) 

magnitude zoomed, (c) phase. 7 Ω (blue), 23 Ω (red), 46 Ω (yellow), 67 Ω (purple) and 200 Ω 

(green) load. 

(Figure 5.5 continued) 
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   (b) 

 

(c) 

Parameters listed in Table 5.1 are used for this analysis. The load-independent frequencies of 

this system can be obtained using (5-30). These frequencies are listed in Table 5.2. Having 

examined magnitude and phase of VTR for different loads in Figure 5.5, one can observe that the 

load-independent frequencies are the same as the ones listed in Table 5.2. In addition, by analyzing 

the frequency response of Zin at load-independent frequencies (see Figure 5.3), it can be concluded 
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that if f6,7 is selected as operating frequency, ZSC will be achieved, while operating at f8,9 will lead 

to ZVS. 

Table 5.2. Load-independent frequencies for WPT with PLCC compensation.  

Parameter [unit] Value 

f1,2,3 [kHz] 0 

f4,5 [kHz] 80 

f6,7 [kHz] 53.16 

f8,9 [kHz] 103.09 

5.4. Secondary LCC (SLCC) Compensation 

In this configuration, series and LCC compensations are used in the primary and secondary sides, 

respectively (see Figure 5.2. (b)). In order to achieve constant voltage characteristic, Zout should 

be zero. To this end, the following equations should be satisfied 
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In the next two subsections, the conditions for load-independent VTR and ZVS operation of 

this compensation network will be investigated. 

5.4.1. Zero Voltage Switching of SLCC 

Based on Figure 5.2 (b), and if 0

1 1 23 22

1 1

L C L C
 = = , the impedance seen from the input voltage 

source when SLCC compensation is employed, can be obtained as follows 
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If C21 is chosen as follows 
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Now, Zin can be obtained as follows 
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After some simplification, Zin can be rewritten as follows 
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Therefore, input impedance angle can be calculated as follows 
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As it can be seen, the angle of Zin is independent of mutual inductance. From the above equation, 

it can be seen that if β=1, phase of the input impedance will be zero and ZPA can be achieved. 

Also, Zin can be simplified to 
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Based on (5-43), if M becomes small, Zin will be reduced. Thus, the input current will increase. 

As a result, there is need for a current limiting control in case misalignment occurs. However, the 

input current can be automatically controlled if load goes to infinity. For SLCC, selection of L23 is 
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very important since it can affect transfer efficiency as well as the system efficiency. This issue 

will be discussed in section 7. 

Table 5.3. Parameters of WPT with SLCC compensation used for Zin frequency analysis.  

Parameter [unit] Value 

fsw-inv [kHz] 80 

k [-] 0.22 

R [Ω] 
7, 23, 46, 67 and 

200 

L1 [µH] 253 

L2 [µH] 249 

L23 [µH] 38.4 

C1 [nF] 15.6 

C22 [nF] 103 

C21 [nF] 18.8, 18.3 

Figure 5.6 shows frequency response of Zin when β is 1. From the phase plot, it can be observed 

that at the operating frequency, phase of Zin is equal to zero for all load values, while its magnitude 

varies with respect to the load values. Based on (5-42), if L23>L2, by choosing β<1 and if L23<L2, 

by choosing β>1, ZVS can be achieved.  

 
(a) 

Figure 5.6. Frequency response of Zin for SLCC and when β is 1 (C21=18.8 nF). (a) 

magnitude, (b) magnitude zoomed, (c) phase, (d) phase zoomed. 7 Ω (blue), 23 Ω (red), 46 Ω 

(yellow), 67 Ω (purple) and 200 Ω (green) load. 

(Figure 5.6 continued) 
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(b) 

 
(c) 

(Figure 5.6 continued) 
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(d) 

Figure 5.7 depicts frequency response of Zin when β is bigger than unity. As it can be observed, 

although magnitude of Zin at operating frequency does not change significantly when β is higher 

than unity, phase of Zin for all loads becomes positive, which makes ZVS operation possible. 

 
(a) 

Figure 5.7. Frequency response of Zin for SLCC and when β is higher than 1 (C21=18.3 nF). 

(a) magnitude, (b) magnitude zoomed, (c) phase, (d) phase zoomed. 7 Ω (blue), 23 Ω (red), 46 Ω 

(yellow), 67 Ω (purple) and 200 Ω (green) load. 

(Figure 5.7 continued) 
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(b) 

 

   (c) 

(Figure 5.7 continued) 

 



51 

 

 

(d) 

5.4.2. Load-Independent Voltage Transfer Ratio of SLCC Compensation 

Based on Figure 5.2 (b), VTR of WPT with secondary LCC compensation can be obtained as 

follows 
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Based on (5-34) and (5-41), VTR can be simplified as follows 
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To find frequencies with load-independent VTR characteristics, the derivative of VTR with 

respect to load is calculated and set equal to zero 
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After some simplifications, the following equality can be derived 

3 2 2 2 2 4 2 2 4

23 0 0 23 1 2 1 0 2 23 1 0 2 23( ) (( ) ( (1 ) (1 )) ( )) 0ML s s L L L M s L L L s L L L      + − + + + − + − =  (−) 

The roots of the above equation are as follows 
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VTR at each of the above frequencies can be obtained as follows 
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As it can be seen, the obtained VTRs are independent of the load and only depend on parameters 

of the coils and compensation network. Figure 5.8 illustrates the frequency response of VTR for 

SLCC. 
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(a) 

Figure 5.8. Frequency response of VTR of SLCC (C21=18.8 nF). (a) magnitude, (b) 

magnitude zoomed, (c) phase. 7 Ω (blue), 23 Ω (red), 46 Ω (yellow), 67 Ω (purple) and 200 Ω 

(green) load. 

 

(b) 

(Figure 5.8 continued) 
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(c) 

It can be seen that three load-independent frequencies exist in the frequency response. Based 

on (5-50), these frequencies are calculated and listed in Table 5.4.  

Table 5.4. Load-independent frequencies for WPT with SLCC compensation.  

Parameter [unit] Value 

f1,2,3 [kHz] 0 

f4,5 [kHz] 80 

f6,7 [kHz] 61.26 

f8,9 [kHz] 98.48 

Considering Figure 5.8, it is clear that load-independent VTR frequencies occur at the same 

frequencies listed in Table 5.4. 
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6. WPT SYSTEM EFFICIENCY 

WPT system efficiency can be calculated assuming output voltage, Vout, output current, Iout, and 

Vin, input voltage are known. Since output voltage and current are DC, output power can be 

obtained as follows 

out out outP V I=  (−) 

6.1. High-Frequency Rectifier Efficiency 

Power loss in full-bridge rectifier can be calculated using the following equation 

24( )
rms dloss rec d avg d dP V I R I

−− −= +  (−) 

where, Vd is the diode forward voltage and Rd is the diode resistance. Iavg-d and Irms-d are the average 

and rms current of each diode, which can be calculated as follows 

2

out
avg d

I
I − =  (−) 

4

out
rms d

I
I


− =  (−) 

The input power and voltage of the rectifier can be calculated as follows 

in rec loss rec outP P P− −= +  (−) 

in rec
rms rec

rms rec

P
V

I

−
−

−

=  (−) 

where, 

2 2

out
rms rec

I
I


− =  (−) 
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6.2. Primary LCC Compensation Efficiency 

Resistance seen from the rectifier input can be calculated as follows 

rms rec
rec

rms rec

V
R

I

−

−

=  (−) 

Considering the conduction loss in the coils and compensation network, Zin can be calculated as 

follows 
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



 +

 =

+ +

 (−) 

11 0 11 12in LZ jL R Z = + +  (−) 

where RL1 and RL2 are ESR of primary and secondary coils, respectively, and RCx (x=21, 12 and 

13) are ESR of capacitors estimated by the following equation 

0

Cx

x

DF
R

C 
=  (−) 

Here, DF denotes dissipation factor of the capacitor and is available in the datasheet. 

The input voltage and current of the compensation network (output voltage and current of the 

inverter) as well as its input power, can be calculated as follows 
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1coscoils coil rms coil rmsP V I − −=  (−) 

where, δ1 is the phase angle between voltage and current of the primary compensation network. 

6.3. Secondary LCC Compensation Efficiency 

The input impedance seen from the inverter by considering conduction losses can be obtained as 

follows 

23 23 0 23rec LZ R R j L= + +  (−) 
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The input voltage and current of SLCC compensation network (output voltage and current of the 

inverter) as well as its input power, can be calculated as follows 

23 21

22

in
coils rms rec rms

rec m

Z ZZ
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R Z Z
− −
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= 

 
 (−) 
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coils rms
coils rms

in

V
I

Z

−
− =


 (−) 

2coscoils coil rms coil rmsP V I − −=  (−) 

where, δ2 is the phase angle between voltage and current of the secondary compensation network. 

6.4. High Frequency Inverter Efficiency 

Input voltage of the inverter (VDC) can be estimated using the following equation 

maxDC coil ds mos rmsV V R I− −= +  (−) 

where, Rds is the on-state resistance of the inverter’s switch. Imos-rms can be calculated as follows 

2( ) sin(2 )

8

v v
mos rms coil rmsI I

  


− −

− +
=  (−) 

where, φv is the phase difference between the output voltage and current of the inverter. The diode 

rms and average currents are calculated as follows 

2 sin(2 )
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v v
diode rms coil rmsI I

 


− −

−
=  (−) 

0

cos( ) 1
2 v

diode avg coil rmsI I



− −

−
=  (−) 

Power losses in the inverter are obtained as 

24
coil rmsloss cond dsP R I

−− =  (−) 

2 24( )
diode rmsloss sw coss QRR loss diode OSS dc sw RR dc sw f diode avg dP P P P C V f Q V f V I R I

−− − −= + + = + + +  (−) 

loss inv loss cond loss swP P P− − −= +  (−) 



59 

 

in which, Ploss-inv, Ploss-cond, Ploss-sw, PCOSS, PQRR and Ploss-diode are the inverter loss, conduction loss, 

switching loss, the loss in output capacitor of the switches, reverse recovery loss and diode loss. 

fsw, COSS, QRR denote switching frequency, output capacitance of switch and reverse recovery 

charge of switches, respectively. Finally, the inverter input power and input current and voltage of 

the inverter can be calculated as follows 

inv coils loss invP P P −= +  (−) 

2 2 coil rms
DC

I
I


−=  (−) 

inv
DC

DC

P
V

I
=  (−) 

6.5. Buck-Boost Converter Efficiency 

The buck-boost converter can work in three modes: buck, boost and buck-boost. In the buck-boost 

mode, all switches are switching and therefore, switching loss is high. Thus, the converter is 

controlled to not work in buck-boost mode and instead work in buck or boost mode. 

In the buck-boost converter, hard-switching occurs and therefore, both turn-on and turn-off 

switching losses exist. The losses in the switches can be calculated from the following equation 

loss conv cond conv sw conv ind snP P P P P− − −= + + +  (−) 

where, Ploss-conv, Pcond-conv, Psw-conv, Pind and Psn denote power loss in the converter, conduction loss 

in the switches, switching loss, inductor losses and snubber loss, respectively. These losses are 

obtained as follows 

22cond conv ds DCP R I− =  (−) 
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21 1
( ) ( )

2 2
sw conv sw conv diode conv COSS in DC r f sw d DC r f sw OSS in swP P P P V I t t f V I t t f C V f− − −= + + = + + + +  (−) 

2

sn in sw snP V f C=  (−) 

2

ind Lconv DCP R I=  (−) 

Note that the core loss in the inductor is negligible and can be neglected. 

The power loss in the boost mode can be obtained from similar equations, except VDC and Iin must 

be used instead of Vin and IDC, respectively. Iin and Pin can be estimated from the following 

equations 

DC DC
in

in

V I
I

V
=  (−) 

in in inP V I=  (−) 

6.6. WPT System Efficiency 

Following the above calculations, efficiency of each power conversion stage as well as the system 

efficiency can be calculated using the following equations 
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out
sys

in

P

P
 =  (−) 

Here, ηrec, ηcoils, ηinv, ηconv and , ηsys are the efficiency of the HF rectifier, coils, inverter, DC/DC 

converter and the WPT system, respectively.
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7. TIME-WEIGHTED TRANSFER AVERAGE EFFICIENCY 

Batteries are commonly charged with constant current (CC) followed by constant voltage (CV) 

when their voltage reaches the cut off voltage at rated power. In this way, equivalent resistive load 

of battery varies in a wide range. Figure 7.1 shows the charging curve of a 25Ah Li-ion battery 

(with Panasonic NCR18650PF cells) used in the experimental setup. 

 

Figure 7.1. Experimental charging curve of prototype Li-ion battery 

In the literature, efforts are made to design primary and secondary coils to increase the WPT 

system’s maximum efficiency. Figure 7.2 (a) depicts system maximum efficiency variation with 

respect to inductance value of the primary and secondary coils for PLCC compensation networks, 

respectively. Also, Figure 7.2 (b) shows the load at which system maximum efficiency occurs with 

respect to primary and secondary coils inductance. The calculation of system efficiency is based 

on equations provided in section 6 and also based on parameters listed in Table 7.1, Table 7.2 and 

Table 7.3. As it can be seen, by increasing the inductance value of the primary and secondary coils 

or quality factors of the coils, system The calculation of system efficiency is based on equations 

provided in section 6 and also based on parameters listed in Table 7.1, Table 7.2 and Table 7.3. As 

it can be seen, by increasing the inductance value of the primary and secondary coils or quality 

factors of the coils, system maximum efficiency increases for both compensation networks. 
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(a) 

 
(b) 

Figure 7.2. Variation of (a) system maximum efficiency and (b) maximum efficiency load of 

circular coil as function of L1 and L2 for primary LCC 
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(a) 

 

(b) 

Figure 7.3. Variation of (a) system maximum efficiency and (b) maximum efficiency load of 

circular coil as function of L1 and L2 for primary LCC 

In addition, it can be observed that by increasing the secondary inductance, the load at which the 

maximum efficiency occurs increases; however, at a specific secondary inductance, variation of 

maximum load with respect to primary inductance is low. 
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Table 7.1. Coils and compensation network specifications.  

Parameter [unit] Value 

fsw-inv [kHz] 80 

k [-] 0.22 

Vin [V] 180 

M/L23 0.7 

M/L11 0.7 

DF 2.5×10-4 

  

Table 7.2. Rectifier and inverter specifications.  

Parameter [unit] Value 

Vd [V] 0.6 

Rd [Ω] 0.02 

Rds [Ω] 0.025 

Qg [nC] 0.7 

tr [ns] 100 

tf [ns] 100 

Vf [V] 0.8 

Rd [Ω] 0.014 

COSS [nF] 0.393 

fsw-inv [kHz] 80 

 

Table 7.3. DC-DC converter specifications.  

Parameter [unit] Value 

Rds [Ω] 0.065 

Qg [nC] 35 

tr [ns] 40 

tf [ns] 20 

Vf [V] 4 

Rd [Ω] 0.2 

Csn [pF] 1000 

fsw [kHz] 80 
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Figure 7.3 illustrates the maximum efficiency and the load at which the maximum efficiency of 

the WPT system with SLCC compensation occurs for variation of primary and secondary coils. 

Similar to the system with PLCC compensation network, by increasing the inductance of the 

primary and secondary coils, system maximum efficiency increases. In contrast to system with 

PLCC compensation, in the system with SLCC compensation, maximum efficiency load increases 

with increase of the primary coil inductance, while rate of increase of the maximum efficiency 

load is lower for increases in the secondary coil inductance. It is worth noting that in these tests, 

system maximum efficiency for both compensation networks is about 93%. Also, L11 and L23 in 

PLCC and SLCC compensations, respectively, are chosen such that VTR of WPT becomes 0.7.  

As it was mentioned, the battery demand varies in a wide range. Generally, increasing the 

system maximum efficiency at one point (even at rated point) may not result in improved overall 

system efficiency and reduced losses during the battery charge. In this work, time-weighted 

average efficiency (TWAE) is defined as (7-1) and efforts are made towards improving this feature 

0 0

0 0
( ) ( / )

ch ch

ch ch

T T

out out

avg T T

out loss out

P dt P dt

P P dt P dt



= =

+

 

 
 (−) 

Here, ηavg denotes TWAE during charging period, Tch, and Pout and Ploss represent instantaneous 

output power and power loss, respectively.  

As discussed before, with fixed outer and inner diameters of the coils, the coupling coefficient 

varies insignificantly with respect to the turn space. Thus, it can be assumed constant. However, 

by changing the number of turns, the coils inductance and resistance, hence the efficiency, vary. 

This feature can be taken advantage of for improving TWAE while reducing the required material 

and accordingly, the cost. 



67 

 

The inductance of a coil with a particular shape can be estimated by 
oL L= , where, λ is a 

coefficient that depends on configuration of the pad (such as structure of ferrite and aluminum). 

Lo is inductance of a coil and for spiral and square coils can be formulated as follows [3] 

2

1 2

2 3 4(ln( / ) )
2

avg

o

n d c
L c c c


  = + +  (−) 

where, n is turn number and ci are coefficients depending on the layout of coils and are summarized 

in Table 7.4. Also, davg is average of coil’s diameter (length) and ρ is calculated from following 

equation 

o i

o i

d d

d d


−
=

+
 (−) 

Table 7.4. Coefficient for self-inductance expression 

Layout c1 c2 c3 c4 

Circular 1.00 2.46 0 0.2 

Square 1.27 2.07 0.18 0.13 

 

After calculating Lo for a specific coil layout from (7-2), λ can be obtained by dividing the 

inductance obtained by Ansys Maxwell simulation. Following such a procedure, λ is obtained as 

1.45 and 1.37 for the circular and square coils, respectively. Figure 7.4 shows the inductances 

calculated from (7-2) and obtained from Ansys Maxwell with respect to turn number variation. 

As it can be seen, the results from the employed model and Ansys Maxwell are very close. 

Therefore, after obtaining the inductance for one or more number of turns in Ansys Maxwell, λ 

can be obtained. Having λ, inductance of the coils can be calculated readily thereafter. 

The estimated length of circular and square coils, D, can be calculated using (7-4) and (7-5) 

( )
2

i o

n
D d d


= +  (−) 
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(2( ) )i o chD n d d R= + −  (−) 

Here, Rch denotes radius change, di and do denote inner and outer diameter of circular coil, 

respectively, and internal length and external length of square coil. 

 
   (a) 

 

(b) 

Figure 7.4. Inductance of coils based on modeling and Ansys Maxwell (a) circular and 

λ=1.45 (b) square and λ=1.37 

Resistance of the coils can be calculated as 

puR R D=  (−) 

where, Rpu is the coil resistance per meter.  

As it was discussed, L11 and L23 affect efficiency of a WPT system with PLCC and SLCC, 

respectively; therefore, wise selection of them is of great importance. Figure 7.5 shows variation 

of average efficiency with respect to L11/M for WPT system with PLCC and primary and secondary 
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coils both with 25 turns. Output power and load values are obtained from charging curve of the 

battery for calculating TWAE. Per meter AC resistance of the coil at 85 kHz is measured by 

E5071C Agilent Network Analyzer and inductance is measured with Global Specialties LCR-600. 

Based on this result, L11=1.4M is selected and used for the rest of this work. 

Figure 7.6 (a) and (b) depict, respectively, variation of time-weighted transfer average 

efficiency (TWTAE) and time-weighted system average efficiency (TWSAE) with respect to 

primary and secondary coils inductance when PLCC compensation is adopted. It can be seen that 

for both transfer and system efficiencies, the maximum occurs when primary coil is large, even 

when the secondary coil inductance is small. This result contradicts those obtained for system 

maximum efficiency where by increasing both the primary and secondary coils turns, the system 

maximum efficiency increases. In other words, a design based on system average efficiency rather 

than system maximum efficiency not only leads to lower power losses throughout the charging 

period, but also results in reduced cost and weight. 

 

Figure 7.5. System average efficiency with respect to L11/M for PLCC compensation and 25 

turns primary and secondary coils. 
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(a) 

 

(b) 

Figure 7.6. Variation of (a) TWTAE and (b) TWSAE of circular pad as function of L1 and L2 

for primary LCC and L11=M/0.7. 

The next design is carried out for a WPT system with SLCC compensation network. Figure 7.7 

illustrates system average efficiency variations with respect to L23/M when the primary and 

secondary coils both have 25 turns. Based on the obtained results, L23=0.7M is selected that leads 
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to high system average efficiency. In addition, similar to WPT system with PLCC compensation 

network, VTR ratio is set to 0.7. 

In the next step, transfer average efficiency and system average efficiency are obtained for the 

primary and secondary coils inductance values. Figure 7.8 (a) and (b) show the obtained results. 

The results shows that for a WPT system with SLCC compensation network, increasing primary 

and secondary coils turn number will increase the system average efficiency. This conclusion is 

similar to what was obtained for the system maximum efficiency with SLCC compensation 

network (see Figure 7.3).  

 

Figure 7.7. System average efficiency with respect to M/L23 for SLCC compensation and 25 

turns primary and secondary coils. 
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(a) 

 

(b) 

Figure 7.8. Variation of (a) TWTAE and (b) TWASE of circular pad as function of L1 and L2 

for secondary LCC and L23=M/0.7. 

Comparing results obtained for WPT systems with PLCC and SLCC compensation networks show 

that similar system average efficiency is achievable with less volume of wire for PLCC. In 
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addition, compensation on the primary side helps with lighter WPT as well as saving space on the 

vehicle side while for SLCC compensation, the coil of the secondary side should be large to 

achieve high system average efficiency. This means heavy coil on the vehicle side. 
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8. MATLAB SIMULATION RESULTS 

To evaluate the feasibility of the proposed WPT system, few tests are conducted in Matlab/ 

Simulink. Figure 5.1 depicts the WPT system modeled in Matlab/Simulink. The battery is modeled 

as a resistance. Table 8.1 summarizes the WPT system parameters. In the first test, the reference 

voltage is set to 110 V and equivalent load is R=11.5 Ω. Figure 8.1 shows the input and output 

voltages, output voltage and current of the HF inverter and input voltage and current of the rectifier. 

Table 8.1. WPT system parameters in Matlab/Simulink  

Parameter [unit] Value 

fsw-inv [kHz] 80 

k [-] 0.22 

R [Ω] 11.5, 67.5 

Vin [V] 180 

Vout [V] 110 

CDC [mF] 6 

Cf [µF] 0.22 

Lf [µH] 240 

Lconv [µH] 240 

L1 [µH] 253 

L2 [µH] 249 

L23 38.5 

L11 76.5 

C12 [nF] 51.7 

C13 [nF] 21.7 

C21 [nF] for PLCC 15.9 

C1 [nF] 15.6 

C22 [nF] 103 

C21 [nF] for SLCC 18.3 

As it can be seen from Figure 8.1 (a), closed loop control of DC-DC converter works 

satisfactorily and the output voltage is maintained at about 110 V. From Figure 8.1 (b), it is obvious 

that current of the inverter is lagging the voltage, which confirms ZVS operation of the system. In 
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addition, based on Figure 8.1 (b) and Figure 8.1 (c), VTR of WPT can be determined, which is 

VTR=112/166≈0.674. In the second test, output load is selected as 67.5 Ω.  

 
(a) 

Figure 8.1. Simulation results for WPT system with primary LCC compensation when output 

voltage reference set to 110 V and load is 11.5 Ω (a) input and output voltage (b) HF inverter 

output voltage and current (d) input voltage and current of rectifier. 

 

(b) 

(Figure 8.1 continued) 
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(c) 

Figure 8.2 shows the obtained results. As it can be seen, the output voltage follows the reference. 

From output voltage and current waveforms of the inverter, it can be concluded that Zin is inductive 

and the inverter works in ZVS mode. From the inverter output voltage and the rectifier input 

voltage waveforms, VTR is calculate as VTR=111.9/158≈0.71, which is close to what is expected 

from theory. This result shows load-independent VTR of the proposed PLCC compensation.  

 
(a) 

Figure 8.2. Simulation results for WPT system with primary LCC compensation when output 

voltage reference set to 110 V and load is 67.5 Ω (a) input and output voltage (b) HF inverter 

output voltage and current (d) input voltage and current of rectifier. 

(Figure 8.2 continued) 
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(b) 

 

(c) 

For the next test, WPT with SLCC compensation is simulated (see specification in Table 8.1). 

Similar to PLCC compensation simulations, two values are chosen for the load (11.5 Ω and 67.5 

Ω). From Figure 8.3 (b), it can be seen that current is lagging the voltage and the inverter works 

in ZVS mode. Also, VTR of the system is VTR=112/164.8≈0.68. The slight discrepancy between 
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obtained results in simulation and what is expected from theory is attributed to conductive losses 

in the coils and compensation networks. 

 
(a) 

Figure 8.3. Simulation results for WPT system with primary LCC compensation when output 

voltage reference set to 110 V and load is 11.5 Ω (a) input and output voltage (b) HF inverter 

output voltage and current (d) input voltage and current of rectifier. 

 

(b) 
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(c) 

Simulation results for R=67.5 Ω are illustrated in Figure 8.4.  

 
(a) 

Figure 8.4. Simulation results for WPT system with secondary LCC compensation when 

output voltage reference set to 110 V and load is 67.5 Ω (a) input and output voltage (b) HF 

inverter output voltage and current (d) input voltage and current of rectifier. 

(Figure 8.4 continued) 
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(b) 

 

(c) 

Simulation results verify that the inverter operates in ZVS mode and VTR is close to the 

expected value (VTR=112/159.7=0.7), which demonstrates load-independent VTR for the 

proposed SLCC compensation. 
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9. EXPERIMENTAL RESULTS AND DISCUSSION 

9.1. WPT Setup 

 

Figure 9.1. 1.2 kW WPT charger system prototype. 

Figure 9.1 shows the prototype of a 1.2 kW WPT charger designed and built in the lab. A 5 kW 

DC power supply (SGA 600/8) is used as the power supply of the system. A buck-boost converter 

is designed and is used to control the input voltage of the inverter and the load voltage and current. 

The specifications of the DC/DC converter is listed in Table 7.3. Switching frequency of the 

converter is 80 kHz. SiC MOSFETs from Cree/Wolfspeed (C3M0065100K) are used in the DC/ 

DC converter. The gate driver used for SiC switches is from Infineon, which has DESAT 

protection. For inductor core, Kool Mµ 77620 from Magnetics Inc. is chosen. This core features 

low loss for low ripple currents and good permeability versus DC bias characteristics. To control 

the buck-boost converter, TMDSCNCD28335 control card is used. For control as well as 
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protection purposes, three sensors for the input and output currents and the output voltage are used 

in the converter. The currents are measured with LEM sensors. To measure the output voltage, a 

voltage divider is used. To provide isolation for measurements, optically isolated amplifier 

(ACPL-790B-300E) is employed. 

Output of the DC/DC converter is connected to an HF inverter. The full-bridge inverter is 

controlled by phase-shift method and duty cycle of each switch is 50%. Also, a phase shift (0≤θ≤π) 

between the command signal for switches of each leg is defined and used to control the amplitude 

of the amplitude of the inverter’s fundamental voltage. Figure 9.2 shows the output voltage of the 

inverter under phase-shift control method. Peak amplitude of the inverter output can be obtained 

from the following equation 

4
sin( )

2
coil pk DCV V




− =  (−) 

To achieve maximum voltage, phase angle is set to π. 

 

 

  

(a) (b) 

Figure 9.2. HF inverter (a) schematic (b) output voltage 
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HF inverter is a six-pack (three-phase) module from Wolfspeed/Cree (CCS050M12CM2) with 

specifications listed in Table 7.2. To reduce the DC-link voltage ripple, a 20 µF film capacitor is 

used. Output of the inverter is connected to the primary compensation network and output of the 

compensation network is connected to the primary coil. The secondary coil is connected to the 

secondary compensation network. In PLCC and SLCC compensation network topologies, 

compensation networks consist of capacitors and inductors. Film capacitors from Cornell Dubilier 

(942C series) are used in compensation networks. The maximum rms voltage of capacitors is 500 

V and their rms currents are variable based on their value. To increase the level of voltage and 

current, the capacitors are connected in series and/or parallel. Dissipation factor (DF) of capacitors 

is available in their datasheet. 

To build the inductors of the compensation network, N87 ferrite is employed. N87 has low 

power loss density in high frequencies and therefore, has low core loss. To reduce conduction loss 

of the inductors, Litz wire is used for windings. A problem of ferrite cores is their low saturation 

flux density. To avoid saturation, providing an airgap in core is mandatory. However, having a 

large airgap will reduce permeability of the core. Thus, the airgap length should be selected 

carefully to achieve required inductance and avoid saturation in the core. The design of inductor 

is carried out in Ansys Maxwell and airgap length is set to 8 mm.  

To verify the proposed coil design procedure, three coils were built. Two of them have 25 turns 

and the third one has 14 turns. The other specifications of coils are the same as those listed in Table 

4.1. The ferrite bars are of N87 kind and their structure is the same for both 25 and 14 turns coils. 

Figure 4.6 depicts the built coils and the ferrite plane. An aluminum plate with thickness of 6 mm 

is used at back of pads to shield the flux. 
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Output of the secondary compensation network is connected to the HF rectifier. The full-bridge 

rectifier consists of four fast recovery diodes (APT60D40BG). A 20 µF film capacitor is connected 

to output of the rectifier. For constant current and constant voltage charging of the battery, output 

voltage and current of the rectifier are measured. These quantities are sent to the DC/DC converter. 

The converter is controlled such that the desired voltage and current are regulated at its output.  

9.2. WPT for Constant Load 

To verify the proposed coil and compensation networks design, WPT system is connected to 

constant loads. 2000 W resistors from TE are employed to form the required output loads. Two 

loads, namely, 11.5 Ω (formed by two parallel 23Ω resistors) and 67.5 Ω (formed by three series 

23Ω resistor) are used in the experimental tests. In the first test, a WPT system that has 25 turns 

coils both in the primary and the secondary is used and compensated with PLCC network. The 

input voltage is 150 V, the output voltage is set to 60 V and the output resistor is 11.5 Ω. Figure 

9.3 depicts the input voltage and current, the inverter output voltage and current and the output 

voltage and current.  

As it can be seen from Figure 9.3 (b), the inverter current is lagging the voltage, which 

demonstrates ZVS operation. Output voltage shows low ripple which confirms load-independent 

VTR of the system as well as effective closed-loop control of the DC/DC converter. Based on the 

input current and voltage and the output voltage and current values measured by digital multimeter 

(DMM), efficiency of the WPT system is calculated. 
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(a) 

Figure 9.3. Experimental results for WPT system (25 turns primary and 25 turns secondary) 

with primary LCC compensation when output voltage reference set to 60 V and load is 11.5 Ω 

(a) input voltage and current (b) HF inverter output voltage and current (d) output voltage and 

current. 

 

(b) 
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(c) 

Table 9.1 shows efficiency of WPT system for all tests. Similar tests are carried out for 67.5 Ω 

load and results are shown in Figure 9.4. As it can be seen, ZVS operation is maintained for this 

load. Also, comparing the inverters output voltage and the load voltage levels in both tests, one 

can see that VTR is almost constant. A slightly higher value of VTR in higher load is due to less 

voltage drop at lower output power. This shows load-independent VTR characteristics of the 

system. Based on Table 9.1, when turn number of both the primary and secondary coils are 25, the 

system efficiency for 67.5 Ω load is more than that for the 11.5 Ω load.  

In the next scenario, WPT system with PLCC compensation and primary coil with 25 turns and 

secondary coil with 14 turns is tested (see Figure 9.5 and Figure 9.6). As it can be seen, for both 

11.5 Ω and 67.5 Ω loads, the inverter operates in ZVS mode. Efficiencies of this system in Table 

9.1 show that the system has higher efficiency in lower loads compared to the previous system 

(with 25 primary turns to 25 secondary turns). This is while in higher loads, the previous system 

has higher efficiency. However, since the output power is higher in low loads, the obtained results 
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suggest that the system average efficiency with lower turn number in the secondary should be 

higher. 

 

(a) 

Figure 9.4. Experimental results for WPT system (25 turns primary and 25 turns secondary) 

with primary LCC compensation when output voltage reference set to 60 V and load is 67.5 Ω 

(a) input voltage and current (b) HF inverter output voltage and current (d) output voltage and 

current. 

(Figure 9.4 continued) 

 



88 

 

 

(b) 

 

(c) 

 

 



89 

 

 

(a) 

Figure 9.5. Experimental results for WPT system (25 turns primary and 14 turns secondary) 

with primary LCC compensation when output voltage reference set to 110 V and load is 11.5 Ω 

(a) input voltage and current (b) HF inverter output voltage and current (d) output voltage and 

current. 

 

(b) 

(Figure 9.5 continued) 
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(c) 

 
(a) 

Figure 9.6. Experimental results for WPT system (25 turns primary and 14 turns secondary) 

with primary LCC compensation when output voltage reference set to 110 V and load is 67.5 Ω 

(a) input voltage and current (b) HF inverter output voltage and current (d) output voltage and 

current. 

(Figure 9.6 continued) 
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(b) 

 

(c) 

 



92 

 

The next testes are carried out for two WPT systems with SLCC compensation. In the first test, 

the two coils with 25 turns both in the primary and the secondary are used. In the second test, the 

primary coil has 14 turns and the secondary coil has 25 turns. The results are shown in Figure 9.7 

and Figure 9.11. As it can be seen for both load values (11.5 Ω and 67.5 Ω), the inverter works in 

ZVS mode. Also, VTR is almost constant and independent of the load value. Considering 

efficiencies of the two systems, one can conclude that for both low and high load values, WPT 

with 25 turns both in the primary and the secondary has higher efficiency. This means that for a 

WPT with SLCC compensation, reduced number of turns in the primary (or in other words, less 

wire) can lead to low system efficiency. 

 

(a) 

Figure 9.7. Experimental results for WPT system (25 turns primary and 25 turns secondary) 

with secondary LCC compensation when output voltage reference set to 110 V and load is 11.5 

Ω (a) input voltage and current (b) HF inverter output voltage and current (d) output voltage and 

current. 

(Figure 9.7 continued) 
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(b) 

 
(c) 
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(a) 

Figure 9.8. Experimental results for WPT system (25 turns primary and 25 turns secondary) 

with secondary LCC compensation when output voltage reference set to 110 V and load is 67.5 

Ω (a) input voltage and current (b) HF inverter output voltage and current (d) output voltage and 

current. 

 

(b) 

(Figure 9.8 continued) 
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(c) 

 
(a) 

Figure 9.9. Experimental results for WPT system (14 turns primary and 25 turns secondary) 

with secondary LCC compensation when output voltage reference set to 110 V and load is 11.5 

Ω (a) input voltage and current (b) HF inverter output voltage and current (d) output voltage and 

current. 

(Figure 9.9 continued) 
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(b) 

 

(c) 
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(a) 

Figure 9.10. Experimental results for WPT system (14 turns primary and 25 turns secondary) 

with secondary LCC compensation when output voltage reference set to 60 V and load is 67.5 Ω 

(a) input voltage and current (b) HF inverter output voltage and current (d) output voltage and 

current. 

 
(b) 

(Figure 9.10 continued) 
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(c) 

Table 9.1. WPT systems efficiencies for two constant loads. 

Test Description 
Vin 

[V] 
Iin 

[A] 
Vout 

[V] 
Iout 

[A] 
ηsys[%
] 

PLCC- 25:25 (primary: secondary)-

R=11.5Ω 

180 6.62 110.8

5 

9.7 90.1 

PLCC- 25:25 (primary: secondary)-

R=67.5Ω 

180 1.13 109.7

5 

1.62 87.4 

PLCC- 25:14 (primary: secondary)-

R=11.5Ω 

180 6.33 109.3

5 

9.55 91.7 

PLCC- 25:14 (primary: secondary)-

R=67.5Ω 

180 1.14 109.6

4 

1.63 87 

SLCC- 25:25 (primary: secondary)-

R=11.5Ω 

180 6.35 109.4

6 

9.57 91.7 

SLCC- 25:25 (primary: secondary)-

R=67.5Ω 

180 
1.12 

109.8

2 
1.63 88.8 

SLCC- 14:25 (primary: secondary)-

R=11.5Ω 

180 6.41 109.4

8 

9.57 90.8 

SLCC- 14:25 (primary: secondary)-

R=67.5Ω 
180 

1.24 109.7

6 

1.63 80.1

5 
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9.3. WPT for Charging Battery 

To verify the superiority of the proposed coil and compensation network design in improving 

system average efficiency in comparison to the existing methods, a 2.5 kWh Li-Ion battery is 

charged by the WPT system. Two WPT systems with primary LCC compensation are tested. In 

the first case, the primary and the secondary coils have 25 turns. In the second case, the primary 

coil has 25 turns while the secondary has 14 turns. Figure 9.11 depicts the obtained results for the 

first case. Figure 9.11 (a) shows the battery’s voltage and current waveforms. As it can be seen, 

the battery is first charged with 9.5 A constant current. The battery voltage increases and when it 

reaches 111 V, the output voltage is controlled at 111 V. After that, the battery is charged with 

constant voltage. The current starts to decrease until it reaches 0.2 A. In Figure 9.11 (b), the input 

and output powers are illustrated. Using these measurements and considering the battery charging 

time, the input and output energy are calculated. Next, the system average efficiency is obtained 

based on (7-1). Input and output energy of the system as well as the system average efficiency are 

shown in Table 9.2. 

Table 9.2. WPT systems average efficiencies for 2.5 kWh Li-Ion battery. 

Test Description 
Input Energy 

[kWh] 
Output Energy 

[kWh] 
ηavg 
[%] 

PLCC- 25:25 (primary: 

secondary) 
2.807 

2.511 89.4 

PLCC- 25:14 (primary: 

secondary) 
2.878 

2.642 91.8 

SLCC- 25:25 (primary: 

secondary) 
2.893 

2.657 91.84 

SLCC- 14:25 (primary: 

secondary) 
2.91 

2.627 90.27 

 

Figure 9.12 depicts the obtained results for the second case. As it can be seen, the output voltage 

and current are very similar to the previous case. However, the difference between the output and 
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input powers is less. Input and output energies as well as the system average efficiency are shown 

in Table 9.2. The obtained results verify that the lower number of turns in the secondary coil not 

only reduces the required material and cost, but also improves the system average efficiency. 

 

(a) 

 

(b) 

Figure 9.11. Experimental results of charging battery for WPT system (25 turns primary and 

25 turns secondary) with primary LCC compensation (a) output voltage and current (b) input and 

output power. 
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(a) 

 

(b) 

Figure 9.12. Experimental results of charging battery for WPT system (25 turns primary and 

14 turns secondary) with primary LCC compensation (a) output voltage and current (b) input and 

output power. 
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(a) 

 

(b) 

Figure 9.13. Experimental results of charging battery for WPT system (25 turns primary and 

25 turns secondary) with secondary LCC compensation (a) output voltage and current (b) input 

and output power. 
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(a) 

 

(b) 

Figure 9.14. Experimental results of charging battery for WPT system (14 turns primary and 

25 turns secondary) with secondary LCC compensation (a) output voltage and current (b) input 

and output power. 
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10.  CONCLUSION  

The interplay between the compensation topology and coil design in WPT systems is 

demonstrated. Two compensation topologies, i.e. primary LCC and secondary LCC, have been 

presented and their characteristics such as load-independent VTR and ZPA have been analyzed. 

Mathematical expressions for calculating the efficiency of each power conversion stage in the 

WPT system is provided. A novel characteristic, i.e. TWTAE, is defined and used in coil design 

for improving the overall efficiency. It has been shown that although increasing inductance of the 

coils or quality factor can improve the system maximum efficiency, it may have negative impact 

on TWTAE depending on the compensation topology. Therefore, the coil design must be 

conducted by considering compensation topology. In addition, improving quality factor of the coils 

may not always lead to the best results. A prototype of the WPT system is designed and built to 

experimentally verify the proposed theories. Experimental results demonstrate the efficiency 

improvement under the proposed coil and compensation design procedure.
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11.  FUTURE WORKS 

As future work, the following tasks are suggested 

• Detailed analysis of effects of frequency control based on the input impedance of the WPT 

system and load control to achieve optimum efficiency in design of the compensation 

network and coils considering the real system’s requirements. 

• Comparing circular and square shape coils based on system average efficiency and used 

materials. 

• Developing a three-coil system with high robustness against misalignments. 

• Proposing a compensation network to provide constant output voltage characteristics for 

three-coil system. 
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