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ABSTRACT

Over the past several years, several papers have been published on the capacity of 

Hopfield neural networks. It has been shown that, using the Hebbian rule, the capacity 

of the Hopfield model is approximately N/41ogN. The number of patterns one can 

store in a neural network, however, can be greatly increased by using learning algo­

rithms other than the Hebbian rule such as the delta rule. The motivation behind this 

dissertation is to study, both analytically and experimentally, the information capacity 

of various neural network models using a modified version of the delta-rule algorithm.

This modified version of the delta-rule algorithm allows one to store significandy 

more patterns than previously thought possible. Both analytical and experimental 

results are presented on the number of patterns one can expect to be able to store using 

this algorithm. The analytical results suggest that the probability of separating m pat­

terns of N bits each is about 50% for m = 2N; experimental results show that the pro­

bability of storing m patterns of N bits each is about 50% for m = 1.5N.

Modifications of the Hopfield model including a non-binary model, a shift- 

invariant model, and models that use higher-order terms are also discussed. Learning 

rules for these models are presented along with discussion of their capacity.

Also, the trade-off between capacity and performance of neural networks is dis­

cussed along with a further modification of the delta rule that leads to significant 

improvement in performance.



CHAPTER 1. Introduction

Artificial neural networks have become very popular lately among computer scientists, 

cognitive scientists, engineers, psychologists, solid state physicists, and others. This 

popularity is due, in part, to the fascinating similarities between artificial neural net­

work memory and human memory. Like the brain, an artificial neural network is an 

associative memory. As such, it can be used as a content-addressable memory, as a 

model of a set of related objects (i.e., a semantic net), as a tool in pattern recognition, 

and as a tool in solving optimization problems, among others. While the brain contains 

about a trillion neurons, however, state-of-the-art neural networks contain no more than 

a few thousand neurons. Like the first generation of computer users working with only 

a few kilobytes of memory, the first generation of neural network users are severely 

limited in the amount of memory available. Unlike the first generation of computer 

users, however, neural network users are often unfamiliar with, or even misinformed 

about, the information capacity of their systems. The motivation behind this disserta­

tion is to study, both analytically and experimentally, the information capacity of vari­

ous neural network models.

Over the past several years, several papers have been published on the capacity of 

neural networks. Hopfield predicted from experimental results1 that the number of pat­

terns that one could store in a neural network of N neurons using the Hebbian weight 

matrix is approximately 0.15N. McEliece et al. have shown2 that the capacity of the 

Hopfield model is approximately N/41ogN. They also assume that the Hebbian rule is 

used to determine the weight matrix T.

1



The number of patterns one can store in a neural network can be greatly 

increased by using learning algorithms other than the Hebbian rule such as the delta 

rule. Abu-Mostafa and and St. Jacques3 claimed that the number of arbitrary patterns 

that one can store in a Hopfield network of N neurons is bounded above by N regard­

less of the method of obtaining the weight matrix. They define the capacity of a 

neural network as the largest number m such that every possible set of m patterns that 

one wishes to store can be stored successfully in the neural network. Several serious 

problems with this definition will be discussed.

Venkatesh4 also calculated theoretical bounds on the capacity that are unrelated to 

the method of obtaining the connection matrix. He has calculated what he calls the 

"epsilon capacity" of neural networks, which he defines as "the largest rate of growth 

of the number of associations that can be stored such that, with high probability, the 

retrieved memory after one synchronous step differs from the desired associated 

memory in no more than (essentially) a fraction E of components." He shows that for 

large N, and with 0 < e < lA, the epsilon capacity Ce(N) is at most 2N/(1 - 2e). 

Whereas Abu-Mostafa and St. Jacques and Venkatesh present theoretical limits on the 

number of patterns one can store in a neural network, this dissertation discusses practi­

cal limits on the number of patterns one can store. Both experimental and analytical 

results are presented on the capacity of neural networks using a modification of the 

delta rule.

Since the probability of storing sets of m patterns of N bits each depends on the 

ability of a single neuron to separate sets of m patterns of N bits each, an upper bound
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on the number of patterns that one can store can be determined by finding a bound on 

the number of patterns one neuron can separate. Analytical results show that the proba­

bility of one neuron successfully separating m patterns of N neurons each is greater 

than 50% if m is less than 2N and less than 50% if m is greater than 2N. If one 

defines capacity in terms of the probability of success at storing a set of patterns, one 

could say that the 50% capacity, or C50%, has an upper bound of 2N. Experimental 

results show that C50% is about 1.5N using the modified delta-rule algorithm presented 

in this dissertation, provided N is not too small (not less than about 50).

1.1 Physiology

The neurons of artificial neural networks are, of course, simplistic models of the neu­

rons (or nerve cells) of our nervous system. Our brains contain about 1012 nerve cells. 

A typical nerve cell has inputs from hundreds or thousands of other cells, and sends its 

output, in turn, to hundreds or thousands of cells.5 Thus, the total number of intercon­

nections, or synapses, is about 1014 to 1015. The nucleus of the cell, along with the 

mitochondria and other organelles, is contained in the cell body, Figure 1. The den­

drites are the branching fibers coining off of the cell body that serve to pick up signals 

sent from other neurons. The axon is the cylinder-shaped nerve fiber coming off the 

cell body, generally a few millimeters in length. The cell membrane encloses the entire 

cell.

Synapses can be either excitatory or inhibitory. At any given time the membrane 

potential is the result of all the excitatory and inhibitory influences added together. At
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rest the membrane potential is about 70 millivolts, positive outside. When the mem­

brane potential is depolarized from 70 millivolts to about 40 millivolts, the process 

becomes regenerative, and the depolarization continues all the way to 20 millivolts, 

negative outside. This pulse starts on the axon close to where it joins the cell body and 

travels along the axon away from the cell body toward the terminal branches at a rate 

of 0.1 to 10 or so meters per second. The magnitude of the pulse is determined by the 

neuron itself and not by the intensity of the depolarization that sets it going. The cells 

feeding into the neuron only effect the rate of fire of the cell.

1.2 Layout of Dissertation

In Chapter 2, the Hopfield neural network model in its simplest form is presented. The 

chapters that follow will deal with various modifications of this model. Chapter 3 

addresses the capacity of the Hopfield model using the delta rule. In Chapter 4 a non- 

binary model is presented. In particular, models that allow each neuron one of four 

possible states are discussed. Chapter 5 discusses a neural network model that allows 

for shift-invariant pattern recognition. The final chapter, Chapter 6, concludes the 

dissertation.



CHAPTER 2. Hopfield neural networks

Hopfield made a major contribution to the field of neural networks in 19821 when he 

pointed out that certain collective computational properties emerge-when many very 

simple neurons were connected together. He pointed out that the outputs of the N 

binary neurons could be considered a point in N-dimensional state space and that 

updating a neuron’s output using his update rule would always result in decreasing the 

energy of the network, leading, eventually, to an energy minimum. The energy minima 

in state space can be thought of as stored memories. Since applying the update rule 

will not change the state of such a stored memory, it is a stable state of the network. 

If a pattern similar to a particular stored memory is supplied to the network by setting 

the outputs of the neurons to that pattern, continuously updating the network until an 

energy minimum is reached can "retrieve" that stored memory. Failure to retrieve the 

stored memory will occur if the energy minimum reached is a stable point other than 

the desired stored memory. The network can function as a content-addressable 

memory (CAM) by retrieving a pattern given only part of it, and it can function as an 

error detection and correction device by retrieving a pattern given a noisy version of it. 

It can also serve as a pattern classifier by storing prototypes of a pattern class and 

retrieving the prototype when other members of the class are presented.

The stable points are sometimes referred to as attractors. The attraction basin of 

an attractor is the set of states which have the attractor as the next stable state reached 

after continuously updating the network. Since the next stable state reached depends 

on the order in which the neurons are updated, the attraction basin to which a pattern

6



belongs depends on the manner in which the neural network is updated.

2.1 Update Equations of the Hopfield model

Neural network models generally assign a weight to each synapse, positive for excita­

tory synapses and negative for inhibitory synapses. Artificial neurons are usually given 

a value of +1 if they are firing (or ON) and either 0 or -1 if they are not firing (or 

OFF). Whether a neuron is ON or OFF depends on the summation or integration of 

each input neuron times its synaptic weight. Only if this sum is greater than a particu­

lar threshold does the neuron fire.

The most common neural network model is the Hopfield model. The Hopfield 

model, in its simplest form, uses the following equations to update the output of neu­

ron i:

where Vj is the output of neuron i, Ty is the weight associated with input j to neuron i, 

and Uj is the threshold of neuron i. In this dissertation the thresholds will usually be 

set to zero. The weight matrix T is sometimes referred to as the synaptic weight 

matrix or synaptic connection matrix since weight Ty represents the strength of the 

synapse from neuron j to neuron i. A positive weight indicates an excitatory synapse, 

and a negative weight indices an inhibitory synapse.

N
[1]

[2]



The simple Hopfield model assumes each of the N neurons of the neural net has 

inputs from each of the other N-l neurons and a synaptic weight associated with each 

input. There is no direct feedback (Ty = 0, for all i). The state of the neural network is 

simply the vector made up of the outputs of the N neurons. Updating the network is 

viewed as being synchronous if the outputs of the neurons are updated simultaneously. 

It is viewed as being asynchronous if the outputs are updated one at a time.

To input a pattern, one sets the outputs of the neurons to the binary sequence of 

the pattern. If one inputs a pattern that is not a stable state, the outputs continually 

change based on the above update equations until a stable state is reached. To store a 

pattern (or learn a pattern), one must make that pattern a stable state by appropriately 

modifying the synaptic connection matrix T.

2.2 Energy

Hopfield showed that updating a neuron’s output using Equations 1 and 2 will always 

decrease the energy of the neural net if the weight matrix T is symmetric about the 

main diagonal and all elements of the main diagonal are 0. The elements of the main 

diagonal will be zero if direct feedback of neurons to themselves is not allowed. The 

weight matrix will be symmetric if the weight representing input i to neuron j is 

always equal to the weight representing input j to neuron i. In other words, the effect 

that neuron i has on neuron j is always equal to the effect that neuron j has on neuron 

i. Since the energy function Hopfield defined produces a local minimum when the net­

work is stable and updating a neuron will always decrease the energy, the network will



always reach a stable state if the neurons are updated asynchronously using the update 

equations, Equations 1 and 2. .

Using the following measure of the energy of the neural network, Hopfield 

showed that, if  Ty = Tjj and Ty = 0, then Equations 1 and 2 will always lead to a 

stable state:

E = - m l T V  + U‘ V [3]

=  -^ E E T ijV jV i +  £ UiV. [4]
i j i

He showed that, if any neuron Vk changes when applying Equations 1 and 2, then the 

above energy function will not increase. The change in energy AE due to updating Vk 

can be calculated as follows. First, separate out all terms of Equation 4 that involve

v k.

E = -V2 X J W i  +  X W *  +  Z Ti v kv i +  TkkVt Vk
i*kj*i j*k i*k

j*k

[5]

+ Z u iv i + u kv k
i/k

Assuming Ty = Tjj for all i and j, this equation can be rewritten as:

E =  -V& Z E T yV jV i -  STkjVjV,, -  J4T* +  +  UkVk [6]
i^kjVi j*k i*k

j*k

Notice that VkVk in Equation 5 will always equal +1 since Vk must equal +1 or -1. 

AE in response to AVk can now be calculated:
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AE = -X T kjVjAVk + UkAVk = -AVk (XTkjVj -  Uk) [7]
jVk j*k

If = 0, this can be written as

AE = -AVk (xk -  Uk) [8]

According to Equation 2, Vk will only change if xk > Uk and Vk = -1 or if 

xk < Uk and Vk = 1. In either case the change in energy will be non-positive. Only if 

xk = Uk and Vk = 1 will AE be 0. The neural network will, therefore, always reach a 

stable state if one uses Equations 1 and 2 to asynchronously update the neural net and 

if all Tji are required to be 0. Notice that the change in energy, AE, will be the same 

whether or not is required to be 0. A non-zero Tkk will only affect E (see Equa­

tions 6 and 7). If Tkk > E will be lower for each state. This will lead to more stable 

states of the network. Some of the states, however, may not be local minima. (In the 

extreme case, T would be the identity matrix, and all states would be stable). On the 

other hand, if T ^  < 0, E will be higher for each state. This will tend to reduce the 

number of stable states; however, updating a neuron may lead to an increase in energy. 

If one requires that updating the network always leads to a stable state, then each T;i 

must be non-negative.

2.3. The Hebbian Rule

As mentioned previously, to store a pattern, one must make the pattern a stable state 

by appropriately modifying T. Hopfield utilizes an information storage algorithm 

inspired by Hebb. If one wishes to store the set of m patterns Vs, s = l,...,m, each Tjj
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for which i s* j is calculated as

Ty = 2  Vjs V / [9]
S=1

The diagonal elements are set to zero to avoid direct feedback of a neuron to itself:

Tu = 0 [10]

Notice that this equation will produce a symmetric connection matrix with Ty = Tj;.

The number of nonredundant connections is thus N(N-l)/2 (or
N
2 )•

Example 1: Let the patterns to be stored be V1 = (+ + + +), V2 = (+ + - -), and V3 = 

( - -  + +) and assume each Uj = 0. The Hebbian connection matrix is:

T=

0 3 -1 -1
3 0 -1 -1

-1 -1 0 3
-1 -1 3 0

[11]

A simple check using Equations 1 and 2 will reveal that this T does indeed success­

fully store all three patterns. Notice that V3 is the complement of V2. Usually the 

complement of a stored state is also a stable state. This follows from the fact that, if 

pattern Vs produces xs, then the complement of Vs will produce -x s. Only if one or 

more x* = 0 can the complement of Vs not be a stable state. Also, notice that pattern

(------- ) is also a stable state. Such a state is often referred to as a spurious state since

it was not intentionally stored, but arose in the process of making other states stable.
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This spurious state is, of course, the complement of pattern V1. Spurious states that are 

not complements of intentionally-stored states will be referred to as non-complement 

spurious states. Such states seem to occur with about the same frequency as comple­

ment spurious states.

2.4 Capacity Using the Hebbian Rule

The capacity of neural networks that use a Hebbian T is rather easy to calculate.

McEliece et a l?  showed that, if m patterns are chosen at random, the maximum 

asymptotic value of m in order that most of the m patterns are exactly recoverable is

r a = 2 l T N -  [I2]

With the added restriction that every one of the m patterns be recoverable exactly, m 

can be no more than

m = 4 l ^ N '  [13>

Our experimental results show that Equation 13 gives an accurate prediction of C100%. 

This can be seen in Table 1. The data in this table was obtained as follows. For each

value of N, 100 attempts were made to store m randomly-generated patterns, each bit

of each pattern having an equal probability of being +1 or -1. Checks were made to 

ensure that no two patterns differed by less than two bits or by more than N - 2 bits;

otherwise, it would not be possible to store the set of patterns, as will be proved in

Section 3.2. The table gives the number of successes in 100 attempts to store m
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patterns of N bits each. For example, of 100 attempts to store 3 random patterns of 25 

bits each, 96 were successful. When m was less than the value calculated using Equa­

tion 13, all 100 attempts were successful.

N
Number of Patterns

N
1 2 3 4 5 6 7 8 9 10 11 4 In N

25 100 100 96 81 46 35 12 2 0 0 0 1.9

30 100 100 97 90 77 38 22 2 1 0 0 2.2

35 100 100 99 98 87 57 29 10 2 0 0 2.5

40 100 100 100 97 93 57 38 8 4 0 0 2.7

45 100 100 100 100 86 77 64 39 15 3 0 3.0

Table 1. Successes in 100 trials, using Hebbian weight matrix.



CHAPTER 3. Neural Network Learning

The number of patterns one can store in a neural network can be greatly increased by 

using learning algorithms other than the Hebbian rule such as the delta rule.6 Abu- 

Mostafa and and St. Jacques3 indicated that the number of arbitrary patterns that one 

can store in Hopfield network of N neurons is bounded above by N regardless of the 

method of obtaining the weight matrix. Their definition of capacity m is that every set 

of m patterns that one wishes to store has an associated zero-diagonal weight matrix T 

(and threshold vector U) such that each pattern is a fixed point. Their proof is as fol­

lows. Given K patterns of N bits each, for each of the 2K choices of the first bit of 

each pattern, one must find a different threshold function of N - 1 variables with K 

points in the domain. Using the patterns of Example 1, notice that, for the first bit of 

each pattern to remain the same upon updating requires

t 12 + t 13 + T14 > 0 [13b]

T12 “  T13 “  T 14 > 0
-T 1 2  + T13 + T14 < 0

Each of the eight choices of the first bit requires a different set of weights, 

(T12> T13> T14l- Let b £_! be the number of different threshold functions of N - 1 vari­

ables with K points in the domain. One must have

B& i 2: 2k. [14]

Abu-Mostafa and St. Jacques give a proof, which they attribute to Cameron7 and 

Winder,** that an upper bound to Bjjf-i is
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(X1 ].
i=0

[15]

If K > N, however, then

=  2 x2 k _ 1  =  2 k . [16]

This, obviously, contradicts the condition of Equation 14. If m > N, there will exist 

some sets of m patterns which cannot be stored.

There are two problems with this bound. First, if m < N, there will still be sets of 

m patterns that cannot be stored due to the fact that, if two patterns differ by 1 or N - 

1 bits, they cannot both be stored. Second, For m > N, the probability of storing m 

randomly-generated patterns can still be very high. For large N, the probability of stor­

ing, say, 1.5N patterns will be greater than 99%, as our experimental results show.

Another important contribution to understanding the capacity of neural networks 

is that of Venkatesh.4 Venkatesh calculated what he calls the "epsilon capacity" of 

neural networks. He introduces error-tolerance into the retrieval mechanism by specify­

ing components in the retrieved memory which are treated as don’t-cares. The epsilon 

capacity CE(N) is defined to be "the largest rate of growth of the number of associa­

tions that can be stored such that, with high probability, the retrieved memory after 

one synchronous step differs from the desired associated memory in no more than 

(essentially) a fraction e of components." He shows that for large N, and with 0 

<£<*/£,  the epsilon capacity Ce(N) is at most 2N/(1 - 2e). Thus, for perfect recall, 

Cq(N) = 2N. Venkatesh does not provide the proofs of his assertions (he refers the
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reader to his PhD thesis), but mentions that they utilize "large deviation Central Limit 

Theorems, very large deviation estimates, and function counting theorems in combina­

torial geometry." He concludes from his results and those of Abu-Mostafa and St. 

Jacques3 that, if N < m < 2N, then there are guaranteed to be choices of m patterns 

which cannot be stored regardless of the choice of weight matrix T, but that such 

choices of patterns will constitute an asymptotically negligible proportion of the total 

number of choices as N approaches infinity.

In this chapter, I show that, with the delta rule, the capacity is between N and 

2N. I show that certain sets of patterns cannot be stored in a neural network with a 

zero-diagonal weight matrix and how to recognize such sets of patterns. In particular, 

if two patterns differ by either 1 bit or N - 1 bits, they cannot both be stable.9 For this 

reason, one can only define capacity in terms of the likelihood of storing a set of m 

patterns rather than in terms of the ability to store every possible set of m patterns. 

My definition of capacity Cp% is that one can store a random set of Cp% patterns in a 

neural network of N neurons with a probability of p%. For example, if the probability 

of storing a random set of m patterns is 90%, then the C^q% capacity is m.

3.1 The Delta Rule

To store the N-bit pattern Vs, first calculate the next state of each neuron using Equa­

tions 1 and 2 with pattern Vs as the input for each calculation, and then compare this 

to the desired next state, pattern Vs itself. If the next state of neuron i as calculate 

from Equations 1 and 2 is not equal to the desired next state of the neuron, V*, modify
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the weight matrix T as follows:

Case 1. The desired output, V®, = 1 but the actual output, Vj, = -1: Increment each 

term in Equation 1, thereby increasing Xj. For each j  & i, if Vj5 = 1, increment Ty. If, 

on the other hand, Vj® = -1, decrement Ty. If the amount of change is sufficient, Equa­

tions 1 and 2 will produce an output of V; = 1 the next time Vj is calculated with Vs 

as input.

Case 2. The desired output, V®. = -1 but the actual output, Vj, = 1: Decrement each 

term in Equation 1, thereby decreasing x;. For each j * i, if Vj® = 1, decrement Ty . If, 

on the other hand, Vjs = -1, increment Ty.

These two cases can be combined using the algorithm: if V; s* V®, then, for each j 

vt i, increment Ty by V® VjS. This will always result in incrementing x; if it is negative 

but should be positive, and it will always result in decrementing Xj if it is positive but 

should be negative. This delta rule can be written as: if the actual output, Vj is not 

equal to the desired output, V®, then, for each j *  i,

where c is a constant. Notice that the corrections to the weight matrix due to Vj ^  V® 

cause only row i of the weight matrix to be changed; thus, if the amount of change in

[17]

or simply: for each j *  i,

ATy =  c ( V® -  Vj ) Vj® [18]



the weights of row i of T is sufficient, these weights need only be adjusted once. For 

Equation 18, c = Vi will produce a change of ±1 in each T- and a change of N - 1 in 

Xj. This is often enough to change the sign of Xj. If it is not, Equation 18 can be 

repeated for pattern Vs until the pattern is stored. This algorithm is guaranteed to store 

any N-bit binary pattern.

Notice that "multiplying" V* by Vjs is equivalent to performing the ’exclusive 

nor’ operation. The arithmetic required for this delta rule (Equation 18) is extremely 

simple if c = xh  since Tjj is either incremented by 1 or decremented by 1 depending on 

the signs of V* and VjS.

3.2 Capacity Using the Delta Rule

As mentioned previously, even if N is very large, there will be pairs of patterns that 

cannot both be stored simultaneously:

Theorem 1. If two patterns differ by only one bit, they cannot be stored simultaneously 

in a network that does not allow direct self-feedback of neurons.

Theorem 2. If two patterns differ by N - 1 bits, they usually cannot be stored simul­

taneously in a network that does not allow direct self-feedback of neurons.

The proofs are as follows. If two patterns differ in bit i only, the calculation of Xj 

(see Equation 1) will be identical regardless of which of the two patterns is applied to 

the network. Since Xj will be identical for both patterns, so will Vj. If one of the two 

patterns is a stable state, the other cannot also be a stable state. By a similar argument,
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if two patterns differ in N - 1 bits, they usually cannot be stored simultaneously. In 

this case, let bit i be the only bit in which the two patterns match. If application of one 

pattern produces xv application of the other pattern will produce -x ; (see Equation 1). 

Only if X; = 0 can both patterns be stored simultaneously. Note that, as N increases, 

the likelihood that two random patterns differ by 1 or N - 1 bits decreases exponen­

tially.

Since, for any neural network requiring a zero-diagonal weight matrix, there exist 

pairs of patterns that cannot be stored simultaneously, the definition used by Abu- 

Mostafa and St. Jacques must be revised.

We ran several tests to determine experimentally the capacity of the model 

described by Equations 1 and 2 using the delta rule of Equation 18. Attempts were 

made to store randomly generated patterns (each bit with equal probability of being 1 

or -1) of length N = 10 and N = 30.

For N = 10, 100 attempts were made to store 1 pattern, 100 attempts were made 

to store 2 patterns, and so on up to 15 patterns. Each time a pattern was randomly gen­

erated, it was rejected if it differed by less than 2 bits or more than N - 2 bits from 

any pattern already in the set The results, Table 2, indicate that the probability of 

storing m randomly-generated patterns in a neural network of 10 neurons is greater 

than 90% if m is less than 9, provided no pair of patterns in the set differ by less than

2 bits or more than N - 2 bits. If capacity is defined as such that the proba­

bility of successfully storing m randomly generated patterns of N bits each is 90%,
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then 0)0% for N = 10 is approximately 0.9.

Number of Patterns 4 5 6 7 8 9 10 11 12 13 14

Trials Successful 100 99 96 99 91 80 67 34 17 11 0

Table 2. Number of successes in 100 trials for N = 10.

Table 3 shows results using N = 30. Since there are 230 possible patterns, it is 

extremely unliJkely that two randomly-generated patterns differ by 1 or N - 1 bits; and 

so, checking the distance between patterns is not necessary. Notice that, for N = 30, 

the success rate does not drop below 90% until the number of patterns reaches 37. For 

N = 30, C$o% is about 1.2.

Number of Patterns 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Trials Successful 100 98 98 99 93 86 85 73 62 48 30 29 15 9 3 1 1 0

Table 3. Number of successes in 100 trials for N = 30.

Often we were able to store sets of more than N patterns. Because of the unex­

pected nature of this phenomenon, checks were made by hand to confirm that one can 

store more than N patterns in this type of neural network.

Example 2: Using N = 9, the delta rule generates the matrix
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0 2 0 -2 4 -2 4 -4 2
3 0 -5 3 -3 -3 -5 1 -5
4 -2 0 6 -6 -2 2 0 -4

-2 4 4 0 2 -6 -2 -2 4
6 -4 -2 2 0 0 -2 4 -2
1 -1 -1 -3 1 0 -3 -5 1
3 -3 3 -3 -1 -5 0 1 -3

-3 3 1 -3 3 -5 1 0 5
4 —6 -4 6 -6 2 -4 2 0.

for the twenty patterns

( 1) -1 -1 -1 -1 -1 1 - 1 - 1  1

(2) - 1 1 - 1 1 - 1 1  -1 -1 1

(3) - l i l i - l - l - l l l

(4) 1 -1 -1 -1 1 1 -1 -1 1

(5) 1 - 1 1 1 1 - 1 1  -1 -1

(6) -1 -1 1 -1 - 1 1 1  -1 -1

(7) -1 - 1 - 1 - 1 1 1 - 1 1 1

(8) -1 -1 -1 - 1 - 1 - 1 1 1 1

(9) 1 - 1  1 - 1 - 1  1 1 - 1  1

( 10) 1 1 - 1 - 1  1 - 1  1 1 - 1

(11) 1 - 1 1 1 1 - 1 1 1 1

( 12) - 1 - 1  1 1 - 1 - 1  1 1 1

(13) - 1 - 1 1 1 - 1 1  -1 -1 1

(14) -1 1 -1 -1 -1 1 -1 -1 -1

(15) 1 -1 -1 -1 1 1 1 - 1  -1

(16) 1 - 1  1 - 1  1 - 1  1 1 - 1

(17) 1 1 - 1 - 1  1 1 - 1 - 1  -1

(18) 1 1 - 1 1 1 1 - 1 - 1 1

(19) 1 1 1 1 - 1 - 1  1 - 1 - 1

(20) 1 1 1 1 1 -1 1 1 -1

Using Equations 1 and 2, one can check that these twenty patterns are indeed all stable
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states of the neural network.

Note that some limit must be set on the number of iterations that one runs the 

learning algorithm. Simply because the algorithm "failed" to store a set of patterns 

does not mean that the set could not have been stored if the algorithm had been 

allowed to continue beyond the chosen limit If one defines an iteration as success­

fully storing each pattern once (note that each time one is stored others may be forgot­

ten), then a good choice for the limit on the number of iterations is N times m for the 

case of m less than N. If m is greater than N, however, the number of iterations 

required increases rapidly as m increases. The results of Table 3 use m x N x 20 itera­

tions, as do most of the results in presented in this dissertation. To find out how much 

improvement can be obtained using a very high limit on the number of iterations, the 

test was repeated using a limit of m x N x 1000 iterations. Figure 2 shows a com­

parison between the results shown in Table 3 and the results using this very high limit 

on the number of iterations. Notice that complete failure occurred at about the same 

point, but that the drop-off is much sharper using a very high limit on the number of 

iterations.

There are two ways of storing a set of m patterns using the delta rule. In both 

cases, if the actual output Vj is not equal to the desired output, Vf, row i of the weight 

matrix T is modified. This is done using Equation 18.

The first method is to store the patterns one at a time. Store the first pattern, then 

store the second pattern, and so on until the last pattern has been stored. As each pat­

tern is learned, however, other patterns may be forgotten. After learning the last
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pattern, one must go back to see if the first is still stored (still a stable state). If it is 

not, it will be necessary to re-leam it. One can continually iterate through the set of 

patterns, checking if each pattern is still stored and re-leaming it if it has been forgot­

ten, until either all patterns have been successfully learned or a limit on the maximum 

number of iterations has been reached.

The second method tends to be much faster. Notice that the calculation of the 

output of neuron i, Vj, depends only on row i of the weight matrix T (see Equations 1 

and 2). A pattern is stored if the output of each neuron does not change when that pat­

tern is input to the net. The set of m patterns is stored, of course, if the output of each 

neuron does not change when any of the m patterns is input to the net. One can there­

fore store the set of patterns one bit at a time rather than one pattern at a time. If the 

first row of the weight matrix is modified successfully, the state of the first neuron will 

remain unchanged if any of the patterns are input to the net. One can then move on to 

the second neuron. Modifying the second row of the weight matrix such that the state 

of second neuron does not change when any of the patterns is input to the net does not 

change the first row. One can modify the weight matrix one row at a time from top to 

bottom. When one has successfully, modified the bottom row of the matrix, the set of 

patterns is stored. If failure occurs at any row, the set of patterns has not been success­

fully learned. If, for example, one is unable to modify the first row of the weight 

matrix in such a way that the first neuron will remain unchanged when any of the pat­

terns is applied to the net, one will be unable to store the set of patterns and the algo­

rithm fails. When the algorithm fails, it tends to fail much more quickly then does the
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first algorithm. Also, when it succeeds, it tends to succeed more quickly.

Neuron i must separate the set of patterns into two groups, each pattern in the 

first group having a value of 1 for neuron i, and each pattern in the second group hav­

ing a value of -1 for neuron i. Row i of the weight matrix T must be modified in such 

a way that Xj > 0  when a pattern of the first group is applied to the net and x; < 0  

when a pattern of the second group is applied to the net. Since Ty = 0, each neuron 

must be able to separate m vectors of length N - 1. If, for any neuron i, the set of vec­

tors obtained by removing neuron i from the set of patterns is not linearly separable, 

the set of patterns cannot be stored.

If the set of patterns has been randomly generated, each neuron has an equal pro­

bability of separating the set of patterns. If the probability of one neuron being able to 

separate the set of patterns successfully is very close to 1 0 0 %, the probability of suc­

cessfully storing the set of patterns will be high. Figure 3 shows results of a test to 

experimentally determine how many randomly-generated patterns of length N = 30 one 

can store. The top curve shows the ability of one bit to separate a set of randomly- 

generated patterns. Every time a set of less than 37 patterns was generated, the set of 

patterns was successfully separated. Of 100 attempts to separate sets of 37 patterns, 99 

were successful. The success rate gradually declined until all attempts to separate a set 

of 71 patterns were unsuccessful. The bottom curve shows results of attempting to 

store entire sets of randomly-generated patterns. When the number of patterns is 

increased to the point where 1 bit can no longer successfully separate the sets of pat­

terns virtually 1 0 0 % of the time, the ability to successfully store the sets of patterns
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begins to decrease very rapidly. All attempts to store 49 patterns failed even though 1 

bit could successfully separate 49 patterns 76% of the time. This occurs because every 

one of the 30 bits must successfully separate the set of patterns for the set of patterns 

to be successfully stored. Figure 4 shows a repeat of the above test using a very high

the point where 1 bit can no longer successfully separate the sets of patterns virtually 

1 0 0 % of the time, the ability to successfully store the sets of patterns begins to 

decrease very rapidly.

The results of tests such as the one discussed above suggest that one can obtain 

interesting results on the capacity of neural nets by studying the ability of one neuron 

to separate sets of patterns. Our analysis requires defining the energy of the neural

network as did Hopfield. (The constant — is left out for simplicity).

limit on the number of iterations. Again, when the number of patterns is increased to

E = - £  £  Tij Vj Vi. [20]
» j

Using Equation 1, one can express the energy of state Vs as

[21]

One can decompose Es to obtain

N
Es = X Ejs [22]

i=l

where EjS is the component of E* in the ith direction (the contribution of the ith neuron
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to Es). Ef can, of course, be written as

[23]

where

[24]

For state Vs to be stable, none of the Ejs can be positive. If x* is nonzero and the sign 

of x* is equal to V®, then the energy Ej® will be negative. A negative EjS, therefore, 

implies that, when Vs is input to the net (using Equations 1 and 2), V® does not 

change and row i of matrix T does not need to be changed. If x® = 0, then E® = 0, 

and V® changes sign only if it is positive (see Equation 2). If any E® is positive (or 

zero when V® = 1), then pattern V® is not a stable state and has not been successfully 

stored. If one then applies the delta rule, Equation 18, row i will be changed and Ej® 

will be decreased by N - 1 (assuming c = xh  in Equation 18).

As noted earlier, each time a pattern is stored, other patterns may be forgotten, 

since storing a pattern involves changing T. Similarly, modifying row i of T to reduce 

E® may increase, decrease, or leave unchanged each of the Ejs, s*s. The amount of 

change can be easily calculated. If V; *  V® and c = V2, applying the delta rule of 

Equation 18 will change each weight in row i of T (except Ta, which we will assume 

will remain zero) by

ATy = Vi® V / [25]
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After the change in T,

Eis* = -V** XCTij +  Vj* V /) V / [26]

= -Vis E Ty v/ -  Vf £ V f V/ V / [27]
j*i j*i

= -V f x* -  Vf V f£  VfVf [28]

The first term in Equation 28 is the value of Ef prior to the change in T. The change 

in E* is

AEf' = -V* Vf 2  V /V / [29]
j*i

The summation in this equation is approximately the dot product of patterns 

Vs and Vs:

£  Vf Vf = Vs-Vs -  Vf Vf [30]

The dot product has limits

-N  < Vs-'Vs < N [31]

and, assuming the patterns are randomly generated with each bit having an equal pro­

bability of being +1 or -1, has an expected value of zero. Combining Equations 29 and 

30, one obtains:
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AEf" = -  Vf Vf (Vs-Vs -  Vf V f) [32]

= 1 -  Vf Vf (Vs-Vs) [33]

An example is given in Table 4. The data are from a failed attempt of neuron 1

to separate the following set of 8  patterns of length 7:

(1) -1 -
(2) 1 -

(3) 1
(4) -1 -

(5) -1 -
(6) 1 -
(7) 1

(8) -1



i'allcm count hnergy ol bil 1 ot pallcm s
s Eil Ei1 Bf Ef Ef Ef Ef Ef
1 0 ""0 ■ D~ 0 u 0 ~ XT 0
2 0 0 0 0 0 0 0 0
3 4 b 0 2 2 -2 ■2 -2
4 2 -6 b 2 2 2 ■2 2
5 2 -4 b 4 4 4 4 0
6 2 -2 b -2 -2 2 b 2
7 6 -4 -2 0 4 4 -8 0
8 6 -4 -2 0 4 4 -8 0
1 " 6 -4 -2 0 -4 4 "" •8 0
2 0 0 -4 0 4 0 4 4
3 4 -6 -4 2 -2 -2 b 2
4 4 -6 4 2 -2 -2 b 2
5 4 -4 4 -4 0 0 -8 0
6 4 -4 -4 -4 0 0 -8 0
7 8 -6 0 -2 -2 b -10 -2
8 8 -6 0 -2 -2 b -10 -2
1 8 -6 O- -2 -2 b -10 -2
2 2 -2 -2 -2 -2 -2 b 2
3 2 -2 -2 -2 -2 -2 b 2
4 2 -2 -2 -2 -2 -2 b 2
5 2 -2 -2 -2 -2 -2 b 2
6 2 -2 -2 -2 -2 -2 b 2
7 2 -2 -2 -2 -2 -2 b 2
8 2 -2 -2 -2 -2 -2 b 2
i b -4 2 4 0 4 -8 -4
2 0 0 0 -4 0 0 4 0
3 4 -6 0 -2 2 -2 b -2
4 2 -6 b -2 2 2 b 2
5 2 -6 b -2 2 2 b 2
6 2 -4 b 0 4 0 -8 4
7 6 -6 -2 2 -6 b -10 2
8 6 -6 -2 2 -6 b -10 2
1 1U -8 2 0 4 -8 -12 -4
2 4 -4 0 0 4 4 -8 0
3 4 -4 0 0 4 4 -8 0
4 2 -4 -6 0 4 0 -8 4
5 2 -4 -6 0 4 0 -8 4
6 2 -4 b 0 4 0 -8 4
7 6 -6 -2 2 -6 b -10 2
8 6 -6 -2 2 b b -10 2
1 10 -8 2~ 0 4 -8 -12 4
2 4 -4 0 0 4 4 -8 0
3 4 -4 0 0 4 4 •8 0
4 2 -4 -6 0 4 0 -8 4
5 2 -4 b 0 4 0 -8 4
6 2 -4 b 0 4 0 -8 4
7 6 b -2 2 -6 b -10 2
8 6 b -2 2 -6 b -10 2

Table 4. Ef as neuron 1 attempts to separate 8  patterns of 7 bits each.
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The data were generated as follows:

1. Set all weights of T  to 0. Set s, the pattern count, to 1.

2. Calculate and print each Ef, § = 1, 2 , 8 . If all are negative, bit 1 has suc­

cessfully separated the set of patterns, no further modifications to the weights of 

row 1 of T will be necessary, and the algorithm exits.

3. For bit 1 of pattern s: If Ef > 0 (or if xf = 0 and Vf = 1), modify the first 

row of T according to the delta rule, thereby, decreasing Ef by N - 1.

4. Increment s (or reset s to 1 if s = 8 ), and go to step 2.

The algorithm iterates through the set of patterns until either all the patterns are stored 

or the limit on the number of iterations is reached.

Since all weights of T are initially zero and the first bit of pattern 1 is -1, the 

weights of the first row of T are not changed after applying pattern 1 to the net. When 

pattern 2  is applied to the net, x f = 0  but V 2  = 1 ; therefore, the weights of the first 

row of T are changed according to Equation 18. This reduces E f  by N - 1 and has 

side affects of increasing E f , Ef, and Ef, while decreasing E f, Ef, and E f, as can be 

seen in Table 4. Since E f does not change, remaining 0, and V f = 1, row 1 of T is 

changed again, reducing E f by N - 1, increasing E f and Ef, while decreasing E f, and 

leaving the rest unchanged.

The main purpose of showing this example is to examine more closely the learn­

ing algorithm and to see how the algorithm can fail. Notice that Ef remains non­

negative throughout the test Reducing E f by N - 1 increased Ef from 0 to 4;
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reducing E f by N - 1 decreased Ef by 2, bringing it to 2; reducing E f by N - 1 and 

reducing E f by N - 1 did not affect Ef; reducing Ef by N - 1 increased Ef by 4, 

bringing it to 6 ; and E f and E f did not have to be reduced. The value of E f now 

being 6 , applying the delta rule of Equation 18 brings it back down to 0. After a 

second cycle through the set of patterns, Ef has been increased to 8 , since decreasing 

E f  and E f each increased Ef by 4. After several cycles, the algorithm enters an 

infinite loop: reducing E f from 0 to - 6  decreases Ef by 2, but reducing E f from 0 to 

- 6  and reducing E f from 2 to -4 each increase Ef by 4. The net affect is to increase 

E f by 6 , thus offsetting the reduction of Ef by N - 1. Ef, therefore, remains positive; 

and pattern 1 is never successfully stored.

Note that, whenever Ef is reduced by N - 1, the amount of change in Ef is 

always the same (Equation 33).

Example 3: Using Equation 33, one can calculate AEf resulting from decreasing E f by 

N - l :

AEf = 1—(—1)3 = 4. [34]

Notice that, in Table 4, whenever T is modified because E f is positive, E f is 

decreased by N - 1 (this also follows from Equation 33) and E f is increased by 4. In 

fact, this occurs the very first time T is modified.

If one uses the Hebbian outer-product weight matrix, one can calculate Ef from 

Equation 33:
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Ef = X  1 -  Vf Vf (Vs-Vs) [35]
S=1

= m -  X  Vf Vf (Vs-Vs‘) [36]
S=1

= m -  N -  X  Vf Vf (Vs-Vs) [37]
s*s

Writing this in the form

Ef = -(N - l)  + (m-1) -  X  Vf Vf (Vs-Vs) [38]
S*S

allows one to see the contribution of pattern Vs, - (N -l) , along side of the contribu­

tions of the other m - 1  patterns. One can see from this equation that, if m = N, each

neuron should have a 50% chance of successfully separating the set of patterns. The

probability of storing the set of patterns, however, will be (Vi)N since each of the N

neurons must separate the set of patterns.

If, on the other hand, one uses the delta-rule algorithm rather than the Hebbian, 

during each iteration through the set of patterns, only some of the patterns will require 

T to be modified. For the example of Table 4, if every pattern Vs, s 1, caused a 

change in T, the total change in E / would be 10 (this follows from Equation 33). 

When the algorithm is in the infinite loop, only 3 of the other N - l  patterns change T, 

causing a change in E 21 of +6 . This is enough to offset exactly the reduction in E/ of 6  

that results from applying the delta rule to V!1.
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Suppose one uses the delta-rule algorithm to store m randomly-generated patterns 

of N bits each. During each iteration through the set of patterns, only some of the pat­

terns will cause T to be modified. Suppose a fraction p of the other m - 1  patterns ini­

tially cause a change in Ef. The change in Ef will be approximately

AEf* = - (N -l)  + p (m -l) -  p £  Vf Vf (Vs-Vs) [39]
s*s

If p (m -l) < N -l, AEf is more likely to be negative than positive since the dot product 

or two random patterns has an expected value of zero. If each AEf, s = l,...m, is more 

likely to be negative than positive, then one would expect p to be less than Vi. If p is 

decreased, the chance of each Ef being negative increases, and p falls further. There­

fore, if p(m-l) < N-l, then one can expect neuron i to be able to successfully separate 

a set of m patterns with probability greater than 50%. Since p < 1, one can expect 

neuron i to separate a set of m patterns with high probability if m < N. Since the 

expected value of p is initially Vi (given a random T or an all-zero T), if m = 2N, 

there will be about an equal probability that AEf will decrease as increase during the 

first iteration. Since this is true for each Ef, the expected value of p will remain 

approximately Vi. If p drops below Vi, each Ef will tend to decrease; whereas, if p 

rises above Vi, each Ef will tend to increase. One should, therefore, expect, at best, a 

50% chance of separating a set of randomly-generated patterns if m = 2N. Since each 

neuron will have, at best, a 50% chance of separating the set of patterns, the probabil­

ity of storing the set of patterns will be very low.
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Our experimental results confirm that, if m = 2N, each neuron has, at best, a 50% 

chance of successfully separating the patterns. Figure 5 shows results of a study on 

the ability of one neuron to separate randomly-generated patterns. The number of 

neurons, N, was varied from 20 to 150; and the number of patterns, m, was varied

from - jN  to over 2N. For each value of m, 50 attempts were made to separate m

randomly-generated patterns of N bits each. The top line shows the lowest value of m 

for which all 50 attempts failed, and the second line from the bottom shows the lowest 

value of m for which 1 or more of 50 attempts failed. The lines m = N and m = 2N 

are shown for comparison. Our results showed about a 20% success rate for m = 2N. 

It must be noted, however, that a limit had to be set on the number of iterations to run 

the delta-rule algorithm. Often, failure to store a set of patterns occurred because the 

algorithm was not allowed to run long enough. The limit on the number of iterations 

for these tests was set to m x N x 20. As can be seen in Figure 2, increasing the limit 

on the number of iterations can significantly improve the results. Also, as N increases, 

the success rate at m = 2N improves significantly, as will be shown shortly.

Figure 6  shows results of a study on the ability to store randomly-generated pat­

terns. The number of neurons, N, was varied from 20 to 100; and the number of pat­

terns, m, was varied over a suitable range. For each value of m, 50 attempts were 

made to store m randomly-generated patterns of N bits each. One line shows the 

lowest value of m for which all 50 attempts failed, another line shows the lowest value 

of m for which one or more of 50 attempts failed, and the lines m = N and m = 2N 

are again shown for comparison. Notice that the slope of both curves is about 1.5N.
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Figure 6. Delta rule, all neurons
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Figure 7 shows the relationship between the ability of one neuron to separate a 

set of patterns and the ability to store the set of patterns. One curve shows the 

minimum m for which 1 neuron was unsuccessfully at least once at separating the set 

of patterns, and the other curve shows the lowest value of m for which at least one of 

ten attempts to store the set of patterns failed. Although one neuron can successfully 

separate 2N patterns of N bits each about 20% of the time, it must be able to separate 

the set of patterns successfully virtually 1 0 0 % of the time in order for the probability 

of storing the set of patterns to be high. In Figure 7, this limit, the point at which one 

neuron can no longer separate the set of patterns virtually 1 0 0 % of the time, is only 

slightly above the point at which the set of patterns can no longer be stored virtually 

100% of the time. The drop-off from about 100% success to 100% failure at storing 

sets of patterns can more easily be seen in Figure 8 . Notice that, for N = 20, the 

drop-off begins at about m = 20; for N = 40, the drop-off begins at about m = 50; and, 

for N = 70, the drop-off does not begin until about N = 100. The drop-off from about 

100% success to 100% failure at separating sets of patterns can be seen in Figure 9. 

As N increases, the drop-off appears to approach 2N. Tests are currently under way 

using much larger N to determine if this is indeed the case.

3.3 Hetero-Associative Neural Networks

To store a pattern using the Hopfield model, one adjusts the weights in such a way as 

to make that pattern a stable state. Since the pattern is associated with itself, this pro­

cedure is known as auto-associative learning. In contrast, the hetero-associative model



Figure 7. One neuron and all neurons
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Figure 8. Success, 50 trials, N = 20-90
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Figure 9. One neuron, N = 50-150
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learns to associate a given input pattern with a corresponding output pattern. In 

hetero-associative learning, the weights are adjusted in such a way that the given input 

pattern will always produce the corresponding output pattern when input to the net. 

The neuron update equations and learning algorithms for the hetero-associative model 

are generalizations of the update equations and learning algorithms of the auto- 

associative model.

where Ij is bit j of the input pattern and 0 ; is bit i of the output pattern. Notice that 

there is no requirement that the weight matrix T be a zero-diagonal matrix.

To store the sth input/output pair Is —> 0 s, first calculate the output of each neu­

ron using Equations 40 and 41. Then compare this output, O, to the desired output 0 s. 

For each bit of the actual output, 0 , that does not match the corresponding bit of the 

desired output, 0 s, modify the weight matrix T as follows:

Case 1. The desired output, O®, = 1 but the actual output, Oj, = -1: Increment each 

term in Equation 40, thereby increasing x;. For each j, if Ij* = 1, increment Ty. If, on 

the other hand, Ijs = -1, decrement Ty. If the amount of change is enough, Equations 

40 and 41 will produce an output of Oj = 1 the next time Oj is calculated with Is as 

input.

[40]

1 X; > 0* [41]
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Case 2. The desired output, Of, = -1 but the actual output, Oj, = 1: Decrement each 

term in Equation 40, thereby decreasing Xj. For each j, if If = 1, decrement T;j . If, on 

the other hand, If = -1, increment Tjj.

These two cases can be combined using the algorithm: if Oj *  Of, then, for each 

j, increment Tjj by Of If. This will always result in incrementing x5 if it is negative be 

should be positive, and it will always result in decrementing X; if it is positive but 

should be negative. This hetero-associative delta rule can be written as

ATjj = c ( Of — O j) If [42]

If the diagonal elements of the weight matrix are not required to be zero, each 

neuron must separate m patterns of N bits each; whereas, each neuron of an auto- 

associative neural network must separate m patterns of N - 1 bits. Thus, the probability 

of a hetero-associative neural network of N neurons storing m patterns of length N is 

approximately equal to the probability of an auto-associative neural network of N + 1 

neurons storing m patterns of length N + 1. As N approaches infinity, the capacity of 

the hetero-associative model is equal to the capacity of the auto-associative model.

3.4. H igher-0 rder Terms

The next state of the simple neuron described previously (see Equations 1 and 2) is 

found by calculating a linear combination of the other N - 1 neurons and thresholding. 

Since each of the N - 1 terms of Equation 1 depends on only one neuron, the simple 

neuron has order 1. A neuron of order 1 can implement only linear functions. Each 

neuron must separate the set of patterns to be learned into two groups-those with a 1
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for that neuron and those with a - 1  for that neuron-based on a linear combination of 

the values of the other N - 1 neurons. This requirement of linear separability greatly 

reduces the sets of patterns that can be stored. The classic example of a nonlinear 

function is the exclusive-or function. If a two-input first-order neuron has an output of 

- 1  for inputs (-1 , - 1 ), + 1  for inputs (-1 , + 1 ), and + 1  for inputs (+1 , - 1 ), then it will be 

+ 1  for inputs (+1 , + 1 ) because of its linear nature; thus, it cannot perform the 

exclusive-or function which would require an output of -1 for inputs (+1, +1). This 

neuron is not able to separate the 4 patterns into the proper two groups by calculating 

a linear combination of the other two neurons. By increasing the order to 2, the neuron 

is capable of performing the exclusive-or function.

The Hopfield model can be converted to a second-order neuron model by having 

a weight associated with each pair of neurons rather than, or in addition to, having a 

weight associated with each of the individual neurons. If one multiplies the outputs of 

two neurons, the product will be + 1  for inputs (-1 , - 1 ) and (+1 , + 1 ) but will be - 1  for 

inputs (-1 , + 1 ) and (+ 1 , -1 ), thus allowing the neuron to perform the exclusive-or 

operation. Having a weight associated with each pair will require nearly N3  weights 

rather than the nearly N2  weights required by the first-order model. If symmetry is

maintained in the weight matrices, the first order model requires non-redundant

weights, and the second order model requires . Maintaining symmetry in the

weight matrices requires that a modification be made to the learning algorithm; how­

ever, this modification does not significantly affect the capacity of the neural network.
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The next state of a second-order neuron can be calculated using the equation

*i = Z  Z  Tijk Vj v k [43]
js*i k*i 

k*j

in place of Equation 1, and using Equation 2 for thresholding.

One can derive a learning algorithm for this model in the same manner as before. 

To store pattern Vs, compare V*, the desired output of each neuron, to V;, the output 

calculated using Equations 43 and 2 with Vs as the input. For each bit that changes, 

modify the weight matrix T as follows:

Case 1. The desired output, V*, = 1 but the actual output, V;, = -1: Increment each 

term in Equation 43, thereby increasing x;. For each Vjs and Vk such that j *  i and k * 

i, if VjS Vk = 1, increment Ty. If, on the other hand, Vj* Vk = -1, decrement Ty.

Case 2. The desired output, V*, = -1 but the actual output, V;, = 1: Decrement each 

term in Equation 43, thereby decreasing Xj. For each j *  i and k *  i, if VjS Vk = 1, 

decrement Ty. If, on the other hand, Vj* Vk = -1, increment Ty.

These two cases can be combined using the algorithm: if Vj *  V*, then, for each j 

*  i, increment Ty by V* Vjs Vk. This will always result in incrementing Xj if it is nega­

tive but should be positive, and it will always result in decrementing xj if  it is positive 

but should be negative. This delta rule can be written as

ATijlc = c ( V i* - V i ) V / V k* [44]



48

Tests were run to determine experimentally the capacity of the second-order 

models. In the first set of tests, only the three-dimensional weight matrix was used (see 

Equation 43). In the second set of tests, both 2D and 3D weight matrices were used:

*i = X  Tij Vj + x  £  T p  Vj Vk [45]
j*i j*i k*i

k*j

Each time that a pattern was randomly generated, it was rejected if it differed from 

one of the other patterns by less than 2 bits or by more than N - 2 bits. Table 5 shows 

results for N = 10 using only the 3D weight matrix. Notice that the probability of stor­

ing m randomly-generated patterns does not drop below 90% until m = 39. Thus C9 0% 

is about 3.8 for N = 10.

Number of Pattern 35 36 37 38 39 40 41 42 43 44 45 46 47

Trials Successful 50 49 48 46 42 33 25 29 17 15 10 4 0

Table 5. Successes in 50 trials, 3D binary model, N = 10.

The results using both 2D and 3D weight matrices with N = 10 are shown in Table 6 . 

In this case Cqq% is about 5.2. This compares to 0.9 for the model using the 2D 

weight matrix alone (Table 2).

Number of Pattern! 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

Trials Successful 50 47 44 41 38 38 28 24 23 16 14 12 7 8 3 2 2 0

Table 6 . Successes in 50 trials, binary model (2D and 3D), N = 10.

Note that symmetric matrices were used to obtain the results of Tables 5 and 6 .
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The delta rule was simply modified to maintain the symmetries 

Tijk = Tfcj = Tjjjt = Tju = Tyj = Tkjj. Such symmetry reduces the number of weights to

increased capacity due to increasing the dimension of the weight matrices is propor­

tional to the increase in the number of weights used.

3.5 Unlearning

Any state Vs can be made stable by using the delta rule to decrease each E* that may 

be non-negative. Conversely, a stable state can be "forgotten" or "unlearned" by 

increasing the energy of the state appropriately. 11 To unlearn pattern Vs, simply apply 

the following equation to T:

If the new value of Ef > 0, the state will no longer be stable. The effect that the 

change in T has on stored pattern V* can be calculated easily:

less than — the number required for the asymmetric case without significantly reduc

ing the capacity. Our results are similar to those of Maxwell et a / . 1 0  in that the

[46]

where k is a positive constant. In this case

AEiS = k(N -l). [47]

AE/ = -k ( l -  V?V f(Vs-V's)) 

= -k  + kVjSV/(Vs-V*))

[48]

[49]
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The expected value of this change is -k. It has been shown by Youn and Kak12 that k 

= 0.1 leads to unlearning of the spurious state without significantly affecting other 

stable points.

Notice that the ratio of the constant c in the delta rule (Equation 18) to the con­

stant k in the unlearning equation determines the affect of forgetting a pattern on the 

other stored patterns. Choosing k = 0.1, as Youn and Kak did, requires the weights to 

be real numbers rather than integers. This significantly increases both the amount of 

memory required to store the weights and the speed of the neural network. All tests 

presented in this dissertation are from a neural network program that uses only integer 

arithmetic. If one requires k to be 1/10 of c, one must choose c to be at least 10 to 

keep the weights integers. This will significantly increase the amount of memory 

required to store the weights. Therefore, incorporating unlearning into a neural network 

simulation can lead to much greater memory requirements. Furthermore, using con­

tinuous unlearning significantly reduces the number of patterns one can store since the 

adjustments to the weight matrix necessary to unlearn a pattern can cause other pat­

terns to also be forgotten.

3.6 Negative Feedback in Learning

The purpose of unlearning is to reduce the number of spurious states. When a pattern 

is unlearned, however, states which were previously unstable can become stable. An 

alternative to unlearning is to use direct feedback of neurons during the learning pro­

cedure. During learning, set each Ta = - e  where e is a positive constant. This will
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cause each Ef to be increased by e. A positive Ejs means that, during delta learning, 

the weights of row i will be adjusted to decrease E*. If one uses a positive e during 

learning and resets e to 0 after learning, all complements of the stored patterns will be 

stable states since no EjS will be 0. The maximum value of Ejs will be -e . Using 

larger e will, therefore, tend to improve the error-correcting ability of the net. 

Whereas unlearning serves to increase the energy of the spurious states, learning with 

negative feedback serves to reduce the energy of the non-spurious stored states. 

Reducing the energy of the non-spurious stored states, in turn, tends to also increase 

the energy of the spurious states.

Learning with negative feedback tends

1. to decrease the chance of learned patterns from being forgotten due to subse­

quent changes in T,

2. to increase the average size of the attraction basins of the learned patterns,

3. to reduce the size of the attraction basins of the non-complement spurious 

states,

4. and to improve the performance of the neural network by improving the 

error-correcting ability of the neural network.

Furthermore, it does all of the above without significantly reducing the capacity of the 

model or substantially increasing the amount of memory needed to store the weights.
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If one uses the delta rule to store a set of patterns, for some of the patterns one or 

more Ef may be 0 or close to 0. For example, if bit Vjs = -1 and Ejs = 0, neuron i will 

not change when pattern Vs is applied to the net, and it will not be necessary to 

modify the weights of row i. Unfortunately, however, the error-correcting ability will 

be very poor. If a pattern that differs from Vs in only one bit is applied to the net, the 

net will have only about a 50% chance of correcting the error. Also, the complement 

of Vs will not be a stable state. If one uses e = 1 during learning and resets e to 0 

after learning, the maximum value of E* will be -e. Using larger e will, therefore, tend 

to improve the error-correcting ability of the net.

Figure 10 shows the results of a study using e = 1. Notice that the probability of 

one bit separating a set of m patterns of N bits each is not significantly worse than 

when direct feedback was not used (see Figure 3).

Tables 7 and 8 show results of tests comparing the performance of the learning 

algorithm using various values of e. With e = 0, the number of stable complement 

states was less than the number of intentionally stored states. For e = 5 and e = 10, all 

complement states are stable. Although the number of non-complement spurious states 

increases as e increases, the average size of the attraction basins of the non­

complement spurious states is significantly reduced. Also, the percentage of states 

which settled to the stable state closest in Hamming distance increased significantly. 

Further studies are currently underway to compare more closely this method of using 

negative feedback in learning to the method of continuous unlearning.
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e 0 5 10

Stored 100 100 100

Spurious 57 —92 100

Complement 58 100 100

Stored Basins 398 346 363

Spurious Basins 355 118 99

Complement Basins 375 363 356

Correct 33054 37528 38466

Table 7. Performance for e = 0, 5, and 10, using N = 10 and m = 5.

e 0 5 10

Stored 120 120 120

Spurious 69 71 85

Complement 71 120 120

Stored Basins 340 299 300

Spurious Basins 297 147 113

Complement Basins 288 295 297

Correct 28025 33642 35192

Table 8 . Performance for e = 0, 5, and 10, using N = 10 and m = 6 .

3.7 Networks of Limited Connectivity

Because the number of weights in a neural network varies with the square of the 

number of neurons, a huge amount of memory is required if N is large. This can be a 

particularly serious problem if one is storing images. Images of 256x256 pixels or 

even 512x512 pixels are not uncommon. Even if the image is 64x64 pixels, over 16 

million weights are required if the weight matrix is asymmetric.

The number of weights can be gready reduced by limiting the connectivity of the
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network. For instance, each neuron can be connected only to those neurons within a 

defined neighborhood. One would expect that, if each neuron is connected to only d of 

the N neurons in the network, the capacity would be approximately equal to that of a 

network of d neurons.

Simulations indicate that this is, indeed, the case. Table 9 shows results from tests 

in which the total number of neurons N was varied from 30 to 90, but each neuron 

was connected to only 30 other neurons. The capacity is essentially the same in all 

three cases.

N
Number of Patterns

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

30 50 49 48 46 42 33 25 29 17 15 10 4 0 0 0 0

60 50 50 50 47 48 44 33 30 18 11 3 2 0 0 0 0

90 50 50 49 47 46 46 42 34 20 15 12 5 0 0 0 0

Table 9. Successes in 50 trials, d = 30.

In general, the capacity of a neural network in which each neuron is connected to 

only d of the total number of neurons seems to be approximately equal to the capacity 

of a neural network in which the total number of neurons is d. Figures 11 and 12 pro-

Nvide further evidence of this. In Figure 11 d is set to — , and N varies from 30 to 70.

2NIn Figure 12 d is set to — and N varies from 30 to 60.

These results should be of particular interest to those using hardware implementa­

tions of neural networks. Such hardware implementations rarely have more than about 

one thousand neurons.1̂ 1 One could store large images in such networks only by
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limiting the connectivity of the model.



CHAPTER 4. Non-Binary Neural Networks

The Hopfield model requires a pattern or image to be binary. Often, however, patterns 

and images are not binary and can lose much information when converted to a binary 

form. In addition, the manner in which one converts to binary significantly affects the 

amount of information lost. A generalized neural network model has been proposed 

that allows neurons to take on more than two values. 1 6  Very few changes to the sim­

ple binary model are required to obtain an n-ary neural network model that can suc­

cessfully store and retrieve patterns

4.1. Update Equations for the Non-Binary Model

To convert a binary neural network to the more general n-ary neural network, Equation 

1 need not be changed; only Equation 2 needs to be changed. For instance, for a 

quaternary neural network, Equation 2 can be modified to

V j  =  1

3 Xj > t

1 t > Xi >  0

- 1  0  > Xj > - t

-3  - t  > Xi

[50]

where t, 0 , and -t are thresholds.

4.2. Delta Rule for the Non-Binary Mode)

One can derive a learning algorithm for this model using the same method we used to 

derive the binary delta rule. To store pattern Vs, first calculate the next state of each 

neuron using Equations 1 and 50 with Vs as the input, and then compare this to the



60

desired state of the neuron, Vj®. If these two values are equal, no change in weight 

matrix T is necessary. For each neuron that changes, modify the weight matrix T as 

follows:

Case 1. The desired output, V®, is greater than the actual output, Vj: Increment each 

term in Equation 1, thereby increasing Xj. For each j  * i, if VjS is positive, increment 

Tjj. If, on the other hand, Vjs is negative, decrement Ty.

Case 2. The desired output, V®, is less than the actual output, Vj: Decrement each term 

in Equation 1, thereby decreasing x;. For each j ^  i, if Vj® is positive, decrement Ty. If, 

on the other hand, VjS is negative, increment Ty.

In general we can say: if V; * V®, then, for each j & i, increment Ty by an 

amount proportional to V® VjS. This will always result in incrementing Xj if it is nega­

tive but should be positive, and it will always result in decrementing Xj if it is positive 

but should be negative. This is, of course, just a more general version of the binary 

delta rule-the very same equation is used (Equation 18) but the neurons are non- 

binary.

The only difference in the algorithm is that Equation 50 is used instead of Equa­

tion 2 for thresholding. For the algorithm to be successful, the relationship between 

the constant c in Equation 18 and the threshold t in Equation 50 must be chosen prop­

erly. We will refer to this ratio as the convergence ratio since, if it is too small, the 

algorithm will not converge. With a large enough convergence ratio, any quaternary 

pattern can quickly be stored using Equations 1 , 18, and 50. Since it is the ratio of t to
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For the binary model, we required only that the change in Xj due to the changes 

in the weights (Equation 18) be large enough to change the sign of Vj. With non­

binary networks of the type described, not only does the change in X; have a minimum, 

but it also has a maximum. Normally, we would not want Xj to change by more than t, 

since such a change could overshoot the desired value. Suppose, for example, that the 

neurons can take on the values {3, 1, -1, -3}, as in Equation 50. If the desired value 

V* = 1 and the actual value Vj = - 1 , too large a change in the weights will result in 

too large a change in Xj causing an output of V; = 3 the next time V s is applied to the 

network.

The change in xj caused by application of Equation 18 can be calculated by com­

bining Equations 18 and 1:

Axj = X  c ( VjS -  V j) V / Vf [51]
i**

Axj = c ( Vf -  V j) X  (V/ ) 2  [52]

Using the [3, 1, -1, -3} model, the greatest change in Xj will occur if the pattern to be

stored, Vs, consists of only the values +3 and -3. In this case Equation 52 can be writ­

ten as

Axj £ c ( Vjs -  V j) (N -  1) 32  [53]

and the amount of change in Xj will depend on the difference between the desired
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output, V®, and the actual output, Vj. A reasonable choice of t (assuming c = 1) is 

18(N - 1). With such a choice, if V* and V; differ by 2, the change in x5 will be at 

most 18(N - 1) and will never be so much that more than one threshold is crossed at a 

time. For the {3, 1, -1, -3} quaternary model, repeated application of Equation 18 with 

t/c = 18(N - 1) is guaranteed to quickly store any pattern.

For an n-ary neural network, it is easy to calculate a ratio t/c that is guaranteed to 

allow any pattern to be stored. Let Vmax be the maximum allowable magnitude for a 

neuron (Vmax = 3 for the quaternary example given above). Let be the maximum 

difference between any two "adjacent" output values (Vdiff = 2 for the {3, 1, -1, -3} 

model). The following convergence ratio will allow any one pattern to be stored:

t/c = Vdi([ (N -  1) [54]

This is because

Axj < c Vdiff (N -  1) [55]

For the quaternary model described above, this formula gives the minimum value of 

t/c that will guarantee that any pattern can be stored. For other n-ary models, there are 

values of t/c below the one calculated from this formula that will also allow any pat­

tern to be stored, as will be seen shortly.

4.3. Capacity of the Non-Binary Model

Several tests were run to determine experimentally the optimal choice of the conver­
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gence ratio and to compare the capacity of the quaternary model to that of the binary. 

Sets of patterns to be learned were generated randomly; however, each time a pattern 

was generated, it was compared to each of the patterns already in the set to be sure 

that it differed in more than one place and less than N - 1 places from each of them. 

Tests were run on the following quaternary models {3, 1, -1, -3), {2, 1, -1, -2}, and 

{4, 1, -1, -4}. For each model, c was set to 1, and the value of t was varied over a 

large range. For each value of t, 50 attempts were made to store 1 random pattern, 50 

attempts were made to store 2 random patterns, and so on up to 15 random patterns.

Table 10 shows results for N = 10 using the values of t suggested by Equation 54 

for each of the three quaternary models.

model
Number of Patterns

5 6 7 8 9 1 0 1 1 1 2 13

{2 ,1 ,-1 ,-2 } 50 50 50 49 40 19 9 0 0

{3,1,-1,-3} 50 50 50 47 39 1 2 9 1 0

{4,1,-1,-4} 50 50 49 50 36 17 3 0 0

Table 10. Successes in 50 trials, 3 quaternary models, N = 10.

Note that these results support the claim that, with such a choice of t, any one random 

pattern can be stored successfully. For the {3, 1, -1, -3} model, whenever t was less 

than that suggested by Equation 54, there were individual patterns that could not be 

stored. For the {2, 1, -1, -2] and {4, 1, -1, -4} models, however, values of t less than
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those suggested by Equation 54 produced slightly better results. For these two models, 

the best results were obtained with

t = (N -  1 ) V ’ „ . [56]

These were also the minimum values of t with which one can be sure to be able to 

store any one random pattern successfully.

Table 11 shows results using quaternary model (2, 1, -1, -2} with N = 30.

Number of Patterns 26 27 28 29 30 31 32 33 34 35

Trials Successful 50 49 50 45 39 26 14 2 1 0

Table 11. Successes in 50 trials, quaternary model {2, 1, -1, -2}, N = 30.

Comparing these results with those of the binary model, Table 3, one can see that, for 

the quaternary model, the success rate drops below 90% at about N = 29; whereas, for 

the binary model, it drops below 90% at about m = 37. The information capacity of 

the quaternary model, however, is actually higher, since each pattern contains about 

twice as much information.



CHAPTER 5. Shift-Invariant Neural Networks

It has long been known1 7  that neural nets possess some of the properties of associative 

memory. Given a neural net trained to recognize certain patterns, as an associative 

memory it must be able to retrieve a pattern given only a part of it. Simple neural nets 

perform this type of memory recall when part of the pattern is simply missing. How­

ever, for a neural net to be of practical value as an associative memory, it must be able 

to recognize parts of patterns that are shifted spatially with respect to the ones that 

have been stored. This includes not only two-dimensional images that are shifted verti­

cally or horizontally and patterns that have missing parts, but also patterns that have 

the remaining parts bunched together (for instance, a misspelled word with missing 

letters), or patterns with extra parts inserted within the pattern (such as extra letters in 

a word).

For the case of linearly shifted patterns, one can implement shift invariance with 

a pre-processor that performs a shift-invariant transformation such as a Fourier 

transformation. The associative memory is then used for storing the transformation 

coefficients. The recent speech recognition system of Kohonen1 8  for example, uses an 

FFT pre-processor, as does the Adaptive Pattern Recognition (ART) system of Car­

penter and Grossberg. 1 9  Alternatively, one may use a shift invariant neural network 

that accepts patterns directly rather than their transforms. With such a network, it may 

be easier to perform direct non-linear operations that allow recognition of patterns with 

missing or extra parts. Shift-invariant associative memory using neural networks has 

been described earlier by Maxwell et a / . , 1 0  Widrow and Winter,2 0  and Prados and

65
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Kak.21

In 1947, McCulloch and Pitts2 2  discussed the idea of recognizing an object, or 

apparition, that is a member, of a group of equivalent objects. The group of objects 

share a common figure, and there exists a group of transformations that "take the 

equivalents into one another but preserve the figure invariant". They give the example 

of a square that c |n  be recognized regardless of translations from one place to other 

places.

They derive general methods for designing neural networks which recognize 

figures (members of the group) in such a way as to produce the same output for every 

input belonging to the figure. The following method is presented.

A manifold M is described by a set of coordinates (x1? x2,..., x„) constituting the 

point-vector x. Denote the distributions of excitation received in M by the function 

<j)(x, t) having the value unity if there is a neuron at the point x that has fired within 

one synaptic delay prior to time t, and otherwise zero. Let G be the group of transfor­

mations which carry the functions <|)(x, t) describing apparitions into their equivalents 

of the same figure. In the simplest case, the only case discussed in detail by McCul­

loch and Pitts, the transformation T of G can be generated by linear transformations t 

of the underlying manifold M, so that T <()(x) = <()(t(x)]. For example, if G is the group 

of translations, then T <t>(x) = <j>(x + aT), where aT is a constant vector depending only 

upon T. If G is the group of dilations, T<J>(x) = <|>(aTx), where aT  is a positive real 

number depending only upon T.
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The simplest way to construct invariants of a given distribution <|>(x, t) of excita­

tion, they claim, is to average over the group G. Let f  be an arbitrary function that 

assigns a unique numerical value, in any way, to every distribution <()(x, t) of excitation 

in M over time. Form every transformation T<j> of <j>(x, t), evaluate f[T<|)], and average 

the result over G to derive

a = 1 /N X  T O L  [57]
all T e G

Now, let the original manifold M be duplicated on N - 1 sheets, a manifold MT 

for each T of G, and connected to M or its sensory afferents in such a way that what­

ever produces the distribution <j>(x) on M produces the transformed distribution T<j)(x) 

on MT. Therefore, separately for each value of £ for each MT, the value f[T<j>£j is 

computed by a similar net, and the results from all the MT’s are added by convergence 

on the neuron at the point £ of the mosaic. The output of this neuron will be invariant 

to any transformation T of G. This technique is very similar to the technique recently 

discussed by Widrow and Winter. 2 0

There appears to be a much simpler method of obtaining shift-invariant pattern 

recognition. Pitts and McCulloch hint at such a method; however, they discuss it from 

the biological point of view, and their mathematics is quite complicated. They suggest 

that the brain may compute the "center of gravity of the distribution of brightness" and 

give the following example: "If the square should appear anywhere in the field, the 

eyes turn until it is centered, and what they see is the same, wherever the initial posi­

tion of the square." Using this idea of focusing the center of attention, one can obtain 

a very powerful, but simple, shift-invariant neural network. Such a neural network will
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be presented in the next section.

5.1. Update Equations for the Shift-Invariant Model

The conventional neural network model needs to be modified only slightly to provide 

such a shift-invariant neural network model. Instead of having a different set of 

weights for each neuron, a neural net can use the same set of weights for each neuron. 

This focusing of the "center of attention" of the neural network requires that the con­

nection matrix depend only on relative coordinates. This technique of implementing 

shift invariance has been used by Maxwell et a / . 1 0

Suppose one wishes to store the following two patterns in a conventional neural 

network memory: V 1 = (-1 -1 -1 +1 +1 +1) and V2  = ( - 1  +1 -1 +1 -1 +1). Associated 

with each of the 6  neurons is a set of weights corresponding to the effect of each of 

the other neurons on it. For example, neuron 3 should have a positive weight reflecting 

an excitatory effect of neuron 1 on it and negative weights reflecting inhibitory effects 

of neurons 4 and 6  on it. The Hopfield model using the Hebbian storage algorithm 

would assign weights of T2 0  = +2 and T2 3  = T2 5  = -2. A shift invariant neural net­

work, on the other hand, should assign weights in accordance with the relative dis­

tances between neurons. The weight T2, for instance, can be calculated as the average 

° f  T20, T31, T42, and T5 3 .

To obtain an update rule, Equation 1 can be modified to obtain

=  £ TjV H
j*i

[58]
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where Tj represents the connection strength between neuron i and neuron i - j. Since 

there are only N - 1 weights, the capacity is extremely low. By using higher-order 

terms, the capacity can be increased substantially. Weight can represent the affect 

of Vj_jVi_k on neuron V;; and weight Tjy can represent the affect of Vi_jVj_JcVi_i on 

Vi:

* 1  = ZTjVH + X  X  Tjk VH V „  + X  X X  Tjd VH Vi_k VH t59]
j î fcei jsti k*it/j

k*j k*il?;j
'l*k

5.2. Delta Rule for the Shift-Invariant Model

We can apply our method for obtaining a delta rule to this model as follows. To store 

pattern Vs, we must input Vs to the neural network. If each bit of the output V (next 

state of Vs) is equal to the corresponding bit of Vs, no changes are necessary. For each 

bit that changes, modify T as follows:

Case 1. Vjs = 1 but V; = -1: Increment each term in Equation 59. If VjS_j = 1, increment

Tj; otherwise, decrement Tj. If V£jV£.k = 1, increment Tjk; otherwise, decrement Tjk.

And, if ViijV iLkV^ 1 = 1, increment Tjy; otherwise, decrement Tjld.

Case 2. V / = - 1  but V; = 1: Decrement each tenn in Equation 59. If Vjij = 1, decre­

ment Tj; otherwise, increment Tj. If V£.jV£k = 1, decrement T^; otherwise, increment 

T*. And, if Vj — i i * decrement Tjki; otherwise, increment Tjki-

In general, this algorithm can be written as:
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ATj = c ( Vis -  Vj ) V£j [60]

ATjk = c ( V is - V i )V ii jVis_k [61]

ATiu = c ( Vf -  ^  ) V ^ V k V k  [62]

where c is the learning constant. If the subtracting of indices is performed modulo N, 

all cyclic shifts of a pattern will be stable if that pattern is stable.

5.3. Capacity of Shift-Invariant Model

Tests were first run using the second-order terms alone, the third-order terms alone, 

and the second- and third-order terms combined. Table 12 is a comparison of the 

second-order model and the third-order model. Surprisingly, the second-order model 

had higher capacity. When the two were combined, the results were far superior to the 

results of either alone. Table 13 shows results combining first- and second-order 

models. Notice that the success rates are only slightly greater then using the second- 

order model alone. Table 14 shows that, using both second-order and third-order 

terms, one can store as many as 16 patterns with a 90% success rate. Keep in mind 

that, if all 16 patterns are successfully stored, all cyclic shifts of these 16 patterns will 

also be stored. This leads to 160 stable states!

order
Number of Patterns

1 2 3 4 5 6 7 8 9 10 11 12

2D 48 49 43 39 34 26 8 1 0 0 0 0

3D 49 40 33 19 19 7 3 8 3 1 3 0

Table 12. Successes in 50 trials, 2D and 3D shift-invariant models, N = 10.
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Number of Pattern 1 2 3 4 5 6 7 8 9 10 11

Trials Successful 48 48 46 39 43 36 14 6 1 1 0

Table 13. Successes in 50 trials, shift-invariant model (ID and 2D), N = 10.

Number of Pattern 9 10 11 12 13 14 15 16 17 18 19 20 21

Trials Successful 50 48 47 49 49 49 49 46 36 18 11 5 0

Table 14. Successes in 50 trials, shift-invariant model (2D and 3D), N = 10.

Table 15 shows results combining ID, 2D, and 3D weight matrices. Again, 

including the ID weight matrix does not significantly improve the results.

Number of Pattern 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Trials Successful 50 50 50 50 50 48 50 42 30 17 13 2 2 0

Table 15. Successes in 50 trials, shift-invariant model (ID, 2D, and 3D), N = 10.

We have seen that the Hopfield neural-network model requires
N
d . nonredun-

dant connections. With the shift-invariant model there are
N -l

d nonredundant con­

nection weights. This is still a very large number for large N. For a 64x64 binary 

image, one would still need over 8  million nonredundant connections, about the same 

as the number required for the Hopfield model.

By limiting the connections to a neighborhood surrounding the neuron, this 

number can be reduced significantly. For example, if each neuron is connected to only 

those neurons within a 15x15 grid surrounding it, less than 25,000 connections would
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be required (for a first order network). A shift invariant neural network of this kind 

could be used as a low-level classifier as part of a hierarchical system. Objects 

smaller than the neighborhood could be stored in the connection matrix. These small 

objects could then be recognized by the low-level classifier and application of a 

higher-level classifier could follow.

Note that, although there are estimated to be about a trillion neurons in the ner­

vous system, each neuron has, on average, about 1 0 0  inputs converging on it while it 

in turn diverges to 100 other neurons.2  ̂ Also, when one observes an image, for exam­

ple a written page, one does not take in the entire image at once but focuses on only a 

small area of the image at a time. By limiting the connectivity of a neural network as 

described above, relatively small objects could be stored and could be recognized 

regardless of their location in the image without using an astronomically large number 

of connection weights. For a neural-network-based associative memory to be feasible 

such a reduction in the number of connection weights is essential. In addition, it is 

more realistic from a biological perspective to have each neuron connected to no more 

than a few hundred other neurons.



CHAPTER 6. Conclusions

This dissertation has presented both analytical and experimental results on the number 

of patterns one can expect to be able to store in Hopfield neural networks using a 

modification of the delta rule. Analytical results indicate that the probability of one 

neuron successfully separating a set of m random patterns of N bits each should fall 

below 50% at about m = 2N. The following table shows experimental results on the 

ability of one neuron to separate sets of patterns for C100%, C9 0 %, C50%, and Cq% for N 

between 20 and 150.

Success Rate
N

20 30 40 50 60 70 80 90 100 150

^ 'l00% 1.2 1.23 1.42 1.34 1.55 1.4 1.52 1.58 1.64 1.73

Q?o% 1.4 1.47 1.65 1.6 1.73 1.62 1.75 1.76 1.68 1.79

£ 50% 1.85 1.87 1.85 1.84 1.88 1.83 1.9 1.87 1.94 1.91

Q)% 2.3 2.37 2.35 2.28 2.18 2.08 2.14 2.13 2.06 1.93

Table 16. C100%, C ^ ,  C50%> and Cq% for N = 20 to 150. (Separating)

The ability of one neuron to separate a set of m patterns of N bits each is directly 

related to the ability of the neural network to successfully store m patterns of N bits 

each. Once the probability of one neuron separating a set of patterns falls below about 

99%, the ability to store the set of patterns falls very quickly. Table 17 shows experi­

mental results on the ability to store sets of patterns for C10o%, C ^ ,  C50%) and Cq% 

for N between 20 and 100.

73
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Success Rale
N

20 30 40 50 60 70 80 90 100

^100% 0.95 1.07 1.1 12 13 131 1.44 1.46 1.45

0 )0% 1.10 1.27 1J 2 1.40 1.42 1.42 m i m o 1.49

^50% 1J0 1.40 1.45 1.48 m o m i 1-54 1.56 1.52

Q )% 1.60 1.63 1.60 1.66 \S1 m 7 1.59 1.61 1.54

Table 17. C90%, C^q%, and Cq% for N = 20 to 100. (Storing).

Figures 13 and 14 show the same results graphically.

There are two reasons why the experimental results are not as good as that 

predicted by the analysis. First, because of time limitations, some limit must be set on 

the number of iterations one can run the delta rule. The higher the limit is, the sharper 

the drop-off from nearly 100% success to nearly 0% success. Second, as N is 

increased, the beginning of the drop-off, in relation to N, is increased.

A method of improving the performance of the delta rule has been presented. 

This method involves using direct negative feedback of neurons (T;i < 0) during the 

learning process and removing the negative feedback afterwards. A thorough com­

parison between this method and the continuous unlearning method1 2  still remains to 

be performed. It has been shown that using negative feedback during learning can 

reduce the average size of the basins of attraction of the non-complement spurious 

states and improve the chance that a random input will converge to the attractor closest 

in Hamming distance. This leads to better performance of the neural network as a 

content-addressable memory.

It has also been shown that the Hopfield model needs to be modified only slightly 

to be able to store and retrieve non-binary patterns. A learning rule for such a model
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has been presented. Although such a model cannot store as many patterns as the binary 

model, each pattern contains twice as much information as binary patterns.

A learning rule for shift-invariant neural network models has also been presented. 

Such a network requires using a three-dimensional weight matrix in addition to a two- 

dimensional weight matrix; however, each time a pattern is stored, all of its cyclic 

shifts are also stored. For example, if N = 10, although the success rate falls below 

90% when the number of patterns reaches about 17, one can store, say, 15 patterns 

with all their cyclic shifts (150 patterns in all) with about a 99% success rate. If one 

were to try storing all 150 patterns using the Hopfield model with both second-order 

and third-order terms, the probability of success would be much less.

Since the number of weights in a shift-invariant neural network that uses both a 

three-dimensional and a two-dimensional weight matrix can grow quite large for large 

N, limiting the connectivity of such a model has been proposed. It appears that the 

capacity of a neural network in which each neuron is connected to only d of the other 

N - 1 neurons is approximately equal to the capacity of a neural network of d neurons. 

We propose that a limited-diameter shift-invariant neural network could be used as a 

low-level classifier as part of a hierarchical system. Objects smaller than the neighbor­

hood could be stored in the connection matrix. These small objects could then be 

recognized regardless of their location in the image with any noise or other variations 

in the shape of the images being removed. Application of a higher-level classifier 

could follow.
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