
Louisiana State University Louisiana State University 

LSU Scholarly Repository LSU Scholarly Repository 

LSU Doctoral Dissertations Graduate School 

March 2019 

Reflection Positivity: A Quantum Field Theory Connection Reflection Positivity: A Quantum Field Theory Connection 

Joseph W. Grenier 
Louisiana State University and Agricultural and Mechanical College 

Follow this and additional works at: https://repository.lsu.edu/gradschool_dissertations 

 Part of the Other Mathematics Commons 

Recommended Citation Recommended Citation 
Grenier, Joseph W., "Reflection Positivity: A Quantum Field Theory Connection" (2019). LSU Doctoral 
Dissertations. 4861. 
https://repository.lsu.edu/gradschool_dissertations/4861 

This Dissertation is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It 
has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU 
Scholarly Repository. For more information, please contactgradetd@lsu.edu. 

https://repository.lsu.edu/
https://repository.lsu.edu/gradschool_dissertations
https://repository.lsu.edu/gradschool
https://repository.lsu.edu/gradschool_dissertations?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F4861&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/185?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F4861&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/gradschool_dissertations/4861?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F4861&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


REFLECTION POSITIVITY: A QUANTUM FIELD THEORY CONNECTION

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in

The Department of Mathematics

by
Joseph W. Grenier

B.A., SUNY Empire State College, 2012
M.S., Florida Gulf Coast University, 2015

May 2019



Acknowledgments

I would like to thank a lot of people for helping me get to this point.

First and foremost my advisor, Gestur Olafsson, for introducing me to QFTs

and Reflection Positivity, for leading me down this rabbit hole, for trusting in

me explore these topics on my own, and for always having valuable insights and

explanations when I needed them.

To Drs. Nash Mahmoud, Richard Ng, Ravi Rau, and P. Sundar for agreeing

to serve on my committee and to Mark Davidson for jumping in last minute.

To Drs. Dan Freed and Santosh Kandel for their welcoming discussions with

an unknown graduate student.

To Emily for always listening to my ravings, for keeping me sane, and for

bringing out the best version of myself.

To my family for molding me into what I am today.

To the professors, staff, and graduate students in the math department for

making these years at LSU go as well as they possibly could.

Additionally, a great deal of research was done during the summer of ’18 in

Wyoming in the company of Paul, John, Kelsey, Cody, Maddie, Tilly, and Blaine.

Thank you all for making my time there what it was and for helping me complete

this work.

Last, this particular work as initiated at Mathematisches Forschungsinstitut

Oberwolfach, for which I am eternally grateful.

ii



Table of Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Chapter 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Historical Background . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2. Constructive Quantum Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Osterwalder-Schrader Axioms . . . . . . . . . . . . . . . . . . . . . 11
2.2 Reflection Positive Hilbert Spaces . . . . . . . . . . . . . . . . . . . 13
2.3 Reflection Positivity for Riemannian Manifolds . . . . . . . . . . . . 17

Chapter 3. Topological Quantum Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1 Category Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Topological Quantum Field Theory . . . . . . . . . . . . . . . . . . 24
3.3 Topological Reflection Positivity . . . . . . . . . . . . . . . . . . . . 27

Chapter 4. Riemannian Functorial Quantum Field Theory . . . . . . . . . . . . . . . . . 31
4.1 Riemannian Functorial Quantum Field Theory . . . . . . . . . . . . 31
4.2 Assignments in an RFQFT . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 RBordn(Hn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Chapter 5. The RP Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1 Functorial Reflection Positivity . . . . . . . . . . . . . . . . . . . . 39
5.2 RP Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Chapter 6. Examples and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.1 Iterated Doubles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2 n = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.3 n = 1: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.4 n = 2: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.5 Continued Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

iii



Abstract

At the heart of constructive quantum field theory lies reflection positivity.

Through its use one may extend results for a Euclidean field theory to a relativistic

theory. In this dissertation we connect functorial and constructive quantum field

theories through reflection positivity. In 2014 Santosh Kandel constructed examples

of d-dimensional functorial QFTs when d is even. We define functorial reflection

positivity and show that this functorial theory is a reflection positive theory. We

go on to show that every reflection positive theory produces a reflection positive

Hilbert space. Iterated doubles are then introduced and used as a starting point to

produce a four dimensional quantum field theory. The (0 + 1) dimensional theory

is then analyzed and shown to correspond to quantum mechanics.

iv



Chapter 1

Introduction

The purpose of this work is to bridge the divide between the constructive and

topological quantum field theories. To do so, we use a condition which it is believed

every viable theory must obey: reflection positivity. This idea stems from a tool

used by mathematicians and physicists called Wick rotation after Gian Carlo Wick.

The basic idea is as follows:

Suppose we were given the following integral

Ip(x) =

∫ ∞
0

eixt
p

dt.

If we were to replace ixtp → −xtp we would be able to integrate easily (assuming

we know the Gamma function) and get

I ′p(x) =

∫ ∞
0

e−xt
p

dt =
1

x1/p
Γ

(
p+ 1

p

)
.

The trick, then, is to use a real integral and rotate back into the complex plane.

Setting up an appropriate contour integral gives a visual representation of this

particular rotation.

In general, if we were given a problem in Minkowski space, R1,3 and a similar

problem in Euclidean spaceR4, it would be easier to work in Euclidean space.

Following this previous line of thought, if we were to be able to make a suitable

transformation, one might be able to move between the two spaces. Formally, we

have the following:

• Minkowski metric: ds2 = −dt2 + dx2 + dy2 + dz2

• Euclidean metric: ds2 = dτ 2 + dx2 + dy2 + dz2

• Wick Rotation: t 7→ iτ
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Mathematically, we can say Wick rotation is the analytic continuation of a

Euclidean solution to a Minkowski solution. In the early 1970s over a span of two

papers, Konrad Osterwalder and Robert Schrader formulated precise conditions

for Wick rotation between relativistic and Euclidean field theories. This condition

is what we now refer to as reflection positivity.

1.1 Historical Background

Quantum mechanics and special relativity have dominated the physics land-

scape for decades. Since their inception, there have been incredible results and

predictions from each. Alongside each discovery, however, have come a myriad of

problems. The most famous of these issues is the ongoing incompatibility of the

two subjects.

A step towards reconciliation was made in the 1920s with the introduction

of quantum field theory. A group of theoreticians (Born, Heisenberg, and Jordan,

jointly) applied the methods of the newly formulated quantum mechanics to elec-

tromagnetic fields. The quantum field theory of today is a direct descendent of

what emerged almost immediately after in a paper by Dirac on quantum electro-

dynamics.

In quantum electrodynamics (QED) the photon was understood as a field be-

fore it was understood as a particle. Additionally, the electron was taken to be

relativistic, governed by the Dirac equation. QED, then, was a crucial step toward

rectifying the quantum world with the relativistic view.

Field theories are plagued with difficulties, and in nearly every expansion we

encounter infinite terms. Typically, when we wish to investigate a system, we start

with a non-interacting version called the free theory. To determine how the new

system behaves, the Hamiltonian (which describes the total energy of a system)

2



would be ”perturbed,” and this perturbation would often be expanded as a series. A

fundamental issue in QFT is the divergence of these perturbation series expansions.

To rectify the problem of divergence, physicists employ a number of methods.

Readers may be familiar with the ideas of regularization, renormalization, integral

truncation, cutoffs, etc. One of these methods, renormalization, was popularized by

Feynmann and Schwinger in the forties. Renormalization is the method of redefin-

ing physical parameters in order to absorb the infinities in these new definitions.

A divide was growing between mathematics and physics. Before the 1800s, the

two were essentially inseparable. Around the turn of the century, however, there

was already a gap growing between the sciences. This can be seen to some extent

in the statement of Hilbert’s sixth problem:

”6. Mathematical Treatment of the Axioms of Physics. The investigations on

the foundations of geometry suggest the problem: To treat in the same manner, by

means of axioms, those physical sciences in which already today mathematics plays

an important part; in the first rank are the theory of probabilities and mechanics.”

Around the time of Feynman and Schwinger, technology had already grown

to such an extent that results were being churned out rapidly. In response to the

sixth problem, among other things, Arthur Wightman developed a set of axioms

that formalized the requirements any QFT should satisfy [37].

The axioms of Wightman form the basis of constructive quantum field theory

(CQFT). We will return to CQFT, but it should be noted that these axioms were

not, and still are not, the solution to Hilbert’s sixth problem. Less than a decade

after the Wightman axioms came the Haag-Kastler Axioms.

In 1964 Rudolf Haag and Daniel Kastler [16] published their own axiom sys-

tem dealing specifically with the algebra of observables for a system giving rise

to algebraic quantum field theory (AQFT). In essence, the Haag-Kastler system

3



axiomatizes the Heisenberg picture for quantum field theory. The axiomatization

of Wightman leans more towards the structure of the fields themselves.

In the late 1980s Michael Atiyah axiomatized topological quantum field theory

(TQFT) while Graeme Segal did the same for conformal field theory (CFT). As

of the writing of this work, the list of field theories includes QFT, CQFT, TQFT,

AQFT, RQFT, FQFT, CFT, EFT, and more.

1.1.1 Recent Developments in Reflection Positivity

The axioms of Wightman tell us how to construct a QFT. The system de-

veloped by Osterwalder-Schrader allows us to make an often simpler construction

with Euclidean fields and then Wick-rotate back to Minkowski space-time. At the

heart of this system is the axiom of reflection positivity.

Reflection positivity can be thought of as a way of understating how to move

from a probabilistic to a quantum interpretation of fields. As such, this idea has

gained the most ground through its interaction with statistical mechanics and

random fields. Through the use of reflection positivity and Osterwalder-Schrader

reconstruction, interacting QFTs were shown to exist for dimensions d = 2 and

d = 3 by James Glimm and Arthur Jaffe.

It’s important to note that the idea of reflection positivity originated from

conversations between Jaffe, Osterwalder, and Schrader. Soon afterwards, a great

deal of research on reflection positivity was conducted by Jürg Frölich.

Over the past few decades, reflection positivity has become increasingly impor-

tant to our understanding of mathematics. For instance, the reflection shows up

in the modular Tomita-Takesaki theory. In 2010 a spherical version of reflection

positivity was used by Rupert Frank and Elliot Lieb to give new estimates for

the Hardy-Littlewood-Sobolev inequality. In 2013 Christian Anderson, a student

of Jaffe, showed reflection positivity for certain operators on manifolds.
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Since the late 1980s, mathematicians have worked to understand reflection pos-

itivity through representations. When one Wick rotates, changing time corresponds

to an involution in the symmetry group of a system. In QFT the physical system

corresponds to a unitary representation of this symmetry group. Wick rotation,

therefore, is essentially a connection between a representation of the Euclidean

group of symmetries with the Poincare group of symmetries in Minkowski space-

time.

In 1986 Robert Schrader published his work applying reflection positivity to

the complementary series of SL(2n,C). This was the beginning of subsequent work

led by Palle Jorgenson, Karl-Hermann Neeb, and Gestur Ólafsson. Over the last

few decades, these three researchers have published various results on the analytic

continuation of representations. Most recently, Neeb and Ólafsson characterized

reflection positivity on the interval, circle, and sphere; they also discussed connec-

tions to modular theory and the KMS conditions. Part of this work is given in

Chapter 3 and can be found in detail in [24].

1.1.2 Recent Developments in Functorial Theories

Reflection positivity was implemented in the original axiom system for TQFTs

through unitarity. Though this notion had already been understood, in 2016 Dan

Freed and Michael Hopkins focused the discussion squarely on reflection positivity.

In their paper the notion of reflection positivity was defined explicitly and then

introduced for extended TQFTs.

For topological and other functorial theories, reflection positivity is typically

subsumed by the unitarity axiom. In fact one usually begins with a reflection

positive measure when working backwards from fields on a manifold to describing

a functorial theory.
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This is more of less the case in Riemannian functorial quantum field theories

(RFQFTs). In Riemannian FQFTs, manifolds are not stripped of their metrics.

The additional data ultimately turns the target spaces into infinite dimensional

Hilbert spaces.

This program has been carried out in different directions by Stephan Stolz, Pe-

ter Teichner, David Ayala and others. In his papers, Ayala identifies the homotopy

type of the classifying space of geometric cobordism categories using sheaf theory.

This work followed that of Galatius, Madsen, Tillman and Weiss.

A goal of the Stolz-Teichner program is to achieve results in cohomology using

a Riemannian bordism category. The program is influenced heavily by Segal’s

development of CFT. In fact, most papers dealing with functorial field theories

(including this one) uses the work of Segal as a reference.

In the past decade, we have poured a great deal of effort into understanding

the Riemannian bordism category. The dissertation of Santosh Kandel, published

in 2014, is the most recent addition to this body of work. In his dissertation Kandel

used the work of Doug Pickrell from 2007 to develop a FQFT for even dimensions.

Additionally, Kandel showed the field theory is projective for odd dimensions.

The Riemannian theory may be distinguished from the topological in many

ways. First, as described in numerous accounts on topological theories, the Hilbert

space obtained is, by necessity, finite dimensional.

Proposition. Let F be a TQFT, then F(M) is finite dimensional for every (ob-

ject) M ∈ Bordn.

This proposition is the fundamental roadblock in describing a ”realistic” QFT

from a TQFT. That is not to imply that ”unrealistic” necessarily means ”useless.”

On the contrary, topological theories have been used to compute a myriad of topo-
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logical invariants. In terms of physical use, an important application of TQFT is

quantum computing, for which finite dimensional target spaces are perfectly ac-

ceptable. To find a measure of equivalence between a TQFT and CQFT, however,

one must move the target category beyond finite dimensional spaces.

An issue with the category RBord is that anti-involutions are ill defined. Be-

cause of this, we no longer have a well defined coevaluation map. In fact, since

coevaluation is not well defined, an object does not even have a guaranteed iden-

tity morphism in RBord. For this reason, RBord is not truly a category but is

instead a semi-category. This is to our benefit, for this removes the finiteness con-

dition.

The target category for our Riemannian theory, then, will be the category of

Hilbert spaces, which are infinitely dimensional in our case. This choice of target

category is made after first passing through the category Tpol of polarized topolog-

ical vector spaces, ensuring that our linear maps extend. Kandel and others have

ensured us that FQFT works, but there is still a lot to be done.

Before we begin we also note that, in the physics terminology, our Riemannian

theory would be called Euclidean because our manifolds have a flat connection.

1.2 Organization

The work is laid out as follows:

In Chapter 2 we introduce CQFT and its axioms. After discussing the axioms,

we dig deeper into reflection positivity and its many forms in mathematics. We

then return to the reflection positivity axiom and provide theorems for Riemannian

manifolds, which will be the objects of interest throughout this document. For those

familiar with the work of Jaffe, Osterwalder and Schrader and Neeb, Ólafsson et

al., Chapter 2 may be skimmed over.
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In Chapter 3 we define a TQFT. We begin by briefly introducing category

theory, providing only the pertinent definitions. Short examples are given for the

reader who, like the author of this work, finds category theory befuddling at first

glance. We then define the categorical notion of reflection positivity. The definitions

and theorems in the latter half of Chapter 3 follow the 2016 work by Dan Freed

and Michael Hopkins. For the categorically inclined reader, Chapter 3 may easily

be glossed over.

Chapter 4 presents a segue into the hybridization of TQFT and CQFT. We

follow the work of Stephan Stolz, Peter Teichner, Doug Pickrell and Santosh Kan-

del. We move away from TQFTs by giving our manifolds a metric and using the

semi category RBordn. We provide the necessary material to define a Riemannian

FQFT, which are functorial assignments and gluing procedures.

Our main results are found in Chapters 5 and 6. We begin Chapter 5 by

expanding some preliminary results of Freed/Hopkins and Kandel from Chapters

3 and 4. We then redefine functorial reflection positivity and connect CQFTs with

FQFTs. In Chapter 6 we give a variety of applications and discuss open problems.

1.2.1 Main Results

Reflection positivity is defined in [11] for a TQFT. In this paper the definition of

reflection positivity is extended to certain FQFTs. It is then shown that the FQFT

given in [19] has a natural Hermitian form. We then prove that this Riemannian

FQFT is a reflection positive theory. This implies that the resulting Hilbert spaces

coming from this functorial theory are reflection positive. We prove this idea in

the main result of this work, theorem 5.2.1:

Theorem. Suppose M is a complete, connected manifold. Given a reflection pos-

itive Hilbert space (E , E+, θ) corresponding to L2(M), there is a reflection positive

functorial quantum field theory ZRP such that

8



1. Ê is the target object of ZRP

2. E+ and θ are recoverable from Ê

Similarly, every reflection positive functorial quantum field theory generates reflec-

tion positive Hilbert spaces

Therefore, we have shown that CQFTs may be studied using the tools of ho-

mology and category theory.

Having given this correspondence, we then provide applications. In Chapter 6

we begin by introducing a new structure: the iterative double.

Definition. An iterative double of X is a sequence of null-cobordant manifolds

described by the process

X = fX1 := X1 → Dbl(X1)
∅2

−→ X2 → Dbl(X2)→ · · · → Dbl(Xn−1)
∅n

−→ Xn → · · ·

A truncation of an iterative double is termed an iterated double. It is pointed

out that any ball or sphere of any dimension can be taken as an iterated double.

We give a very brief analysis of these objects, which are used to describe a new

recipe for extending or reducing a QFT. Through this work and the contributions

of Dimock [9], we give an interesting new decomposition of functions and Gaussian

measures in terms of their restrictions to submanifolds.

Next, the (0 + 1) dimensional free scalar theory is worked out for the RFQFT

developed in chapter four. It is generally know in the QFT community that a (0+1)

QFT coincides with quantum mechanics. In section 6.3 it is explicitly shown that

this (0 + 1) dimensional RFQFT does indeed coincide with quantum mechanics.

Finally, we give a brief review of the two dimensional case before discussing

ongoing research and open questions.

Thank you for your attention and taking the time to peruse this work. Enjoy!
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Chapter 2

Constructive Quantum Field Theory

This chapter is foundationally the answer to the question:

Question: For a given classical Euclidean invariant field φ with distribution

dµ(φ), does there exist a corresponding Minkowski QFT? In other words, is there

an appropriate representation of the Poincaré group with invariant vacuum?

In the early 1970’s Osterwalder and Schrader gave the affirmative in [25] and

[26]. This framework is known to work well in dimensions d = 2 and d = 3.

Indeed, rigorous constructions have been provided [see [15]] for the φ4 and Yukawa

interactions.

In the first section we recall the foundations of CQFT. The axioms listed are

the usual axioms for constructive quantum field theory by Konrad Osterwalder

and Robert Schrader. Though the notation has changed over the years, the axioms

as given in [15] are still the ones referenced extensively by constructive theorists.

It is important to keep in mind that this approach has note been enough to

develop a rigorous QFT in d = 4. Additionally, the axioms that follow will rely on

the linearity of the space. Therefore, this approach must be modified to develop

gauge theories (i.e. Yang Mills theory).

We will use the following notation:

• f ∈ D are test functions: smooth functions with compact support

• Fields φ ∈ D′ are distributions.

• We denote the canonical pairing between distributions and test functions as

φ(f) = 〈φ, f〉 =

∫
φ(x)f(x) dx

• A Euclidean Field is a probability measure µ on D′

10



• The inverse fourier transform of µ is given by

S : D → C, S(f) :=

∫
eiD(f) dµ(D)

In the second section we restrict our attention now to OS3, reflection positivity,

the material for which comes from [24]. There has been extensive investigation

into the uses of reflection positivity in mathematics. Applications include sharp

estimates of the Hardy-Littlewood-Sobolev inequality [10] and the Cartan duality

of symmetric Lie groups [24]. In this section we follow the path laid out in [24].

Numerous advances have been made by Jorgenson, Neeb, Ólafsson, and others in

reflection positivity, the definitions and propositions below are only a drop in the

bucket.

First we will define a reflection positive Hilbert space and then move through

quantization. An important question that must be addressed is: what operators (if

any) survive the quantization process? After answering this question we mention

reflection positive representations and give two important examples of their use.

For the last section we look at reflection positivity on Riemannian manifolds

and provide important results from [1]. Riemannian manifolds will be the setting

for the main results.

2.1 Osterwalder-Schrader Axioms

Definition 2.1.1 (OS0: Analyticity). All functions ef (D) := eiD(f), f ∈ DC, are

µ-integrable and the functional

S : DC → C, S(f) :=

∫
D′
ef dµ

obtained this way is holomorphic on all finite-dimensional complex subspaces.

Definition 2.1.2 (OS1: Regularity). There exists some p ∈ [1, 2] and a c ≥ 0 such

that

|S(f)| ≤ ec(‖f‖1+‖f‖pp) for all f ∈ DC

11



Definition 2.1.3 (OS2: Euclidean Invariance). S is invariant under the action of

the euclidean group Mot(Rd) ∼= Rd oOd(R)

Definition 2.1.4 (OS3: Reflection Positivity). Let θ : Rd → Rd, θ(x0, x) =

(−x0, x) be the time reflection and A+ := span{ef : f ∈ D(Rd
+)C}, where Rd

+ =

{(x0, x) ∈ Rd : x0 > 0} Then we require that µ is reflection positive in the sense

that

〈θA,A〉 ≥ 0 for all A ∈ A+

Definition 2.1.5 (OS4: Ergodicity). The unitary one-parameter group (Ut)t∈R

defined by the action of T (t) on L2(D′, µ) is ergodic, where

T (t) : Rd → Rd, (x0, x) 7→ (x0 + t, x)

In other words, for all A ∈ L1(D′, µ)

lim
t→∞

1

t

∫ t

0

T (s)AT (s)−1 ds =

∫
D′
Adµ

At this point it is useful to have a correspondence between the mathematical

notation and physical language. The descriptions and identifications are, again,

from [15].

Ergodicity implies uniqueness of the vacuum. Euclidean invariance analyti-

cally continues to Lorentzian invariance. The regularity axiom is often tweaked in

investigations of singularities.

• D′(Rd) = path space

• dµ = Feynman-Kac measure on path space

• D′(Rd−1) = configuration space

• t 7→ φ(x, ·) = a path with values in D(Rd−1)

12



• H = L2(D(Rd−1), dν) (Schrödinger representation)

Lastly, let µ be a probability measure on D′ which satisfies reflection positiv-

ity and is invariant under reflection and time translation. Quantum mechanics is

reconstructed through the following:

• Each operator T (t), t ≥ 0 preserves E+

• T (t), t ≥ 0 induces a hermitian contraction on the physical Hilbert space H ,

T̂

• T̂ (t) = e−tH

• H is a positive self-adjoint operator

• HΩ = 0 for Ω := 1̂

• H is the Hamiltonian

2.2 Reflection Positive Hilbert Spaces

Definition 2.2.1. Let E be a Hilbert space, θ ∈ U(E) be a unitary involution, and

E+ be the closed subspace

E+ = {η ∈ E : 〈η, θη〉 ≥ 0}

The triple (E , E+, θ) is a reflection positive Hilbert space with new inner prod-

uct

〈η, ξ〉θ = 〈η, θξ〉

From this point forward, a reflection positive Hilbert space will be abbreviated

RPHS.

13



2.2.1 OS Quantization

Let (E , E+, θ) be an RPHS with inner product 〈η, θξ〉. Then we have the sub-

space

N := {η ∈ E+ : 〈η, θη〉 = 0}.

We then mod out be equivalence classes via q : E+ → E+/N and obtain a pre-

Hilbert space. Then Ê is the Hilbert space completion of E+/N with respect to the

norm

‖η̂‖ =
√
〈η̂, θη̂〉

The resulting space, Ê , is the quantum mechanical Hilbert space of states. This

quantization process is given by the exact sequence

0 N E+ Ê 0i ̂

Where i is an injection and the quantization map ” ̂ ” is the composition

completion ◦ q.

2.2.2 OS Quantization - Operators

Let S : E+ → E+ be a linear operator with domain D(S) such that

• S : D(S) ∩ E+ → E+

• S : D(S) ∩N → N

Then S induces a linear operator Ŝ : D(Ŝ) → Ê with Ŝη̂ = Ŝη where D(Ŝ) :=

D̂(S) = {v̂ : v ∈ D(S)}

Lemma 2.2.1. Let (E , E+, θ) be an RPHS and suppose that

• D ⊆ E+ is a linear subspace such that D̂ is dense in Ê

• S, T : D → E+ are linear operators
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Then

1. If 〈Sη, ζ〉θ = 〈η, T ζ〉θ for η, ζ ∈ D, then S(N ) ⊆ N , Ŝ, T̂ are well defined

and 〈Ŝη̂, ζ̂〉 = 〈η̂, T̂ ζ̂〉 for η̂, ζ̂ ∈ D̂

2. If S ∈ U(E+) and θSθ = S, then Ŝ extends to a unitary operator on Ê

3. If T = S in (1), then Ŝ is a symmetric operator. If S is bounded on D = E+,

then so is Ŝ and ‖Ŝ‖ ≤ ‖S‖.

If T = S in (1), then Ŝ is a symmetric operator. If S is bounded on D = E+,

then so is Ŝ and ‖Ŝ‖ ≤ ‖S‖.

Quantization of operators can be represented again by the commutative dia-

gram of exact sequences

0 N E+ Ê 0

0 N E+ Ê 0

i

S

̂
θSθ Ŝ

i ̂
2.2.3 Representations

Definition 2.2.2. Let G be a Lie group with Lie algebra g. Let τ be an involutive

automorphism of G, then (G, τ) is a symmetric Lie group.

Define Gτ := Go {1, τ} and H := Gτ
0, then we immediately have

• τ induces an involution dτ : g→ g

• eigenspaces h and q for ±1

• g = h⊕ q

• h is the lie algebra of H

With this, we get the Cartan Dual.
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Definition 2.2.3. Let g be the lie algebra as in the previous definition. Then the

Cartan Dual of g is given by gc := h⊕ iq ⊆ gC

Cartan Duals provide fascinating insight into some of the most fundamental

groups in physics, the Euclidean, Poincare, and Heisenberg.

Example 2.2.1. The Euclidean group is given by E(n) = Rn o On(R) with lie

algebra e(n). Its elements (b, A) ∈ E(n) act on Rn by (x,A) · v = Av + x. Let

T := diag(−1, 1, . . . , 1) and define τ(x,A) = (Tx, TAT ).

The Poincare group is given by P (n) = R1,n−1 o O1,n−1(R) with lie algebra

p(n).

In terms of Cartan Duals we have

e(n)c ' p(n)

The example n = 4 is fundamental to our understanding of space time. This

relationship at the lie algebra level is a motivating example of the relationship

between representations and reflection positivity.

Example 2.2.2. The Heisenberg group has Lie algebra heis = 〈P,X, z〉 with

commutation relations [P,X] = z. Define the involution

τ(P ) = −P, τ(X) = X, τ(z) = −z

then

heisc ' heis

Definition 2.2.4. A symmetric subsemigroup is a triple (G,S, τ) where (G, τ) is

a symmetric lie group and S is a subsemigroup of G such that

• S is invariant under s] := τ(s)−1

• HS = S
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• 1 ∈ S̄

Definition 2.2.5. Let (E , E+, θ) be an RPHS and (G, τ) be a symmetric Lie group.

A reflection positive representation is a unitary representation π : G→ U(E) such

that

• π(τ(g)) = θπ(g)θ

• π(S)E+ ⊆ E+

Definition 2.2.6. A reflection positive unitary one-parameter group is a strongly

continuous unitary one-parameter group (Ut)t∈R on E for which E+ is invariant

under Ut for t > 0 and θUtθ = U−t for t ∈ R

Proposition 2.2.2. (Ût)t≥0 is a strongly continuous one-parameter semigroup of

symmetric contractions on Ê

2.3 Reflection Positivity for Riemannian Manifolds

The following definitions and results for manifolds from [1] will be needed in

chapters 5 and 6.

Let M be a Riemannian manifold. We call M static if it possesses a globally

defined, hypersurface orthogonal Killing field. Simply put, time translation is well

defined on the manifold.

Definition 2.3.1. A complete, connected, Riemannian manifold M is quantizable

if it is static and equipped with a reflection. Such a manifold is decomposed as

M = M− t Σ tM+

Here Σ is the time-zero reflection hypersurface and t is disjoint union. The man-

ifold is equipped with a reflection θ that fixes Σ and exchanges Ω+ and Ω−

Definition 2.3.2. Let E± = EM± ⊂ E, then 〈·, ·〉E is reflection positive when

〈θf, f〉E ≥ 0
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Let CM = (∆M +m2)−1 and CB = (∆B +m2)−1 be the resolvent of the Lapla-

cian on a manifold M and the resolvent with boundary conditions, respectively.

From [1] we have the following theorems:

Theorem 2.3.1. Let M be a complete, connected Riemannian manifold with a

dissecting reflection θ. Let M+ t Σ tM− denote the partition of the manifold by

the reflection hyperplane. For all f ∈ C2
0(M+),

0 ≤ 〈θf, CMf〉L2

Theorem 2.3.2. Suppose that ∆B is the Laplacian on Rd with boundary data B

on a finite union Γ of piece-wise smooth hypersurfaces. Suppose that the boundary

data consists of a mixture of Dirichlet and/or Neumann conditions, and suppose

that the boundary conditions are symmetric under the reflection θ. Then CB is

reflection positive with respect to θ.
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Chapter 3

Topological Quantum Field Theory

In the early 1980’s Edward Witten introduced an informal definition of a Topo-

logical Quantum Field Theory, denoted henceforth by TQFT, as a QFT on a

smooth manifold M independent of the metric on M . Almost concurrently, Graeme

Segal provided an axiomatization of Conformal Field Theory (CFT). Motivated by

this, Sir Michael Atiyah axiomatized TQFT in the latter half of the 1980’s. The

axioms of TQFT published by Atiyah in 1988 have been modified over the years

and one such modification is given here (see [6]). The expositions of John Baez,

Dan Freed, Jacob Lurie and Constantin Teleman to name a few are great references

for information on TQFTs.

It is impossible to express in the space provided just how profoundly this theory

has impacted mathematics and physics. Over the past few decades hundreds and

hundreds of mathematicians have worked on advancing our understanding of knots

and manifold invariants through TQFTs.

In the realm of physics, TQFT has had incredible success in quantum infor-

mation and quantum computing with the so called fractional quantum Hall effect

(see [33]). For a more general physical understanding of the importance of TQFT,

John Baez gives a wonderfully concise analogue:

(n− 1)-dimensional manifold Hilbert space

cobordism between (n− 1)-dimensional manifolds operator

composition of cobordisms composition of operators

identity cobordism identity operator

The first two analogues are between ”Space → States” and ”Space-time →

Process.”
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The structure of this chapter is as follows. We begin with a review of basic

category theory. The first section is crucial background material for constructive

theorists with little to no background in category theory.

In section two we define TQFTs list the axioms such a theory should obey.

Only a few comments are made for general TQFTs. These comments will be in

contrast to the functorial theory presented in the next chapter.

After working through the axioms and some important properties of TQFTs

we introduce topological reflection positivity. This part follows the work done by

Dan Freed and Michael Hopkins in the paper [11].

To understand TQFT fully one should have a fairly thorough understanding

of homology. We will not pursue this vein here, as our goal is to extract particular

definitions and results and apply them to other functorial field theories. In par-

ticular, the results in the latter half of this chapter will be the starting point for

chapter 6, in which reflection positivity will be investigated for functorial theories.

3.1 Category Theory

Definition 3.1.1. A Category C consists of a collection of objects, a collection of

morphisms or maps between these objects and composition of morphisms. Compo-

sition of morphisms, when defined, is associative and there is an identity morphism

for each object.

Definition 3.1.2. A Semicategory is a category without an identity morphism.

Example 3.1.1 (Grp). The objects in the category Grp are groups and mor-

phisms are group homomorphisms.

Example 3.1.2 (VectC). Objects in VectC are, as its namesake implies, vector

spaces over the complex field. Morphisms are linear maps. Much of linear algebra

is the study of the category VectC
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Example 3.1.3 (Hilb). The category Hilb is an extension of VectC. The spaces

are now not-necessarily-finite-dimensional Hilbert spaces and the morphisms are

linear transformations. For our purposes later on, the mappings will be trace-class

operators.

The target categories for TQFTs and functorial QFTs are VectC and Hilb re-

spectively. These categories have important additional structures, tensor products.

The tensor product turns these categories into monoidal categories.

Definition 3.1.3. A Monoidal Category is a category C equipped with an object

1 ∈ C, and a tensor product

⊗ : C × C → C,

which is associative up to natural isomorphism

(U ⊗ V )⊗W ∼= U ⊗ (V ⊗W )

and which satisfies the pentagon and triangle identities

((w ⊗ x)⊗ y)⊗ z (w ⊗ x)⊗ (y ⊗ z) w ⊗ (x⊗ (y ⊗ z))

(w ⊗ (x⊗ y))⊗ z w ⊗ ((x⊗ y)⊗ z)

aw⊗x,y,z

aw,x,y⊗idz

aw,x,y⊗z

aw,x⊗y,z

idw⊗ax,y,z

(x⊗ 1)⊗ y x⊗ (1⊗ y)

x⊗ y

ax,1,y

ρx⊗1y 1x⊗λy

where a, ρ, λ are the associator, right unitor, and left unitor respectively.

Furthermore, there are natural isomorphisms in VectC and Hilb giving these

categories a symmetric structure.
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Definition 3.1.4. A Symmetric Monoidal Category is a monoidal category along

with natural isomorphisms

γU,V : U ⊗ V ∼= V ⊗ U

satisfying the hexagonal diagram

(x⊗ y)⊗ z x⊗ (y ⊗ z) (y ⊗ z)⊗ x

(y ⊗ x)⊗ z y ⊗ (x⊗ z) y ⊗ (z ⊗ x)

ax,y,z

γx,y⊗id

γx,y⊗z

ay,z,x

ay,x,z id⊗γx,z

Example 3.1.4 (Bordn). The category Bordn is named for its morphisms, bor-

disms, from the french ”bord” for boundary. In Bordn, the objects are closed

(n− 1)-dimensional real manifolds M for some fixed n. Typically, M is the spatial

slice of n-dimensional space-time. The unit object is the empty manifold and the

tensor product is given by disjoint union. A morphism M → N is an equivalence

class of bordism, for which we need the following definition.

Definition 3.1.5. Let M,N be oriented, closed, (n−1)-dimensional smooth man-

ifolds. A bordism Σ from M → N is an oriented, compact, n-dimensional manifold

with boundary ∂Σ such that its boundary is the disjoint union

∂Σ ∼= M tN.

In this definition M , N , or both could be the empty manifold. It is common

to make the following informal definitions. A closed manifold will be a manifold

without boundary. A compact manifold will be mean a manifold with boundary.

We will keep this convention.

Example 3.1.5 (Bordn continued). Compositions of morphisms in Bordn occur

along boundaries. For instance, if Σ1 : X → Y and Σ2 : Y → Z then

Σ2 ◦ Σ1 : X → Z
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is given by gluing along Y .

Definition 3.1.6. A functor is a function between categories which maps objects

to objects and morphisms to morphisms, respecting composition and the identity

morphism.

Our purpose being to understand how reflection positivity crosses QFT for-

mulations, we must define involutions at the categorical level. First, we call an

isomorphism between functors a natural transformation.

Definition 3.1.7. Let C be a category. An involution of C is a pair (τ, η) of a

functor τ : C → C and a natural isomorphism η : idC → τ 2 such that for any x ∈ C

we have τηx = ητx as morphisms τx → τ 3x. For symmetric monoidal categories,

τ is required to be a symmetric monoidal functor.

Just as an involution on a manifold M would lift to an involution on C∞(M),

involutions on categories interact as follows.

Definition 3.1.8. Let B and C be categories with involutions (τB, ηB) and (τC, ηC)

respectively. Let F : B → C be a functor. Equivariance Data for F is an isomor-

phism ϕ : FτB
∼=−→ τCF of functors B → C such that for every object x ∈ B the

diagram

Fx Fτ 2
Bx

τ 2
CFx

ηC

FηB

φ2

commutes.

Let x be an object in a symmetric monoidal category C, then we call x∨ the

’dual’ of x.
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Finally, to make sense of an inner product being positive definite we must

find a categorical equivalent. We may do so for (semi) categories admitting certain

involutions.

Definition 3.1.9. Let (τ, η) be an involution on a symmetric monoidal category

C. A hermitian structure on an object x ∈ C is an isomorphism h : τx→ x∨ such

that the composition

τx ∼= τ((x∨)∨)
τ(h∨)−−−→ τ(τx)∨) ∼= τ 2(x∨)

η−1

−−→ x∨

is equal to h.

3.2 Topological Quantum Field Theory

With the basic tools of category theory we can now define TQFTs.

Definition 3.2.1. An n-dimensional topological quantum field theory (TQFT) is

a symmetric monoidal functor

F : Bordn → VectC

As a functor F assigns objects to objects, so

(n− 1)-dimensional manifolds M
F−→ vector spaces over C

The vector space F(M) is typically thought of as the analog of the state space HM

of the quantum system. We discuss other possibilities in chapter 6.

Secondly, morphisms are mapped to morphisms. For a TQFT that means

Bordisms Σ : M → N
F−→ linear maps F(Σ) : F(M)→ F(N)

Linear maps will be thought of as time evolution from M to N and objects will be

regarded as spatial slices of our space-time.
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3.2.1 Axioms

Again, the axioms of TQFT have been given and modified numerous times in

many different directions. The axioms listed here are those that are believed to be

most commonly used, for example in [6], or on nLab.

1. Naturality: An orientation preserving diffeomorphism d : M → N induces

an isomorphism F(M)→ F(N)

2. Multiplicativity: F comes with isomorphisms

F(∅) = C; F(M tN) ∼= F(M)⊗F(N)

compatible which are compatible with associativity of the tensor products

and with the symmetries γ.

3. Gluing of manifolds corresponds to composition of linear maps

F(Σ1 tM Σ2) = F(Σ1) ◦ F(Σ2)

where tM denotes gluing the disjoint union along the common boundary M .

In this case, M is the outgoing boundary of Σ1 and the in-going boundary

of Σ2.

4. F is involutory: F(M∨) ∼= F(M) where M∨ is M with the opposite orienta-

tion (its dual object) and F(M) is the dual space of F(M).

In the category Bordn every object M has a ”dual object” here denoted by

M∨. Additionally, bordisms are n-dimensional and objects are (n−1)-dimensional.

Each object comes with a normal orientation into n dimensions called the arrow

of time. The manifold M∨, then, is the same as M but with the arrows of time

reversed.
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With duals at our disposal we can define the evaluation map. We begin graph-

ically by imagining a cylinder. We label both ends, the incoming and outgoing

boundaries, as M . The cylinder itself is the bordism Σ. We now ”bend” the cylin-

der in half so that it looks like half of a doughnut pointing to the left (or down,

depending on ones preference).

In other words, the ”straight cylinder” with incoming and outgoing boundaries

M is the same as the bent cylinder with incoming boundary the disjoint union of

M and M with its opposite orientation. There are no outgoing boundaries in

this version, so the bordism is to the empty manifold. since we can associate the

oppositely oriented M with its dual according to axiom (4), we get a natural

pairing.

More rigorously, for the evaluation map can write

evM = [0, 1]×M : M∨ tM → ∅n−1.

We use a similar argument to understand the coevaluation map. The difference

is that now our cylinder is bent the other direction. Taking the incoming boundary

as the empty set and the outgoing boundary as the disjoint union of M and M∨

we write

coM : ∅n−1 →M∨ tM.

Since Bordn is a category, we have an identity morphism for every object. This,

combined with our description of the evaluation and coevaluation maps gives the

following result:

Proposition 3.2.1. Let F be a TQFT, then F(M) is finite dimensional for every

(object) M ∈ Bordn.
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This result is specific to TQFTs. We will see in chapter 4 that by adding

a geometric structure back onto our bordisms we lose this finiteness (hence the

transition from VectC to Hilb).

Corollary 3.2.2. For an object M in Bordn, F(M × S1) = dim(F(M))

3.3 Topological Reflection Positivity

As discussed in the introduction and chapter 2, reflection positivity is a key

component in any viable quantum field theory. Unitarity had been implemented

in the axiom systems of Atiyah and Segal but reflection positivity does not appear

to have been given the same importance in TQFT as it has in CQFTs. In 2016,

however, Dan Freed and Michael Hopkins published a paper focused on reflection

positivity via a Wick-rotated symmetry group Hn. Throughout this section we

follow the work done by Freed and Hopkins [11] and make use of their notation:

Mn: Minkowski space-time with isometry group of In ≡ Isom(Mn)

Gn: Global symmetry group

ρ: a homomorphism ρ : Gn → In

K: Internal symmetry group K = ker ρ

Gn: Global symmetry group modulo translations Gn/(translation subgroup)

Hn: compact real form of complexification Gn(C) of Gn

The symmetry group Hn fits into the short exact sequence of compact Lie

groups

1 K Hn On
ρn

We use this symmetry group to augment the definition of a TQFT as follows
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Definition 3.3.1. A topological field theory with Wick-rotated vector symmetry

group Hn is a symmetric monoidal functor

F : Bordn(Hn) −→ VectC

to the symmetric monoidal category of complex vector spaces under tensor product.

The previous properties of a TQFT still hold but now our objects are compact

(n − 1)-manifolds M without boundary equipped with an Hn structure P → M

and an arrow of time.

Definition 3.3.2. An Hn-structure is a pair (P, θ) consisting of a principal Hn-

bundle P → Σ equipped with an isomorphism of principal On-bundles BO(Σ)
θ−→

ρn(P ).

This structure is enough for the discussion throughout this chapter, but the

following definition will be important subsequently.

Definition 3.3.3. A differential Hn-structure is a connection Θ on P → Σ such

that θ maps the Levi-Civita connection to ρn(Θ)

Definition 3.3.4. An Hn-manifold is a Riemannian n-manifold equipped with an

Hn-structure. For an (n − 1)-dimensional manifold, an Hn-structure is given by

stabilizing the tangent bundle of M by summing with a trivial line bundle: R ⊕

TY → Y.

A morphism Σ : M → N in Bordn(Hn) is a compact n-manifold Σ with Hn

structure and an isomorphism of the boundary ∂Σ→M tN

In order to discuss reflection positivity for this theory we first pass from Hn to

the extended symmetry group Hn×{±1}. We then extend the principal Hn-bundle

P → Σ to a principal Hn × {±1}-bundle i(P ) → Σ where i is the inclusion map

28



i : Hn → Hn × {±1}. The isomorphism θ extends to an isomorphism θ̂ over the

principal bundles.

Definition 3.3.5. The opposite Hn-structure, Hop
n -structure (P ′, θ′), is the prin-

cipal Hn-bundle P ′ := i(P )\P → Σ and the restriction θ′ of θ̂ to {−1} × BO(Σ)

Definition 3.3.6. Define the involution of categories

βB : Bordn(Hn)→ Bordn(Hn)

as fixing the underlying manifold and involuting

Hnstructure→ Hop
n structure

Recall that each object M in Bordn has a dual M∨. We maintain this result

in Bordn(Hn). Along with the preceding definition we get

Proposition 3.3.1. For any object Y in Bordn(Hn), there is a canonical isomor-

phism βBY
∼=−→ Y ∨

The proof is given in [11]. The importance of this proposition is that every

object in Bordn(Hn) has a canonical hermitian structure.

Definition 3.3.7. Complex conjugation βC is an involution of categories

βC : VectC → VectC

Definition 3.3.8. A reflection structure on a functor F is equivariance data for

the involutions βB, βC

For every closed (n−1)-manifold M with Hn-structure we have an isomorphism

of vector spaces F(βCM) ∼= F(M). The isomorphisms between reflection structures

gives a hermitian form

F(evM) = hM : F(M∨)⊗F(M) ∼= F(βCM)⊗F(M) ∼= F (Y )⊗ F (Y )→ C
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Hermitian structure in hand, we are now able to define reflection positivity for

a topological quantum field theory.

Definition 3.3.9. A reflection structure is positive if the induced hermitian form

hY is positive definite for all Y ∈ Bordn(Hn)

For an object in the bordism category we may form its double. Visually, this

is done by first making a duplicate copy of the original manifold and reversing its

orientation. The two copies share a common boundary and so are glued along this

boundary. Rigorously, we define the double as follows.

Definition 3.3.10. Let Σ be a compact Hn-manifold with boundary, viewed as a

bordism ∅n−1 → ∂Σ. The double of Σ is the closed Hn-manifold ΣDbl = e∂Σ(Σ∨,Σ)

Reflection positivity in the topological setting gives immediate interesting re-

sults about topological invariants (though these will not be discussed here). Of use

for these results is the following fact:

Proposition 3.3.2. If a theory F : Bordn(Hn) → VectC admits a reflection

positive structure, then F(ΣDbl) ≥ 0 for all compact Hn-manifolds with boundary
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Chapter 4

Riemannian Functorial Quantum Field Theory

In this chapter we discuss the semi-category RBordn and results by Stephan

Stolz, Peter Teichner, Doug Pickrell, and most recently Santosh Kandel. The sem-

icategory RBordn differs from the category Bordn in that we do not necessarily

have identity morphisms. It is because of this that a number of results from TQFTs

do not extend.

Recall from chapter 3 that for a TQFT F , every object in the bordism category

came with an identity morphism. This led directly to the result dim(F(M)) <∞

for every object M . As it is our intention to move closer to CQFTs, we relinquish

this control over dimension. In a CQFT the space of states is infinite dimensional

and so a logical extension of the target category is Hilb.

Though we no longer obtain topological invariants from our functors, we will

see that the targets do indeed resemble the spaces seen in CQFTs. As such, it is

believed that the sequence

TQFT −→ RFQFT −→ CQFT

will provide valuable insights into complex problems in both physics and mathe-

matics.

4.1 Riemannian Functorial Quantum Field Theory

To move from TQFTs, we now give the metric back to our Riemannian mani-

folds. The semi-category RBordn differs from Bordn primarily in that the objects

are closed (n−1)-dimensional Riemannian manifolds M with metric. A morphisms

Σ : M → N is an n-dimensional compact oriented Riemannian manifold with ori-

entation preserving isometry M tN → ∂Σ.
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In order for composition of morphisms to be well defined, morphisms are re-

quired to have product metric near the boundary. This category is discussed in

length to varying degrees of rigor in [34], [27], and others.

The target category will be changed from VectC to Hilb. The objects of Hilb

are Hilbert spaces, as the name implies, and morphisms are continuous linear

operators. Hilb is still a symmetric monoidal category as defined in chapter 3, so

disjoint unions will again be mapped to tensor products.

We give the formal definition of an RFQFT as

Definition 4.1.1. A Riemannian Functorial Quantum Field Theory (RFQFT)

is a functor Z : RBordn → Hilb that maps disjoint unions into tensor products.

For the RFQFT developed in [19], the action functional addressed is given by

S(φ) =
1

2

∫
Σ

dφ ∧ ∗dφ+m2 ∗ φ2

where ∗ is the Hodge star operator associated to the Riemannian metric, m is a

positive real number, and φ is a field.

As we will see, target objects are the infinite dimensional Hilbert spaces L2(D′(M), dµ)

for suitable Gaussian measure on the manifold M with reproducing kernel Hilbert

space the Sobolev space W 1/2(M). The target morphisms are trace class operators.

Composition of bordisms leads directly to composition of operators and disjoint

union of objects is the tensor product of Hilbert spaces.

4.2 Assignments in an RFQFT

The ideas in this section come from various sources but most recently the works

of Kandel and Pickrell. For proofs of the theorems, lemmas, and corollaries in this

section see [19] and [27]. This material will be used extensively in the main results

in chapters 6 and 7. The goal of this section is to provide a recipe for the RFQFT

Z. To do so we first provide the analytical prerequisites.
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Let C∞(Σ) be the space of real valued smooth functions on a manifold Σ, ∆Σ

be the non-negative Laplacion on Σ, and m > 0. Assume M = ∂Σ 6= ∅. Let ν be

the outward unit normal vector to M and i : M → Σ be the inclusion map.

It is a fact that the Dirichlet problem

(∆Σ +m2)φ = 0; φ|M = η

has a unique solution φη ∈ C∞(Σ) for all η ∈ C∞(M). The unique solution is the

Helmholtz extension of η.

Definition 4.2.1. The operator on M defined by

DΣη =
∂φη
∂η

is called the Dirichlet-to-Neumann operator associated to the Helmholtz operator

∆Σ +m2

Let M be a closed oriented Riemannian manifold, m > 0, and s ∈ R. The

bilinear form on C∞(M) given by

〈f, g〉s =

∫
M

f(∆M +m2)sg dvol(M)

defines an inner product on C∞(M).

Definition 4.2.2. The Sobolev space W s(M) is the completion of C∞(M) with

respect to the inner product 〈f, g〉s

Lemma 4.2.1. Let Σ be a compact oriented Riemannian manifold and ∂Σ = M .

Then

αΣ = DΣ(∆M +m2)1/2

defines a continuous positive operator on W 1/2(M)

Corollary 4.2.2.

αΣ2 ◦ αΣ1 = αΣ2◦Σ1
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Definition 4.2.3. Let X be a Banach space with norm ‖x‖ and X∗ be the topo-

logical dual for X with with norm ‖ξ‖. A probability measure µ on (X,AX) is

Gaussian with variance σ2 if for every ξ ∈ X∗ and real number α,

µ[x ∈ X | ξ(x) ≤ α] =

∫ α

−∞

1√
2πσ

e−u
2/2σ2

du

Lemma 4.2.3. Let M be an object in RBordn and consider the inner product on

C∞(M) given by

〈f, g〉W 1/2(M) =

∫
M

f(∆M +m2)1/2g dvol(M).

Let µM be the corresponding Gaussian measure on the space of distributions on M ,

D′(M). The Sobolev space W 1/2(M) is the Cameron-Martin space of µM

Given a measure µ on a separable Banach space B, The Cameron-Martin space

is the associated reproducing kernel Hilbert space [4].

Definition 4.2.4. The Bosonic Fock space of a Hilbert space H is the Hilbert space

direct sum

∞⊕
n=0

Symn(H) = {(αn)∞n=0 | αn ∈ SymnH with
∞∑
n=0

‖αn‖2 <∞

where Symn(H) is the closed subspace of H⊗n that is invariant under the action of

the permutation group Sn. We use Symn(H) to denote the Bosonic Fock space of

H.

Theorem 4.2.4. Let X be a nuclear space, µ a Gaussian measure on X∨ and

H(µ) the reproducing kernel Hilbert space of µ. Then there is an isomorphism of

Hilbert spaces, the Segal-Ito isomorphism

S : L2(X∨, µ)→ Sym∗H(µ)∨

where Sym∗H(µ)∨ is the Bosonic Fock space of H(µ)∨
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Now, to an object M in RBordn we assign the Hilbert space of states

Z(M) = Sym∗W 1/2(M)∨

Thus, Z(M) is the L2 space of the Gaussian measure µ on D′(M) whose

reproducing kernel Hilbert space is W 1/2(M). The complexification of Z(M) is an

irreducible unitary representation of the standard Heisenberg group of C∞(M)⊕

C∞(M).

By construction we have:

• Z(∅) = R

• Z(M) = Z(M)∨

• Z(M tN) = Z(M)⊗Z(N)

Let Σ : ∅ → M be a morphism in RBordn. To make the proper assignment

and obtain a vector Z(Σ) ∈ Z(M) one must first address composition of operators.

For αΣ = DΣ(∆M +m2)1/2, we have the result

Lemma 4.2.5. αΣ − I is a trace class operator on W 1/2(M).

Definition 4.2.5. Let H be a real Hilbert space and let A : H → H be a continuous

positive operator. The Cayley transform of A is defined by

C(A) = (I − A)(I + A)−1

The Cayley transform of αΣ, C(αΣ), is a Hilbert-Schmidt symmetric operator

on W 1/2(M) with ‖C(αΣ)‖ < 1. Furthermore,

Cay := Exp(1/2C(αΣ)) ∈ Sym∗W 1/2(M)∨

If Σ : M → N is a morphism in RBordn, then - just as we did for a TQFT -

Σ can be seen as the morphism

Σ : ∅ → N tM
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in which case

Cay ∈ Z(M)∨ ⊗Z(N)

and we can additionally identify Cay with a Hilbert-Schmidt operator

Cay : Z(M)→ Z(N)

Definition 4.2.6. A projective representation T of a category C in Hilb assigns

to an object C ∈ C a Hilbert space T (C) and to a morphism P : C → D a

continuous linear operator T (P ) such that for any pair of morphisms P : C → D

and Q : D → E we have

T (Q ◦ P ) = λ(Q,P )T (Q) ◦ T (P )

where λ(Q,P ) is a nonzero complex number.

Theorem 4.2.6. The assignment M → Z(M) where M is an object in RBordn

and Σ → Cay where Σ : ∅ → M is a morphism in RBordn defines a projective

representation of RBordn in Hilb

The proof, in [19], gives a number of computations which make calculating λ

possible.

The next step is to deprojectivize. Starting with morphisms, for Σ : ∅ → M

define

Z(Σ) =
1

detζ(∆Σ,D +m2)1/2 · detζ(2DΣ)1/4
· Cay

‖Cay‖

where ∆Σ,D is the operator ∆Σ with Dirichlet boundary condition. The zeta reg-

ularized determinant detζ is an infinite dimensional extension of the determinant.

Definitions and computations for the zeta regularized determinant of the Laplacian

can be found in [20].

Lemma 4.2.7. Let Σ : ∅ →M , then

det(αΣ) =
detζ(2DΣ)

detζ(2(∆M +m2)1/2)
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Theorem 4.2.8. Let Σ1 : M → N and Σ2 : N → L be two morphisms in RBordn,

then

1. There exists a nonzero constant CΣ2,Σ1 such that

Z(Σ2) ◦ Z(Σ1) = CΣ2,Σ1Z(Σ2 ◦ Σ1)

2. When n is even, CΣ2,Σ1 = 1

Corollary 4.2.9. Suppose that Σ is a closed n−dimensional oriented manifold

and n is even. Assume that Σ = Σ2 ◦ Σ1 in RBordn where Σ1 : ∅ → M and

Σ2 : M → ∅. Then

Z(Σ) =
1

detζ(∆Σ +m2)1/2

4.3 RBordn(Hn)

The semi-category RBordn(Hn) will be the semi-category RBordn enriched

with an Hn-structure as defined in chapter 3. The objects in RBordn(Hn) are

now four-tuples M ≡ (M,Hn, g,∇) where M is the manifold, Hn the tangent

structure, g the metric on Hn, and ∇ the connection on the tangent structure.

The connection will be assumed to be compatible with the Levi-Civita connection.

Morphisms Σ : M → N in RBordn(Hn) will be assumed to have product metric

near the boundary.

All results from the previous section carry through with only minor adjust-

ments. To an object in RBordn(Hn) we assign the Hilbert space

Z(M) = Sym∗W 1/2(M,Hn)∨.

To a morphism Σ ≡ (Σ, Hn, g,∇) such that

Σ : ∅ → (M,Hn, g,∇)
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we assign the vector

Z(Σ) =
1

detζ(∆Σ,D +m2)1/2 · detζ(2DΣ)1/4
· Cay

‖Cay‖
.

As in the previous section, this defines an RFQFT for all dimensions but is

projective when the dimension is odd.
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Chapter 5

The RP Correspondence

We come now to the main results. We briefly state some preliminary results

on TQFTs and RFQFTs, building upon the works of Freed/Hopkins, Kandel, and

others. We then extend our definition of an RFQFT to include an Hn-structure.

In the second section we prove the main theorem: There is a correspondence

between Reflection Positive Hilbert Spaces and RFQFTs.

5.1 Functorial Reflection Positivity

We begin by extending the definition of reflection positivity to include non-

topological theories. Let C and D be symmetric monoidal (semi)categories with

involutions. Let Z be a functor Z : C → D with equivariance data.

Definition 5.1.1. A functorial quantum field theory Z is said to be Reflection

Positive if its induced hermitian form hM is positive definite for all M in the

source category.

Lemma 5.1.1. There is a natural hermitian form on the category RBordn.

Proof. Let τ be the functor on RBordn that gives a dissecting reflection for each

manifold. Since reflections are isometries, τ 2M is isometrically isomorphic to M .

Hence τ gives an involution on RBordn. Swapping the arrow of time is a reversal of

the normal direction, another isometry. Hence there is a natural isometric isomor-

phism between dissecting reflections and orientation reversal satisfying definition

3.1.9. In other words, there is a natural hermitian structure on RBordn.

hM : τM →M∨

For the Riemannian FQFT of the previous chapter we obtain a deeper result.
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Lemma 5.1.2. Let Z : RBordn → Hilb be the Riemannian functorial quantum

field theory such that Z(M) = Sym∗W 1/2(M)∨. Then Z is a reflection positive

functorial quantum field theory.

Proof. Let M be an object in RBordn. From 5.1.1, there is an involution τ on

RBordn which gives a dissecting reflection for each manifold and gives a natural

hermitian structure. Let θ be the involution on L2(M) defined by θf = f ◦τ . Then

the induced hermitian structure

hM : Z(τM)⊗Z(M)→ R

is the pairing in the Sobolev space

〈θf, f〉−1 = 〈θf, Cf〉

From [15] and [1] we know that C = (∆M +m2)−1 is a reflection positive operator

for suitable Riemannian manifolds. So, for each manifold M we have 〈θf, f〉s ≥ 0

and Z is a reflection positive theory.

When combined with proposition 3.3.2, this gives the following result.

Corollary 5.1.3. For the RFQFT Z of chapter 4, Z(ΣDbl) ≥ 0 for all compact

manifolds with boundary.

Suppose Z is an FQFT that is not reflection positive. Collect all objects M

in the source category C such that the induced hermitian form is positive semi-

definite. Additionally, take all morphisms between these objects. We call this col-

lection RPn.

Definition 5.1.2. A subcategory S of a category C is a collection of objects and

morphisms from C such that for each morphism A in S the domain and codomain

are in S. Each object comes with its identity morphism. For each composable pair

of morphisms A : X → Y and B : Y → Z, its composite BA : X → Z is in S.
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Proposition 5.1.4. RPn is a subcategory for Bordn and subsemicategory for

RBordn.

Proof. The hermitian form takes in one object at a time, along with its dual, and

disregards other morphisms. If a morphism is in RPn, its source and target are in

RPn by construction. For objects in RPn, morphisms between these objects are

unnaffected by the hermitian structure and so are included, i.e. composable mor-

phisms are still composable. Thus for Bordn, RPn is a subcategory. For RBordn,

RPn would not include identity morphisms unless they were included in the parent

category. Therefore RPn is a subsemicategory of RBordn.

Let Z : Bordn → VectC be an FQFT. The reflection positive theory obtained

by restricting Z to RPn will be denoted ZRP . Note that if the theory is topological

and already reflection positive then RPn = Bordn. We may therefore restrict our

attention to RP theories in a natural way.

5.1.1 RFQFTs with Hn-structure

Throughout this section we apply results from chapter three to the RFQFT in

chapter four. Recall from chapter four the semi-category RBordn(Hn). The objects

in RBordn(Hn) are four-tuples M ≡ (M,Hn, g,∇) where M is the manifold, Hn

the tangent structure, g the metric on Hn, and ∇ the connection on the tangent

structure. The connection will be assumed to be compatible with the Levi-Civita

connection. Morphisms Σ : M → N in RBordn(Hn) will be assumed to have

product metric near the boundary.To an object in RBordn(Hn) we assign the

Hilbert space

Z(M) = Sym∗W 1/2(M,Hn)∨.

To a morphism Σ ≡ (Σ, Hn, g,∇) such that

Σ : ∅ → (M,Hn, g,∇)
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we assign the vector

Z(Σ) =
1

detζ(∆Σ,D +m2)1/2 · detζ(2DΣ)1/4
· Cay

‖Cay‖
.

Proposition 5.1.5. Let M ∈ RBordn(Hn), ε > 0. Let Θ be a dissecting reflection

of (−ε, ε)×M . Then Θ lifts to an involution on the tangent structure and there is

an isometric isomorphism between an Hn involution and time reversal

βtM →M∨

Hence, there is an induced hermitian form coming from the Hn structure.

Proof. The proof of this proposition in terms of manifolds without metric is done

in [11]. The manifold M can be seen as embedded in (−ε, ε)×M and an involution

at this level lifts to the frame bundle. The difference here is that ”not every germ

admits a reflection which is an isometry.” This issue is resolved by demanding that

our involution is a dissecting reflection of the manifold (−ε, ε)×M .

Combining this result with the previous section, we get the following corollary:

Corollary 5.1.6. ZRP (XDbl) ≥ 0 for all compact Hn-manifolds with boundary

5.2 RP Correspondence

The main result of this work is the classification of all reflection positive Hilbert

spaces in terms of functorial quantum field theories.

RPHS ⇐⇒ RPFQFT

Theorem 5.2.1. Suppose M is a complete, connected manifold. Given a reflec-

tion positive Hilbert space (E , E+, θ) corresponding to L2(M), there is a reflection

positive functorial quantum field theory ZRP such that

1. Ê is the target object of ZRP
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2. E+ and θ are recoverable from Ê

Similarly, every reflection positive functorial quantum field theory generates reflec-

tion positive Hilbert spaces

Proof. Let M be a connected complete Riemannian manifold, C = (∆M +m2)−1,

and τ be a dissecting reflection, then we have the reflection positive Hilbert space

(E ,E+, θ) where:

• E is the completion of of L2(M) with respect to the inner product 〈Cf, g〉L2(M)

• E+ is generated by C∞C (M+)

• θ is an involution on L2(M) defined by θf = f ◦ τ

From lemma 5.1.1 τ is an involution on RBordn giving a natural hermitian

structure. By lemma 5.1.2, the Riemannian FQFT of chapter 4 is a reflection

positive theory. Hence ZRP ≡ Z.

Similarly, let Z : RBordn → Hilb be an equivariant functor for involutions τ

and θ, respectively. For an object M ∈ RBordn

ev : τM tM → ∅n−1

Applying the RFQFT gives

Z(ev) : Z(τM tM) ∼= Z(τM)⊗Z(M) ∼= θZ(M)⊗Z(M)→ R

Suppose Z = ZRP is a reflection positive theory, then the induced hermitian form

〈θ·, ·〉 ≥ 0.

Then E+
∼= Z(M) and we have an RPHS (E ,E+, θ)

Hence, for every Riemannian manifold M , the functorial QFT corresponding

to its (E ,E+, θ) is given by that of chapter 4.
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Chapter 6

Examples and Applications
6.1 Iterated Doubles

Recall from chapter 3 the double of a compact manifold with boundary:

Definition 6.1.1. Let X be a compact n-manifold with boundary viewed as a

bordism ∅n−1 → ∂X and let σ be an involution. The double of X is

Dbl(X) = X ∪∂X σ(X)

To move from doubles to iterative doubles, we employ the following construc-

tion. Begin with the compact 1−manifold X1 and construct the double Dbl(X1).

We then view the closed manifold Dbl(X1) as a boundary and construct the bor-

dism ∅2 → Dbl(X1). Label the new compact manifold X2. Again, we construct

the double Dbl(X2) and then continue this process indefinitely. Formally, we define

iterative doubles as follows.

Definition 6.1.2. An iterative double of X is a sequence of null-cobordant mani-

folds described by the process

X = fX1 := X1 → Dbl(X1)
∅2

−→ X2 → Dbl(X2)→ · · · → Dbl(Xn−1)
∅n

−→ Xn → · · ·

We will refer to the truncated sequence of an iterative double as iterated and

will be denoted

X = fnX1 := X1 → Dbl(X1)
∅2

−→ X2 → Dbl(X2)→ · · · → Dbl(Xn−1)
∅n

−→ Xn

Remark 6.1.1. Every n-sphere is the boundary of an iterated double. Every n-ball

is an iterated double.

To see this, create a one-dimensional disk D1 (a line segment) in R of radius

r. Copy this disk to create a second of the same length. Connect the disks by
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identifying the endpoints and form the circle S1. Fill in the circle to create the

disk D2. Copy the new D2, connect the boundaries, and create the sphere S2. Fill

in the sphere to create the ball D3, copy, connect, and continue.

6.1.1 Measurements

Throughout this section, k will denote the dimension of the ambient space Rk.

Let Vk(r) denote the volume of a sphere in dimension k with beginning radius r

(i.e., V3(r) is the volume of S2, the sphere in R3). Similarly, let Sk(r) denote its

surface area. Γ(x) is the usual gamma function and B(x, y) is the beta function.

Proposition 6.1.1. Given a starting radius r, the radius Rk of a sphere in Rk

taken as an iterated double is given by

Rk =
k−1∏
i=1

(
22−i

iB( i
2
, i

2
)

)1/i

r

Proof. Begin with the interval D1 of radius r and volume (length) 2r. Then the

iterated k-ball Dk is given by the sequence

Dk ≡ fkD
1 := D1 → Dbl(D1) ≡ S1 → D2 → · · · → Dk−1 → Dbl(Dk−1) ≡ Sk−1 → Dk

Let Rk denote the radius of a sphere in Rk, then Sk+1 ≡ Dbl(Dk) gives

Sk+1(Rk+1) = 2Vk(Rk)

Using the well known formulas for volume and surface area, we have

2π(k+1)/2

Γ(k/2 + 1/2)
Rk
k+1 = 2

πk/2

Γ(k/2 + 1)
Rk
k

The duplication formula for the gamma function is

Γ(z)Γ
(
z + 1

2

)
= 21−2z

√
πΓ(2z)
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Using the substitution z = k/2 gives

Rk
k+1 =

Γ(k/2 + 1/2)

2π(k+1)/2

2πk/2

Γ(k/2 + 1)
Rk
k

=
21−k√πΓ(k)

2π(k+1)/2

2πk/2

Γ(k/2)Γ(k/2 + 1)
Rk
k

= 21−kΓ(k)
1

k
2
Γ(k/2)Γ(k/2)

Rk
k

Cleaning up both sides and substituting in the beta function

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)

gives

Rk+1 =

(
22−k

kB(k/2, k/2)

)1/k

Rk

=

(
22−k

kB(k/2, k/2)

)1/k (
22−(k−1)

(k − 1)B((k − 1)/2, (k − 1)/2)

)1/(k−1)

Rk−1

...

=
k∏
i=1

(
22−i

iB( i
2
, i

2
)

)1/i

r

Where the second line onward is achieved by repeating the process forRk, Rk−1,

etc.

Using this iterated radius in the well known volume and surface area formulas,

we find the following simple results

Corollary 6.1.2. The volume of a sphere in Rk taken as an iterated double is

given by

Vk(r) =
πk/2

Γ
(
k
2

+ 1
) k−1∏
i=1

(
22−i

iB( i
2
, i

2
)

)k/i
rk

Corollary 6.1.3. The surface area of a sphere in Rk taken as an iterated double

is given by

Sk(r) =
2πk/2

Γ
(
k
2

) k−1∏
i=1

(
22−i

iB( i
2
, i

2
)

)(k−1)/i

rk−1
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Now, suppose we begin with a unit sphere in an arbitrary dimension. If we

consider the sphere as an iterated double, then setting Rk equal to 1, gives us

Corollary 6.1.4. To obtain an iterated unit sphere in Rk, the starting radius must

be

r =
k−1∏
i=1

(
2i−2iB

(
i

2
,
i

2

))1/i

This process can be repeated for any manifold which admits a double. Care

must be taken if one allows for vector fields. In what follows, this will not be needed

as we will work backwards. Rather than constructing iterated doubles, it will be

useful to decompose a given structure into its constituent parts.

6.2 n = 4

Let us now put this iteration to use. Consider the functor

Z : RBordn → Hilb

for n = 4. Our objects are now finitely many disjoint unions of closed, simply-

connected 3-manifolds, hence 3-spheres.

Remark 6.2.1. There are multiple methods to obtain an extended QFT. One such

method is to let Sl be a closed oriented Riemannian manifold of dimension one,

i.e. a circle of length l. Each circle induces a functor

Comp : RBordn → RBordn+1

via product with Sl. This approach certainly has its uses. In the RFQFT described

in chapter 4, each theory of odd dimension is projective. If one were to induce the

functor Comp, we would get the chain

Fcomp := Z ◦ Comp : RBordn(odd)→ RBordn+1(even)→ Hilb.
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Doing so skirts the projecitivization issue but raises new questions of physical

meaning as well as sewing procedures. For n = 4 the RFQFT functor developed is

not projective, so there is no need.

Additionally, we may take the approach similar to ”extended topological quan-

tum field theory” and use n-categories. Unfortunately there is no one agreed upon

definition for n-categories. For simplicity, we will say that an n-category is a cate-

gory with

• Objects

• 1-morphisms between objects

• 2-morphisms between 1-morphisms

• . . .

• n-morphisms between (n-1)-morphisms

For a 2-category, this means that morphisms can be composed along objects

while 2-morphisms can be composed either along objects or 1-morphisms in a way

satisfying an interchange law.

6.2.1 RPnext

To create an extended theory, we will employ iterated doubles and skirt the

issue of n−morphisms. We begin working directly with 3-spheres by assigning each

to its associated Sobolev space as in chapter 4.

We then consider each 3-sphere to be an iterated double

•+
Dbl−−→ S0 ∅1

−→ I
Dbl−−→ S1 ∅2

−→ D2 Dbl−−→ S2 ∅3

−→ D3 Dbl−−→ S3.

We note that, theoretically, each sphere (Sn such that n = 1, 2, 3) comes with

an associated theory

Z : RBordn → Hilb
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and so for each we get a corresponding Sobolev space W−1/2(Sn). Thus, we have

the following diagram:

S0 S1 S2 S3

L2(R) W−1/2(S1) W−1/2(S2) W−1/2(S3)

Z1 Z2 Z3 Z4

Remark 6.2.2. The assignment S0 Z1−→ L2(R) is important enough to warrant its

own section and so will be justified next. For now, we take this as fact.

Now take the unit 3-sphere in RBordn for n = 4 and consider a hyperplane

reflection. Reflection positivity on the sphere is addressed in [10] and so this raises

no issues. We then take S2 as the boundary of this reflection and decompose the

3-sphere into S3 = D3
+ t S2 tD3

−.

We also need the following lemma along with the fact that

Lemma 6.2.1. Let M be a manifold, Ω ⊂ M open, and let H1
0 (Ω) be the closure

of C∞0 (Ω) in H1(M), then

H−1(M) = (−∆ +m2)H1
0 (ext Ω)⊕H−1

∂Ω(M)⊕ (−∆ +m2)H1
0 (Ω)

Using this decomposition to restrict measures as in [27] and the preceding

lemma from [9], we decompose our functions on W−1/2(S3) as

fS3 = (−∆ +m2)fD3
+

+ fS2 + (−∆ +m2)fD3
−

Since our theory is reflection positive, f(S2) is in the null space of the RPHS.

We now consider f(S2) as part of an n = 3 theory. We note that the projective

nature of an n = 3 theory is an obstruction to the next decomposition. As such,

we sidestep as in the following diagram
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S0 S1 S2 S3

L2(R) L2(S1, dµ) L2(S2, dµ) L2(S3, dµ)

L2(R) W− 1
2 (S1) W− 1

2 (S2) W− 1
2 (S3)

Z1 Z2 Z3 Z4

Where dµ is the Gaussian measure dµC , the down left arrow is our intermediary

assignment, and the down-right arrow is the Segal-Ito isomorphism for n = 1, 2, 3.

Note that we could skirt the issue by noting that each hyperplane represents

an object in the previous theory. As we are trying to decompose by cycling through

H1, we believe that passing through L2 is more natural.

Now, we take f(S2) and decompose as before.

fS2 = (−∆ +m2)fD2
+

+ fS1 + (−∆ +m2)fD2
−

Iterating, we get

fS3 = f•+ +
3∑
i=1

(−∆Di +m2)fDi
±

We refer to this as an iterated function. If our sequence of theories is reflection

positive then we refer to this as the reflection positive decomposition of f .

This is the starting point of future work, the current direction for this material

is to analyze this for measures.

Definition 6.2.1. Let dµC be a Gaussian measure on Sn with mean zero and

covariance (−∆ +m2)−1. Suppose dµC is reflection positive and can be written as

dµC(Sn) = dµC(R) +
n∑
i=1

(−∆Di +m2)fDi
±
.

We call this the completely reflection positive decomposition of dµC.

Suppose now that we are given a Gaussian measure with a completely reflec-

tion positive decomposition. We mod out equivalence classes by moving to the
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corresponding Cameron-Martin space for each measure in the decomposition. We

now define an iterated reflection positive FQFT.

Definition 6.2.2. An iterated reflection positive functorial quantum field theory

is a functor

RPnext : RBordn → Hilb

mapping disjoint unions into tensor products such that

1. RPnext(M) = W− 1
2 (M)

2. RPnext(S
n) = W− 1

2 (Sn)

3. For each n-sphere, the corresponding Gaussian measure has a completely

reflection positive decomposition

Corollary 6.2.2. An iterated reflection positive functorial quantum field theory

induces a reflection positive theory for each dimension k < n.

This corollary once again puts the impetus back on measures and gives a

functorial way of classifying measures.

6.3 n = 1:

The one dimensional case for topological theories is a good exercise for begin-

ning category theorists. It has been shown that there is an equivalence of groupoids

between one dimensional TQFTs and and the category of Dual Pairs (over a field

K) [6].

Question: Is there an equivalence of categories for these one-dimensional

RFQFTs?

To start with, in odd dimension our Riemannian FQFT would be projective

according to [19]. We show that this issue is avoided entirely in dimension one.

Throughout this section we consider the RFQFT Z : RBord〈0,1〉 → Hilb.
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The objects of RBord〈0,1〉 are points with orientation ({•+} and {•−}) and their

finite (possibly empty) disjoint unions. Morphisms between points become oriented

intervals with length. Suppose the positively oriented point has been assigned the

space X = Z(•+). An involution on the point flips the orientation and conjugates

the assigned space so that X∨ = Z(•−).

Consider the morphism Il/2 : •+ → •+ with length l/2. Il/2 is a one dimensional

compact Riemannian manifold. We can view Il/2 as the bordism Il/2 : ∅ → ∂Il/2.

Preforming the doubling procedure, we get the closed manifold

S1 = ev∂Il/2(I
∨
l , Il/2).

Remark 6.3.1. A future direction of work is to reproduce reflection positivity on the

circle using the n = 1 theory. A logical next step would be to enforce Z(S1) ≥ 0.

The simplest way to do so would be to state that Z be a reflection positive theory

as a condition.

6.3.1 Assignments

Recall that one of the goals of a QFT is to make sense of the path integral

Z =

∫
F

e−S(φ)/~Dφ.

In the n = 1 theory we have M = pt and so a field on M is a real variable, the

space of field configurations is R. So, the path integral becomes

Z =

∫
R
e−S(φ)/~dφ

We therefore assign Z(•+) := L2(R). We view L2(R) as the rigged Hilbert space

between test functions and distributions (i.e. we have a Gelfand triple (D,L2, D′)).

Since the space of fields is finite dimensional, we do not have to worry about

the zeta regularized determinant. We assign

Z(Σ) = det

(
d2

dt2
|Σ +m2

)−1/2

.
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For intervals of length l we impose mixed boundary conditions (B) and make the

assignment

Z(Il) = det

(
d2

dt2
|Il,B +m2

)−1/2

.

6.3.2 Quantum Mechanics

Clearly, Z : RBord〈0,1〉 → Hilb is a 0+1 quantum field theory. As an RFQFT,

manifolds are mapped to (an isomorphism of) the space of states for a constructive

QFT. In practice, an 0 + 1 QFT is the playground of burgeoning theorists as a

way to test theories and practice techniques. The reason for this is simple, a 0 + 1

QFT is quantum mechanics.

Having made the proper assignments, we can see that the RBord1 theory

reduces to Quantum Mechanics. In particular, the bordism

S1 = ev∂Il/2(I
∨
l , Il/2)

gets mapped via Z to

Z(S1) = det

(
d2

dt2
|S1 +m2

)−1/2

.

In other words, we have periodic boundary conditions and recover the free particle

on a ring.

Note that this is only slightly different from the usual assignment for a Eu-

clidean field theory which makes the assignment Z(It) = e−t∆ and Z(S1) =

tr(e−t∆). The two versions have a natural equivalence and we believe these as-

signments to be more appropriate for RBord1.

6.4 n = 2:

Once we pass into RBord2 our objects become closed one dimensional man-

ifolds and so we are dealing with collections of circles. According to the RFQFT

theory, we are not concerned with a projective representation since we are in even
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dimension. Thus, we can focus on obtaining the results one would expect of a

CQFT.

In the exposition [24], the connection between reflection positivity on the circle

group and KMS states was described. Additionally, the case n = 2 was done in

[27] for the P (φ)2 interaction using the RFQFT described in chapter 4. Indeed,

the dissertation and subsequent paper by Kandel is an offshoot of that work.

Furthermore, Dimock [9] used the Markov property to give sewing procedures for

circles, due in great part to reflection positivity.

Therefore, it appears that RBord〈1,2〉 is a logical backdrop for understanding

the connection between constructive and functorial reflection positivity. This road

will be traveled in future work and no more will be said about this case.

6.5 Continued Research

The goal of this research program is to achieve a complete classification of

constructive quantum field theories via functorial quantum field theory. The hope

is that 4d QFT could be investigated from yet another blend of directions so that

one day soon we have a working theory. To continue in this direction, there are

two primary questions that must be addressed.

6.5.1 Constructing ZRP

Suppose (E ,E+, θ) is an RPHS. Both E+ and θE+ are objects in the category

Hilb. Is it possible to construct an RFQFT Z : RBordn(Hn)→ Hilb? Consider

the following diagram:

M Ê

E+

Z

?
Q

Is there a way to factor through E+ in a way similar to passing through the

category TV Spol on the way to Hilb?
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6.5.2 Constructing ZC

Throughout this work, preference has been given to the Laplace operator. As

a reflection positive operator, it ensures the corresponding measure is reflection

positive and so the theory can be analytically continued to a Lorentzian measure.

Along with the zeta regularized determinants, it was shown in [19] and [27] that

Z : RBordn → Hilb defines a functorial quantum field theory.

Along this vein, we consider the following: let C be an arbitrary reflection

positive operator on a manifold M . Does every C induce a functorial QFT? Given

C, is there a general prescription of sewing procedures? Under what conditions?

If there are reflection positive operators that do not induce FQFTs, in what way

can the obstructions be classified?

6.5.3 The Forgetful Functor

Finally, we note that there is a forgetful functor from RBordn to Bordn as

well as a forgetful functor from Hilb to VectC. In the first case, we drop the metric

from all manifolds and the category becomes completely topological. In the latter,

we drop the Hilbert structure and consider vector spaces in general. We get the

following diagram:

RBordn Hilb

Bordn VectC

FQFT

For For

TQFT

This raises a number of questions. First, can this diagram be expanded? Even

in the Stolz/Teichner program there is an intermediary category of polarized topo-

logical vector spaces. In the works of Pickrell and Kandel we move from these to

the category of Hilbert spaces. What special structures cause this shift?

Second, if we begin in RBordn and pass to Bordn via the forgetful functor,

we then end up in finite dimensional vector spaces. Going the other direction, the
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forgetful passage from Hilb to VectC does not cause this. Essentially, this diagram

is not commutative. The question, then, is does there exist some intermediary step

that would make such a diagram commute?

Lastly, and most philosophically, to what extent can physical theories be de-

scribed by an expansion of this diagram? If low energy theories are described well

by topological QFTs and higher energy theories described by constructive QFTs,

can careful analysis of this diagram be a way of understanding these physical the-

ories in general?
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