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ABSTRACT

The breadth and depth of the use of Radio Frequency Identification (RFID) are becoming

more substantial. RFID is a technology useful for identifying unique items through radio

waves. We design algorithms on RFID-based systems for the Grouping Proof and Cardinality

Estimation problems.

A grouping-proof protocol is evidence that a reader simultaneously scanned the RFID

tags in a group. In many practical scenarios, grouping-proofs greatly expand the potential

of RFID-based systems such as supply chain applications, simultaneous scanning of mul-

tiple forms of IDs in banks or airports, and government paperwork. The design of RFID

grouping-proofs that provide optimal security, privacy, and efficiency is largely an open area,

with challenging problems including robust privacy mechanisms, addressing completeness

and incompleteness (missing tags), and allowing dynamic groups definitions. In this work

we present three variations of grouping-proof protocols that implement our mechanisms to

overcome these challenges.

Cardinality estimation is for the reader to determine the number of tags in its commu-

nication range. Speed and accuracy are important goals. Many practical applications need

an accurate and anonymous estimation of the number of tagged objects. Examples include

intelligent transportation and stadium management. We provide an optimal estimation al-

gorithm template for cardinality estimation that works for a {0, 1, e} channel, which extends

to most estimators and ,possibly, a high resolution {0, 1, ..., k − 1, e} channel.

viii



CHAPTER 1

INTRODUCTION

In this time of ubiquitous computing and the evolution of the Internet of Things (IoT),

the deployment and development of Radio Frequency Identification (RFID) is becoming

more extensive. RFID is a method of identifying unique items using radio waves. An RFID

system typically consists of three different types of entities: tags, readers and a verifier. The

tags are embedded in, or attached to, objects to be identified. The most common tags are

passive tags. Passive tags use radio frequency (RF) energy induced by electromagnetic waves

emitted by the reader. A typical communication sequence is: the reader emits a continuous

RF wave, a tag in the RF field of the reader receives energy from the field and responds

[17, 40, 52, 67, 86, 90, 111, 125]. RFID is an open wireless communication technology,

inexpensive and very energy efficient, particularly for passive RFID tags. Important features

of RFID technology are that it allows to write and read data contactless and without a line

of sight.

RFIDs are important to modern society. This dissertation studies algorithms on RFID-

based systems: Grouping Proof and Cardinality Estimation.

Grouping Proof: A grouping-proof protocol is evidence that a reader simultaneously

scanned the RFID tags in a group [16, 53, 86, 87, 93, 98, 99, 106].

There are many practical scenarios where grouping-proofs can greatly expand the po-

tential of RFID-based systems, such as drugs to be shipped, or dispensed, with information

leaflets (safety regulation); inventory of equipment in before and out after a surgery; si-

multaneous scanning of multiple forms of IDs in banks or airports; government paperwork;

evidence in court etc. We are proposing grouping-proof protocols that improve on security,

privacy, and efficiency over existing schemes. For example, the protocol must resist replay

attacks, where an adversary who eavesdrops on the communications between reader and

tag and obtains exchanged messages should not be able to obtain any tag/reader secrets by
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resending earlier messages. RFID tags are critically constrained in memory, communication,

and computation. We want a protocol to be compatible with the technical capabilities of

an RFID. We also want a protocol to be scalable. Scalability problems in RFID grouping-

proofs, such as collision from responses of multiple tags after a reader request or due to an

increasing number of tags in the system, will gradually degrade its performance. Researchers

have often overlooked scalability when designing protocols. We work through these protocol

ideas in designing and proposing our own approaches.

The design of RFID grouping-proofs that provide optimal security, privacy, and efficiency

is largely an open area, with challenging problems including robust privacy mechanisms,

addressing completeness and incompleteness (missing tags), and allowing dynamic groups

definitions.

Cardinality Estimation: In cardinality estimation, the reader determines the number of

tags in its communication range. Speed and accuracy are crucial [4, 20, 34, 42, 48, 53, 68,

97, 121, 129, 133]. It has many practical applications. For example, in warehouse manage-

ment (with retailers like Walmart), where thousands of products (such as mobile phones,

iPods, tablets, and other peripherals) are stored and tracked in a small space. Accurately

estimating the number of tagged objects for recurrent inventory reports, instead of laborious

and unreliable manual counting, is important. In some privacy sensitive scenarios, such as

counting the number of visitors to an event where attendees have RFID tickets/cards/bands,

the exposure of identification information on tags, such as credit card information, can put

privacy at risk. Therefore, a scheme that can use the non-identifiable information from tags

to compute the cardinality is highly desired. In this part of the study we consider a slotted

(synchronous) communication channel (through which tags communicate with the reader)

that accepts binary inputs from set {0, 1} and outputs a symbol {0, 1, e}, which indicates at

a given slot there are zero, one, or more than one writes by tags to the channel.

We provide an algorithm for tag population that works for a {0, 1, e} channel. This first

2



part of our work is an extension of the work of Hasan et al. [48] who proposed the GERT

(Gaussian Estimator of RFID Tags) algorithm for estimating tag population in {0, e} (a

channel that outputs 0 when no tags write and an e if it writes) and applied the fe − f0

estimator. Following the same analytical approach, we extend the work to a {0, 1, e} channel.

We too used the fe − f0 estimator; however, it has different meaning compared to that

in the {0, e} channel. In the second part of our work on tag population estimation, we

developed a framework for using simulated data to generate an optimal estimation algorithm.

As a product of this work we also develop methods for initial estimates, extending a well

known method due to Willard [119] to more accurate Willard, Willard+, and Willard∗

algorithms.

1.1 RFID and Its Importance

The applications of RFID-based systems are many and varied in numerous industries,

including ones in high-risk environments, health and safety. The fundamental capability of

RFID systems is to track tagged items which avoids the need of manual workforce as the

data is generated automatically. It wirelessly identifies people and objects by sensing the

surroundings. More and more businesses are using this technology including in the next

generation of business intelligence [2, 5, 30, 31, 32, 41, 43, 49, 52, 54, 61, 66, 83, 86, 92, 96,

111, 113, 114, 116, 117, 123, 126].

The breadth of applications includes the healthcare industry [2, 30, 31, 43, 113], where

RFIDs are used to track inventory, identify patients, manage personnel, monitor the user’s

health and activate remote assistance.

Food supply chain (FSC) - farm to fork [32, 83, 92, 116, 123] uses tags in food logistics

that aim to enable new types of efficient and responsive networks with flexible tracking,

tracing, and decision support based on information.

The retail industry itself employs smart shopping carts [49, 61] that use low energy

Bluetooth to track and localize items and display promotions and sales for the customer.
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The data generated can also be used for pricing, product placement, and reducing waiting

times in checkout (Amazon Go).

The transportation sector uses tags for traffic management [5, 41, 96, 114]. Examples

are an advanced plate recognition system for car parking, traffic congestion control, vehicle

fusion positioning, tracking items on conveyor belt, and traffic light control.

The increasing popularity and ubiquity of RFID technology, however, comes with serious

concerns for security and privacy. Some example security concerns are the following. Imper-

sonating the reader or a tag, an attacker may be able to obtain a reader’s and a tag’s secret

values. If an attacker blocks the exchanged message(s) or when messages are lost during

transmission (system crash or communication error), then the tags can be desynchronized

from a reader. Privacy concerns include the following. An attacker may be able to break

the anonymity of the reader and tags in the grouping-proof (called “information leakage”).

If an attacker observes that a tag’s responses are static or linked, then it can track the tag’s

location over time (called “malicious traceability”).

Other factors affecting the efficiency and the performance of an RFID system are [36,

37, 103, 104, 105, 106, 107, 108]: an estimate for tag population, number of tags read by

the reader in case of collision, the read range of the tag around the reader’s surroundings,

an authentication mechanism of the entities involved in the communication, a searching

mechanism for tags, etc. Continued improvement in circuit design aims to improve protocols,

read range, reliability, etc. RFID costs decreased in the past decade which leads to escalating

of their applications.

The remainder of this work is organized as follows. Chapter 2 presents background and

prior work in the literature. Background contains general technical details for the compo-

nents of a common RFID system. Prior work in the literature includes discussion on prior

work on grouping-proofs and prior work on cardinality estimation. Chapter 3 describes the

overview of RFID grouping-proof protocols. It provides comprehensive grouping-proof char-

acteristics - definition, model, design requirements and how it all applies while designing
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a protocol. We have formally defined an adversary model and RFID privacy model, un-

der which we evaluate our presented grouping-proofs protocols in the following chapters.

Chapter 4 describes the Serial-Dependency Grouping Proof Protocol (SDGPP). Chapter 5

describes the Parallel-Dependency Grouping Proof Protocol (PDGPP). Chapter 6 describes

the Dynamic Grouping Proof Protocol (DGPP). Chapter 7 describes the cardinality esti-

mation approaches for tag population. We then conclude with a summary of results in this

dissertation and propose possible future work.
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CHAPTER 2

BACKGROUND AND PRIOR WORK

2.1 Background

Wireless channels connect objects and enable communication among those objects and

also with the Internet. Radio Frequency Identification (RFID) is one of the resource-

constrained technologies (such as IEEE 802.15.4, Bluetooth, Bluetooth Low Energy, IEEE

802.11 Low Power, PLC, NFC) that permit data transfer with low energy consumption [111].

Advances in RFID technology allow information to be stored (tags can hold data) and then

be read contactless and without a line of sight. In an RFID system tags are classified as

active, semi-passive, or passive [40]. We intentionally omit the technical description of active

and semi-passive tags. Both types of tags are too expensive to place on low-cost items, and

our work does not consider them.

A Passive tag: This type of tags has no internal power source. It harvests energy from the

nearby readers, then that energy energizes the chip to send an answer back to the reader’s

request. Thus, its computation and communication capabilities are very limited. For the

EPC Gen2 protocol, a global standard in ISO UHF 1, the communication distance is at most

10m, data rate is 0-60 Kb/s, the frequency range is 860-960MHz, and up to 3000 gates are

available for security implementation [40, 86, 87, 125]. Also, this standard provides a tag

with up to four inventory flags, which allow four readers in parallel to communicate with a

single tag at any given time.

Common RFID protocols include EPC Gen1 and EPC Gen2 2. Our work considers the

EPC Gen2 features. EPC Gen1 has no global standard. EPC Gen2 has a requirement of

a minimum 96-bits for EPC identifier. EPC Gen2 also provides an optional unlimited user

tag memory. The additional memory could store time stamps from transactions, codes, and

1ISO 18000-6C Ultra High Frequency
2EPC - Electronic Product Code
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sensing data. [33, 86].

RFID tags do not have clocks. However, the activity time of a tag during a single session is

limited. In EPC Gen2 when tags are energized by a reader and engaged in a communication,

they are capable of receiving and acting on reader commands within a period not exceeding

the maximum settling-time interval in the protocol. Both reader and tags need to meet all

timing requirements according the technical documentation for the protocol.

The Reader: This is a relatively powerful device. That provides power to the tags in

order to communicate with them. For EPC Gen2, the maximum theoretical reading speed

is 1000 tags/second. Experimental results [38, 106] show a minimum tag read rate of 150

tags/second to a maximum read rate of 450/second. Both simulations were conducted in

virtual environments and hence some slight performance variation should be anticipated in

real-world implementations. In writing operations, readers can write to five tags per second.

A reader may have up to 1000m range [21, 40, 86, 87, 125].

A reader manages tag populations using three operations - select, inventory, and access,

described briefly below [40].

• Select - A reader selects a tag population for subsequent inventory authentication.

Select comprises the Select and Challenge commands.

• Inventory - The process by which a reader identifies tags. Inventory comprises multiple

commands.

• Access - The process by which a reader transacts with (reads, writes, authenticates, or

otherwise engages with) an individual tag. Access comprises multiple commands.

Each of the reader operations refesr to multiple commands on a tag side - ready, arbitrate,

reply, acknowledge, open, secured, killed [40].

The verifier: This is a powerful back-end server. That acts as a trusted entity that

maintains a database, containing the information needed to identify tags.
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2.1.1 Other Definitions Related to RFID Systems

We have added a list for some additional technical definitions that may be helpful

throughout the content of the research presented [40, 86].

Electronic Product Code (EPC) - Complements the bar codes. The EPC has digits to

identify the manufacturer, product category and individual item.

Backscatter modulation - A method of communication between passive tags and readers;

in this process a tag responds to a reader signal or field by modulating and reradiating the

response signal at the same carrier frequency. The reflected signal is modulated to transmit

data.

Reader-Talks-First - A reader initiates communication with tags in its read field. The

reader sends energy to the tags but the tags sit idle until the reader requests them to respond.

The reader is able to find tags by specifications designated in the EPC protocol.

Singulation - When an RFID reader identifies a tag with specific identity from a number

of tags in its field. There are different methods of singulation, but the most common is “tree

walking” (for example, asking all tags with an identity that starts with 0 or 1 to respond;

if more than one responds, then the reader may ask for all tags with an identity that starts

with 01 to respond, and so on).

2.1.2 The Communication Channel

Tags communicate with the reader through a wireless channel, signaling their presence

by writing to the channel. In this level of abstraction a tag is said to write (a symbol ′1′) or

not write (a symbol ′0′) on the channel. Thus the channel accepts symbols from {0, 1}. The

channel produces one output symbol which is typically read by the reader. Communication

through the channel is synchronized or “slotted”. That is, all tags and reader access the

channel in lock step. During a slot, a subset S of tags can write to the channel. This is

indicated as tags of S writing a ′1′ to the channel and the tags of S writing a ′0′ to the

channel.
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The {0, e} channel is usually represented in the literature to as the {0, 1} channel. Our

tag estimation scheme as well as others, uses a frame (collection of slots) to examine the

population. Typically, tags write a ′1′ or a ′0′ into each slot of the frame and the channel

outputs a symbol from {0, 1, ..., k− 1, e} for each slot, indicating the number of tags writing

to the slot. For any symbol s ∈ {0, 1, ..., k − 1, e}, we denote by fs the number of slots

containing symbol ′s′. We will use fs for tag population estimation. In our work we are also

introducing the concept of high resolution channel. A channel of resolution k ≥ 1 is one that

accepts input symbols from {0, 1} and outputs a symbol from {0, 1, ..., k − 1, e}

2.2 Prior Work on Grouping-Proof

Juels [55] introduced the problem of giving evidence that two tags have been simul-

taneously scanned, called a yoking proof. A grouping proof generalizes this to a larger

number of tags. Bolotnyy and Robins [11] introduced the idea of anonymous grouping-

proofs. Early work on anonymous grouping-proof protocols includes Burmester et al. [15],

Peris-Lopez et al. [85], Chien and Liu [27], and others [39, 65, 73, 88, 110]. Grouping-

proof protocols from the past few years reveal a variety of approaches to address different

goals, such as achieving high efficiency (scalability) and improving on privacy and security

[1, 16, 26, 51, 79, 93, 94, 98, 99, 101, 106, 134, 136]. Below we review some recent and

interesting papers in grouping-proof research, also used for comparison to our own work.

Zhang et al. [134] introduced a parallel grouping-proof protocol with an anti-collision

algorithm based on adaptive pruning query tree (A4PQT) to identify the response message

of tags. The protocol involves updating state variables, which allows the entity involved in

the grouping-proof protocol to have values that stay run specific.

The protocol begins with a reader’s request to get pre-authorized from the verifier. Then

the reader executes two rounds in parallel then one round with serial communication, sending

a message to each individual tag in the group to update its pseudonym and secret values for

its state. The protocol does not have integrity checks and does not verify that tags updated
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at the end of the protocol, which make it vulnerable to impersonation, desynchronization,

denial of proof, replay, and message integrity attacks.

Rostampour et al. [93] introduced a one-round grouping-proof protocol. The reader

broadcasts the request message to all tags once and the tags respond to the reader. The

protocol lacks dependency among tag communications, which requires a second round in a

grouping-proof protocol. The protocol is suitable for passive tags, as it requires only PRNG

and XOR operations. The protocol does not provide an acceptable security level and is

vulnerable to replay, message integrity, and denial of proof attacks.

The protocol provides a formal security analysis using BAN (Burrows, Abadi, Needham)

logic for analyzing its robustness. A comparison table weighs the performance in terms of

various aspects such as scalability, gate equivalent, computation cost of a tag, exchanged

messages between the reader and the tags, and the storage of each tag. However, we find

some comparisons not accurately evaluated in the security comparison table. Also, the

protocol compares to older grouping proof protocols rather than current ones.

Shi et al. [98] introduced a parallel grouping-proof protocol based on a DHCP (Dynamic

Host Configuration Protocol) mechanism. The protocol involves multiple readers and multi-

ple tag groups. During the grouping proof, the verifier chooses one reader and one tag group

by means of a DHCP mechanism. DHCP mechanism implies selecting entities in a protocol

according to their arrival time after a query is sent.

The protocol is designed for two modes: active mode and passive mode. Under active

mode, the verifier knows the tag group for which it wants to search, as opposed to under the

passive mode where the verifier does not know the tag group for which it wants to search. The

protocol includes four phases: authorize a reader, choose a tag group, generate grouping-

proof evidence, and verify the grouping-proof evidence. The protocol is not suitable for

passive tags, because the tags compute hash functions. The protocol is vulnerable to denial

of proof and message integrity attacks.

Hsi et al. [51] introduced a protocol for scalable grouping-proofs. Scalability problems
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in a grouping-proof protocol arise due to:

- messages relayed from one tag to another - when tag numbers increase, system perfor-

mance gradually reduces;

- collision - after a reader queries tags, multiple tags respond simultaneously;

- exhaustive search - for protecting the privacy of tags, protocols adopt anonymity and

make the verifier exhaustively search a tag database for the actual identity of a tag.

Hsi et al.’s protocol uses a run-specific pseudo-identity of tags in the group to protect

each tag’s privacy and improve on system performance. Tags order their responses based on

the location of their pseudo-identity in a randomly permuted sequence of those identities.

This also helps avoid tracking internal members of the group.

Burmester and Munilla [16] introduced a well designed protocol under very clear and

strong grouping-proof design criteria. The reader uses an “erasure code” to enable identifying

missing tag identities from a generated grouping proof if the proof is incomplete.

Abughazalah et al. [1] introduced a one-round grouping-proof protocol with no depen-

dency among tag computations. The reader broadcasts a message to all tags, then the tags

prepare the responses and reply to the reader. The protocol is not suitable for passive tags,

because the tags compute hash functions. The protocol does not provide an acceptable se-

curity level and is vulnerable to impersonation, desynchronization, denial of proof, replay,

and message integrity attacks.

Many of the current approaches to grouping proofs do not comply with the EPC standard

for passive RFID tags and assume complex encryption schemes and cryptographic techniques.

Zhou et al. [136] introduced a protocol that uses elliptic-curve cryptography (ECC). The

practical implementation of ECC is still an open research problem [100], as it is a costly

technique in term of gates to implement security features in passive EPC tags. The paper

provides improvements in key distribution.

Yuan and Liu [128] introduced a protocol within the universally composable (UC) frame-

work. Universal composability [18, 19] specifies a particular approach to security formal-

11



ization, which guarantees that a UC-based security proof for a protocol remains valid if it

is composed with other protocols (modularity) or if it is executed in arbitrary concurrent

settings. RFID systems can be components of a more elaborate application, and as a result

protocols are secure under composability with arbitrary applications. The main attribute of

the UC framework is that UC security of a composite system can be obtained from the UC

security of its components without the need of further integrated evaluation of its robustness

[86].

In Yuan and Liu’s protocol, messages exchanged during a session have no time limitation

and the protocol implements no updating mechanism. The protocol is very well designed

under the assumption of UC framework. However, it has several issues related to inefficiency.

2.2.1 RFID Privacy Models

Coisel and Martin [28] introduced an overview of existing RFID privacy models. The

paper reviews eight RFID privacy models and analyzes their advantages and disadvantages,

examining them across a selection of RFID authentication protocols. The paper concludes

the following: as protocols ensure different privacy levels, no model is able to accurately

distinguish them. They group the models according to features (for example - tag corruption

ability). A classification like this helps to determine the most suitable model to be applied

for a privacy analysis of an RFID protocol. However, some combinations of features may

not match any model which makes it difficult to distinguish protocols that evidently ensure

different privacy levels. The paper provides an overall comparison view of the eight models’

relations and privacy properties. It shows that no model globally outclasses the other ones.

The paper stated that the most comprehensive RFID privacy model published so far is

the Vaudenay model [115]. Vaudenay introduced an important point in his model, where

privacy is considered as being ensured as long as an adversary cannot detect that a given tag

is simulated without the knowledge of its secret. After then, researchers have proposed many

models using different approaches, introducing new features, or pointing out weaknesses in
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the existing models. Unfortunately, even though the Vaudenay model is shown to be the

most comprehensive RFID privacy model, the model is unable to distinguish some currently

proposed protocols that have different privacy levels and so cannot provide a full privacy

assessment.

Avoine et al. [8] introduced an RFID untraceability model. The model aims to assist

while designing proofs or describing attacks. It is a modular model where adversary actions

(oracles), capabilities (selectors and restrictions), and goals (experiment) follow a straight

forward approach. The model design enhances the ability to formalize new adversarial

assumptions and future evolutions of the technology. The paper’s untraceability model

provides a comprehensive privacy assessment and evaluation of protocols. We have used the

model to assess our protocols (see Chapters 4 - 6). Chapter 3 presents details about the

model.

2.3 Prior Work on Cardinality Estimation

Hasan et al. [48] introduced an estimator for the {0, e} (or {0, 1}) channel. This estimator

is fe − f0 (or f1 − f0 in this setting). Their GERT (Gaussian Estimator of RFID Tags)

algorithmic model uses slotted Aloha. The method makes the estimator distribution in a

frame Gaussian by using an adequately large frame size. Also, it analytically bounds the

approximation error (assuming a Gaussian distribution) in terms of the error requirement

of the tag estimate problem. We use the method of Hasan et al. to analyze the fe − f0

estimator for the {0, 1, e} channel.

Liu et al.’s [68] SEM (simultaneous estimation for multi-category RFID systems) exploits

the Manchester-coding mechanism, where it decodes the combined signals (simultaneously

obtaining the reply status of tags from each category). An output is multiple bit vectors,

decoded from just one physical slotted frame. To ensure the predefined accuracy, SEM

calculates the variance of the estimate in one round, as well as the variance of the average

estimate in multiple rounds.
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Shahzad et al.’s [97] ART (Average Run-Based Tag) uses the average run length of non-

empty slots in a {0, e} channel. The first trial in ART is to obtain a rough estimate. The

quality of this rough estimate is low since, since ART uses only a single trial. In each following

trial, each tag participates independently with a certain probability of writing (balls-and-

bins trials). ART then observes which slots in each trial are nonempty and it calculates

the average run length of nonempty slots (the average length of sequences of consecutive

nonempty slots) and uses such information to generate a final estimate (the more nonempty

slots the larger the average run length is).

Zhang et al. [129] introduced joint cardinality estimation among tags. The paper’s

motivation comes from practical scenarios with a need to monitor tagged objects of many

different types. The paper extends the traditional RFID estimation problem to a problem for

estimating the category-level information over multiple tag sets at different locations and/or

different times.

Yu et al. [53] introduced a method for tag estimation and counting for static and dynamic

groups. The paper defined the static case in which tag population remains constant during

the estimation process, as opposed to the dynamic case where tag population may vary during

the estimation process. The paper proposes a generic framework of stable and accurate tag

population estimation schemes based on Kalman filtering.

Gong et al. [72] showed that ART [97] and SRC [133] work only for certain distributions

of the number of tags (such as uniform or normal). This does not work in practice. The

Gong et al. work [72] introduces a new estimator called RPC (rigorous practical cardinality)

and shows that it works well. However, it requires passive tags to use hashed IDs which

impose an overhead on the system.

Zhou et al. [133] demonstrated that the key design aspect for any RFID counting function

to achieve near-optimal performance is a conceptual separation of a protocol into two phases.

The first phase uses a small overhead to obtain a rough estimate, and the second phase uses

the rough estimate to achieve an accuracy target.
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Based on this they establish lower bounds of:

• [Phase 1:] Ω(log log T ) slots to obtain an initial estimate with constant relative error;

this is similar to the Willard Algorithm approach [119];

• [Phase 2:] Ω(1/α2 log (1/α)) slots to obtain a final estimate with α error probability.

They also compared several estimators including EZB, (enhanced) FNEB [47], LOF [47],

ZOE [131], A3 [45], etc. They also presented their own approach SRC (Simple RFID Count-

ing Protocol), that applied the two-phase method.

Wu et al. [121] introduced a method for tag estimation using a capture-aware Bayesian

estimate algorithm in which tag distance from the reader is used to refine the tag estimate.

Some other important estimation functions are listed below.

• LoF - uses the length of continues non-empty slots [89]

• FNEB - uses indices of the first non-empty slot for multiple rounds [47]

• EZB - number of empty slots in the frame for estimation [60]
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CHAPTER 3

OVERVIEW OF GROUPING PROOF PROTOCOL CONCEPTS

3.1 Introduction

A grouping-proof is evidence that a reader simultaneously scanned the RFID tags in a

group [1, 15, 16, 26, 51, 55, 79, 101, 106, 109, 136]. All communication is within RFID

wireless channels. A verifier must be able to use the proof to document the presence of

objects in the group. The unique aspects of RFID applications, efficiency, security, privacy,

and scalability are key considerations when designing a grouping-proof protocol. In recent

research for RFID grouping-proofs, many protocols make assumptions that are not compati-

ble with the technical capabilities for RFID. RFID tags are critically constrained in memory,

communication, and computation. Recall from Chapter 2, Section 2 under the EPC Class

1 Generation 2 (C1G2) standard, passive tags can accommodate fewer than 3K gates to

implement security features [40]. Some grouping-proof protocols, however, use hashing or

encryption. Hash functions (for example, [16]) require 8K to 10K gates. Elliptic-curve cryp-

tography (ECC), while less costly than alternatives such as AES and RSA, still requires 8K

to 15K equivalent gates [100, 101].

In general, grouping proofs fall into two categories - serial and parallel grouping proofs.

• In serial grouping-proofs, the reader sends messages to the tags one tag at a time. The

reader sends a message to a tag, the tag computes, the tag responds, then the reader

moves on to the next tag. The reader constructs dependency among tags in a proof by

having each tag incorporate a message sent by previous tag(s) into its own computation.

The reader is the one forwarding all the messages from one tag to another.

• In parallel grouping-proofs, the reader broadcasts messages to all tags. All tags that

receive the message compute in parallel, but communicate back to the reader one at a

time.
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Other categorizations are also common among RFID grouping-proof research.

• Offline and online grouping-proofs - In an RFID system, the verifier can be online or

offline with respect to its communication to the reader. In the offline mode, the reader

does not stay continuously connected to the verifier, and the reader will send its proof

to the verifier when they next connect, which may be some time after it builds the

proof. In contrast, in the online mode, the reader has a continuous connectivity with

the verifier. In online mode, the reader does not have to construct a proof, as it can

send information from each tag to the verifier as the information arrives. Offline mode

is considered to be the challenging case.

• Static and dynamic groups - Static grouping-proofs establish only the presence of pre-

defined groups of tags [86]. Dynamic grouping-proofs can handle any subsets of a

larger group of authorized tags. One application of the dynamic grouping proofs is

when the subgroups form a partition of a large group [63]. The demand to address

such a need comes from the unreliable radio interference, as when the number of the

tags of a group is larger, the probability of the interrogation failure grows. Partitioning

into smaller subgroups is an advantage for the protocol in two ways: the interrogation

process can abort early if there is an error, and in a second iteration the reader will

need to interrogate only the subgroups for which no proof was generated.

• Reading order-dependent and reading order-independent - In a reading order-dependent

protocol, the reader must interrogate tags in predetermined order. Reading order-

independent protocols can operate regardless of the order of interrogating tags or re-

ceiving their responses.

Parallel grouping-proofs are primarily reading order-independent, though, there are some

protocols [51, 63] that are reading order-dependent. Serial grouping-proofs are primarily

reading order-dependent but can be reading order-independent. An example reading order-
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dependent serial grouping-proof [65] shows the following disadvantages - inefficiency, higher

interrogation failure rates, and inability to provide acceptable privacy.

RFID communication is a sequential process and interrogation simultaneity can only be

captured by an “exposure-time” window: events are considered as happening simultaneously

if they take place within this window defined by the verifier [16, 87]. A grouping proof should

prove simultaneity, a mechanism to do it is to guarantee causality. To guarantee causality, a

proof must assure that a message input to a tag should be derived from computations that

can only be carried out by other tag(s) participating in the proof.

3.2 Background Concepts of a Grouping Proof Protocol

Chapter 2 gives background on RFID systems. Recall that the protocol involves three

types of entities: tags, a reader, and a verifier. Our work considers passive tags operating

under the EPC Gen2 version 2 specification [21, 40]. The reader manages tag groups using

three basic operations: select, inventory and access. In access, an authorized reader can

put a tag into an open state such that the tag will not respond to any other reader when a

protocol is executed. Though a tag does not have a clock, it can be programmed to respond

to the reader for a bounded time period.

In each of our protocols the reader and tags use a pseudo-random number generator

(PRNG). The verifier also uses a PRNG to verify the reader and tag computations (mes-

sages). Mandal et al. [74] and Martin et al. [76] present PRNGs suitable for EPC Gen2

version 2.

We assume that the wireless communication channel between a reader and a tag is not

secure, while the channel between the reader and the verifier is secure. Entities do not

trust readers and tags, but the verifier can authenticate readers, and readers and tags can

authenticate each other using shared information loaded during initialization.

18



3.2.1 General Design Requirements for Grouping-Proof Protocols

Design requirements for our grouping-proof protocols include the following.

1. Establish “simultaneous” presence of tags in a group, meaning that the reader must

communicate with all tags within a limited time window [88].

2. Construct a proof even if some tags are missing such that the proof identifies the tags

that are present and omits the missing tags.

3. Detect tags that do not belong to the group and omit them from the grouping proof.

4. Keep reader and tags synchronized across multiple runs [73].

5. Prevent a second reader from interfering with a grouping proof once it has started [65].

6. Verify the integrity of messages exchanged between reader and a tag and between

reader and verifier to prevent the generation of invalid proofs [106].

7. Ensure tag privacy - prevent an adversary from using information communicated during

a run to track a tag in the future or identify past presence of a tag using information

from previous runs of the protocol.

3.2.2 Grouping-Proof Problem Definition

The verifier securely loads information onto readers and tags during an initialization

phase, but it is not connected to either reader or tags during the construction of the grouping-

proof by a reader. (Hence, the reader constructs the grouping-proof offline.) The trigger for

a reader to begin a grouping-proof protocol can be a pre-loaded time (such as in a warehouse

application) or a user can start the proof process (such as in a supply-chain application).

The reader is to determine which tags of a group of tags are simultaneously present within

its range, and the reader is to construct a grouping-proof that it sends to the verifier. The

verifier receives the grouping-proof from a reader at some time after the reader constructs

this proof, and the verifier checks this proof for validity.
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3.2.3 Adversary Model

We assume that the adversary has the ability to completely control the communication

channel between the reader and tags. That is, the adversary can eavesdrop, modify, block

(delete), delay, and replay any messages during transmission. The adversary can send its

own messages to the reader (spoofing a tag) and to tags (spoofing the reader). The adversary

can attempt to spoil a grouping proof in various ways, including generating proofs that an

absent tag is present or vice versa and extracting information to allow it to track specific

tags. At times, we will assume that the adversary has the ability to corrupt some tags, that

is, extract the secrets and other information stored in a tag.

3.2.4 Definitions of the Attacks

Attacks on Privacy

Tracking attack : An adversary is able to trace and/or identify a tag in future communi-

cation.

Anonymity attack : After analyzing the transmitted messages between reader and tags,

an adversary is able to differentiate specific tags’ secrets or the reader’s secrets.

Forward security attack : After intercepting or eavesdropping on a tag’s communication

during a protocol run and corrupting the tag to obtain its secrets, an adversary can identify

that tag in previous runs of the protocol.

Message integrity attack : An adversary can modify messages to a reader/tag, and the

reader/tag cannot detect it.

Attacks on Security

Impersonation:

• Impersonate tag to reader - An adversary captures tags’ secrets or other tags’ data

that allow it to impersonate the tag to the reader.

• Impersonate reader to tag - An adversary sends a message to a tag that the tag accepts
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as if was from a legitimate reader, then either a proof fails or as a result the tag’s privacy

is compromised.

• Impersonate reader to verifier - An adversary captures the reader’s secrets that allow

it to impersonate the reader to the verifier.

Concurrency attack : While a grouping proof protocol is executing, additional readers

execute the grouping proof protocol on the same group of tags, spoiling the current or future

grouping proofs.

Desynchronization: An adversary causes tags to assume a state from which they can no

longer participate in the protocol properly.

Denial of proof : When an adversary attempts to force a proof to fail on reader-end

and/or tag-end in various ways.

Replay attack : After intercepting a tag’s (or reader’s) communication, an adversary

replays that message intending to extract further information from the reader (or tag) or

desynchronize the reader and tag.

In our work we are mainly concerned with security issues at the protocol and application

layer. We are not concerned with physical or link layer issues, such as the coupling design

and the power-up.

3.3 Formal Untraceability Analysis

Establishing proof of security and privacy in a clear and precise model is a major concern

in the area of RFID protocols. The RFID research community has developed many such

models. See Coisel and Martin [28] for a survey in privacy models. We choose to evaluate

our protocols with the untraceability model presented by Avoine et al. [8].

This model captures different privacy levels of the protocols. Compared to other models,

the model of Avoine et al. structures its attributes differently to enhance its capabilities and

fairness to analyze the untraceability level of RFID protocols.
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This untraceability model provides us with an easily applicable model that meaningfully

evaluates the privacy of our protocols. The model uses adversary actions (oracles), capabil-

ities (selectors and restrictions), and goals (experiment) and gives the flexibility to modify

adversarial assumptions if needed.

Below we describe the Avoine et al. model. Their paper [8] provides more details.

3.3.1 Description of the Avoine et al. Untraceability Model

The RFID System in the Model

An RFID system S defines three building blocks (more details in [8]):

• The architecture comprises three kinds of entities: tags, readers, and a verifier (database).

System architectures fall into two categories based on the numbers of readers: single-

entity (SE) and multiple-entity (ME). In our untraceability analysis, we consider only

SE (RFID system architecture with a single autonomous reader).

• Initialization procedures include generating system secrets, registering and initializing

tags, and preauthorizing a reader R to execute the protocol on tags T .

• Protocol Prot is a sequence of steps to achieve a well-defined objective. Prot involves

one or more entities, where each entity executes its own algorithm to reach the protocol

objective. An algorithm is the set of steps and transitions (an internal or external event

required by an entity to move to the next step). When an entity executes an algorithm

that exchanges data with other involved entities, call the record of exchanged data as

a transcript. A transcript can include, for example, the reception/emission time of a

message, message’s issuer and/or recipient, etc. Each algorithm execution may further

modify the entity’s internal state.

The Untraceability Experiment

In the untraceability experiment UNT, the adversary A can interact with the system

S within some limitations, which define different adversary classes. UNT also includes an
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honest entity, challenger C, and challenge tags.

The notion of a challenge tag is a tag that is a target of an attack performed by A [8, 28].

A can choose challenge tags. A does not interfere with the challenger C (honest entity)

during the experiment with the challenge tags.

In UNT experiment, at some point A selects two challenge tags, i and j. A has access to

all the transcripts of communications to and from all tags, and it has the identities of which

messages are to/from which tags. Challenger C relabels the two challenge tags as ĩ and j̃

with respect to a random bit b such that if b = 0, then ĩ = i and j̃ = j (that is, the labels

remain the same), but if b = 1, then ĩ = j and j̃ = i (that is, C swaps the labels). C executes

the protocol c1 times on Tag ĩ and c2 times on Tag j̃ without interference from A, then

provides the transcripts of these executions to A. Depending on the untraceability class, A

may or may not be able to corrupt some tags. A can run further executions of the protocol,

interacting with the tags. Finally, A must determine the value of b. If the probability that

A can correctly determine b is not very different from 1
2
, then the protocol is untraceable in

that class. Below we quote the following two definitions from Avoine et al. [8].

Definition 1 (P-Universal untraceability). An RFID system S is said P-Universal

untraceable, denoted P-Universal-UNT, if:

∀(c1, c2) ∈ N2, ∀Ap ∈ P ,∀b ∈ {0, 1}:∣∣∣Pr (ExpUNTS,Ap
(λ, b, c1, c2) −→ 1

)
− 1/2

∣∣∣ ≤ ε(λ),

where ε is a negligible function in the security parameter λ.

Definition 2 (P-Existential untraceability). An RFID system S is said P-Existential

untraceable, denoted P-Existential-UNT, if:

∃(c1, c2) ∈ N2, ∀Ap ∈ P ,∀b ∈ {0, 1}:∣∣∣Pr (ExpUNTS,Ap
(λ, b, c1, c2) −→ 1

)
− 1/2

∣∣∣ ≤ ε(λ),

where ε is a negligible function in the security parameter λ.
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Adversary Classes

The collection of attributes (actions, capabilities, goals) available to the adversary gives

rise to the concept of adversary class. The Avoine et al. [8] model formalizes the actions

that can be carried out on an RFID system with oracles. An oracle allows an adversary A to

interact with the system S and collect data. Example oracles include the abilities to interact

with the tags and reader by eavesdropping, blocking messages, tampering with messages,

spoofing reader or tag, and corrupting a tag to obtain all of its secrets

Two typical adversary classes are CLASSIC and STRONG.

For the class CLASSIC, A cannot corrupt any tags. The adversary A can interact with

the tags and reader by eavesdropping, blocking messages, tampering with messages, and

spoofing reader or tag.

For the class STRONG, A can corrupt any tags, including the challenge tags, and can

interact with the tags and reader by eavesdropping, blocking messages, tampering with

messages, spoofing reader or tag.

There are three classes defined between those two in the model - FORWARD, BACKWARD,

and SIDE.

• FORWARD - Tags i and j cannot be corrupted, but ĩ, j̃, and non-challenge tags can

be corrupted.

• BACKWARD - Tags ĩ and j̃ cannot be corrupted, but i, j, and non-challenge tags can

be corrupted.

• SIDE - Both FORWARD and BACKWARD restrictions must be respected, meaning that

challenge tags cannot be corrupted but non-challenge tags can.

Universal and Existential Untraceabilities

The notions of Universal-UNT and Existential-UNT depend on restrictions about the

choices of c1, c2 (parameters of the experiment). The restrictions are defined as follows.
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• Universal-UNT - C executes the protocol and (c1, c2) can be any number of executions

of the protocol, including (0, 0).

• Existential-UNT - C executes the protocol c1 times on Tag ĩ and c2 times on Tag j̃ for

some specified numbers (c1, c2)

In Sections 4.4.2 and 5.4.2, we apply the untraceability model to provide a formal com-

prehensive evaluation of our protocols within the adversary classes defined above considering

universal and existential untraceability.
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CHAPTER 4

SERIAL - DEPENDENCY GROUPING PROOF PROTOCOL

4.1 Introduction

Motivated by the SDZ Protocol, we develop the Serial-Dependency Grouping Proof Pro-

tocol (SDGPP) that reduces the amount of communication and computation, addresses

security gaps, removes the outside trusted timestamp server, and prevents a compromised

tag from spoiling the entire proof. Our light version of the SDZ serial-dependency protocol

preserves the security and privacy properties of the original protocol. Also, we use the EPC

specified settling-time intervals for tags to limit the time duration of the protocol. We re-

move the dependency on a specific reader to make the protocol suitable for applications like

a supply chain with different readers at different locations for the same group.

We analyzed untraceability of SDGPP in Section 4.4.2. Later, in Chapter 5 (Section 5.5)

we will compare the security and performance of SDGPP to that of other protocols, including

our PDGPP.

4.2 Motivation

Below is a review of the Sundaresan et al. [106] (SDZ) grouping-proof protocol in detail,

because the paper’s protocol motivated our work.

The Sundaresan et al. [106] (SDZ) grouping-proof protocol uses secrets shared by reader

and tags and other group- and tag-specific secrets held by tags to perform mutual authen-

tication as well as verify the integrity of the exchanged messages. The SDZ protocol builds

around a “zero-knowledge property” that enables a tag to convince the verifier of its pres-

ence without revealing its identity or any tracking information to the reader or the adversary.

The essence of this technique is as follows. The tag selects one bit of a secret shared with

Part of this chapter was previously published as Vanya Cherneva and Jerry Trahan, (2018)“Serial-
Dependency Grouping-Proof Protocol for RFID EPC C1G2 Tags,” 2018 IEEE Green Energy and Smart
Systems Conference (IGESSC)
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the verifier. The tag generates a random number ri, then, depending on the value of the

bit of the shared secret, transmits either the square (r2i mod p) or the pseudosquare (w · r2i

mod p). The verifier uses the prime factors of modulus p to distinguish square from pseu-

dosquare, while it is computationally infeasible for the reader or adversary to do so without

these factors. The protocol assumes a trusted timestamp-server that provides an encrypted

timestamp to the reader before each communication with a tag. Unlike the offline verifier,

this timestamp-server must remain connected to the reader. During the initialization phase,

the verifier loads information on reader and tags. The reader receives values including reader-

specific RH, group-specific GH, and tag-specific values for u protocol runs for each tag and

each group. Each tag receives values including RH, GH, and tag-specific TH(i). During the

proof generation phase, the reader sends information to a tag, receives a response from that

tag, then moves on to the next tag in turn. The information sent to Tag i includes K(i− 1)

calculated by the preceding tag, Tag i− 1. Folding together a fresh random number, secrets

shared with Tag i, and information loaded by the verifier (that itself folds in secrets shared

with Tag i), the reader sends eight items of data to the tag. Tag i extracts the random

number and then extracts GH and TH(i). If they match stored values of GH and TH(i),

then the tag has authenticated the reader and confirmed the integrity of the data sent by the

reader. If they do not match, then the tag tries again using stored values from its previous

run of the protocol. (This permits a tag one run out of synchronization with the reader to

regain synchronization. The update scheme prevents a tag from getting more than one run

out of synchronization with the reader in some, but not all, circumstances.) The tag uses

the zero-knowledge technique to compute a value K(i) to send to the reader then builds a

value L(i) including this K(i) and a stored hash RH of the reader ID. Receiving K(i) and

L(i), the reader extracts RH to authenticate the tag and ensure the integrity of the message.

During the proof construction phase, the reader collects RH, GH, run number, the random

number and encrypted timestamp used for each tag, and the K(i) and L(i) values received

from tags. It then encrypts this collection using a secret shared with the verifier.
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The SDZ protocol has many strong points. These include use of a hashed group ID

to permit the reader to authenticate a tag without divulging the tag’s ID, the use of ran-

dom numbers to keep communications fresh across runs and prevent an eavesdropper from

tracking, the use of the zero-knowledge technique, and checking the integrity of each com-

munication. The SDZ protocol, however, also has weak points. (i) The protocol assumes the

presence of a trusted timestamp-server always connected to the reader. (ii) A tag can par-

ticipate only with a specific reader. (iii) An adversary can desynchronize a tag by blocking

its messages in consecutive runs. (iv) Checking extracted vs. stored values for all of RH,

GH, and TH(i) is redundant. (v) Reader and tags exchange many data items. (vi) A tag

does not check the integrity of the K value sent to it by the reader. We have proposed a

protocol that addresses these points.

4.3 Description of SDGPP

The protocol has three phases: initialization, grouping-proof collection, and proof-verification.

Table 4.1 describes notation used in the protocols.

4.3.1 Initialization Phase

In the initialization phase, the verifier pre-computes information for u protocol runs and

stores this information in the reader and also stores one set of values in each tag.

Reader: The verifier initializes the reader with the following values: independent of

group and run - {RH, sR, Krv}, where Krv is a secret key shared between verifier and the

reader; group-specific - {GH,nextrun(1 . . .m)}, where each nextrun(i) = 1 and m is the

number of tags in the group; group- and run-specific - {J, µ(1 . . .m), sRT (1 . . .m)}. The

reader starts with seedR initiated by verifier (can be once or specific to a group or specific

to a run on a group or specific to a tag in a run on a group).

Tags: The verifier initializes each Tag i with the following values: independent of

group and run - {TH(i)}; group-specific - {GH, sG, sT (i), p, w, cV }; group- and run-specific
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- {sV T (i), s−1V T (i), sRT (i), s−1RT (i)}, where s−1V T (i), s−1RT (i) are initialized to 0. Tag i starts a

run with seedT (i) for its PRNG, initiated by verifier. Tags store no values specific to an

individual reader (as opposed to the SDZ protocol). This modification allows the protocol to

be processed from any reader pre-authorized from the verifier. Our protocol uses the timing

requirement built in EPC GS1 version 2 [40]. Tags execute any command (in any state)

within a certain default time controlled by the cV preset timing variable. Tags must respond

in this time window to be part of the grouping proof.

Table 4.1. Notation for SDGPP

Notations Description

sV 1, sV 2, sV 3 Unique secrets known only to the verifier

GID(k), GH Group ID GH(k) = h(GID(k), sV 1), where h is a hash function

TID(i), TH(i) Unique Tag ID TH(i) = h(TID(i), sV 2)

RID(j), RH Unique reader ID RH(j) = h(RID(j), sV 3)

rV Run-specific PRN generated by the verifier

J J = GH ⊕ PRNG(sG ⊕ rV ), where PRNG is a pseudorandom number
generator

µ(i) µ(i) = PRNG(TH(i)⊕ sV T (i))⊕ (x||y||z||rV )

seedR seed for the reader PRNG function

rR(i) PRN generated by the reader for Tag i

sR Secret key unique to each reader in the system

sG Shared group secret among group tags, sG(k)

sV T (i), s−1V T (i) sV T (i) (s−1V T (i)) is a secret shared between verifier and Tag i for current
(previous) run

sRT (i), s−1RT (i) sRT (i) (s−1RT (i)) is a secret shared between reader and Tag i for current
(previous) run

sT (i), sT (i, x) Secret key unique to Tag i; sT (i, x) is 128-bit string and x is index of
128-bit string in sT (i)

seedT (i) seed for Tag i PRNG function

rT (i, index) PRN generated by Tag i

x, y, z Indices used in zero-knowledge proof

p, w Values for zero-knowledge proof

cV Time constant to limit activity in a protocol run

4.3.2 Grouping-Proof Collection Phase

Figure 4.1 is a view of the messages exchanged among reader and tags in SDGPP. During

the grouping-proof collection phase, the verifier does not connect to the reader or tags. When
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Reader
−→ Jr(1), µr(1), δ(1) to Tag 1

Tag 1
←− K(1), L(1) to Reader

Reader
−→ Jr(2),Klast, µr(2), δ(2) to Tag 2

Tag 2
←− K(2), L(2) to Reader

... ...

... ...

... ...
−→ Jr(i),Klast, µr(i), δ(i) to Tag i

Tag i
←− K(i), L(i) to Reader

... ...

... ...
Tag m
←− K(m), L(m) to Reader

Figure 4.1. SDGPP messages

in a run, the reader places all tags in a group in open state. This starts the time window

controlled by cV .

Reader - Round 1

use J , µ(1), sRT (1) from nextrun(1)
rR(1)← PRNG(seedR)
seedR ← rR(1)⊕ sR
Jr(1)← J ⊕ rR(1)
µr(1)← µ(1)⊕ rR(1)
δ(1)← sRT (1)⊕ rR(1)
Send to Tag 1: Jr(1), µr(1), δ(1)

Figure 4.2. Round 1

Round 1 - Reader

The reader uses a run value nextrun(1) on which the reader expects Tag 1 to be. The

reader selects values for J , µ(1), and sRT (1) for Tag 1 according to this run value. The reader

generates a fresh pseudo-random number rR(1) and XORs this with precomputed values to

produce Jr(1), µr(1), δ(1). The randomness from rR(1) keeps messages fresh across runs and

avoids sending values in the clear. The reader sends three values to Tag 1 compared to seven

in the SDZ protocol.
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Tag 1 - Round 1

synch← 1
rR(1)← δ(1)⊕ sRT (1)
; Use extracted rR(1) to remove randomness
J ← Jr(1)⊕ rR(1)
µ(1)← µr(1)⊕ rR(1)
x||y||z||rV ← PRNG(TH(1)⊕ sV T (1))⊕ µ(1)
; Tag 1 uses stored TH(1), sV T (1) to obtain rV
GH ← J ⊕ PRNG(sG ⊕ rV )
; rV obtained from µ(1) used to extract GH from J

if (extracted GH 6= stored GH)
; if equal, then Group ID verified
; and message integrity of J and µ(1) verified
; else reader and Tag 1 runs not synchronized

; so use s−1RT (1), s−1V T (1) and try again
synch← 0

rR(1)← δ(1)⊕ s−1RT (1)
J ← Jr(1)⊕ rR(1)
µ(1)← µr(1)⊕ rR(1)

x||y||z||rV ← PRNG(TH(1)⊕ s−1V T (1))⊕ µ(1)
GH ← J ⊕ PRNG(sG ⊕ rV )
if (extracted GH 6= stored GH)

abort
S(1)← sT (1, x)⊕ PRNG(TH(1)⊕ sT (1, y))

⊕PRNG(sT (1, z)⊕ rV )
K(1)← null
for index ∈ {x, y, z}

rT (1, index)← PRNG(seedT (1))
seedT (1)← rT (1, index)
if S(1)[index] = 0
Z ← (rT (1, index))2 mod p

else ; that is, S(1)[index] = 1
Z ← w · (rT (1, index))2 mod p

K(1)← K(1)||Z
L(1)← GH ⊕ PRNG((Jr(1)||K(1))⊕ rR(1))
seedT (1)← PRNG(seedT (1))
if synch = 1

s−1RT (1)← sRT (1)
sRT (1)← PRNG(sRT (1))

s−1V T (1)← sV T (1)
sV T (1)← PRNG(sV T (1))

Send to reader: K(1), L(1)

Figure 4.3. Round 1
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Round 1 - Tag 1

Tag 1 authenticates the reader, verifies the integrity of the incoming messages, and com-

putes its response using zero-knowledge techniques. Tag 1 performs the following steps. It

authenticates that the reader is authorized by the verifier and confirms the integrity of mes-

sages received from the reader. If the verification fails, Tag 1 tries again using a different set

of values from the previous run because the tag may be at most one run ahead of (out of

synchronization with) the reader, so this allows it to resynchronize. Tag 1 has a synch flag

that marks whether it uses values from its current or previous run. Tag 1 next computes

values that will establish its presence to the verifier. Our protocol uses the zero knowledge

property from SDZ described in Section 4.2. Tag 1 sends K(1) and L(1) to the reader. This

is two values compared to three in the SDZ protocol.

Round i - Reader

In a round i, where 2 ≤ i ≤ m, if the reader does not receive a response from Tag i− 1

within a defined time window, it moves on to Tag i, leaving Tag i− 1 marked as not valid.

Reader - Round i (2 ≤ i ≤ m)

if reader received K(i− 1), L(i− 1) from Tag i− 1
GH ← L(i− 1)⊕ PRNG((Jr(i− 1)||K(i− 1))⊕ rR(i− 1))
if (extracted GH = stored GH))
nextrun(i− 1) = nextrun(i− 1) + 1
Klast ← K(i− 1)

; Klast is the last good K value received from a tag
mark Tag i− 1 as valid

else
discard K(i− 1), L(i− 1)

; if reader did not receive K(1), L(1) from Tag 1
; or if K(1), L(1) did not extract proper GH,
; then reader treats next tag as “Tag 1”

use J , µ(i), sRT (i) from nextrun(i)
rR(i)← PRNG(seedR)
seedR ← rR(i)⊕ sR
Jr(i)← J ⊕Klast ⊕ rR(i)
µr(i)← µ(i)⊕ rR(i)
δ(i)← sRT (i)⊕ rR(i)
Send to Tag i: Jr(i),Klast, µr(i), δ(i)

Figure 4.4. Round i – Reader
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Tag i - Round i (2 ≤ i ≤ m)

synch← 1
rR(i)← δ(i)⊕ sRT (i)

; Use extracted rR(i) to remove randomness
J ← Jr(i)⊕Klast ⊕ rR(i)
µ(i)← µr(i)⊕ rR(i)
x||y||z||rV ← PRNG(TH(i)⊕ sV T (i))⊕ µ(i)
; Tag i uses stored values TH(i), sV T (i) to obtain rV
GH ← J ⊕ PRNG(sG ⊕ rV )
; rV obtained from µ(i) used to extract GH from J

if (extracted GH 6= stored GH)
; if equal, then Group ID verified
; and message integrity of J , Klast, and µ(i) verified
; else reader and Tag i runs not synchronized,

; so use s−1RT (i), s−1V T (i) and try again
synch← 0

rR(i)← δ(i)⊕ s−1RT (i)
J ← Jr(i)⊕Klast ⊕ rR(i)
µ(i)← µr(i)⊕ rR(i)

x||y||z||rV ← PRNG(TH(i)⊕ s−1V T (i))⊕ µ(i)
GH ← J ⊕ PRNG(sG ⊕ rV )
if (extracted GH 6= stored GH)

abort
S(i)← sT (i, x)⊕ PRNG(TH(i)⊕ sT (i, y))

⊕PRNG(Klast ⊕ sT (i, z)⊕ rV )
K(i)← null
for index ∈ {x, y, z}

rT (i, index)← PRNG(seedT (i))
seedT (i)← rT (i, index)
if S(i)[index] = 0
Z ← (rT (i, index))2 mod p

else ; that is, S(i)[index] = 1
Z ← w · (rT (i, index))2 mod p

K(i)← K(i)||Z
L(i)← GH ⊕ PRNG((Jr(i)||K(i))⊕ rR(i))
seedT (i)← PRNG(seedT (i))
if synch = 1

s−1RT (i)← sRT (i)
sRT (i)← PRNG(sRT (i))

s−1V T (i)← sV T (i)
sV T (i)← PRNG(sV T (i))

Send to reader: K(i), L(i)

Figure 4.5. Round i – Tag i
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If the reader does receive a response from Tag i − 1, it extracts the hashed Group ID GH.

If the extracted GH matches the stored GH, this authenticates Tag i− 1 and also confirms

the integrity of the messages K(i− 1) and L(i− 1). Otherwise, the response is not valid and

the reader discards K(i − 1), L(i − 1). For the case of Tag 1, if the reader did not receive

K(1), L(1) or extract the proper GH, then it treats the next tag as “Tag 1”. The reader

maintains a value Klast, which is the last valid K value received from a tag. If the response

from Tag i−1 was valid, then the reader updates Klast. The reader acts for Tag i much as it

did for Tag 1. Differences involve Klast: the reader XORs it into Jr(i) to allow an integrity

check and sends it directly sent to Tag i. The reader sends four values to Tag i versus eight

in the SDZ protocol.

Round i - Tag i

Tag i’s actions are much like those of Tag 1 with differences involving Klast.

4.3.3 Proof - Verification

The reader compiles all partial proofs from valid tags’ messages to construct the proof

P = {RH,GH, run, (i, nextrun(i), K(i), L(i), rR(i))} with information from all valid tags i.

Then the reader encrypts proof P as P ′ using the secret key Krv shared with the verifier.

The reader sends P ′ to the verifier either immediately or at a later time with more proofs.

Verification Phase

The verifier decrypts P ′ using the shared secret key Krv. Using RH, GH, and run, the

verifier identifies which reader sent the proof, the tag group, and the run of the protocol for

that group. For each Tag i, the verifier computes S(i). Using K(i), p, and w, the verifier

distinguishes between squares and pseudosquares and decodes the tag- and run-specific bits.

If the decoded bits match in S(i), the verifier confirms that Tag i has participated in the

proof.
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4.4 Security Analysis

4.4.1 Security and Privacy Properties

We now establish that our protocol resists the attacks that the SDZ protocol [106] targets.

See Sundaresan et al. [106] for a comparison to other protocols. For definitions of these

attacks, see Section 3.2.4 and [15, 73, 87, 100, 106, 122, 127].

Privacy: The reader and tags never send Tag ID and group ID information in the clear

but always as part of a value computed with XOR or PRNG. The reader XORs values sent

to a tag with a new random value each run, even if nextrun(i) does not change. The K(i)

and L(i) values sent by a tag change each run because they build on fresh random numbers.

So an adversary cannot track the same tag from the information exchanged from one run

to the next. Attacks and other considerations relevant to privacy include tracking attack,

anonymity attack, and forward security. Section 4.4.2 gives a more thorough analysis of

untraceability and forward security.

Impersonation attacks: Impersonation attacks include three variants: (i) impersonate tag

to reader; (ii) impersonate reader to tag; and (iii) impersonate reader to verifier. (Attacks

under this category include forgery, illegitimate tag, subset replay, and multi-proof-session

attacks.) (i) Without GH and rR(i), an adversary cannot construct an L(i) value that a

reader will accept when the reader checks the match between extracted and stored GH. (ii)

Without sRT (i), sV T (i), TH(i), and sG, an adversary cannot construct values that Tag i will

accept when it checks the match between extracted and stored GH. (iii) The reader sends

proof P in encrypted form P ′ using a key shared with the verifier, so without this key, the

adversary cannot send a P ′ that the verifier will decode into valid information. Furthermore,

besides this encryption, an adversary cannot insert into a proof P information from a missing

tag because the chaining of K values would not be consistent. Observe that an adversary

cannot extract GH, rR(i), sRT (i), etc. from transmitted values.
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Concurrency attack: This attack is when multiple readers simultaneously try to generate

grouping proofs for the same tags. From the RFID specification [40], once a tag is in open

state to one reader, it does not respond to others. So, after a reader places a tag in open

state at the start of a run, the tag will complete its participation in this grouping proof

before responding to another reader.

Desynchronization: For each Tag i, the reader tracks nextrun(i), which is the run at

which it expects the tag to be during the next proof. Each tag maintains sRT (i) and sV T (i)

for the current run and s−1RT (i) and s−1V T (i) from its previous run. With selective updates

of these, a tag can be at most one run ahead of the reader even if the adversary blocks

messages. In that circumstance, the tag uses s−1RT (i) and s−1V T (i) to successfully compute its

outputs.

Denial of proof: An adversary can attempt to force a proof to fail in various ways, and

the protocol counters each of these. It can block or tamper with messages to desynchronize

reader and tags (see above for resolution), it can block or tamper with messages to break

the chain across tags (the use of Klast from the last valid tag resolves this), and it can

impersonate illegitimate tags (see above for resolution).

Replay attack: If an adversary replayed a message from a Tag i to the reader, the reader

would find it not valid because it will not incorporate the current Jr(i − 1) and rR(i − 1)

values. If an adversary replayed a message from the reader to Tag i from more than one

run previously, then Tag i would abort. But for a replay attack from the immediately

previous run for Tag i, the tag would not detect the replay attack, as it would see this as an

instance of being one run ahead of the reader. Tag i would reply with fresh values built on

fresh pseudorandom numbers (see above under privacy), and it would not update anything,

so this would not cause any future harm to our protocol. (The same applies to the SDZ

protocol.)

Message Integrity attack: A tag extracts GH from δ(i), µr(i), Klast, and Jr(i). A reader

extracts GH from K(i) and L(i). In both cases, a match between extracted and stored GH
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confirms the integrity of received messages.

4.4.2 Untraceability Analysis of SDGPP

In this section, we classify SDGPP in the untraceability model of Avoine et al. [8]. We

will establish that SDGPP is SIDE-Universal-UNT and FORWARD-Existential-UNT but is not

FORWARD-Universal-UNT.

Recall from Section 3.3.1 the following. A selects two challenge tags, i and j. Challenger

C relabels the two challenge tags as ĩ and j̃ with respect to a random bit b such that if b = 0,

then ĩ = i and j̃ = j (that is, the labels remain the same), but if b = 1, then ĩ = j and j̃ = i

(that is, C swaps the labels). A must determine the value of b. If the probability that A can

correctly determine b is not very different from 1
2
, then the protocol is untraceable in that

class.

For the class SIDE-Universal-UNT, ASIDE cannot corrupt the challenge tags, but can cor-

rupt any other tags immediately after C relabels the tags or after any number of executions

of the protocol. That is, (c1, c2) can be any values, including (0, 0).

For the class FORWARD-Existential-UNT, AFORWARD can corrupt the challenge tags and

any other tags after C executes the protocol c1 times on Tag ĩ and c2 times on Tag j̃ for

some specified numbers (c1, c2).

For the class FORWARD-Universal-UNT, AFORWARD can corrupt the challenge tags and

any other tags immediately after C relabels the tags or after any number of executions of

the protocol. That is, (c1, c2) can be any values, including (0, 0).

Theorem 4.4.1 SDGPP is SIDE-Universal-UNT.

Proof. For the SIDE-Universal-UNT class, adversary ASIDE cannot corrupt the challenge

tags but can corrupt any other tags. ASIDE can also obtain transcripts of communications to

and from all tags in all executions of the protocol.

For universal untraceability, (c1, c2) can be any values, and proving untraceability with
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(c1, c2) = (0, 0) suffices [8]. That is, when ASIDE has selected Tags i and j, it has access to all

transcripts for all tags in all previous executions of SDGPP, and it has the information on

which of these transcripts belong to which tags, including i and j. After the last execution of

SDGPP, ASIDE can corrupt all non-challenge tags, and ASIDE receives all transcripts of com-

munications, however, the Challenger labels the transcripts for i and j in the last execution

as belonging to ĩ and j̃ according to a random selection by the Challenger.

To establish that i = j̃, ASIDE would have to establish that Tag i in one of the previous

executions is the same as Tag j̃. To do this, ASIDE would have to calculate K(i) or L(i) from

the information it has obtained from transcripts and from corrupted non-challenge tags using

information that matches Tag j̃ . From the communication transcripts, ASIDE holds that Tag

i received inputs Jr(i), Klast (for i), µr(i), δ(i) and produced outputs K(i), L(i), while Tag

j̃ received inputs Jr(j̃), Klast (for j̃), µr(j̃), δ(j̃) and produced outputs K(j̃), L(j̃). For each

non-challenge Tag q, ASIDE can extract all its stored information (that is, TH(q), GH, sG,

sT (q), p, w, cV , sV T (q), s−1V T (q), sRT (q), s−1RT (q), and seedT (q)). Also, for Tag q, ASIDE can

calculate all values in the corresponding run of SDGPP for Tag q up through S(q) (that is,

rR(q); J for q; µ(q); x, y, z, and rV for q; and S(q)).

Even if i = j̃ and even if the run used s−1RT (j̃) = sRT (i), K(j̃) will be different from

K(i). This is because Tag j̃ generated fresh pseudorandom rT (j̃, index) values to build K(j̃).

Correspondingly, L(j̃) will be different from L(j) again due to different pseudorandom values

K(j̃) and rR(j̃). Secrets and calculations from non-challenge tags do not change this.

Because ASIDE does not have sRT (i), it cannot extract rR(i). Also, ASIDE cannot calculate

rR(i) from rR(i− 1) because of how the reader changes the seed used in the pseudorandom

generation of rR(i). So, ASIDE cannot extract x, y, z, and rV and so cannot calculate S(i) and

so cannot calculate K(i). Also, even with GH obtained by corruption of other tags, Jr(i)

obtained from the transcript, and K(i) obtained from the transcript, ASIDE cannot calculate

L(i) without rR(i). Therefore, ASIDE cannot match Tag j̃ with Tag i any better than it can

match Tag ĩ. 2
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Theorem 4.4.2 SDGPP is FORWARD-Existential-UNT.

Proof. For the FORWARD-Existential-UNT class, adversary AFORWARD can corrupt all tags,

including the challenge tags, after the Challenger executes the protocol without interference

from AFORWARD for a specific number of times. In this proof, we will use (c1, c2) = (2, 2),

meaning that the Challenger will execute SDGPP for two full executions before AFORWARD

corrupts any tags. AFORWARD can also obtain transcripts of communications to and from all

tags in all executions of the protocol.

To establish that i = j̃, AFORWARD would have to establish that Tag i in one of the

previous executions is the same as Tag j̃ in the last execution. To do this, AFORWARD would

have to calculate K(i) or L(i) from the information it has obtained from transcripts and

from corrupted tags. The proof of Theorem 4.4.1 describes the relevant information from

transcripts and from corruption, but in the current proof, the corrupted tags also include

challenge tags ĩ and j̃.

In the selected execution of Tag i, let sRT (i) = β and s−1RT (i) = α at the end of the run.

Whether Tag i was synchronized or desynchronized with the reader at the start of the run,

it would have used α as the sRT value during that run. We will examine cases in which

i = j̃ and the two executions of SDGPP by the Challenger immediately follow the selected

execution of Tag i. If other executions are between these, then the conclusions still hold.

Consider the case where Tag i is synchronized with the reader at the end of its run, which

means that Tag j̃ is synchronized at the start of the first execution by the Challenger. This

will be the case if AFORWARD allows the message from Tag i to reach the reader intact. The

first execution by the Challenger on Tag j̃ will use sRT value β. At the end of that execution,

sRT (j̃) = γ and s−1RT (j̃) = β. Tag j̃ no longer holds the value α.

Consider next the case where Tag i is desynchronized with the reader at the end of its

run, which means that Tag j̃ is desynchronized at the start of the first execution by the

Challenger. This will be the case if AFORWARD blocks the message from Tag i from reaching

the reader or tampers with the message. The first execution by the Challenger on Tag j̃ will
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use sRT value α. At the end of that execution, sRT (j̃) = β and s−1RT (j̃) = α because the tag

does not update these in a desynchronized execution. Tag j̃ is now synchronized with the

reader. The second execution by the Challenger on Tag j̃ will use sRT value β. At the end

of that execution, sRT (j̃) = γ and s−1RT (j̃) = β. Tag j̃ no longer holds the value α.

In both cases, by the arguments above in the proof of Theorem 4.4.1, because the cor-

rupted Tag j̃ does not hold sRT value α used by Tag i, AFORWARD cannot determine rR(i),

so it cannot calculate either K(i) or L(i). Therefore, AFORWARD cannot match Tag j̃ with

Tag i any better than it can match Tag ĩ. 2

Theorem 4.4.3 SDGPP is not FORWARD-Universal-UNT.

Proof. For the FORWARD-Universal-UNT class, adversary AFORWARD can corrupt all tags,

including the challenge tags, after the Challenger executes the protocol without interference

from AFORWARD for any adversary-specified number of times (including zero). In this proof,

we will use (c1, c2) = (1, 1), meaning that the Challenger will execute SDGPP for one full

execution before AFORWARD corrupts any tags. AFORWARD can also obtain transcripts of

communications to and from all tags in all executions of the protocol.

Suppose that i = j̃. To establish that i = j̃, AFORWARD will have to establish that

Tag i in one of the previous executions is the same as Tag j̃ in the last execution. To do

this, AFORWARD will calculate L(i) from the information it has obtained from transcripts and

from corrupted tags. The proof of Theorem 4.4.1 describes the relevant information from

transcripts and from corruption, but in the current proof, the corrupted tags also include

challenge tags ĩ and j̃.

During the selected execution with Tags i and j, AFORWARD blocks messages from Tags i

and j to the reader (or tampers with these messages), so that Tags i and j are desynchronized

with the reader at the end of the execution. The Challenger then immediately executes

SDGPP once, then AFORWARD corrupts the challenge Tags ĩ and j̃.

In the selected execution of Tag i, let sRT (i) = β and s−1RT (i) = α at the end of the
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run. Whether Tag i was synchronized or desynchronized with the reader at the start of

the run, it would have used α as the sRT value during that run. Because the execution by

the challenger C begins with Tags ĩ and j̃ desynchronized with the reader, neither Tag ĩ

nor Tag j̃ updates its sRT values. So, s−1RT (i) = s−1RT (j̃) = α. Using s−1RT (j̃) = α and δ(1)

from the transcript of Tag i in the selected run, AFORWARD extracts rR(i) used by Tag i.

Then with GH (via corruption), Jr(i) (via transcript), K(i) (via transcript), and rR(i) (just

calculated), AFORWARD calculates L(i) and matches it with the L(i) value in the transcript

of messages sent by Tag i. A match confirms that i = j̃. This establishes that SDGPP is

not FORWARD-Universal-UNT. 2
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CHAPTER 5

PARALLEL - DEPENDENCY GROUPING PROOF PROTOCOL

5.1 Introduction

In parallel grouping-proofs, the reader broadcasts communications to all tags. All tags

that receive the message compute in parallel then communicate back to the reader one at

a time. Because of use in large-scale applications, the number of tagged items read may

be significantly high. Therefore, scalability tailored to privacy and security is an important

challenge that affects the RFID system quality when designing a protocol.

5.2 Motivation

This chapter presents the Parallel-Dependency Grouping Proof Protocol (PDGPP) moti-

vated by SDGPP. We adapt the serial-dependency protocol idea to reduce protocol execution

time by overlapping tag computation times.

Many grouping-proof protocols exist, but these often do not satisfy all aspects of privacy,

security, and efficiency. PDGPP has parallel dependency among tags, extends the security

and privacy properties, and improves on efficiency, scalability, and resilience over existing

schemes. Out proposed protocol withstands a range of attacks on security and privacy, but

it does trade a weakened untraceability for improved scalability with respect to SDGPP. It

is lightweight and scalable for large systems while remaining in compliance with the EPC

Class 1 Gen 2 (C1G2) standard.

5.3 Description of PDGPP

PDGPP has two rounds. In the first round, the reader broadcasts a message to all tags

and receives their replies. Then, in the second round, the reader uses these replies to build

a message that it broadcasts to all tags (for parallel dependency) and receives their replies
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that incorporate this message. The reader builds a proof from the tags’ replies, encrypts it,

and sends it to the verifier. Figure 5.1 is a view of the messages exchanged among reader

and tags in PDGPP.

Reader
−→ Jr(1), ηr, δ(1) to all tags

Tag 1
←− K(1, 1), L(1, 1), tar(1, 1) to Reader
...
Tag i
←− K(i, 1), L(i, 1), tar(i, 1) to Reader
...
Tag m
←− K(m, 1), L(m, 1), tar(m, 1) to Reader

Reader
−→ Jr(2),K∗, δ(2) to all tags

Tag 1
←− Q(1, 2), L(1, 2), tar(1, 2) to Reader
...
Tag m
←− Q(m, 2), L(m, 2), tar(m, 2) to Reader

Figure 5.1. PDGPP messages

We now describe in detail the three phases of the protocol: initialization, grouping-proof

collection, and proof verification. Table 5.1 describes notation used in the protocol.

5.3.1 Initialization Phase

In the initialization phase, the verifier pre-computes information for u protocol runs

and stores this information in the reader and also stores one set of values in each tag (see

Table 5.2).

Reader: Because the reader broadcasts its messages to all tags, the verifier loads it with

values that are not specific to any individual tag. The verifier initializes the reader with the

following values (see Table 5.2) - independent of group and run: {RH,KRV }; group-specific:

{GH, sRT}; group- and run-specific {run, J, η}. The reader starts with seedR initiated by

verifier (can be once or specific to a group or specific to a run on a group).
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Table 5.1. Notation for PDGPP

Notations Description

sV 1, sV 2, sV 3 unique secrets known only to the verifier

GID(k), GH group ID GH(k) = h(GID(k), sV 1), where h is a hash function

TID(i), TH(i) unique Tag ID TH(i) = h(TID(i), sV 2)

RID(j), RH unique reader ID RH(j) = h(RID(j), sV 3)

KRV secret key shared between reader and the verifier

ta(i) unique tag alias identifier

rV run-specific PRN generated by the verifier

sG shared group secret among group tags, sG(k)

sV T a secret shared between verifier and tags

sRT a secret shared between reader and tags

x, y, z indices used in zero-knowledge proof

p, w values for zero-knowledge proof

J J = GH ⊕ PRNG(sG ⊕ rV ), where PRNG is a pseudorandom number
generator

η η = PRNG(sV T )⊕ (x||y||z||rV )

seedR seed for the reader PRNG function

rR(h) PRN generated by the reader for a round h

sT (i), sT (i, x) secret key unique to Tag i; sT (i, x) is a 128-bit string with index x in
sT (i)

seedT (i) seed for Tag i PRNG function

rT (i, index) PRN generated by Tag i

cV time constant to limit activity in a protocol run

Table 5.2. Initial values stored in the Reader - PDGPP

group run GH J η sRT

1 1 GH[1] J [1, 1] η[1, 1] sRT [1]

1 2 GH[1] J [1, 2] η[1, 2] sRT [1]

... ... ... ... ... ...

1 u GH[1] J [1, u] η[1, u] sRT [1]

2 1 GH[2] J [2, 1] η[2, 1] sRT [2]

2 2 GH[2] J [2, 2] η[2, 2] sRT [2]

... ... ... ... ... ...

j 1 GH[j] J [j, 1] η[j, 1] sRT [j]

... ... ... ... ... ...

j u GH[j] J [j, u] η[j, u] sRT [j]
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Tags: The verifier initializes each Tag i (that is, the tag with index i in its group) with

the following values - independent of group and run: {TH(i)}; group-specific:

{GH, sG, sT (i), sV T , sRT , p, w, cV , ta(i)}. Tag i starts a run with seedT (i) for its PRNG, initi-

ated by verifier. Tag i does not update any stored values so that tags can stay synchronized.

Tag i has ta(i), which has the following structure. Let values such as GH and sRT be d

bits long (say 128 bits), and let tag index i be c bits long (log of group size). The verifier

chooses a random bit position k in ta(i) where it places index i. It places value k in the low

log d bits of ta(i) and puts random values in the remaining bits of ta(i). Observe that given

ta(i), a reader can extract bit position k then index i.

5.3.2 Grouping-Proof Collection Phase

During the grouping-proof collection phase, the verifier does not connect to the reader

or tags. When in a run, the reader places all tags in a group in open state. This starts the

time window controlled by cV .

Round 1 - Reader

Figure 5.2 shows the reader actions in Round 1. The reader generates a fresh pseudo-

random number rR(1) and XORs this with precomputed values to produce Jr(1), ηr, δ(1).

Here, as in SDGPP (Section 4.3), the randomness introduced with rR(i) keeps messages fresh

across runs and avoids sending values in the clear. The reader sends three values to all tags

in the group - Jr(1), ηr, δ(1).

Round 1 - Tag i

Tag i authenticates the reader, verifies the integrity of the incoming messages, and com-

putes its response using zero-knowledge techniques. Tag i extracts rR(1) then rV (and x, y, z

to use in the zero-knowledge part) then GH. If the extracted GH matches the stored GH,

then Tag i authenticates that the reader is authorized by the verifier and confirms the in-

tegrity of messages received from the reader. If the match fails, then Tag i aborts. Tag

i next computes values that will establish its presence to the verifier. PDGPP uses the
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Reader - Round 1 - parallel

use J , η from current run
rR(1)← PRNG(seedR)
seedR ← rR(1)
Jr(1)← J ⊕ rR(1)
ηr ← η ⊕ rR(1)
δ(1)← sRT ⊕ rR(1)
Send to all tags: Jr(1), ηr, δ(1)

Tag i - Round 1 - parallel

rR(1)← δ(1)⊕ sRT
; Use extracted rR(1) to remove randomness

J ← Jr(1)⊕ rR(1)
η ← ηr ⊕ rR(1)
x||y||z||rV ← PRNG(sV T )⊕ η

; Tag i uses stored value sV T to obtain rV
GH ← J ⊕ PRNG(sG ⊕ rV )

; rV obtained from η is used to extract GH from J
if (extracted GH 6= stored GH)

abort
S(i, 1)← sT (i, x)⊕ PRNG(TH(i)⊕ sT (i, y))⊕ PRNG(sT (i, z)⊕ rV )
K(i, 1)← null
for index ∈ {x, y, z}

rT (i, index)← PRNG(seedT (i))
seedT (i)← rT (i, index)
if S(i, 1)[index] = 0

Z ← (rT (i, index))2 mod p
else ; that is, S(i, 1)[index] = 1

Z ← w · (rT (i, index))2 mod p
K(i, 1)← K(i, 1)||Z

L(i, 1)← GH ⊕ rR(1)⊕ PRNG(J ⊕K(i, 1)⊕ ta(i))
tar(i, 1)← ta(i)⊕ rR(1)
Send to Reader: K(i, 1), L(i, 1), tar(i, 1)

Figure 5.2. Round 1: PDGPP

zero-knowledge property (as in SDZ and SDGPP) described in Sections 4.2 and 4.3. Using

x, y, z, Tag i selects subsets of the tag’s secret sT (i) along with TH(i) to compute S(i, 1).

Depending on bits of S(i, 1), Tag i concatenates random squares and random pseudosquares

to form K(i, 1). This proves to the verifier that Tag i has the right secret sT (i), without

revealing it to an attacker.

Tag i then computes L(i, 1) and tar(i, 1) to enable the reader to authenticate the tag,

verify the integrity of received messages, and identify index i. Tag i sends K(i, 1), L(i, 1),
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Reader - Round 2 - parallel

K∗ ← 0
initialize all valid(i, 1), valid(i, 2) to 0
for each K(i, 1), L(i, 1), tar(i, 1) message received

ta(i)← tar(i, 1)⊕ rR(1)
GH ← L(i, 1)⊕ rR(1)⊕ PRNG(J ⊕K(i, 1)⊕ ta(i))
if (extracted GH = stored GH)

K∗ ← K∗ ⊕K(i, 1)
extract i from ta(i)
valid(i, 1)← 1

; Tag i’s response is valid
rR(2)← PRNG(seedR)
seedR ← rR(2)
Jr(2)← J ⊕K∗ ⊕ rR(2)
δ(2)← sRT ⊕ rR(2)
Send to all tags: Jr(2),K∗, δ(2)

Tag i - Round 2 - parallel

; tags in OPEN state so do not need to re-authenticate reader
rR(2)← δ(2)⊕ sRT

; Use extracted rR(2) to remove randomness
J ← Jr(2)⊕K∗ ⊕ rR(2)

; Tag i uses same x, y, z, rV as in Round 1
GH ← J ⊕ PRNG(sG ⊕ rV )
if (extracted GH 6= stored GH)

abort
Q(i, 2)← PRNG(K∗ ⊕ rV ⊕ i)
L(i, 2)← GH ⊕ rR(2)⊕ PRNG(J ⊕Q(i, 2)⊕ ta(i))
tar(i, 2)← ta(i)⊕ rR(2)
Send to Reader: Q(i, 2), L(i, 2), tar(i, 2)

Figure 5.3. Round 2: PDGPP

and tar(i, 1) to the reader.

Round 2 - Reader

The reader receives a response from Tag i and extracts hashed Group IDGH (Figure 5.3).

If the extracted GH matches the stored GH, this authenticates Tag i and also confirms the

integrity of the messages from Tag i - K(i, 1), L(i, 1), and tar(i, 1). Otherwise, the response

is not valid and the reader discards K(i, 1), L(i, 1), and tar(i, 1). The reader flags all valid

responses using valid(i, 1) (initialized to 0 for Round 1). The reader repeats this for all

tags’ responses building K∗ from valid K(i, 1) values. It generates a fresh random number

rR(2) for its Round 2 message to the tags. It builds Jr(2) from J,K∗, and rR(2) to allow an
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integrity check. The reader sends three values to all tags in the group - Jr(2), K∗, δ(2).

Round 2 - Tag i

Recall that tags are left from Round 1 in open state, so tags do not need to re-authenticate

the reader. In Round 2, Tag i extracts rR(2) from δ(2), then extracts J , then GH (Figure

5.3). If the extractedGH matches the storedGH, then this confirms the integrity of messages

received from the reader. Using K∗ and rV extracted in Round 1, Tag i will compute its

second message to the verifier: Q(i, 2) = PRNG(K∗ ⊕ rV ⊕ i). This introduces parallel-

dependency into the protocol as K∗ includes computation by all tags. Each Tag i in parallel

uses K∗ in its computation of Q(i, 2).

Then Tag i computes L(i, 2) and tar(i, 2) to enable the reader to authenticate the tag,

verify the integrity of the received messages, and identify index i. Tag i sends Q(i, 2), L(i, 2),

and tar(i, 2) to the reader.

5.3.3 Proof - Verification

The reader compiles information to construct the proof -

P = {RH,GH, run, rR(1), rR(2), (i, valid(i, 2), K(i, 1), Q(i, 2))} including messages from all

tags i with valid responses in Round 1 (Figure 5.4). Note that a tag could have sent a

valid response in Round 1 but not in Round 2 so valid(i, 2) indicates this, while if a tag did

not send a valid response in Round 1, the proof does not include the tag regardless of any

Round 2 response. Then the reader encrypts proof P using the secret key KRV shared with

the verifier to form P ′. The reader sends P ′ to the verifier either immediately or at a later

time with more proofs.

The verifier decrypts P ′ using the shared secret key KRV . Using RH, GH, and run, the

verifier identifies which reader sent the proof, the tag group, and the run of the protocol for

that group. For each Tag i, the verifier computes S(i, 1). Using K(i, 1), p, and w, the verifier

distinguishes between squares and pseudosquares and decodes the xth, yth, and zth bits. If

the decoded bits match in S(i, 1), the verifier confirms that Tag i has participated in the
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Reader - Proof construction - parallel

for each Q(i, 2), L(i, 2), and tar(i, 2) message received
ta(i)← tar(i, 2)⊕ rR(2)
GH ← L(i, 2)⊕ rR(2)⊕ PRNG(J ⊕Q(i, 2)⊕ ta(i))
if (extracted GH = stored GH)

extract i from ta(i)
if valid(i, 1) = 1

valid(i, 2)← 1
; Tag i’s response is valid

Proof construction
Reader puts together proof P = {RH, GH, run, rR(1), rR(2), (i, valid(i, 2), K(i, 1),
Q(i, 2))}, including all tags i for which valid(i, 1) = 1. The reader encrypts P as P ′ using
KRV then sends P ′ to the verifier.

Figure 5.4. Reader - to Verifier: PDGPP

proof. The verifier computes K∗, then along with rV and i, the verifier computes Q(i, 2) and

compares against the received Q(i, 2) to confirm the dependence among tag computations.

5.4 Security Analysis

5.4.1 Security and Privacy Properties

We now compare our protocol to other recent grouping proof protocols in terms of attacks

resisted (Table 5.5.1). We observe that recently proposed protocols are strong on anonymity

and protection from tracking attacks. Both of these properties are very crucial to have a

private system. We now establish that our protocol resists a range of attacks on security and

privacy. For definitions of these attacks, see Section 3.2.4 and [15, 73, 87, 100, 106, 122, 127].

Privacy: The reader and tags never send Tag ID (T to R communication) and group ID (T

to R and R to T) information in the clear but always as part of a value computed with XOR

or PRNG. So an adversary cannot track the same tag from the information exchanged from

one run to the next. Attacks and other considerations relevant to privacy include tracking

attack, anonymity attack, and untraceability. Section 5.4.2 gives a ... through analysis

of untraceability. Impersonation attacks: Impersonation attacks include three variants: (i)

impersonate tag to reader; (ii) impersonate reader to tag; and (iii) impersonate reader to
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verifier. (Attacks under this category include forgery, illegitimate tag, subset replay, and

multi-proof-session attacks.) (i) Without GH and sRT , an adversary cannot construct an

L(i) value that a reader will accept when the reader checks the match between extracted

and stored GH. (ii) Without sRT , sV T , and sG, an adversary cannot construct values that

Tag i will accept when it checks the match between extracted and stored GH. (iii) The

reader sends proof P in encrypted form P ′ using a key shared with the verifier, so without

this key, the adversary cannot send a P ′ that the verifier will decode into valid information.

Furthermore, besides this encryption, an adversary cannot insert into a proof P information

from a missing tag i because the Q values derived from K∗ would not incorporate K(i, 1).

Concurrency attack: This attack is when multiple readers simultaneously try to generate

grouping proofs for the same tags. From the RFID specification [40], once a tag is in open

state to one reader, it does not respond to others. So, after a reader places a tag in open

state at the start of a run, the tag will complete its participation in this grouping proof

before responding to any second reader.

Desynchronization: Because the tags do not update any stored secret, no synchronization

concerns exist.

Replay attack: If an adversary replayed a message from a Tag i to the reader, the

reader would find it not valid because the L(i, 1)(L(i, 2)) does not depend on the current

rR(1)(rR(2)). If an adversary replayed a message from the reader to Tag i from a previous

run, the tag would not detect the replay attack. Tag i would reply with fresh values built

on fresh pseudorandom numbers (see above under privacy), and since it would not update

anything, this would not cause any future harm to our protocol.

Message integrity attack: A tag extracts GH from δ(g), ηr, K
∗, and Jr(g). A reader

extracts GH from K(i, 1) or Q(i, 2), L(i, g), and tar(i, g). In both cases, a match between

extracted and stored GH confirms the integrity of received messages.

Denial of proof: An adversary can attempt to force a proof to fail in various ways, and

the protocol counters each of these. An adversary can block or tamper with messages to
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desynchronize reader and tags, it can block or tamper with messages to break the dependency

chain across tags, and it can impersonate tags. See above for how the protocol prevents each

of these from spoiling a proof.

5.4.2 Untraceability Analysis of PDGPP

In this section, we classify PDGPP in the untraceability model of Avoine et al. [8] and

establish that PDGPP is CLASSIC-Universal-UNT but is not SIDE-Existential-UNT.

Recall from Section 3.3.1 the following. A selects two challenge tags, i and j. Challenger

C relabels the two challenge tags as ĩ and j̃ with respect to a random bit b such that if b = 0,

then ĩ = i and j̃ = j (that is, the labels remain the same), but if b = 1, then ĩ = j and j̃ = i

(that is, C swaps the labels). A must determine the value of b. If the probability that A can

correctly determine b is not very different from 1
2
, then the protocol is untraceable in that

class.

The verifier initializes tags in PDGPP with values:

• independent of group and run, unique for each tag - {TH(i)}

• tag- and group-specific - {ta(i), sT (i), seedT (i)}

• group-specific, which are shared among all tags in a group - {GH, sG, sV T , sRT , p, w}

Tag i does update seedT (i), but does not update other stored values so that tags can stay

synchronized in the protocol. In the untraceability UNT experiment, the adversary A can

interact with the system S within some limitations, which define the adversary classes (see

Section 3.3).

For the class CLASSIC-Universal-UNT and each of the other classes, adversary ACLASSIC

can interact with the tags and reader by eavesdropping, blocking messages, tampering with

messages, spoofing reader or tag, but cannot corrupt any tags.
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For the class SIDE-Existential-UNT, ASIDE cannot corrupt the challenge tags, but can

corrupt any other tags after Challenger C executes the protocol c1 times on Tag ĩ and c2

times on Tag j̃ for some specified numbers (c1, c2).

Theorem 5.4.1 PDGPP is CLASSIC-Universal-UNT.

Proof. For universal untraceability, (c1, c2) can be any values, and proving untraceability

with (c1, c2) = (0, 0) suffices [8]. That is, when ACLASSIC has selected Tags i and j, it has

access to all transcripts for all tags in all previous executions of PDGPP, and it has the

information on which of these transcripts belong to which tags, including i and j. After the

last execution of PDGPP, ACLASSIC receives all transcripts of communications, however, the

Challenger labels the transcripts for i and j in the last execution as belonging to ĩ and j̃

according to a random selection by the Challenger.

Adversary ACLASSIC is not allowed to corrupt any tag. Therefore, the only set of informa-

tion that ACLASSIC can collect for its attack are transcripts (the messages exchanged during

protocol executions), nothing that it can block or tamper with messages and spoof reader

or tags.

To establish that i = j̃, ACLASSIC would have to establish that Tag i in one of the previous

executions is the same as Tag j̃. To do this, ACLASSIC would have to calculate a message

that identifies Tag i (that is, K(i, 1), L(i, 1), Q(i, 2), L(i, 2), tar(i, 1), or tar(i, 2)) from the

information it has obtained from transcripts using information that matches Tag j̃.

From the communication transcripts, ACLASSIC holds that Tag i:

received inputs in round 1 - Jr(1), ηr, δ(1) - and round 2 - Jr(2), K∗, δ(2) - with all values

specific to this execution, and produced outputs in round 1 - K(i, 1), L(i, 1), tar(i, 1) - and

round 2 - Q(i, 2), L(i, 2), tar(i, 2), while Tag j̃: received inputs in round 1 - Jr(1), ηr, δ(1) -

and round 2 - Jr(2), K∗, δ(2) (for j̃) - with all values specific to this execution, and

produced outputs in round 1 -K(j̃, 1), L(j̃, 1), tar(j̃, 1) - and round 2 -Q(j̃, 2), L(j̃, 2), tar(j̃, 2).

Even if i = j̃, K(j̃, 1) will be different from K(i, 1), and Q(j̃, 2) will be different from
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Q(i, 2). This is because Tag j̃ generated fresh pseudorandom rT (j̃, index) values to build

K(j̃, 1) and these form K∗ that Tag (j̃) uses for Q(j̃, 2) . Correspondingly,

L(j̃, 1), L(j̃, 2), ta(j̃, 1), ta(j̃, 2) will be different from L(i, 1), L(i, 2), tar(i, 1), tar(i, 2) again

due to different pseudorandom values K(j̃, 1), Q(j̃, 2), rR(1), rR(2) respectively, used in round

1 and 2.

Because ACLASSIC does not have sRT , it cannot extract rR(1) or rR(2). Also, ACLASSIC

cannot calculate rR(2) from rR(1) in the last transcript or any previous transcript be-

cause of how the reader changes seedR. So, ACLASSIC cannot extract x, y, z, and rV

and so cannot calculate S(i, 1) and so cannot calculate K(i, 1). ACLASSIC cannot calculate

L(i, 1), L(i, 2), tar(i, 1), tar(i, 2) without rR(1) and rR(2). Therefore, ACLASSIC cannot match

Tag j̃ with Tag i any better than it can match Tag ĩ.

In PDGPP the reader and tags never send tag secrets and group secrets in the clear but

always as part of a value computed with XOR or PRNG. So ACLASSIC cannot track the same

tag from the messages exchanged from one run to the next.

2

Theorem 5.4.2 PDGPP is not SIDE-Existential-UNT.

Proof. For the Side-Existential-UNT class, adversary ASIDE cannot corrupt the challenge

tags but can corrupt any other tags. It can also obtain transcripts of communications to and

from all tags in all executions of the protocol. To proof that PDGPP is not SIDE-Existential-

UNT, we will prove that challenge tags are traceable for any (c1, c2) so they are traceable for

(c1, c2) = (0, 0) and for any number of execution of PDGPP by the challenger.

This protocol is not SIDE-Existential-UNT because of the static data initialized in all of the

tags in a group. ASIDE can collect GH, sGT , sV T , sRT after any non-challenge tag corruption.

From the communication transcripts, ASIDE holds that Tag i received δ(1) as input in

round 1 (specific to this execution) and produced tar(i, 1) as output in round 1, while Tag j̃

received δ(1) as input in round 1 (specific to this execution) and produced tar(i, 1) as output
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in round 1.

To establish that i = ĩ or i = j̃, ASIDE would have to establish that Tag i in one of the

previous executions is the same as Tag ĩ or j̃ in the last execution. Using sRT from the

corruption of non-challenge tags, ASIDE can calculate for Tag i in the previous execution

rR(1) = δ(1) ⊕ sRT , then ta(i) = tar(i, 1) ⊕ rR(1). For the execution with challenge tags ĩ

and j̃, sRT remains the same, so ASIDE calculates the following: rR(1) = δ(1)⊕ sRT ,

ta(̃i) = tar (̃i, 1)⊕ rR(1), ta(j̃) = tar(j̃, 1)⊕ rR(1). Because i is either ĩ or j̃, then either ta(̃i)

or ta(j̃) will equal ta(i).

2
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5.5 Grouping Proof Protocols Comparison

5.5.1 Comparison of Security and Privacy Properties

Table 5.5.1 compares the security properties of SDGPP and PDGPP to recent grouping

proof protocols. We observe that recently proposed protocols are strong on anonymity and

protection from tracking attacks. Both of these properties are crucial to have a private

system. Also, protocols AbMM’16, Yuan’16, Zhou’18 are vulnerable to some impersonation

attacks because they fail to add an updating mechanism or a time counter mechanism to

ensure the freshness of its communication values for any of the communication sessions.

Table 5.3. Comparison of privacy and security properties of grouping-proof protocols.

Features

Protocol A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11

SDZ’15 [106]
√ √ √ √ √ √ √

X
√ √ √

AbMM’16 [1]
√ √ √

X X
√ √

X X X X

BuM’16 [16]
√ √ √ √ √ √ √ √ √ √ √

Yuan’16 [128]
√ √ √ √ √ √ √ √

X
√ √

Hsi’15 [51]
√ √ √ √ √ √ √ √

X
√

X

Zhou’18 [136]
√ √ √ √ √ √

X
√

X
√

X

ZhQW’18 [134] X
√ √

X X
√ √

X X X X

ShZW’17 [98] X
√ √ √

X
√ √ √ √ √

X

RoBH’18 [93]
√ √ √ √ √ √ √ √ √ √

X

SDGPP [25]
√ √ √ √ √ √ √ √ √ √ √

PDGPP
√ √ √ √ √ √ √ √ √ √ √

A1: Privacy/tracking A2: Privacy/anonymity A3: Privacy/untraceability
A4: Impersonation (T - R) A5: Impersonation (R - T) A6: Impersonation (R - V)
A7: Concurrency A8: Desynchronization A9: DoP
A10: Replay A11: Message integrity
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5.5.2 Performance Comparison

Table 5.4 shows clearly that many of the protocols use a type of hash function, MAC, or

elliptical cryptography in tags. These operations require too many gates to be EPC compli-

ant. We also show that SDGPP and PDGPP proposed are more efficient and scalable than

others. We reduced significantly the communication among entities, while still maintaining

and enhancing security and privacy.

Table 5.4. Comparison of communication overhead.

Features

Protocol C1 C2 C3 C4 C5 C6 C7

SDZ’15 [106]
√

PRNG - 8 1 6m 11m

AbMM’16 [1] X Hash 3 1 3 m 7m

BuM’16 [16] X Hash 8 1 3 m+ 2 11m

Yuan’16 [128]
√

PRNG - 8 - 5m+ 2 11m

Hsi’15 [51] X MAC, Hash 4 1 1 m 10m

Zhou’18 [136] X ECC 4 1 3 m 15m

ZhQW’18 [134]
√

PRNG - 4 - m+ 5 6m

ShZW’17 [98] X Hash 4 2 4 2 4m+ 4

RoBH’18 [93]
√

PRNG - 6 - 2m+ 3 3m+ 2

SDGPP [25]
√

PRNG - 9 1 2m 6m

PDGPP
√

PRNG - 9 1 2m+ 2 6m+ 6

C1: EPC Compliance C2: Type of Crypto Function(s) in tags
C3: Number of Crypto Operation(s) in Tag C4: Number of PRNG Operations in Tag
C5: Number of Crypto Operation(s) in Reader C6: Number of PRNG Operations in Reader
C7: Items communicated in a message
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CHAPTER 6

DYNAMIC GROUPING PROOF PROTOCOL

6.1 Introduction

In some applications, a verifier may need to identify the presence of tags in a subgroup of

a larger group. It may create these subgroups dynamically. So a tag can carry information

about the large group, but not about any subgroup to which it will belong. A dynamic

grouping-proof generates proofs of presence of tags in each of these subgroups.

In many large-scale applications, the number of tagged items interrogated may be signif-

icantly high. Due to unreliability of the radio interface, when a group has a large number of

tags, the probability that one or more tags will fail this interrogation is high. An approach to

overcome this problem is to partition the large group into subgroups, each with an adequate

number of tags and each subgroup interrogated separately.

Challenges for creating a dynamic grouping-proof include collision, scalability, limiting

the computational load on the entities involved, and guaranteeing privacy and security. We

designed the Dynamic Grouping Proof Protocol (DGPP) to overcome those challenges.

6.2 Motivation

Many RFID grouping-proofs focus on the static scenario where the tag group is constant

and tag participants remain the same during the grouping-proof. However, many practical

RFID applications, such as logistic control, are dynamic and require partitioning a large

group to subgroups, tag subgroup variations, tags to belong to multiple subgroups, or tags

(the tagged object) to enter and/or leave the reader’s covered area frequently. A fundamental

research question is how to design an efficient and secure protocol in this dynamic setting.

To tackle all those challenges we design the DGPP, implementing solutions to collision,

scalability, limiting the computational load, and guaranteeing privacy and security.

DGPP provides collision resolution by informing tags in a subgroup a specific order in
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which to respond. The approach is adopted to introduce randomness in a tag response across

executions and avoid collisions [51, 63].

DGPP provides scalability by partitioning subgroups within the large group, removing

group- and reader-dependency, limiting the computation and communication load of the tags

(remain compatible under the EPC standard) which allows the protocol to remain light and

suitable for the scope of large-scale applications.

DGPP allows missing tags. If one or more tags are missing or for some reason leave the

reader range while generating a proof (faulty tags, tampered tags, tags removed for genuine

reasons), than the reader collects proof from the available tags. We introduce the desired

significance parameter to allow the reader to treat an incomplete subgroup as satisfactory at

a verifier-defined level. For subgroups that do not satisfy the desired significance, the reader

will run a new grouping-proof iteration, while it will skip already satisfied subgroups in the

new iteration.

DGPP provides privacy and security under precise design requirements for grouping-proof

protocols (see Section 3.2.1).

Because we assume large-scale RFID applications for dynamic grouping-proofs, we choose

DGPP to have a parallel-dependency structure. The reader broadcasts communications to

all tags. All tags that receive the message compute in parallel then communicate back to

the reader one at a time in the specified order.

6.3 Description of DGPP

This section presents the Dynamic Grouping Proof Protocol (DGPP). The reader ex-

ecutes the protocol. The protocol executes up to u iterations for subgroups g[1], ..., g[z].

It builds an array of proofs from each subgroup. Then the reader encrypts this array of

subgroup proofs and sends it to the verifier.

For subgroup g[q] in iteration n, DGPP runs subroutine Subgroup.Check(q, n). An

overview of the subroutine Subgroup.Check(q, n) in the protocol is as follows. The sub-
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routine has two rounds. The first round has two parts. In Part 1, the reader broadcasts a

message to all tags in its range then waits for the tags to finish a computation. In Part 2, the

reader sends a list of transformed tag IDs that selects the tags that will participate in the

grouping proof and specifies the order of the tag responses. The reader receives their replies.

In the second round, the reader uses these replies to build a message that it broadcasts to

all tags (for parallel dependency) and receives their replies that incorporate this message.

We now describe in detail the three phases of the protocol: initialization, grouping-proof

collection, and proof verification. Table 6.1 describes notation used in the protocol.

Table 6.1. Notation for DGPP

Notation Description

G Group of tags

g[q] subgroup (subset) of G generated by the verifier

dq number of tags in a subgroup g[q]

γ[q] designated significance for subgroup g[q]

sV unique secret known only to the verifier

TID(i) unique tag identifier TID(i) = h(tid(i), sV ) (T-part;V-part)

a(i) unique tag alias

〈LPID(j)[q](n)〉 ordering list constructed by the Verifier for subgroup[q] in iteration n; j
- is rank of an element in the list

t[q](n) pseudorandom number such that the sequence of these has distinct in-
crements useful for the entities involved in the protocol

PID(i) pseudo-identity of a tag PID(i)← PRNG(a(i)⊕ t[q](n))

KV R secret key shared between the verifier and reader

sRT secret share by reader and tags in G

tT (i) last authenticated t[q](n) value received by Tag i

seedR a seed for the reader PRNG function initialized from the verifier

rR(k) PRN generated by the reader for round k

cV T time constant to limit tag activity in the protocol

cV R verifier and reader-specific time constant to limit activity in the protocol

6.3.1 Initialization Phase

In the initialization phase, the verifier pre-computes information for u protocol iterations

and stores this information in the reader (see Table 6.2). The verifier also initializes each

tag in group G with specific values.

59



Reader: The verifier initializes the reader with the following values (see Table 6.2):

{t[1...z](1...u), 〈LPID(j)[1...z](1...u)〉, seedR[1...z](1...u), γ[1...z], KRV , sRT , cV R}. Variable t

is a long pseudorandom value with distinct increments useful for the entities involved in the

protocol. It gives each tag a way of comparing with an incrementing variable, so no previous

t can be replayed. All tags will follow a specific response sequence (ordering list 〈LPID〉)

within a predefined time interval to send back self-response to the reader. 〈LPID(j)〉 is

a random permutation of tags pseudo-identity in a subgroup, which is constructed by the

verifier and is subgroup- and run-specific. A tag’s pseudo-identity is calculated as: PID(i) =

PRNG(a(i)⊕ t[q](n)). γ[k] is the designated significance parameter (tunable parameter). It

is the count of the number of tags that must be present in order to consider the subgroup

satisfied.

Table 6.2. Initial values stored in the Reader - DGPP

sub-
group

iteration
designated
significance

〈PID(i, j)〉 t seed for RNG

g[1] (1) γ[1] 〈LPID(j)[1](1)〉 t[1](1) seedR[1](1)

g[2] (1) γ[2] 〈LPID(j)[2](1)〉 t[2](1) seedR[2](1)

... ... ... ... ... ...

g[z] (1) γ[z] 〈LPID(j)[z](1)〉 t[z](1) seedR[z](1)

g[1] (2) γ[1] 〈LPID(j)[1](2)〉 t[1](2) seedR[1](2)

g[2] (2) γ[2] 〈LPID(j)[2](2)〉 t[2](2) seedR[2](2)

... ... ... ... ... ...

g[z] (2) γ[z] 〈LPID(j)[z](2)〉 t[z](2) seedR[z](2)

... ... ... ... ... ...

g[1] (u) γ[1] 〈LPID(j)[1](u)〉 t[1](u) seedR[1](u)

g[2] (u) γ[2] 〈LPID(j)[2](u)〉 t[2](u) seedR[2](u)

... ... ... ... ... ...

g[z] (u) γ[z] 〈LPID(j)[z](u)〉 t[z](u) seedR[z](u)

Tags: The verifier initializes each Tag i (the tag with index i in G) with the following

values: {TID(i), a(i), tT (i), sRT , cV T}, where TID(i), a(i) are tag-specific, unique for each

tag; tT (i) holds the last value of t[q](n) received, initialized to 0; and sRT is a secret shared

by reader and tags in G.

Note that time interval is limited with cV T for Tag i to complete the protocol.
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6.3.2 Grouping-Proof Collection Phase

The reader will start constructing proofs for all subgroups g[1...z] included in the verifier

scanning request for iteration(1), using fresh random values for each subgroup and iteration.

If any of the subgrouping-proofs in iteration(1) fails to reach γ[k] tags, then the reader will

try again to generate a proof for those subgroups in iteration(2), and so on. During the

grouping-proof collection phase, the verifier does not connect to the reader or tags. When

in an iteration, the reader places all tags in a subgroup in open state. This starts the time

window controlled by cV T .

6.3.2.1 The Protocol

The protocol

PRV ← ∅ ; initialized array of z entries for storing subgroup proofs

stored.count← 0 ; initialized array of z entries to store valid.count for subgroup proofs

Unsat Groups (1)← queue of 1...z

n← 1 ; iteration index

while n ≤ u and Unsat Groups (n) 6= ∅
Unsat Groups (n+ 1)← ∅
while Unsat Groups (n) 6= ∅

q ← Dequeue(Unsat Groups (n))

(valid.count, P [q](n))← Subgroup.Check(q, n)

if valid.count ≥ γ(q)

PRV [q]← P [q](n)

stored.count[q]← valid.count

else

Enqueue (Unsat Groups (n+ 1), q)

if valid.count > stored.count[q]

PRV [q]← P [q](n)

stored.count[q]← valid.count

end while

n← n+ 1

end while

P ′RV ← E(KRV , PRV ) ; P [q](n) = (q, n, (j, valid(2, j), P ID(i)),M1∗,M2∗, rR(1), rR(2))
includes all information that the verifier needs to rebuild and validate the proof

send to Verifier P ′RV

Figure 6.1. Protocol DGPP
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The reader will start the protocol (see Figure 6.1) by initializing two arrays: PRV to store

subgroup proofs for each subgroup and stored.count to stored valid.count for each stored

subgroup proof. The protocol will keep a queue of unsatisfied subgroups, to indicate the

subgroups that need to be executed in the next iteration.

The flow of the protocol is as follows. In iteration n, the reader starts with a queue

Unsat Groups(n) of unsatisfied subgroups, that is, subgroups for which the reader has not

yet found enough tags in earlier iterations to reach the designated significance. For each

such subgroup g[q], the reader will run Subgroup.Check(q, n) to check for the presence

of tags in g[q]. This returns a count of the tags found and a grouping proof for g[q]. If the

count reaches the designated significance, then the reader stores the proof and count. If not

and the count is more than previous iterations, then the reader stores the proof and count.

Otherwise, the reader discards the returned data. For the counts of g[q] that do not reach

the designated significance, the reader adds q to Unsat Groups(n+ 1).

6.3.2.2 Subroutine Subgroup.Check(q, n)

Figure 6.2 is a view of the messages exchanged among reader and tags in Subgroup.Check(q, n).

This is a high level view of the protocol.

Reader - to subgroup[q](n) Tag i in subgroup[q](n)
round 1
−→ m1R,m2R, 〈LPID(j)[1](1)⊕ rR(1)〉

round 1
←− m1(i),M1(i) to Reader

round 2
−→ m3R,m4R,M1∗r

round 2
←− m2(i),M2(i) to Reader

Figure 6.2. Subgroup.Check(q, n) messages
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Reader - Round 1, Part 1

for j = 1 to dq ; initialize array for subgroup g[q] with number of tags dq
valid(1, j)← 0
valid(2, j)← 0

rR(1)← PRNG(seedR)
seedR ← rR(1) ; reader updates seed for round 2
m1R ← sRT ⊕ rR(1) ; to carry rR(1) to tags
m2R ← t[q](n)⊕ rR(1) ; to carry t[q](n) to tags
send to tags m1R,m2R

Tag i - Round 1, Part 1

rR(1)← m1R ⊕ sRT ; extract rR(1), using shared sRT
t[q](n)← m2R ⊕ rR(1) ; use extracted rR(1) to remove randomness
if t[q](n) > tT (i)

; tag computes its new pseudo-identity
PID(i)← PRNG(a(i)⊕ t[q](n))
PIDr(i)← PID(i)⊕ rR(1)

else abort

Figure 6.3. Round 1, Part 1: subroutine Subgroup.Check(q, n) - DGPP

Round 1, Part 1 - Reader

Figure 6.3 shows the reader actions in Round 1. The reader generates a fresh pseudo-

random number rR(1) using seedR (subgroup- and iteration-specific) and XORs this with

the current counter value and the shared secret sRT . Here the randomness introduced with

rR(1) keeps messages fresh across runs and avoids sending values in the clear. The reader

sends two values to all tags in its range - m1R,m2R. Then the reader will delay its Round

1, Part 2 messages long enough for tags to complete their Round 1, Part 1 computation.

Round 1, Part 1 - Tag i

All tags in the reader range will do as follows (see Figure 6.3): extract rR(1) using shared

sRT , then use extracted rR(1) to remove randomness and get the current value of t[q](n). If

t[q](n) > tT (i), Tag i will compute its pseudo-identity for this run with a PRNG function

using its unique tag alias a(i) XORed with the current t[q](n) and will further randomize this

with rR(1). The additional randomization is necessary to assure privacy and anonymity and

to allow Tag i to send distinct PID(i)r messages if it belongs to multiple subgroups within

an execution of DGPP. Then Tag i will listen to Round 1, Part 2 messages from the reader.
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Reader - Round 1, Part 2

delay
;long enough for tags to complete their Round 1, part 1 computation

〈LPIDr(j)〉 ← 〈LPID(j)[q](n)⊕ rR(1)〉
send to tags 〈LPIDr(j)〉

Tag i - Round 1, Part 2

rank(i)← 0
count(i)← 0
while tag receives LPIDr(j) values from reader

count(i) ++ ; count number of PID messages from reader
if PIDr(i) = LPIDr(j)
rank(i)← count(i)

if rank(i) = 0
abort

; Tag i counts the items in the reader transmission. If an item matches Tag i’s PIDr(i),
then Tag i stores the count as it rank.
; This match establishes that Tag i belongs to the subgroup, authenticates the reader, sets
rank for responding to the reader, and verifies the integrity of t[q](n), rR(1).

tT (i)← t[q](n) ; update tT with the current t[q](n) value
M1(i)← PRNG(TID(i)⊕ t[q](n))⊕ rR(1) ; a tag’s secret designated for the Verifier
m1(i)← PID(i)⊕M1(i)⊕ sRT ; to carry PID(i) and integrity of M1(i) to reader
count(i)← 0 ; reset count
send to reader in slot rank(i): m1(i),M1(i)

Figure 6.4. Round 1, Part 2: subroutine Subgroup.Check(q, n) - DGPP

Round 1, Part 2 - Reader

After the delay, the reader (see Figure 6.4) will use the ordering list, initialized by the

verifier for g[q] in iteration (n). The reader additionally randomizes each PID(i) from the list

with its fresh pseudo-random number rR(1) and sends this to the tags in the list order. The

reader sends dq (number of tags in g[q]) number of messages to transmit the list 〈LPIDr(j)〉.

Round 1, Part 2 - Tag i

While Tag i receives LPIDR(j) messages from the reader, it counts the items received

(see Figure 6.4). If an item matches Tag i’s PIDr(i), the n Tag i stores the count value

as its rank. This match establishes that Tag i belongs to the subgroup, authenticates the

reader, sets its rank for responding to the reader, and verifies the integrity of t[q](n), rR(1).

Tag i will use t[q](n), rR(1) as a part of its computation designated to the verifier. Tag i
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will replace its tT (i) with the authenticated t[q](n) in its tag memory. This value is the only

value that changes in tag’s memory when a tag is interrogated. Value tT (i) prevents replay

attacks and impersonation by a malicious reader.

Tag i next computes values that will establish its presence to the verifier. Tag i will

compute M1(i) with a PRNG function including its unique TID(i) and the current tT (i)

(which is t[q](n)) value and will further randomize this with rR(1). Tag i then computes

m1(i) to enable the reader to authenticate the tag in its slot and verify the integrity of

received messages. Tag i sends in slot rank(i) two messages M1(i),m1(i) to the reader.

Reader - Round 2

M1∗ ← 0
for j = 1 to dq

if m1(i),M1(i) message received in slot j
PID(i)← m1(i)⊕M1(i)⊕ sRT

; Reader computes the PID(i) received in slot j
if (PID(i) computed = LPID(j))
; message integrity of m1(i),M1(i) is verified
; Tag i is authenticated

M1∗ ←M1∗ ⊕M1(i)
valid(1, j)← 1 ; Tag i’s response is valid

rR(2)← PRNG(seedR)
; reader does not update it seed here
; reader has a fresh seed set from the verifier for the next execution of the subroutine

M1∗r ←M1∗ ⊕ rR(1)
m3R ← sRT ⊕ rR(2)
m4R ← t[q](n)⊕M1∗r ⊕ rR(2)
send to tags m3R,m4R,M1∗r

Figure 6.5. Round 2: subroutine Subgroup.Check(q, n) - DGPP

Round 2 - Reader

The reader receives responses from tags in slots ordered by 〈LPIDr(j)〉 (see Figure 6.5).

The reader processes information “slot-by-slot”.

The reader computes PID(i) received in slot j, using the received M1(i),m1(i), and

shared secret sRT . If the computed PID(i) matches the stored LPID(j), then the reader has

authenticated the tag and verified the integrity of received messages. Otherwise, the response

is not valid and the reader discards M1(i),m1(i). The reader flags all valid responses using
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valid(1, j) (initialized to 0 in Round 1, Part 1). The reader repeats this for all tags’ responses,

building M1∗ from valid M1(i) values. The reader generates a fresh random number rR(2)

for its Round 2 message to the tags. It builds m3R,m4R, and rR(2) to allow an integrity

check. The reader broadcasts three values to all tags in the group m3R,m4R,M1∗r.

Tag i - Round 2

rR(2)← m3R ⊕ sRT
t[q](n)← m4R ⊕ rR(2)⊕M1∗r
if (t[q](n) extracted 6= t[q](n) stored )

abort
; message integrity of rR(2),M1∗r is verified if match

M1∗ ←M1∗r ⊕ rR(1) ; tag extracts subgroup dependency message
M2(i)← PRNG(M1∗ ⊕ t[q](n))⊕ rR(2) ; a tag’s secret designated for the Verifier
m2(i)← PID(i)⊕M2(i)⊕ sRT
send to reader in slot rank(i): m2(i),M2(i)
rank(i)← 0 ; reset rank

; after a run, abort, or timeout, Tag i discards all temporary stored variables and any
computational results

Figure 6.6. Round 2: subroutine Subgroup.Check(q, n) - DGPP

Round 2 - Tag i

Recall that tags are left from Round 1 in open state, so tags do not need to re-authenticate

the reader (Figure 6.6). In Round 2, Tag i extracts rR(2) from m3R, then extracts t[q](n)

using the received m3R,M1∗r, and extracted rR(2). If the extracted t[q](n) matches the one

stored in Tag i, then this confirms the integrity of messages received from the reader. Tag i

further removes the randomness from M1∗r using rR(1) and obtains the subgroup dependency

message M1∗. Tag i will compute its second message to the verifier. This introduces parallel-

dependency into the protocol as M1∗ includes computation by all tags. Each Tag i uses M1∗

in its computation of M2(i). Tag i then computes m2(i) to enable the reader to authenticate

it in its slot and verify the integrity of received messages. Tag i sends in slot rank(i) two

messages M2(i),m2(i) to the reader. Then Tag i resets its rank(i) to 0.
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Reader - Proof construction in subroutine Subgroup.Check(q, n)

M2∗ ← 0
valid.count← 0
for j = 1 to dq

if m2(i),M2(i) message received in slot j and valid(1, j) = 1
PID(i)← m2(i)⊕M2(i)⊕ sRT
; Reader computes the PID(i) received in slot j

if (PID(i) computed = LPID(j))
; message integrity of m2(i),M2(i) is verified
; Tag i is authenticated

M2∗ ←M2∗ ⊕M2(i)
valid(2, j)← 1 ; Tag i’s response is valid
valid.count+ +

Tag i could have sent a valid response in Round 1 but not in Round 2 so valid(2, j)
indicates this, while if a tag did not send a valid response in Round 1, the proof does not
include the tag regardless of any Round 2 response.

subroutine Subgroup.CHECK [q](n)
P [q](n) = (q, n, (j, valid(2, j), P ID(i)),M1∗,M2∗, rR(1), rR(2)) ; includes slot j for
which valid(1, j) = 1
return (valid.count, P [q](n))

Figure 6.7. Reader: subroutineSubgroup.Check(q, n) [q](n) - DGPP

Proof construction in subroutine Subgroup.Check(q, n)

The reader handles information sent by tags in Round 2 (see Figure 6.7) in similar way

as it does information sent by tags in Round 1. The reader receives responses from tags in

〈LPIDr(j)〉 order. The reader ignores messages in slots without a valid Round 1 message.

The reader computes PID(i) received in slot j using the received M2(i),m2(i), and shared

secret sRT . If the computed PID(i) matches the stored LPID(j), then the reader has au-

thenticated the tag and verified the integrity of received messages. Otherwise, the response

is not valid and the reader discards M2(i),m2(i). The reader flags all valid responses using

valid(2, j). Note that valid(2, j) = 1 indicates that Tag i has sent a valid response in Round 1

and in Round 2. The reader repeats this for all tags’ responses building M2∗ from valid M2(i)

values. Both M1∗,M2∗ constructed will be included in the constructed proof. The reader

construct the proof: P [q](n) = (q, n, (j, valid(2, j), P ID(i)),M1∗,M2∗, rR(1), rR(2)), includ-

ing slots j in which valid tags participated in Round 1. The subroutine Subgroup.Check(q, n)
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returns (valid.count, P [q](n)) to the protocol.

6.3.2.3 Performance remarks

DGPP use only PRNG and XOR operations, which are within the capabilities of EPC

Gen2 tags. In a run of Subgroup.Check(q, n) a tag performs 3 PRNG operations, the

reader performs 2 PRNG operations, and reader and tag communicate a total of 5m + 4

items.

6.4 Security Analysis

6.4.1 Untraceability Analysis of DGPP

In this section, we classify DGPP in the untraceability model of Avoine et al. [8]. We

will establish that DGPP is SIDE-Universal-UNT but not FORWARD-Existential-UNT.

Recall from Section 3.3.1 the following. A selects two challenge tags, i and j. Challenger

C relabels the two challenge tags as ĩ and j̃ with respect to a random bit b such that if b = 0,

then ĩ = i and j̃ = j (that is, the labels remain the same), but if b = 1, then ĩ = j and j̃ = i

(that is, C swaps the labels). A must determine the value of b. If the probability that A can

correctly determine b is not very different from 1
2
, then the protocol is untraceable in that

class.

For the class SIDE-Universal-UNT, ASIDE cannot corrupt the challenge tags, but can cor-

rupt any other tags immediately after C relabels the tags or after any number of executions

of the protocol. That is, (c1, c2) can be any values, including (0, 0).

For the class FORWARD-Existential-UNT, AFORWARD can corrupt the challenge tags and

any other tags after C executes the protocol c1 times on Tag ĩ and c2 times on Tag j̃ for

some specified numbers (c1, c2).
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Theorem 6.4.1 DGPP is SIDE-Universal-UNT.

Proof. For the SIDE-Universal-UNT class, adversary ASIDE cannot corrupt the challenge

tags but can corrupt any other tags. ASIDE can also obtain transcripts of communications to

and from all tags in all executions of the protocol.

For universal untraceability, (c1, c2) can be any values, and proving untraceability with

(c1, c2) = (0, 0) suffices [8]. That is, when ASIDE has selected Tags i and j, it has access to

all transcripts for all tags in all previous executions of DGPP, and it has the information on

which of these transcripts belong to which tags, including i and j. After the last execution

of DGPP, ASIDE can corrupt all non-challenge tags, and ASIDE receives all transcripts of com-

munications, however, the Challenger labels the transcripts for i and j in the last execution

as belonging to ĩ and j̃ according to a random selection by the Challenger.

To establish that i = j̃, ASIDE would have to establish that Tag i in one of the previous exe-

cutions is the same as Tag j̃. To do this, ASIDE would have to calculate m1(i),M1(i),m2(i),

or M2(i) from the information it has obtained from transcripts and from corrupted non-

challenge tags using information that matches Tag j̃. From the communication transcripts,

ASIDE holds that Tag i received inputs m1R,m2R, 〈LPIDr(j)〉,m3R,m4R,M1∗r (specific to

this execution in an iteration n) and produced outputs m1(i),M1(i),m2(i),M2(i), while

Tag j̃ received inputs m1R,m2R, 〈LPIDr(j)〉,m3R,m4R,M1∗r (specific to this execution in

an iteration n′) and produced outputs m1(j̃),M1(j̃),m2(j̃),M2(j̃). For each non-challenge

Tag q, ASIDE can extract all its stored information (that is, TID(q), a(q), tT [q], sRT ). Also,

for Tag q, ASIDE can calculate all values in both rounds of Subgroup.Check.

Suppose ĩ and j̃ are in iteration n′ and i is in iteration n. With sRT extracted from a non-

challenge tag, ASIDE can extract in n′: rR(1), rR(2), and t[q](n′) and in n: rR(1), rR(2), and

t[q](n). These all will be different because of how the reader changes rR(1), rR(2), and t[q](n)

in each run of Subgroup.Check. ASIDE can also extract PID(̃i), P ID(j̃), and PID(i) but

cannot reverse the PRNG computation in PID to reveal any of a(̃i), a(j̃), or a(i). Because

either j̃ = i or ĩ = i, then either a(j̃) = a(i) or a(̃i) = a(i). Without a(̃i), a(j̃), and a(i),
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ASIDE cannot tell which of PID(̃i) or PID(j̃) uses the same a value as PID(i). So ASIDE

cannot match m1(̃i) or m1(j̃) to m1(i).

ASIDE also cannot calculate M1(̃i),M1(j̃), or M1(i). In iteration n′ ASIDE can extract

rR(1) from m1R and in iteration n can extract rR(1) from m1R. Also, ASIDE cannot reverse

the PRNG computation in M1 to reveal any of TID(̃i), T ID(j̃), or TID(i). Because either

j̃ = i or ĩ = i, then either TID(j̃) = TID(i) or TID(̃i) = TID(i). Without TID(̃i), T ID(j̃),

and TID value, ASIDE cannot tell which of M1(̃i) or M1(j̃) uses the same TID(i) as M1(i).

So ASIDE cannot match M1(̃i) or M1(j̃) to M1(i).

ASIDE cannot match m2(̃i) or m2(j̃) to m2(i) because of the same argument as for m1.

In iteration n′, M2(̃i) = M2(j̃), so ASIDE cannot match M2(̃i) or M2(j̃) to M2(i) because

it cannot tell them apart.

Therefore, ASIDE cannot match Tag j̃ with Tag i any better than it can match Tag ĩ.

2

Theorem 6.4.2 DGPP is not FORWARD-Existential-UNT.

Proof. For the FORWARD-Existential-UNT class, adversary AFORWARD can corrupt the

challenge tags and any other tags after a specified number of executions of the protocol by

the Challenger C. It can also obtain transcripts of communications to and from all tags in

all executions of the protocol.

To prove that DGPP is not FORWARD-Existential-UNT, we will prove that challenge

tags are traceable for any pair (c1, c2). The Challenger C executes the DGPP protocol for

multiple executions without interference from AFORWARD. In this proof, we will first use

(c1, c2) = (0, 0), then later we will show that even after Challenger C executes DGPP for any

number of executions, tags will still be traceable. AFORWARD can corrupt any tags. AFORWARD

can also obtain transcripts of communications to and from all tags in all executions of the

protocol.

The key idea is that TID(i) does not change.
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To establish that i = ĩ or i = j̃, AFORWARD would have to establish that Tag i in one of

the previous executions is the same as Tag ĩ or j̃ in the last execution.

After corrupting the challenge Tags ĩ and j̃, AFORWARD can obtain the following secrets, for

ĩ: a(̃i), T ID(̃i), t[q](n′) and for j̃: a(j̃), T ID(j̃), t[q](n′). AFORWARD recomputes the potential

answers of these tags as follows, for ĩ:M1(̃i)← PRNG(TID(̃i)⊕ t[q](n′))⊕ rR(1) and for j̃:

M1(j̃)← PRNG(TID(j̃)⊕ t[q](n′))⊕ rR(1).

Using extracted sRT (via corruption), AFORWARD can extract rR(1) and t[q](n) in iteration

n. Using rR(1) and t[q](n) from iteration n and TID(̃i) and TID(j̃) AFORWARD calculates

PRNG(TID(̃i)⊕ t[q](n))⊕ rR(1) and PRNG(TID(j̃)⊕ t[q](n))⊕ rR(1). One of these will

equal M1(i), identifying which of the Tag ĩ or j̃ is the same as Tag i.

Even if Challenger C then runs DGPP for any number of executions without interference

from AFORWARD, tags will be traceable because TID(i) (and other secrets) does not change.

This establishes that DGPP is not FORWARD-Existential-UNT.

2
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CHAPTER 7

CARDINALITY ESTIMATION FOR TAG POPULATION

7.1 Introduction

In radio frequency identification (RFID) technology, a fundamental task is tag cardinality

estimation. The reader tries to determined the tag population size speedily and accurately.

Example applications for cardinality estimation include large-scale dense deployment for

intelligent transportation, stadium management, conference, and warehouse systems with

thousands or even millions of objects. A wide variety of tag estimation algorithms has been

proposed in the literature [4, 47, 48, 60, 68, 72, 89, 131, 133].

We first formally discuss the problem (Section 7.2). Then we elaborate on the working

environment and the idea of “estimators” (Section 7.3). We also introduce an algorithm

template for a methodology for cardinality estimation and adopt this template for our ap-

proach (Section 7.6). In Section 7.4 we introduce new methods to obtain an initial “Phase 1”

estimate of the cardinality. In Section 7.5 we present an analysis of the (fe − f0) estimator

on the {0, 1, e} channel. This result is an extension of the GERT approach of Hasan et al.

[48] for the {0, e} channel. The result shows that both approaches, ours and GERT, exceed

the requirements of the problem (at potentially added cost). We propose an approach to

use simulation data (Section 7.6) to design an algorithm that better balances the cost and

accuracy constraints of the problem.

7.2 Problem Statement

Suppose there are T tags in the vicinity of the reader. The aim of cardinality estimation

of the tag population, henceforth called cardinality estimation, is to determine an estimate of

the numbers of tags in the vicinity of the reader while meeting desired accuracy requirements.

Formally, for any real error probability 0 < α < 1 and real relative error 0 < β < 1, the

solution to cardinality estimation must satisfy:
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Pr

[
|Test − T |

T
≤ β

]
≥ α (7.1)

where Test is the estimated value of the tag population size, T is the actual value of tag

population size , and Pr(·) is the probability of an event.

For example, if the exact number of tags is T =1000, the specified relative error β = 3%

and target error probability α = 95% then the output estimate Test of an (α, β) accuracy

requirement should be between 970 and 1030 at least 95% of the time.

7.3 Problem Environment

Consider a set of tags that are assumed to be anonymous (no IDs transmitted) and that

possess minimal computational ability. In this work we require a tag, given an integer f ≥ 1,

to only be able to generate a random bit with probability 1
f

of being a 1 and probability

(1− 1
f
) of being a 0. The tags communicate with the reader through a channel of resolution k

(see Section 2.1.2). We will primarily consider k ≤ 2 ({0, e} and {0, 1, e} channels, although

some of the proposed ideas extend to large values of k).

The tags operate in a slotted (synchronous) environment in which a typical sequence of

actions performed by tags includes (a) reading an integer f ≥ 1 from the channel and (b)

for each of the next f slots writing to the channel with probability 1
f
. This sequence of f

slots is called a frame of size f . The remaining portions of the algorithms are executed on

the, relatively more powerful, reader.

As a result of T tags writing independently on f slots of a frame, the channel returns a

sequence of f output symbols to the reader. Formally, let {ti : 1 ≤ i ≤ T} be the set of

tags. Let tag ti write symbol si,j on a slot, j (1 ≤ j ≤ f) where si,j ∈ {0, 1}. Let the output

symbol on slot j be ŝj ∈ {0, 1, ...., k − 1, e}. Assume the input symbols to be numerical

values {0, 1} and output symbols {0, 1, ...., k − 1, e} (e ≥ 2) to also be numerical values, we

have the following with
∑

denoting arithmetic addition:
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ŝj =


T∑
i=1

si,j, if
T∑
i=1

si,j < k

e, otherwise

For any output symbol ŝ ∈ {0, 1, ...., k − 1, e}, define count fŝ to be

fŝ =

f∑
j=1

1ŝ(ŝj)

where 1a(v) = 1 iff b = a. That is, f0 is the number of ′0′ output symbols in the f -slot

frame, f1 is the number of ′1′ output symbols in the f -slot frame and so on.

An estimator is a function of the output symbol ŝj (where 1 ≤ j ≤ f) that is used

to estimate the tag population. Typically estimators use fŝ in various ways for example,

f0, f1, fe, fe − f0 introduced earlier. Estimators include the average of 0 (EZB [60]), or the

average of collisions e (UPE [59]), the average run length of non-zero slots (ART [131]), the

length of continuous non-zero slots (LoF [89]), and the indices of the first non-zero slot for

multiple rounds (FNEB [47]).

Figure 7.1 presents a template for an algorithm for cardinality estimation. For a set of T

tags, let Phase 1 and Phase 2 require τ1 and τ2 time (slots). Observe that if the number of

bits needed to represent the quantities f, n are constants relative to the tag size T , then the

number of slots needed for Phase 2 (including any slots used to synchronization or separate

iterations) is a1 + a2n+nf , where a1 and a2 are constants. In this work we will assume that

a1 = a2 = 0 since n and the constant overheads are generally small compared to f . Thus,

the time for Phase 2 is assumed to be nf .

The above algorithm template can be further generalized to accommodate a different

frame size at each iteration and a persistence probability to further temper the probability

of a tag writing in a slot (with persistence probability p̃, tags write a ′1′ with probability p̃
f
;

we have assumed p̃ = 1). Using persistence probability is like using a frame size of f
p̃

with

dnp̃e iterations. The algorithmic template could also be extended to allow any method of
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Algorithm Cardinality Estimation

Phase 1: Get an initial estimate T0.
Phase 2:
The reader uses T0 to determine a frame size f and the number of iterations n.
The reader broadcasts f, n to all tags.

for each slot j (where 1 ≤ j ≤ f) do

Each tag independently writes symbol ’1’ (respectively, ’0’) to the channel with
probability 1

f (respectively, 1− 1
f ).

The reader reads the channel output symbol ŝj and computes an estimator value
Ej .

end

end

The reader computes the average estimator value E = 1
n

n∑
i=1

Ej over all n iterations. Then

uses an inverse operation on E to determine the final estimate Test

Figure 7.1. Algorithm Cardinality Estimation

using (ŝj) to determine E. These extensions accommodate most approaches in the literature.

For Phase 1 we will use the well known algorithm of Willard [119] for leader election on a

{0, 1, e} channel (henceforth called Willard). We modify this algorithm to produce an

estimate T0 of the tag population. Our modification runs in O(log log Tmax) time, where

Tmax is the maximum number of tags that the system can expect. (In our simulation we

have assume Tmax = 216−1.) Further details of the Willard algorithm appear in Section 7.4.

We also extend Willard algorithm to provide more accurate outputs. These extensions

are called Willard+, Willard∗, Willard+∗. Section 7.4.2 describes these extensions.

We now briefly explain the approach used in Phase 2 to count the channel output symbols

to obtain estimate Test . Consider, for example that the estimator used is the number of zeroes

f0 in a frame. Figure 7.2 shows the average value of f0 plotted as a function of T
f

.

Consider any estimator E, for example consider f0 estimator on Figure 7.2. Suppose

f0 was 0.7. Then it correspond to a T
f

value of 0.5. That is with an f0 = 0.7 value one

could expect that T
f

= 0.5, However, there is a variance in the observed value of f0. For this
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Figure 7.2. General nature of the quantities {f0, f1, fe}

illustration suppose the observed value f0 = 0.7 can vary between 0.6 and 0.8. Then the

value of T can vary approximately between 0.4 and 0.6. This results is an average error of

|Test−T |
T

of |0.4−0.5|
0.5

or |0.5−0.6|
0.5

≤ 20%. On the other hand suppose f0 = 0.2 with T = 1.7 and

could vary between 0.3 and 0.1. Then T
f

can vary approximately between 1.1 and 2.3. Here

the error is |1.1−1.7|
1.7

or |2.3−1.7|
1.7

≤ 35.3%. This is a higher slope of the average value of the

estimator. Suppose that for the f0 = 0.7 case the values the T
f

could vary between 1 and

0.3. Then the error could have been approximately |0−0.5|
0.5

or |1.5−0.5|
0.5

≤ 200%. Therefore, the

variance of the estimators is also important. In addition, to high slope and low variance the

average value of the estimators should be monotonic to facilitate inversion.

Observe that this plot decreases monotonically. Therefore the function ψ(T
f

) = f0 that

gives the average value of f0 for each value of T
f

, has an inverse ψ−1(f0) = T
f

. For a given

value of f0 and with the known value f, T can now be estimated. The n iterations serve

to reduce the variance in the observed value f0. Not all estimators are equally effective
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(particularly in certain range of values of T
f

[59]) and some are not monotonic (for example

f1, see Figure 7.2). In our work we will use the estimator fe − f0, which showed promise in

initial investigations (see Section 7.3.1).

Table 7.1 summarizes the main notation used across this chapter.

Table 7.1. Notation Cardinality Estimation.

f frame size

f0 number of slots in a frame with no write

f1 number of slots in a frame with one write

fe number of slots in a frame with more than one write

Test an estimate of a tag population

T0 tag population size estimate in Phase 1

T the actual tag population

p̃ persistence probability

T p̃
f or Tp system load ratio

E an estimator

7.3.1 Empirical Study of the Behavior of Estimators

The quantities {f0, f1, fe} are critical to this work. Figure 7.2, and after shows the

general nature of these quantities. In our algorithm in Figure 7.1, and after 7.1 the reader

uses a function from its reading f0, f1, fe to determine an estimate of T . Several standard

estimations appear in the literature that include f0, f1, fe.

We study many combinations of f0, f1, fe such as: f0
f

, f1
f

, fe
f

, f0
f1

, f0
fe

, f1
f0

, f1
fe

, fe
f0

, fe
f1

, f0 +f1,

f0 + fe, f0 + f1, f1 + fe, f0− f1, fe− f1, f0− fe, f0fe
f1

, f1fe
f0

, f0f1
fe

, f0
f1fe

, f1
f0fe

, fe
f1f0

,
√

f0fe
f1

,
√

f1fe
f0

,√
f0f1
fe

, f1√
f0fe

, f0√
f1fe

, fe√
f0f1

, as potential estimators to be used.

For each estimator we plotted its average value and variance across a large number of

trials and tag populations (see Figures 7.3 and 7.4). Notice that all estimators have a small

slope and low variance for large values of T
f

. That is, one need a large frame size f for
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some level of accuracy. For small values of T
f

the fe − f0 estimator has the large sloop with

a somewhat larger variance. Estimators investigating f1 are non-monotonic and were not

consider functions.

7.4 Phase 1 Algorithms

The algorithms for Phase 1 that we use in this work are all based on the work of Willard

[119]. We will discuss the adaptation of Willard’s algorithm to this work. Then we will

discuss extensions for higher accuracy. We will also illustrate the performance of these

algorithms.

7.4.1 The Algorithm Willard

The leader election of Willard [119] searches for a leader from a set of T entities (tags in

our case). It proceeds in two stages. The first stage determines (for the most part) a method

to estimate the value of T and that is what we use for this work. Consequently we do not

describe Stage 2 of Willard’s algorithm. What we describe below is the adaptation used for

this work. We will call the adaptation Willard.

The algorithm Willard proceeds as follows. First, observe that if T tags write to the

channel with probability 1
T0

, then the average numbers of writes is T
T0

.

Suppose 1 ≤ T ≤ 2m, that is, T is an m-bit number. The algorithm first checks estimate

T0 = 2
m
2 as a potential value of T . Every tag writes to the channel with probability 1

T0

and the reader checks the channel output. If the channel output is ′0′ then nominally the

probability 1
T0

is too small and the estimate T0 is too large. If the channel output is e, then

nominally the estimate T0 is too small. If the channel output is ′1′, then (on average) the

estimate is about right. If the estimate is too small (resp., large), then it is increased (resp.,

decreased) in a binary search manner.

As an example, if T = 1000, m = 16, then the first guess T0 = 28 nominally produces an

e. So the next T0 is to be 2
(16+8)

2 = 212 = 2048. This time the channel nominally returns a 0
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and so T0 will reduce to 2
(12+8)

2 = 210 = 1024. The channel output could now be ′1′.

In general, Willard terminates either when the symbol ′1′ is output by the channel

or when the binary search has narrowed things down to a single bit position b (where 0 ≤

b < m). In the latter case the last symbol read could be a ′0′,′1′, or e. Suppose Willard

terminates with symbol ′s′ and bit position b. Then the returned estimate T0 is as follows:

T0 =


2b, if s = ’1’;⌈
2b+2b−1

2

⌉
if s = ’0’;

2b+2b+1

2
if s = e;

When s = ′1′ then the algorithm assumes that T0 is close to T . When the algorithm

returns a ′0′ then the probability 1
2b

was nominally too low to elicit any writes from the tags.

In other words, 2b is too high an estimate. Since the binary search nominally indicated that

2b−1 < T < 2b it selects T0 to be somewhere in the middle of the range. The ceiling is to

account for b = 0. The case s = e is similar.

This approach, on an average, can be shown to produce a value roughly within a factor of

2 of the correct value. However, this is not good enough as β (error requirement) is typically

much higher and a second phase is needed. It is clear that if Tmax = 2m, then the algorithm

runs in O(logm) = O(log log Tmax) time. Figures 7.7 and 7.9 show the performance of

Willard over a range of values of T . The plot is based on 100,000 runs of Willard for

some values of T in the range from 2 to 10,000.

We now modify Willard along two directions that improve its accuracy at the cost of

more time.

7.4.2 Extensions of Willard

Observe that when 2b < T < 2b+1 then even when Willard operates as expected on an

average, the value of T can be anywhere in a range (2b, 2b+1)of size approximately 2b. As b

increases, this range also increases. Algorithm Willard+ addresses this issue.
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Suppose Willard terminates with symbol ′0′ at bit b. Then nominally 2b−1 ≤ T < 2b

or 0 ≤ T − 2b−1 < 2b−1. One could run Willard again on range [0, 2b−1) assuming an

offset of 2b−1. If Willard now produced a ′1′ symbol with bit 0 ≤ b1 ≤ b − 1 then we

could now assume that the estimate is close to 2b1 + 2b−1. This process proceeds recursively

until the estimate is down to a resolution value of 1. As an example, consider T = 28. Let

Willard run close to the expected behavior average case. Then the first time of Willard

(called by Willard+) may terminate with symbol ′0′ at bit position 5. This indicates that

24 < T < 25 or 0 < T − 24 < 24. The second recursive call to Willard will now be on

range [0, 24) but with an “offset” 24. This could return a bit position of 3 again with symbol

′e′ indicating that 23 ≤ T − 24 ≤ 24 or 0 < T − 23 − 24 < 23. We now called Willard with

range [0, 23) and an offset of 23 + 24. This third call may produce a ′1′ on bit position 1, so

the final estimate would be 21 + 23 + 24 = 25. Figure 7.5 illustrate the general behavior of

Willard+.

Value returned by Last channel Nominal starting range for
Willard symbol range Willard+

0 [2i−1, 2i] 2i−1 + [0, 2i−1]

i 1 [2i, 2i] 2i + [0, 0]

e [2i, 2i+1] 2i + [0, 2i]

Figure 7.5. Willard+ ranges of an estimate

The worst case behavior of Willard+ happens when T is very large. The first call to

Willard on range [0, 2m) causes a next call on range [0, 2m−1), and the third on [0, 2m−2)

and so on. We know that a call to Willard on range [0, 2m) runs in O(logm) time. So the

time for Willard+ is O

(
m∑
i=1

i

)
= O (m2). Since 2m represents an upper bound on T , the

worst case time for Willard+ is O
(
log2 Tmax

)
.

Algorithm Willard+ repeatedly calls Willard to obtain a more resolved value for
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T0. However, it does not address a fundamental issue of inaccuracy with Willard. A bad

decision made early on cannot be compensated for by additional coin tosses. For example,

let T = 28 and let Tmax = 216. At the very first iteration all 28 tags write to the channel

with probability p = 1
28

= 1
256

. Nominally we should expect a ′0′ from the channel. If a ′1′ is

produced then T0 is estimated to be 256. If it produces an e, the algorithm will not let T0 be

smaller than 256. The probability of not obtaining a ′0′ in this step is 1−
(
1− 1

256

)28 ∼= 0.1,

which is not too small.

WILLARD

WILLARD+

WILLARD*

WILLARD+*

calls

repetition

calls

Figure 7.6. Extensions of Willard

Figure 7.6 shows all discussed extensions of Willard in Phase 1.

Algorithm Willard∗ addresses this by repeating this early coin flip several times and

selecting a “majority” value. Typically when p = 2−x and 2x is far from T , symbols ′0′ and e

are much more probable. Repeating the test several times reinforces the probable outcome.

In the previous example, the probability of not obtaining at least two ′0′’s in three tries is

about 0.13 +
(
3
2

)
0.12 = 0.031.
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When p = 2−x and 2x is close to T , then the probability of obtaining ′0′, ′1′ or e are

all quite close to each other. This is because for large T and p ∼= 1
T

, probability of ′1′ is

Tp(1 − p)(T−1) ∼= (1 − 1
T

)T ∼= e−1. Also the probability of ′0′ is (1 − p)T ∼= e−1 ∼= 0.368, so

the probability of getting an e is 1 − 2
e
∼= 0.264 (see Figure 7.2) around the 0.3 estimator

value). In this case where the numbers of times ′0′, ′1′ or e occur are not that different, we

will assume the outcome to be ′1′.

There is no fixed method to repeat the test at each slot. However, recognizing that

large values of x (where p = 2−x) have large consequences for errors and that indiscriminate

repetition can increase the running time for the algorithm, we select to repeat a trial p = 2−x,

x times. Clearly this is not the only way to implement Willard∗.

Figures 7.7 - 7.9 show results of running Willard, Willard+, and Willard∗ for

various values of T each run a 100,000 times.
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Figure 7.7. Average error Willard, Willard+, Willard∗

Willard+∗ has not yet been implemented, but we expect better results from it that

the other two extensions of Willard. Specifically, these figures show the average error and
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error variance of the three methods implemented in Phase 1. The values in Figures 7.7–7.9

we choose 1 ≤ T ≤ 10, 000, for k = 2, 3, 5, 8, 10, 12, are as follows: 2k − 1; 2k; 2k + 1;(
2k+2k+1

2

)
− 1; 2k+2k+1

2
;
(

2k+2k+1

2

)
+ 1;

(
3.2k+2k

2

)
− 1; 3.2k+2k

2
;
(

3.2k+2k

2

)
+ 1

It can be seen that Willard∗ runs O(log Tmax log log Tmax) time.

Another approach is to repeat the test proportional to the range of bit positions in the

current iteration. This will make the time O(log2 log Tmax).

Willard+ calls Willard multiple times, or Willard∗. So one could also design a

Willard+∗ algorithm that calls Willard∗ in the same way as Willard+ calls Willard.

7.5 Analytical Results for the fe − f0 on the {0, 1, e} Channel

Hasan et al. [48] introduced an estimator for the {0, e} (often called a {0, 1}) channel.

This estimator is fe − f0 (or f1 − f0 in the {0, 1} setting). We followed the same analytical

approach to extend the work to a {0, 1, e} channel. We too use the fe−f0 estimator; however,

it has different meaning compared to that in the {0, e} channel. As a result, several of our

parameters and intermediate quantities were also different, some more involved.

Notable differences in the extension are in the derivation of a key parameter κ needed to

ensure a Gaussian distribution of the estimator values. As before T is the tag population

and Test (output of the tag estimation) is an estimate of T . For a given frame size f we

define the normalized fe − f0 estimator, C(e−0), and its expected value, µ(e−0), as follows:

C(e−0) =
(fe − f0)

f
(7.2)

µ(e−0) = Exp[C(e−0)] = Exp

[
(fe − f0)

f

]
(7.3)

Let Xij represents the random variable that tag i writes on slot j; every tag writes on a

slot with probability p = p̃
f

(where p̃ is the persistence probability, we assume p̃ = 1 (see

Section 7.3) and f is the frame size). Here Xij is a Bernoulli variable with probability p of
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success. Therefore

Xij =

 1, with probability p

0, with probability 1− p

Let Yj be the random variable representing the number of tag writes in slot j.

Yj =
T∑
i=1

Xij (7.4)

The probability distribution for Yj’s is as follows:

Yj =


0, with probability p0 = (1− p)T

1, with probability p1 = Tp(1− p)(T−1)

e, with probability pe = 1− (p0 + p1)

(7.5)

Here p0 is the probability that a slot has no writes, p1 is the probability that a slot has

exactly one write, and pe is the probability that a slot has more than one write. To help

with the analysis, we will be use the following indicators:

Y
(0)
j =

 1, if Yj = 0;

0, if Yj 6= 0;

Y
(1)
j =

 1, if Yj = 1;

0, if Yj 6= 1;

Y
(e)
j =

 1, if Yj ≥ 2

0, if Yj < 2;

Let

Cj(e−0) = Y
(e)
j − Y

(0)
j (7.6)

For any symbol s ∈ {0, 1, e} let the number of times s occurs in the f slot frame be fs =
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f∑
i=1

Y
(s)
j . Then

C(e−0) =
fe − f0
f

=
1

f

(
f∑
i=1

Y
(e)
j −

f∑
i=1

Y
(0)
j

)
=

1

f

f∑
i=1

(Y
(e)
j − Y

(0)
j ) =

1

f

f∑
i=1

Cj(e−0) (7.7)

The probability mass function for Cj(e−0) is as follows:

Cj(e−0) =


−1, with probability p0 = (1− p)T

0, with probability p1 = Tp(1− p)(T−1)

1, with probability pe = 1− (p0 + p1)

Recall that Xij is Bernoulli random variable (indicating the write in a slot by a tag),

and Yj is the sum of Xij (number of writes). Using Equation (7.6) we determine the mean

(expected value) and variance of Cj(e−0) and C(e−0) as follows:

µj(e−0) = Exp[Cj(e−0)] = −1p0 + 0p1 + 1pe = pe − p0 = 1− 2p0 − p1 (7.8)

From Equation (7.8)

µ(e−0) = Exp[C(e−0)] = Exp

[
1

f

f∑
i=1

Cj(e−0)

]
=

1

f

f∑
i=1

Exp
[
Cj(e−0)

]
=

1

f
(f(pe − p0)) = pe − p0 = 1− 2p0 − p1 (7.9)

Var[Cj(e−0)] = σ2
j(e−0) = Exp[C2

j(e−0)]− Exp[Cj(e−0)]
2 =(

(−1)2p0 + 02p1 + 12pe
)
− (pe − p0)2 =

(
pe + p0 − (pe − p0)2

)
(7.10)

Var[C(e−0)] = σ2
(e−0) =

1

f

(
pe + p0 − (pe − p0)2

)
(7.11)

Let ` = Tp (which is the average number of writes per slot). Observe that p0 = (1−p)T =
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(1− `
T

)T ≈ e−`, p1 = Tp(1− p)(T−1) ≈ `e−`, and pe = 1− (p0 + p1) ≈ 1− (e−` + `e−`). The

expression in the below extension of Equation (7.5) can be written as

Pr(Yj = Y ) ∼=


e−`, if Y = 0

`e−`, if Y = 1

1− (e−` + `e−`), if Y = 2

7.5.1 Gaussian Approximation of the fe − f0 Estimator

Recall that the problem requires (see Section 7.2) the following.

Pr

[
|Test − T |

T
≤ β

]
≥ α,

Recall that fe (resp. f0) is the number of occurrences of e (resp. 0) in the frame. To

perform cardinality estimation of the tag population size while maintaining the accuracy

requirements given above we need a well approximated probability distribution function for

C(e−0). Recall from Figure 7.3, that C(e−0) or fe − f0 is a monotonically increasing function

of T (or T
f

) and is, therefore, invertible. However, given a value of C(e−0) there could be

an error if C(e−0) is just inverted to get a value of T . This is because C(e−0) is a random

variable taking a range of values. Here, as in GERT [48], we determine the conditions for

the distribution of C(e−0) for a fixed value T
f

to be Gaussian.

The Lindeberg Feller Theorem with the special case of triangular array CLT [14] (also

used by Hasan et al. [48]) gives a set of conditions for Cj(e−0) to be Gaussian (or normal).

Theorem 7.5.1 (Lindeberg Feller [14]) Let {Xj} be an array of independent random

variables with Exp[Xj] = 0 and Exp[X2
j ] = σ2

j , Z =

f∑
j=0

Xj and B2 = Var(Z) =

f∑
j=0

σ2
j ,

then Z is a normal distribution with zero mean and B2 variance if the condition below holds

for every ε > 0.
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1

B2

f∑
j=0

Exp
[
{X2

j : |Xj| > εB}
]
−→ 0 (7.12)

We know that Exp[Cj,(e−0)] = µ(e−0). The Lindeberg Feller theorem requires the variable

to have zero mean. To satisfy this requirement, we define C̃j(e−0) = Cj(e−0) − µ(e−0). So

Exp[C̃j(e−0)] = 0 and the variance σ2
j(e−0) is the same for Cj(e−0) and C̃j(e−0).

We now have a set of independent random variables C̃j(e−0), with Exp[C̃j(e−0)] = 0,

Var[C̃j(e−0)] = σ2
j(e−0). Observe that,

C̃j(e−0) =


−1− µ(e−0), with probability p0

−µ(e−0), with probability p1

1− µ(e−0), with probability pe

(7.13)

Let

Z =

f∑
j=1

C̃j(e−0) =

f∑
j=1

Cj(e−0) − µ(e−0)

Var(Z) =

f∑
j=1

Var(C̃j(e−0)) = fσ2
j(e−0)

According to the Lindeberg Feller Theorem, Z will be asymptotically normal with mean

0 and variance σ2
j(e−0) if the condition below holds for every ε > 0

1

fσ2
j(e−0)

f∑
j=0

Exp
[{
C̃j(e−0) :

∣∣∣C̃j(e−0)∣∣∣ > ε
√
fσj(e−0)

}]
−→ 0 (7.14)

In the condition of membership in the set
{
C̃j(e−0) :

∣∣∣C̃j(e−0)∣∣∣ > ε
√
fσj(e−0)

}
from Equa-

tion (??), we consider three cases when C̃j(e−0) is not counted in the expected value.These

following conditions correspond to the three possibilities of Equation (7.13). For brevity we

will use µ to indicate µ(e−0) and λ = ε
√
fσj(e−0).
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| − 1− µ| ≤ λ

| − µ| ≤ λ

|1− µ| ≤ λ

(7.15)

So we required λ ≥ max {| − 1− µ|, | − µ|, |1− µ|} We now consider two possibilities.

• [Case −1 ≤ µ ≤ 0]: Here | − 1 − µ| = 1 − µ. The first condition of Equation (7.17)

becomes −1 − µ ≤ λ, for the second condition of Equation (7.17) we have | − µ| =

−µ ≤ λ. The third condition becomes |1 − µ| = 1 − µ ≤ λ. In summary λ ≥

max{1 + µ, 1− µ} = 1− µ. So here require λ ≥ 1− µ.

• [Case 0 ≤ µ ≤ 1]: Here | − 1 − µ| = 1 + µ, | − µ| = µ, and |1 − µ| = 1 − µ. Clearly

λ ≥ max{1 + µ, µ, 1− µ} = 1 + µ.

Thus C̃j(e−0) will not contribute to the expected value in Equation (7.14) when λ ≥ 1+ |−µ|.

When this happens the simulation in Equation (7.14) becomes equal to 0.

Let

κ ≤ ε2f =
λ2

σ2
j(e−0)

=
λ2

σ2
(7.16)

Then
√
κσ ≤ λ. The condition that λ ≥ 1 − |µ| can be satisfied if

√
κσ ≥ 1 − |µ| or

κσ2 ≥ (1 − |µ|)2. We now consider the two cases for −1 ≤ µ ≤ 0 and 0 ≤ µ ≤ 1. Let the

κ values for this two cases be κ1 and κ2. So if κ1 ≥ (1−µ)2
σ2 and κ2 ≥ (1+µ)2

σ2 , and κ ≥ κ1, κ2

then our conditions for Equation (7.13) tending to 0 be satisfied.

Observe that σ2 = σ2
j(e−0) = pe+p0−(pe−p0)2 = 1−(p0+p1)+p0−(1−(p0−p1)−p0)2. Substi-

tuting p0 ∼= e−`, p1 ∼= `e−`, and pe ∼= 1− (e−` + `e−`), we have σ2 ∼= e−`(4 + `− e−`(2 + `)2).

Next, 1− µ = 1− (pe − p0) = 2p0 + p1 ∼= e−`(2 + `). So (1− µ)2 ∼= e2−`(2 + `)2 and for the

−1 ≤ µ ≤ 0 case we have,

κ1 ≥
(1− µ)

σ2
∼=

e−`(2 + `)2

4 + `− e−`(2 + `)2
(7.17)
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For the 0 ≤ µ ≤ 1 case we have

κ2 ≥
(1 + µ)

σ2
∼=

(2− e−`(2 + `))2

e−`(4 + `− e−`(2 + `)2)
(7.18)

With ` = Tp, it can be verified for ` ≥ 1.1462, κ2 ≥ κ1. Thus, we need

κ , max{κ1(`), κ2(`)} ≥


e−`(2 + `)2

4 + `− e−`(2 + `)2
, if ` ≤ 1.1462

(2− e−`(2 + `))2

e−`(4 + `− e−`(2 + `)2)
if ` > 1.1462

(7.19)
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Figure 7.10. Accuracy achieved for targeted accuracy α = 0.95, and β = 0.05

The quality of the estimation depends on ε. While C(e−0) −→ N(µ(e−0), σ
2
e−0), where

N(µ, σ2) represents a normal distribution with mean µ, and variance σ2 and the frame size

is large enough to satisfy Equation (7.16) and its extensions below. Let l and u be the allow

lower and upper bound values of
Cj(e−)) − µ(e−0)

σe−0
that are acceptable to us. Then,
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Figure 7.11. Cost incurred for α = 0.95, and β = 0.05

Pr

[
` ≤

C(e−0) − µ(e−0)

σ(e−0)
≤ u

]
−Pr[l ≤ θ ≤ u] ≤ ε (7.20)

Proceeding as in Hasan et al. [48] it can be shown that the maximum value of ε is 1−α,

with κ = ε2 max f = (1− α)2f . Or f = κ
(1−α2)

given by Equation (7.19). We simulated the

performance of our approach and that of a similar analysis for GERT. Figure 7.10 and 7.11

show the results for this simulation. The improvement over the {0, e} channel is expected as

the channel itself has a higher resolution. Notice from the plot that both approaches exceed

the α requirements of the given problem.This also implies that both approaches have also

expended a higher cost for a better than needed result. In the next section, we will use an

experimental approach to close this gap.
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7.6 Phase 2 - Cardinality Estimation

Several approaches have been proposed for cardinality estimation [48, 60, 72, 89, 131, 133]

particularly those found in Phase 2 (see Algorithm in Figure 7.1). Many of these approaches

used analytical results, for example, to approximate the distribution of estimator values.

This approximation reduces the efficiency of the approach. In this section we outline a broad

methodology to design an algorithm based on experimental observation. This methodology

has two parts that correspond to the two phases in Figure 7.1. The goal here is to design

Phase 2, in particular the determination of the frame size f and number of iteration n, given

the initial estimate T0. However, the distribution of T0 obtained from Phase 1 is critical for

the study.

Let A be any Phase 1 algorithm; A could be Willard, Willard+, Willard∗,

Willard+∗ or any other algorithm (for example Nakano et al. [81]). The first task is

to run A on different values of T (actual tag population sizes) to record the estimate gener-

ated by A. To obtain statistically significant results, we need to run each value of T multiple

times, say X times. Suppose for integer 1 ≤ i ≤ X, algorithm A with input T produces an

estimate T0 when run for the ith time. We will say that T0 = A(T, i).

Let = = {T : Tmin ≤ T ≤ Tmax} be the set of tag population sizes on which A is run.

For any value of T0 within the accepted range, let U = (T0) be a multiset of all values of

T that produce estimate T0. That is, U(T0) = {T : ∃i A(T, i) = T0}. This multiset U(T0)

gives the distribution of T values that appears to the Phase 2 of the cardinality estimation

algorithm as T0. We now explain how this U(T0) can be used to determine f and n.

For a given estimator E, assurance probability α and relative error β, let B denote an

algorithm for Phase 2 (see Figure 7.1).

Observe that when an actual cardinality estimation algorithm is run, it can observe the

value of T0, but the algorithm runs with T tags. Our simulation likewise uses T0 as a

parameter, but T only to simulate the actions of the tags. The value of T itself is not used

in any other way. For a given Phase 1 estimate T0, that is based on the value of T (actual
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number of tags), desired accuracy bounds α, β, frame size f , number of iterations n, and

estimator E, let B(T0, T, A, n, f) = Test be the final estimate. We now proceed as follows to

determined an “optimal” f and n, given the observable T0.

Initially let f(0) = T0 and let n = 1. We run B(T0, T, A, 1, f(0)) for each T ∈ U(T0).

Recall that U(T0) is a multiset, so the same value of T may be simulated multiple times.

Let C = {B(T0, T, 1, f(0)) : T ∈ U(T0)}; this is also a multiset. Observed that the error

due to B(T0, T, A, 1, f(0)) = Test is
|Test − T |

T
which we denote by Err(T0, T, 1, f). Let

C0 = {B(T0, T, 1, f(0)) ∈ C : Err(T0, T, 1, f(0)) ≤ β and let α0 =
C0

C
.

If α0 > α, then we are doing more than needed and f(0) can be reduced. On the other

hand, if α0 < α, then we need to increase f(0). We will select f(1) = 2f(0) or f(0)
2

, as needed,

and repeat the process in binary search type manner until in some y iteration αy = α and

f(y) is the desired value of f . In some cases, particularly for stringent α, β requirements, it

may not be possible to get a suitable f . If f(y) exceeds an upper limit fmax, then we repeat

the process with n = 2. The simulation can also determine the cost of each choice of f .

We have conducted extensive simulations with the following possible values for the accuracy

assurance parameters.

• Algorithm A could be Willard and Willard∗

• Estimator E is assumed to be fe − f0.

• (α, β) can be (85%, 10%) and (95%, 5%).

• Tmin = 1,Tmax = 10, 000

• X, the maximum number of trials for each value of Tmin ≤ T ≤ T max is 100,000.

This large number was used so that each of the buckets U(T0) has a sufficiently large

number of cases.

In the process we have extended a well known algorithm Willard, Willard+, Willard∗,

and Willard+∗ that provide greater accuracy at added cost. Our work on Cardinality
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estimation currently focuses on the fe − f0 estimator (based on initial evidence that this

estimator may outperform others). Figure 7.12 shows the cost for α = 95%, β = 5% case

for GERT [48] and our adaptation of GERT for the {0, 1, e} channel. This cost is higher

than the experimental approach that we outlined in this section. Observed that even though

Willard∗ is more inexpensive then Willard (see Figure 7.12) this cost is well worth its

accuracy, as seen from the cost of Figure 7.12
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Figure 7.12. Cost achieved by GERT,fe−f0 (analytical approach), and experimental fe−f0
for α = 0.95, and β = 0.05

The Phase 1 algorithm gets a crude estimate that guides the Phase 2 algorithm. We

realized that we can use an algorithm from our own template with limited, but low-cost

performance for Phase 1, which may provide more accurate algorithms. We believe that the

experimental methodology lays the foundation for additional work on cardinality estimation,

including the effect of Phase 1 algorithms, new estimators, and hybrid methods for different

ranges of T .
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CHAPTER 8

SUMMARY AND FUTURE WORK

The objective of this dissertation is a study of distributed RFID-based algorithms for

Grouping Proof and Cardinality Estimation. We have made several key contributions to the

fields of RFID protocols.

For Grouping Proof Protocols, security and efficiency are important goals in an RFID

settings. An emphasis of this research was the balance among security, privacy, and use-

fulness. In the truly practical, user-driven development of RFID applications, we designed

three grouping-proof protocols to minimize loss of security, and privacy. In each framework

we strove to achieve efficiency tailored to the degree of security required in an RFID system.

One avenue for further study would be to research and design protocols specific to the

scope of particular applications. Furthermore, quantifying the type of security specific to

the scope of particular applications, we will aim to design grouping-proof protocols that

achieve efficiency tailored to the degree of security required in an RFID application. An-

other direction would be the practical implementation of our three grouping-proof protocols,

looking more into the details of the time and quality of random number generator used in

our protocols, the time cost (within EPC standard) on passive tags, and the circuit cost.

For Cardinality Estimation we developed a framework for using simulated data to gener-

ate an “optimal” estimation algorithm in which we balance the cost and accuracy constraints

of the problem. The findings suggest that such a method shows considerable improvement

over other proposed analytical approaches that seek to model the problem (albeit inaccu-

rately) and that often exceed the requirements of the problem (at potentially added cost).

In the process we have extended a well known algorithm Willard, for simple cardinal-

ity estimation Willard+, Willard∗, and Willard+∗ algorithms that provide greater

accuracy at added cost. Our work on cardinality estimation currently focuses on the fe− f0

estimator (based on initial evidence that this estimator may outperform others). It would

be interesting to extend this approach to other estimators (for example, other linear combi-
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nations of f0, fe).

The Phase 1 algorithm gets a crude estimate that guides the Phase 2 algorithm. Would

it be beneficial to use an algorithm from our own template with limited, but low-cost perfor-

mance for phase 1. This may indicate a pipeline of progressively more accurate algorithms.

How would the cost of the algorithm be affected if f was constrained to be 2x (a power

of 2)? This will considerably reduce the hardware complexity of the tag (specifically, its

random number generator).

Can our cardinality estimation algorithm itself be used to simulate a higher resolution

{0, 1, ..., k − 1, e} channel, where tag population up to k − 1 can be estimated accurately?

97



REFERENCES

[1] S. Abughazalah, K. Markantonakis, and K. Mayes (2016), “Two Rounds RFID
Grouping-Proof Protocol,” Proc. IEEE Intl. Conf. RFID, 14 pages.

[2] S. Amendola, R. Lodato, S. Manzari, C. Occhiuzzi, G. Marrocco (2014),“RFID Tech-
nology for IoT-based personal healthcare in smart spaces,” IEEE Internet Things J. 1
(2),144-152.

[3] A. Araujo and E. Gin’e (1980),“The central limit theorem for real and Banach valued
random variables” Wiley New York, vol. 431.

[4] Laura Arjona, Hugo Landaluce, Asier Perallos, and Enrique Onieva (2017),“Scalable
RFID Tag Estimator With Enhanced Accuracy and Low Estimation Time”, IEEE Signal
Processing Letters, Vol. 24, NO. 7.

[5] Giovanni Luca Amicucci, Fabio Fiamingo, (2017), “Usage of RFID in safety applica-
tions”, IEEE, 6 pages.

[6] G. Avoine (2005),“Adversarial Model for Radio Frequency Identification,” Cryptology
ePrint Archive, Report 2005/049, 14 pages. – http://eprint.iacr.org/2005/049

[7] G. Avoine, X. Carpent and J. Hernandez-Castro (2016), “Pitfalls in Ultralightweight
Authentication Protocol Designs,” IEEE Trans. Mobile Computing, vol. 15, no. 9, pp.
2317-2332.

[8] G. Avoine, I. Coisel, and T. Martin (2014), “Untraceability Model for RFID,” IEEE
Trans. Mobile Computing, vol. 13, no. 10, pp. 2397-2405.

[9] S. Barmpounakis, A. Kaloxylos, A. Groumas, L. Katsikas, V. Sarris, K. Dimtsa, F.
Fournier, E. Antoniou, N. Alonistioti, S. Wolfert (2015),“Management and control ap-
plications in Agriculture domain via a Future Internet Business-to-Business platform”,
Inf. Process. Agric. 2 (1) 51-63.

[10] B. M. Brown et al., (1971), “Martingale central limit theorems” The Annals of Mathe-
matical Statistics, vol. 42, no. 1, pp. 59?66.

[11] L. Bolotnyy and G. Robins (2006), “Generalized ’yoking-proofs’ for a group of RFID
tags”, MobiQuitous, pp. 1-4.

[12] Bonuccelli, M.A., Lonetti, F., Martelli, F. (2009),“Exploiting Signal Strength Detection
and Collision Cancellation for Tag Identification in RFID Systems.” IEEE Symposium
on Computers and Communications, Computers and Communications p.500.

[13] Borovca-Gajic, Renata, Idreos, Stratos, Ailamaki, Anastasia, (2018),“Smooth Scan: ro-
bust access path selection without cardinality estimation,” VLDB Journal International
Journal on Very Large Data Bases; Aug2018, Vol. 27 Issue 4, p521-545, 25p.

98



[14] B. M. Brown et al. (1971),“Martingale central limit theorems,” The Annals of Mathe-
matical Statistics, vol. 42, no. 1, pp. 59-66.

[15] M. Burmester, B. D. Medeiros, and R. Motta (2008), “Provably secure grouping-proofs
for RFID tags,” in Proc. Int. Fed. Inf. Process., pp. 176-190.

[16] M. Burmester and J. Munilla (2016) , “An Anonymous RFID Grouping-Proof with
Missing Tag Identification,” Proc. 2016 IEEE Intl. Conf. on RFID (RFID), 7 pages.

[17] Caidong Gu (2018), “Fast Discrepancy Identification for RFID-Enabled IoT Networks”,
IEEE Access.

[18] Canetti R. (2001) “Universally composable security: a new paradigm for cryptographic
protocols”, Proceedings of 42nd IEEE Symposium on Foundations of Computer Science,
Las Vegas; 136-145.

[19] Canetti R. (2007), “Obtaining universally composable security: towards the bare bones
of trust.”, Proceedings of 13th International Conference on the Theory and Application
of Cryptology and Information security, Kuching, Malaysia, 88-112.

[20] Li Qing Cao, Yunhe Feng, Zheng Lu , Hairong Qi, Leon Tolbert, Lipeng Wan, Zhibo
Wang, Wenjun Zhou (2017),“Approximate Cardinality Estimation (ACE) in large-scale
Internet of Things deployments”,Ad Hoc Networks 66, 52-63.

[21] Castiglione, A., Palmieri, F., Fiore, U., Castiglione, A., De Santis (2015), “A. Model-
ing energy-efficient secure communications in multi-mode wireless mobile devices.” J.
Comput. Syst. Sci. , 81, 1464-1478.

[22] Chen H., Ma G., Wang Z.Wang, Q. Yu, (2018) , “MAC: Missing Tag Iceberg Queries for
Multi-Category RFID Systems”, IEEE Transactions on Vehicular, 67(10):9947-9958.

[23] J. Chen, A. Miyaj, H. Sato and C. Su (2015), “Improved Lightweight Pseudo-
Random Number Generators for the Low-Cost RFID Tags,” Proc. 2015 IEEE Trust-
com/BigDataSE/ISPA, pp. 17-24.

[24] S. Cheng, V. Varadharajan, Y. Mu, and W. Susilo (2017), “An Efficient and Provably
Secure RFID Grouping Proof Protocol,” (2017) Proc. Australasian Computer Science
Week Multiconference (ACSW ’17), Article 71, 7 pages.

[25] V. Cherneva, J. Trahan (2018), “Serial-Dependency Grouping-Proof Protocol for RFID
EPC C1G2 Tags”, IEEE Green Energy and Smart Systems Conference (IGESSC).

[26] S. Cheng, V. Varadharajan, Y. Mu, and W. Susilo (2017), “An Efficient and Provably
Secure RFID Grouping Proof Protocol,” Proc. Australasian Computer Science Week
Multiconference (ACSW ’17), Article 71, 7p.

[27] H.-Y. Chien and S.-B. Liu (2009), “Tree-based RFID yoking proof,” Intl. Conf. networks
security, wireless communications and trusted computing - NSWCTC, pp. 550-553.

99



[28] I. Coisel and T. Martin (2013), “Untangling RFID Privacy Models,” J. Computer Net-
works and Communications, vol. 2013, Article ID 710275, 26 pages.

[29] Jihoon Choi and Wonjun Lee (2007),“Comparative Evaluation of Probabilistic and De-
terministic Tag Anti-collision Protocols for RFID Networks”, IFIP International Feder-
ation for Information Processing.

[30] A. Chong, M.J. Liu, J. Luo, O. Keng-Boon (2015),“Predicting RFID adoption in health-
care supply chain from the perspectives of users”, Int. J. Prod. Econ. 159 66-75.

[31] A. Chong, F. Chan (2013),“Structural equation modeling for multi-stage analysis on
radio frequency identification (RFID) diffusion in the healthcare industry”. Expert-
Syst.Appl., 8645-8654.

[32] C. Costa, F. Antonucci, F. Pallottino, J. Aguzzi, D. Sarria, and P. Menesatti (2013),“A
review on Agri -food Supply Chain Traceability by means of RFID technology”, Food
Bioprocess Technol., vol. 6, no. 2, pp.353-366

[33] I. A. Currie and M. K. Marina. (2008)“Experimental evaluation of read performance for
RFID-based mobile sensor data gathering applications,” 7th Int. Conf. Mobile Ubiqui-
tous Multimedia-Cooperation ACM SIGMOBILE, pp. 92?95.

[34] Der-Jiunn Deng, Chun-Cheng Lin, Tzu-Hsun Huang, and Hsu-Chun Yen (2017),“On
Number of Tags Estimation in RFID Systems”, IEEE System journal, Vol. 11, no. 3.

[35] Der-Jiunn Deng, Hsuan-Wei Tsao (2011), “Optimal Dynamic Framed Slotted ALOHA
Based Anti-collision Algorithm for RFID Systems”, Wireless Pers Commun.

[36] R. Doss , W. Zhou , S. Yu (2013),“Secure RFID tag ownership transfer based on
quadratic residues”, IEEE Trans. Inf. Forensics Secur. 8 (2) 390-401.

[37] R. Doss , W. Zhou , S. Sundaresan , S. Yu , L. Gao (2012),“A minimum disclosure
approach to authentication and privacy in RFID systems”, Comput. Netw. 3401-3416.

[38] D. Dressen, (2011) “Large memory RFID system solutions,” ATMEL, pp. 48-49.

[39] Duc D N, Kim J, Kim K. (2010),“Scalable grouping-proof protocol for RFID tags.”
Symposium on Cryptography and Information Security (SCIS), 1-6.

[40] EPC-Global (2015), “Radio-Frequency Identity Protocols, Generation-2.V2. UHF
RFID.” Tech. Rep.

[41] Ivan Farris, Sara Pizzi, Massimo Merenda, Antonella Molinaro, Riccardo Carotenuto,
and Antonio Iera, (2017),“A Framework for Full Integration of Smart UHF RFID Tags
into the Internet of Things”, IEEE Network, p.66-74.

[42] Arundhoti Ferdous, Nanda Gopal Jeevarathnam and Ismail Uysal (2017), “Comparative
Analysis of Tag Estimation Algorithms on RFID EPC Gen-2 Performance”.

100



[43] Fisher, J. A., Monahan, T. (2008),“Tracking the social dimensions of RFID systems in
hospitals.” International Journal of Medical Informatics, 77, 176-183.

[44] L. Gong, R. Needham, and R. Yahalom (1990), “Reasoning about Belief in Crypto-
graphic Protocols,” Proc. 1990 IEEE Symp. Research in Security and Privacy, pp. 234-
248.

[45] W. Gong, K. Liu, X. Miao, and H. Liu (2014),“Arbitrarily accurate approximation
scheme for large-scale RFID cardinality estimation,” in Proc. IEEE INFOCOM, pp.
477-485.

[46] Wei Gong, Ivan Stojmenovic, Amiya Nayak, Kebin Liu, and Haoxiang Liu (2016),“Fast
and Scalable Counterfeits Estimation for Large-Scale RFID Systems”, IEEE/ACM
Transaction on Networking, Vol. 24, no. 2, April 2016.

[47] Hao Han, Bo Sheng, Chiu C. Tan, Qun Li, Weizhen Mao, Sanglu Lu (2010) “Counting
RFID Tags Efficiently and Anonymously”, IEEE INFOCOM.

[48] Hasan Md M., Wei Sh., Vaidyanathan R. (2018)“Estimation of RFID Tag Population
Size by Gaussian Estimator”, 2018 IEEE International Conference on Communications.

[49] S. Higginbotham (2015),“Grocery shopping might be less painful with this smart cart.”

[50] Hou Y., Zheng Y.(2018), “PHY-Tree: Physical Layer Tree-Based RFID Identification”,
IEEE/ACM Trans. Networking, IEEE/ACM Transactions on. 26(2):711-723.

[51] C.-T. Hsi, Y.-H. Lien, J.-H. Chiu, and H. K.-C. Chang (2015), “Solving Scalability
Problems on Secure RFID Grouping-Proof Protocol,” Wirel. Pers. Commun., vol. 84,
no. 2, pp. 1069-1088.

[52] IDTechEx, RFID Forecasts, Players and Opportunities 2017-2027 ( 2017)
Read more at: https://www.idtechex.com/research/reports/rfid-forecasts-players-and-
opportunities-2017-2027-000546.asp

[53] Jihong Yu, Lin Chen, Rongrong Zhang, Kehao Wang (2016), “From Static to Dynamic
Tag Population Estimation: An Extended Kalman Filter Perspective” , IEEE Transac-
tions on Communications 64(11):p.4706-4719

[54] R. Jedermann, M. Nicometo, I. Uysal, and W. Lang (2014),“Reducing food losses by
intelligent food logistics,” Philos. Trans. R. Soc. Math. Phys. Eng. Sci., vol. 372.

[55] A. Juels (2004), “ ’Yoking-proofs’ for RFID tags,” Intl. Workshop on Pervasive Com-
puting and Communication Security - PerSec 2004, pp. 138-143.

[56] Kalache, M.A. Fergani, L. (2014),“Performances comparison of RFID anti-collision al-
gorithms”, ICMCS 2014 International Conference, 808-813.

[57] A. Kaloxylos, J. Wolfert, T. Verwaart, C.M. Terol, C. Brewster, R. Robbemond, H.
Sundmaker (2013),“The use of Future Internet Technologies in the agriculture and Food
sectors: integrating the supply chain”, Procedia Technol. 8 51-60.

101



[58] Dheeraj K. Klair, Kwan-Wu Chin, and Raad Raad (2010),“A Survey and Tutorial of
RFID Anti-Collision Protocols”, IEEE Communication Surveys and Tutorials , Vol. 12,
no. 3.

[59] Murali Kodialam, Thyaga Nandagopal (2006),“Fast and Reliable Estimation Schemes
in RFID Systems”, MobiCom.

[60] Murali Kodialam, Thyaga Nandagopal , and Wing Cheong Lau (2007),“Anonymous
Tracking using RFID tags” ,publication in the IEEE INFOCOM.

[61] R. Kumar, K. Gopalakrishna, and K. Ramesha (2013),“Intelligent Shopping Cart,” Int.
J. Eng. Sci. Innov. Technol., vol. 2, no. 4, pp. 499-507.

[62] Zhonghua Li, Chunhui He, Hong-Zhou Tan (2011),“Survey of the advances in reader
anti-collision algorithms for RFID systems”, (CCDC), 3771-3776 .

[63] Xuefei Leng, Yuan-Hung Lien, Konstantinos Markantonakis (2010),“ An RFID grouping
proof protocol exploiting anti-collision algorithm for subgroup dividing”, International
Journal of Security and Networks,vol.5.

[64] T. Li, S. Wu, S. Chen, and M. Yang (2010),“Energy efficient algorithms for the RFID
estimation problem”, in Proc. IEEE INFOCOM, pp. 1-9.

[65] C.-C. Lin, Y.-C. Lai, J. Tygar, C.-K. Yang, and C.-L. Chiang (2007), “Coexistence proof
using chain of timestamps for multiple RFID tags,” Proc. Adv. Web Netw. Technol. Inf.
Manage., pp. 634-643.

[66] Liu, Xiulong, Cao, Jiannong, Yang, Yanni, Jiang, Shan (2018)“CPS-Based Smart Ware-
house for Industry 4.0: A Survey of the Underlying Technologies.”, Computers (2073-
431X);Vol. 7 Issue 1.

[67] Liu, Xiulong, Guo, Kaimin, Liu, Zijuan et al.(2018), “Fast and Accurate Missing Tag
Detection for Multi-category RFID Systems”, SMARTIOT Smart Internet of Things
(SmartIoT), 2018 IEEE International Conference,p135-142.

[68] Xiulong Liu, Keqiu Li, Alex X. Liu, Song Guo, Muhammad Shahzad, Ann L. Wang,
and Jie Wu, (2017), ”Multi-Category RFID Estimation”, IEEE/ACM Transaction on
networking , vol. 25, no. 1.

[69] Xiulong Liu, Bin Xiao, Keqiu Li, Alex X. Liu, Jie Wu, Xin Xie, and Heng Qi
(2017),“RFID Estimation With Blocker Tags”, IEEE/ACM Transaction on network-
ing , vol. 25, no. 1.

[70] Liu, X., Xie, X., Zhao, X., Wang, K. et al. (2018), “Fast Identification of Blocked RFID
Tags”, IEEE Transactions on Mobile Computing, 17(9):2041-2054.

[71] Lu, Zhejun; Hu, Weidong et al. (2018)“A new Cardinalized Probability Hypothesis
Density Filter with Efficient Track Continuity and Extraction”,2018 21st International
Conference on Information Fusion (FUSION) Information Fusion:211-218.

102



[72] Jiangchuan Liu, Kebin Liu, and Yunhao Liu, (2017),“Toward More Rigorous and Prac-
tical Cardinality Estimation for Large-Scale RFID Systems”, IEEE/ACM , Transaction
on networking , vol. 25, no. 3.

[73] N.-W. Lo and K.-H. Yeh (2010), “Anonymous coexistence proofs for RFID tags,” J. Inf.
Sci. Eng., vol. 26, pp. 1213-1230.

[74] K. Mandal, X. Fan, and G. Gong (2016),“Design and Implementation of Warbler Family
of Lightweight Pseudorandom Number Generators for Smart Devices,” ACM Trans.
Embed. Comput. Syst., vol. 15, no. 1, Article 1, 28p.

[75] H. Martn, E. S. Milln, L. Entrena, J. C. H. Castro, and P. P. Lpez (2011), “AKARI-X:
A Pseudorandom Number Generator for Secure Lightweight Systems,” Proc. 2011 IEEE
17th Intl. On-Line Testing Symp., pp. 228-233.

[76] H. Martn, E. S. Milln, P. Peris-Lopez, and J. E. Tapiador (2013),“Efficient ASIC Im-
plementation and Analysis of Two EPC-C1G2 RFID Authentication Protocols,” IEEE
Sensors Journal, vol. 13, no. 10, pp. 3537-3547.

[77] J. Meli-Segu, J. Garcia-Alfaro, and J. Herrera-Joancomart (2010),“Analysis and Im-
provement of a Pseudorandom Number Generator for EPC Gen2 Tags” Proc. Intl.
Conf. Financial Cryptography and Data Security (Lect. Notes Comput. Sci. no. 6054),
pp. 34-46.

[78] J. Meli-Segu, J. Garcia-Alfaro, and J. Herrera-Joancomart (2013),“J3Gen: A PRNG
for Low-Cost Passive RFID,” Sensors, vol. 13, no. 3, pp. 3816-3830.

[79] D. Moriyama (2014), “A Provably Secure Offline RFID Yoking-Proof Protocol with
Anonymity,” Proc. Intl. Workshop on Lightweight Cryptography for Security and Pri-
vacy (LightSec 2014), pp. 155-167.

[80] U. Mujahid, M. Najam-ul-islam, A. Sharif, T. Khan, A. Qavi, and Bilal (2014), “A
Novel Lightweight Pseudorandom Number Generator for Passive RFID Systems” Proc.
17th IEEE Inta.l Multi Topic Conf., pp. 149-154.

[81] Koji Nakano, Stephan Olariu (2002),“Uniform Leader Election Protocols for Radio Net-
works”, IEEE Transaction on Parallel and Distributed systems , vol. 13, no. 5.

[82] Chuyen T. Nguyen, Tuyen T. Hoang, and Vu X. Phan, (2017),“A Simple Method for
Anonymous Tag Cardinality Estimation in RFID Systems with False Detection”, 2017
4th NAFOSTED Conference on Information and Computer Science

[83] R. Nukala, K. Panduru, A. Shields, D. Riordan, P. Doody, J. Walsh (2016),“Internet of
Things: A Review from Farm to Fork”, 27th Irish Signals and Systems Conference, pp.
1-6.

[84] C. Perera, A. Zaslavsky, P. Christen, D. Georgakopoulos (2014),“Context aware com-
puting for the IoT: a survey”,IEEE Commun. Surv. Tutorials 16 (1) 414-454.

103



[85] Lopez Pedro Peris, J. C. Hernandez-Castro, J. M. Estevez-Tapiador, and A. Ribagorda
(2007), “Solving the simultaneous scanning problem anonymously: Clumping proofs for
RFID tags,” Proc. 3rd Workshop Security Privacy Trust Pervasive Ubiq. Comput., p.
55-60.

[86] Lopez Pedro Peris, Hernandez-Castro Julio C, Li Tieyan, (2013)“Security and Trends
in Wireless Identification and Sensing Platform Tags - Advancements in RFID Security
” IGI Global (book).

[87] Lopez Pedro Peris, A. Orfila, J. C. Hernandez-Castro, and J. C. A. van der Lubbe
(2011), “Flaws on RFID grouping-proofs. Guidelines for future sound protocols,” J.
Netw. Comput. Appl., vol. 34, no. 3, pp. 833-845.

[88] S. Piramuthu (2006), “On existence proofs for multiple RFID tags,” Proc. IEEE Int.
Conf. Pervasive Serv., Workshop Secur., Privacy Trust Pervasive Ubiq. Comput., pp.
317-320.

[89] Chen Qian, H. Ngan, Y. Liu, and L. M. Ni (2011),“Cardinality Estimation for Large-
Scale RFID Systems”, EEE Transaction on Parallel and Distributed systems , vol. 22,
no. 9.

[90] Y. Qiao, S. Chen, and T. Li (2013),“RFID as an Infrastructure” New York, NY, USA:
Springer.

[91] von V. Raab (2011),“Assessment of novel temperature monitoring systems for improving
cold chain management in meat supply chain,” University of Bonn.

[92] L. Ramundo, M. Taisch, S. Terzi (2016),“State of the Art of Technology in the Food
Sector Value Chain Towards the IoT”, IEEE 2nd International Forum on Research and
Technologies for Society and Industry Leveraging a Better Tomorrow, pp. 1-6.

[93] S. Rostampour, N. Bagheri, M. Hosseinzadeh et al. (2018) “A Scalable and Lightweight
Grouping Proof Protocol for Internet of Things Applications,” Journal of Super com-
puting, vol. 74, no. 1. pp. 71-86.

[94] S. Rostampour, N. Bagheri, M. Hosseinzadeh et al. (2016) “An authenticated encryp-
tion based grouping proof protocol for RFID systems,” Security and Communication
network, vol. 9, no.18, pp.581-5590.

[95] Rotter, Pawel (2008) “A framework for assessing RFID system security and privacy
risks”, IEEE Pervasive Computing, Vol. 7, Issue: 2 , p: 70-77.

[96] Saravanakumar K, Deepa K, Senthil Kumar, (2017),“Study on possible application of
RFID system in different real-time environments”, 2017 International Conference on
circuits Power and Computing Technologies, 7pages.

[97] Muhammad Shahzad and Alex X. Liu (2015),“Fast and Accurate Estimation of RFID
Tags”, IEEE/ACM Transaction on Networking, vol. 23, no. 1.

104



[98] Z. Shi, X. Zhang, and Y. Wang (2017) “A Lightweight RFID Grouping-Proof Protocol
Based on Parallel Mode and DHCP Mechanism,” Information, vol.88, no. 3, Article
no.85, 13 pages.

[99] D. Z. Sun and Yi Mu (2018) “Security of Grouping-Proof Authentication Protocol for
Distributed RFID Systems,” IEEE Wireless Communication Letters, vol. 7, no. 2, pp.
254-257.

[100] Y. S. Su and C. H. Wang (2015), “Design and Analysis of Unequal Missing Protection
for the Grouping of RFID Tags,” IEEE Trans. Communications, vol. 63, no. 11, pp.
4474-4489.

[101] D. Z. Sun and G. Q. Xu (2017), “One-Round Provably Secure Yoking-Proof for RFID
Applications,” Proc. 2017 IEEE Trustcom/BigDataSE/ICESS, pp. 315-322.

[102] S. Sundaresan, R. Doss, and W. Zhou (2015), “Zero Knowledge Grouping Proof Proto-
col for RFID EPC C1G2 Tags,” IEEE Trans. Computers, vol. 64, no. 10, pp. 2994-3008.

[103] S. Sundaresan, R. Doss , W. Zhou (2012),“A secure search protocol based on quadratic
residues for epc class-1 gen-2 uhf rfid tags”, 23rd International Symposium on Personal
Indoor and Mobile Radio Communications.

[104] S. Sundaresan, R. Doss, S. Piramuthu , W. Zhou (2014),“A robust grouping proof
protocol for RFID EPC C1G2 tags,” IEEE Trans. Inf. Forensics Secur.

[105] S. Sundaresan, R. Doss, W. Zhou (2012),“A Serverless Ultra-Lightweight Secure Search
Protocol for EPC Class-1 Gen-2 UHF RFID Tags”, International Conference on Com-
puter and Information Science (ICCIS), pp. 580-585 .

[106] S. Sundaresan, R. Doss, W. Zhou, S. Piramuthu, (2015)“Secure ownership transfer
for multi-Tag multi-owner passive RFID environment with individual-Owner-Privacy”,
Comp. Commun. 112-124 .

[107] S. Sundaresan, R. Doss, S. Piramuthu , W. Zhou (2015),“Secure tag search in rfid
systems using mobile readers”, IEEE Trans. Dependable Secure Comput.230-242 .

[108] S. Sundaresan, R. Doss, S. Piramuthu, and W. Zhou (2017), “A Secure Search Protocol
for Low Cost Passive RFID Tags,” Computer Networks, vol. 122, pp. 70-82.

[109] Sundaresan S, Doss R, Piramuthu S, Zhou W. (2014),“A robust grouping proof protocol
for RFID EPC C1G2 tags.”IEEE Transactions on Information Forensics and Security
2014; 9(6):961-975.

[110] Sun HM, Ting WC, Chang SY. (2009),“Offline simultaneous grouping proof for RFID
tags.”2nd International Conference on Computer Science and Its Applications. Jeju
Island, Korea, 1-6.

[111] M. Thibaud, H. Chi, W. Zhou, and S. Piramuthu (2018), “Internet of Things (IoT) in
high-risk Environment, Health and Safety (EHS) industries: A comprehensive review”,
Decision Support Systems 108, pp. 79-95.

105



[112] Y. Tian, G. Yang, and Y. Mu (2017), “Privacy-Preserving Yoking Proof with Key
Exchange in the Three-Party Setting,” Wireless Personal Commun., vol. 94, pp. 1017-
1034.

[113] C.E. Turcu, C.O. Turcu (2013),“Internet of things as key enabler for sustainable health-
care delivery”, Procedia. Soc. Behav. Sci. 73 251-256.

[114] S.F. Tzeng, W.H. Chen, F.Y. Pai,, (2008) “Evaluating the business value of RFID:
evidence from five case studies”, Int. J. Prod. Econ. 112 (2) 601-613.

[115] S. Vaudenay (2007),“On Privacy Models for RFID”, Proc. Intl. Conf. Theory and
Application of Cryptology and Information Security (ASIACRYPT 2007) (Lect. Notes
Comput. Sci. no. 4833), pp. 68-87.

[116] C.N. Verdouw, N. Vucic, H. Sundmaeker, A. Beulens (2014),“Future internet as a driver
for virtualization, connectivity and intelligence of Agri-Food supply chain networks”,
Int. J. Food Syst. Dyn. 4 (4) 261-272.

[117] C.N. Verdouw, J. Wolfert, A.J. Beulens, A. Rialland (2016) ,“Virtualization of food
supply chains with the internet of things”, J. Food Eng. 176 ,128-136.

[118] Harald Vogt (2002),“Efficient Object Identification with Passive RFID Tags”, Inter-
national Conference on Pervasive Computing.

[119] Dan E. Willard (1884),“Log-logarithmic protocols for resolving ethernet and semaphore
conflicts”, Proceedings of the sixteenth annual ACM symposium on Theory of comput-
ing, p. 512-521.

[120] W. Zhang, S. Qiz, S. Wang, L. Wu et al. (2018), “A New Scalable Lightweight Grouping
Proof Protocol for RFID systems,” Wireless Pers Commun 103, pp.133-143.

[121] Haifeng Wu, Yang Wang, Yu Zeng (2018), “Capture-aware Bayesian RFID tag estimate
for large-scale identification”, IEEE/CAA Journal of Automatica Sinica 5(1):119-127

[122] S. Wu, K. Chen, and Y. Zhu (2012), “A secure lightweight RFID binding proof protocol
for medication errors and patient safety,” J. Med. Syst., vol. 36, pp. 2743-2749.

[123] Z. Xiaorong, F. Honghui, Z. Hongjin1, and F. Hanyu (2015),“The Design of the Internet
of Things Solution for Food Supply Chain,” 5th International Conference on Education,
Management, Information and Medicine.

[124] Xin Xie , Xiulong Liu , Keqiu Li , Geyong Min , Weilian Xue (2017),“Fast temporal
continuous scanning in RFID systems ”,Computer Communications 106, 46-56.

[125] Lei Xie, Yafeng Yin, Athanasios V. Vasilakos, and Sanglu Lu(2014), “Managing RFID
Data: Challenges, Opportunities And Solutions.” IEEE Communications Surveys and
Tutorials 16.3.

[126] R. Xu, L. Yang, and S.-H. Yang (2013),“Architecture Design of Internet of Things in
Logistics Management for Emergency Response,” pp. 395-402.

106



[127] M. H. Yang, J. N. Luo, and S. Y. Lu (2015), “A Novel Multilayered RFID Tagged
Cargo Integrity Assurance Scheme,” Sensors, vol. 15, no. 10, pp. 27087-27115.

[128] B. Yuan and J. Liu (2016), “A Universally Composable Secure Grouping-Proof Pro-
tocol for RFID Tags,” Concurrency and Comput.: Practice and Exper., vol. 28, pp.
1872-1883.

[129] Zhang Youlin, Chen Shigang, Zhou Y., Fang, Yuguang (2018) “Anonymous Temporal-
Spatial JointEstimation at Category Level OverMultiple Tag Sets”, IEEE Conference
on Computer Communications Computer Communications (INFOCOM),846-854.

[130] Zhang Youlin, Chen Shigang, Zhou You, Odegbile Olufemi (2018), “Missing-Tag De-
tection with Presence of Unknown Tags”, Communication, and Networking (SECON)
Sensing, Communication, and Networking (SECON).

[131] Yuanqing Zheng, Mo Li (2013),“ZOE: Fast Cardinality Estimation for Large-Scale
RFID Systems”, 2013 Proceedings IEEE INFOCOM.

[132] Yao Zheng, Xiaomei Wang, Dongyu Yang, Simiao Ding, (2017),“An Efficient RFID Tag
Cardinality Estimation Protocol Based on Bit Detection”, 2017 17th IEEE International
Conference on Communication Technology.

[133] Ziling Zhou, Binbin Chen, and Haifeng Yu (2016),“Understanding RFID Counting
Protocols”,IEEE/ACM Transaction on Networking, vol. 24, no. 1.

[134] W. Zhang, S. Qiz, S. Wang, L. Wu et al. (2018), “A New Scalable Lightweight Grouping
Proof Protocol for RFID systems,” Wireless Pers Commun 103, pp.133-143

[135] Y. Zheng and M. Li (2012),“PET: Probabilistic estimating tree for large-scale RFID
estimation,”IEEE Trans. Mobile Comput., vol. 11, no. 11, pp. 1763-1774.

[136] Z. Zhou, P. Liu, Q. Liu, and G. Wang (2018), “An Anonymous Offline RFID Grouping-
Proof Protocol,” Future Internet, vol. 10, no. 1, article 2, 15 pages.

107



APPENDIX. COPYRIGHT INFORMATION

1.

2.

3.

4.

5.

6.

1.

2.

 

IEEE COPYRIGHT AND CONSENT FORM
 

 

To ensure uniformity of treatment among all contributors, other forms may not be substituted for this form, nor may any wording

of the form be changed. This form is intended for original material submitted to the IEEE and must accompany any such material

in order to be published by the IEEE. Please read the form carefully and keep a copy for your files.

 

Serial-Dependency Grouping-Proof Protocol for RFID EPC C1G2 Tags

Mrs. Vanya Cherneva and Dr. Jerry Trahan

2018 IEEE Green Energy and Smart Systems Conference (IGESSC)

 

 

COPYRIGHT TRANSFER
The undersigned hereby assigns to The Institute of Electrical and Electronics Engineers, Incorporated (the "IEEE") all rights

under copyright that may exist in and to: (a) the Work, including any revised or expanded derivative works submitted to the IEEE

by the undersigned based on the Work; and (b) any associated written or multimedia components or other enhancements

accompanying the Work.

 

GENERAL TERMS
 

The undersigned represents that he/she has the power and authority to make and execute this form.

The undersigned agrees to indemnify and hold harmless the IEEE from any damage or expense that may arise in the

event of a breach of any of the warranties set forth above.

The undersigned agrees that publication with IEEE is subject to the policies and procedures of the IEEE PSPB

Operations Manual.

In the event the above work is not accepted and published by the IEEE or is withdrawn by the author(s) before

acceptance by the IEEE, the foregoing copyright transfer shall be null and void. In this case, IEEE will retain a copy of

the manuscript for internal administrative/record-keeping purposes.

For jointly authored Works, all joint authors should sign, or one of the authors should sign as authorized agent for the

others.

The author hereby warrants that the Work and Presentation (collectively, the "Materials") are original and that he/she is

the author of the Materials. To the extent the Materials incorporate text passages, figures, data or other material from the

works of others, the author has obtained any necessary permissions. Where necessary, the author has obtained all third

party permissions and consents to grant the license above and has provided copies of such permissions and consents

to IEEE
 

You have indicated that you DO wish to have video/audio recordings made of your conference presentation under terms

and conditions set forth in "Consent and Release."

 

CONSENT AND RELEASE
 

ln the event the author makes a presentation based upon the Work at a conference hosted or sponsored in whole or in

part by the IEEE, the author, in consideration for his/her participation in the conference, hereby grants the IEEE the

unlimited, worldwide, irrevocable permission to use, distribute, publish, license, exhibit, record, digitize, broadcast,

reproduce and archive, in any format or medium, whether now known or hereafter developed: (a) his/her presentation

and comments at the conference; (b) any written materials or multimedia files used in connection with his/her

presentation; and (c) any recorded interviews of him/her (collectively, the "Presentation"). The permission granted

includes the transcription and reproduction of the Presentation for inclusion in products sold or distributed by IEEE and

live or recorded broadcast of the Presentation during or after the conference.

In connection with the permission granted in Section 1, the author hereby grants IEEE the unlimited, worldwide,

irrevocable right to use his/her name, picture, likeness, voice and biographical information as part of the advertisement,

distribution and sale of products incorporating the Work or Presentation, and releases IEEE from any claim based on

right of privacy or publicity.
 

108



-

-

-

-

-

-

-

BY TYPING IN YOUR FULL NAME BELOW AND CLICKING THE SUBMIT BUTTON, YOU CERTIFY THAT SUCH ACTION

CONSTITUTES YOUR ELECTRONIC SIGNATURE TO THIS FORM IN ACCORDANCE WITH UNITED STATES LAW, WHICH

AUTHORIZES ELECTRONIC SIGNATURE BY AUTHENTICATED REQUEST FROM A USER OVER THE INTERNET AS A

VALID SUBSTITUTE FOR A WRITTEN SIGNATURE.

 

 

 

 

 

Information for Authors
 

AUTHOR RESPONSIBILITIES
 

The IEEE distributes its technical publications throughout the world and wants to ensure that the material submitted to its

publications is properly available to the readership of those publications. Authors must ensure that their Work meets the

requirements as stated in section 8.2.1 of the IEEE PSPB Operations Manual, including provisions covering originality,

authorship, author responsibilities and author misconduct. More information on IEEE’s publishing policies may be found at 

http://www.ieee.org/publications_standards/publications/rights/authorrightsresponsibilities.html Authors are advised especially of

IEEE PSPB Operations Manual section 8.2.1.B12: "It is the responsibility of the authors, not the IEEE, to determine whether

disclosure of their material requires the prior consent of other parties and, if so, to obtain it." Authors are also advised of IEEE

PSPB Operations Manual section 8.1.1B: "Statements and opinions given in work published by the IEEE are the expression of

the authors."

 

RETAINED RIGHTS/TERMS AND CONDITIONS
Authors/employers retain all proprietary rights in any process, procedure, or article of manufacture described in the Work.

Authors/employers may reproduce or authorize others to reproduce the Work, material extracted verbatim from the Work, or

derivative works for the author's personal use or for company use, provided that the source and the IEEE copyright notice are

indicated, the copies are not used in any way that implies IEEE endorsement of a product or service of any employer, and the

copies themselves are not offered for sale.

Although authors are permitted to re-use all or portions of the Work in other works, this does not include granting third-party

requests for reprinting, republishing, or other types of re-use.The IEEE Intellectual Property Rights office must handle all such

third-party requests.

Authors whose work was performed under a grant from a government funding agency are free to fulfill any deposit mandates

from that funding agency.
 

AUTHOR ONLINE USE
Personal Servers. Authors and/or their employers shall have the right to post the accepted version of IEEE-copyrighted

articles on their own personal servers or the servers of their institutions or employers without permission from IEEE, provided

that the posted version includes a prominently displayed IEEE copyright notice and, when published, a full citation to the

original IEEE publication, including a link to the article abstract in IEEE Xplore. Authors shall not post the final, published

versions of their papers.

Classroom or Internal Training Use. An author is expressly permitted to post any portion of the accepted version of his/her

own IEEE-copyrighted articles on the author's personal web site or the servers of the author's institution or company in

connection with the author's teaching, training, or work responsibilities, provided that the appropriate copyright, credit, and

reuse notices appear prominently with the posted material. Examples of permitted uses are lecture materials, course packs, e-

reserves, conference presentations, or in-house training courses.

Electronic Preprints. Before submitting an article to an IEEE publication, authors frequently post their manuscripts to their

own web site, their employer's site, or to another server that invites constructive comment from colleagues. Upon submission

of an article to IEEE, an author is required to transfer copyright in the article to IEEE, and the author must update any

previously posted version of the article with a prominently displayed IEEE copyright notice. Upon publication of an article by

the IEEE, the author must replace any previously posted electronic versions of the article with either (1) the full citation to the

       Vanya Cherneva              01-09-2018

       
Signature

             
Date (dd-mm-yyyy)

109



IEEE work with a Digital Object Identifier (DOI) or link to the article abstract in IEEE Xplore, or (2) the accepted version only

(not the IEEE-published version), including the IEEE copyright notice and full citation, with a link to the final, published article

in IEEE Xplore.
 

 

 

Questions about the submission of the form or manuscript must be sent to the publication's editor. 

Please direct all questions about IEEE copyright policy to: 

IEEE Intellectual Property Rights Office, copyrights@ieee.org, +1-732-562-3966

110



VITA

Vanya Cherneva is Bulgarian native-born. She holds Bachelor of Engineering, and Master

of Computer System and Information Technology degrees, both from Vasil Levski National

Military University, Republic of Bulgaria. She started her study in Louisiana State Univer-

sity in August of 2012. Working toward her graduate studies in Electrical and Computer

Engineering Division, with focus on Computer Engineering. In 2016 she earned her second

Master’s degree from Electrical and Computer Engineering Division, LSU. She is currently

a doctoral candidate with Electrical and Computer Engineering Division.

111


	Distributed Wireless Algorithms for RFID Systems: Grouping Proofs and Cardinality Estimation
	Recommended Citation

	tmp.1553888771.pdf.C_r6K

