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ABSTRACT 

Alluvial rivers are shaped by interactions of flow and sediment transport. Their lower reaches to 

the world’s oceans are highly dynamic, often presenting engineering and management challenges.  

This thesis research aimed to investigate channel dynamics and sediment transport in a natural 

river and a highly engineered river in South Louisiana, in order to gain much-needed science 

information for helping develop sustainable practices in river engineering, sediment management, 

and coastal restoration and protection. Especially, the thesis research examined (1) riverbed 

deformation from bank to bank in the final 500-km reach of the Mississippi River, (2) bed material 

transport at the Mississippi-Atchafalaya River diversion, and (3) long-term and short-term flood 

effects on the morphological changes of the Amite-Comite River confluence. The research 

employed morphological, hydrodynamic, and geospatial modeling and analysis. The research 

found that from 1992 to 2013 the lowermost Mississippi River channel trapped 337 × 106 m3 

sediment, equal to about 70% of riverine sand input from the upstream channel. The finding rejects 

the initial hypothesis that the highly engineered Mississippi River acts as a conduit for sediment 

transport. Sediment deposition mainly occurred in the immediate channel downstream of the 

Mississippi-Atchafalaya River diversion and the reach between RK 386 and RK 163, reflecting 

flow reduction and backwater influences. The bed material transport assessment revealed that in 

the recent decade the engineering-controlled Mississippi-Atchafalaya River diversion showed a 

slight disproportional transport of bed material loads. On average 24% of the Mississippi River 

was diverted into the Atchafalaya, but only 22% of bed material loads moved into the diversion 

outflow channel (i.e. 47 MT out of 215 MT).  The confluence of Amite and Comite River 

continuously migrated about 55 m downstream between 2002 and 2017. Sediment deposition on 

the main channel side of the confluence mouth bar is the major driver for the confluence migration. 
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Regression analysis shows that the increase rate of the vegetated area of the bar is highly related 

to the days of moderate floods. Short-term Laser scanning measurements reveal that a single flood 

with the intensity close to a moderate flood could double the projected surface area of the mouth 

bar and increased its volume by 68%. Overall, the thesis research shows the complexity of 

sediment transport in the lower reach of a large alluvial river, in that distinctive bed deformation 

can occur in different reaches because of flow deduction and backwater effects. Our study is the 

first try of estimating bed material load at a largely controlled bifurcation based on a simple, well-

established bed material transport model. The study also highlights the importance of episodic 

floods on the evolution and migration of a river confluence.
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CHAPTER 1. INTRODUCTION 

Alluvial rivers carry sediments in suspension and bedload shaping their downstream 

channel morphology, dynamics, and ecosystems. In general, the natural alluvial channels can be 

grouped  into four basic patterns including straight, meandering, braided, or anastomosing. The 

patterns result from different sediment supply, discharge, gradient, bank material, vegetation on 

stream forms, and geology of watershed (Lane, 1957). Natural alluvial channels are usually 

unstable because their bed and banks are erodible. Some channel changes can be expected in 

alluvial rivers, such as bar shift, neck cutoff, meander shift, and avulsion (Schumm, 1985).  

Sediment transport and sedimentation directly determine channel geometry and 

morphology. In terms of the sediment transport mechanism, sediments can be divided into 

suspended sediment, bedload, and saltation. For considering effects of sediment transport on 

channel morphology, sediments are more appropriately divided into wash material and bed 

material (Church, 2006). The former is fine material that is usually transported a long distance and 

has little contact with the bed. The latter is relatively coarse material that may move either as 

bedload or as intermittently suspended load. Many studies have tried to quantitatively estimate the 

relationship between sediment transport and channel forms. Lane (1955) developed a simple 

relationship QS - QsD in the 1950s, in which Q is discharge, S is bed gradient, Qs is sediment flux, 

and D is grain size. He argued that discharge is the most obvious factor in determining stream form. 

Schumm (1963) published a river classification based on the dominant mode of sediment transport. 

He pointed out three types of channel forms which are mainly determined by suspended sediment, 

bedload, and mixed load. Overall, there are two ways to study the relationship between sediment 

transport and channel morphology (Church, 2006). This first one is a forward approach, in which 

known physics of sediment transport is applied to deduce fluvial sedimentation. Numerous 
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equations were developed for studying sediment transport which can be used in this approach 

(Ackers and White, 1973; Einstein, 1950; Engelund and Hansen, 1967; Toffaleti, 1977; Yang, 

1973; Yang, 1979).  The second one is an inverse approach, in which observed morphologic 

changes of the channel are used to estimate sediment transport process (Redolfi et al., 2017; 

Wheaton et al., 2013; Williams et al., 2015). This approach is more convenient because river 

morphology is much easier to observe (Church, 2006).  

In the past century, the natural fluvial processes of many alluvial rivers have been altered 

by human interventions, including levee construction and other engineering practices, i.e., channel 

cutoffs, dredging, dam and reservoir, revetment, and water diversion construction. This is 

especially true in the lower reach of large alluvial rivers where navigation and flood control play 

ultimate roles for regional and national industrial and economic development. While the human 

intervention effects are widely recognized, comprehensive quantitative studies detailing the 

decadal dynamics of sediment deposition in the lower reach of alluvial rivers are limited. Such 

quantitative assessments are critical for understanding sediment transport and channel morphology 

in the backwater zones of large alluvial rivers. In addition, they  can be also relevant for coastal 

protection and restoration as many river deltas in the world are rapidly losing land because of one 

or a combination of factors, including reduced riverine sediment supply (Walling and Fang, 2003), 

subsidence (i.e. Syvitski et al. (2009), Higgins (2016)), coastal land erosion (Chen and Zong, 1998; 

Pranzini et al., 2015; Silva et al., 2014), and sea level rise (Gornitz, 1995; Zhang et al., 2004).  

As one of the largest alluvial rivers in the world, the Mississippi River (MR) avulsed and 

created a new course every 1,000-1,500 years before the construction of artificial levees (Coleman 

et al., 1998; Fisk, 1944; Fisk, 1952). The river in the present time has two distributary outlets, the 

Mississippi main channel and the Atchafalaya River (AR) (i.e., the oldest course of the MR several 



 

3 

 

thousand years ago) which, respectively, carry 70% and 30% of the combined flow. This flow ratio 

is artificially maintained through a controlled diversion after it was realized that the MR had begun 

changing its course back to the AR (Fisk, 1952). The diversion structure, also known as the Old 

River Control Structure (ORCS), was completed in 1963, including an overbank structure and a 

Lowsill structure. Meanwhile, the Lower Old River was closed to form a navigable channel. 

Although the flow was controlled by the ORCS, the large flood in 1973 almost destroyed the 

Lowsill structure and almost caused the course of the MR change. In 1987, an Auxiliary structure 

with a new inflow channel was built to relieve the stress of the Lowsill and Overbank structures. 

The Sidney A. Murray, Jr. Hydroelectric Plant was completed in 1991 which created another 

bifurcation in the channel. The average flow diversion in the past three decades was about 23% of 

the Mississippi flow upstream of the ORCS (Wang and Xu, 2016).  

Bifurcations are important nodal points in river systems that redistribute flow and sediment 

in braided and anastomosing channels on fluvial plains and deltas. Bifurcations can cause 

downstream aggradation in the original channels and enlargement of the newly bifurcated channels 

(Kleinhans et al., 2008). Such processes usually make the bifurcations unstable, resulting in final 

avulsions. Long-term development of bifurcations in large or small alluvial rivers depends on flow 

and sediment transport, especially fluxes and variations of bed material loads (Church, 2006). 

While the water and suspended sediment discharges into downstream channels can be normally 

quantified with a satisfactory degree, determining the fluxes of riverbed material load at 

bifurcations is rather difficult. It is even more challenging to quantify bedload fluxes at engineered 

and controlled bifurcations because of irregular flow regulations and unknown numeric solutions. 

Yet such information can be crucial for alluvial rivers in assessing the long-term stability of 

bifurcations as well as the downstream channel dynamics, flood risk, and navigation safety.  
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The Mississippi-Atchafalaya River diversion is a prime example in case. Several studies 

have looked into sediment transport near the ORCS. Located about 10 km downstream of the 

ORCS, Tarbert Landing (TBL) gauging station operated by the U.S. Army Corps of Engineers 

(USACE) supplied long-term suspended sediment concentration data. Utilizing these data, Rosen 

and Xu (2014) quantified total suspended sediment and Joshi and Xu (2015) estimated suspended 

sand load for the last four decades at TBL. Knox and Latrubesse (2016) estimated bed-load 

transport using time-elapsed bathymetric method immediately downstream of TBL. At the ORCS, 

a similar method was used to calculate bed-load transport at several locations up- and downstream 

of the ORCS in the Mississippi mainstem and the diversion outflow channel (Heath et al., 2015). 

In a modeling study on the stability of the diversion under natural conditions, Edmonds (2012) 

concluded that it would take about 300 years to see a final avulsion of the MR into the AR. 

However, as a controlled river diversion, Wang and Xu (2018a) argued that the ORCS may be 

unstable based on the results from a model developed by Pittaluga et al. (2015). Although they 

pointed out that the diverted sediment may be lower than the transport capacity of the diversion 

outflow channel, it is still unknown how much sediment was actually diverted via the outflow 

channel to the Atchafalaya River.  

Except for the Mississippi River, there are many natural alluvial rivers in Louisiana, such 

as the Amite River, Tickfaw River, Tangipahoa River, Pearl River, etc. These rivers are important 

in material transport, flood protection, and recreation. The 2016 catastrophic flood in south 

Louisiana is the worst natural disaster to strike the United States since Hurricane Sandy four years 

ago. The Lower Amite River-Lake Maurepas Basin to the Northern Gulf of Mexico suffered severe 

inundation due to intense precipitation and quick backwater flooding. The massive flood 

submerged an estimated 146,000 homes, forced over 40,000 people to relocate, and damaged 
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thousands of businesses, tremendously devastating the state’s economy and regional development. 

Except for severe precipitation, reduced flow capacity in the Amite River channel may be another 

main reason for the 2016 flood. This is because that the floodplain of the Amite River had been 

intensively mined for sand and gravel since the early 1970s (Hood et al., 2007; Mossa and McLean, 

1997) and the Amite River normally carries abundant sediment downstream during floods.  

River confluences are important zones for water and sediment routing, which can 

significantly influence channel morphology, migration, and avulsion (Best, 1986; Mosley, 1976). 

Over the past several decades, flow structure, sediment dynamics, and bed morphology at the river 

confluences have been extensively studied  in laboratory experiments, theoretical analyses, and 

modeling simulations (Ashmore and Parker, 1983; Best, 1986; Best, 1988; Biron et al., 1993; 

Booker et al., 2001; Boyer et al., 2006; Bradbrook et al., 2000; Sukhodolov et al., 2017). In a recent 

study on the planform morphodynamics of large river confluences over decadal timescales, Dixon 

et al. (2018) found that confluence migrations would be much higher and more common than 

previously assumed. For example, in the Ganges-Brahmaputra-Meghna basin, more than 80% of 

large confluences were mobile over the past 40 years.  

A river confluence is typically composed of a confluence mouth bar, a separation zone bar, 

a downstream scour zone, and a mid-channel bar in the post-confluence channel (Best, 1986; 

Mosley, 1976). As a critical element for confluence migration, morphologic changes of confluence 

mouth bars have not been thoroughly studied. Investigation of confluence mouth bars can not only 

improve the scientific understanding of confluence migration under different flow conditions but 

also can have practical relevance for assessing hazard risk for downstream engineering structures 

such as bridges and roads. In South Louisiana of the United States, for instance, a 70-m long bridge 

crosses the Amite River downstream near the confluence of its confluence with the Comite River. 



 

6 

 

The two rivers are both alluvial rivers on the Mississippi Valley Loess Plain, carrying high sand 

loads during floods. There is a concern over the migration of the confluence bar, which could 

possess a direct threat to the safety of the bridge. Understanding flood effects on and predicting 

confluence bar migration can help develop engineering solutions to mitigate potential hazards to 

the bridge and save human lives.    

The goal of this thesis research was to determine quantitative relationship between 

sediment transport and channel morphology in engineered and natural alluvial rivers. To achieve 

this goal, three interrelated studies were conducted in the Lower Mississippi River and the Amite-

Comite River confluence. This thesis attempts to introduce the studies in three separate chapters. 

Following this Introduction, the second chapter presents a study assessing patterns and 

mechanisms of riverbed deformation in the last 500-km channel of the Mississippi River to test 

the hypothesis that the lower reach of a large alluvial river can function as a conduit for sediment 

transport under the current engineering focus of navigation safety and flood control. The third 

chapter focuses on bed material load transport at the engineered Mississippi-Atchafalaya River 

diversion. The fourth chapter describes a study on how long-term and short-term floods affect the 

confluence bar migration and morphology of two alluvial rivers. Chapters two, three, and four are 

written as stand-alone manuscripts. Chapter two was recently published in Journal of Geophysical 

Research: Earth Surface.   
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CHAPTER 2. DECADAL-SCALE RIVERBED DEFORMATION AND 

SAND BUDGET OF THE LAST 500 KM OF THE MISSISSIPPI RIVER: 

INSIGHTS INTO NATURAL AND RIVER ENGINEERING EFFECTS ON 

A LARGE ALLUVIAL RIVER 

2.1. INTRODUCTION 

Alluvial rivers are shaped by interactions of river flow, sediment transport, and bed 

deformation. Under natural conditions, avulsion of alluvial rivers is common in low-lying coastal 

areas, as a result of channel bed aggradation. The old channel is suddenly abandoned and a new 

channel is formed, e.g., the Rhine River in the Netherlands (Stouthamer et al., 2011; Tornqvist, 

1994), the Yellow River in China (Qian, 1990; Xue, 1993), and the Mississippi River in the United 

States (Aslan and Autin, 1999; Frazier, 1967). Following an avulsion, new in-channel 

sedimentation continues until the next avulsion occurs (Lamb et al., 2012).  

As one of the largest alluvial rivers in the world, the Mississippi River (MR) avulsed and 

created a new course every 1,000-1,500 years before the construction of artificial levees (Coleman 

et al., 1998; Fisk, 1944; Fisk, 1952). The river in the present time has two distributary outlets, the 

Mississippi main channel and the Atchafalaya River (AR) (i.e., the oldest course of the MR several 

thousand years ago) which, respectively, carry 70% and 30% of the combined flow. This flow ratio 

is artificially maintained through a control structure built in 1963 after it was realized that the MR 

had begun changing its course back to the AR (Fisk, 1952). Human alterations to the AR channel 

in the late 19th century (e.g., removal of a large number of wood log jams) caused the AR to carry 

an increasing quantity of the Mississippi flow, which often has been attributed to the avulsion 

tendency of the MR. However, little attention has been paid to the importance of possible riverbed 

changes downstream of the avulsion node on the MR course. From a fluvial geomorphology point 

of view, avulsion of all alluvial rivers has one fundamental requirement: in-channel aggradation 
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which makes the river poised for an avulsion (Mohrig et al., 2000). It is not clear how the riverbed 

of the MR downstream of the avulsion node developed at that time, but we propose that a close 

look at the recent-decadal bathymetric development of the river reach will offer crucial insights 

not only into the past but also into future development.      

In the past century, the natural fluvial processes of many alluvial rivers have been altered 

by human interventions, including levee construction and other engineering practices, i.e., channel 

cutoffs, dredging, dam, and water diversion construction. This is especially true in the lower reach 

of large alluvial rivers where navigation and flood control play ultimate roles for regional and 

national industrial and economic development, such as the Lower Mississippi River. While the 

human intervention effects are widely recognized, comprehensive quantitative studies detailing 

the decadal dynamics of sediment deposition in the lower reach of alluvial rivers are limited. Such 

quantitative assessments can be relevant for coastal protection and restoration as many river deltas 

in the world are rapidly losing land because of one or a combination of factors, including reduced 

riverine sediment supply (Walling and Fang, 2003), subsidence (i.e. Syvitski et al. (2009), Higgins 

(2016)), coastal land erosion (Chen and Zong, 1998; Pranzini et al., 2015; Silva et al., 2014), and 

sea level rise (Gornitz, 1995; Zhang et al., 2004).  

The last 500-km reach of the Mississippi River below the avulsion node often referred to 

as the lowermost Mississippi River (LmMR), is the lifeline that supplies sediment to the river’s 

delta. In the past century, this river reach has undergone extensive river engineering, while the 

Mississippi River Delta (MRD) kept losing coastal land at a high rate: since 1932, the MRD has 

lost approximately 4,877 km2 land (Couvillion et al., 2011). While annual sediment yields of the 

Lower Mississippi River reduced from ca 400 million metric tons (MT) a century ago to less than 

200 MT in the recent two decades (Rosen and Xu, 2013; Rosen and Xu, 2014), channelization and 
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levee constructions prohibited the supply of the sediment to the previous deltaic floodplains. The 

MRD and all other low-lying river deltas in the world face tremendous challenges in the future, as 

climate change and sea level rise continue. Large sediment diversions have been proposed at 

several locations of the LmMR to deliver riverine sediment into the coastal wetland (CPRA, 2012). 

In the context of sediment transport and availability in the LmMR, understanding long-term 

riverbed deformation in this river reach is crucial to the success of the coastal wetland restoration.  

In this study, we used hydrographic survey data of the LmMR collected in 1992, 2004 and 

2013 to analyze long-term changes in riverbed elevation, erosion, and deposition. The primary 

goal of our study was to identify the patterns and mechanisms of riverbed deformation in the last 

500-km channel of the Mississippi River and to test the hypothesis that the lower reach of a large 

alluvial river can function as a conduit for sediment transport under the current engineering focus 

of navigation safety and flood control. We have focused on three critical questions including 1) 

How has the riverbed changed in its first 100-km reach downstream the Mississippi-Atchafalaya 

avulsion node over the past two decades? 2) Where has the river experienced continuous bed 

aggradation and erosion? 3) Has the river channel been managed as an effective conduit for 

sediment transport? If not, how much sediment (i.e., sand) has been trapped in the river channel 

and how much has been delivered to the Gulf of Mexico in the past two decades?  Answers to 

these questions will provide crucial insights into channel deformation and sediment dynamics in 

the backwater zone of one of the world’s largest and most engineered alluvial rivers. Knowing the 

importance of the Mississippi River Delta in the U.S. economy, human-related activities, and the 

environmental pressures, there is a high interest in updated information on the river channel 

development. Such information will also have relevant implications for management of the world’s 

other alluvial rivers entering the oceans as global sea level continues to rise.  
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2.2. MATERIALS AND METHODS 

2.2.1. The Lowermost Mississippi River 

Draining approximately 3.2 million square kilometers of land, the Mississippi River is the 

largest river in North America. The river’s last 500-km reach starts at the Mississippi-Atchafalaya 

River avulsion node, where a diversion control structure was built (also known as the Old River 

Control Structure, ORCS), and ends at Head of the Passes, where the river breaches off into various 

channels entering the Gulf of Mexico (Figure 2.1). Riverbed of the first 130-km reach below the 

ORCS can be described as an alluvial channel. Below this reach to Head of the Passes, the river 

has been found to be a mixed bedrock-alluvial channel, comprising discontinuous alluvial 

sediment cover and exposed channel-bottom and sidewall substratum (Nittrouer et al., 2011). Nine 

large channel bars lie between ORCS and Baton Rouge (RK 370) and only two mid-channel bars 

existed downstream of Baton Rouge (Table 2.1). Major river engineering in the lowermost 

Mississippi River after the Great Mississippi Flood of 1927 is shown in Table 2.1. In this 500-km 

river reach, dredging has been mainly conducted on the crossings between Baton Rouge (RK 368) 

and New Orleans (RK 165) to keep the channel navigable. The annual dredging volume during 

1988-2011 has been reported to be approximately 13 x 106 m3 (Little and Biedenharn, 2014). 
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Figure 2.1. Geographical location of the lowermost Mississippi River beginning at the Mississippi 

– Atchafalaya River diversion, also known as the Old River Control Structure (ORCS) at RK 500 

and ending at the river’s Gulf outlet, also known as Head of the Passes at RK 0. Artificial levees 

exist along the entire channel except for the left bank between ORCS and Baton Rouge and 

downstream of RK 72. Overbank flooding mainly occurs between Tarbert Landing (TBL) and St. 

Francisville. Two flood spillways, the Morganza Spillway (MS) and Bonnet Carré Spillway (BCS), 

were designed for protecting the levee system by diverting excess flood water into the Atchafalaya 

River with wide floodplains and Lake Pontchartrain north of New Orleans, respectively. Reaches 

A-E are divided by the authors based on the different riverbed deformation from 1992 to 2013 (see 

Table 2.2 in the Results section). 
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Table 2.1. Information of major channel bars in the lowermost Mississippi River below its 

diversion to the Atchafalaya River at the Old River Control Structure, river kilometer (RK) 504. 

Number Name Location Type Vegetation cover 

1 Shreves Bar RK 489 mid-channel bar bar tail 

2 Angola Landing RK 481 point bar bar tail 

3 Miles Bar RK 481 mid-channel bar full 

4 Brandon Bend RK 470 point bar middle  

5 Tunica Island RK 460 side bar bar tail 

6 Cat Island Bend RK 450 point bar none 

7 St. Maurice Towhead RK 438 mid-channel bar bar tail 

8 Fancy Point Towhead RK 415 mid-channel bar full 

9 Profit Island RK 402 mid-channel bar full 

10 Unnamed RK 340 mid-channel bar bar tail 

11 Bayou Goula Towhead RK 315 mid-channel bar full 

 

During the period of 1985-2015, daily discharge at Tarbert Landing (USACE station ID# 

01100, RK 493), shortly below the ORCS, averaged 14,968 cubic meters per second (cms), varying 

from 3143 cms in the dry year of 1988 to 45,845 cms in the wet year of 2011. Average annual 

discharge of suspended sediment at Tarbert Landing has been estimated to be 127 million metric 

tons (MT) for the period 1980 – 2010 [Rosen and Xu, 2014] and 145 MT for the period 1987 - 

2006 (Meade and Moody, 2010), while an average annual bedload at this location has been 

estimated to be 6.9 MT for the period 2004 – 2015 (Joshi and Xu, 2017) and downstream near 

New Orleans to be 2.2 MT for the period 2003 – 2006 (Nittrouer et al., 2008). Saltwater would 

intrude into the lowermost Mississippi River when the river discharge drops below 8500 cms 

[Soileau, 1989] and could migrate up to RK 116, where an earthen structure was placed to prevent 

the further intrusion (Allison and Meselhe, 2010). 

2.2.2. Channel Survey and Bathymetric Data 

The main datasets used in this study consisted of three hydrographic surveys of the 

lowermost Mississippi River conducted by the U.S. Army Corps of Engineers (USACE) in 1992, 

2004, and 2013. The data provided bathymetry measurements using single beam fathometer 
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covering the 500-km long river channel starting at immediately downstream of the ORCS and 

ending at Head of Passes (Figure 1). Each dataset contains approximately 2000 cross sections with 

a distance of about 30-400 m to each other depending on channel morphology (i.e., denser 

measurements in bends) (Figure 2.2). The distance between two elevation measurements within a 

cross section was about 30 m. Considering the data coverage, the spatial resolution of measured 

elevation data is considerably high (Harmar et al., 2005). Most importantly, the survey datasets 

from the three years are comparable because the locations of all survey points were held consistent 

during these surveys. All the elevation data were used in the analysis except the data covering a 5-

km long chute at Profit Island (RK 402). The elevations from 2004 and 2013 were given with 

reference to the North American Vertical Datum of 1988 (NAVD 88), while the elevation data in 

1992 were based on the National Geodetic Vertical Datum of 1929 (NGVD 29). For consistency, 

the 1992 survey data were converted to NAVD 88. In addition to the hydrographic survey data, 

daily river discharge and suspended sediment concentrations recorded at Tarbert Landing were 

obtained from the USACE and the U.S. Geological Survey (USGS) to characterize sediment 

transport in the past 20 years. 

 

Figure 2.2. (A) Raw single beam survey data used to develop riverbed digital elevation model 

(DEM). Denser cross-sectional measurements were made in river bends. (B) A total of 311 

continuous DEM maps were generated by IDW interpolation for the entire 500-km lowermost 
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Mississippi River from the Old River Control Structure to Head of the Passes at the Gulf of Mexico. 

Each DEM map represents a 1,600-m (1-mile) long reach in bankfull width. 

2.2.3. Assessment of Longitudinal Riverbed Profiles and Channel Bed Deformation 

A spatial interpolation technology, Inverse Distance Weighted (IDW) interpolation, was 

applied to the hydrographic survey data to create Digital Elevation Models (DEMs) of 10 x 10 m 

resolution. To obtain a detailed estimation for channel elevations, the entire channel of the 

lowermost Mississippi River was divided into 311 sub-reaches, each representing a 1,600-m (1-

mile) long reach in bankfull width. Complete riverbed profiles were created by averaging the 

DEMs in each sub-reach using ArcGIS 10.3 (ESRI, Redlands, CA, USA). 

With multi-year elevation data, changes in riverbed elevation and sediment volume were 

calculated to assess riverbed deformation of the LmMR over time. The volume change was 

estimated in ArcGIS using an add-in software - Geomorphic Change Detection (Wheaton et al., 

2010a; Wheaton et al., 2010b). In the model, DEMs from every two years were used as elevation 

input to produce DEMs of difference by subtracting the elevations in one DEM from the other on 

a cell-by-cell basis. Net volume change in every sub-reach was then estimated by summing the 

product of calculated elevation change and the surface area of each cell (i.e., 100 m2). Deposition 

and erosion of the riverbed in each of the 311 sub-reaches were then calculated. 

2.2.4. Bifurcation Modeling for Avulsion Risk Assessment 

The Old River Control Structure is maintained by the United States Army Corps of 

Engineers and built to prevent possible course changing from the Mississippi River to the 

Atchafalaya River. During the 1973 large Mississippi flood, the ORCS Low Sill Control Structure 

built in 1963 almost failed because of severe scour developed underneath the structure (Figure 2.3). 

In 1986, the Auxiliary structure was built to alleviate the pressure on the main control structure 

during large floods. In 1990, the Sidney Murray Hydroelectric Plant was completed to benefit from 
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the resource as well as to decrease the pressure of other ORCS structures (Mossa, 2016). From 

1985 to 2013, the ORCS diverts approximately 23% Mississippi River flow into the Atchafalaya 

River (AR) (Wang and Xu, 2016), leaving the majority of flow to the main channel. 

 
Figure 2.3. Old River Control Structure. The Low Sill Control Structure was completed in 1963 

at the Old River channel (hence known as the Old River Control Structure, or ORCS) to regulate 

Mississippi River’s inflow to the Atchafalaya River. An auxiliary structure was constructed in 

1986 after the Low Sill Control Structure was damaged during the Mississippi River Flood of 

1973. 

Sediment transport and channel morphology of a natural and a leveed alluvial river 

The diversion can be considered as a bifurcating branch. Previous studies found that a 

bifurcating branch may cause avulsion (Kleinhans et al., 2010; Slingerland and Smith, 1998) when 

sediment flow into the branch is much less than the branch’s sediment transport capacity. Pittaluga 
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et al. (2015) recently developed a model to predict bifurcation stability for both sand bed rivers 

and gravel bed rivers, which is based on a comparison between sediment inflow and sediment 

transport capacity of a bifurcating branch. In this study, we applied this model to assess the 

potential risk of the Mississippi River avulsion into the Atchafalaya River at the Old River Control 

Structure. The model is given as below: 

(
3

2
+

2.5

𝐶𝑎
) +

8𝛼𝛾

𝛽𝑎√𝜗𝑎
= 𝑚

𝜗𝑎

𝜗𝑎−𝜗𝑐𝑟
+
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𝑛

𝑑𝑛

𝑑𝐷
|

𝜀=0
𝐷𝑎               (2.1) 

where 𝜗𝑎 and 𝛽𝑎 are the Shields stress and aspect ratio of the upstream channel, respectively, 𝐶𝑎  

is the dimensionless Chézy coefficient, 𝜗𝑐𝑟 is the critical Shields value for sediment mobilization, 

the coefficients m and n depend on the sediment transport closure relation, 𝐷𝑎 is the upstream flow 

depth, 𝛼  is the dimensionless length of the final reach of the upstream channel, and 𝛾  is the 

empirical constant for transverse slope effect (Pittaluga et al., 2003).  

The entire left side of the equation represents sediment inflow into a branch, while the 

entire right side represents sediment transport capacity. Based on this model, sediment transport 

capacity in a branch will increase when an initial perturbation occurs in one of the two downstream 

branches, e.g., a slight increase of water depth. The bifurcation remains stable if sediment inflow 

to the branch is greater than the increased sediment transport capacity of the branch. The stability 

is because the initial perturbation is diminished owing to the excess sediment input.  

In this study, we first examined channel geometry immediately upstream of the ORCS to 

acquire the aspect ratio used in Equation 1. We then computed sediment inflow to the diversion 

channel and sediment transport capacity and compared the two terms to assess bifurcation stability 

of the ORCS. Additionally, using the same hydrographic survey data described in section 2.2.2, 
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we analyzed riverbed changes of the three outflow channels at the ORCS from 1992 to 2013 to 

validate the modeling result.    

2.3. RESULTS 

2.3.1. Longitudinal Trend of Riverbed Profiles   

The longitudinal riverbed profiles of the lowermost Mississippi River in 1992, 2004 and 

2013 are similar (Figure 2.4). Starting at river kilometer 500, the riverbed profile first rises about 

10 meters within the first 20 kilometers downstream of the Mississippi-Atchafalaya River 

diversion. Then, it shows an overall declining trend for the next 300 km till RK 150. In the 

following 100 km, the riverbed shows a flat trend but with over a dozen deep channel cuts. The 

last 37-km reach of the LmMR to the Gulf of Mexico rises sharply for about 20 meters (Figure 

2.4). The regular oscillations in the space of the profile are mainly controlled by the sequences of 

pools and crossings of the meandering pattern of the river. The emerged channel bars in the upper 

LmMR also contribute peaks in the riverbed profiles.    
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Figure 2.4. Riverbed profiles downstream of the lowermost Mississippi River in 1992, 2004 and 

2013. The x-axis is river kilometer converted from river mile upstream of the river outlet at Head 

of Passes (RK 0). Y-axis is the riverbed elevation relative to the NAVD 88. Circles indicate the 

locations of emerged channel bars.  

 

2.3.2. Riverbed Elevation Changes of the Lowermost Mississippi River 

Based on changing characteristics of the riverbed elevation from 1992 to 2013, we divided 

the 500-km lowermost Mississippi River into five reaches (Figure 2.5). Over the 22-year period, 

the lowest reach of the LmMR, Reach E, experienced the largest channel aggradation (+1.3 m), 

followed by the uppermost reach A (+0.8 m). Reach C showed little channel aggregation (+0.1 m), 

whereas reaches B and D had the highest degradation, 0.7 and 0.6 m, respectively (Figure 2.5b, 

Table 2.2). During the two periods of 1992-2004 and 2004-2013, the changing trend of riverbed 

elevation was consistent in reaches A, B, and E, but was opposite in reaches C and D (i.e., from 

aggradation to degradation) (Figure 2.5 a). As a whole, the channel bed of the LmMR increased 

slightly (0.1 m) from 1992 to 2013, resulting from a 0.4 m aggradation during the first 12 years 

and a subsequent 0.3 m degradation in the last ten years.  
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Figure 2.5. Top: Annual riverbed elevation changes (m/year) during the periods 1992-2004 and 

2004-2013 in the lowermost Mississippi River. Bottom: Total riverbed elevation change (m) 

during 1992-2013. The dashed green line shows estimated actual bed elevation change from 

1992 to 2013 when annually dredged sediment in reach C is added back to the observed values. 

The large riverbed aggradation in reach E occurred immediately downstream of the natural 

crevasses (e.g., RK 32) or flow passes (e.g., RK 19, 18, 6).   
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Table 2.2. Average changes of riverbed elevation in the lowermost Mississippi River from 1992 

to 2013. Sub-reaches were divided based on the changing trends and degrees (see Figure 4). 

Reaches C and D showed a reversing trend during 1992-2004 and 2004-2013, while the other 

reaches kept the same changing trends. Values in the parentheses are estimated bed elevation 

changes when annually dredged sediment in reach C was added back to the observed values.  
Reach RK Elevation change (m) Change rate (m yr-1) 

1992-2004 2004-2013 1992-2013 1992-2004 2004-2013 1992-2013 

A 500-412 0.4 0.4 0.8 0.03 0.05 0.04 

B 412-386 -0.7 0 -0.7 -0.06 0 -0.03 

C 386-163 0.6 (1.6) -0.5 (0.2) 0.1 (1.7) 0.05 (0.12) -0.06 (0.02) 0.01 (0.09) 

D 163-37 0.1 -0.7 -0.6 0.01 -0.08 -0.03 

E 37-0 0.8 0.4 1.3 0.06 0.05 0.06 

Total 500-0 0.4 (0.8) -0.3 (0.0) 0.1 (0.8) 0.03 (0.06) -0.03 (0.00) 0 (0.04) 

 

2.3.3. Sediment Volume Change of Riverbed Surface 

Over the past two decades, the volume changes of riverbed surface sediment in the 

lowermost Mississippi River showed a similar trend as the riverbed elevation change (Figure 2.6). 

From 1992 to 2013, reach A trapped the largest amount of sediment (62 × 106 m3), followed by 

reaches E (46 × 106 m3) and C (14 × 106 m3) (Table 2.3). Reaches D and B lost a total of 58 × 106 

and 13 × 106 m3 sediment, respectively. With respect to the average rate of aggradation (i.e., ×106 

m3 km-1 yr-1), reach E had twice as high rate as reach A (i.e., 0.06 versus 0.03), reach B showed a 

similar rate as reach D (-0.02), and reach C was in a state of dynamic equilibrium (0.00). For the 

entire LmMR, there was 51 × 106 m3 net sediment deposition over the 22-year period, including a 

net gain of 156 × 106 m3 during 1992-2004 and a net loss of 105 × 106 m3 from 2004 to 2013. The 

net gain during 1992-2004 occurred in the entire LmMR except for reach B (Figure 2.6). On the 

contrary, within the 150-km reach from RK 350 to RK 200, the net loss during 2004-2013 was 

found over a much longer reach, namely from RK 350 to RK 37 (Figure 2.6).  
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Figure 2.6. Top: Cumulative sediment volume changes in the riverbed of the lowermost 

Mississippi River from 1992 to 2013. The time series were created by summing the sediment 

volume from each sub reach in the downstream direction. A positive trend indicates sediment 

deposited on the riverbed, while a negative trend indicates sediment loss from the riverbed. 

Bottom: Cumulative sediment volume changes in the riverbed when annually dredged sediment 

in reach C was added back to the observed values. 
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Table 2.3. Cumulative sediment volume in the riverbed and corresponding change rate in reaches 

A - E of the lowermost Mississippi River from1992 to 2013. The reach divisions are the same as 

given in Table 2.1. Values in the parentheses are estimated actual volume changes when annually 

dredged sediment in reach C was added back to the observed values. 

Reach RK Volume change (×106 m3) Change rate (×106 m3 km-1 yr-1) 

1992-2004 2004-2013 1992-2013 1992-2004 2004-2013 1992-2013 

A 500-412 23 39 62 0.02 0.05 0.03 

B 412-386 -10 -3 -13 -0.03 -0.01 -0.02 

C 386-163 101 (270) -87 (30) 14 (300) 0.03 (0.09) -0.04 (0.01) 0.00 (0.06) 

D 163-37 12 -70 -58 0.01 -0.06 -0.02 

E 37-0 30 16 46 0.06 0.05 0.06 

Total 500-0 156 (325) -105 (12) 51 (337) 0.02 (0.05) -0.02 (0.00) 0.00 (0.03) 

 

2.3.4. LmMR Avulsion Risk Assessment 

In sand bed rivers, the Engelund and Hansen relation should be applied in equation (1) (n = 

0.05C2, m = 2.5, and ϑcr = 0) (Pittaluga et al., 2015). In the Lower Mississippi River, the 

dimensionless Chezy coefficient (𝐶𝑎) is equal to 14.55 based on measured value from the previous 

studies (Nittrouer et al., 2012). Estimated channel aspect ratio immediately upstream of the 

Mississippi – Atchafalaya River diversion (RK 511) is ~35 (𝛽𝑎). Shields stress 𝜗𝑎 is calculated 

between 0.96 and 15 under different flow velocity (i.e. from 1 m/s to 4 m/s). The value of 𝛼𝛾 is 

given to 2 according to Pittaluga et al. (2015).  

With estimated aspect ratio immediately upstream of the Old River Control Structure and 

derived various channel parameters from the previous studies, the left-hand side of the Equation 

2.1 (representing sediment input) ranges from 1.78 to 2.14, while the right-hand side (representing 

sediment carrying capacity) is equal to 2.53. When the sediment supply is less than the sediment 

carrying capacity, more sediment would leave the Mississippi-Atchafalaya outflow channel, and 

the channel consequently tends to be scoured. Under such condition, the bifurcation would be 

unstable according to the model by Pittaluga et al. (2015). Erosion of the outflow channel was 
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confirmed by the analysis of bathymetric data measured in 1992 and 2013 (Figure 2.7). Bed 

deposition mainly occurred downstream of the Low Sill and Auxiliary Structures, while bed 

erosion was clearly shown downstream of the Hydroelectric Station. Overall, the outflow channel 

at the ORCS was scoured 1.31 m on average over the past two decades.      

 
Figure 2.7. Riverbed deformation in the outflow channel of the Mississippi-Atchafalaya River 

diversion from 1992 to 2013. Overall, the outflow channel was scoured 1.31 m on average. 

 

2.4. DISCUSSION     

2.4.1. Riverbed deformation and hydrologic effects   

Over the past 22 years, the 500-km lowermost Mississippi River showed a clear 

aggradation trend in its uppermost 88 km (reach A) and its last 37 km (reach E), and a degrading 

trend in the 26-km reach B. The reach from RK 386 to RK 37 had an opposing trend (i.e. reaches 

C and D) showing first an aggradation from 1992 to 2004 and then a degradation from 2004 to 

2013. During the entire studied period, reach C shows little bed change, while reach D had a 

significant bed erosion. Overall, considering the long distance of the river reach assessed and the 

change in total volume observed over time, the bed deformation (i.e., approximately 4,636 m3 km-

1 yr-1) in the LmMR is relatively marginal (largely caused by the continuous river dredging, see 
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more below). However, spatially, the extent of riverbed deformation varied largely from reach A 

to reach E over time.  

The continuous riverbed aggradation in reach A over the past two decades is consistent 

with the long-term (i.e., 102-103 yr) depositional feature of the LmMR. Located downstream of the 

Mississippi-Atchafalaya River diversion, which is the latest avulsion node in the Late Holocene 

(Aslan et al., 2006), reach A may have experienced in-channel aggradation since the 16th century 

when the switch of the Mississippi to the Atchafalaya was already underway (Fisk, 1944; Fisk, 

1952). A recent analysis of sedimentary deposits of the Mississippi, constructed over the Late 

Holocene, revealed that lateral migration rate of channel belts decreased from ~60 m/yr to less 

than 5 m/yr between RK 500 and RK 300 and remained very low downstream of RK 300 

(Fernandes et al., 2016), indicating that reach A is a site of sediment trapping over millennial time 

scales because sedimentation rates are known to be higher in the meander belt (Allen, 1965; Bridge 

and Leeder, 1979; Bryant et al., 1995). The result from a one-dimension hydrologic model also 

demonstrates that the riverbed of the LmMR between RK 600 and RK 150 has a tendency to 

aggrade and reach A has the highest aggradation rate (Nittrouer et al., 2012). Based on these 

findings, we believe that the observed bed aggradation in reach A in the past two decades is mainly 

a long-term and slowly occurring natural process.    

However, the Mississippi-Atchafalaya River diversion at the Old River Control Structures 

may have accelerated the in-channel aggradation in reach A. By diverting ~23% of the Mississippi 

flow into the Atchafalaya River during 1985-2013, the ORCS could largely reduce the downstream 

flow velocity, which may have increased downstream sediment settling. Assessment of the 

hydrographic surveys conducted in 1963 and 1975, which followed the operation of the ORCS in 

1963, found significant downstream bed aggradation (i.e., 30 × 106 m3) between RK 507 (i.e., the 
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ORCS Low Sill Structure) and RK 490. In a recent study, we also found a considerable sediment 

accumulation (i.e., 30 × 106 m3) on the three large channel bars downstream of the ORCS between 

RK 491 and RK481 from 1985 to 2013 (Wang and Xu, 2016). In the current study, the uppermost 

19-km channel in reach A amassed approximately 48% (i.e., 30 of 62 × 106 m3) of the total 

sediment deposited in the reach (Figure 2.6). These findings indicate the effect of the ORCS on 

downstream channel siltation may exist after it was built in 1963. In the future, a detailed modeling 

study on sediment dynamics in reach A may help to understand the effects of the ORCS. 

Several factors may have played a role in the highest deposition rate in the last 37 

kilometers of the LmMR (i.e., reach E). A high rate of deltaic sedimentation can be a response to 

the accelerated sea level rise in the recent decades as found in the history of the LmMR (Saucier, 

1994). However, the average annual deposition rate of 0.06 m or 60 mm in reach E over the past 

22 years is much higher than both the 20th century average annual rate of sea-level rise [1.7 ± 0.3 

mm (Church and White, 2006) and the estimate of a relative sea level rise for the area [10-18 mm 

yr-1 (Penland and Ramsey, 1990). Also, the intrusion of the saltwater wedge during low discharge 

can also produce seasonal sediment deposition in this area (Galler and Allison, 2008), but such 

impact should be low owing to the micro-tidal environment of the Gulf of Mexico. Checking the 

locations with a high deposition rate, we found that most of the deposition has occurred 

immediately downstream of the natural crevasses (e.g., RK 32) and river passes (e.g., RK 19, 18, 

and 6) (Figure 2.5 & 2.8). This finding strongly suggests that the reduction in flow velocity is one 

of the dominating factors for various high sedimentation rates in the LmMR over the past two 

decades. However, this widely-known effect of flow reduction on deposition has not been taken 

into careful consideration in the current planning (CPRA, 2007; CPRA, 2012) for future river 

diversions.  
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Figure 2.8. Substantial bed deposition occurred in reach E, generally immediately downstream 

of a natural crevasse (e.g., RK 32) or flow pass (e.g., RK 19, 18, 6). The increased bed elevation 

in the three subreaches was derived from Figure 2.5.  

 

For reach B, it is noted that there is a chute located on the east side of the Profit Island (RK 

402, Figure 2.1). However, we only estimated riverbed deformation in the main channel of this 

reach. The strong bed erosion during 1992-2004 may have resulted from the chute closure (Figure 

2.1). One chute weir was constructed in 1986 to control the flow of water into the chute and 

maintain flow and navigation in the main channel. Discharge readings show flow through the chute 

ranging from 6% to 26% of the total flow of the river. Thus, the river flow in the main channel 

was accelerated and likely expended the extra energy by scouring the channel bed. The little further 

erosion found during 2004-2013 indicates that reach B became equilibrium.  
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Over the entire 22 years from 1992 to 2013, reach C showed a reverse trend and a 

significant difference in riverbed volume change (i.e., +101 vs. -87 × 106 m3, Table 2.3). However, 

in the LmMR, dredging is mainly operated in the 11 reaches in reach C between RK 381 and RK 

241 (detailed dredging information shown in Table 2.4). Considering the amount of annually 

dredged sediment in this reach (i.e., ~13 × 106 m3, Little and Biedenharn (2014)), the riverbed of 

reach C has actually gained 270 x 106 m3 sediment during 1992-2004 and 30 x 106 m3 during 2004-

2013. The estimated changes in bed elevation and cumulative sediment volume in consideration 

of dredging activities are shown in Figure 4 and 5 when the average annual dredging amount in 

each reach was added back to reach C. Different from reach C, reverse trends were observed in 

reach D (i.e., +12 vs. -70 × 106 m3, Table 2.3). Overall, it is interesting to explore the reasons 

causing such large differences in riverbed sedimentation during the two sub-periods in these two 

reaches.  

Table 2.4. Dredged reaches and amount (MCY= million cubic yard; CM=cubic meter) in the 

lowermost Mississippi River below its diversion to the Atchafalaya River at the Old River Control 

Structure, river kilometer (RK) 504. 

Reach Name RK Average annual 

dredging 

amount (MCY) 

Average 

annual 

dredging 

amount (CM) 

Dredging 

amount 

per mile 

(m3/mile) 

Bed surface 

area of each 

reach (m2) 

Annual 

dredging 

elevation per 

reach (m/yr) 

1 Wilkerson Point 377-381 0.7 535,188 133,797 4,764,177 0.11 

2 Baton Rouge Front 369-377 1.5 1,146,832 191,139 7,613,246 0.15 

3 Redeye 356-364 4 3,058,220 509,703 8,753,808 0.35 

4 Sardine Point 348-356 1 764,555 127,426 6,840,870 0.11 

5 Medora 335-344 1.6 1,223,288 174,755 9,837,897 0.12 

6 Granada 325-333 1.5 1,146,832 191,139 7,946,067 0.14 

7 Bayou Goula 312-320 1.5 1,146,832 191,139 9,280,137 0.12 

8 Alhambra 303-311 2 1,529,110 254,852 8,450,871 0.18 

9 Philadelphia Point 291-298 0.4 305,822 61,164 5,723,346 0.05 

10 Smoke Bend 277-288 0.8 611,644 76,455 10,284,149 0.06 

11 Belmont 241-249 2 1,529,110 254,852 7,562,379 0.20 
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There was no significant difference in the dredging volume during the two periods (Little 

and Biedenharn, 2014). The annual sediment and sand load at Tarbert Landing (RK 493) had no 

significant trend either (Joshi and Xu, 2015; Rosen and Xu, 2014). The oscillations of riverbed 

profiles are mainly caused by the crossings and pools of the river (Figure 2.4). However, the 

examination of effects of the profile oscillations on bed deformation shows little correlations 

between the bed changes and the appearance of the crossings and pools (Figure 2.9). Therefore, 

the dredging, sediment input, and distribution of crossings and pools cannot explain the different 

trends during the two sub-periods, 1992-2004 and 2004-2013. By examining previous theories and 

studies (Chatanantavet et al., 2012; Lamb et al., 2012; Nittrouer et al., 2012), we found that the 

observed bed deformation in the LmMR can be well explained by backwater effects.  
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Figure 2.9. Riverbed deformation at the crossings and pools of the lowermost Mississippi River 

from 1992 to 2013 The consistent trends of bed deformation indicate that the sequences of 

crossings and pools could not decide the scour and deposition patterns of the riverbed.  

 

Backwater effects occur when a river approaches its receiving basin where the flow is 

decelerated because of channel deepening and spreading of the offshore plume (Chow, 1959; Lane, 

1957). Recent modeling and experiment analysis found that the riverbed of backwater zones of 

alluvial rivers tends to aggrade during low flow, but degrades during high flow because the water 

surface is drawn down near the river mouth to match that of the offshore plume and generates 
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accelerated flow (Chatanantavet et al., 2012; Ganti et al., 2016; Lamb et al., 2012). For the 

Mississippi River, the length of the backwater zone was estimated about 650 km upstream of the 

Head of Passes (Nittrouer et al., 2012). Both 1-D and quasi 2-D modeling results showed that the 

riverbed of the LmMR tends to aggrade in its upper reach, while degrades in the lower half of the 

backwater zone (Chatanantavet et al., 2012), especially in the last 150-km reach (Lamb et al., 2012; 

Nittrouer et al., 2012).   

Neglecting reach B where the bed elevation was affected by the river engineering and reach 

E where flow reduction largely contributed to the bed aggradation, the channel bed deformation in 

the LmMR during the 22-year period followed the backwater theory well: the upper reach (i.e., 

reaches A and C showed substantial bed aggradation, while the lower 163-km reach was eroded 

(Table 2.3 & Figure 2.6). In terms of different periods, the observed large differences of the bed 

deformation in reaches C and D were caused by the major floods occurred during 1992-2013. 

Modeling results showed that the bed erosion in the backwater segment of LMR is triggered when 

water discharge is over ~26,000 m3 and the bed erosion rate has exponential increase with the 

increased discharge above this threshold value (Chatanantavet et al., 2012; Lamb et al., 2012). For 

example, the maximum bed erosion rate at the discharge of 3.9 × 104 m3/s is more than two and 

30 times the rates of relatively low discharge (i.e., 3.2 × 104 and 2.6 × 104 m3/s), respectively 

(Chatanantavet et al., 2012). The large floods in 2005, 2008, 2009, and 2011 with high peak 

discharge were, therefore, reasonable to remove more sediment in reaches C and D than the 

previous decade when only the 1993 and 1997 floods had the similar peak discharge (Figure 2.10). 

It should be noted that we consider these three floods had the similar drawdown effects 

downstream of RK 205 because the Bonnet Carré Spillway at the location (RK 205, Figure 2.1) 

was operated in 1997, 2008 and 2011 to divert the flood water into Lake Pontchartrain for ensuring 
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the downstream discharge flowing by New Orleans was less than ~35,000 m3/s. However, the 2011 

Mississippi flood, the largest flood occurred in the LmMR in terms of the peak discharge (i.e., 

~4.6 × 104 m3/s) after the Great Mississippi Flood of 1927 (i.e., peak discharge 4.8 × 104 m3/s), 

may have scoured the riverbed up to RK 328. This is supported by the modeling analysis that the 

estimated length of the eroded bed during the Great Mississippi Flood of 1927 was 340 km from 

the Head of Passes (Lamb et al., 2012). The bed erosion during 2004-2013 in reaches C and D 

started at RK 328 (Figure 2.6), which is close to the modeling result and therefore it was very 

likely caused by the 2011 flood.  

 

 
Figure 2.10. The annual peak discharge of the lowermost Mississippi River (at Tarbert Landing) 

from 1992 to 2013. The higher frequency of large floods during 2004-2013, e.g., the floods in 

2005, 2008, 2009, and 2011 may have removed large amounts of riverbed sediment from reaches 

C and D because of the drawdown effect in the lower segment of the backwater zone. On the 

contrary, the longest days of discharge between 18,000 and 25,000 cms during the 1993 Great 

Mississippi Flood may have most likely caused sediment deposition on the channel bed of 

reaches C and D, which weakened the drawdown effect of the 1993 flood. 
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It should be noted that the drawdown effect of the Great Mississippi Flood of 1993 may 

have been largely weakened. The 1993 flood was the largest flood in terms of duration and 

inundated area after the 1927 flood. During the 1993 flood, the days of discharge between 1.8 × 

104 m3/s and 2.5 × 104 m3/s at Tarbert Landing was 185 days which was much longer than the 

average number of days (i.e., 78 days) in the other years from 1992 to 2013 (Figure 2.10). The 

discharge in this range typically results in the maximum suspended sand concentration (Rosen and 

Xu, 2014) and extensive channel bed aggradation over the entire LmMR bed (Chatanantavet et al., 

2012; Nittrouer et al., 2012). Hence, the 1993 flood may have contributed to the sediment 

deposition in reach C and D rather than the bed scour.  

Backwater hydrodynamics associated with a river entering the ocean were widely studied 

recently by hydrodynamic models  (Chatanantavet et al., 2012; Lamb et al., 2012; Nittrouer et al., 

2012; Viparelli et al., 2015). However, these models had difficulties in simulating bed erosion in 

the lower segments of the backwater zones when long-term discharge-frequency data derived from 

a hydrograph was applied (Chatanantavet et al., 2012; Viparelli et al., 2015). This is apparently 

inconsistent with the observed bed erosion in the last 160-km reach of the Mississippi River since 

the 1920s (Galler et al., 2003). It indicates that the neglected factors in the current modeling studies, 

e.g., emerged channel bars, channel meandering pattern, and channel sinuosity may have largely 

contributed to the long-term riverbed deformation. The detailed riverbed deformation study in the 

current study could be very useful in the future modeling study, especially for simulating the long-

term bed erosion in the lower segment of the backwater zones.  

2.4.2. Channel Geomorphological Classification and Management Implications 

In terms of mass of the trapped sediment in the LmMR over the entire 22-year study period, 

the total volume of 337 x 106 m3 riverbed deposition (i.e., sum of 51 x 106 m3 net deposition and 
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286 x 106 m3 dredged sediment) is equivalent to 404.4 million metric tons (MT) of sediment, 

assuming a dry bulk density of 1.2 metric ton per cubic meter for the riverbed sediment. Because 

much of the riverine fine particles (i.e., clay and silt, < 0.0625 mm) cannot settle because of the 

high flow, this essentially represents an average annual of 18.4 MT sand deposition, which 

accounts for 68% of the annual 27 MT suspended sand (>0.0625 mm) load estimated by Joshi and 

Xu (2015) that entered the LmMR during 1973-2013 (Figure 2.11). This result indicates that the 

highly trained LmMR has a strong capacity to trap sand, and does not behave as an effective 

conduit for sediment to reach the coast (Kesel, 2003). Dredging removed 13 x 106 m3 sand annually, 

or 15.6 MT in mass, representing 85% (or 15.6 of 18.4 MT) of deposited sand out of the river 

system (Figure 2.11). Thus, there was only about 62 MT (or 51×106 m3) net sand gain during 1992-

2013. Such amount of sand only accounts for 10% of annual average suspended sand load in the 

LmMR. Although it is successful for keeping the deep draft navigation channel in the LmMR (i.e., 

0.00 ×106 m3 km-1 yr-1 bed aggradation), dredging seems to have conflicted with the current coastal 

protection and restoration plan, especially when all the dredged materials from the river are put 

into the open water instead of beneficially used for creating marshes. Because the LmMR is 

regulated by artificial levees and the amount of sand entering the river would have no significant 

decrease over the next several centuries (Nittrouer and Viparelli, 2014), we believe that sand will 

continue to deposit in reach C in the future. As the most important material for the growth of 

subaerial delta (Roberts et al., 2003), sand sources should be well managed. If all trapped sediment 

in reach C (i.e., 13 ×106 m3) could be mobilized and delivered downstream during large floods and 

efficiently captured by the proposed sediment diversions, 130 km2 new coastal land (i.e., with 10-

cm thick sand) could be created every year, helping sustain and restore the sinking Mississippi 

River Delta.  
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Figure 2.11. Patterns of riverbed deformation and sand budget variation in the 500-km 

lowermost Mississippi River during 1992-2013. Reaches A and E experienced continuous bed 

aggradation, while reaches B had continuous degradation in the past two decades. Reaches C and 

D had a reversed trend of deformation and was also heavily dredged, resulting in a riverbed 

elevation equilibrium under the current channel management. Overall, the riverbed deformation 

in reaches B and E are mainly controlled by reduced flow velocity, while reaches A, C and D are 

highly affected by backwater effects. Also shown are channel sand storage change (total and 

annual) in reach A-E. The numbers next to the arrows show the sand discharge into the reaches.  

 

 

Continuous riverbed aggradation in reach A will cause increased water surface elevation 

of this reach below the ORCS. This has been shown by Wang and Xu (2016) that the river stage 

at a specific discharge at Tarbert Landing has increased about 1.5 meters in the past 30 years. 
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During the same period, the river channel has also narrowed about 800 meters on average. The 

condition contributes to one of the critical factors for a river avulsion: in-channel deposition in the 

main channel.  

Another factor that can cause a sudden change of a river course is a triggering flood. 

Historical and current observed trends suggest that the riverbed aggradation in reach A may 

continue, which may further reduce the flow gradient in the Mississippi River. With more sediment 

falls to the bottom and flattens the bed of the MR, the water flowing into the Atchafalaya River 

(AR) may contain less sediment. As a result, the AR would continue to scour its bed to balance 

the input water which makes its channel larger and draws more water from the MR. In the long 

term, this process increases the risk of the MR changing its course to the AR when a historic flood 

occurs. It is, therefore, pertinent to develop management strategies to mobilize the sediment in the 

reach, especially in the uppermost 19-km channel.     

2.4.3. Implications for other large river systems 

Many of the world’s large rivers have been dammed upstream in the past century (Blum 

and Roberts, 2009; Cochrane et al., 2014; Yang et al., 2011). This engineering practice has been 

found to significantly reduce downstream sediment transport (Vorosmarty et al., 2003; Walling, 

2006; Walling and Fang, 2003), which has led to channel erosions downstream of the dams in the 

upper and middle river reaches. For example, the riverbed of the middle Yangtze River has been 

found to be eroded after the closure of the Three Gorges Dam (TGD) (Yang et al., 2011; Yang et 

al., 2007). Similar riverbed erosion has also been found in the middle Yellow River after the 

closure of the Xiaolangdi Dam in 2002 (Wang et al., 2017). While these studies offer insights into 

channel erosion immediately downstream of dams, we found very few studies investigating 

riverbed deformation in the backwater zones of large alluvial rivers, owing to the lack of long-
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term bathymetric data and often frequent channel engineering for river-sea cargo shipping. Our 

study shows the complexity of sediment transport in the lower reach of a large alluvial river, in 

that distinctive bed deformation can occur in different reaches because of flow deduction and 

backwater effects. The findings offer insights into potential bed deformation trends for lower 

reaches of other large river systems with no or limited bathymetry, discharge, and sediment data. 

Such information could also be applicable for other rivers to develop sustainable river engineering 

strategies and plans. 

The observed bed deposition found downstream of the Mississippi-Atchafalaya River 

diversion in this study suggests that large-scale water diversions could cause downstream siltation. 

This insight can be utilized in river engineering to mitigate downstream channel infilling for other 

large river diversion projects, e.g., the South-to-North Water Diversion project of the Yangtze 

River in China. Although the present study could not separate flow reduction and backwater effects 

on channel siltation, the findings gained from the study indicate that future sea-level rise due to 

climate change may likely increase upstream siltation in the Mississippi and the other alluvial 

rivers in the world. Further studies are needed to elucidate individual effects of river flow reduction 

and tides on riverbed deformation of large alluvial rivers in their backwater zones. 

2.5. CONCLUSIONS  

Alluvial rivers under natural conditions are subject to river flow and sediment discharge. 

Channel confinement and other engineering practices in such rivers can alter flow and sediment 

transport, leading to different bed deformation dynamics and equilibrium. This study found that in 

the 500-km lowermost Mississippi River, significant sediment deposition occurred in the 

uppermost 88 kilometers immediately below the Mississippi-Atchafalaya River diversion and the 

last 37 kilometers where the river starts to breach off into the Gulf of Mexico, causing flow 
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reduction and downstream sedimentation. Continuous bed aggradation downstream of the 

Mississippi-Atchafalaya diversion may largely increase the risk of avulsion if unprecedented 

floods occur. The observed trends in the reach between RK 386 and RK 163 suggest that it has 

substantial potential for trapping sediment. From 1992 to 2013, although marginal sediment 

deposition was found in the lowermost Mississippi River (i.e., 51 × 106 m3), the river trapped 

approximately 337 × 106 m3 sediment (mainly sand) considering the dredged volume of riverbed 

sediment. This rejects the initial hypothesis that the lower reach of this highly engineered large 

alluvial river functions as a conduit for sediment transport. The total volume of trapped sediment 

over the past 22 years is equivalent in mass to 68% (i.e., 404 MT) of the total suspended sand 

discharged into the LmMR (i.e., 598 MT), assuming a bulk density of 1.2 metric ton per cubic 

meter for the riverbed material. On an annual mass budget, only about 9 MT sand is discharged 

from the river into the Gulf of Mexico. Backwater effects have mainly controlled in-channel 

deposition and erosion in the lowermost Mississippi River, while flow reduction may have also 

contributed to channel aggradation in the uppermost and lowermost reaches. The finding may 

suggest that lower reaches of the world’s other alluvial rivers entering the sea would experience 

greater channel deformation in the future as global sea level continues to rise. In the past, river 

engineering has focused on flow regulation for navigation and flood control. Future river 

engineering and management also need to develop strategies and solutions that will improve 

sediment transport and utilize the dredged material for coastal restoration to counter deltaic land 

loss. The revealed trends of the bed deformation in this large low-lying river could further help 

understanding the bed morphodynamics of the other lowland river systems, and ultimately help 

river management and delta protection. 



 

38 

 

CHAPTER 3. ESTIMATION OF BEDLOAD SEDIMENT FLUXES 

UPSTREAM AND DOWNSTREAM OF A CONTROLLED BIFURCATION 

NODE - THE MISSISSIPPI-ATCHAFALAYA RIVER DIVERSION  
 

3.1. INTRODUCTION 

Bifurcations are important nodal points in river systems that redistribute flow and sediment 

downstream in braided and anastomosing channels on fluvial plains and deltas. Bifurcations can 

cause downstream aggradation in the original channels and enlargement of the newly bifurcated 

channels (Kleinhans, Jagers, Mosselman, & Sloff, 2008). Such processes usually make the 

bifurcations unstable, resulting in final avulsions. A number of studies have developed numerical 

models to assess bifurcation stability for both gravel-bed and sand-bed rivers (Edmonds & 

Slingerland, 2008; Kleinhans et al., 2008; Miori, Repetto, & Tubino, 2006; Pittaluga, Coco, & 

Kleinhans, 2015; Pittaluga, Repetto, & Tubino, 2003; Slingerland & Smith, 1998; Wang, Fokkink, 

DeVries, & Langerak, 1995). These studies have identified a number of factors that can, under 

natural conditions, influence the bifurcation symmetry and stability including bed slope, bend 

structure, sediment sorting, and width-depth ratio upstream of the bifurcation. While the findings 

are fundamental for understanding bifurcation processes, our knowledge about bed material load 

transport at bifurcations is rather limited.   

The Mississippi-Atchafalaya River diversion is a prime example. The Atchafalaya River 

used to be one of the ancient channels of the Mississippi River (Fisk, 1952), and the current 

diversion is located about 500 km upstream of the Mississippi River mainstem’s outlet to the Gulf 

of Mexico (Figure 3.1). In the 15th century, the Mississippi River made a large meander at the 

location, often known as the Old River. The meander’s west side eventually  intercepted the north-

to-south flowing Red River, making the Red River a tributary and the downstream channel, 

Atchafalaya River, a distributary of the Mississippi River. The entrance to the Atchafalaya River 
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was much blocked by logs before the 18th century. In 1831, Captain Henry M. Shreve cut the 

meandering bend to shorten the travel path. Afterward, the Upper Old River was abandoned, while 

the Lower Old River connected the RR, AR, and the MR. Between the 1830s and 1870s, logjams 

in the RR and AR were removed causing the flow from the MR into the AR to gradually increase 

(Mossa, 2013). The largest flood occurred in 1927 in the Lower Mississippi River further increased 

the flow into the AR. The flow in the MR and AR across the latitude at Red River Landing (30° 

56' 20.4") is also known as “Latitude Flow” in the Mississippi-Atchafalaya River diversion 

management. The flow in the AR increased from less than 10 percent of the Latitude Flow in 1850 

to 30 percent in 1950. To prevent the AR from completely capturing the MR flow, the United 

States Congress mandated the U.S. Army Corps of Engineers (USACE) to build a control 

structural complex at river mile 315 (or river kilometer 507) upstream from the river’s mouth to 

the Gulf of Mexico (Figure 3.1), in order to regulate the flow of the Mississippi River water into 

the Atchafalaya River.  
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Figure 3.1. The Mississippi-Atchafalaya River diversion which is also called Old River Control 

Structures (ORCS) includes Hydroelectric station, Overbank Structure, Low Sill Structure, 

Auxiliary Structure, Old River Closure, and Navigation Lock. The bed material load was 

calculated at the three cross-sections located at immediately upstream (Site 1) and downstream 

(Site 2) of the ORCS and at the end of the Outflow Channel (Site 3). Daily river discharge is 

recorded at Tarbert Landing (TBL) and Outflow Channel gauging stations; Daily river stage is 

recorded at these two and additional three gauging stations: Knox Landing (KL), Lowsill 

outflow, and Auxiliary outflow.  

 

This diversion complex, also known as the Old River Control Structure (ORCS), was 

completed in 1963, consisting of an overbank structure and a Low Sill Structure (Figure 3.1). Since 

then, water diverted into the AR from the MR has been regulated by the ORCS under a scheme of 

30% in the AR and 70% in the MR at the Latitude Flow. The large flood in 1973 almost destroyed 

the Low Sill Structure and caused the course changing of the MR. In end 1986, an Auxiliary 

Structure with a new inflow channel was added to relieve the stress on the Low Sill and Overbank 
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structures. The Sidney A. Murray, Jr. Hydroelectric Plant was completed in 1991 which created 

another bifurcation in the channel. The average flow diversion in the past three decades has been 

about 23% of the Mississippi flow upstream of the ORCS (Wang & Xu, 2016).  

Several studies have looked into sediment transport near the ORCS. Located about 10 km 

downstream of the ORCS, Tarbert Landing (TBL) gauging station operated by the USACE has 

long-term suspended sediment concentration data. Utilizing these data, Rosen and Xu (2014) 

quantified total suspended sediment and Joshi and Xu (2015) estimated suspended sand load for 

the last four decades at TBL. Knox and Latrubesse (2016) estimated bedload transport using a 

time-elapsed bathymetric method immediately downstream of TBL. At the ORCS, a similar 

method was used to calculate bed-load transport at several locations up- and downstream of the 

ORCS in the Mississippi mainstem and the diversion Outflow Channel (Heath et al., 2015). In a 

modeling study on the stability of the diversion, Edmonds (2012) concluded that it would take 

about 300 years to see a final avulsion of the MR into the AR under natural conditions. However, 

as a controlled diversion in a large alluvial river, Wang and Xu (2018a) argued that the ORCS may 

be unstable based on the results from a model developed by Pittaluga et al. (2015). Although they 

pointed out that the diverted sediment may be lower than the transport capacity of the diversion 

Outflow Channel, it is largely unknown how much sediment, especially riverbed material, is 

actually diverted via the Outflow Channel to the Atchafalaya River. The information is critical 

because studies have found considerable channel aggradation immediately downstream the ORCS 

(Mossa, 2013; Wang & Xu, 2018a).    

Long-term development of bifurcations in large or small alluvial rivers depends on flow 

and sediment transport, especially fluxes and variations of bed material loads (Church, 2006). 

While the water and suspended sediment discharges into downstream channels can be normally 
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quantified with a satisfactory degree, determining the fluxes of riverbed material load at 

bifurcations is rather difficult. It is even more challenging to quantify bedload fluxes at engineered 

and controlled bifurcations because of irregular flow regulations and unknown numeric solutions. 

Yet such information can be crucial for alluvial rivers in assessing the long-term stability of 

bifurcations as well as the downstream channel dynamics, flood risk, and navigation safety. In 

general, little is known about sediment transport and long-term channel morphological 

development downstream of engineering-controlled bifurcations. Such knowledge can be crucial 

for planning and managing river diversion projects, especially for large alluvial rivers.  

The goal of this study aimed to provide first-time information on bed material transport 

and channel morphodynamics at the river diversion control complex of the Mississippi-

Atchafalaya Rivers, one of the world’s largest engineered river bifurcation. Specifically, the study 

specifically was to (1) estimate 10-year long (2004-2013) riverbed material fluxes upstream and 

downstream of the diversion complex, (2) develop discharge – riverbed material load rating curves 

for the diversion locations for future management, and (3) quantify channel deformation in and 

around the diversion complex to discern long-term stability.   

3.2. METHODS  

3.2.1. Study site  

This study selected two river reaches near the ORCS: from Union Point (UP) to Tarbert 

Landing (TBL) on the Mississippi River mainstem and the entire Outflow Channel (Figure 3.1). 

The UP location is approximately 10 km upstream and the TBL location is about 13 km 

downstream of the ORCS, making a 23-km long reach on the river mainstem. The east side of the 

river reach is natural floodplain and the west side of the reach is protected by levee structures. The 
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Outflow Channel is approximately 10 km long, both sides of the reach are revetted with limestone 

rocks.   

Using single beam channel survey data collected by USACE in 2004 and 2013, we 

developed DEM from bank to bank for the river reach from Union Point to Tarbert Landing and 

for the Outflow Channel. We then determined changes in riverbeds of these two reaches for the 10 

years and quantified sediment deposition and/or erosion rates.  We calculated the daily bed 

material load at Site 1 (upstream), Site 2 (downstream), and Site 3 (the end of Outflow Channel) 

for the 10 years and assessed their transport rates under varying flow conditions.  

3.2.2. Data collection 

Data used in this study mainly included daily river discharge, daily river stage, and river 

bathymetric survey records. Discharge and stage data were utilized for bed material load 

calculation, and bathymetric data were used to determine spatially-referenced riverbed volumetric 

changes. River flow data were collected from several gauging stations near the ORCS and at the 

Natchez, Mississippi. All the stations were operated by the USACE. In specific, river stage data 

were collected at Natchez (#15155), Knox Landing (# 01080), Old River Lowsill Outflow Channel 

(#02100), Old River Auxiliary Outflow Channel (#02210), Red River Landing (#01120), and 

Simmesport (#03045). Water discharge data were collected at Old River Outflow Channel (#02600) 

and Tarbert Landing (#01100) (Figure 3.1).  

Two sets of hydrographic survey data in 2004 and 2013 were collected from the U.S. Army 

Corps of Engineers (USACE). The data were single beam bathymetric measurements covering the 

mainstem of the Mississippi and outflow channel of the ORCS. The measurements also cover part 

of the floodplain. The distance between two neighbor cross-sections of the single beam 

measurements is between 30 and 400 m. Within a cross-section, the distance between two 
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elevation points was about 30 m. The elevation reference for the survey data is the North American 

Vertical Datum of 1988 (NAVD 88).  

3.2.3. Calculation of bed material loads 

There are a number of formulas developed for estimating bed material load (BML) for sand 

bed rivers; for instance, those by Ackers and White (1973); Einstein (1950); Engelund and Hansen 

(1967); Toffaleti (1977); Chih Ted Yang (1973); C. T. Yang (1979). There have been also a 

number of studies that have applied these equations for bed material load estimation for various 

rivers. In an evaluation  of different equations using 40 sets of field data and 165 sets of flume 

data, the American Society of Civil Engineers (ASCE, 1982) ranked Yang’s formula in the first 

place among eight classic equations. Yang’s formula was further tested using 463 sets of laboratory 

data on flow and sediment parameters associated with the discharge of bed materials consisting of 

sand that has a median sieve diameter ranging from 0.015 to 1.71 mm. It was suggested that Yang’s 

1973 equation be used for sand transport in natural rivers if measured sediment loads for 

comparison is absent. In another study, 13 sediment transport formulas were tested using 3391 sets 

of laboratory and river data under varied flow and sediment conditions (Chih Ted Yang & Huang, 

2001). Comparison results indicated that Yang’s 1973 and 1979 formulas are most robust because 

their accuracies are least sensitive to the fluctuation of relative water depth, dimensionless shear 

velocity, dimensionless unit stream power, Froude number, and sediment concentration. However, 

Yang’s 1979 formula is more appropriate when the sand concentration is higher than 100 ppm 

which is not the case in the Lower Mississippi River (Joshi & Xu, 2015). The U.S. Army Corps of 

Engineers recently conducted field measurements on bed-load and bed material load at several 

sites near the ORCS (Heath et al., 2015; Jones, Abraham, McAlpin, & Ganesh, 2018). This 

supplies us an excellent opportunity to study BML using the classic sediment transport formulas.  
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In this study, we used Yang’s sand formula (Yang, 1973) to estimate bed material loads at 

three channel cross section near the Mississippi-Atchafalaya River diversion after testing several 

equations with apparently unreasonable results. The Yang’s formula is given as follows:  

log 𝐶 = 5.435 − 0.286 log
𝜔𝐷50

𝜗
− 0.457 log

𝑉∗

𝜔
+ (1.799 − 0.409 log

𝜔𝐷50

𝜗
−

0.314 log
𝑉∗

𝜔
) log(

𝑉 𝑆

𝜔
−  

𝑉𝑐𝑟

𝜔
) (3.1) 

in which the dimensionless critical velocity at incipient motion can be expressed as: 

 
𝑉𝑐𝑟

𝜔
=  

2.5

log
𝑉∗𝐷50

𝜗
−0.06

+ 0.66  for  1.2 <  
𝑉∗𝐷50

𝜗
< 70  

and  
𝑉𝑐𝑟

𝜔
 = 2.05  for  70 ≤ 

𝑉∗𝐷50

𝜗
 

where  𝐶 = the concentration of bed-material discharge, in parts per million by weight; 

 𝑆 = the channel bed slope; 

𝐷50 = the diameter of the sediment that 50% of sediment mass is smaller than; 

𝜔 = the average fall velocity, in m/s, of sediment particles of diameter 𝐷50; 

𝜗 = the kinematic viscosity, in m2/s; 

𝑉∗ = the shear velocity, in m/s; 

𝑉𝑐𝑟 = the average flow velocity, in m/s, at incipient motion. 

 𝑞𝑠 =  𝐶 × 𝐺𝑤   (3.2) 

 𝑄𝑠 = 86.4 × 𝑞𝑠  (3.3) 

where 𝐺𝑤 = the water discharge by weight (kg/s); 

 𝑞𝑠 = the bed-material discharge (kg/s); 

 𝑄𝑠 = daily bed-material discharge (metric ton/day).  

 

In this study, we used the median grain size (D50) of 0.3 mm for the Mississippi River. The 

value was obtained from the 1989 Thalweg survey on bed material composition of the Lower 
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Mississippi River (Nordin and Queen, 1992). For the outflow channel, D50 of 0.4 mm was chosen 

based on the field measurements conducted by USACE in 2016 (Jones et al., 2018).   

3.2.4. Cross-sectional geometry 

Cross-sectional profiles at three sites were derived from the single-beam bathymetric 

measurements in 2004 and 2013 including (1) one site on the Mississippi main channel 320 

kilometers upstream of (site 1, RK 320.2), (2) one site 14 kilometers downstream of three diversion 

channels (site 2, RK 306.3), and (3) one site in the outflow channel 7 kilometers from the 

confluence of the three diversion channels (site 3, Figure 3.2). Riverbed was eroded at site 1 and 

3, while the bed aggraded at site 2. The varied bed elevations were over 1 meter at site 2 and 3 

(i.e., +1.25 m vs. -1.21 m), while site 1 experienced slight erosion (i.e., from -2.22 m to -2.53 m). 

Riverbed elevation was determined from the profiles.  

In the Mississippi mainstem, the nearest gauging station upstream and downstream of the 

ORCS is located at Natchez (RM 363.3), Know Landing (RM 313.7), and Red River Landing (RM 

302.4), respectively. Herein we used interpolation method to estimate the river stage at site 1 and 

2. For site 3, the average stage at the Lowsill and Auxiliary gauging stations was used. With the 

river stage data, river depth was estimated by subtracting average cross-sectional bed elevation 

from the river stage at each cross-section.  

For any given river stage, cross-sectional area and channel width were calculated in 

MATLAB R2014b (Natick, MA, USA). Figure 3.2 shows that the bankfull stage had little change 

for all the three cross-sections from 2004 to 2013. With the river stage below the bankfull stage, 

river width varies with the stage. With the river stage above the bankfull stage, bankfull width was 

used as river width.   
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Figure 3.2. Cross-sectional profiles at site 1 (upstream), 2 (downstream), and 3 (outflow 

channel) in 2004 and 2013. The profiles were derived from single-beam hydrographic survey 

data collected by the U.S. Army Corps of Engineers. The measurements cover not only the 

channel bank to bank but also the nearby floodplains.   
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Table 3.1. Channel geometric characters of three cross-sections used in this study at upstream 

(Site 1), downstream (Site 2) of the ORCS and the end of the ORCS outflow channel (Site 3).  

Location 
River 

Kilometer 

Middle point 

Coordinates 

Bankfull 

stage (m) 

Bankfull 

width 

(m) 

Bankfull area (m2) Bed elevation (m) 

2004 2013 2004 2013 

Site 1 320.2 -91.595°, 31.089° 15.90 950 15,736 16,003 -2.22 -2.53 

Site 2 306.3 -91.563°, 31.043° 17.41 894 15,805 14,808 -2.01 -0.76 

Site 3 none -91.704°, 31.065° 14.27 450 7007 7491 -5.35 -6.56 

 

Bed slope is a critical parameter in the estimation of BML. Previous modeling studies for 

different river reaches of the Lower Mississippi River applied a bed slope between 1.9 × 10-5 

(Viparelli et al., 2015) and 7 × 10-5 (Nittrouer and Viparelli, 2014). The numbers were normally 

determined by the Thalweg elevation over an arbitrary distance. However, for bedload transport 

estimation in the bifurcations of lowland alluvial rivers, Kleinhans et al. (2013) pointed out that 

the slope should be determined by energy gradient rather than bed surface gradient because the 

flow division is largely controlled by backwater effects. Our study site is in the backwater zone of 

the Lower Mississippi River. Therefore, we used the water surface slope in the calculation instead 

of bed slope. The daily river stage at Natchez, Knox Landing, Red River Landing were used to 

estimate the water surface slope in the mainstem. The daily river stage at the outflow channel and 

Simmesport were used to estimate the water surface slope in the diversion outflow channel. The 

calculated water surface slope ranges from 4.2 × 10-5 to 5.0 × 10-5 and 5.3 × 10-5  to 7.9 × 10-5 for 

the main steam and outflow channel during different flow conditions, respectively. The average 

water surface in the outflow channel is about 1.5 times steeper than that in the mainstem.  

3.2.5. Riverbed deformation analysis 

Digital Elevation Models (DEM) of the channel bed in 2004 and 2013 were created by 

interpolating of the hydrographic survey data near the ORCS. An inverse distance weighted 
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technique was used in the interpolation and the spatial resolution of the DEM is 10 × 10 m. With 

the two years of DEM, the difference of DEM (DOD) data was obtained by subtracting the 2004 

DEM from the 2013 DEM. Volume changes of the sediment on channel bed were calculated based 

on pixels, which is equal to the value of multiplying the DOD data by the area of each pixel (i.e., 

100 m2). The riverbed changes including sediment deposition and erosion in each river mile of the 

Mississippi mainstem were also estimated.  

3.3. RESULTS 

3.3.1. River flow conditions  

The average daily discharge at Tarbert Landing (TBL) and outflow channel (OC) during 

2004-2013 were 14,652 and 4657 cubic meter per second (cms), respectively (Figure 3.2). 

Therefore, the average daily discharge upstream of the ORCS (UP) was 19,310 cms, i.e. the sum 

of discharge at TBL and OC. The ratio of discharge between the OC and the total discharge 

upstream of the ORCS varied from 6% to 38% with the average value of 24%. The ratio varied 

largely during low flow (i.e., 6% - 38%) (Figure 3.3). However, the ratio variation gradually 

decreased with the increasing discharge upstream of the diversion. The ratio varied between 20% 

and 30% when the upstream discharge was 35,000 cms.  

Extremely dry and wet years occurred during 2004-2013. For example, the year of 2006 

and 2012 were dry years with a peak discharge of 20,813 and 23,701 cms, respectively, i.e. only 

marginally above the average discharge of 19,310 cms. On the contrary, the year of 2008 and 2011 

were wet years with peak discharge at 41,228 and 45,845 cms, respectively. The appearance of 

extremely dry and wet years during the period allows us to better understand bed material load 

during different flow conditions.  
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Figure 3.2. Water discharge at the outflow channel and Tarbert Landing during 2004-2013. The 

total discharge upstream of the ORCS was calculated by summing the discharge at these two 

stations. The ratio is the discharge at outflow channel divided by the total upstream discharge. 

The average discharge at TBL and outflow channel was 14,652 and 4657 cubic meter per 

second. The average water diversion rate was 24%.   
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Figure 3.3. The correlation between total discharge upstream of the Mississippi-Atchafalaya 

River diversion and the diverted water ratio by the Old River Control Structure during 2004-

2013. 

3.3.2. Bed material loads upstream of the diversion 

Daily bed material load (BML) ranged from less than 100 metric tons to over 500,000 

metric tons per day at the cross-section upstream of diversion. The average daily BML at Site 1 

was 55,239 during 2004-2013. Annual BML also varied largely at Site 1 (Figure 3.4). The 

maximum bed material load occurred in 2011 when 32.3 MT bed material transported across the 

cross-section of Site 1. However, only 10.3 MT bed material transported across the cross section 

in 2006. The total and annual average BML at Site 1 was 201 and 20.1 MT during 2004-2013.  
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Figure 3.4. Estimated annual bed material loads in million metric tons (MT) upstream of the 

Mississippi-Atchafalaya River diversion (Site 1) between 2004 and 2013, with an average of 21.5 

MT.  

 

3.3.3. Bed material loads in the diversion channels 

The maximum daily BML at Sites 2 and 3 were 280,000 and 181,553 metric tons, 

respectively. The average daily BML at Sites 2 and 3 were 40,193 and 11,882 metric tons, 

respectively. The annual BML downstream of the diversion at Site 2 averaged 14.1 MT, ranging 

between 7.5 and 21.7 MT during 2004-2013 (Figure 3.5). The minimum and maximum annual 

BML occurred in 2006 and 2011, corresponding with the annual discharge. For the diversion 

Outflow Channel (i.e., Site 3), the annual BML showed a fluctuation from 1.1 (2007) to 10.4 (2011) 

MT. The total BML transported across Sites 2 and 3 were 141 and 42 MT, respectively.  

In terms of BML ratio between two outlets and the upstream channel, about 64% and 24% 

of BML exported from site 2 and 3 on average, respectively. However, the BML ratio at site 3 had 

significantly greater fluctuation (i.e., 10% - 40%)  than that at site 2 (i.e., 54% - 70%) (Figure 3.5). 
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In 2011, the BML across Site 3 accounted for 40% of the BML at site 1.  

 

 

Figure 3.5. Estimated bed material loads in million metric tons (MT) during 2004-2013 

downstream of the Mississippi-Atchafalaya River diversion (Site 2) and at the end of the diversion 

outflow channel (Site 3). The ratio is the BML ratio between outflow channel (Site 3) and upstream 

of the diversion (Site 1).  

 

3.3.4. Erosion and deposition in the Outflow channel and mainstem channel  

Riverbed elevation changes show that the channel bed near the ORCS mainly aggraded 

during 2004-2013, especially in the Mississippi mainstem (Figure 3.6). Erosion mainly occurred 

in the outflow channel, especially downstream of the Lowsill structure. In terms of volume changes 

of riverbed sediment, the largest deposition occurred in the sub-reach of RK 513 (i.e., 3.3× 106 

m3 ), while the largest erosion occurred in the sub-reach of out01 (i.e., -4.5 × 106 m3) (Figure 

3.7&Table 3.2). In the mainstem, only two sub-reaches (i.e., RK 504 and 497) were slightly 

sourced. The six sub-reaches between RK 510 and 502 are located between Site 1 and 2 which 
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was used later in the estimation of the bed material load budget. Overall, sediment volume changes 

of channel bed in the mainstem between site 1 and 2 (Δ1) and outflow channel (Δ2) are 3.1 × 106 

and -5.0 × 106 m3, respectively. They are equivalent 4.4 × 106 and -7.0 × 106 metric tons sediment 

assuming the bulk density of bed sediment is 1.4 metric ton per cubic meter.  

 

Figure 3.6. Riverbed elevation changes at the Old River Control Structures between 2004 and 

2013. Deposition mainly occurred in the Mississippi main channel, while erosion mainly 

occurred in the outflow channel, especially downstream of the Lowsill structure.   
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Figure 3.7. Volume changes and cumulative volume of the riverbed materials in the Mississippi 

mainstem between 2004 and 2013. The mainstem was divided into fourteen sub-reaches based 

on river mile. HS, LS, and AS indicates, respectively, where the Hydroelectric power station, 

Lowsill Structure, and Auxiliary Structure.    

  



 

56 

 

Table 3.2. Estimated riverbed deformation (deposition and erosion) in the study river reach 

during 2004-2013. The mass was calculated assuming the bulk density is 1.4 metric ton per cubic 

meter for the bed material. Sub-reaches RK 510 – 502 are located between Site 1 and 2. The net 

volume changes in riverbed sediment were set to Δ1 in this reach. Δ2 indicates the net volume 

changes in riverbed sediment of the outflow channel.  

 

km 

Riverbed volume changes (×106 m3) 

Net mass changes(MT) Sub-reach 
Erosion Deposition Net volume changes 

 

 

 

 

 

 

 

Mainstem 

515 0.6 0.7 0.1 0.2 

513 0.2 3.5 3.3 4.0 

512 0.3 1.4 1.1 1.3 

5101 0.5 0.6 0.1 0.1 

509 0.3 1.4 1.2 1.4 

5072 0.7 1.0 0.4 0.5 

505 0.3 0.6 0.3 0.3 

504 1.0 0.9 -0.1 -0.1 

5023 0.6 1.8 1.2 1.5 

501 0.1 1.4 1.3 1.6 

499 0.2 0.9 0.7 0.9 

497 0.5 0.4 -0.1 -0.2 

496 0.3 0.7 0.4 0.5 

494 0.3 0.6 0.3 0.3 

Outflow out01 4.9 0.4 -4.5 -5.4 

 out02 1.6 1.1 -0.5 -0.6 

 Sum-main (Δ1) 3.3 6.5 3.1 3.7 

 Sum-out (Δ2) 6.5 1.5 -5.0 -6.0 

 Sum-total 12.2 17.5 5.3 6.3 
1, 2, 3 bifurcation node at the 1Hydroelectric station; 2Lowsill Structure; 3Auxiliary Structure.  

 

3.4. DISCUSSION 

3.4.1. Bed material load distribution at the ORCS 

With the estimated total bed material load input/output of the reach and the volume changes 

of the riverbed sediment, we could assess the sediment budget of the reach between 2004 and 2013. 

A sediment budget equation was developed for the reach. 

Δ1+Δ2 = ΔBML + ΔD = (BML1 -BML2 – BML3) + ΔD  (3.4) 
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where Δ1 and Δ2 are volume changes in riverbed sediment in the mainstem (before the diversion 

structures) and outflow channel during 2004 and 2013 (Table 3.3). ΔBML is the net changes of bed 

material load of the reach, which is equal to the difference between the BML input from the 

upstream of the ORCS (BML1) and output at Site 2 (BML2) and Site 3(BML3). ΔD is the dredging 

amount in the mainstem before the diversion structures.  

The total BML3 during 2004-2013 was 42 MT (Figure 3.8). In fact, part of  the BML3 came 

from bed erosion of the Outflow Channel based on the DEM analysis (i.e., 6 MT). Therefore, the 

BML diverted to the Outflow Channel at the bifurcation node should be 36 MT (i.e., 42 MT – 6 

MT), which accounted for 18% of the input BML at Site 1 (i.e., 201 MT). As mentioned before, 

the average ratio of the diverted water was 24% during 2004-2013. Therefore, the total diverted 

BML was disproportionately lower than the diverted water amount. It is well known that one of 

the two flow paths at a bifurcation will enlarge if its sediment transport capacity exceeds the 

sediment supply to it (Pittaluga et al., 2015). At the Mississippi-Atchafalaya River diversion, 24% 

diverted discharge only delivered 18% of BML which could cause bed erosion at the Outflow 

Channel. This is well consistent with the observed bed erosion and channel enlargement in the 

Outflow Channel (Figure 3.6). 

 Two factors could cause the occurrence of unproportioned lower bed material transport 

into the Outflow Channel. Firstly, the bifurcation node of the Hydroelectric Station is in outer bend 

of the channel (Figure 3.8). Helical flow may direct bedload sediment transporting towards the 

inner bend. As a result, more water flows into the Outflow Channel instead of bedload sediment. 

Secondly, although the Auxiliary structure is in the convex bank which is in favor of coarse 

sediment intake, the diversion angle is about 120° (Figure 3.8). The research from Bulle (1926) 

found that an increase in diversion angle results in an increase of bedload staying in the main 
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channel and a diversion angle of 120° has the maximum capacity of keeping bedload. This 

indicates that the design of the Auxiliary structure diversion angle is not favorable to the bedload 

intake. Even if bedload is diverted into the Outflow Channel, sediment could be deposited in a 

separation zone at the inlet of the bifurcated channel. Dutta, Wang, Tassi, and Garcia (2017) 

reported the width of a flow separation zone in the Outflow Channel increases with an increasing 

diversion angle. The region below the flow separation zone has relatively low shear stress and 

sediment entering this zone tends to be deposited. With 120° diversion angle, the separation zone 

after the Auxiliary structure could be very large and cause severe sediment deposition. Therefore, 

overall, the configuration of the Auxiliary structure is not beneficial for bedload transport through 

it. The riverbed DEM in 2013 shows scoured channel downstream of the Hydroelectric station and 

aggraded channel before the Auxiliary Structure. This is coincident with the theoretical analysis. 

The Lowsill structure may have the relative maximum efficiency in transporting BML through the 

Outflow Channel among the three diverted channels based on its location. The field measurements 

from the USACE do found that more bed load moved through the Outflow Channel when the 

Lowsill Structure was opened (Heath et al., 2015). However, a near 90° diversion angle is still not 

an optimal angle for bedload transport (Dutta et al., 2017).  



 

59 

 

 

Figure 3.8. Riverbed elevation at the Mississippi-Atchafalaya River diversion in 2013. The 

reference datum is NAVD 88. The numbers in the Mississippi River main channel indicate river 

kilometers from the river’s mouth at the Gulf of Mexico. 

 

Downstream of the diversion, 165 MT BML should be transported across Site 2 (201 MT 

– 36 MT) based on our estimation of BML at Sites 1 and 3. However, our calculation based on 

Yang’s formula shows that only 142 MT BML moved across Site 2, suggesting deposition of 23 

MT sediment in the reach between RK 510 and 502. Our bathymetric analysis found only 4.4 MT 

increase in riverbed sediment of the reach. According to the record of the USACE (USACE, 2018), 

the reach was dredged, and the total amount of dredged was about 2.3 × 106 m3, which is 

equivalent to 3.2 MT sediment.  Considering the amount of deposited and dredged sediment, 15.4 

MT (i.e., 23 – 4.4 – 3.2 MT) difference between the estimated BML budget and observed riverbed 

deformation were unaccounted for. Possible causes for the discrepancy could include unaccounted 

sediment deposition on the floodplain during high flows, estimation error owing to the 
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determination of the parameters (i.e., bed slope, grain size), and bed material load formula. This 

will be further discussed in the below section. 

 

 

Figure 3.9. Total bed material load fluxes in million tons (MT) at the ORCS for the period from 

2004 to 2013. The Lowsill structure was assumed diverting all the BML to the Outflow Channel. 

The routing number of the BML at the bifurcation (underlined number) was estimated based on 

estimated BML at Sites 1, 2, and 3 and bathymetric analysis of the riverbed volume changes 

(boxed number). 

 

3.4.2. Flow effects on bed material load  

To determine bed material load during different flow conditions, BML curves were plotted 

with corresponding water discharge (Figure 3.10). The relations show that the BML at the three 

sites is well expressed by second-order polynomial equations. The National Oceanic and 

Atmospheric Administration (NOAA) used the river stage at Red River Landing (Figure 3.1) to 

forecast river flood for the Lowermost Mississippi River region. The river stage at this station is 

divided into five ranges: low flow, action flow, intermediate flow, high flow, and peak flow, which 
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were related by Rosen and Xu (2014) to the discharge at Tarbert Landing , respectively, <13,000 

cms, 13,000-18,000 cms, 18,000-25,000 cms, 25,000-32,000 cms, and >32,000 cms. The 

discharge ranges at Sites 1 and 3 were determined based on the ranges at Site 2. The amount of 

BML was estimated under each discharge range at the three sites (Table 3.3). 

From 2004 to 2013, days with the intermediate flow (i.e., 18,000-25,000 cms) in the 

Mississippi mainstem made approximately 20% of the entire period, but they transported 33% of 

the total BML at Sites 1 and 2. Days with low flow stage accounted for about 50% of all time, but 

they only transported ~20% of the total BML. Unlike in the mainstem, 29% of the total BML was 

transported during the peak flow time, which accounted for only 5% of the entire study period. 

The amount of transported sediment was also high during the intermediate (27%) and high flows 

(15%). indicating the critical role of the diversion control in bed material transport down to the 

Atchafalaya River.  

Previous studies found that the entrance channel to the Auxiliary Structure trapped a 

significant portion of the diverted sediment, particularly during floods (Heath et al., 2015). The 

relationship of discharge and bed material transport indicates that diversion gates should be opened 

as many as possible during peak flow for diverting as much as coarse sediment into the Outflow 

Channel. However, during intermediate flow, the diversion gates could be optionally closed to 

maximum the coarse sediment transport in the Mississippi mainstem for reducing sediment 

deposition.   
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Figure 3.10. The relationship between discharge and bed material load at the three sites near the 

Mississippi-Atchafalaya River diversion.   
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Figure 3.11. The relationship between bed material loads and discharge ranges at the upstream 

(site 1) and bifurcated downstream sites (sites 2 and 3) near the controlled Mississippi-

Atchafalaya River diversion. The discharge ranges were determined based on the U.S. National 

Oceanic and Atmospheric Administration’s (NOAA) flow stages at Red River Landing (i.e., low, 

action, intermediate, high, and peak).  
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Table 3.3. The relationship between bed material loads and discharge ranges at the upstream site 

(site 1) and downstream sites (Sites 2 and 3) near the controlled Mississippi-Atchafalaya River 

diversion. The discharge ranges were determined based on the U.S. National Oceanic and 

Atmospheric Administration’s (NOAA) flow stages at Red River Landing (i.e., low, action, 

intermediate, high, and peak). 

Site Discharge ranges (cms) BML (MT) BML% Days Days% 

1 18,000 35.3 16% 1900 52% 

  18,000-25,000 43.7 20% 740 20% 

  25,000-35,000 76.7 36% 740 20% 

  35,000-42,000 26.3 12% 160 4% 

  42,000 32.8 15% 108 3% 

2 13,000 21.5 16% 1818 50% 

  13,000-18,000 22.2 16% 683 19% 

  18,000-25,000 49.0 36% 794 22% 

  25,000-32,000 25.4 19% 248 7% 

  32,000 18.1 13% 110 3% 

3 4,000 7.4 14% 1807 49% 

  4,000-5,600 7.3 13% 737 20% 

  5,600-8,300 14.7 27% 747 20% 

  8,300-9,500 8.4 15% 174 5% 

  9,500 16.6 31% 188 5% 

 

3.4.3. Comparison of estimated BML with USACE’s measurements   

As mentioned before, there is a difference of 15.4 MT of riverbed sediment between the 

two estimates based on hydrodynamic approach and channel morphological approach. To assess 

possible estimation errors from the two different approaches, we compared the estimated BML 

using Yang’s formula with BML measurements reported by the USACE. Although the 

measurements were conducted in 2010, 2011, and 2016, the data were rather limited because only 

ten field trips were made (Heath et al., 2015; Jones et al., 2018). During each trip water and 

sediment fluxes were determined using acoustic Doppler current profiling (ADCP) and multibeam 

sounds. Several measured BMLs in 2010 and 2011 were given for Sites 1 and 2 . For the outflow 

channel, four BML values in 2010, 2011 and 2016 were reported at a location approximately 3700 

m upstream of our Site 3 in this study. A t-test was run to decide the difference between means of 

measured and estimated BML.  
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  Results show that overall,  our estimates of BML using Yang’s formula is consistent with 

the measurements by the USACE at Sites 1 and 3 (Figure 3.12). P-values indicate that there is no 

statistically significant difference between the two groups of data at these two sites. However, at 

Site 2, our BML estimates were significantly lower than the USACE reported BML when the 

discharge was greater than 18,000 cms.  

 

Figure 3.12. Comparison between estimated bed material load using Yang’s formula and 

measured BML by the U.S. Army Corps of Engineers at three sites near the Mississippi-

Atchafalaya River diversion.   
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Table 3.4. A t-test between BML estimates of this study (Present) and the measurements by the 

U.S. Army Corps of Engineers (USACE).  

Site  Group N Mean Std Dev Min Max P-value 

1 USACE 7 179,605 163,759 10,746 371,160 0.8414  
Present 7 159,852 178,325 30,685 529,053 

2 USACE 5 114,441 129,192 14,593 309,343 0.0072  
Present 5 45,747 24,598 22,151 83,692 

3 USACE 4 93,057 31,610 61,065 136,550 0.1679  
Present 4 131,982 78,777 60,153 243,308 

 

Theoretically, such discrepancy between our estimates and the USACE measurements 

could occur when the water slope was underestimated during the high flow. Because there is no 

gauging station immediately upstream of the ORCS, it is difficult to estimate water slope changes 

upstream and downstream of the ORCS during high flow. It is possible that with the higher 

diversion of water into the Outflow channel during high flow, the water-energy slope can be 

increased significantly immediately downstream of the diversion at Site 2. The lower BML 

estimates during high flow at Site 2 may have resulted from a possible underestimation of the total 

BML across Site 2 during 2004-2013, which might have been the main reason for the 15.4 MT 

sediment that was uncounted for. Other errors may also exist such as those incurred in 

morphological estimation as well as in field measurements. Because the comparison is based on a 

very limited number of field measurements, a solid conclusion cannot be drawn and we suggest 

conduct further field measurements in the future.    

 

3.4.4. Implications   

Although channel aggradation has been widely reported downstream of river diversions 

(Baker, Bledsoe, Albano, & Poff, 2011; Caskey et al., 2015; Gaeuman, Schmidt, & Wilcock, 2005), 

studies on bed material transport at diversions are very limited, resulting in scarcity of field 



 

67 

 

measurements of bed material load transport. In our knowledge, both field measurements and 

modeling estimations of BML are even rarer for engineering-controlled diversions. The 

complexity of the flow and sediment distribution and the difficulty of BML measurements are the 

main reasons for the rare calculations. Our study demonstrates that it is possible to quantitatively 

estimate BML distribution at an engineering-controlled river diversion using a simple, well-

established bed material transport model. The approach of this study can be useful for investigation 

on bed material load transport and stability of other controlled river diversions in the world.   

It has been debated whether the ORCS has been diverting proportional sediment from the 

Mississippi into the Atchafalaya. Our finding - BML from the Outflow Channel is lower than its 

diverted water ratio - is further proof that, proportionally, more bed materials are transported 

downstream from the diversion location in the Mississippi channel, providing the foundation for 

downstream aggradation. This  may have a long-term effect on the stability of the diversion. First, 

the less input BML would continue to scour the bed of the Outflow Channel, further increasing its 

gradient to the Mississippi main channel. Second, the excess sediment deposited in the mainstem 

downstream can further reduce the flow capacity of the channel, creating backwater conditions 

when the river flow is high. Furthermore, a recent study (Wang & Xu, 2018b) found that there is 

a large quantity of sands stored immediately upstream of the ORCS, the mobilization of which 

could make the situation even worse. All these factors together can increase the risk of a sudden 

river avulsion under a megaflood. 

3.5. CONCLUSIONS 

 This study assessed riverbed material fluxes at an engineering-controlled bifurcation of one 

of the world’s largest alluvial rivers, the Mississippi-Atchafalaya River diversion in south 

Louisiana, USA. Our study found a total bed material load of 201 million metric tons (MT) that 
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moved from upstream of the diversion during a 10-year period from 2004 to 2013. Approximately 

36 MT (i.e., 18%) of the mobilized bed material was diverted into the Atchafalaya mainly through 

two bifurcation nodes, leaving 82% of the bed material in the Mississippi mainstem. These 

findings demonstrate that, proportionally, fewer bed materials moved into the Atchafalaya under 

the current 24% flow diversion. Severe bed scouring occurred in the controlled Outflow Channel, 

while aggradation in the Mississippi mainstream was widely present, implying reduced flow 

capacity and potential risk of high backwater under megafloods.  

Furthermore, our study shows that Yang’s classic sediment transport equation provides 

plausible results of bed material fluxes for a highly complicated river diversion, and that 

integration of the bed material transport equation and channel morphological assessment is a viable 

approach to investigate sediment dynamics at controlled river bifurcations.  
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CHAPTER 4. FLOOD EFFECTS ON MORPHOLOGY AND MIGRATION 

OF THE CONFLUENCE BAR OF TWO ALLUVIAL RIVERS ON THE 

MISSISSIPPI VALLEY LOESS PLAINS, USA 

4.1. INTRODUCTION 

River confluences are important locations in alluvial river networks, which can 

significantly influence channel morphology, migration, and avulsion (Best, 1986; Mosley, 1976). 

Over the past several decades, flow structure, sediment dynamics, and bed morphology at the river 

confluences have been extensively studied  in laboratory experiments, theoretical analyses, and 

modeling simulations (Ashmore and Parker, 1983; Best, 1986; Best, 1988; Biron et al., 1993; 

Booker et al., 2001; Boyer et al., 2006; Bradbrook et al., 2000; Sukhodolov et al., 2017). In 

addition, morphodynamics of channel and planform around the confluence areas have also been 

assessed (Benda et al., 2004; de Morais et al., 2016; Gutierrez et al., 2014). However, less attention 

has been paid to the migration of river confluence bars as affected by floods.   

In a recent study on the planform morphodynamics of large river confluences over decadal 

timescales, Dixon et al. (2018) found that confluence migrations would be much higher and more 

common than previously assumed. For example, in the Ganges-Brahmaputra-Meghna basin, more 

than 80% of large confluences were mobile over the past 40 years. Dixon et al. (2018) postulated 

that high river discharge, large sediment loading, and low cohesive bank strength mostly 

contributed to the high rates of confluence migration. They also divided confluence into three 

categories which are fixed, pinned, and upstream adjustment confluence based on confluence 

migration. Although their study demonstrated that confluence migration is ubiquitous, the remote 

sensing images they used with the relative coarse temporal solution were unable to explain how 

the migration proceeded under different flow conditions and especially during floods.  
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A river confluence is typically composed of a confluence mouth bar, a separation zone bar, 

a downstream scour zone, and a mid-channel bar in the post-confluence channel (Best, 1986; 

Mosley, 1976). As a critical element for confluence migration, morphologic changes of the 

confluence mouth bars have not thoroughly studied in the past. Investigation of the confluence 

mouth bars can not only improve the scientific understanding of confluence migration under 

different flow conditions but also can have practical relevance for assessing hazard risk for 

downstream engineering structures such as bridges and roads. In South Louisiana of the United 

States, for instance, a 70-m long bridge crosses the Amite River downstream near the confluence 

of its confluence with the Comite River. The two rivers are both alluvial rivers on the Mississippi 

Valley Loess Plain, carrying considerably high sand loads during floods. There is a concern over 

the migration of the confluence bar, which could possess a direct threat to the safety of the bridge. 

Understanding flood effects on and predicting confluence bar migration can help develop 

engineering solutions to mitigate potential hazards to the bridge and human lives.    

Traditional field measurements, as well as remote sensing assessments of river 

confluences, often do not offer sufficient time resolution that is needed to quantify flood effects 

on confluence bar migration. On one hand, field surveys of rivers can be very time-consuming and 

costly, prohibiting frequent field data collection for morphological assessment. On the other hand, 

remotely sensed data and/or aerial images often do not capture the timespans of river floods. It is 

only with recent advances in terrestrial laser scanning, which allows detailed and rapid assessment 

of river channel morphological changes following flood events.  

This study takes advantage of remote sensing and terrestrial laser scanning techniques to 

investigate longer-term and flood-event effects on river confluence bar migration and morphology. 

The study was conducted at a confluence of two alluvial rivers on the Mississippi Valley Loess 
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Plain in south Louisiana, USA. Specifically, the study aimed to accomplish the following 

objectives: (1) characterize decadal-scale confluence migration by using a series of remote sensing 

images taken between 2002 and 2017, (2) estimate the correlation between confluence migration 

rate and flood days during five different periods from 2002 to 2017, (3) conduct field 

measurements on morphologic changes of the confluence before and after three floods with 

different magnitudes by using a Terrestrial Laser Scanner, (4) estimate the morphologic changes 

of the confluence mouth bar, including its projected surface area and volume before and after each 

flood.  

4.2. MATERIALS AND METHODS 

4.2.1. Study area 

The Amite River is a 188-km long coastal alluvial river in southeastern Louisiana with its 

headwater in Mississippi and emptying into Lake Maurepas (Fig. 4.1). The drainage basin of the 

Amite River is approximately 4800 km2. About 58% of the total area is covered by forests (Wu 

and Xu, 2007). The Comite River is a right bank tributary of the Amite River, with a confluence 

near the city of Denham Springs, Louisiana (Fig. 4.1). The width of the two rivers is similar (i.e., 

about 30 m). The junction angle between the two rivers is about 60°. Upstream of the river 

confluence, the floodplain of the Amite River had been intensively mined for sand and gravel since 

the early 1970s (Hood et al., 2007; Mossa and McLean, 1997). There are no gauging stations 

currently available to monitor sediment concentrations of these two rivers upstream of the 

confluence. However, long-term average total suspended sediment (TSS) downstream of the 

confluence near Port Vincent (Fig. 4.1) was 46 mg L-1 between 1978 and 2001(Wu and Xu, 2007).  
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Fig. 4.1. Amite River Basin (Left), the river confluence of the Amite River and Comite River 

(Right). The background remote sensing image was taken in 2016. Source: Google Earth Pro. 

Terrestrial Laser Scanner was placed on the river bank underneath the bridge. The USGS gauging 

station near Denham Springs was located on the edge of the bridge.  

 

Currently, there are four gauging stations operated by the U.S. Geological Survey on these 

two rivers down- and upstream of the confluence (Fig. 4.1a). These gauging stations supply long-

term daily discharge and river stage data except the station at Magnolia only measuring river stage. 

The long-term daily discharge averaged 59 m3 s-1 at Denham Springs station (Wu and Xu, 2007).  

4.2.2. Data and Methods 

To characterize long-term morphologic changes of the river confluence, six remote sensing 

images, taken between Feb 28, 2002, and Nov 13, 2017, were downloaded from Google Earth Pro 

(Table 4.1 & Fig. 4.2). The time intervals between every two images are from 2 to 5 years. In 

ArcGIS 10.3 (ESRI, Redlands, California, USA), all downloaded images were firstly 
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georeferenced using the same control points. Secondly, the river confluence boundary was 

digitized in each image. In this step, we only traced the boundary of the vegetated area which could 

minimize the effects of different river stages on bar surface area estimation. Thirdly, the surface 

area of vegetated mouth bar was estimated during different periods. 

Table 4.1. Remote sensing images downloaded from Google Earth Pro to characterize long-term 

morphologic changes of the Amite River and Comite River confluence.   

Image Date Stage (m) Image Date Stage (m) 

2/28/2002 3.31 10/28/2010 2.87 

6/15/2005 3.25 8/26/2015 3.09 

7/22/2007 3.21 11/13/2017 3.28 

  

 

Fig. 4.2. Remote sensing images show morphologic changes of the Amite River and Comite River 

confluence between 2002 and 2017. The old highway bridge was removed and a new one was built 

around 2010.   

 

Daily discharge and river stage data between January 2002 and December 2017 were 

obtained from the gauging station at Magnolia (ID# 07377300), near Comite (ID# 07378000), and 

Denham Springs (ID# 07378500). The average river stage at Denham Spring was 3.84 m during 

2002-2017. The flood stage and major flood stage at the station are 8.84 m and 11.88 m, 



 

74 

 

respectively, according to the stage classification by the National Oceanic and Atmospheric 

Administration (NOAA). The NOAA defines the flood stage as river stage for a specific location 

at which a rise in water surface level starts to produce a hazard to lives, property, or commerce. At 

Denham Springs, flooding will begin in the westernmost parts of Denham Springs when the river 

reaches flood stage. In this study, we define the floods with a stage between NOAA flood stage 

and major flood stage as moderate floods. Flood days above the flood stage at Denham Springs 

were counted for five different periods between 2002 and 2017 according to the daily river stage 

data. The correlation between the surface area change of the confluence mouth bar and the flood 

days during each period was then estimated.   

Weibull exceedance probabilities and return period of the daily river stage were calculated 

based on the daily stage data at Denham Springs. Discharge ratio between the Comite and Amite 

river was calculated using the daily discharge data near Comite and Denham Springs.  

 

Fig. 4.3. River stage data at Denham Spring gauging station (ID# 07378500) between 2002 and 

2017. Flood stage and major flood stage are 8.84 m (dash orange line) and 11.88 m (orange line) 

at this station according to the National Oceanic and Atmospheric Administration. 
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To assess rapid morphologic changes of the river confluence, the confluence was scanned 

four times in 2017 by a Riegl VZ-1000 terrestrial laser scanner (Fig. 4.4). The river had similar 

low river stages during these scans (i.e., from 3.26 m to 3.30 m). The first two field surveys 

occurred before and after a small single peak flood in March. The third survey was conducted after 

a relatively large single peak flood in April. In September, the confluence was measured again 

after a multi-peak flood occurred between April and September.  

 

Fig. 4.4. Dates and corresponding river stages of the terrestrial laser scanning at the river 

confluence between March 2017 and September 2017. Floods 1 and 2 are characterized as single 

peak floods, while flood 3 is characterized as a multi-peak flood (i.e., peaks a-o). 

 

The scanner was placed in the same place each time, i.e., right bank of the river under the 

bridge. The position had an excellent view to scan the confluence mouth bar (Fig. 4.1). The scanner 

provides a measurement range up to 1400 m with 5 mm repeatability and 8 mm accuracy. A camera 

(Nikon D810) mounted on the scanner was used to take photos for facilitating visualization and 
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interpretation of the laser data. Five Riegl flat 5-cm reflector were stuck to the bridge piers. They 

were finely scanned during each field survey and used for data post-processing.  

The raw cloud point data from the four field scans were processed in RiSCAN PRO 

software (RIEGL, Horn, Austria). They were firstly registered using the five reflectors. 

Registration error was less than 3 mm ensuring the high-accuracy change detection of the 

confluence morphology. Registered point cloud data was then filtered into a smaller point cloud 

to most likely represent the bare-earth topography. This process contained three steps. Firstly, a 

vertical reference plane at 3.30-meter-high water surface was established. This was the highest 

river stage during the four scans. Secondly, we used the height filter to delete the noise points 

below the reference plane which are mainly objects reflected from the water (i.e., river bank and 

trees). The points located higher than 2 m above the reference plane were also filtered because 

they are mainly trees. Thirdly, only the last return of the remaining point data was kept for 

removing the impact of other vegetation. The filtered point cloud data were finally gridded to 0.5 

m × 0.5 m digital elevation models (DEMs). The holes within the DEMs were closed by setting a 

larger grid size.  

The volume of the mouth bar above the 3.30 m reference plane was estimated for each 

DEM. Here we used “using existing surface” method to calculate the bar volume. This method 

calculates the volume between the bar surface and the reference plane (i.e., 3.30 m water surface). 

In addition, the cumulative volume of the bar between the reference plane and the bar top was 

calculated at 0.1 m intervals. Instead of comparing specific profiles of the bar surface pre- and 

post-floods, we estimated bar surface change (i.e., deposition and erosion) on the whole bar surface 

using “surface comparison” function.   
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4.3. RESULTS 

4.3.1. Long-term morphologic changes of the Amite-Comite confluence 

The river confluence showed significantly morphologic changes from 2002 to 2017 (Fig. 

4.5). For the confluence channel, deposition occurred on the right bank causing the river channel 

to narrow to about 28 m. On the contrary, the left bank eroded about 36 m. In addition, the junction 

angle between two river channels changed from ~90° to ~60° (Fig. 4.2). For the confluence mouth 

bar, it gradually migrated downstream between 2002 and 2017. In total, its bar front migrated 

about 55 m in the past 16 years which is equivalent to 3.4 m downstream migration every year. 

The migration was mainly caused by the growth of its left edge, while the position of its right edge 

only slightly changed.  

 

Fig. 4.5. Morphologic changes of the confluence between 2002 and 2017. The lines depict the 

boundaries of the vegetated area of the river confluence channels. The confluence angle changed 

from ~90° to ~60° from 2002 to 2017. 
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The average annual increase in the surface area of the confluence mouth bar shows that the 

bar migration rate varied largely during different periods from 2002 to 2017 (Fig. 4.6). The rate 

was close to 600 m2/year from 2002 to 2004. Then it dropped to 230 m2/year in 2005. After that, 

it increased slightly to near 300 m2/year from 2005 to 2014. However, there was no significant 

increase in the vegetated surface area of the mouth bar during 2015-2017 (i.e., 77 m2/year). This 

is also shown in Fig. 5 where the bar boundaries in 2015 and 2017 nearly overlap.   

The regression R-square between the total increased surface area of the confluence mouth 

bar and the flood days is low during five different periods between 2002 and 2017 (i.e., r2 = 0.16, 

Fig. 4.7). However, it shows a significant positive correlation if the data during 2015-2017 were 

excluded (i.e., r2 = 0.96).  

 

Fig. 4.6. The average annual increase of the vegetated area of the confluence mouth bar between 

2002 and 2017.  
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Fig. 4.7. Correlation between the total surface area change of the confluence mouth bar and the 

flood days (river stage above the flood stage at Denham Springs gauging station) during different 

periods between 2002 and 2017 (left). The same correlation if the data during 2015-2017 was 

excluded (right).    

4.3.2. Short-term morphologic changes of the river confluence 

4.3.2.1. Hydrologic analysis 

Long-term daily river stage averaged 3.87 m at the river confluence. Flood 1 occurred on 

Mar 25 with a similar stage to the average stage of the river (i.e., 3.77 m vs. 3.87 m) (Fig. 4.4).  

Flood 2 occurred on April 5 with a peak stage at 8.72 m, which was the flood with 0.7-year 

recurrence interval. Flood 3 occurred between April and September including fifteen small flow 

pulses (events usually occurs more than one times per year) with the peak stages between 4.69 m 

(flood c) and 7.72 m (flood d). The relatively larger floods, such as floods b, d, f, and o had one-

month to three-month recurrence intervals.  Long-term discharge ratio between Comite River and 

Amite River was 0.29 during 2002-2017. The ratio increased from 0.16 between Mar 22 and Apr 

28 to 0.37 between Apr 29 and Sep 15. The bar top is about 2 m higher than the low river stage 

(i.e., 3.30m). Therefore, the bar is entirely inundated when the stage reaches above 5.30 m.  
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Fig. 4.8. Daily exceedance probability of the river stage (left). Daily river stage recurrence interval 

(yr) (right).  

 

 

Fig. 4.9. Daily discharge ratio between Comite River and Amite River.  
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4.3.2.2. Morphologic changes of the river confluence bar from March to September  

Generated DEMs data represent the bar head and edge very well, while most of the bar top 

was filtered owning to the dense vegetation coverage (Fig. 4.10a-d). Overall, the confluence mouth 

bar is highly dynamic from March to September in 2017. Before and after flood 1, there was little 

boundary change of the bar (Fig. 4.10e), and its projected surface area had little change (i.e., 1%, 

Table 4.2). On its left edge, 24 m3 sediment was deposited (Fig. 4.11b), although 3 m3 sediment 

was flushed away on the right edge (Fig. 4.11a&d). The erosion and deposition mainly occurred 

in the lower part of the bar, i.e., between 5 cm and 20 cm height interval (Fig. 4.11c). The total bar 

volume increased from 202 m3 to 223 m3 or 10% after the first flood (Table 4.2).  
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Fig. 4.10. Morphologic changes of the confluence mouth bar from Mar 22 to Sep 15, 2017 (a – 

d). The DEMs data were shown in orthographic view and natural color. The unit in the images is 

meter. (e) changes of the bar boundaries. (f) front view of the bar during each field scan, which 

was taken by the mounted camera.  
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Fig. 4.11. Changes of cumulative bar volume on the right edge, left edge and the whole bar after 

different intensities of floods (a-c). The bar volume was calculated based on a 0.1 m height 

interval. The reference plane is the 3.30-m river stage. Morphologic changes of the confluence 

mouth bar (d-f). 

 

Table 4.2. Surface area and volume changes of the confluence mouth bar between March 22, 

2017, and September 15, 2017. The bar volume was the emerged portion between the bar surface 

and the referenced plane at 3.30 m water surface.  

Date Projected bar 

surface area 

(m2) 

Area 

increase  

Cumulative 

surface area 

increase  

Bar 

volume 

(m3)  

Volume 

increase 

Cumulative 

volume 

increase 

22-Mar 320 - - 202 - - 

29-Mar 322 1% 1% 223 10% 10% 

28-Apr 689 114% 115% 375 68% 86% 

15-Sep 701 2% 119% 501 34% 148% 
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Following the second flood, the most significant change of the confluence bar was the 

extension of its left edge. It laterally spread about four meters and elongated over 20 meters 

upstream. As a consequence, the projected surface area of the bar was more than double its 

previous area (i.e., from 322 m2 to 689 m2, Table 4.2, Fig. 4.10e). Erosion was observed in the 

left-margin area of the bar head. Bar volume increased about 154 m3 on this side, which was mainly 

caused by the sediment deposited below the 0.7 m height interval (Fig. 4.11b). Different from the 

previous observation, the right edge gained sediment at each height interval causing about 20 m3 

volume increase, although its upstream part was partially eroded (Fig. 4.11a). Overall, the volume 

of the whole bar increased from 223 m3 to 375 m3 or 68% (Table 4.2).  

During the third flood, sedimentation continued on the left edge causing one to two meters 

lateral spreading. In addition, bar head elongated about 6 m downstream. However, the projected 

surface area of the bar increased only 2%, which was mainly induced by the erosion on the left 

upstream edge. Severe erosion was found on the right edge resulting in about 54 m3 sediment was 

removed (i.e., 48%) (Fig. 4.11a). In contrast, 156 m3 sediment deposited on the left edge. Overall, 

the total volume of the bar increased from 375 m3 to 501 m3 or 34% from Apr 28 to Sep 15.  

During the whole study period, the right edge of the bar was eroded about one meter, while 

the left edge laterally spread four to six meters toward the main channel. The projected surface 

area of the bar increased from 320 m2 to 701 m2 or 119% (Table 4.2). In a total of 299 m3 sediment 

was deposited on the bar and the bar volume increased 148% (Table 4.2).   

4.4. DISCUSSION 

The large morphologic changes of the Amite-Comite River confluence demonstrate that 

network of alluvial rivers in lowland is highly dynamic. This type of confluence migration is 

uncommon in natural river systems according to the statistics in the Ganges-Brahmaputra-Meghna 
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and Amazon basin, which only accounts for 4.8% and 6.7% of all types of confluence migration, 

respectively (Dixon et al., 2018). Dixon et al. (2018) concluded that this type of migration is caused 

by lateral migration of a tributary channel. In the present study, remote sensing images during 

2002-2017 do show that the migration resulted from the channel meandering process of the main 

channel where the point bar on the left edge of the confluence mouth bar kept growing and the left 

bank of the main channel retreated.  

Regression analysis shows a significant positive relationship between the total increased 

vegetated area of the mouth bar and total days of moderate floods during four different periods of 

2002-2015. However, when major floods occurred during 2015-2017, the vegetated area of the 

mouth bar had little change. Thus, we propose that moderate floods are capable of leading bar 

growth and confluence migration, while major floods may prevent the bar from growth. Bartholdy 

and Billi (2002) studied the flood effects on channel and bar morphology and they also found that 

bar development and channel migration take place during moderate floods but are interrupted by 

large floods with 10 to 20 years return periods.  

 The Laser scanning measurements in 2017 allow us to detail the morphodynamics of the 

mouth bar before and after floods with varied intensities. Results support the observations from 

the analysis of remote sensing images. A single peak flood with a magnitude close to a moderate 

flood (i.e., flood 2) doubled the size of the projected surface area of left bar edge and produced the 

largest sediment deposition compared to the lower magnitude floods (i.e., flood 1 and 3). During 

the flood 2, the bar was fully inundated seven days from April 1 to April 7. According to the 

findings from previous studies (Kiss and Sipos, 2007; Wintenberger et al., 2015), it is very likely 

that the deposition on the left bar edge occurred during the falling limb of the flood. At the time, 

sediment deposited on the top of the bar were reworked causing a lateral spreading towards to bar 
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margin. The surface area of the left bar edge increased much more than the right edge could be 

explained by the much gentler slope it has. 

Bar margins usually experience significant lateral erosion when water leaves the bar or 

during low river stage (Kiss and Sipos, 2007; Wintenberger et al., 2015). However, the confluence 

mouth bar in the present study continuously gained sediment during summer time when the river 

stage is the lowest during the year (Flood 3). Although Flood 3 contains only small flow pulses, 

upstream erosion, downstream elongation, and lateral spreading of the left bar edge occurred 

during the time. This illustrates that the main-channel side of the confluence bar experienced 

complex adjustments during the multipeak flood event with lower magnitudes. Although the bar 

surface area had little change from April to September, the bar volume increased 34% indicating 

that vertical deposition dominated the deposition process instead of lateral spreading of the bar. 

The could be explained by less sediment supply during the lower intensity flow pulses. Vegetation 

colonization may also happen during this period due to the much less inundation time. In addition, 

it should be noted that the bar front elongated about 6 m downstream after flood 3. This region is 

the stagnation zone of the river confluence. Previous studies found that flow velocity in this zone 

is a deficit or even reverse (Konsoer and Rhoads, 2014; Rhoads and Sukhodolov, 2008). Our 

measurement suggests that low magnitude floods favor the sediment deposition in the stagnation 

zone. The largest erosion occurred on the right edge of the bar during flood 3. The flow discharge 

ratio between the Comite and the Amite River was 0.16 during flood 1 and 2 but it increased to 

0.37 during flood 3. The higher discharge in the Comite River may be the main reason causing the 

erosion on the right bar edge.   

The migration of the river confluence is mainly caused by the sediment deposition on the 

left edge of the mouth bar. This could be explained by two reasons. Firstly, the left edge of the bar 
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is the convex bank of the Amite River channel where sediments tend to deposit and form a point 

bar. Laser scanning results revealed that sediment deposition on the left edge was much more 

pronounced. The bar volume of the left edge changed from less 100 m3 to more than 400 m3 from 

March to September 2017 (Fig. 4.11b). Especially after flood 2, the nearly 4-meter laterally spread 

of the left edge is consistent with the average bar migration rate during 2002-2017 (i.e., 3.4 m/yr). 

Secondly, it clearly shows in Fig. 4.9 that sometimes the discharge in the Comite River is much 

higher that the Amite River. Backwater may very likely happen at the time on the river confluence, 

which benefits the sediment deposition on the point bar and the upstream Amite River.        

Laser measurements also reveal that the features of sediment deposition and erosion on 

two edges of the mouth bar could change in response to the flood magnitudes. During low 

magnitude floods (i.e., flood 1 and 3), sediment was deposited on the left edge but was removed 

from the right edge. During high magnitude flood (i.e., flood 2), sediment was deposited on the 

right edge as well as the left edge (Fig. 4.11). This can be explained by the bar is usually fully 

submerged during large floods when the river stage goes beyond 5.30 m. However, there were 

little changes in the vegetated bar area during the period of 2015-2017. At the time, an extremely 

large flood occurred in August 2016 which its peak stage was about 1.5 m higher than the previous 

record at Denham Springs (Fig. 4.12). It is very likely such unprecedented flood has caused serious 

erosion on both sides of the confluence mouth bar and resulted in the little growth of the mouth 

bar. Bartholdy and Billi (2002) pointed out that large floods could cut through the point bars and 

force the channel back towards a straight planform. Future study is needed to clarify such situation 

by measuring morphologic changes of the confluence mouth bar before and after a major flood 

(i.e., river stage is higher than 11.88 m).   
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Fig. 4.12. Google Earth image (taken on Aug 15, 2016) shows the 2016 large flood in the Amite 

River. The flood exceeded the previous river stage record (set on May 19, 1953). The image 

clearly shows that sediment concentration in the Amite River was much higher than the Comite 

River when a large flood occurred.   

 

The results presented in the current study also indicate that the morphology of a confluence 

mouth bar is very sensitive to the river stage changes. Even if a minor flow pulse with the stage 

close to the long-term average stage occurred (i.e., flood 1), it could cause sediment deposition 

and erosion on different bar edges (Fig. 4.11d). It also indicates that Terrestrial Laser Scanning 

technology is an ideal tool for the event-based morphologic changes study of river channels.   

With the abundant sediment storage in the upstream Amite River, the rapid sediment 

deposition on the point bar is very likely to continue in the future. This may lead to severe erosion 

on the left bank. The riverbed scours zone could also migrate downstream due to the change of 

the junction angle, bend migration, and channel cut-off. These processes may largely threaten 

the highway bridge safety. The current study also has an implication for the modeling simulation 

of river confluence migration. Long-term confluence migration could be simulated based on the 
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flow variations and sediment transport once the mechanisms of the migration are identified. In 

addition, future studies could also focus on the bar morphology changes during rising and falling 

limbs which usually contribute very different in bar development (Best et al., 2003).  

4.5. CONCLUSIONS 

This study investigated morphologic changes of a confluence of two active meandering 

alluvial rivers in lowland Louisiana. Long-term remote sensing images show that the confluence 

continuously migrated about 55 m downstream between 2002 and 2017. Sediment deposition on 

the main channel side of the confluence mouth bar is the major driver for the confluence migration. 

Regression analysis shows that the increase rate of the vegetated area of the bar is highly related 

with the days of moderate floods (river stage is between flood stage and major flood stage). 

However, the extreme floods may interrupt the bar growth and confluence migration.  

Short-term Laser scanning measurements were conducted before and after three floods 

with different intensities in 2017. Results show that a single moderate flood could double the 

projected surface area of the mouth bar and increased its volume by 68%. The bar growth was 

mainly from the elongation and spreading of the bar edge at the main channel side. The confluence 

mouth bar kept gaining sediment even during low flow stage (flood 1 and 3). Sediment tends to 

deposition on the stagnation zone during low magnitude floods and causes elongation of bar front. 

Overall, the projected surface area and volume of the bar increased by 119% and 148% during the 

half-year study from March to September, respectively. Our study highlights the importance of 

episodic floods on the evolution and migration of confluence mouth bar, which could be the major 

driver for the confluence migration. The high accuracy Terrestrial Laser Scanner is proved to be a 

powerful tool to study river confluence morphodynamics.  
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CHAPTER 5. SUMMARY AND CONCLUSION 

This thesis research was completed as a comprehensive assessment of sediment transport 

and channel morphology in the highly engineered lowermost Mississippi River as well as a natural 

alluvial river in Southeast Louisiana. The research comprised three studies that (1) assessed 

patterns and mechanisms of riverbed deformation in the last 500-km channel of the Mississippi 

River in the last two decades, (2) estimated bed material loads at the Mississippi-Atchafalaya River 

bifurcation, and (3) analyzed flood effects on the migration of the Amite-Comite river confluence. 

Results from this research are summarized below. 

In the 500-km lowermost Mississippi River, significant sediment deposition occurred in 

the uppermost 88 kilometers immediately below the Mississippi-Atchafalaya River diversion and 

the last 37 kilometers where the river starts to breach off into the Gulf of Mexico, causing flow 

reduction and downstream sedimentation. Continuous bed aggradation downstream of the 

Mississippi-Atchafalaya diversion may largely increase the risk of avulsion if unprecedented 

floods occur. The observed trends in the reach between RK 386 and RK 163 suggest that it has 

substantial potential for trapping sediment. From 1992 to 2013, although marginal sediment 

deposition was found in the lowermost Mississippi River (i.e., 51 × 106 m3), the river trapped 

approximately 337 × 106 m3 sediment (mainly sand) considering the dredged volume of riverbed 

sediment. This rejects the initial hypothesis that the lower reach of this highly engineered large 

alluvial river functions as a conduit for sediment transport. The total volume of trapped sediment 

over the past 22 years is equivalent in mass to 68% (i.e., 404 MT) of the total suspended sand 

discharged into the LmMR (i.e., 598 MT), assuming a bulk density of 1.2 metric ton per cubic 

meter for the riverbed material. On an annual mass budget, only about 9 MT sand is discharged 

from the river into the Gulf of Mexico. 
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Overall, the study shows the complexity of sediment transport in the lower reach of a large 

alluvial river, in that distinctive bed deformation can occur in different reaches because of flow 

deduction and backwater effects. The findings offer insights into potential bed deformation trends 

for lower reaches of other large river systems with no or limited bathymetry, discharge, and 

sediment data. Such information could also be applicable for other rivers to develop sustainable 

river engineering strategies and plans. 

 Based on the estimation of bed material loads at the Mississippi-Atchafalaya River 

diversion, we found that there were ~215 million metric tons (MT) bed material load transported 

upstream of the diversion during 2004-2013. About 22% of that (i.e., ~47 MT) were diverted into 

the outflow channel through the Old River Control Structures. The findings reveal that, 

proportionally, more bed materials were carried downstream in the mainstem channel under the 

current flow diversion, while severe bed scouring occurred in the controlled outflow channel. The 

aggradation in the mainstream reduced flow capacity and increased the risk of an avulsion under 

a megaflood.  

Long-term remote sensing images show that the confluence of the Amite- Comite Rivers 

continuously migrated about 55 m downstream from 2002 to 2017. Sediment deposition on the 

main channel side of the confluence mouth bar is the major driver for the confluence migration. 

Regression analysis shows that the increase rate of the vegetated area of the bar is highly related 

with the days of moderate floods (river stage is between flood stage and major flood stage). 

However, the extreme floods may interrupt the bar growth and confluence migration. Short-term 

Laser scanning measurements were conducted before and after three floods with different 

intensities in 2017. Results show that a single moderate flood could double the projected surface 

area of the mouth bar, expanding its bar volume by 68%. The bar growth was mainly from the 
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elongation and spreading of the bar edge at the main channel side. The confluence mouth bar 

kept gaining sediment even during low flow stage. Sediment tends to deposition on the 

stagnation zone during low magnitude floods and causes elongation of bar front. Overall, the 

projected surface area and volume of the bar increased by 119% and 148% during the half-year 

study from March to September, respectively.  

In summary, this thesis research reveals the complexity of sediment transport and river 

network development in the lower reaches of alluvial rivers. The research demonstrates longer-

term study, in that distinctive bed deformation can occur in different reaches because of flow 

deduction and backwater effects. Our study is the first try of estimating bed material load at a 

largely controlled bifurcation based on a simple, well-established bed material transport model. 

The study also highlights the importance of episodic floods on the evolution and migration of a 

river confluence.   
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