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ABSTRACT

This dissertation investigates the time-series properties of 
intradaily stock prices. It provides a model of the return generating 
process that is capable of incorporating not only such Institutional 

constraints as the specialist's bid-ask spread, but also the presence of 

dependence in the conditional variance. It extends the literature by 

introducing a conditional error distribution, the power-exponential, 

that adequately accounts for not only leptokurtosis but also peakedness 

in the empirical distribution. Evidence is presented that suggests 
intradaily returns are best modelled as a mixture of distributions. 

Furthermore, it documents the inability of information proxies, such as 

volume or the number of trades, to account for the presence of 

autoregressive conditional heteroscedasticity in the data. And lastly, 

it examines the robustness of variance ratio statistics to test the null 

hypothesis of a random walk in the presence of higher order dependence.
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INTRODUCTION

The statistical properties of speculative price changes remain a 
central focus of financial research. This stems from the historical 

development of the major theories for investment decisions and capital 

asset pricing. These include the mean-variance analysis and portfolio 

theory of Markowitz (1959), the Capital Asset Pricing Model of Sharpe 
(196A) , Litner (1965), and Mossin (1966), the Arbitrage Pricing Model of 

Ross (1976), and the Option Pricing Model of Black and Scholes (1973).
The assumptions about the distributional properties of the price 

series are essential to any of the above theories. The two most 

prevalent models are the martingale and the random walk. The martingale 

is the less restrictive of the two, requiring only that the conditional 
expectation of next period's price (based on the current information 

set) is this period's price. The random walk model, on the other hand, 

requires that the probability distribution of price changes is 

independent of current and past prices. The greater use of the random 

walk model by previous authors created considerable problems for the 

efficient markets literature. These problems have only recently been 

enunciated by LeRoy (1989). They arose, in part, from the recognition of 

the role of higher moments, particularly the second, in portfolio 

theory. The price series was conceptualized as the outcome of repeated 

drawings from some particular probability distribution. Eventually, this 
led to the empirical assumption of independent and identically 
distributed random variables.

1



A growing body of literature, as evidenced by the work of Akglray 

(1989), Bollerslev (1987), and Hsleh (1989a), has begun to question the 
degree of independence found in the observed series of speculative price 
changes. Traditionally the focus has been on the independence of the 
first moment, or mean, of the distribution. Emphasis is now shifting to 

the findings of dependence in the second moment, or variance. This leads 

back to the question of whether the martingale provides a better 

description of the data than the random walk, since the latter requires 

the assumption of independence. Akgiray (1989) and Bollerslev (1987), 

among others, have suggested that the independence assumption may be 

erroneous. Their focus has primarily been on the changing variance, a 

point well documented by previous authors,1 and the ability to model the 
return generating process as a nonlinear stationary time series. Their 

insight comes from investigating the role of the conditional variance in 

modelling the distributional properties of the return series. However, 
they use daily and longer intervals with the returns being based on the 

end of day price.

Amihud and Mendelson (1987) and Harris (1989), however, argue that 

the beginning and end of day trading mechanism is very different from 

that of the rest of the day. Hence, the end of day price may not be a 

true representation of the trading process. Their evidence suggests that

1 In fact, the more recent work deals with conditional variances 
while earlier work by Press (1967) and Clark (1973) dealt with the 
nonstationarity of the unconditional variance. A related issue is the 
relationship between the unconditional variances for different time 
intervals dealt with by Young (1971) , Schwartz and Whitcomb (1977), and 
Perry (1982). Lo and MacKinlay (1988, 1989) generalize this latter 
concept to include the heteroskedasticity in the conditional variances, 
thereby tying together the two lines of inquiry.



those two periods of the day are more volatile than other times of the 
day. On a similar note, French and Roll (1986) find a higher volatility 

in asset prices during exchange hours as compared to non-exchange hours. 

They offer both mispricing (noise) and the incorporation of private 

information as possible explanations. Grossman (1976, 1978) and Grossman 

and Stiglitz (1976, 1980) provide a rational expectations framework for 
the incorporation of private information in the price. They focus on the 

cost of being informed versus remaining uninformed. For competitive 

equilibrium to exist, the information possessed by the informed trader 

must be transmitted through the price with noise. Hence the possibility 

exists that increased volatility arises from trading based on the 

inferences derived from particular transactions. In fact, French and 
Roll suggest that trading itself may induce volatility,

Mandelbrot (1971) first raised this question while setting forth 

the conditions under which price could not be arbitraged efficiently. He 

argues that arbitraging activities may increase the variance of the 

return series as traders attempt to eliminate the observed dependencies 

in the mean. Given finite horizon anticipation, he notes that 'the only 

way in which arbitraging can decrease the correlation of Pf(t+1) -P£(t) 

is by making its high frequency effects strong',2 where Pt(t) is the 

price of the stock at time t. Therefore, the volatility observed in the 

returns of speculative assets may occur in part because of trading

2 Mandelbrot (1971), p. 235.



itself. In fact, the volatility could increase with the improved 
anticipation of the market participants.3

In this dissertation, we investigate the time series properties of 
intraday returns based on ten and thirty minute time intervals. Our 

primary focus is on the best model capable of incorporating not only 

correlation in the mean or first order dependence, but also higher order 
dependence, especially second order or dependence in the variance. 

Dependence in the mean of intraday returns has generally been attributed 

to the specialist bid-ask spread and other market microstructure 

elements [e.g., Ho and Stoll (1983) and Hasbrouck and Ho (1987)]. 

Theoretical and empirical work has recently focussed on the 

autocorrelation as a way to distinguish between different components of 
the spread [e.g., Roll (1984) and Stoll (1989)]. However, no empirical 

work has been done concerning higher order dependencies and there is no 

theory presently available for addressing such dependency. Nevertheless, 

capital asset pricing models have always incorporated the variance in 

the pricing equation, so there is a natural interest In establishing the 

effect that higher order dependency has on the return generating process. *

3 Mandelbrot also discusses some of the Implications for low 
frequency effects, which he had previously labeled the Joseph effect. 
This has relevance for the findings of Foterba and Summers (1988) on the 
mean reversion in stock prices and earlier works by Shiller (1981) and 
others questioning the high volatility of stock prices in relation to 
movements in the dividend and interest rate series. Mandelbrot's work 
also anticipates that of French, Schwert, and Stambaugh (1987) who 
document the positive relationship between expected risk premiums and 
volatility. None of these questions will be addressed here.

4 Hsieh (1989a) notes that intertemporal asset pricing models have 
Euler equations involving conditional expectations of marginal utilites 
across both assets and time periods. Hence, conditional variances and 
covariances could show up in the demand equations.



In Chapter 2, we review the relevant literature on both the 
distributional as well as microstruetural properties of the data. The 

literature is roughly divided on the basis of the estimation interval 

used, thereby contrasting the results of the intradaily work with the 

daily and higher intervals. In Chapter 3, we describe the data and 

provide the preliminary analysis of the ten and thirty minute return 

series. Evidence for the existence of higher order dependence in the two 
return series is presented and discussed. In Chapter 4, we examine those 
models that best fit the data based on the likelihood ratio and goodness 

of fit results. In Chapter 5, we consider the best models and test 

whether the use of volume5 or the number of transactions can explain the 

observed presence of autoregressive conditional heteroskedastic or ARCH 

effects. We then turn to a discussion of the various forms of the 
variance ratio test in Chapter 6. We provide Monte Carlo results for the 

unconditional variance ratio test based on data generated from an ARCH 

process. We also examine the relevance of the variance ratio test to the 

ten and thirty minute return series from our sample of stocks. We then 

conclude the dissertation in Chapter 7 with a discussion of the 

implications of our results and areas of future research.

5 Lamoureux and Lastrapes (1990) provide evidence that the GARCH 
effects observed in daily data can be explained by using volume as a 
proxy for the information arrival rate.



CHAPTER 2
LITERATURE REVIEW

The literature on speculative price changes can be classified into 
two divisions based on the time interval used in the analysis. The first 

area contains the work using daily or longer periods and is generally 

concerned with the statistical properties and models of speculative 

price changes. The other is the sub-daily investigations with an 

emphasis on the effects of transaction costs in explaining the return 

generating process. 6 The first division has the longer history 
beginning with the work of Bachelier (1900), The major theories of asset 

pricing have their foundations here, especially with respect to static 

equilibrium results and the frictionless trading assumptions. The second 

division has its roots in the work on market microstructure, beginning 

with Demsetz's (1968) discussion of the specialist as a supplier of 

immediacy and perhaps going back as far as Tobin's (1958) analysis of 

liquidity preference or even Keynes's (1936) attack on the classical 

theory of macroeconomic equilibrium.7

Both areas begin to overlap as the estimation interval approaches 

one day. Nevertheless, far less work has been devoted to understanding 

the properties of transaction data, in part because of the lack of a

6 Transaction costs include information collection as well as such 
institutional arrangements as the bid-ask spread, the 1/8 rule, and 
limit orders.

7 Two issues of note here are the classical theory's reliance on 
market participants having perfect information and Keynes' explicit 
recognition of transaction costs in his theory of money demand.

6



theoretical model (particularly an equilibrium one) capable of 
incorporating transaction costs into the dynamics of the trading 

process. The following review first discusses the works based on daily 

or longer intervals and then moves to the sub-daily and market 
microstructure literature.

A. DAILY, WEEKLY, AND MONTHLY INTERVALS 

Statistical Properties and Models of Price Changes

Beginning with the work of Bachelier (1900) and continuing with 

the papers of Mandelbrot (1963), Fama (1963, 1965a), Mandelbrot and 
Taylor (1967), Press (1967), and Clark (1973) a number of alternative 

theories exist for the statistical distribution of speculative price. 

Bachelier posits that successive price changes can be modeled as 

arithmetic Brownian Motion, which is the continuous time version of a 

normally distributed sequence of random variables. However, because of 

the economic restriction that stock prices cannot be less than zero this 

requires modification. Samuelson (1973) proposes geometric Brownian 

motion, or in discrete time, normally distributed log price relatives. 

The underlying assumption here is that the same probability distribution 

applies to every dollar's worth of a stock's value no matter what the 
price. Furthermore, this leads to the independence of the price ratios 

for any nonoverlapping interval, hence today's price change is 
independent of current and past prices.

To reiterate, the two basic assumptions of the random walk are: 

(1) that price changes are independent random variables and (2) that



they have the same distribution (i.e., identically distributed). The 

second assumption is where the early work of speculative price changes 
concentrates, beginning with Mandelbrot (1963). He argues that the 
empirical evidence on price changes provides enough departure from 

normality as to warrant the use of another, more general family of 

distributions called the Stable Paretian. It should be noted that one of 

the major concerns of the time was the notion of stability under 

addition, or the property that random variables will retain the same 

probability distribution after summing the observations. For 
distributions with finite variances, the normal, or Gaussian, is the 

only one for which this holds. The Stable Paretian family contains 

infinite variance members that also retain this property.

Fama (1963) further develops the work of Mandelbrot. Empirically, 

their rejection of the normal or Gaussian distribution is based on the 

observed thick-tails or leptokurtosis found in stock returns or log 

price relatives. The characteristic function of the Stable Paretian has 

four parameters, a, p, A, and y which allows for a more general 

specification of the underlying distribution. The scale parameter is y, 

6 is the location parameter, which corresponds to the mean when the 

characteristic exponent, or c, is greater than one, and p is a measure 

of skewness. Vhen a equals two, the normal or Gaussian distribution is 

attained. However, Mandelbrot argues that the more relevant range for a 

is between one and two, thereby maintaining the existence of an 

empirical mean but not the variance. Fama (1965a) finds that for a 

sample of 30 stocks from the Dow-Jones Industrial Average the 

characteristic exponent of the daily return series is on average less



than two. Also of note Is his finding concerning the general shape of 

the empirical distributions. He states that, in comparison to the 

normal, there is an 'excess of observations within one-half standard 

deviation of the mean. On the average there is 8.4 per cent too much 
relative frequency in this interval. The curves of the empirical density 

functions are above the curve for the normal distribution.'8 Lastly, he 

rejects two other explanations for the thick-tails. The first is a 

mixture of several different normal distributions with the same mean and 

different variances and the second is the possibility of non- 
stationarity of the parameter estimates.

The main criticism of the Stable Paretian hypothesis is that, 

given a characteristic exponent of less than two, the variance is either 
undefined or infinite. Hence, the standard mean-variance portfolio 

theory has to be redefined if such a distribution is assumed.9 Other 
authors chose to investigate further the other explanations for the 

thick-tails. Press (1967) pursues the mixture of normal distributions 

using a Poisson process as the mixing variable. Using a procedure 

defined as cumulant matching that is very similar to the present day 

method of moments estimation procedure, he analyzes ten stocks from the 

Dow Jone Industrial Average using monthly data. He finds that the 
estimated cumulative density function fits the empirical cumulative 

density function in most cases. Clark (1973) chooses to use a

8 Fama (1965a), p. 49.

9 Fama (1965b) presents portfolio results when the distribution of 
the assets is described by the Stable Paretian hypothesis. However, 
Frankfurter and Lamoureux (1987) show that the normality assumption out 
performs the Stable Paretian even when the monthly data is generated 
from a stable distribution.
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subordinated stochastic process first proposed by Mandelbrot and Taylor 
(1967) on cotton futures. He argues that the price series evolves at 

different rates for the same interval of time. He uses a lognormal- 
normal process to describe the distribution of the price changes. The 

lognormal process is the directing process or the variable to which the 
normal price changes are subordinated. Comparison of the results with 

the Stable Paretian indicates acceptance of the finite-variance 

subordinated stochastic model.
Blattberg and Gonedes (1974) suggest that the Student-t 

distribution may provide a better fit to daily data than the symmetric 

Stable Paretian model. One reason for their argument is that as t- 

distributed data are aggregated they will converge to a normal 

distribution by virtue of the Central Limit Theorem. On the other hand, 
under the Stable Paretian hypothesis, aggregated data will retain the 

same characteristic exponent as the original observations. Hence, the 
aggregation property of the Student-t agrees with the findings that 

monthly data are approximately normal. However, given the evidence of 

Fama on the peakedness of daily data, there is some doubt as to whether 

daily data can be considered t-distributed. Nevertheless, the authors 

find, based on log-likelihood ratios, that the Student-t distribution 

provides a better fit than the stable model.

Kon (1984) concentrates on the stationarity assumption of previous 

authors to investigate the relevance of a discrete mixture of normals 

model for daily data. He finds that for a sample of 30 Oow Jones stocks 

the discrete mixture assumption is more descriptive of the data than a 

Student-t. Akgiray and Booth (1987) use weekly and monthly data to
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contrast the finite mixtures with a mixed jump diffusion process. They 
present evidence that the mixed diffusion jump process is a better 
description of the data. In related work, Bookstaber and McDonald (1987) 

introduce the generalized beta of the second kind or GB2 distribution. 

They note that this model is more flexible since it contains the log­

normal and log-t as limiting cases. Using dally data and a bootstrapped 

sample, they argue that it provides a better fit to the data than the 
log-normal.

In general, the consensus is that monthly data are approximately 

normal and that weekly and daily data exhibit such departures from 

normality as to require other models.10 The common thread in the above 

work is the reliance on independent increments and to a lesser degree 

unconditional distributions. Also of note is the attempt to address the 

leptokurtosis of the return series either by explicitly choosing 
distributions that contain thick-tailed members, e.g. the Stable- 

Faretian and Student-t, or by postulating a mixture of distributions or 

processes that can produce the thick-tails, e.g. the mixture of normals 
and mixed diffusion-jump.

Later work has begun to focus on the assumption of independence. 

Dependence in the mean, or first order, has always generally been ruled 

out for daily or longer intervals. However, dependencies with respect to

10 Greene and Fielitz (1977) posit the existence of long term 
dependence in stock prices by applying the rescaled range or R/S 
methodology made popular by Mandelbrot (1972). However, Aydogan and 
Booth (1988) provide counter evidence that the technique is not 
sensitive enough to measure the relatively small level of dependence 
that may exist. Note however the earlier reference to mean reversion 
found in footnote 3.
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the higher moments, especially the variance, have recently come to the 

fore. Rather than addressing the non-stationarity of the unconditional 
variances In the manner of Press (1967) or Clark (1973), these works 
rely on an autoregressive conditional heteroskedastic (ARCH) model first 
proposed by Engle (1982).

For instance, Bollerslev (1987) uses a generalized ARCH 

methodology with conditionally Student-t distributed errors to model 

monthly stock price indices. His motivation is twofold. The first reason 

is to address the remark of Mandelbrot (1963) concerning the persistence 
of large and small price changes. Given such tendencies in speculative 

price changes, the existence of higher order dependence is implied. 

Secondly, the use of the Student-t distribution for the conditional 

errors allows for a distinction between the conditional leptokurtosis 
and the conditional heteroskedasticity, either of which could explain 

the observed unconditional leptokurtosis. Somewhat of interest is his 

finding that the Student-t conditional distribution can be accepted as 

an accurate description of the monthly S&P 500 stock price index. This 

contrasts with Akgiray (1989) who applies the same analysis, except with 
normally distributed conditional errors, to equally-weighted and value- 

weighted daily stock price indices. If anything, given the work of 

earlier researchers, one would expect that a priori the results of the 

two studies would be reversed since monthly data exhibit an 

unconditional distribution much closer to the normal. In any case, both 
studies support the premise that stock returns exhibit statistical 

dependencies that may result from nonlinear stochastic processes 

generating security prices. International evidence for higher order
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dependence Is provided by Akgiray, Booth and Loistl (1989) using a 
German dally price Index for common stocks and Booth, et. al. (1990) 

using a Finnish dally price index for common stocks.
Directly related to this issue is the work of Lamoureux and 

Lastrapes (1989). They find that the presence of ARCH in daily data 

could arise from a mixture of distributions, with the mixing variable 

being the information arrival rate. They use daily volume as a proxy for 

this information arrival and find that the ARCH effects disappear in 

their sample. Their work is an interesting integration of the price- 

volume relation [See Karpoff (1987)] and the hypothesis presented by 

Clark (1973) that the price series evolves at different rates for the 
same interval of time. An extant question is the degree to which this 
explanation holds using sub-daily data.

B. INTRA-DAILY AND TRANSACTION INTERVALS 

1. Statistical Properties and Models of Price Changes

While researchers have generally found little evidence of 

autocorrelation in the mean for daily data, a large part of the 

intradaily literature simply documents the correlation of returns and 

the patterns of dependency. For instance, Osborne (1962) partly uses 

transaction data while looking at the relation between price changes and 

volume. He finds that individual transactions are for approximately 1.5 

round lots, but has little else to say about them. Most of his paper is 
devoted to the distributional structure of daily volume, which he finds 

to be roughly lognormally distributed. However, in later work with



Niederhoffer (1966), he presents the first systematic study of 
transaction data. These authors provide frequency tables of successive 
price changes for a sample of six Dow Jones Industrial Average stocks 

for the twenty-two trading days of October 1964. They note a number of 

interesting observations, such as the 'stickiness of even-eighths' and 

the tendency towards reversal or what later authors document as negative 

serial correlation. They conclude that this is a result of the 

specialist system of market making and in particular arises from the 

fluctuation of transaction prices between the bid and ask prices. They 

also note how, 'in the short run, the limit orders on the book will act 

as a barrier to continued price movement in either direction.'11 

Morever, they provide a number of runs test to verify the existence of 
other 'regularities'.

Simmons (1971) analyzes transaction data in order to review the 
role of the random walk model. He notes that such a model requires that 

successive transactions be statistically independent. After reviewing 

the work of Niederhoffer and Osborne (1966), he raises the question of 

whether their results stem from the superimposition of an arbitrary 

local mechanism upon a return generating process that otherwise appears 

to be a random walk. He argues that after taking into account the 

correlation due to the bid-ask spread, the shifts in price that result 

from market's overall evaluation are serially independent.

Using transaction price and volume data over a twenty day period 

for 71 NYSE common stocks in early 1968, he details the dependencies 

using an autoregressive model up to lag five. Assuming that the

11 Niederhoffer and Osborne (1966), p. 905
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disturbance process Is stationary, he applies an ordinary least squares 
(OLS) estimation which is asymptotically valid. Unfortunately, he does 
not discuss how he aggregated the stocks or whether he simply applied 

the model to successive stocks. In any case, he finds evidence 

consistent with an second order autoregressive model.
He then proceeds to analyze the results after eliminating zero 

price changes which are hypothesized to result from limit orders. 

However, his results show little improvement. He then turns to a number 

of runs tests to document the persistence of zero ticks and also large 

price changes, the latter being attributed to the lack of limit orders 

either above or below a certain price. He concludes the paper with a 
short note on volume, finding little correlation between successive 
transaction volume and also with price changes.

Garbade and Lieber (1977) postulate the same model but concentrate 

on the time interval between trades, arguing that as the interval 

increases transaction prices will converge to a random walk. They assume 

that transactions are independent with respect to the time of execution 

and whether initiated by a buyer or seller. They find that if they 

restrict the time interval between transactions to five or ten minutes 

their model cannot be rejected, but over shorter intervals transactions 
tend to cluster in time.

The data they use consist of transactions on two stocks for 

September 1975, IBM and Potlatch. By assuming the time between 

transactions tk is independent which implies that tk is exponentially 

distributed, they note that the cumulative probability function for tk 

is F(tk) - l-exp(-ptk), with p as the mean order arrival rate. Hence the
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number of transactions in an Interval of length x will be Folsson 
distributed with parameter |it . They develop a model where the observed 
price is the sum of the equilibrium or true price and a random term. By 

assuming the true price follows a Gaussian random walk, they derive 

expressions for the conditional distributions of a price reversal model. 

The method of maximum likelihood is used to estimate the ratio of the 
variances of the equilibrium and transient price terms. However, they 

are unable to directly test the distribution of elapsed time since they 

have transactions which are recorded to the nearest minute only. Using 

an approximation they find evidence that sequential transactions are not 

independent. In the case of a heavily traded stock such as IBM their 
work suggests that 70% of the transactions are independent, while for an 

infrequently traded stock such as Potlatch only 63% are independent. 
They argue that the dependence could be a result of the breaking up of 
block trades.

Epps (1976) proposes an ARMA process as a way to account for the 

dependence in the return series. His concern is with the correlation of 

the returns with the transaction volume. Using data from both bonds and 

stocks, he finds that an ARMA(1,1) model fits fairly well. However, he 

does note that his results suggest that the bond market has larger 

conditional variances than the stock market. He argues that this is a 

result of the relatively thin trading in the bond market and the 
presence of the specialist in the stock market.

Oldfield, Rogalski, and Jarrow (1977) develop an autoregressive 

jump process as an empirical description of transaction data. They start 

with a model composed of a geometric Brownian motion, calendar time,
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diffusion process and a gamma distributed, autocorrelated jump process. 
The gamma distribution is a more general form which encompasses both the 
exponential and the Poisson density functions. The conditional variance 
of the model contains separate components for the diffusion and Jump 
processes, if it is assumed that N, the number of jumps in an interval 

of length s, is constant. By assuming a gamma distribution for the jump 

process, the unconditional density can be derived for the case where N 

is variable. They note that the unconditional mean and variance are then 

a function of s and not N.

Using transaction data recorded to the nearest minute (the same 
constraint as Garbade and Lieber), they look at the empirical results 

for a group of twenty NYSE stocks over the 22 trading days of September 
1976. Noting the usual references to the effects of the bid-ask spread 

and large block transactions, they report summary statistics for the 

first four moments and autocorrelations up to lag four of returns and 

the time intervals between transactions. They then proceed to test a 

number of hypotheses concerning the distributional validity of their 
model.

The first is whether the process contains a diffusion component. 

While holding N equal to one, s is increased from one to five minutes. 

If the process does not contain a diffusion component then the mean and 

variance will remain unchanged. Their evidence suggests that the 

variance is constant and not a function of s, the time interval. They 

note that this raises questions as to the validity of the geometric 

Brownian motion process and hence the subordinated model for the sample 

data. Next, the authors test the autoregressive jump process assumption.
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By Increasing N, the mean and variance of the autoregressive process 
should Increase. Therefore, by comparing the observed means and 
variances with the theoretical moments, using F-statistics and 

Bartlett's test respectively, evidence is found in favor of the 
autoregressive jump process.

The third hypothesis concerns the use of the gamma distribution as 

the proper density function for the time between transactions. This 
requires that the intervals between transactions are independent, which 

they validate by looking at the skewness adjusted serial correlation 

coefficients. Maximum likelihood estimates of the parameters are 
obtained for sums of transactions, in part because of the use of a 

continuous distribution to fit discrete data and also because of the 
limitations of the data being recorded to the nearest minute. A number 

of goodness of fit tests are then applied to the theoretical and 

empirical distributions (including the Kolmogorov-Smirnov, Cram6r-Von 
Mises, and the Anderson-Darling statistics) comparing the gamma and 

exponential. They find results consistent with the gamma in contrast to 

Garbade and Lieber's finding of an exponential. Lastly, they test 

whether the conditional density of returns given N jumps is normal. 

Their findings are somewhat inconclusive in this respect.

Hasbrouck and Ho (1987) estimate the autocorrelation structure of 

transaction returns and then present a model of the return generating 

process that incorporates these dependencies. In particular, they find 

evidence of positive autocorrelation in transaction returns, in the 

returns computed from quote midpoints, and in the arrival of buy and 

sell orders. Vith the addition of limit orders and a first order
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autoregressive model of the price adjustment process, they represent the 
return generating process as a second order autoregressive, moving 
average process, i.e. an ARMA(2,2). These results are for an aggregated 

sample of stocks.

Epps (1979) raises the question of dependence and non-stationarity 

in short run price movements. He finds evidence for this in the 

autocorrelation and cross-correlation results of auto industry stocks. 
He suggests that instability exhibited by the correlations over 

different time intervals results from either the dependency or the 

nonstationarity. He finds that the variance for different hours of the 

day differ, suggesting nonstationarity. He also shows that correlations 

exist between the lag price changes in one stock and those of another, 

raising the possibility of information lags from one stock to another. 

He argues that this may result from a differential number of limit 

orders between stocks which limit the speed of adjustment to new 

information.

Harris (1986) studies the weekly and intradaily patterns in stock 

returns using transaction data. In particular, he looks at intraday 

returns over 15 minute intervals in order to better characterize the day 

of the week effect. His data set consists of transaction data recorded 

to the nearest minute (Fitch tape format) for all NYSE stocks traded 

between December 1, 1981 and January 31, 1983. Data for days following 

trading holidays are excluded. First, he documents the consistency of 
close-to-close returns for an equally-weighted portfolio of stocks in 

this sample with that of previous authors. He then notes the discrepancy 

between his results for the close-to-open and the open-to-close returns
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and those of Rogalski (1984). This is attributed to the cross-sectional 
differences in the day of the week effect. He notes that these 
differences in trading and non-trading intervals are based on size.

Next, he investigates the weekday differences in intraday price 

patterns, finding a difference in the mean return for the first 45 

minutes of trading on Mondays and other days of the week. These 

differences occur not only through time but also cross-sectionally. He 
notes that mean returns are larger in absolute value for the beginning 
and end of the day than in the middle, an observation consistent with 

the work of Wood, Mclnish, and Ord (1985). In the appendix he describes 
the accrual method used to compute the 15 minute portfolio returns. This 

method is said to be less sensitive to non-synchronous trading problems. 
Two interesting points in this regard are the use of the beginning of 

the day price in the denominator and the fact that this method 
introduces autocorrelation into the series.

Transaction data have also been used to support the mixtures of 

distribution hypothesis for daily data. Harris (1987) discusses a number 

of issues with regard to daily volume and price changes and then 

introduces additional predictions about the mixture model by assuming 

that transactions occur at a uniform rate in event time and that the 

number of transactions is proportional to the number of information 

events. His argument is that if the same properties do not exist when 

the measurements are taken over transaction intervals, then the results 

support the mixtures of distribution theory. Two of his more interesting 

predictions are that the autocorrelation in the transaction time series 

will be stronger than that found in daily series and normality will be
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attained when the distribution of price change is divided by the square 
root of the daily number of trades. An implication of the assumption of 
a uniform rate for transactions in event time is that the number of 

information arrivals within different transaction intervals of fixed 

length is constant. This leads to hypotheses about price changes and 

volume approaching normality as the interval increases, as long as those 

same variables are uncorrelated with each other and there exists no 

autocorrelation.

The data set consists of 50 NYSE stocks traded between December 1, 

1981 and January 31, 1983. He presents a number of statistical results 
using the cross-security medians of the data. Generally these results 

support the hypotheses that he has set forth. He finds that the skewness 
and kurtosis of daily data are not entirely due to those properties 

being found in transaction data. In his conclusion, he notes two 

possible explanations, one being that the process that generates 
transactions is closely related to the rate of information arrival, and 

the other, which he attributes to Roll and French (1986), being that 

trading is self-generating.

Harris (1989) looks at the price anomaly of the last transaction 

of the day. He finds that the price tends to rise at the end of the day 

and is most obvious on the last transaction. He suggests that a possible 

explanation is the change in the frequency of bid and ask prices. 

However, he has no reason as to why the last trade of the day might 
consistently be an ask price, which also indicates that it was initiated 

by a buyer. Amihud and Mendelson (1987) present related work on the 

differences between open-to-open returns and close-to-close returns.
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They posit that the opening transactions are a result of a call market 
while the closing prices result from the behavior of the specialist or 
market maker. They use transaction data from 30 New York Stock Exchange 
stocks. They find that the open-to-open returns exhibit a greater 

variance, thicker tails, and greater peakedness than the close-to-close 

returns. They also document different serial correlation patterns in the 
two series.

Wood, Mclnish, and Ord (1985) investigate the characteristics of 

trade size, trading frequency, price changes, and trading interval for 
a large sample of NYSE firms over the periods of September 1971 through 

February 1972 and the entire 12 months of 1982. They use an equally 
weighted market index based on minute by minute transaction data. Some 

discussion is given of alternative measures for a market index which 

would take into account the fact that all firms do not trade each minute 

of the sample. However, because of the introduction of autocorrelation 

they use the simpler method. This index is then aggregated across days 

by each particular minute to obtain an idea of the trading pattern 

during the day.

Their findings suggest that the mean and variance of returns at 

the beginning and end of the day are higher than those during the rest 

of the day, even after overnight returns are excluded. If these periods 

are dropped from the sample they find the index is much closer to a 

normal distribution in terms of its skewness and kurtosis. Hence, they 

posit that a mixture of distributions is observed when one uses daily or 

longer intervals with the mixtures corresponding to an overnight, 

opening, intraday, and end-of-day distribution. The autocorrelation
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results for dally (including overnight returns) and thirty minute 
intervals are interpreted as resulting from differences in the intraday 

versus overnight return distribution and infrequent trading.
A number of trading statistics are presented on the number of 

trades, price, size of trades, Interval between trades, and the absolute 

value of price changes, with the categories subdivided by market equity, 

trading frequency, price changes, and intraday versus overnight trades. 

Correlation exists between the number of zero price changes and the 

frequency of trading, the absolute value of price changes and the 
trading size, and the trading interval and the absolute value of the 
price changes. 12

2. Transaction Costs and the Return Generating Process

The evidence presented in the previous section suggests that there 

are a number of dependencies in intra-daily price changes. The exact 

nature of these relations is not yet clear in terms of the different 

time intervals used. Many of these effects may have their origin in the 

institutional structure of the market. For instance, the bid-ask spread, 

limit orders, and the 1/8 rule all affect the statistical properties of

12 In a subsequent discussion, Tauchen (1985) suggests using robust 
measures of location and dispersion, such as the median and 
interquartile range. He notes that traditional diffusion models may not 
be correct here but still remain applicable over larger time scales, 
somewhat analogous to the breakdown of celestial mechanics when applied 
on an atomic scale. Lastly, he points out that the correlation between 
large price changes and the time between trades cast doubt on the 
mixtures of distributions models, which assume that the mixing process 
is independent of the price-change distribution.
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transaction data. These in turn underly theories that attempt to model 
dealers inventory, ordering, and information costs, the effects of block 

trades, and the speed of price adjustment to unexpected Information.

Of interest here is the differential costs that exist for various 

traders and the role this plays with respect to the volume and frequency 

of transactions. The asset pricing models, such as the Capital Asset 
Pricing Model (CAPM) and Arbitrage Pricing Model (APT) , have made use of 

the notion of competitive equilibrium but this has generally taken place 

in a world without transaction costs. For Instance, the CAPM predicts 

that the unsystematic risk of a stock will not be priced due to the 

ability to diversify away this component with an appropriately selected 

portfolio of stocks. The APT is based on the notion that arbitrage will 

eliminate any profitable trading opportunities and maintain the same 
equilibrium risk-adjusted expected return for all traded assets. The 

frame of reference here is on the average investor and the opportunities 

presented to them given their information and transaction cost 

constraints. The lower transaction costs of floor traders, specialists, 

and large institutions suggest not only a higher propensity to trade, 

but also trading on information that may reflect only the firm specific 

risk of a particular company. Otherwise, the no arbitrage equilibrium 
could not attain.

Indeed the role of the specialist can be viewed as one of 

attempting to bring the intertemporal demand and supply of a particular 

asset into equilibrium. Given that he stands ready to transact at the 

quoted bid and ask prices, he must continually adjust these quotes to 

the random number and size of the orders that arrive at the market.
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Hence, intradaily data should be marked by a variance which reflects the 
basic uncertainty of the firm*specific information that traders possess 

and the specialist's attempts at ascertaining the appropriate prices for 

equating the intertemporal supply and demand.

Black (1986) has labeled this process 'noise'. Such a concept 

leads to such possibilities as the over reaction hypothesis since 

instantaneous adjustment of prices to new information is only a 

Walrasian construct and also unsuitable to the fragmented manner in 
which orders (in terms of volume) arrive in the market. Hence, the study 

of transaction data should allow for a better understanding of the 
process of price change in speculative markets.

Recent work by Easley and O'Hara (1987) challenges the random walk 

model of stock returns as an accurate depiction of transaction data. 

They argue that the price process follows a martingale relative to the 

market maker's information set. Also, since the sequence of past trades 

is important in determining whether the present transaction represents 

an information event, the distribution of pt+1 conditional on pt is not 

independent of the past price series, where pfc is the price of the stock 
at time t.

Other authors have attempted to interpret the data in terms of 

information arrival or the impact of information events. French and Roll 

(1986) investigate the volatility of returns during trading and non­
trading hours. They note for instance that the variance of returns from 

open to close is six times larger than the variance from close to open 

over a weekend. Their explanations include: more public information 

arrives during normal business hours, volatility is increased by trading
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which represents private information, and lastly the trading process 
produces noise. By comparing daily return variances with those over 
longer intervals, the authors suggest that 4-12X of the daily return 
variance is a result of mispricing or noise. They also note that this 

does not explain the large difference between trading and non-trading 
variances which they attribute to differences in the incorporation and 

arrival of information.

Thfc data consist of daily returns for all NYSE and AMEX stocks 
over the period 1963 to 1982. The data are divided into ten two year 
subperiods and ratios of the multiple day to single day variances are 

calculated. A further test is performed on the relation of firm size to 

the variance differential but the results do not support the hypothesis. 

By making a number of simplifying assumptions concerning the 
independence and distribution of returns, French and Roll argue that the 

following relationship holds:

66og + 6o? - 1.107(18ojj + 6o?) 

where eg is the non-trading variance per hour and a\ is the trading 

variance per hour. Thus, the trading variance per hour is postulated to 

be 71.8 times the non-trading variance per hour.

They discuss the difference between private and public information 

by stating that public information is known at the same time it affects 

stock prices. Private information, on the other hand, becomes known only 

through trading. The variance ratios then reflect the production of most 

private information during normal business hours or informed trading by 

investors for more than one day. The other explanation is that trading 

produces noise. Hence each day's return represents an information
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component and an error component, which may be independent or positively 
correlated. Since daily returns are used, this explanation assumes that 
some of the noise is not corrected during one day. If it is corrected, 
then intra-day variances would increase but not daily variances.

These hypotheses are then tested using the time around exchange 

holidays as the testing period. If the trading noise hypothesis is 

correct then the variance should fall while the exchange is closed and 

it should not be recovered in the subsequent days as opposed to if 

trading on private information was producing the higher variance. The 

evidence from this test supports both the noise and private information 

hypotheses. To further distinguish the two explanations autocorrelation 

are computed for the daily data. Trading noise will produce negative 

autocorrelation, but the authors note that so will the bid-ask spread 

and day of the week effects. Hence, they argue that negative correlation 

beyond lag one is consistent with the trading noise hypothesis. Their 

evidence is consistent with this explanation.

As a further test of the importance of the trading noise 

hypothesis daily variances are compared with those for longer holding 

periods, up to six months.13 The view here is that the importance of 

mispricing and bid-ask spread errors will decrease as the holding period 

increases. They find that these errors cause a significant fraction of 

the daily variance. By assuming that daily returns are made up of a 

rational information component, a mispricing component, and a bid-ask 
spread error, a lower bound for the variance is computed. In the

13 This relationship has been discussed previously in footnote 1.
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appendix, further results are deduced on the correlation between 
information and mispricing.

Patell and Wolfson (1984) look at the speed of adjustment of stock 
prices to dividend and earnings announcements. They look at three 

statistics in particular, the mean, variance, and serial correlation of 

consecutive price changes. Here the authors use aggregate cross- 

sectional statistics. After reviewing the distinct properties of 

transaction data, in particular negative serial correlation, they note 

the apparent anomalies that have been documented with respect to 

earnings announcements and how their work is not necessarily comparable 
to the previous studies.

Their sample consists of 571 earnings and dividends releases for 

96 firms during 1976 and 1977. The firms are predominantly from the NYSE 
and the stock price data are from the CBOE/Berkeley Options Transactions 

Data Base, which records the stock price to the nearest second every 

time an option trade is executed or quotes are revised. They use the 

Value Line Investment Survey forecasts as their estimate of the expected 
earnings.

To test for changes in the mean intraday returns a Wilcoxon single 

sample test and a Mann-Whitney test are used. The former compares the 

announcement day return to a norm of zero while the latter tests whether 

the announcement day results are stochastically larger than the control 

sample. Using a simple trading rule based on whether the actual earnings 

announcement exceeds or falls short of the expected earnings 

announcement, they document significantly different returns for the
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period thirty minutes after the actual announcement. Roughly the same 

results are found for the dividend declarations.

In order to test for the effects on the variance, the authors 
compile a multinomial frequency distribution for one-hour and overnight 

price changes for each firm. An extreme price change is then defined as 

one that falls in either of the 5% tails. Because of the differences in 

absolute value of the beginning and end of day changes with the midday 

results separate critical values are used for each hour for each firm. 
A normal approximation to the binomial is then used to arrive at the 

appropriate Z-statistic. The evidence suggests a disproportionate number 

of extreme changes occur during the hour of the earning announcement but 
not the dividend announcement.

Serial correlation tests are performed on the pooled data for 

consecutive stock price changes up to lag 10 and also over intervals of 

one, two, three hours, and one day. The evidence is consistent with 

previous evidence of negative serial correlation and also the evolution 

from an autoregressive process to a random walk as the time interval 

increases. Here, the authors wish to determine the extent to which 

announcements interrupt the reversal pattern. They use Chi-square tests 

of two-by-two contingency tables to determine the point at which the 

process is affected by the announcement and the elapsed time until it 

returns to its normal pattern. They find significant differences in the 
relative frequency of continuations after the earnings announcement but 

not much of an effect in the dividend sample. Similar results are found 

when the relative frequencies are measured in terms of calendar time 

intervals rather than actual transactions.
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In concluding they note that their tests are basically non- 

parametric and hence do not require any assumptions about the 
distributional forms or particular asset pricing models. They also point 

out that their sample consists of large, actively traded firms and hence 

should have shorter adjustment periods to new information than smaller, 

less actively traded ones. Finally, the authors discuss the possible 

implications for trading strategies based on the observed differences in 

the adjustment periods for the mean returns (an interval of five to ten 

minutes) as opposed to the adjustment periods for the variance and 
serial correlation (intervals of several hours).

Barclay and Litzenberger (1988) study the intraday effects of new 
equity issue announcements. Their results suggest that new information 

is received by investors at different rates. This lends support to the 
possibility of differential information costs among traders and also 

lags in the adjustment of price to new information. 14

Several papers have attempted to explicitly model the return 

generating process while taking account .of the various transaction costs 

that exist in actual trading. Cohen, et. al. (1978a) try to develop an 

economic model of the return generating process. The change in price is 

linked to shifts in a negatively sloped demand curve through two 

processes - idiosyncratic tenders and aggregate demand shifts. They 
predict that stocks with less trading volume will be more volatile than 

high volume stocks due to the relationship between the variance and the

14 Copeland (1976) derives a sequential information arrival model 
where each trader receives news at different times and hence trading 
occurs in sequence as each individual adjusts his demand curves.
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value of the stock. In a subsequent paper (1978b) they relax a number of 
assumptions in order to assess the effects of a limit order book on the 

return generating process. Using a simulation study, they find that 

transaction returns will exhibit greater negative serial correlation the 

longer the limit orders stay on the book due to the tendency for 

randomly arriving transactions to bounce between the bid-ask spread.

Perhaps the most ambitious attempts at incorporating actual price 

behavior into a theoretical framework are two papers by Goldman and Beja 
(1979) and Beja and Goldman (1980). In the first paper, the authors 

model the price change in terms of the instantaneous rate of price 

adjustment between the observed price and the true equilibrium one. They 

detail several interrelationships between these two variables based on 

the speed of the market's response and the length of the time interval 

while also discusssing the implications of these effects on the time- 

variance relationship. They posit that return fluctuations will be 
dominated by the noise in the market over the short run and the asset's 

underlying value in the long run. In the second paper, they examine the 

distinction between the state of the environment and the state of the 

market. The former is loosely associated with fundamental values while 

the latter incorporates the role of speculation in the market process. 

Their basic idea is that prices reflect disequilibrium values over short 

intervals and traders will attempt to estimate the trend, thereby 
causing prices to either deviate more from equilibrium or converge to 

it, depending on the degree of trading due to fundamental demand.

This is in perfect agreement'with the work of Mandelbrot (1971). 

He shows that with finite horizon anticipations the attempts at
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arbitrage will In fact cause the price series to exhibit higher 
volatility. As the anticipation of the price trend increases so will the 

variance. Given the above discussion of the differential costs of 

various traders, this concept appears especially suited to the trading 
of large stocks on the NYSE.

In summary, the various institutional structures in the trading 

process make theoretical modelling quite complex and as a result tend to 

cloud any inferences which may be derived from their application. 

Present empirical evidence raises a number of questions concerning the 

nature and structure of intradaily returns, with the possibility of 
higher order dependency being one of them.



CHAPTER 3
PRELIMINARY DISTRIBUTIONAL AND DESCRIPTIVE ANALYSIS

In this chapter we investigate the distributional properties of 
intraday returns based on ten and thirty minute time intervals. Our 

primary objective is to examine the data and describe the distributional 

properties of the two series in terms of the first four moments. We test 

whether the series can be described by (1) a normal distribution or (2) 

a white noise process.13 Furthermore, we compare the effect of 
aggregation on the estimation of the moments, particularly the kurtosis. 

We also test for differences in the unconditional means and variances 
between the period marked by the opening and closing of the market and 

the rest of the day. Lastly we provide evidence for the existence of not 

only correlation in the mean or first order dependence, but also higher 
order dependence, especially second order, or dependence in the 
variance.

In the first section we set forth the type of data, the period 

covered, the sample we use, and the manner and rationale for creating 

the dummy variables. In the second section, we discuss the statistics we 

use in the empirical analysis and the corresponding hypotheses. We

13 A white noise process is defined as one whose autocovariances are 
zero at all lags and it can be classified as second-order stationary, 
i.e. its mean and covariance functions do not depend on time. However, 
such a definition does not imply independence. A 'strict' white noise 
process is one where the values of the original series are statistically 
independent over time. If such is the case, then the squared and 
absolute return series are also strict white noise.
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present our results with a discussion of the tables and conclusions in 
the last section.

A. DATA DESCRIPTION

The data we use for this study consist of transaction by 
transaction price, volume, bid-ask quotes, and time stamps provided by 

the Institute for the Study of Security Markets from August 31, 1987 to 
October 1, 1987. The period used is restricted by the availability of 

data and the presence of the October stock market crash in 1987. A 

random sample of thirty stocks is chosen from the 100 most actively 

traded stocks on the NYSE for 1987. This is then reduced to fifteen 
stocks on the basis of whether actual transactions exist for the 
creation of ten and thirty minute return series (Five minute intervals 

are attempted but only two stocks from the sample contained enough 

observations based on the above criterion). Table 3-1 contains a list of 

the stocks used in our analysis. The last transaction in each ten minute 

interval is used to calculate the return series.

We calculate the return series as first log price differences, 

which we denote as rt. We use the log price relatives because they 

eliminate any effects that the price level may have on simple price 

changes and they are close to the actual percentage price change when 

the changes are within ± 15%. We make a distinction between the 

overnight return and the intraday returns in the creation of the time 

series. The overnight return is kept the same no matter if the series 

contains ten minute or thirty minute intervals. This is done to maintain

34
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the different aspect of that return from the others in the series. 
Hence, the ten minute Interval dataset contains 919 observations with 22 
overnight returns and 897 intradaily ones, while the thirty minute 

dataset contains the same 22 overnight returns and 299 intradaily ones 
for a total of 321.

Since previous studies show that intraday returns are affected by 

the specialist bid-ask spread and that the overnight return is distinct 

from the rest of the day [ e.g., Vood, Hclnish, and Ord (1985) and 
Harris (1989)], we create two binary dummy variable series to account 

for this behavior. The ask dummy variable indicates whether or not the 

return is calculated from a transaction at the bid followed by a 

transaction at the ask. The end of day dummy variable indicates whether 
the return occurrs overnight, in the last period of the day, or in the 
first period of the day.

In creating the ask dummy variable series we use the following 

procedure detailed in Hasbrouck (1988). First, all those transactions 

that can be classified as a bid or ask price based on the midpoint of 

the prevailing quotes are identified, those above the midpoint being an 

ask and those below being a bid. We then turn to known contemporaneous 

transactions to identify any unknown ones which occur at the same time. 

Next we use the subsequent transaction to determine the classification. 

Hence, if the quote is a bid and an ask of 15 and 15 1/4 and a midpoint 

transaction ocurrs at 15 1/8 with a later transaction at 15 1/4, then 

the 15 1/8 is considered a sale that occurrs at the bid.

The last classification method is based on a subsequent quote 

revision. Here, if a midpoint transaction is immediately followed by a
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quote revision then the revision is used to infer the type of order. For 

instance, given the previous example, if the midpoint transaction is 

followed by a quote revision of 15 1/8, 15 3/8, then the transaction is 
considered a sell or occurring at the bid. Hasbrouck uses these methods 

to classify approximately 98% of his sample. We are able to classify 
only 92% of our sample, and this led to the following procedure. Those 
returns that occur as a result of a trade at the bid followed by a trade 

at the ask are given a value of one; all others are given values of 

zero. Hence, the ask dummy represents those returns that possibly 

contain a positive component due to the bid-ask spread.

B. DESCRIPTIVE AND TEST STATISTICS

tfe use a number of statistics in the preliminary investigation to 

provide a description of the ten and thirty minute returns series. These 

include the mean and median as measures of location, the standard 

deviation and interquartile range as measures of dispersion, and the 

skewness and kurtosis as measures of the shape of the distribution. Two 

procedures are used to test the null hypothesis of a normal distribution 

in the original return series. The first is based on the Kolomogorov D- 

statistic, which is defined in terms of the maximum absolute difference 

between the empirical distribution function and the theoretical 

distribution function. It is given by:

Dn - supl S„(x) - F0(x)l ,
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where Sn represents the empirical distribution function and F0 is the 
theoretical distribution function, which in this case is the normal. We 

use Stephens' (1974) modification of the statistic since the mean and 

variance of our theoretical distribution are unknown. The second testing 

procedure is based on the Kiefer-Salmon (1983) statistics, which are 
defined in terms of the sample skewness and kurtosis coefficients. The 
skewness statistic is:

S - (n/6)*(u3 - 3ut)2

and the kurtosis statistic is:

K - (n/24)*(u* - 6u2 +3)2,

where Ui is the corresponding 1th sample moment about the mean and S plus 

K is the KS statistic. The S and K statistics are distributed %2 with 

one degree of freedom and the KS is distributed x2 with two degrees of 

freedom. The null hypotheses are that the skewness and kurtosis are not 

different from the normal values for those two moments, i.e. u3 - 0 and 

u* - 3.

We test whether the population means for the intradaily and 

overnight returns are different from zero by using the normal 

approximation to the t-distribution and also test whether they are 

different from each other by using the Satterthwaite t-statistic 

approximation with the degrees of freedom based on the sample 

observations. These statistics are also used to test the same hypotheses 

for the squared returns since they represent a simple measure of the 
variance.



38
The next set of statistics deal with the null hypothesis of strict 

white noise for the original return series and the presence of 
dependency in the squared and absolute return series. This set includes 

Fisher's kappa and Bartlett's Kolmogorov-Smirnov statistics, which both 
test the null of strict white noise for the original returns in the time 

domain. The Box-Pierce portmanteau test with modifications by Ljung and 

Box (1978) is used to test for the above hypothesis in the frequency 

domain16 and also to determine the presence of any nonlinear dependency 

when applied to the squared and absolute return series.17 The general 
form of the Ljung-Box portmanteau Q statistic is:

Q - n(n+2) £ r ^ D A n - i ) ,

where n is the number of observations, r(i) is the autocorrelation 

coefficient with a lag of i, and M is the maximum number of lags. The 

statistic is distributed as a xz(M-p-q) where p is the order of the 

autoregressive component and q is the order of the moving average. The 

null hypothesis is that the series is a white noise process.

16 Fuller (1976) has a description of the two time domain tests on 
pages 282-287. Both are based on an analysis of the periodogram which Is 
generally used to search for cycles in the data. Fisher's kappa uses the 
largest periodogram, while Bartlett's is based on the normalized 
cumulative periodogram. The null hypothesis for Fisher's kappa is:
Xt - u + et (white noise) versus Xt - u + Acosot + Bslnot + et, where o 
is unknown.

17 A discussion of the application of this statistic to the squared 
residuals can be found in McLeod and Li (1983). Another statistic used 
to test for nonlinear dependence is the TR2 statistic, a variant of the 
Lagrange multiplier test under asymptotic normality.
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The final statistic used is a Pearson %z goodness of fit test. This 

is defined as:

k
Qk-i “  2  ( y t - n P i o ) V n P l0»i-i

where k is the number of mutually exclusive cells into which the data 

are subdivided, Pio is the theoretical probability of an observation 

occurring in that cell, n is the number of observations, and yt is the 
standardized returns,18

Kendall and Stuart (1977, p. 463) argue that the best way to 
determine the class boundaries is to use an equal probabilities method 

where Pio is equal to 1/k. In order to determine the number of classes 
they provide the following formula:

k - bl 2w(n-l)/(l, + G_1[P0]) )2/s

where b is between 2 and 4, n is the sample size, a is the size of the 

test, la is the upper a-percentage point of the standard normal 

distribution, P0 is the approximate power function for the maximization, 

and G'1 is the inverse of the standard normal distribution function. The 

statistic Ok-! is distributed as x2(k-l-m), where m is the number of 

estimated parameters. He use this x2 test to determine the model that 

best fits the empirically determined conditional distribution, which is 

based on the estimated degrees of freedom.

18 The yt may also represent the standardized residuals when the 
procedure is used to test the fit of each model.
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C. DISCUSSION AND RESULTS

1. Ten minute data

We begin our analysis by examining the descriptive statistics for 
the ten minute data. From Table 3-2, we first notice the wide range of 

values for the mean returns. For instance, DOW has a mean return of 
.00009641 which translates into an 8.09X monthly return and an 96.3X 

yearly return. On the other hand, GM experienced a ten minute average 

return of -.00007355 which becomes a -6.17X monthly return and a -73.5% 
yearly return. Seven of the stocks have a negative average return, while 

eight are positive. The standard deviations of the returns range from a 

high of 0.5339 for PAC to a low of 0.2245 for ATL.
The median return for all the stocks Is zero, while the values for 

the interquartile range indicate a large dispersion for some of the 
stocks, such as PAC, and almost none in the case of BAX. In terms of 
skewness, six of the stocks have a negative value indicating the 

distribution is skewed to the left with the highest being GM and nine 

have a positive value indicating a longer tail to the right with the 

highest in this case being RJR. All the stocks exhibit leptokurtosis or 

thick-tails which is consistent with previous work on stock prices, 
whether daily or intradaily.

In terms of the tests for normality, we turn to Table 3-3. All of 
the samples reject normality using the Kolomogorov D-statistic, which is 

not suprising given the nature of the test as a goodness-of-fit test 

based on the empirical distribution function. We further examine this 

issue by looking at the Kiefer-Salmon statistics for skewness and
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kurtosis. In terms of skewness, the high value of the S statistic for 
ten of the stocks leads to the rejection of the null hypothesis of a 

zero third moment or a symmetric distribution. The K statistic for 
normal kurtosis rejects the null hypothesis in all but one case, which 

is the same result as the combined KS statistic. Hence, any assumption 

of a normal unconditional distribution can be thoroughly rejected for 
all of the stocks except PAC, where the evidence for rejection in not 
quite as strong. Since rejection of the normality hypothesis does not 

indicate whether the returns are simply independent white noise 

processes, we examine the values for Fisher's kappa (K) and Bartlett's 

(B) statistic. Using Fisher's kappa statistic we would reject the null 

hypothesis of white noise for only two of the stocks, while Bartlett's 
test rejects the null for eleven out of the fifteen stocks.

Our next table, Table 3-4, provides the results of several tests 
for an end of day effect in both the mean and variance. The first two 

columns give the results for the test that the means for the intraday 

and end of day returns are significantly different from zero. We cannot 

reject the null hypothesis of a zero mean intraday return for any of the 

stocks in our sample, but we can reject the null for the end of day 

returns in eight of our fifteen companies. These companies also exhibit 

a statistical difference between the means of the two periods, thereby 

providing some evidence for a mixture of distributions model based on 

different means. However, as can be seen from the table, there is very 

strong evidence that the major difference between these two periods is 

in the variance. The results of these tests Indicate rejection of the 

null hypotheses in all cases. Hence, there is very strong evidence of a
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non-stationary unconditional variance in the return series for the 
entire sample and an indication that standard estimation techniques are 
not appropriate.

In Table 3-5, we examine the degree of autocorrelation in the mean 

while also checking for non-linear dependence, or dependence in the 

variance. To accomplish this, we use the Ljung-Box statistics on the 
original returns r, the squared returns r2, and the absolute returns I rl . 

The results for the original return series are in agreement with 

Bartlett's test, rejecting the null hypothesis of strict white noise in 

eleven out of the fifteen stocks. Hence, at least in terms of the actual 

return series, out of our sample of fifteen stocks, only DIG, DOW, PHI, 

and RJR exhibit a re turn-generating process that cannot be distinguished 
from a white noise process or one with no first order dependency.

We next turn to an examination of the degree of higher order 

dependency, in particular second-order. Since our previous tests 

indicated that the intradaily mean is not statistically different from 

zero, we use the sum of squared returns as an approximation for the 

variance. The results for the squared returns indicate that only in the 

case of DIG and PHI can we not reject the null hypothesis. This finding 

agrees with the lag-1 autocorrelation results in both the return and 

squared return series. In the case of the absolute returns, all of the 

stocks show a significant level of dependence in both tests. Hence, our 

results for the ten minute data indicate that a model capable of 

incorporating both linear and non-linear dependence is required.
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2. Thirty minute data

We now turn to an examination of the thirty minute results. 
Generally it has been found that as the interval length over which 

returns are estimated is lengthened, the degree of autocorrelation and 

departures from normality exhibited by the data are reduced, tfe find the 

same effect for this group of stocks. For example, in looking at Table 

3-6, we see that the degree of kurtosis for all but three stocks is 

reduced as we move from ten minute to thirty minute intervals. The same 

holds true when we look at the actual hypothesis tests for normality 

found in Table 3-7. For instance, the number of stocks for which the 

null hypothesis of zero skewness can be rejected drops from ten to six. 

Also Fisher's kappa statistic leads to a rejection of the white noise 

hypothesis in only one of the fifteen stocks and Bartlett's test rejects 

the null in six of the samples. However, the other tests for normality, 

the D-statistic and the K and KS statistics reject the null in all the 

cases. Hence, even at thirty minute intervals, the leptokurtosis in the 

return series is very evident. Also a quick check of the ratio of the 

variances between the ten and thirty minute intervals indicate that the 

thirty minute interval variances are only roughly twice as large as the 

ten minute ones, thereby rejecting not only the normality assumption but 

also that of a random walk.19

19 In order for the random walk hypothesis to be accepted the ratio 
must be around three. This concept will be further discussed in Chapter 
6 .
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We next turn to Table 3-8 where we have the mean and variance 

effects based on the end of day dummy. We see that aggregation of the 
data has reduced the significance of the mean in distinguishing between 

the two periods. Only two of the stocks, DOW and RJR, exhibit any 

difference between the periods. On the other hand, the variance effect 

still exists in twelve of the fifteen stocks.

This leads to the tests for nonlinear dependence in Table 3-9. In 

terms of the original return series, we see from the Ljung-Box (LB) test 

that first order dependence is exhibited in only four of the stocks, but 

second order dependence, based on the results of the squared and 

absolute returns, remains strong in eleven of the stocks. The lag-1 
autocorrelation results provide similar evidence with an indication that 

one period mean lags remain significant in eight of the cases and twelve 

of the stocks exhibit higher order dependence for at least lag-1.

In conclusion, the results of this chapter Indicate that intraday 

returns exhibit not only first order dependence, as documented by 

previous authors, but also second order dependence. We also find that 

evidence exists to confirm both the finding of a non-stationary 

unconditional variance and a mixture of distributions hypothesis. 

However, because of the presence of higher order dependence, we conclude 

that any model of the return generating process for intradaily returns 

that assumes independence is inappropriate. We therefore examine in the 

next chapter a method for dealing with this problem.
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TABLE 3-1 

LIST OF COMPAMIES

AME American Express

ATL Atlantic Richfield

ATT American Telephone and Telegraph
BAX Baxter Travenol
BOE Boeing

CHE Chevron

DIG Digital Equipment
DOW Dow Chemical

GE General Electric
GM General Motors
ITT International Telephone and Telegraph

MOB Mobil
FAC Pacific Gas & Electric
PHI Phillips Petroleum
RJR RJR Nabisco
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TABLE 3-2 

TEN MINUTE DATA 
DESCRIPTIVE STATISTICS

mean
(0000)

std dev 
(00)

skew kurt med IQR
(00)

AME .1841 .4280 .4273 2.937 0.00 0.677

ATL -.0144 .2245 .2488 3.681 0.00 0.273
ATT .4801 . 3349 .0476 0.969 0.00 0.722
BAX .8356 .4100 .4867 2.635 0.00 0.000
BOE -.2386 .2784 -.1228 3.028 0.00 0.487
CHE -.6467 .3059 .2026 1.086 0.00 0.460

DIG .2512 .2397 .5763 3.827 0.00 0.263

DOW .9641 .2792 .0782 2.606 0.00 0.255

GE -.0219 .3398 -.1861 5.000 0.00 0.408

GM -.7355 .2377 -.3655 7.231 0.00 0.288

ITT .1510 .2323 -.0399 3.767 0.00 0.398

MOB -.4289 .3392 -.1801 4.746 0.00 0.501

PAC -.4133 .5339 -.1027 0.245 0.00 1.231

PHI .4258 .2944 .9781 8.840 0.00 0.224

RJR .1402 .3634 1.1636 8.843 0.00 0.379
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TABLE 3-3

TEH MINUTE DATA
TESTS FOR NORMALITY AND WHITE NOISE PROCESSES

D
stat

S
stat

K
stat

KS
stat

K B

AME .1905* 27.88* 325.20* 353.08* 6.033 .1270*

ATL .1907* 9.45* 511.46* 520.91* 6.217 .0738
ATT .2424* 0.35 35.07* 35.42* 6.490 .1368*

BAX .2611* 36.17* 261.78* 297.95* 6.360 .1154*
BOE .2017* 2.30 345.77* 348.08* 7.802 .1602*

CHE .1782* 6.26* 44.18* 50.44* 6.712 .1072*

DIG .1081* 50.71* 552.83* 603.54* 5.813 .0356

DOW .1275* 0.93 255.92* 256.85* 6.595 .0348

GE .1646* 5.29* 944.50* 949.79* 6.351 .0773*

GM .1732* 20.39* 1977.33* 1997.72* 5.087 .0896*

ITT .2110* 0.24 535.67* 535.91* 7.680 .0910*

MOB .2044* 4.95* 850.96* 855.91* 5.420 .0929*

PAC .2376* 1.61 2.15 3.76 11.025* .2478*

PHI .1257* 146.06* 2955.53* 3101.59* 6.938 .0595

RJR .1609* 206.71* 2957.92* 3164.63* 9.165* .0454

The critical values for the D-statistic at the 0.10, 0.05, and 
0.01 significance level are .0270, .0295, and .0341 respectively. The 
X2(l) value for the S and K statistics at the 0.05 significance level is 
3.84. The %z(2) value for the KS statistic is 5.99 at the 0.05 
significance level. Fisher's kappa critical values are 8.302, 9.006, and 
10.600, while Bartlett's test statistic has 0.05 and 0.01 critical 
values of .06418 and .07692 (An represents significance at the 51 
level.)
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TABLE 3-4

TEN MINUTE DATA
TESTS FOR UNCONDITIONAL MEAN AND VARIANCE EFFECTS

MEAN EFFECT VARIANCE EFFECT

H0: Pi - 0  H0: Pi“P2 H„: Pi - 0 H0: Pi-p2

means of returns means of variances
(0 0 0 ) (0 0 0 0 )

0  1 0  1

AME -.097 1.51 0.144 0.682
(0.67) (2.89)* (8.76)* (11.02)* (14.50)* (121.12)*

ATL -.032 0.40 0.046 0.107
(0.42} (1.63) (2.28) (11.22)* ( 7.30)* ( 15.93)*

ATT - . 0 0 0 0.67 0.098 0.299
(0.00) (1.64) (2.49) (15,25)* (13.04)* ( 71.68)*

BAX -.006 1.25 0.148 0.419
(0.05) (2.48)* (5.78)* (12.17)* ( 9.59)* ( 35.62)*

BOE -.046 0.27 0.065 0.238
(0.49) (0.75) (0.78) (11.40)* (11.55)* ( 65.23)*

CHE -.079 0 . 1 2 0.089 0.141
(0.76) (0.33) (0.27) (16.03)* ( 7.03)* ( 6.11)*

DIG -.045 0.94 0.049 0.161
(0.56) (3.19)* (10.40)* (10.72)* ( 9.66)* ( 41.79)*

DOW 0.063 0.53 0.067 0.223
(0.66) (1.54) (1.72) (11.91)* (11.17)* ( 57.28)*

GE - . 1 0 2 1.29 0.096 0.366
(0.89) (3.10)* (10.41)* ( 9.40)* (10.03)* ( 50.87)*

GM -.109 0.39 0.050 0.142
(1.35) (1.35) (2.78) ( 8.60)* ( 6.81)* ( 18.13)*

ITT -.062 1 . 0 2 0.42 0 . 2 0 1

(0.79) (3.58)* (13.42)* (10.12)* (13.33)* (102.64)*
MOB -.113 0.87 0.092 0.416

(0.98) (2.08)* (5.14)* ( 9.35)* (11.82)* ( 78.63)*
PAC -.044 Oo1 0.272 0.451

(0.24) (0.00) (0.00) (18.75)* ( 8.64)* ( 10.93)*
PHI -.039 1 . 1 0 0.065 0.360

(0.39) (3.05)* (9.24)* ( 6.96)* (10.62)* ( 70.37)*
RJR -.138 1.98 0.092 0.650

(1.12) (4.48)* (21.31)* ( 6.56)* (12.90)* (113.93)*

The corresponding t-statlstics for the null hypotheses are 
presented in parentheses. The 0 columns represent the intraday results 
and the 1 columns the end of day results. (An represents
significance at the 5% level.)
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TABLE 3-5

TEN MINUTE DATA
TESTS FOR NONLINEAR DEPENDENCE

LB(6 )
r

LB(6 )
r2

LB(6 )
Irl

AUTOCORRELATION FOR 
r r2

LAG-1 
1 rl

AME 35.71* 22.53* 49.14* -.1878* .1115* .1537*
ATL 16.76* 82.32* 104.15* -.0696* .1866* .2175*
ATT 51.95* 19.40* 21.76* -.1908* .1270* .1129*

BAX 28.06* 14.29* 30.45* -.1700* .0663* .1257*
BOE 49.87* 50.85* 71.22* -.2241* .0817* .0814*

CHE 32.26* 63.51* 33.66* -.1478* .1560* .1050*
DIG 8.18 7.28 50.60* -.0320 .0268 .0978*

DOW 5.02 89.06* 100.34* .0309 .2154* .2462*

GE 14.83* 172.15* 133.29* -.0906* .3598* .2764*

GM 17.51* 218.47* 199.81* -.1065* .3725* .2931*

ITT 20.07* 14.89* 20.82* -.1342* .1209* .1293*

MOB 20.82* 98.28* 106.28* -.1106* .1643* .2 1 0 0 *

PAC 146.08* 20.81* 16.87* -.3894* .0884* .0944*

PHI 10.89 9.56 82.99* -.0676* .0277* .1310*

RJR 10.24 27.68* 61.74* .0255 .1439* .1585*

The critical values for the Ljung-Box, LB(6 ), statistic at the 
0.10, 0.05, and 0.01 significance level are 10.64, 12.59, and 16.81 
respectively, (An '*' represents significance at the 5% level.)
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TABLE 3-6 

THIRTY MINUTE DATA 
DESCRIPTIVE STATISTICS

mean
(0 0 0 0 )

std dev 
(0 0 )

skew kurt med IQR
(0 0 )

AME .5272 .6567 .2256 1.454 0 . 0 0 0.691

ATL -.0413 .3629 .0920 3.238 0 . 0 0 0.283

ATT 1.3746 .4982 .1944 1 . 2 2 0 0 . 0 0 0.741

BAX 2.3922 .6470 .2489 1.977 0 . 0 0 0.889
BOE -.6831 .3885 -.3112 2.025 0 . 0 0 0.493
CHE -1.8513 .4693 .3902 1.546 0 . 0 0 0.471
DIG .7192 .4042 .1095 1.653 0 . 0 0 0.458

DOW 2.7602 .5028 -.0839 4.637 0 . 0 0 0.505
GE -.0626 .5408 -.3308 2.740 0 . 0 0 0.419
GM -2.1058 .3704 -1.0767 5.237 0 . 0 0 0.300
ITT .4322 .3513 -.1288 2.143 0 . 0 0 0.403

MOB -.1228 .4913 .1268 1.296 0 . 0 0 0.515

PAC -1.1831 .5886 -.2705 0.667 0 . 0 0 1.242

PHI 1.2190 .4756 .5377 3.496 0 . 0 0 0.439

RJR .4015 .5670 .8209 3.767 0 . 0 0 0.737
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TABLE 3-7

THIRTY MINUTE DATA
TESTS FOR NORMALITY AND WHITE NOISE PROCESSES

D
stat

S
stat

K
stat

KS
stat

K B

AME .1325* 2.70 26.69* 29.39* 4.334 .1732*

ATL .1348* 0.45 134.38* 134.83* 4.611 .1036
ATT .1933* 2 . 0 0 18.69* 20.69* 5.342 .1159*
BAX .1908* 3.28 49.73* 53.01* 4.053 .1190*
B0E .1736* 5.13* 52.18* 57.32* 3.958 .1272*
CHE .1152* 8.07* 30.19* 38.26* 6.322 .1455*
DIG .0915* 0.63 34.62* 35.25* 9.240* .0928
DOW .1 0 1 1 * 0.37 276.53* 276.90* 5.143 .0684

GE .1 1 2 0 * 5.80* 95.97* 101.77* 4.217 .0586
GM .1349* 61.44* 353.06* 414.50* 4.304 .0684
ITT .1496* 0 . 8 8 58.49* 59.37* 4.934 .0603

MOB .1348* 0,85 21.15* 2 2 .0 0 * 4.412 .0844

PAC .2245* 3.88 5.44* 9.32* 5.755 .1583*

PHI .1072* 15.32* 156.72* 172.04* 5.670 .0496

RJR .1227* 35.71* 182.12* 217.83* 4.371 .0748

The critical values for the D-statistic at the 0 .1 0 , 0.05, and
0.01 significance level are .0456, .0498, and .0576 respecCively. The 
X2 (l) value for the 5 and K statistics at the 0.05 significance level is 
3.84. The x2 (2) value for the KS statistic is 5.99 at the 0.05 
significance level. Fisher's kappa critical values are 7.230, 7.895, and 
9.439, while Bartlett's test statistic has 0,05 and 0.01 critical values 
of .10785 and .12927 (An '*' represents significance at the 5Z level.)
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TABLE 3-8

THIRTY MINUTE DATA
TESTS FOR UNCONDITIONAL MEAN AND VARIANCE EFFECTS

MEAN EFFECT VARIANCE EFFECT

H0: Pi - 0 H0: Pi-p2 H0: Pi - 0 H0: Pi-p2

means of returns means of variances
(0 0 0 ) (0 0 0 0 )

0  1 0  1

AME -.138 0.79 0.326 0.833
(0.33) (0.97) (1.0*) ( 6.7*)* ( 8.77)* ( 22.69)*

ATL .003 - . 0 0 0.115 0.193
(0.01) (0.69) (0.00) ( 6.20)* ( 5.27)* ( 3.57)

ATT .089 0.32 0 . 2 2 2 0.346
(0.28) (0.53) (0.12) ( 8.0*)* ( 6.38)* ( 4.17)*

BAX .107 0.75 0.334 0.743
(0.26) (0.9*) (0.51) ( 6.52)* { 7.39)* ( 13.15)*

B0E -.058 - . 1 1 0.118 0.274
(0.2*) (0.23) (0.01) ( 6.*0)* ( 7.56)* { 14.63)*

CHE -.053 -.69 0.203 0.285
(0.18) (1.20) (0.98) ( 7.96)* ( 5.68)* ( 2.15)

DIG -.156 0.95 0.129 0.296
(0.62) (1.92) (3.97)* ( 6.77)* ( 7.93)* ( 15.93)*

DOW 0.339 0.03 0.186 0.511
(1.07) (0.05) (0.19) ( *.70)* ( 6.56)* ( 13.83)*

GE -.140 0.51 0.224 0.552
(0.*1) (0.77) (0.76) ( 5.79)* ( 7.26)* ( 14.79)*

GM -.173 - .36 0.115 0.223
(0.7*) (0.78) (0.13) ( 4.96)* ( 4.88)* ( *.*0)*

ITT -.011 0.25 0.092 0.244
(0.05) (0.58) (0.30) ( 6.07)* ( 8.23)* ( 20.95)*

MOB -.203 0.19 0.190 0.437
(0.66) (0.31) (0.33) ( 7.17)* ( 8.38)* ( 17.80)*

PAC -.051 -.38 0.322 0.435
(0.1*) (0.52) (0.16) ( 9.13)* ( 6.27)* ( 2.08)

PHI -.062 0.83 0.172 0.432
(0.21) (l.*2) (1.86) ( 5.30)* ( 6.77)* ( 13.18)*

RJR -.303 1.36 0.233 0.660
(0.86) (1.97)* (*.59)* ( *.96)* ( 7.15)* ( 17.06)*

The corresponding t-statistics for Che null hypotheses are 
presented In parentheses. The 0 columns represent the intraday results 
and the 1 columns the end of day results. (An represents
significance at the 5X level.)
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TESTS

TABLE 3-9 
THIRTY MINUTE 
FOR NONLINEAR

DATA
DEPENDENCE

LB<6 )
r

LB(6 )
r2

LB(6 )
Irl

AUTOCORRELATION FOR 
r r2

LAG-1
1 rl

AME 2 0 .1 2 * 19.13* 30.92* - .2063* .2123* .2762*
ATL 10.04 28.69* 37.64* -.1326* .2062* .2351*
ATT 8.52 14.34* 5.46 -.1310* .0679* .0687

BAX 10.39 10.13 19.85* -.1416* .1676* .2134*
BOE 12.47 23.31* 24.83* -.1680* .2042* .2144*
CHE 39.12* 34.59* 31.52* -.1910* .1802* .2650*

DIG 7.09 14.24* 16.90* -.0356 .1405* .1081*

DOW 4.55 13.33* 35.02* .0484 .1811* .2600*
GE 6.34 23.83* 23.46* -.0545 .2087* .1253*

GM 7.05 20.55* 11.18 -.0667 .1 0 0 2 * .0933

ITT 3.67 5.91 5.89 -.0768 .0863 .0914

MOB 9.58 19.88* 22.92* -.0732 .1874* .1845*

PAC 17.08* 8 . 2 2 4.31 -.1935* .0343 -.0023

PHI 2.72 5.10 11.17 -.0298 .1078 .1513*

RJR 11.28* 1.80 4.92 -.0644* .0237 .0448

The critical values for the Ljung-Box, LB(6 )f statistic at the 
0,10, 0.05, and 0.01 significance level are 10.64, 12.59, and 16.81 
respectively. (An '*' represents significance at the 5% level.)



CHAPTER 4
MODEL ESTIMATION

The finding of non-linear dependence in intradaily returns 
requires us to use a more general class of processes than standard 

linear time-series models, such as the autoregressive moving average 

(ARMA) processes of Box-Jenkins. It also rules out a number of processes 
used previously in the literature to model security returns, such as the 

Stable-Paretian, Student-t, and mixture of normals.

Priestley (1980) offers a general state dependent approach for 

handling non-linearities that includes the bilinear model of Granger and 
Anderson (1978) and the exponential autoregressive model of Haggan and 

Osaki (1981). We choose to employ a variant of the bilinear processes 
known as the autoregressive conditional heteroskedasticity (ARCH) model, 
since its estimation techiques are well developed. Also, the ARCH model 

has been proven suitable for modelling the time series properties of 

returns for longer sampling intervals, such as a day or week.

In the first section of this chapter, we introduce the theory 

behind both the ARCH model and the more general GARCH model. In the 

second section, we discuss the specific formulations and rationale for 

using the conditional distributions, which include the normal, Student- 

t, and power-exponential. We also introduce the particular classes of 

ARCH and GARCH and the criterion we use for selecting the model that 

best fits the data. In the final section, we present our results and a 

discussion of their implications for the return generating process of 
stock returns.
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A. ECONOMETRIC THEORY
55

Engle (1982) first Introduces the ARCH model as a means for
dealing with a non-stationary variance and second order dependency. He 
specifically expresses the conditional variance as a function of past 

values of the random variable. He points out that the conditional means 

and variances may evolve jointly over time, thereby requiring

simultaneous estimation. His ARCH(q) model has the following form:

rtJ *t-i “ N(xtB,ht)

ht - *o + E ai«g-i 
i-l

et - rt - xtB,

where ¥t-i is the information set at time t-1 , xt is the vector of 

independent variables, the a's and B's are vectors of unknown parameters
with a0 > 0 and a* i 0, and ht is the variance of the errors. The

conditional distribution of rfc, or rtl ¥fi» an(* et are assumed to be 
normal.

Engel makes a number of comments concerning the specification of 

the conditional variance or ht. First, he notes that large observations, 

in absolute value, will lead to a larger variance for next period's 

distribution. Secondly, if the coefficient of the squared lag value is 

positive, i.e. aA > 0 , then successive observations are dependent through 

higher moments. Thirdly, the first order process will generate fatter 

tails for the unconditonal distribution than the normal. And lastly, the 
temporal clustering of outliers may be used to predict their occurrence. 

The first and third comments arise from the expressions for the
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unconditional variance and kurtosis of the error term, «t. For instance, 

given q-1 , the unconditional variance of et is a2, which equals SoCl* * ] . ) " 1 

[See Engle (1982), p. 992]. We can then write ht-o2 as «0 (e|.1 -o2); 

therefore the conditional variance is greater than the unconditional 

variance whenever the squared error last period is greater than its 
unconditional expectation. 2 0 Thus, in the same spirit as Mandelbrot's 

Stable Paretian hypothesis, Engle presents a model that incorporates 

some of the empirical properties found in the data.

Maximum likelihood estimates of the unknown parameters are based 

on the sum of the conditional log likelihoods. Denoting lt as the log 

likelihood of the tth observation and n as the sample size, we have

n
L - 1/n £ It , wheret-i

lt - -%ln(ht) -lAefrt1 -ttln(2 *) .

First and second order derivatives of the function produce the gradient 

and the information matrix, respectively. Engle demonstrates the block 

diagonality of the information matrix under suitable symmetric and 

regularity conditions and shows that any qth order ARCH model satisfies

2 0 Engle also derives the formula for the unconditional kurtosis of 
the first order ARCH process. It is equal to:

— ——It—(l-3aj)
Since, the kurtosis of the normal distribution is equal to 3o* the value 
for the first order ARCH process is always greater than the normal, 
hence the fat tails in the unconditional distribution.
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the regularity conditions if a0 is greater than zero and the a^'s are 
greater than or equal to zero. 2 1

Ve use an iterative estimation procedure based on the algorithm of 
fierndt, Hall, Hall, and Hausman (1974) to obtain the maximum likelihood 

estimates of the a's and B's. This algorithm provides a numerical 

solution for the first derivatives of the likelihood function with the 
iterations for the s's and B's being carried out separately because of 

the block diagonality of the information matrix. Each step produces 

parameter estimates 0 i + 1 based on the preceding estimates according to

el+1 -  e1 + xL ( s t o i t / a e j o i t / a e')]!-1 I ait/aot-i t-i

where the 3It/30 is evaluated at fl1, the parameter estimates for the ifch 
step, and the li is the step length. Three convergence criterion are 

used. The first is based on the gradient around the inverse of the 

Hessian matrix, which can be interpreted as the remainder of a Taylor 

series expansion around the estimated maximum. The second is the change 

in the calculated log likelihood function and the third is the change in 

the gradient for each iteration. Weiss (1986) demonstrates the 

consistency and aysmptotic normality of the maximum likelihood 

estimates. Hence, standard t-statistics are used to test whether the 

parameters are significantly different from zero.

2 1 Proofs of these theorems can be found in the appendix of Engle 
(1982).
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Bollerslev (1986) respeclfies the ARCH process in terras of a 

generalized autoregressive conditional heteroskedasticity or GARCH 

model. He points out that most applications of ARCH have used a linear 
lag structure, while GARCH will allow for a more flexible one. In the 

same manner that the ARMA model is a generalization of the AR model for 

the mean or first moment, so is the GARCH a generalization of ARCH for 

the variance or second moment. Hence, just as the autocorrelation and 

partial autocorrelation functions are useful in identifying and checking 

the times series behavior of the ARMA process for the conditional mean, 

the same procedure can be used on the squared process for checking and 

identifying GARCH behavior In the conditional variance. Whereas the ARCH 
process specifies the conditional variance as a linear function of past 

sample variances only, the GARCH(p.q) process includes lagged 

conditional variances as well. Hence, this allows for the possibility of 

an adaptive learning mechanism based on the past conditional variances.

Bollerslev1s generalized autoregressive conditional 

heteroskedasticity (GARCH) model has a conditional variance equation of:

i , p hfc - «„ + E ajef-i +E Pih^,i-l 1 - 1

where pzO, q>0, a0>0, a^O, and PizO. He notes that for 'p-0 the process

reduces to the ARCH(q) process, and for p—q—0 et is simply white 
q p

noise. ' 2 2 When Ea* + Ep. < 1 the process is considered stationary and l-i 1 - 1

the unconditional variance of the et's is defined as ^/(l-Es^Ep^ [See 

Bollerslev (1986)]. Maximum likelihood estimates of the regression

2 2 Bollerslev (1986), p.309.
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parameters for both the mean and variance equations are obtained using 
the same iterative procedure outlined above for the ARCH model.

Bollerslev's (1987) second contribution concerned the 

specification of the conditional density. By allowing for t-distributed 

conditional errors, he points out that this 'permits a distinction 

between conditional heteroskedasticity and a conditional leptokurtic 

distribution, either of which could account for the observed 

unconditional kurtosis in the data. ' 2 3 This distinction plays an 

important role in the model's ability to fit the observed data, a point 

we will discuss further in the following section.

B. HODEL SPECIFICATION

Since part of our work concerns the differences that existence in 

the returns based on ten and thirty minute sampling intervals, we employ 
four basic estimation models with three different conditional 

distributions. Our first model assumes that there is no nonlinear 

dependence while still retaining the linear dependency through the use 

of a moving average process of order one, denoted MA(1). This is 

consistent with the findings in Chapter 3, where some of the thirty 
minute returns exhibited little evidence of higher order dependency. The 

three remaining models all take account of the nonlinear dependence and 

are denoted as an ARCH(l), ARCH(2), and a GARCH(l.l) process 
respectively.

2 3 Bollerslev (1987), p.542.



In the same manner, we include three conditional distributions to 
account for the moment structure of the ten and thirty minute return 
series. These are the normal, Student-t, and power-exponential 
distributions. Uithin each model, we first estimate the parameters based 

on the assumption of conditional normality. This is the original 
specification of the ARCH process developed by Engle. The formula for 

the normal conditional density is:

N(et,ht) - (2*htr-5 exp[ -.5(e?)/ht].

The second specification of the conditional density is the 

Student-t with reference to Bollerslev (1987). The conditional density 
is defined as:

T(et,htIdf) - rikl-rfdf/2]-1- [(df-2 )htp 3- [l+e?/(ht<df-2 ))]-k,

where F[ - ] is the gamma function, df are the degrees of freedom with the 

restriction that they be greater than two, and k-(df+l)/2. Note that as 

l/df-0 the t-distribution approaches the normal, Connolly (1989) 

suggests that for df>30 and «lt Pi>0, time-varying heteroskedasticity 

explains the leptokurtosis, while if df<1 0 , then both non-normality and 

time-varying heteroskedasticity are possible explanations. However, this 

observation seems to be more a rule of thumb rather than based on any 
statistical theory, since traditionally the Student-t is assumed to 

approach normality at approximately 30 degrees of freedom.
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The third distributional assumption we use results from Nelson's 

(1989) extension of the GARCH model with a conditional density based on 

the Generalized Error Distribution (GED) or the power-exponential (PE) 
distribution as defined by Box and Tiao (1973). Its distributional form 
is:

PE(et ,ht ,df) -  .5df-[r(3/df)]-5- ( r a / d f ) ] - 1-3-^ -  

e x p { - [ I W d f ) / r ( l / d f ) ] " ' 2-l et/htl « ) ,

where df are the degrees of freedom. If df-2 we have the normal 
distribution, while df-1 gives us the double exponential. Box and Tiao 

(1973) note that (2/df)-l gives a measure of kurtosis.

Figure 4-1 provides a graphical representation of the differences 

between these three distributions. There are several important points to 
note. The first is that where as the Student-t approaches the normal 

from below, the power-exponential approaches it from above. Hence, in 

reference to Fama's (1965a) discussion on the peakedness of his daily 

data [see footnote 8 ], the power-exponential would seem a priori to 

provide a better fit to daily data than the Student-t. By reversing our 

inferences about aggregated daily returns approaching normality, we can 

argue that intradaily returns should exhibit even greater peakedness 

while still retaining the leptokurtosis. The second point is that the 

power-exponential has a large part of its density at the mid-point of 

the distribution. This is generally consistent with a large number of 

returns at zero. In fact a comparison of the distributions in Figure 4-1 

Indicates that the power-exponential with one degree of freedom has
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roughly 12.4% of Its distribution ± 0.05 standard deviations from the 
mean as compared to 7.4% for the normal, and 7.1% for the Student-t with 
5 degrees of freedom. The last point concerns the distribution of the 

tail regions. The Student-t distributions exhibit fatter tails than the 

normal at approximately 1.7 standard deviations from the mean while the 

power-exponential distributions cross over at about 2.3 standard 
deviations. Hence, both the Student-t and power-exponential 

distributions are considered leptokurtotic with the extent depending on 

their respective degrees of freedom. For the Student-t and the power- 

exponential distributions the appropriate degrees of freedom are 

estimated in the maximum likelihood algorithm.

In terms of the actual models we estimate, we retain the two dummy 

variables discussed in Chapter 3 in both the mean and variance equation. 
As mentioned, one represents the component of the return (or conditional 

variance) which results from the bid-ask spread and the other is an end 

of day dummy. The mean equation also contains a moving average term to 

account for the autocorrelation found in the mean. Our general mean 

equation is denoted by:

rt - a0 + ajEOD + aaAD + aa®^ + et,

where the rt are the ten or thirty minute returns, a0 is the mean 

intercept, GOD is the end of day dummy, AD is the ask dummy, 

represents the moving average process, and <t are the residuals. The 

conditional distributions of the residuals include the normal, Student-
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t, and power-exponential. This equation represents our basic model that 
we denote as MA in the ensuing tables.

The variance equation has three functional forms depending on the 
degree of the ARCH process. The first is the ARCH of order one denoted 
as AR(1):

ht “ #o + ■*" 02®“OD + P3AD

The second if the ARCH of order two denoted as AR(2) with the following 
specification:

ht - o0 + aje?., + «2®t- 2 + P2 eod + P3AD

And the last is the GARCH(1,1) denoted as G(l,l):

ht - a0 + + Pî t-i + P2EOD + P3AD

Since the actual estimation requires the testing of a number of 

alternative models, likelihood ratio tests are used to determine which 

nested model fits the data better. The simple MA process is nested 

within the conditionally normal family, which is in turn nested within 

either the Student-t or power-exponential distributions. As noted by 

Akgiray (1989), the test statistic is defined as:

LR - -2lL(6n) - L{6.)),
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where 0 n and 6 a are the parameter estimates under the null and 
alternative hypothesis respectively and the L(*) are the corresponding 
maximum log-likelihood values. The statistic is asymptotically %2 

distributed with the degrees of freedom equal to the difference between 

the number of parameters under the alternative and null hypotheses [See 
Akgiray (1989), p. 6 8 ], Since the Student-t and power-exponential 

distributions are estimated separately a different test is required to 

determine the best model among them. 2 4 We choose the Pearson x2 goodness 
of fit test discussed in Chapter 3 since it provides a statistical 

comparison of the theoretical distribution based on the estimated 

parameters and the empirical distribution of the standardized residuals, 

«t/ht or rt. We also examine the standardized residuals to determine how 

well the final models have eliminated the first and second order 
dependencies found in the original data.

C. ESTIMATION RESULTS

1. Ten minute data

We begin our discussion with the ten minute data. Table 4-1 

provides the log-likelihood values for the four models with the normally 

distributed conditional errors. The underlined values indicate those 

models with the highest log-likelihood based on the likelihood ratio 

test. As can be seen in the table, the simple MA model never does better

2 4 McDonald and Newey (1988) show that the power-exponential and the 
Student-t are included in a more general family of distributions known 
as the generalized t or GT. This possibility will be pursued in future 
work.
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than Che ARCH models Indicating that higher order dependence is present 
in all the stocks. Table 4-2 has the corresponding x2 values. They 

indicate that the normal distribution provides a poor fit for all the 
ten minute return series since in all cases the null hypothesis is 

rejected at the .05 significance level.

We next turn to the Student- 1  distribution and the log-likelihood 

and x2 values found in Tables 4-3 and 4-4 respectively. Again the 

evidence suggests that higher order dependency can be found in the data 
since the MA model is superseded by the other three. The Student- 1  

models also provide a better fit to the data than the normal in 43 of 

the 60 cases, however we still find that the null hypothesis of a good 

fit is rejected in all cases. Hence, even though the fat-tailed Student- 

t distribution does better than the normal it still is unable to provide 
a very good fit to the data.

We then look at the results for the power-exponential. We again 

find that the simple MA model is out performed by the other three. We 

also find that the power-exponential begins to address the empirical 

data a little better. However in only one case, DIG, are we unable to 

reject the null hypothesis at the .05 level. We will address this issue 

in more detail later after we have determined the best model out of the 
ones we have tested.

In order to determine the best model out of the twelve possible 

cases, we first use the likelihood ratio test to determine the best 

models for each conditional distribution. These results are found in 

Table 4-7. The results are dominated by the GARCH(1,1) and ARCH(2) 

model. Since the normal results are nested within both the Student-t and
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power-exponential we are able to directly compare the log-likelihoods to 
determine if the normal is better than the other two. The evidence 

suggests that only PAC returns exhibit a conditionally normal 
distribution. This result confirms the normality tests of Table 3-3 

since this is the only stock where the Kiefer-Salmon tests for normality 

could not reject the null hypotheses. Because the estimation algorithm 

does not use a procedure that allows joint estimation of the Student-t 
and power-exponential distributions, we turn to the x2 results to 

determine the best model. Based on these results we find that in the 

case of AME, ATT, BOE, ITT, and MOB the Student-t distribution out 
performs the power-exponential. In the other nine cases the power- 

exponential is the better model.

Hence, up to this point, we have found that ten minute return data 

exhibit non-linear dependency and in general conditional leptokurtosis. 

The evidence also indicates that our assumption about the peakedness of 

the data is confirmed in nine out of the fifteen stocks sampled. 

However, we do not find strong evidence in support of a single 

conditional distribution that is able to model the ten minute return 

series. We next examine the estimation results for our fifteen stocks 

based on the best models in Table 4-7.

Table 4-8 contains the parameter estimates for the mean and 

variance equations. We first examine the mean equation. The two results 
that immediately stand out are the significant coefficients for the ask 

dummy, a2, and the moving average dummy, a3. In all cases, these 

parameters are significantly different from zero further documenting the 

effect of the bid-ask spread on the observed returns for short time
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intervals. In fact, the sign of the coefficients are all in agreement 
with previous work, with the negative moving average coefficient lending 
credence to Roll's (1984) hypothesized result concerning the bid-ask 

spread creating negative serial correlation in the observed returns. The 
results for the end of day dummy, alP are less definitive with nine of 

the stocks showing no effect on the mean return and six showing an 
effect. These results are in general agreement with those of Table 3-4 

where we looked at the effects of the end of day dummy on the 

unconditional mean and variance. The indication is that there is an end 

of day effect in the mean but it is not universal to all stocks. He next 

examine the results for the variance equation.
The first points of interest are the parameters for nonlinear 

dependence given by alt a2, anc* Pi- All of these coefficients are 

significantly different from zero except ax for ITT. In every case the 

sums are always less than one, indicating a stationary process. In 

general, the Student-t and normal models have lower measures of 

persistence in the variance than the power-exponential results. However, 

there seems to be no definitive pattern in the behavior. The results 

indicate that ARCH effects do exist in the returns of ten minute 
intervals.

Further information is obtained by looking at the end of day, p3, 

and ask, £*, parameters. Of particular interest is the fact that the end 

of day parameters are all significantly different from zero. This is in 

agreement with the results of Table 3-4 on the unconditional variances. 

Hence, this evidence collaborates previous work by Harris (1989) and 

Hood et. al. (1985) on the differences between end of day and intradaily
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returns. It also extends the literature by finding that the end of day 
effect is more likely to be found in the variance than in the mean. The 
ask dummy is less conclusive with six of the stocks showing 

insignificant results. Hence, the bid-ask effect seems to be 

predominately in the mean with some stocks exhibiting dependency in the 
conditional variance. The last column is Table 4-8 provides the 

estimated degrees of freedom for the conditional distributions. The 

power-exponential results indicate a high degree of peakedness, while 

three of the other six stocks are very close to a conditionally normal 
distribution.

In our last two tables we check the distributional and time series 

properties of the standardized residuals in order to determine (1 ) where 

the models fail to fit the empirical conditional distributions and (2 ) 
whether the models eliminate the first and second order dependence in 

the data. From Table 4-9 we see that the skewness in the data is not 

significantly different from zero in ten out of the fifteen stocks based 

on the S statistics. However, it may explain some of the high %z values 

in those stocks where there is evidence of skewness, such as ITT and 

RJR. Three of these stocks also exhibit a higher measure of skewness in 
the residuals than in the original data. 2 5 On the other hand, our 

measures of kurtosis are all in agreement with the estimated models 

since PAC is the only one with no evidence of leptokurtosis.

2 5 Hsieh (1989b) argues that the skewness and kurtosis of the 
standardized residuals should be smaller than those of the raw data if 
the coefficients of the mean equation are very small. A large increase 
in the absolute size of those two moments is then seen as evidence 
against the model.



In the last two columns of Table 4-9, we attempt to ascertain 
where the models fail to fit the empirical distributions. Since the 

total x2 measure is a sum of k independent x2s each of degree one, we sum 

the corresponding estimates of the x2 f°r the tail and mid-point regions 

of the distributions, respectively. In eleven out of the fifteen 

samples, we cannot reject the null hypothesis of an adequate fit in the 

tail regions and in eight out of the fifteen we cannot reject the null 
in terms of adequate fit over the mid-region of the distribution. In 

fact in seven out of the fifteen stocks, both the tail and mid-point 

regions are in agreement with their respective null hypotheses. Hence, 

the models for the ten minute intervals are doing a better job of 

fitting both the leptokurtosis and the peakedness of the data then we 

originally thought. This raises the possibility that a mixture of 

distributions with non-linear dependence may in fact be the true 
underlying process generating the returns.

In Table 4-10, we find that the estimated models do a fairly good 

job of eliminating the higher order dependence in the data. In nine of 

the stocks no evidence remains for either first order or second order 

dependence based on both the Ljung-Box test and lag- 1  autocorrelation 

statistics. In two of the remaining six the only evidence for dependency 

is in the absolute residuals and in two of the others there is 

dependence only in the mean. Interestingly, this first order dependence 
arises in two out of the three stocks where no such dependence existed 

in the original data. Hence, the use of a general moving average process 

of order one for all of the stocks may be inappropriate.
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In conclusion, we find that the power-exponential conditional 

distribution with a GARCH(l.l) process is the model that best fits the 

ten minute return series for the majority of the stocks in our sample. 

However, the evidence suggests that a more appropriate specification of 

the process is a mixture of distributions based on a model capable of 

incorporating nonlinear as well as linear dependence. We shall attempt 

to address this issue in future research. We now turn to an examination 
of the thirty minute results.

2. Thirty minute data

Table 4-11 provides the log-likelihood values for the four models 
with normally distributed conditional errors. As opposed to the ten 

minute results, the simple MA model does better than any of the ARCH 

models for three of the stocks indicating that higher order dependence 

may have been eliminated through the aggregation of the data. An 

examination of Table 4-12 shows that the %2 values are generally lower 

for the thirty minute returns than for the corresponding ten minute ones 

but are not significant in only three of the possible cases.

The Student-t results in Tables 4-13 and 4-14 indicate that a 

simple MA model fits several of the stocks better than any of the ARCH 

models. The x2 tests indicate that the null hypothesis of a good fit is 

rejected in every case for the Student-t models. However, the fit seems 

to be better overall for the thirty minute data than the ten minute 

data. The results for the power-exponential distribution are reported in 

Tables 4-15 and 4-16. An additional stock, ATT, is added to the list of
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stocks where the simple MA model fits better than the ARCH models. 
Hence, there are very strong Indications that unconditional
leptokurtosis is a result of the conditional leptokurtosis and not of 
any heteroskedasticity in the data. We will examine this issue in more 
detail later. The %2 results in Table 4-16 indicate that the power- 

exponential still holds the highest possibility for fitting the data 

since nine of the cases cannot reject the null hypothesis concerning the 

goodness of fit.

We next determine the best models for the data based on the 

likelihood ratio test and the x2 goodness of fit results. Table 4-17 

indicates that three of the fifteen thirty minute returns are best 
modelled as conditionally normal distributions. These are the returns 

for AME, CHE, and PAC. If we look back at Table 3-7 we see that all 

exhibited excess kurtosis, but only CHE rejected the null hypothesis of 

no skewness. The evidence in Table 3-9 shows that nonlinear dependence 

existed in the AME and CHE series but not in the PAC returns. This is in 
agreement with the estimated models since the first two are a GARCH(l.l) 

and an ARCH(2) respectively, while the third is a simple MA. 

Interestingly both AME and CHE had the lowest estimated degrees of 

freedom for their respective models in the ten minute results while PAC 

already exhibited normality. Therefore there is agreement between the 

two time series in terms of the gradual move to normality as the returns 

are aggregated. Also of note is that AME remained a GARCH(l.l), CHE 

became an ARCH(2), and PAC a simple MA as we aggregated the results. So 

there is a movement toward normality not only in the shape of the 

distribution but also in the loss of nonlinear dependence.
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The Student-t distribution yields the best model for three stocks, 

ATT, BAX, and ITT. The ten minute results for ATT indicated a 
GARCH(l.l), with the thirty minute results indicating an ARCH(2). It 
retained the general distributional shape while exhibiting less second 
order dependence. The BAX returns, on the other hand, flatten out from 

a power-exponential to a Student-t while still keeping the estimated 

GARCH(1,1) albeit lower in magnitude. Lastly, the ITT results indicate 

the same general shape for both the ten and thirty minute intervals, 

while losing their nonlinear dependence all together in the thirty 

minute returns. Hence, the pattern developing is that each stock has its 

own empirical characteristics with the aggregation leading to a 

reduction in the nonlinear dependence and/or a shift toward conditional 
normality.

Nevertheless, as was found for the ten minute results, the power- 
exponential continues to provide the best fit, in this case for nine of 
the fifteen stocks. However, the results for two stocks, BOE and MOB, 

are contrary to our previous observation. BOE goes from an ARCH(2) to an 

ARCH(l) but actually becomes more peaked as it is aggregated. One 

possible explanation for this behavior is that the high first order 

negative autocorrelation in the mean for the ten minute data was 

cancelling out in the larger returns and creating more returns close to 

zero as they were aggregated. There seems to be no way to predict this 

peculiar behavior and for now we simply document it as an idiosyncrasy 

of that particular stock. In the case of MOB, not only do the returns 

become more peaked but they also have a greater degree of nonlinear 

dependence. However, the significance of that nonlinear dependence is
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called Into question by the fact that Its parameter estimate is not 
significantly different from zero. We discuss this further in the next 

section. The remaining stocks all exhibit the same general behavior 

mentioned previously. For instance ATL, GE, and CHE go from a GARCH(l.l) 

to an ARCH(2) with the last stock becoming normal as noted above. Three 

stocks, DIG, DOW, and RJR remained power'exponential GARCH(1,1) for both 

return series, while GM and PHI went from a power-exponential 
GARCH(1,1) process to a power-exponential MA process.

We next examine the estimated parameters in Table 4-18 alluded to 

briefly in the prior discussion of the MOB results. The first point of 

interest is the lack of explanatory power for our two dummy variables in 

the mean equation. In only two cases, DIG and GE, is coefficient for the 

end of day dummy significantly different from zero at the .05 
significance level and in none of the stocks is the ask dummy 

coefficient significant. This last point is especially striking since 

the coefficient for the same dummy was significantly different from zero 

in every one of the stocks in the sample over the ten minute return 

interval. Hence, we can infer that the direct effect of the specialist's 

bid-ask spread on the return series is mitigated by the time thirty 

minutes have passed. We emphasize the above as a direct effect since for 

nine of the stocks there is still a significant moving average component 
to the mean; hence, there may still exist some indirect influence from 

the bid-ask spread on the return generating out to thirty minutes.

Turning to the variance equation, we see that the end of day dummy 

still remains strong out to thirty minutes in nine of the fifteen 

stocks. The ask effect is totally removed in every stock but BAX. Hence,



74
there is little evidence for the specialist's bid-ask spread 
significantly affecting the return generating process after thirty 
minutes have passed. Ve next examine the parameters measuring the 

nonlinear dependence, specifically alt a2, and pt. We find there is 

evidence of second order dependence but it is not always significant at 

the .05 significance level. Several of the stocks show a significant p-2 

(o2) or a q-1 (Pi) but an insignificant a2. Yet, as we already 
demonstrated with the use of the simple HA process, when these variables 

are removed, the model does worse, as measured by the likelihood ratio 

statistic. The only stocks where there is definitive evidence of ARCH or 

GARCH effects in the return series are AME, ATL, and CHE. This result 

suggests that the nonlinear dependence found in the returns using the 

Ljung-Box or autocorrelation results of Chapter 3 may be of a different 

form than that modelled here. For instance, Nelson (1989) suggests an 
exponential ARCH model as an alternative to the standard specification 

of the conditional variance equation. That possibility will be pursued 

in later work. The last column in Table 4-18 indicates that several of 
the stocks still have a peaked midpoint based on the estimated degrees 

of freedom for the power-exponential distributions. Overall, our 

results indicate that the ARCH or GARCH effects present in the ten 

minute time series has been reduced by aggregating to thirty minute 
intervals.

We examine the fit of the models and whether the first and second 

order dependencies are eliminated from the return series in the last two 

tables. Table 4-19 provides the skewness and kurtosis of the 

standardized residuals along with the Kiefer-Salmon S statistic in the
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first three columns. Only three stocks have a measure of skewness 
significantly different from zero. In terms of the kurtosis, four of the 
stocks have a higher value for their residuals than for the original 
data. This is perceived as evidence against the model. For three of the 

stocks, the hypothesized distribution is not rejected using the total x2  

goodness of fit value. They are DIG, PHI, and RJR. Hence, at least In 

terms of this test, the thirty minute data do better than the ten 

minute, where only the model for DIG could not be rejected. Looking at 
the fit of the tails and midpoint we find that all but one model, ITT, 

do well in fitting the tails of the distribution, but only four stocks 
replicate that result with the midpoint. However, that failure does not 

seem to be the main reason for the lack of fit since most of the 

rejection continues to come from the other parts of the distribution. 

This agrees with our results from the ten minute data.

Given the previous discussion, it might be perceived that the 
thirty minute models are not capable of accurately portraying our 

particular sample of stocks. However, when we look at the the tests for 

nonlinear dependence we find that only in the case of GM were we unable 

to eliminate the higher order dependence and the first order dependence 

remains only in the case of CHE. Hence, the estimated models are capable 

of dealing with the time series properties of the data, but do not 

accurately portray the true distribution.

To summarize, we have found in this chapter that ten minute data 

show significant bid-ask effects in the mean with less influence being 
found in the variance. The end of day effect is much more pronounced in 

the variance than in the mean indicating a degree of volatility not
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necessarily associated with the actual returns. This lends support to 
the French and Roll (1986) hypothesis that the trading process produces 

noise. The same data exhibit nonlinear dependency and both conditional 

and unconditional leptokurtosis, as well as peakedness in the 

distributions. On the other hand, the thirty minute data show a 

noticeable lack of bld-ask effects, except to the extent that the moving 
average term in the mean can be considered as such. The end of day 

effect continued to influence the variance of the returns much more than 

the mean. The noticeable difference in the two time intervals was the 

extent to which the shape of the distributions became more normal and 

the nonlinear dependence decreased as we aggregated the data.
These results raise several interesting questions. The first 

concerns the extent to which the end of day return can be perceived as 

simply the summation of all the intradaily returns. Given that there is 
some evidence of ARCH effects in daily stock returns, for example 

Lamoureux and Lastrapes (1990), and the degree to which the intradaily 

returns lose the nonlinear dependence, we hypothesize that the GARCH 

effects in the intradaily returns may result from a different process 

than that found in the daily returns. For instance, Lamoureux and 

Lastrapes found that by using volume as a proxy for the arrival of 

information, they were able to eliminate the significance of the ARCH 

parameters. The second question relates to the distributional 

assumptions and the evidence that a more appropriate model may in fact 

be a mixture of distributions. Ve can see from our results that the end 

and beginning of the day are different from the rest of the day. Harris 

(1989, 1987), Amihud and Mendelson (1987), and Wood, McXnish, and Ord



(1985) have all documented this. However, it seems that the difference 
Is much more pronounced In the variance than In the mean. Hence, the use 

of the conditional variances becomes a natural method by which to detect 

these differences and further investigate the behavior of returns as 

they are sampled from different parts of the day. For instance, does the 
end of day return series exhibit the same behavior as say a noon day 

return series? tfhat are the implications for the literature on excess 

volatility in stock prices if we find that the end/beginning of the day 

process is much more volatile than that of the rest of the day and seems 

to be a function of investors reactions to the closing of the market? As 

we can see, such questions quickly lead to discussions of market 

structure and the most appropriate way to achieve an efficient 
allocation of resources. Hence, we seem to have returned, albeit 

tangentially, to the question of what influence the trading process has 
on the process that generates returns.
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TABLE 4-1 

TEN MINUTE DATA 
NORMAL DISTRIBUTION 

LOG-LIKELIHOOD VALUES

N-MA N-ARCH(l) N-ARCH(2) N-GARCH(l.l)

AME 3769.78 3772.72 3774.57 37mjia
ATL 4288,18 4322.05 4344.75 4370.91
ATT 3957.09 3966.54 3967.23 3962.30
BAX 3790.54 3805.65 1814^12 3807.99
BOE 4160.11 4162.74 4176.24 4157.17

CHE 4007.21 4023.69 4024.52 4031.39

DIG 4259.00 4263.85 4261.41 4273.06
DOW 4106.78 4132.91 4138.50 4124.07
GE 3948.47 4002.45 4007.27 4010.10
GM 4249.28 4312.11 4337.91 4338.82
ITT 4332.72 4333.44 4336.45 4330.33
MOB 3962.34 3987.09 3988.00 3979.55
PAC 3610.87 3616.46 3620.41 3599.09

PHI 4105.73 4120.10 4123.91 4.125,06
RJR 3945.38 3961.01 3699.20 ?9Z9,li

The underlined figures denote the highest value based on the
Likelihood Ratio test.
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TABLE 4-2 

TEN MINUTE DATA 
NORMAL DISTRIBUTION 

X2 VALUES

N-MA N-ARCH(l) N-ARCH(2) N-GARCH(l.l)

AME 240,88 237.55 215.60 158.76

ATL 700.08 623.95 279.80 149.93

ATT 681.07 799.85 806.94 511.68

BAX 506.28 530.64 538.21 203.05
BOE 185.63 164.70 197.31 85.91
CHE 199.24 197.26 196.10 125.23

DIG 392.56 270.31 167.59 87.16

DOW 181.49 198.08 189.20 177.87

GE 755.85 626,55 640.11 181.53
GM 823.35 253.08 666.69 549.74

ITT 385.47 438,44 460.06 391.55

MOB 653.81 253.42 258.49 406.26

PAC 207.73 184.91 172.85 309.67

PHI 242.81 181.63 285.74 132.71

RJR 406.36 363.95 608.46 520.46

The x2 (20) value at the ,05 significance level is 31.41. A 
indicates that the null hypothesis cannot be rejected.
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TABLE 4-3 

TEN MINUTE DATA 
STUDENT-T DISTRIBUTION 
LOG-LIKELIHOOD VALUES

T-MA T-ARCH(l) T-ARCH(2) T-GARCH(1,1)

AME 3776.87 3780.47 3781.06 3783.67
ATL 4309.89 4282.27 4377.71 4407.65
ATT 3961.79 3970.25 3970.92 3973.51
BAX 3797.54 3817.86 3824.57 3820.16

BOE 4167.63 4170.73 4181.05 4175.65

CHE 4024.44 4031.85 4032.90 4040.65

DIG 4284.14 4291.39 4292.81 4298.49

DOW 4143.91 4162.77 4*67,32 4153.42
GE 4003,90 4020.61 4021.20 4024.18

GM 4298.86 4345.88 4359.22 4359.98

ITT 4339.97 4342.52 4343.73 4345.97

MOB 3992.77 4013.34 4014.34 4007.24

PAC 3610.41 3614.50 .3612.112 3600.55

PHI 4152.32 4162.04 4165.19 4167.19

RJR 3983.16 3996.02 3999.93 3997.35

The underlined figures denote the highest value based on the
Likelihood Ratio test.



82
TABLE 4-4 

TEN MINUTE DATA 
STUDENT-T DISTRIBUTION 

X2 VALUES

T-MA T-ARCH(l) T-ARCH(2) T-GARCH(l.l)

AME 204.88 204.26 216.56 184.86
ATL 264.95 259.06 426.14 296.31
ATT 581.54 620.62 650.92 384.21

BAX 461.46 498.07 540.05 154.94

BOE 192.29 145,69 144.87 109.31

CHE 122.58 143.56 113.46 105.49
DIG 86.35 117.56 123.78 91.99
DOW 123.88 161.08 148.78 113.12
GE 337.90 350.54 349.62 143.76
GM 381.27 356.91 229.35 192.44

ITT 462.99 467.05 591.24 418.81

MOB 428.55 305.23 295.97 403.03

PAC 191.47 189.93 203.42 244.45

PHI 196.30 171.11 204.60 114.32
RJR 442.88 422.836 547.62 230.89

The %2{19) value at the .05 significance level is 30.14. A 
indicates that the null hypothesis cannot be rejected.
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TABLE 4-5 

TEN MINUTE DATA 
POWER-EXPONENTIAL DISTRIBUTION 

LOG-LIKELIHOOD VALUES

P-MA P-ARCH(l) P-ARCH(2) P-GARCH(1,1)

AME 3778.82 3780.68 3780.76 3784.31
ATL 4374.22 4330.02 4377.76 441 5,27.
ATT 3969.16 3983.30 3989.66 2253,9.9
BAX 3823.16 3818.08 3824.52 3829.00
BOE 4172.60 4174.77 4180.69 4173.22
CHE 4023.03 4034.26 4034.97 4040.41

DIG 4284.80 4289.54 4294.57 4297.95
DOW 4146.36 4146.05 4152.68 4159., 3S
GE 4002.22 4026.68 4028.28 4030.29
GM 4310.31 4329.86 4339.75 4342,52
ITT 4339.67 4351.02 4356.17 4354.61
MOB 4015.55 4015.71 4017.62 4022.59
PAC 3607.37 3613.22 3611J X 3598.51

PHI 4143.59 4154.79 4157.41 4182.12
RJR 3988.03 3978.01 3993.28 1259,2.9.

The underlined figures denote the highest value based on the
Likelihood Ratio test.
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TABLE 4-6 

TEN MINUTE DATA 
POWER-EXPONENTIAL DISTRIBUTION 

X2 VALUES

P-MA P-ARCH(l) P-ARCH(2) P-GARCH(l.l)

AME 202.28 175.50 246.52 213.04
ATL 347.79 190.07 164.94 132.23

ATT 548.06 747.84 660.81 453.25

BAX 835.21 535.27 524.75 212.56

BOE 225.87 179.80 177.48 99.99
CHE 114.33 231.52 172.32 79.64

DIG 78.97 117.85 45.92 26.52#

DOW 381.32 41.28 52.24 40.13

GE 432.80 314.45 459.77 74.24

GM 331.87 369.50 392.99 135.02
ITT 368.15 551.67 502.46 367.52
MOB 1105.49 429.52 477.62 479.02

PAC 223.60 192.15 162.28 315.32

PHI 130.01 141.54 113.94 46.78

RJR 1207.43 364.196 494.17 205.75

The x2(19) value at the .05 significance level is 30.14. A 
indicates that the null hypothesis cannot be rejected.
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TABLE 4-7 

TEN MINUTE DATA 
COMPARISON OF BEST MODELS FROM EACH 

CONDITIONAL DISTRIBUTION

NORMAL STUDENT-T POWER-EXP

AME 3780.02o 3784.31G

ATL 4370.91G 4407.65G

ATT 3966.54a1 3993.980
BAX 3814.12a1 3824.57*! 3829.00*

BOE 4176.24*2 41£I.J2£A2 4180.69*2
CHE 4031.39g 4040.65g 4040.41*

DIG 4273.06g 4298.49g 42S7,250
DOW 4138.50*2 4167.33*2 41?0,3Qg
GE 4010.10G 4024.18G 4P10,29g
GM 4338.82G 4359.98G 4342.S2g
ITT 4336.45A2 4.341,.9 7g 4356.17*2
MOB 3987.09*! 4013, 4022.590

PAC 362.0,41*2 3617.17*2 3619.72*2
PHI 4125.06G 4167.190 4X62,12»
RJR 3979.15G 3999.93*2 3999 ,2?g

The underlined figures denote the best conditional distribution 
based on the Likelihood Ratio or goodness of fit test. The subscripts 
denote the corresponding variance specification.
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ATLp

ATTt

BAXp

BOE,

CHEP

DIGp

DOWp

GEP

GHf

ITTt

HOB,

PAC„

PHIp

RJRp

TABLE 4-8
TEN MINUTE DATA

ESTIMATION RESULTS

Mean equation Variance equation
«1 •» «. «i «1 Pi P. Pj v&t

00 00 00

-.056 .172 .079
(-3.79) (2.3*) (3.36)

-.026 .075 .036
(-*.21) (3.02) (*.22)

-.0*1 .059 .073
(-3.04) (1.29) (*.01)

-.061 .16* .116
(-5.02) (2.7*) (6.52)

-.0*0 .023 .059
(-*.67) (0.67) (*.92)

-.036 .008 .062
(-3.50) (0.20) (*.23)

-.046 .16* .06*
(-6.11) (4.86) (5.67)

-.01* .135 .056
(-1.81) (3.81) (4.76)

-.016 .176 .036
(-1.97) (3.60) (2.50)

-.016 .036 .073
(-2.60) (1.31) (7.99)

-.026 .061 .0*4
(-3.73) (1.62) (3.66)

-.036 .057 .046
(-3.61) (1.10) (3.23)

-.069 .028 .106
(-5.25) (0.60) (5.28)

-.013 .071 .051
(-1.50) (1.51) (4.10)

-.027 .126 .056
(-2.76) (1.91) (3.64)

00000

-.191 .276
(-5.17) (3.03)

-.117 .015
(-4,17) (0.36)

-.197 .078
(-5.13) (1.22)

-.203 .062
(-6.05) (1.22)

-.292 .307
(-6.73) (8.08)

-.258 .077
(-6.81) (1.33)

-.165 .000
(-4.64) (0.00)

-.118 .017
(-3.91) (0.33)

-.179 ,06B
(-4.97) (1.26)

-.111 .030
(-3.64) (0.82)

-.189 .151
(-5.86) (2.76)

-.196 .372
(-6.07) (7.57)

-.500 1.13
(-16.3) (6.46)

-.103 .077
(-3.37) (1.67)

-.099 .1*7
(-3.18) (2.48)

.073 -- .615
(2.59) (9.59)

.111 -- .791
(3.86) (18.87)

.099 —  .700
(3.04) (11.42)

.09* —  .735
(3.27) (16.13)

.115 .15*
(2.59) ( *.67)

.227 —  .675
(4.41) (11.49)

.175 —  .721
(3.58) (16.21)

.160 —  .716
(3.61) (13.91)

.203 —  .635
(5.04) (11.55)

.204 —  .664
(3.57) ( 9.71)

.037 —  .398
(0.93) ( 3.54)

.303
(4.46)

.085 .110
(2.19) ( 2.96)

.107 -- .659
(3.04) (10.78)

.116 —  .545
(2.69) ( 9.57)

0000 00000

.235 .161 .03
(4.75) (2.03) ( 6.15)

.030 .029 .99
(2.30) (0.57) (15.24)

.075 .159 .05
(3.26) (2.44) (21.59)

.136 .212 .71
(4.10) (2.97) (23.55)

.140 .138 .03
(4.83) (2.35) ( 3.07)

.051 .038 .69
(2.38) (0.62) (13.71)

.060 .089 .74
(2.90) (1.77) (82.50)

.049 .113 .63
(2.19) (1.96) (130.9)

.091 .140 .72
(2.66) (2.16) (14.12)

.041 .083 .98
(2.14) (1.86) (23.12)

.105 .130 .14
(3.26) (2.70) (18.71)

.222 .400 .15
(3.15) (4.46) (24.10)

.161 .631
(2.63) (4.23)

.102 .009 .66
(3.89) (1.67) (16.50)

.245 .191 .82
(4.07) (2.51) (15.49)

The t-statistics are in parentheses.
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TABLE 4-9

TEN MINUTE DATA
DISTRIBUTIONAL TESTS ON RESIDUALS

skew kurt S
stat

X2
Total

X2
Tail
region

X2
Midpoint
region

AME -.039 0.569 0.23 184.86 2.03# 43.85
ATL .025 2.521 0.09 132.23 0.30# 5.60#
ATT -.031 0.539 0.15 384.21 12.29 57.25

BAX . 0 1 0 0.704 0 . 0 1 212.56 2 .2 0 # 8.32

BOE -.013 0.832 0.03 144.87 2.73# 4.01#
CHE .024 0.774 0.17 79.64 4.42# 0.75#
DIG . 0 0 2 1.577 0 . 0 0 26.52# 2 .2 0 # 0 .1 0 #

DOW - . 0 1 2 1.544 0 . 0 2 40.13 0.15# 1.06#

GE - . 0 1 0 0.980 1.65 74.24 3.92# 23.75

GM .017 2.834 4.61* 135.02 9.42 2.30#

ITT -.191 0.877 5.55* 418.81 13.74 48.77

MOB -.214 2 . 2 2 1 6.95* 305.23 18.45 67.32

PAC -.223 0 . 0 0 0 7.50* 172.85 0.77# 11.09

PHI .031 2.315 0.14 46.78 4.04# 5.82#

RJR .180 1.642 4.92* 205.75 0.72# 5.41#

The x2( l )  value for the S statistic at the 0.05 significance level 
is 3.84. An '*' represents significance at the .05 level. A '#' 
indicates that the null hypothesis cannot be rejected using the x2 
goodness of fit tests.
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TABLE 4-10

TEN MINUTE DATA
TESTS FOR NONLINEAR DEPENDENCE ON RESIDUALS

LB(6 )
r

LB(6 )
r2

LB(6 )
Irl

AUTOCORRELATION 
r r2

FOR LAG-1
trl

AME 4.86 20.16* 15.16* -.024 .003 .016
ATL 5.43 7.85 10.40 .007 .073 .087
ATT 6.72 2.18 5.25 -.018 . 0 1 0 .019
BAX 7.17 2.91 4.39 -.035 .003 .027
BOE 2 . 2 1 10.44 14.11* .003 -.036 -.030
CHE 6.80 7.33 7.34 .060 -.019 -.042

DIG 33.38* 4.32 4.03 .109* -.007 . 0 1 1

DOW 16.88* 5.73 6.42 .079* .058 .069
GE 10.89 3.86 7.12 .057 .047 .042

GM 3.84 3.97 7.96 .013 .006 - .019

ITT 4.49 5.13 3.94 .009 - . 0 0 2 - . 0 0 1

MOB 8.74 46.92* 28.11* .063 -.046 -.038

PAC 3.16 12.83 14.58* -.014 -.007 -.007

PHI 8.07 2.58 5.35 .032 .031 .038

RJR 4.79 3.17 7.53 .050 - .008 - . 0 1 0

The critical values for the Ljung-Box, LB(6 ), statistic at the 
0.10, 0.05, and 0.01 significance level are 10.64, 12.59, and 16.81 
respectively. An '*' represents significance at the .05 level.
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TABLE 4-11 

THIRTY MINUTE DATA 
NORMAL DISTRIBUTION 

LOG-LIKELIHOOD VALUES

N-MA N-ARCH(l) N-ARCH(2) N-GARCH(l.l)

AME 1182.21 1187.71 1188.64 1189.66

ATL 1349.03 1355.80 1353 J 3 1359.48
ATT 1244.68 1243.89 12-5.0,70 1244.07

BAX 1173.13 1176.29 1176.32 H42., »x
BOE 1330.38 1334^69 1334.70 1329.53

CHE 1265.19 1280.33 1285.14 1285.61
DIG 1317.78 1318.67 1318.74 1320.68

DOW 1252.38 126,9.21 1260.46 1260.20

GE 1228.42 1231.61 1237.30 1234.81

GM 1345.25 1345.66 1345.66 1341.55

ITT 1367.15 1367.46 1367.48 1366.37

MOB 1256.83 1263.50 1264.28 1264.95

PAC 1198.89 1198.89 1199.36 1197.47

PHI 1264.37 1269.13 1268.48 1264.18

RJR 1216.84 1217.78 1222.07 1 2 2 2 . 0 2

The underlined figures denote the highest value based on the
Likelihood Ratio test.
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TABLE 4-12 

THIRTY MINUTE DATA 
NORMAL DISTRIBUTION 

X* VALUES

N-MA N-ARCH(l) N-ARCH(2) N-GARCH(1,1)

AME 18.10# 43.28 2 0 .1 1 # 27.23
ATL 70.87 70.47 48.00 107.78
ATT 144.60 212.41 1 2 0 . 1 2 187.23
BAX 66.25 76.49 75.98 63.54

BOE 123.43 147.31 68.56 6 6 . 8 6

CHE 29.74 30.84 41.38 47.50

DIG 42.98 38.17 34.75 19.31
DOW 67.46 29.44 21.71# 26.43

GE 43.38 62.14 27.93 50.50

GM 105.17 92.13 84.51 178.91

ITT 151.92 141.59 146.30 155.13

MOB 141.39 151.82 186.03 218.93

PAC 6 8 . 8 6 61.54 49.60 51.91
PHI 55.22 59.63 68.76 66.15

RJR 49.30 77.19 23.92 55.72

The xz(14) value at the .05 significance level is 23.68. A '#'
indicates that the null hypothesis cannot be rejected.
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TABLE 4-13 

THIRTY MINUTE DATA 
STUDENT-T DISTRIBUTION 
LOG-LIKELIHOOD VALUES

T-MA T-ARCH(l) T-ARCH(2) T-GARCH(l.l)

AME 1179.22 1182.59 1183.11 m i . 5 2
ATL 1371.20 1376.17 1380.16 1377.33
ATT 1248.74 1250.72 1255., 52 1251.60
BAX 1182.85 1186.77 1186.97 n s o e
BOE 1339.27 1341.39 1343.51 1342.14

CHE 1272.17 1283.05 1284.86 1286.46

DIG 1315.86 1320.91 1323.26 1328.00
DOW 1271.50 1278.11 1279.74 1279.04

GE 1241.22 1242.28 1240.41 1245.89
GM 1361*39 1362.30 1361.90 1366.04

ITT 1371.63 1372.54 1372.63 1371.29

MOB 1263.33 1559.03 1260.88 126.7,0$
PAC U98.*M 1196.14 1198.98 1197.89

PHI 1285.57 1280,58 1285.06 1288.13

RJR 1228.81 1228.96 1232.27 1235.74

The underlined figures denote the highest value based on the 
Likelihood Ratio test.
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TABLE 4-14 

THIRTY MINUTE DATA 
STUDENT-T DISTRIBUTION 

X2 VALUES

T-MA T-ARCH(l) T-ARCH(2) T-GARCH(l.l)

AME 34.05 37.76 37.56 22.62
ATL 78.29 130.05 78.19 105,68

ATT 158.04 220.43 174.99 185.53

BAX 86.62 121.93 104.17 64.75

BOE 141.89 140.99 142.19 105.27
CHE 33.15 57.33 67.16 40.47
DIG 77.09 68.56 60.64 33.95
DOW 71.47 59.93 62.14 69.16

GE 54.72 69.86 162.05 68.26
GM 115.71 125.04 124.44 129.95

ITT 166.17 146.10 143.19 182.92

HOB 90.23 183.72 140.89 68.36

PAC 71.67 153.83 49.80 64.35

PHI 57.43 89.73 79.09 69.86
RJR 79.80 67.86 39.27 48.10

The %2(13) value at the .05 significance level is 22.36. A
indicates that the null hypothesis cannot be rejected.
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TABLE 4-15 

THIRTY MINUTE DATA 
POWER-EXPONENTIAL DISTRIBUTION 

LOG-LIKELIHOOD VALUES

P-MA P-ARCH(l) F-ARCH(2) P-GARCH(1,1)

AME 1183.94 i m j . 2 1187.54 1189.91
ATL 1363.43 1368.26 1375,J>1 1373.68
ATT 1254.87 1256.24 1257.43 1255.70
BAX 1184.70 1188.29 1190.66 1200.36

BOE 1341.27 1345,34 1344.96 1345.19

CHE 1267.03 1282.27 1285.78 1286.36

DIG 1324,15 1325.86 1325.35 1327,81
DOW 1261.26 1273.99 1276.46 i m j s
GE 1238.25 1237.43 1246.35 1244.62
GM 1360.87 1360.92 1361,24 1360.31
ITT 1373.08 1373.55 1374.24 1372.97

MOB 1264.25 1268.23 1269.69 1269.74

PAC U99,* 5 1199.43 1200.04 1201.40

PHI 1257.44 1287.31 1287.96 1288.14

RJR 1228.08 1228.54 1231.30 x m j s o

The underlined figures denote the highest value based on the
Likelihood Ratio test.
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TABLE 4-16 

THIRTY MINUTE DATA 
POWER-EXPONENTIAL DISTRIBUTION 

X2  VALUES

P-MA P-ARCH(l) P-ARCH(2) P-GARCH(l.l)

AME 12.59# 45.99 25.93 27.03

ATL 56.52 60.84 49.60 56.52

ATT 178,20 206.19 199.67 233.58

BAX 80.99 196.26 231.57 399.01

BOE 6 8 . 8 6 78.19 51.71 80.60

CHE 2 1 .1 1 # 31.44 44.89 38.27
DIG 18.60# 25.63 32.95 17.90#
DOW 19.51# 39.57 41.68 44.59
GE 40.87 61.24 46.29 118.42
GM 79.29 56.32 53.11 102.87
ITT 316.64 284.54 308.31 237.79

MOB 104.57 77.89 63.64 49.10

PAC 114.70 111.50 100.36 221.54

PHI 13.89# 20.81# 34.35 18.20#

RJR 34.15 38.68 14.59# 19.91#

The x2(13) value at the .05 significance level is 22.36. A '#'
indicates that the null hypothesis cannot be rejected.
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TABLE 4-17 

THIRTY MINUTE DATA 
COMPARISON OF BEST MODELS FROM EACH 

CONDITIONAL DISTRIBUTION

NORMAL STUDENT-T POWER-EXP

AME 118*.,6iG 1189.53g 1188.12*1

ATL 1363.33*2 1380.16*2 1375.01*,
ATT 1250.70*2 12U.,22a3 1254.87h*
BAX 1182.81g 118.8,26c 1200.36g

BOE 1334.69a1 1343.51*2
CHE 1.2 $ 5 J  4*2 1286.460 1286.36c
DIG 1320.68c 1328.00G i m  Mo
DOW 1260.31m 1278.11*1 IZJZ.Ha
GE 1237.30*2 1245.890 1 2 *6 ,. ? 5 * 2

GM 1345.25„* 1365.39„* 1360.87^
ITT 1367.15„* 1371, U ma 1373. 08„a

MOB 1263.50*! 1267.06g 12,69,.74g

PAC U94.89H* 1198.88„* 1199.45„*

PHI 1269.13*1 1285.57h*

RJR 1222.07*2 1233.74g 123_l.,20c

The underlined figures denote the best conditional distribution 
based on the Likelihood Ratio or xz goodness of fit test. The subscripts 
denote the corresponding variance specification.
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RJRp

TABLE 4-18
THIRTY MINUTE DATA
ESTIMATION RESULTS

Mean equation Variance equation
►, l/d£

00 00 00 0000 0000 00000

-.019 .121 .015 -.259 .143 .305
(-0.39) (1.23) (0.25) (-3.SO) (2.30) (2.93)

.196 .404 .000
( 1.23) (3.24) (0.00)

.025 .004 -.033 -.151
( 0.68) (0.10) (-.83) (-2.44)

.056 .207 .197
(3.75) (2.47) (2.79)

.055 .050 .65
(1.54) (0.30) (27.01)

-.014 .081 .009 -.139
(-0.27) (1.21) (0.16) (-2.52)

.167 .026 .131
(3.30) (0.32) (1.71)

.194 .000 .15
(1.92) (0.00) (10.35)

-.071 .030 .107 -.139 .010 .063
(-1.61) (0.36) (1.87) (-2.55) (0.39) (1.03)

.529 .255 1.21 .14
( 4.40) (2.42) (3.25) ( 2.35)

.022 .020 -.034 -.136
( 0.60) (0.36) (-.81) (-2.06)

.104 .201
(4.90) (1.74)

.096 .000 .70
(2.08) (0.00) (79.51)

-.027 -.014 -.023 -.165
(-0.63) (-.27) (-.48) (-2.33)

.083 .448 .093
(2.86) (5.53) (1.87)

.077 .101
(1.74) (0.33)

-.035 .153 .010 .019 .027 .081
(-0.77) (2.45) (0.19) ( 0.31) (1.03) (1.30)

.632 .105 .000 .73
( 4.61) (2.61) (0.00) ( 9.28)

.042 -.059 -.038 -.034
( 0.97) (-.78) (-.77) (-0.56)

.098 .316
(1.63) (1.91)

.209 .238 .000 .88
( 0.85) (1.94) (0.00) (13.79)

-.008 .190 -.019 -.110
(-0.19) (2.49) (-.40) (-2.03)

,137 .096 .337
(3.08) (1.24) (2.14)

.312 .000 .78
(1.86) (0.00) ( 9.45)

-.009 -.012 .000 -.069
(-0.33) (-.21) (0.02) (-1.38)

.073
(3.20)

.134 .341 .68
(2.60) (1.84) (44.53)

-.033 .042 .037 -.074 .079
(-1.00) (0.70) (1.00) (-1.45) (3.56)

.154 .102 .09
(3.15) (0.41) ( 1.82)

.061 .020 -.086 -.104 .051 .174
( 1.10) (0.29) (-1.4) (-1.65) (1.13) (1.83)

.407 .161 .132 .76
( 2.29) (2.19) (0.37) (33.53)

-.027 -.038 .024 -.265 .233
(-0.50) (-.50) (0.39) (-4.84) (4.79)

.128 .842
(1.87) (1.52)

-.036 .014 .042 -.076 .192
(-0.79) (0.22) (0.84) (-1.63) (3.85)

.242 .000 .94
(2.23) (0.00) (11.92)

-.059 .106 .037 -.095
(-1.24) (1.38) (0.70) (-1.96)

.079 .004
(1.28) (0.07)

.361 .275 .000 .77
( 2.99) (2.70) (0.00) (96.04)

The t-statlstics are in parentheses.
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TABLE 4-19

THIRTY MINUTE DATA
DISTRIBUTIONAL TESTS ON RESIDUALS

skew kurt S
stat

X2
Total

X2
Tall
region

X2
Midpoint
region

AME .081 0.188 0.35 27.33 0.87# 3.26#

ATL .176 2.251 1.63 49.60 1.47# 14.60

ATT .224 1.558 2.64 174.99 4.83# 74.37

BAX .090 1.118 0.43 64.75 3.64# 30.97

BOE -.089 1.585 0.42 78.19 2 .2 0 # 23.66

CHE .125 0.382 0.83 41.38 1.69# 7.73

DIG - . 2 1 1 1.916 2.34 17.90# 0.43# 0.83#

DOW .335 5.583 5.91* 44.59 2.41# 5.51#

GE - .287 2 . 0 1 2 4.34* 46.29 0.48# 9.07

GM -1.118 5.709 65.91* 79.29 0 .1 1 # 35.91

ITT - . 1 0 1 1.288 0.53 166.17 8.41 47.27

MOB .113 0.641 0 . 6 8 49.10 0.27 # 24.41

PAC -.262 0.246 3.63 6 8 . 8 6 4.44# 22.44

PHI .078 2.325 0.32 13.89# 2 .0 0 # 2.67#
RJR .464 2.289 11.33 19.91# 0.78# 7.28

'Hie xz( l )  value for Che S statistic at the 0.05 significance level 
is 3.84. An **' denotes significance at the ,05 level. A '#' indicates 
that the null hypothesis cannot be rejected using the x2 goodness of fit 
tests.
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TABLE 4-20

THIRTY MINUTE DATA
TESTS FOR NONLINEAR DEPENDENCE ON RESIDUALS

LB(6 )
r

LB(6 )
r2

LB<6 )
Irl

AUTOCORRELATION 
r r2

FOR LAG-1
Irl

AME 4.46 1.39 2.90 -.007 .037 .016
ATL 7.97 4.87 5.52 .071 -.033 .007
ATT 4.23 1.69 3.77 .006 -.028 . 0 2 0

BAX 3.57 3.04 7.62 -.004 .018 .049

BOE 4.83 6 . 2 0 8.16 -.006 -.045 -.017

CHE 13.48* 4.86 10.82 .003 .017 - . 0 1 2

DIG 9.17 4.10 3.85 .054 .076 . 0 2 1

DOW 8 . 2 0 0.60 5.15 .084 .006 . 0 1 1

GE 7.77 4.68 4.50 .058 .095 -.013

GM 6.77 23.23* 9.52 .023 .038 .033
ITT 2.28 2.50 3.83 . 0 1 1 .052 .043

MOB 7.17 5.97 7.26 .053 .019 -.003
PAC 9.33 5.27 5.14 ,025 .005 .060

PHI 3.72 3.23 3.51 .048 .005 .038

RJR 11.24 7.46 9.91 .005 -.071 -.088

The critical values for the Ljung-Box, LB(6 ), statistic at the 
0.10, 0.05, and 0.01 significance level are 10.64, 12.59, and 16.81 
respectively. An represents significance at the .05 level.



CHAPTER 5
ARCH EFFECTS AND INFORMATION ARRIVAL

As we noted in Chapter 4, the presence of nonlinear dependence in 

ten minute return intervals raises the question as to the causes of this 

dependence. Lamoureux and Lastrapes (1990) posit that the flow of 

information to the market may dictate the time series behavior observed 

over fixed intervals of calendar time. Since information is not easily 

measured, they use contemporaneous daily volume as a proxy for the 
amount of information that arrives to the market.

In this chapter, we examine the role of information proxies in 

explaining the ARCH effects observed in the ten minute return series. 
Since our concern is with a proxy for information, there are several 

possible variables that we can use in our analysis. One of these, 

changes in the specialist bid-ask spread, has already been incorporated 

in our work from Chapter 4. Our results show that for some stocks the 

specialist bid-ask spread is a statistically significant component of 

the estimated conditional variance. We should point out that this effect 

is restricted to the intercept term and not the lagged variance or 

squared error terms. Two other variables of interest are volume and the 

number of transactions over a given period. Volume remains of interest 

over ten minute intervals since it may indirectly affect the setting of 

the bid-ask spread and the specialist's inventory. The number of 
transactions, on the other hand, provide a simpler measure of 

information arrival while eliminating some of the indirect effects 

associated with the use of volume. We examine the GARCH estimates for

99



100
our ten minute time Intervals when these two variables have been 
incorporated in the variance equation.

In the first section of this chapter, we introduce the relevant 
notation along with a short review of the theory on information arrival. 

We also discuss the difference between the specification we use for the 
variance equation and that used by Lamoureux and Lastrapes (1990). In 

the final section, we present our results and a discussion of their 
implications for the GARCH effects found in the ten minute interval 
data.

A. THEORY AND MODELS

Mandelbrot and Taylor (1967) are the first authors to postulate 
that the flow of transactions may account for the distributional 

properties of returns measured over fixed time intervals. They develop 

a subordinated stochastic process with cumulative volume or number of 

transactions as the directing process. The variable of interest or stock 

price, pt, is then measured over a time scale based on the volume of 
transactions rather than calendar time. As a result, the observed 

returns or rb, when measured over calendar time, are subordinated to the 

Pt with the cumulative volume or number of transactions being the 
directing process.

Lamoureux and Lastrapes (1990) apply this concept to the ARCH 

process with the information flow acting as the directing process. Using 

their notation, the et are represented as the sum of a random number of
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intraday equilibrium price increments We can express the above as
follows:

"t
et “ E #it>i-i

where nt represents the amount of information that arrives to the market 

over a particular calendar time interval. By assuming that the 6X are 

independent and identically distributed then the et, conditional on the 
nt, are normally distributed, given that the nt are sufficiently large. 
This asymptotic normality of the conditional distribution is based on 

the Central Limit Theorem. Finally, by assuming serial correlation in 

the daily number of information arrivals, the authors provide a precise 

measure of the variance of et conditional on nt that captures the 

nonlinear dependence found in the ARCH process. Hence their conditional 
variance equation can be written as:

ht — #o + + Piht-! + P*Vtl

where the Vt represents the volume of trading for a given day. Several 

points need to be further clarified. The first concerns the application 

of this model to intradaily returns. Given the above assumption 

concerning the 8 * the use of other conditional distributions is valid as 

long as they converge to the normal asymptotically. The second point is 

that this representation is based on the relationship between ARCH 

effects and a proxy for information and not the actual information 

process itself. And our last point is related to the use of
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contemporaneous volume in the variance equation. This specification 
creates a simultaneity bias in the estimation procedure since the 
conditional variance is based on past values of the variables of 
interest by definition.

Lamoureux and Lastrapes circumvent this problem by assuming that 

volume is weakly exogenous as defined by Engle, Hendry, and Richard 

(1983), i.e., there is no loss of information from estimating the 

parameters of the model conditional on the contemporaneous volume. 

However, whether this is actually the case is unclear since exogeneity 
refers to the effect of the variables in the second or variance equation 

on the estimation of the parameters in the first or mean equation. 2 6 In 

order to avoid this ambiguity, we elect to use lagged variables for the 

volume and number of transactions. This specification retains the 

forecasting components of the model while also allowing a test of the 

information hypothesis. Hence our G(l,l) model will have the following 

form for the volume analysis:

ht - « 0 + ■*" Pî t-i + P2 EOD + P3AD +

where Vt_! represents lagged volume. The transaction equation has the 

same form except that is replaced by Tt.j. Note that the appropriate 

specification for the ARCH(l) or ARCH(2) processes can be substituted in 

the above equation when required. We use those processes with the

2 6 A more detail explanation of exogeneity can be found in Engle, 
Hendry, and Richard (1983). The particular simultaneous equations system 
must have a number of specific properties for the concept to hold. Of 
particular note is that block diagonality of the information matrix is not 
sufficient for weak exogeneity.
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underlined log-likelihoods In Table 4-7 as our base models. Estimation 

is carried out by the same maximum likelihood procedure discussed 
previously.

B.ANALYSIS AND ESTIMATION RESULTS

Before we begin the estimation of the two models, we look at 
graphical illustrations of the estimated conditional variances from the 

results of Chapter 4 and the associated trading volume. Figures 5-1 

through 5-15 contain the intradaily conditional variances and the 
intradaily volume for each individual stock when they are grouped 

according to the time of day. For instance, the top graph in Figure 5-1 
represents the means of the conditional variances for each ten minute 

interval of the day as estimated from the associated model in Chapter 4. 

The corresponding results for the volume are given in the bottom graph.

The first point worth mentioning is the discernible U-shaped 

pattern that arises in the graphs of the conditional variances. This 

result is very similar to the pattern of standard deviations found in 

Wood, Mclnish, and Ord (1985). A closer inspection of the results 

indicate that for some stocks the high conditional variance at the 
beginning of the day decreases gradually until reaching a minimum at 

around midday, while for other stocks, such as BOE and ITT the minimum 

is achieved within the first hour of trading. The high to low ratio for 

the variances ranges from 7 to 2.5 indicating a definite difference in 

the trading process across the day. Of particular note is the rapid rise 

in the conditional variance across all stocks in the last half-hour of
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trading. These results support the contention of our earlier work 
concerning a mixture of distributions for the intradaily returns.

Perhaps one of the most interesting findings is the approximate 
agreement between the best conditional distribution and the patterns 

found in the graphs. For instance, a rapid drop in the conditional 

variances is generally associated with the Student-t distribution since 
the fatter tails are probably a result of the relatively infrequent, yet 

high variances. On the other hand, those stocks with a power-exponential 
distribution have a graph with a very gradual decline in the conditional 

variances. However, these findings are purely observational and further 

study of the actual relation is left for a later date.

Turning to the graphs of the intraday volume, we find a similar 

pattern in the beginning of the day results but a noticeable lack of 
activity at the end of day. Hence, it would seem that the volume- 
variance relationship is most prevalent at the beginning of the day with 

an increase in volatility being associated with higher volume. However, 
the same result does not hold at the end of day. One possible 

explanation for this result is that the number of limit orders is much 

higher at the beginning of the day, thereby requiring an associated 

increase in volume in order to move the price of the stock. On the other 

hand, the end of day limit orders may be relatively sparse allowing the 

price of the stock to move quite rapidly with very little volume. This 

remains simply conjecture since a more in depth analysis of the 

specialist's activities during these periods is required before any 
concrete answers can be given.
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In terms of the question at hand, the affect of Information on the 

observed ARCH estimates, there would seem to be some support for the 

Idea of a volume proxy, at least at the beginning of the day. However, 
we must look at our estimation results before we draw any 
conclusions. 2 7

Table 5-1 provides the log-likelihood values and associated 

degrees of freedom for the estimated volume and transaction results. The 

underlined values indicate that those are the only models where the 

estimated log-likelihoods are higher than the models in Chapter 4 using 

the Likelihood ratio test. Hence, from that standpoint the inclusion of 

the lagged volume or transaction variable has added no explanatory power 
to the model. Nevertheless, we still wish to see what affect these 

variables have on our ARCH estimates since the results of the Lamoureux 

and Lastrapes work are so conclusively in favor of the information 

hypothesis.

With this in mind, we turn to Tables 5-2 and 5-3 which have the 

volume and transaction results respectively. A quick inspection of the 

last column in Table 5-2 indicates that in no instance does the lagged 

volume have a statistically significant parameter estimate for 

However, a comparison of the p,q estimates with those for the original 

models in Table 4-8 indicates that inclusion of the lagged volume does 

in fact lower the values for the Oj's, #2 >s> flnd Pi's. In seven of the 
fifteen stocks the values for those parameters are reduced to the point 

that they are not significantly different from zero. Hence, there does

2 7 Some of the volume results have noticeable spikes in the middle 
of the day. These spikes are associated with large block trades during 
one particular day, especially in the case of Pacific Gas & Electric.
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seem to be some relationship between lagged volume and the ARCH process, 
but the results would Indicate that the Information hypothesis based on 
a volume proxy does not hold in the case of ten minute returns.

Table 5-3 contains the results for the transaction variable. An 

examination of the last column Indicates that four of the fifteen stocks 

have a possible lagged transaction effect. We see that the inclusion of 

this variable does again change the ARCH estimates, in particular the 
estimate for a!. Seven of the stocks show parameter estimates that are 

not significantly different from zero. However, the parameter (J* for DOW 

and GM, the only two stocks with a higher log-likelihood ratio than for 

the original models, is not significantly different from zero. Hence, 

the inclusion of the transaction variable, while improving the overall 
explanatory power of the model for these two stocks, does not explain 

the GARCH effects. Our conclusion is that the information hypothesis is 

not supported for either the volume or transaction data at the ten 
minute return interval. 2 8

In our last four tables, we provide results on the overall fit of 

the preceding models. The Indication is that the information proxies 

affect the time series results of the estimation procedure much more 

severely than the distributional properties. Many of the models are 

unable to eliminate the high order dependence in the data, a probable 

result of the lower estimates. The evidence suggests that

multicollinearity is being induced by the inclusion of the 'information' 

variables. Hence, our use of the volume and transaction proxies is

2 8 We also perform the estimation with contemporaneous volume and 
transactions but no significant difference is found in the results.
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creating econometric problems that cloud any inferences we can make 
concerning the role of Information in creating the ARCH effects.

In conclusion, the results of this chapter indicate that when an 

information proxy is specified on the basis of lagged volume or 
transaction data the overall fit of the model is reduced along with a 
perceptible drop in the explanatory power. One possible explanation is 

that the time interval used is too short to reflect trading based on new 

information. This would then weaken the relationship between information 

arrival and proxies such as volume or the number of transactions. 2 9 In 

any case, the hypothesis that the ARCH effects result from the flow of 

information to the market is not discredited. Ve simply have shown that 
the amount of volume and the number of transactions are not appropriate 

proxies. Hence, our results along with our preceding discussion of the 
simultaneity bias inherent in the use of contemporaneous variables 

indicate that a much more extensive examination of the econometric as 

well as financial issues inherent in the information hypothesis are in 

order.

2 9 Heiner's (1983) 'competence-difficulty' gap or C-D hypothesis 
provides some rational for the difficulty of market participants to 
rapidly assimilate new information.
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FIGURE 5-2
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FIGURE 5-3
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FIGURE 5-4 
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FIGURE 5-5 

BOEING
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CONDITIONAL VARIANCE

M

M

*•«i

VOLUME

«■



FIGURE 5-6 
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FIGURE 5-7 
DIGITAL
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FIGURE 5-8 

DOW CHEMICAL 
CONDITIONAL VARIANCE AND VOLUME
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FIGURE 5-9

GENERAL ELECTRIC
CONDITIONAL VARIANCE AND VOLUME
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FIGURE 5-10 

GENERAL MOTORS 
CONDITIONAL VARIANCE AND VOLUME
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FIGURE 5-11 
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FIGURE 5-12 

MOBIL
CONDITIONAL VARIANCE AND VOLUME
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FIGURE 5-13

PACIFIC GAS AND ELECTRIC
CONDITIONAL VARIANCE AND VOLUME

CONDITIONAL VARIANCE
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FIGURE 5-14 

PHILLIPS PETROLEUM 
CONDITIONAL VARIANCE AND VOLUME
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FIGURE 5-15 
RJR NABISCO 

CONDITIONAL VARIANCE AND VOLUME
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TABLE 5-1

LOG LIKELIHOODS AND DEGREES OF FREEDOM

VOLUME TRANSACTIONS

Log-likelihood 1/df Log-likelihood 1/df

AME 3771.96 .04 3780.79 .04

ATL 4394.23 .67 4405.42 .79
ATT 3929.41 .03 3965.08 . 1 1

BAX 3813.09 .83 3823.09 .99

BOE 4159.69 .03 4179.00 .03
CHE 4036.31 .79 4039.66 .85

DIG 4263.51 .98 4282.79 .74
DOW 4133.87 .58 4169.34 .84

GE 3993.20 .79 4025.17 .74
GM 4349.68 1 . 0 0 4353.80 .80

ITT 4333.87 .17 4344.10 . 2 0

MOB 3963.52 .03 4007.36 .03

PAC 3605.51 -- 3612.67 --

PHI 4131.54 .85 4154.01 . 6 6

RJR 3993.69 .77 3986.59 .95

The underlined figures denote those models with a higher log-
likelihood than the results of Chapter A based on the Likelihood Ratio
test.
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AMEt

ATLP

ATTt

BAXp

BOEt

CHEP

DIGp

DOWp

GEp

GMP

1TTt

m o b t

PAC„

PHIp

RJRp

TABLE 5-2 
ESTIMATION RESULTS - VOLUME EFFECTS

Mean equation Variance equation
*1 *i Pi P* Pj P«

00 00 00

-.083 .231 .091(-6.09) (2.99) (3.97)
-.016 .072 .061(-1.72) (2.06) (3.08)
-.061 .033 .060(-3.17) (1.85) (5.02)
-.085 .233 .151(-6.39) (3.88) (7.77)
-.050 -.011 .068(-6.52) (-.39) (6.66)
-.036 .015 .062(-3.26) (0.60) (6.06)
-.056 .260 .067
(-7.22) (12.6) (6.62)
-.012 .135 ,062(-1.29) (6.01) (2.31)
-.023 .196 ,067
(-1.95) (6.77) (2.79)
-.007 .067 .057(-1.27) (1.68) (5.65)
-.026 .091 .062(-3.10) (3.61) (3.56)
-.056 .060 .081(-6.23) (1.79) (6.35)
-.066 .090 .080(-3.88) (1.80) (3.62)
-.017 .093 .063(-1.71) (1.65) (2.92)
-.023 .166 .039(-2.25) (2.65) (2.16)

0 0 0 0 0

-.208 .789(-6.65) (5.53)
-.092 .039(-2.28) (0.90)
-.256 .177(-8.31) (2.33)
-.226 .136(-7.16) (1.37)
-.270 .665(-7.17) (8.23)
-.263 .326(-6.79) (2.03)
-.130 .069(-6.12) (0.69)
-.085 .263(-1.97) (3.29)
-.190 .606(-6.31) (1.65)
-.091 .056
(-2.97) (1.02)
-.236 .221(-7.21) (2.22)
-.205 .182
(-7.13) (6.78)
-.567 1.56(-21.6) (3.16)
-.060 .352(-1.62) (3.69)
-.077 .176(-2.32) (2.67)

.000 —  .179(0.02) ( 2.16)

.138 —  .666(6.18) (10.62)

.019 -- .207(0.77) { 3.87)

.056 —  .768(1.52) (11.56)

.151 .006(2.39) ( 0.36)

.206 —  .662(3.05) ( 3.20)

.298 —  .699(3.29) ( 9.26}

.229 —  .222(3.98) ( 2.56)

.060 —  .691(3.02) ( 2.36)

.167 —  .656(2.95) ( 7.39)

.058 —  .276(1.37) ( 1.66)

.076(3.28)

.060 .220 
(1.66) ( 1.12)
.000 -- .189(0.01) ( 1.56)
.097 .660(2.16) ( 7.37)

0000 ooooo ooooo
.368 .668 .000(3.76) (6.33) (0.00)
.023 .106 .000(2.06) (2.50) (0.00)
.017 .026 .001(1.58) (0.38) (0.62)
.179 .206 .000(3.08) (1.86) (0.00)
.052 .131 .000(3.70) (1.95) (0.00)
.058 .000 .000(1.75) (0.00) (0.00)
.000 .006 .000(0.02) (0.09) (0.00)
.036 .325 .000(2.01) (6.69) (0.00)
.001 .077 .000(0.09) (0.81) (0.00)
.036 .119 .000
(1.88) (2.00) (0.00)

.021 .171 .000(1.79) (2.70) (0.00)

.030 .226 .002(3.18) (5.62) (0.73)

.176 .021 .000(2.70) (0.10) (0,00)

.262 .381 .000(3.02) (3.61) (0.00)

.187 .655 .000(6.26) (6.18) (0.00)
The t-statistics are In parentheses.
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AHG,

ATLp

ATTt

BAXp

BOEt

CHEp

DIGp

DOWp

GEp

GMp

ITTt

MOBt

PACh

FHIp

RJRp

TABLE 5-3
ESTIMATION RESULTS - TRANSACTION EFFECTS

Mean equation Variance equation
•* *1 *i *i *l 8 l 8i P4

00 00 00 OOOOO 0000 OOOOO OOOOO
-.092 .169 .116 -.156 .336 .020 -- .366 .211 .003 .067(-5.69) (3.00) (5.37) (-6.69) (2.17) (0.77) ( 3.66) (6.17) (0.03) (2.03)
-.023 .070 .036 -.126 .052 .065 —  .719 .019 .036 .000(-2.77) (2.59) (2.97) (-3.99) (0.91) (3.28) (11.66) (2.21) (0.66) (0.00)
-.060 .023 .102 -.160 .093 .017 —  .367 ,086 .063 .029(-3.99) (0.56) (5.66) (-5.02) (0.56) (0.69) ( 2.25) (2.71) (0.67) (2.00)
-.071 .160 .130 -.200 .665 .031 —  .655 .196 .611 .000(-6.57) (3.15) (7.66) (-7.66) (1.57) (0,67) ( 2.83) (2.02) (2.56) (0.00)
-.050 -.030 .069 -.261 .335 .025 .029 —  .132 .121 .028(-6.56) (-.77) (6.65) (-8.36) (6.01) (0.62) ( 1.16) (5.60) (1.79) (1.20)
-.036 .012 .060 -.256 .050 .163 —  .568 .065 .002 .038(-3.62) (0.37) (6.66) (-7.91) (0.62) (2.63) ( 5.26) (1.76) (0.02) (1.29)
-.056 .236 .069 -.11* .007 .063 —  .839 .0*9 .052 .000(-7.97) (7.65) (7.21) (-6.60) (0.09) (1.97) (13.18) (3.06) (0.92) (0.00)
-.013 .112 .053 -.080 .029 .165 —  .619 .060 .159 .019(-1.36) (2.60) (3.77) (-2.25) (0.61) (2.66) ( 6.20) (2.12) (2.69) (1.09)
-.030 .166 .069 -.166 .136 .229 —  .237 .122 .256 .016(-3.26) (3.50) (6.56) (-5.19) (1.36) (3.61) ( 2.66) (2.62) (2.83) (0.83)
-.010 .0*2 .058 -.086 .058 .167 —  .678 .025 .032 .000(-1.36) (1.67) (5.39) (-2.52) (1.06) (3.71) ( 9.28) (1.98) (0.75) (0.00)
-.025 .075 .030 -.181 .051 ,000 —  .616 .063 .082 .026(-3.25) (2.25) (2.78) (-6.19) (0.81) (0.01) ( 3.12) (3.01) (1.66) (1.60)
-.059 .063 .076 -.169 .316 .203 —  —  .308 .288 .028(-6.76) (0.63) (6.35) (-6.69) (3.50) (3.50) (6.32) (3.69) (1.25)
-.072 .027 .100 -.631 .953 .1*7 .276 — - .18* .63* .000(-6.37) (0.65) (6.35) (-12.6) (2.16) (2.63) ( 1.75) (2.65) (2.27) (0.00)
-.01* .107 .061 -.050 .021 .000 —  .619 .221 .085 .027(-1.30) (1.31) (2.70) (-1.53) (0.39) (0.01) ( 5.10) (6.16) (1.62) (1.95)
-.026 .166 .069 -.056 .086 .003 —  .296 .387 .017 .053(-2.55) (2.16) (3.67) (-2.17) (0.83) (0.15) ( 2.61) (3.09) (0.19) (2.20)
The t-statistics are in parentheses.
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TABLE 5-4

DISTRIBUTIONAL TESTS ON VOLUME RESIDUALS

skew kurt S
stat

X2
Total

X2
Tail
region

X2
Midpoint
region

AME -.043 0.771 0.28 160.79 2 .6 8 # 20.15

ATL - .032 2.586 0.15 281.89 3.50# 43.85

ATT -.190 0.620 5.49* 240.54 3.48# 1.18#
BAX -.004 0.693 0 . 0 0 228.14 5.91# 6.48

BOE -.149 1.831 3.38 208.41 1.72# 2.79#

CHE .070 0.839 0.75 104.53 5.71# 0.65#

DIG - .018 2 . 2 0 2 0.05 43.89 2.69# 5.14#

DOW -.029 1 . 6 8 6 0.13 268.62 0.06# 22.83

GE -.290 2.275 12.74* 111.53 2.76# 17.51

GM .038 1.982 0 . 2 1 240.68 15.90 27.31

ITT - .275 1.799 11.43* 332.01 22.64 42.16

MOB -.283 2.444 1 2 .1 1 * 90.40 7.64 17.11

PAC -.262 0.067 10.42* 132.81 3.8 8 # 11.72

PHI - .359 2.922 19.49* 439.19 6.59 41.29

RJR . 1 2 2 2.161 2.25 228.43 0.62# 42.74

The x2( l )  value for the S statistic at the 0.05 significance level 
is 3.84. An '*' represents significance at the .05 level. A '#' 
indicates that the null hypothesis cannot be rejected using the 
goodness of fit tests.
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TABLE 5-5

DISTRIBUTIONAL TESTS ON TRANSACTION RESIDUALS

skew kurt S
stat

X2
Total

X2
Tail
region

X2Midpoint
region

AME - . 1 0 2 0.641 1.59 104.39 0.59# 12.53

ATL .049 2.555 0.37 237.11 0 .2 0 # 33.03
ATT -.097 0.247 1.44 351.17 17.34 57.36

BAX .026 0.894 0 . 1 0 485.97 8.26 3.57#
BOE -.065 0.730 0.63 143.37 9.41 4.90#
CHE .031 0.658 0.14 84.03 4.46# 3.45#

DIG -.049 1.799 0.37 24.59* 0.53# 10.33

DOW -.059 1.438 0.53 98.99 0.50# 5.11#
GE -.063 1.005 0.60 132.13 3.22# 14.26
GM -.083 1.670 1.04 175.07 7.49 42.74

ITT - .226 0.871 7.76* 439.41 32.80 31.38

HOB - . 2 1 2 1.706 6.83* 283.33 3.75# 39.99

PAC - .235 -0.017 8.35* 203.10 2 .0 1 # 8.26

PHI - .149 2.088 3.38 87.02 3.66# 24.27

RJR .044 1.759 0.29 218.88 0.06# 1.38#

The x2 (l) value for the S statistic at the 0.05 significance level 
is 3.84. An '*' represents significance at the .05 level. A '#' 
indicates that the null hypothesis cannot be rejected using the x2 
goodness of fit tests.
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TESTS
TABLE 5-6 

FOR NONLINEAR DEPENDENCE ON VOLUME RESIDUALS

LB(6 )
r

LB(6 )
r2

LB(6 )
1 rl

AUTOCORRELATION FOR LAG-1 
r r2 1 rf

AME 7.04 39.95* 35.69* . 0 2 0 .043 .058

ATL 7.36 7.43 11.24 .003 .057 .075

ATT 10.69 4.88 8.40 -.033 . 0 0 1 .038

BAX 10.61 6.03 5.19 - . 0 1 0 .054 .058

BOE 0.80 38.49* 34.44* - . 0 1 0 - .037 -.042

CHE 6.27 7.56 7.56 .057 -.008 -.024

DIG 19.94* 3.88 3.34 .076* .009 .018

DOW 11.15 4.31 10.16 .067 - . 0 1 1 . 0 2 1

GE 15.65* 6 6 .1 2 * 62.73* .087* .206* .174*

GM 3.99 16.43* 17.34* -.004 .066* .037

ITT 8.49 1.23 3.65 .070 .016 .030

MOB 6.15 32.75* 19.84* .033 .016 .033

PAC 6.63 24.45* 27.73* .032 .089* .079*

PHI 6.29 34.16* 41.86* -.016 .098* .1 2 0 *

RJR 4.43 7.43 12.31 .048 -.013 -.005

The critical values for the Ljung-Box, LB(6 ), statistic at the 
0.10, 0.05, and 0,01 significance level are 10.64, 12.59, and 16.81 
respectively. An '*' represents significance at the .05 level.



TESTS FOR NONLINEAR
TABLE 3-7 

DEFENDENOE ON TRANSACTION RESIDUALS
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LB(6)
r

LB(6)
r2

LB(6)
Irl

AUTOCORRELATION FOR 
r r*

LAG-1
1 rl

AME 6.58 31.24* 24,48* -.051 .030 .020
ATL 7.45 18.91* 24.42* .029 .095* .110*

ATT 14.62* 4.93 6.56 -.067* .058 .050

BAX 6.00 15.23* 13.44* .088* .054 .092*
BOE 2.83 29.74* 21.17* -.002 .029 .025
CHE 7.17 6.80 6.54 .058 -.020 - .037

DIG 30.01* 32.93* 35.31* .076* .086* .115*
DOW 12.87* 2.15 4.45 .063* .019 .035

GE 13.99* 10.71 12.58 .078* - .003 - .004
GM 3.55 13.03* 11.61 -.019 .059* .022

ITT 4.50 3.92 4.60 -.011 .020 .026

MOB 6.08 37.03* 23.46* .033 .026 -.018

FAC 12.06 10.69 11.01 -.091* .065 -.038

PHI 4.74 17.08* 22.84* -.011 .087* .105*

RJR 3.95 8.10 13.79* -.002 .075 .055

The critical values for the LJung-Box, LB(6), statistic at the 
0.10, 0.05, and 0.01 significance level are 10.64, 12.59, and 16.81 
respectively. An '*' represents significance at the .05 level.



CHAPTER 6
VARIANCE RATIO TESTS AND ARCH EFFECTS

In a recent work, Lo and MacKinlay (1989) suggest that a variant 

of the variance-ratio statistic can be used to test for the presence of 

nonlinear dependence. In their paper, they specifically point out its 
relevance for ARCH processes. They argue that the standard variance 

ratio test can be adjusted by a weighted combination of the variances of 

the autocorrelations, thereby taking account of the presence of second 
order dependence. They conclude their work by providing a number of 

simulations that favorably compare the power of this adjusted variance 

ratio test to that of the Box-Pierce Q statistic and the Dickey-Fuller 
t tests.

In this chapter we wish to further examine the properties of this 
unconditional, variance-ratio statistic when the underlying return 

generating process contains a specific type of second order dependence. 
In particular, we generate random series from a GARCH(1,1) process with 

different degrees of persistence and then apply the standard and 

variance, adjusted statistic to each model. In this way, we can directly 

verify Lo and MacKinlay's proposition with a finite sample taken from a 

population with known moments.

In the first section of this chapter, we discuss the theory behind 

the standard variance ratio test and the variant developed by Lo and 

MacKinlay (1989). We critique their hypothesis concerning the ability of 

the adjusted test to account for ARCH type dependence. The second 

section provides a description of our simulation and the Monte Carlo
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study, along with a description of the actual return series used in the 
subsequent analysis. In the last section, we present our results and a 
discussion of their implications for our intradaily findings.

A. STATISTICAL THEORY

The concept of using the ratio of the unconditional variances from 
different sampling intervals to test the null hypothesis of a random 

walk is not new. This time-variance relationship enjoys a long history 

with particular reference to the works of Working (1949), Osborne 

(1959), and the previously noted contributions of Young (1971), Schwartz 

and Whitcomb (1977), and Perry (1982) [see footnote 1]. Its application 
to the detection of second-order dependence, in particular ARCH effects, 

is the reason for the resurgence of interest in the topic.

Given a times series of log prices, liPt)t-o» sampled at some 
interval denoted by the unit subscript, 'i', we can express the random 

walk hypothesis as xpt - iPt-i + i«t» where the !et- N(0,of). Hence the 
change in the series, {AjPtJJ-i, Is white noise with a variance of of (We 

have referred to this series throughout this paper as rt). If we now 

sample the data by using every other observation from the original 

series, we obtain a series of first-differences denoted as {A2pT]?-i. In 

this case, every element of (A2pt) is the sum of two adjacent elements 

of (AiPt) or A2pi - AjPi + Aip2, A2p2 - Aip3 + AiP*. etc.. Diebold (1988) 
refers to this series as '2-aggregated' with higher order aggregates 

denoted as q-aggregated for q > 2.
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The unconditional variances of (Ajp.), (A2p.), and (Akp.) are of, 

of, and of, respectively. Under the null hypothesis of a random walk the 
following relationship holds:

o| - qof, q - 1,...,n/k
or

2of/of - 3of/o| - ... - (n/k)of/ofA  - 1.

In order to improve the power of this test, the q differences can be 

based on overlapping intervals. This provides n-q+1 terms in the 
calculation of the aggregated series rather than only n/q terms as 

defined above. We call these overlapping-interval variance ratios after 

subtracting one, Mr(q), with q denoting the degree of aggregation. If the 

two series forming the ratio were independent the statistics would have 

central F-distributions. Since the aggregated series are not independent 

of the original series, the relationship holds only at the limit and the 

asymptotic distribution of (nw)Mc(q) is N(0,2[2q-1][q-l]/3q).

Diebold (1988) provides fractiles of Mr(q) for some finite sample 

sizes and aggregation values. Lo and MacKinlay (1988) use unbiased 

estimates of the variances in the ratio.30 They also provide a variant

30 The unbiased estimate of the unconditional variance of the first 
differences of the original series is:

where p is the mean of the first differences. The unbiased estimate for 
the aggregated series is:

(Pt-Pt-ff-w)3.
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of the statistic that purportedly adjusts for the effects of 
heteroskedastlcity. This variant is based on the approximation of the 
variance ratio statistic by a linear combination of autocorrelations. Or 
in notational form:

where r(.) is the autocorrelation coefficient of lag (.) and op(n"1/2) 

refers to terms which are of order smaller than n'1/2 in probability. 

Hence the statistic can be adjusted by the asymptotic variances of the 

autocorrelations, denoted Mj). This leads to a N[0,V(q)] limiting 

distribution for ME(q).31 We can then standardize the statistic to yield 

Z*(q), which is equal to Mr(q)/Vtt and is distributed as N(0,1) 
asymptotically. Lo and MacKinlay (1989) note that the 8(j)'s are 

numerically equivalent to White's (1980) heteroskedasticity-consistent 
covariance estimator.

where m - q(n-q+l)(1-q/n).

31 The variance V(q) is denoted by:

The 8(j) refers to the asymptotic variance of the autocorrelations of 
the return series and the p is the mean of same series.

Mr(q) “ 3(̂ -x) r(l) +— r(2) + . . .+-|r(q-l)+op(n‘l/a)

where
13

t £  (p.-p^-p) 2 ) 2t-i
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However, all of Che above reaulCa are baeed on Che unconditional 

variances. In face the acCual simulation results reported by Lo and 

MacKinlay <1989) are based on series that oontaln heterosoadaaticity but 

not in the conditional variances. They point out that a 

reparametrization of the variance they use would correspond to Engle's 

(1982) ARCH process, but they do not explloitly examine this 

possibility. In this chapter, we provide results chat do in faat account 
for ARCH behavior in the return series.

B. DATA AND SIMULATION DESCRIPTION

In order to carry out the Monte Carlo simulation, we create a 
return series, rb, with the following form:

rt - p + eb 

ht - a„ + + Pihfi,

where p is the mean return and the conditional distribution of the tb Is 

N(0,1). To create this series we first generate a series of normally 

distributed pseudo-random variables, eb, with a zero mean and unit 

variance. We then use these eb's to create a return series of the form:

- P + hi1/2ex, ra - p + h21/aea  rb - p + ht1/aet,

where the starting values for h0 and eo are zero and the value of hx is 
equal to tc0. The remaining conditional variances are defined as:
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h2 - «„ + o^f + Pihi, h3 - a0 + «i« 2 + P2h2, •..

and so forth, where the et's equal ht1/2et. Hence, we create a return 

series that Incorporates GARCH effects in the Innovations. We look at 
different degrees of persistence by varying the values of and px from 

zero to one in the case of and from zero to nine in the case of Pi- 3 2  

Note that the combination of .1 and .9 creates an I-GARCH series or a 
series with an infinite unconditional variance.

Because Lo and MacKinlay (1988) provide results of their test for 

both an equally-weighted and value-weighted index of weekly returns, we 

attempt to replicate the same series and re-evaluate their results in 

the presence of GARCH. The weekly returns are calculated from the Center 

for Research on Security Prices daily return file. They consist of the 

Wednesday close to close price from May 2, 1974 to December 26, 1985. We 

further include ten equally-weighted sized based portfolios over the 

same period in the analysis. These portfolios consist of the same stocks 

as the indices except they are divided into deciles based on their 

capitalization value at the end of each preceding year. Hence, we have 

12 returns series of 608 weeks with aggregation values, q, of 2, 4, 8 , 
and 16. As a final comparison, we include the estimates of the ten and 

thirty minute return series for our 15 companies.

3 2 The actual Monte Carlo simulation consists of 5,000 replications 
for each of the values of and p^



C. SIMULATION RESULTS AND DISCUSSION
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Tables 6-1 through 6-4 provide the IX, 5%, and 10X critical values 

for the 2, 4, 8 , and 16-aggregated data respectively. The first two 

columns in each table give the corresponding GARCH values for and Px. 

The upper portion of each table provides the critical values for the 

standard variance ratio test with no adjustment for heteroskedastlclty. 
These ratios, after adding one, have (approximately) a central F- 

distribution under the assumption that the ratio is composed of 

independent variables. The lower portion contains the values for the 

adjusted statistic, which have a standard normal distribution. Both 

statistics are used to test the null hypothesis that the variance ratio 

is equal to zero since the Mc(q) statistic has a one subtracted from it. 

The first row of each table corresponds to data that is distributed 
N(0,1) since the GARCH parameters are set to zero in the simulation.

We first look at the results for the standard statistic for each 

of the aggregation values. As the persistence in the conditional 

variance is increased, the results for the standard statistic approach 

zero with the right tail decreasing faster than the left. As the 

aggregation value increases the values for the tails move farther from 

zero indicating that the statistic is sensitive to the level of 

aggregation or sample size. This is consistent with the properties of 
the F-distribution with different degrees of freedom.

The adjusted variance ratio statistic, in the bottom half, is 

easier to interpret since it should correspond to the normal 

distribution aymptotically. Hence, the critical values for the IX, 5X,
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and 10% levels should be around 2.576, 1.96, and 1.645 respectively. As 
can be seen from the results, the empirical distribution for our sample 
size Initially exhibits negative skewness in the 2 -aggregated data with 

the right tail being consistently smaller than the theoretical values 

and the left larger. However, this pattern is reversed in the higher 

aggregations. There seems to be no general pattern in this behavior as 

we vary the level of persistence using the Px parameter. Interestingly, 
the adjusted statistic does not seem to take account of the GARCH 
effects. This can be seen by the fact that the results show little 

variation with or without the presence of GARCH and across any 

persistence level. However, we wish to examine the behavior of this 

statistic when actual data are used.

Table 6-5 provides some preliminary statistics for the ten equally 

weighted portfolios and the two indices. The portfolios with the smaller 
size companies exhibit greater mean returns than the portfolios with the 
larger companies. They also have greater degrees of autocorrelation, 

with the relevant coefficients moving from two to zero as we go from 

portfolio one to portfolio ten. Particularly noteworthy is the presence 

of second order dependence in portfolio ten and the value weighted 

index, since neither exhibit first order dependence.

In table 6 -6 , we present the variance equation results of 
estimating a GARCH(1,1) model with a normal conditional distribution on 

each of the original return series. We also provide the corresponding 

variance ratio test for each aggregation level. The GARCH results 

indicate a high degree of persistence with all the models exhibiting a 

stationary variance process since the sum of #! and p! is less than one.
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No pattern of persistence is exhibited, although there is a gradual drop 
in the estimate as we move down the table. We next look at the 
variance ratio results.

All the ratios except two are positive, confirming the results of 

the autocorrelation coefficients in table 6-5. Since a number of the 
return series exhibit a! estimates of around one and estimates of 

about eight, we use our previous simulation results for these values to 

determine the 5% significance levels. We are particularly interested in 

the ratios for portfolio ten and the value-weighted index, since they 

exhibit only second order dependence. We find that for the equally- 

weighted index and the first nine portfolios the null hypothesis of a 

random walk is rejected. This finding is expected since all these series 
exhibit significant autocorrelation.

However, the results for portfolio ten and the value-weighted 
index indicate that the ability of the adjusted variance ratio test to 

detect ARCH dependence is questionable. For every aggregation level of 

portfolio ten and the value-weighted index, the adjusted statistic is 

unable to reject the random walk hypothesis. Yet, both series exhibit 

evidence of strong GARCH effects. Thus, we must question the proposed 

robustness of the test in detecting nonlinear dependence.

In the final table, table 6-7, we present the result of applying 

the variance ratio tests to our intradaily data. We provide these 

figures simply for comparative purposes since we do not have either the 

appropriate aggregation value in our tables or the corrected ARCH 

estimates. However, the results again suggest that the adjusted 

statistic is not accounting for the presence of ARCH effects. Our
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reasoning Is again based on the fact that if a series exhibits only 
second order dependence, the variance ratio test does not seem reject 

the null hypothesis. This seems to be the case for the DIG and DOU 
series when we compare the results of table 6-7 with those of table 3-5. 

Ve note in passing that the positive lag-1 autocorrelation coefficient 
for RJR is dominated by a large lag- 2  negative coefficient, thereby 

leading to a negative value for the variance ratio in table 6 -7 .

We conclude this chapter on a negative note. Our results indicate 

that Lo and MacKinlay's proposition concerning the robustness of the 
adjusted variance ratio test to ARCH effects is questionable. The 

failure of our Monte Carlo simulation to find any discernible difference 

in the value of the test with or without GARCH effects is our first 
piece of contrary evidence. Our contention is confirmed when we find 

that the test is unable to detect the presence of nonlinear dependence 

in both the value-weighted index and the last decile equally-weighted 

portfolio over the time period examined. Further support for our view is 

provided by the results of the ten minute return data. Hence, we are led 

to conclude that their contention is incorrect and simply adjusting the 

statistic by the unconditional variances of the autocorrelation 

coefficients does not improve its capacity to detect ARCH effects.
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TABLE 6-1

SIMULATION RESULTS
2-AGGREGATED DATA

GARCH Standard Variance Ratio

«i Pi
IX level 5% level 

LT RT LT RT
10X level 

LT RT

0 0 -0.147 0.148 -0.117 0 . 1 1 2 -0.099 0.094
1 0 -0.270 0.256 -0 . 2 0 0 0.197 -0.169 0.161
1 1 -0.251 0.234 -0.195 0.184 -0.166 0.154
1 2 -0.248 0.242 -0.195 0.184 -0.165 0.154
1 3 -0.243 0.232 -0.191 0.177 -0.162 0.151
1 4 -0.238 0.224 -0.179 0.171 -0.152 0.143
1 5 -0 . 2 2 2 0.217 -0.176 0.166 -0.148 0.140
1 6 -0 -; 218 0.213 -0.169 0.164 -0.145 0.137
1 7 -0.191 0.187 -0.154 0.152 -0.132 0.125
1 8 - -ori'87 ■* Tf. 181 -0.147 0.141 -0 . 1 2 2 0.117
1 9 -0.173 0.162 -0.134 0.125 -0 . 1 1 2 0.106

GARCH Adjusted Variance Ratio

“ l Pi
IX level 5X level 

LT RT LT RT
10X level 

LT RT

0 0 -2.605 2.469 -2.018 1.922 -1.717 1.622
0 -2.599 2.479 -2.038 1.899 -1.774 1.608
1 -2.598 2.433 -2.072 1.934 -1.778 1.638
2 -2.587 2.437 -2.030 1.910 -1.761 1.579
3 -2.567 2.466 -2.071 1.977 -1.808 1.633
4 -2.601 2.469 -2.061 1.949 -1.789 1.622
5 -2.604 2.499 -2.047 1.908 -1.724 1.580
6 -2.640 2.522 -2.096 1.936 -1.783 1.631
7 -2.594 2.460 -2.043 1.931 -1.736 1.628
8 -2.671 2.494 -1.995 1.873 -1.714 1.607
9 -2.643 2.457 -2.063 1.927 -1.753 1.640
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TABLE 6-2

SIMULATION RESULTS
4-AGGREGATED DATA

Standard Variance Ratio
IX

LT
level

RT
5X

LT
level

RT
1 0 %

LT
level

RT

-0.246 0.271 -0.195 0 . 2 0 0 -0.167 0.168
-0.332 0.387 -0.266 0.278 -0.232 0.227
-0.337 0.371 -0.261 0.284 -0.223 0.231
-0.336 0.385 -0.267 0.285 -0.231 0.235
-0.324 0.396 -0.269 0.298 -0.228 0.237
-0.317 0.392 -0.259 0.286 -0.223 0.232
-0.323 0.378 -0.255 0.283 -0.223 0.226
-0.320 0.388 -0.256 0.282 -0 . 2 2 0 0.228
-0.301 0.350 -0.240 0.261 -0.206 0 . 2 1 2

-0.293 0.330 -0.227 0.251 -0.195 0.208
-0.270 0.296 -0.213 0.219 -0.181 0.182

Adjusted Variance Ratio

IX
LT

level
RT

5X
LT

level
RT

10X
LT

level
RT

-2.416 2.722 -1.953 2.034 -1.689 1.729
-2.473 2.786 -1.944 2.028 -1.663 1.669
-2.449 2.643 -1.914 2.029 -1.641 1.682
-2.385 2.754 -1.890 2.035 -1.660 1.692
-2.409 2.839 -1.900 2.126 -1.645 1.715
-2.448 2.752 -1.932 2.068 -1.655 1.747
-2.368 2.642 -1 . 8 8 6 2.009 -1.664 1.687
-2.427 2.819 -1.920 2.116 -1.661 1.726
-2.433 2 . 6 8 8 -1.937 2 . 0 2 0 -1.654 1.677
-2.403 2.801 -1.910 2.048 -1.634 1.739
-2,491 2.805 -1.951 2.070 -1 . 6 6 8 1.693
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TABLE 6-3
SIMULATION RESULTS
8-AGGREGATED DATA

Standard Variance Ratio
IX level 5X level 10X

LT RT LT RT LT

-0.354
-0.423
-0.426
-0.414
-0.430
-0.420
-0.412
-0.421
-0.414
-0.393
-0.382

0.432
0.523
0.515
0.544
0.589
0.552
0.551
0.580
0.531
0.540
0.504

-0.283
-0.316
-0.333
-0.346
-0.338
-0.338
-0.329
-0.341
-0.324
-0.325
-0.309

0.316
0.389
0.384
0.405
0.406
0.409
0.399
0.402
0.391
0.378
0.353

-0.243
-0.286
-0.291
-0.303
-0.292
-0.295
-0.285
-0.292
-0.284
-0.284
-0.265

Adjusted Variance Ratio

IX level 5X level 10X
LT RT LT RT LT

-2.351
-2.289
- 2.212
-2.269
-2.229
-2.296
-2.183
-2.263
-2.258
-2.276
-2.345

2.849
2.967
2.948
2.834 
3.075 
3.043 
2.770 
2.988
2.834 
2.938 
2.919

-1.835
-1.864
-1.827
-1.816
-1.832
-1.852
-1.822
-1.860
-1.808
-1.832
-1.852

2.068
2.070
2.039
2.092
2.107
2.105
2.116
2.159
2.128
2.112
2.152

-1.591
-1.615
-1.593
-1.585
-1.583
-1.621
-1.585
-1.598
-1.575
-1.585
-1.605
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TABLE 6-4
SIMULATION RESULTS
16-AGGREGATED DATA

Standard Variance Ratio
13£ level 51 level 10X

LT RT LT RT LT

-0.499 0.628 -0.397 0.486 -0.343
-0.513 0.746 -0.418 0.540 -0.374
-0.543 0.778 -0.429 0.557 -0.374
-0.538 0.805 -0.443 0.541 -0.382
-0.531 0.817 -0.427 0.566 -0.375
-0.531 0.762 -0.429 0.562 -0.380
-0.532 0.774 -0.431 0.548 -0.378
-0.530 0.800 -0.437 0.552 -0.388
-0.528 0.763 -0.439 0.539 -0.374
-0.545 0.779 -0.438 0.564 -0.376
-0.521 0.739 -0.434 0.538 -0.382

Adjusted Variance Ratio

1* level 5% level 10%
LT RT LT RT LT

-2.250 3.052 -1.811 2.167 -1.544
-2.138 3.130 -1.793 2.219 -1.566
-2.170 3.210 -1.772 2.168 -1.565
-2.218 3.115 -1.796 2.196 -1.531
-2.216 3.176 -1.770 2.180 -1.539
-2.162 3.268 -1.768 2.247 -1.557
-2.157 2.955 -1.776 2.193 -1.542
-2.185 3.154 -1.792 2.225 -1.562
-2.187 3.028 -1.730 2.223 -1.543
-2.207 3.108 -1.753 2.247 -1.518
-2.242 3.053 -1.774 2.194 -1.548
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TABLE 6-5

DESCRIPTIVE STATISTICS AMD TESTS FOR NONLINEAR DEPENDENCE 
ON PORTOLIOS AND INDICES

mean std dev LB(6 )
r

LB(6 )

r2

LB(6 ) 

1 rl
AUTOCORRELATION 

LAG-1 LAG-2 
r r

PI .00879 .0279 227.77* 49.80* 203.13* .468* .285*
P2 .00616 .0253 154.26* 48.43* 115.05* .397* .229*
P3 ,00552 .0242 111.08* 75.59* 102.25* .331* .190*
P4 .00491 .0238 86.49* 63.11* 90.31* .304* .161*

P5 .00440 .0241 68.52* 76.66* 87.47* .280* .143*

P6 .00428 .0240 54.55* 62.23* 63.86* .248* .1 2 0 *

P7 .00403 .0227 43.97* 49,93* 61.60* .223* .109*
P8 .00362 . 0 2 2 1 30.33* 43.81* 50.65* .183* .075
P9 .00338 . 0 2 2 2 21.91* 56.09* 65.73* .142* .053

P10 .00261 . 0 2 2 2 7.19 57.46* 67.05* .041 .006

EW .00414 .0224 74.41* 67.73* 80.60* .281* .146*

VW .00177 .0214 5.96 67.79* 74.23* .045 . 0 1 2

The critical values for the Ljung-Box, LB(6 ), statistic at the 
0.10, 0.05, and 0.01 significance level are 10.64, 12.59, and 16.81 
respectively. An '*' represents significance at the .05 level. The 
portfolio containing the companies with the smallest capitalizaton is 
PI.
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TABLE 6 - 6

GARCH ESTIMATES AND VARIANCE RATIO STATISTICS 
OF FORTOLIOS AND INDICES

GARCH STANDARD VARIANCE RATIO
VARIANCE EQUATION (ADJUSTED VARIANCE RATIO)

a o pj 2 4 8  16

PI .1470
(6.04)

.5393
(11.3)

.3152
(6.39)

0.440
(5.845)

1.082
(7.413)

1.792
(7.340)

2.883
(5.387)

P2 .1517
(5.16)

.4161
(9.78)

.3608
(4.92)

0.407
(6.233)

0.905
(7.755)

1.419
(7.318)

2.197
(5.043)

F3 .0476
(2.56)

.1782
(4.49)

.7373
(1 1 .1 )

0.373
(5.523)

0.800
(6.917)

1.265
(6.483)

1.890
(4.468)

P4 .0376
(2.75)

.1339
(3.21)

.7944
(14.7)

0.351
(5.428)

0.701
(6.647)

1.058
(5.894)

1.629
(3.830)

P5 .0498
(2.32)

.1319
(3.31)

.7732
(1 1 .2 )

0.337
(5.154)

0.684
(6.123)

0.942
(5.301)

1.373
(3.255)

P6 .0398
(2.72)

.1167
(3.37)

,8071
(15.7)

0.314
(4.774)

0.624
(5.711)

0.800
(4.828)

1.059
(2.755)

P7 .0441
(2.29)

.1242
(3.41)

.7835
(12.5)

0.294
(4.359)

0.595
(5.209)

0.694
(4.312)

0.880
(2.414)

P8 .0426
(2.49)

.1253
(3.44)

.7825
(13.0)

0.267
(3.645)

0.523
(4.370)

0.582
(3.669)

0.777
(2.093)

P9 .0149
(1 .6 6 )

.0841
(3.33)

.8819
(23.1)

0.239
(2.766)

0.482
(3.361)

0.431
(2.702)

0.466
(1.260)

P10 .0188
(1.85)

.0995
(4.00)

.8588
(22.5)

0.145
(0.726)

0.271
(1 .0 1 2 )

0.107
(0.804)

0.028
(-.038)

EW .0119
(1.87)

.0878
(3.89)

.8867
(29.7)

0 . 2 2 0

(5.248)
0.733
(6.378)

0.917
(5.709)

1.334
(3.755)

VW .0158
(1 .8 8 )

.1057
(3.92)

.8585
(23.7)

-0.050
(0.963)

0.079
(1.366)

0.127
(1.203)

0.160
(0.445)

The figures In parentheses under the GARCH estimates are the 
corresponding t-statistics. Those in parentheses under the variance 
ratios are the adjusted variance ratio statistic. The numbers refer to 
the appropriate aggregation value, i.e. 2  is for 2 -aggregated.
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TABLE 6-7 

VARIANCE RATIO STATISTICS 
FOR INDIVIDUAL STOCKS

STANDARD ADJUSTED
VARIANCE VARIANCE
RATIO RATIO

AME -0.2348 -4.0760
ATL -0.0914 -2.1315
ATT -0.2515 -4.8101
BAX -0.1930 -3.9956
BOE -0.3655 -5.3435
CHE -0.1880 -3.1815

DIG -0.0162 -0.1171
DOW 0.1540 0.4197
GE -0.1481 -1.0930
CM -0.1656 -0.5889

ITT -0.2495 -4.1191

MOB -0.2998 -2.3603

PAC •0.6064 -9.3766

PHI -0.1623 -1.4266
RJR -0.2080 -1.5101

The ratios In this table are 3-aggregated since they represent the 
ten and thirty minute return series.



CHAPTER 7
SUMMARY AND DICUSSION OF FUTURE RESEARCH

In this dissertation, we examine (1) the time series behavior of 
intradaily stock prices with special emphasis on the presence of 

nonlinear dependence, (2 ) the effects of aggregation in attenuating the 

observed dependence in the conditional variance, (3) the role of volume 

and the number of transactions as possible proxies for the rate of 

information arrival to the market, and (4) the ability of the 
unconditional variance ratio test to detect the presence of ARCH 
effects.

We begin the dissertation with a discussion of the differences 
between the martingale model of asset prices and the random walk model. 

Since the former is less restrictive is allows for certain types of 
dependence to exist while still maintaining those probabilistic 

assumptions associated with an asset market in competitive equilibrium. 

We also touch on the role that asymmetric information among market 

participants plays in the realization of the actual price of each asset.

In Chapter 2, we review the literature on the distributional and 

market micostructure properties of both intradaily and longer intervals. 

Our discussion is generally restricted to those works that attempt to 

ascertain the best model capable of accounting for the observed 

empirical characteristics of the data. With Chapter 3, we begin our 

actual analysis with a number of descriptive statistics, tests of 

normality and white noise processes, and evidence on both the linear 
and nonlinear dependence found in the data.

147
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In Chapter 4, we provide the actual estimation results of applying 

the generalized autoregressive condltonal heteroskedasticity model to 

the the ten and thirty minute return data. Based on these results and 
those from Chapter 3, we posit that a mixture of distributions may In 

fact describe the return generating process. The difference between this 

and previous models is that such a mixture must account for the observed 
nonlinear dependence, as well as the distributional characteristics. Our 

results suggest that the power-exponential provides a better fit to the 
data than either the normal or Student-t.

Chapter 5 looks at two proxies for the arrival of information to 
the market, volume and the number of transactions. Our intent is to 

determine if the observed GARCH effects can be explained by the 

information hypothesis discussed by previous authors. We find that our 

sample does not exhibit any such affects and in fact application of the 

proposed model raises a number of econometric problems with that 

particular type of anaylsis. With Chapter 6 , we close out the result 

section of the dissertation. Here we look at tfhe- robustness of the 

unconditional, variance ratio test in detecting ARCH effects. We provide 

evidence using both Monte Carlo simulation and actual index return data 

that strongly rejects the hypothesis. 3 3

Finally, in closing, we note a number of ideas that deserve 

further investigation. The first concerns the difference detected 

between the beginning/end of day price process and the rest of the day. 

The presence of the variance effect raises a number of interesting

3 3 We should point out that our results specifically address the 
null hypothesis of a random walk. If the null hypothesis is instead a 
martingale then Lo and MacKinlay's argument is still valid.
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questions on how the market reacts to the closing of the market. Also of 
interest is how aggregation of the intradaily data to daily data over a 
longer time span would affect the observed dependence. If daily returns, 

as represented by the end of day price, are considered different from 

intradaily returns then the GARCH effects may still exist at that 

interval even though they do not exist in the thirty minute returns. The 

second concerns the actual estimation technique we use in our analysis. 
Since the Student*t and power-exponential distributions are encompassed 
within a more general family, a natural extension is to develop the 

estimation technique to accomplish this. This would allow a more direct 

comparison of the two distributions based on the likelihood ratio test. 

A further step would be to incorporate this extension within a mixture 

of distributions framework thereby achieving a quite general 

specification. Another possibility is the development of a variance 
ratio test that can not only account for the presence of ARCH effects 

but also provide some indication of the relationship among the 

conditional variances as the data are aggregated. Finally, the presence 

of ARCH in return data must still be explained in terms of the way the 

market prices risk. If the ARCH effects are being priced then we should 

find a corresponding effect on the mean or first moment. This leads to 

such models as the ARCH in mean and also to an examination of whether 

the risk can be considered systematic or individual to each company. If 
the latter holds then traditional models such as the CAFM should still 
be robust to the presence of ARCH.
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