
Louisiana State University Louisiana State University

LSU Scholarly Repository LSU Scholarly Repository

LSU Historical Dissertations and Theses Graduate School

1989

The Capacity of Artificial Neural Networks Using the Delta Rule. The Capacity of Artificial Neural Networks Using the Delta Rule.

Donald Louis Prados
Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://repository.lsu.edu/gradschool_disstheses

Recommended Citation Recommended Citation
Prados, Donald Louis, "The Capacity of Artificial Neural Networks Using the Delta Rule." (1989). LSU
Historical Dissertations and Theses. 4869.
https://repository.lsu.edu/gradschool_disstheses/4869

This Dissertation is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It
has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU
Scholarly Repository. For more information, please contact gradetd@lsu.edu.

https://repository.lsu.edu/
https://repository.lsu.edu/gradschool_disstheses
https://repository.lsu.edu/gradschool
https://repository.lsu.edu/gradschool_disstheses?utm_source=repository.lsu.edu%2Fgradschool_disstheses%2F4869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/gradschool_disstheses/4869?utm_source=repository.lsu.edu%2Fgradschool_disstheses%2F4869&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

INFORMATION TO USERS

The m ost advanced technology has been used to photograph and
reproduce this manuscript from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any
type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UM I a com plete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize m aterials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

Universi ty Microfilms In te rna t iona l
A Bell & Howell Inform at ion C o m p a n y

3 0 0 N or th Z e e b R o a d . A n n Arbor, Ml 4 8 1 0 6 - 1 3 4 6 USA
3 1 3 .7 6 1 - 4 7 0 0 8 0 0 / 5 2 1 - 0 6 0 0

Order Num ber 9025331

The capacity o f artificial neural networks using the delta rule

Prados, Donald Louis, Ph.D.

The Louisiana State University and Agricultural and Mechanical Col., 1989

U M I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

THE CAPACITY OF ARTIFICIAL
NEURAL NETWORKS

USING THE DELTA RULE

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana Stale University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in

Department of Electrical and Computer Engineering

by
Donald L. Prados

B.S., Tulane University, 1981
M.S.(BME), Tulane University, 1982

M.S.(EE), Louisiana State University, 1986
December, 1989

ACKNOWLEDGEMENT

I would like to thank Dr. Subhash C. Kak for his help, comments, advice, support, cri­

ticism, patience, understanding, and friendship.

i i

Table of Contents

CHAPTER 1. Introduction ... 1
1.1 Physiology ... 3
1.2 Layout of Dissertation ... 5
CHAPTER 2. Hopfield Neural Networks .. 6
2.1 Update Equations of the Hopfield Model .. 7
2.2 Energy ... 8
2.3 The Hebbian R u le .. 10
2.4 Capacity Using the Hebbian R u le .. 12
CHAPTER 3. Neural Network L earn ing ... 14
3.1 The Delta R u le ... 16
3.2 Capacity Using the Delta R ule ... 18
3.3 Hetero-Associative Neural Networks... 40
3.4 Higher-Order Term s... 45
3.5 Unlearning .. 49
3.6 Negative Feedback in Learning.. 50
3.7 Networks of Limited Connectivity... 54
CHAPTER 4. Non-Binary Neural N etw orks... 59
4.1 Update Equations of the Non-Binary Model ... 59
4.2 Delta Rule for the Non-Binary Model ... 59
4.3 Capacity of the Non-Binary M odel.. 62
CHAPTER 5. Shift-Invariant Neural Networks ... 65
5.1 Update Equations for the Shift-Invariant Model ... 68
5.2 Delta Rule for the Shift-Invariant Model .. 69
5.3 Capacity of the Shift-Invariant Model ... 70
CHAPTER 6. Conclusions .. 73
REFERENCES ... 78
VITA ... 81

i i i

ABSTRACT

Over the past several years, several papers have been published on the capacity of

Hopfield neural networks. It has been shown that, using the Hebbian rule, the capacity

of the Hopfield model is approximately N/41ogN. The number of patterns one can

store in a neural network, however, can be greatly increased by using learning algo­

rithms other than the Hebbian rule such as the delta rule. The motivation behind this

dissertation is to study, both analytically and experimentally, the information capacity

of various neural network models using a modified version of the delta-rule algorithm.

This modified version of the delta-rule algorithm allows one to store significandy

more patterns than previously thought possible. Both analytical and experimental

results are presented on the number of patterns one can expect to be able to store using

this algorithm. The analytical results suggest that the probability of separating m pat­

terns of N bits each is about 50% for m = 2N; experimental results show that the pro­

bability of storing m patterns of N bits each is about 50% for m = 1.5N.

Modifications of the Hopfield model including a non-binary model, a shift-

invariant model, and models that use higher-order terms are also discussed. Learning

rules for these models are presented along with discussion of their capacity.

Also, the trade-off between capacity and performance of neural networks is dis­

cussed along with a further modification of the delta rule that leads to significant

improvement in performance.

CHAPTER 1. Introduction

Artificial neural networks have become very popular lately among computer scientists,

cognitive scientists, engineers, psychologists, solid state physicists, and others. This

popularity is due, in part, to the fascinating similarities between artificial neural net­

work memory and human memory. Like the brain, an artificial neural network is an

associative memory. As such, it can be used as a content-addressable memory, as a

model of a set of related objects (i.e., a semantic net), as a tool in pattern recognition,

and as a tool in solving optimization problems, among others. While the brain contains

about a trillion neurons, however, state-of-the-art neural networks contain no more than

a few thousand neurons. Like the first generation of computer users working with only

a few kilobytes of memory, the first generation of neural network users are severely

limited in the amount of memory available. Unlike the first generation of computer

users, however, neural network users are often unfamiliar with, or even misinformed

about, the information capacity of their systems. The motivation behind this disserta­

tion is to study, both analytically and experimentally, the information capacity of vari­

ous neural network models.

Over the past several years, several papers have been published on the capacity of

neural networks. Hopfield predicted from experimental results1 that the number of pat­

terns that one could store in a neural network of N neurons using the Hebbian weight

matrix is approximately 0.15N. McEliece et al. have shown2 that the capacity of the

Hopfield model is approximately N/41ogN. They also assume that the Hebbian rule is

used to determine the weight matrix T.

1

The number of patterns one can store in a neural network can be greatly

increased by using learning algorithms other than the Hebbian rule such as the delta

rule. Abu-Mostafa and and St. Jacques3 claimed that the number of arbitrary patterns

that one can store in a Hopfield network of N neurons is bounded above by N regard­

less of the method of obtaining the weight matrix. They define the capacity of a

neural network as the largest number m such that every possible set of m patterns that

one wishes to store can be stored successfully in the neural network. Several serious

problems with this definition will be discussed.

Venkatesh4 also calculated theoretical bounds on the capacity that are unrelated to

the method of obtaining the connection matrix. He has calculated what he calls the

"epsilon capacity" of neural networks, which he defines as "the largest rate of growth

of the number of associations that can be stored such that, with high probability, the

retrieved memory after one synchronous step differs from the desired associated

memory in no more than (essentially) a fraction E of components." He shows that for

large N, and with 0 < e < lA, the epsilon capacity Ce(N) is at most 2N/(1 - 2e).

Whereas Abu-Mostafa and St. Jacques and Venkatesh present theoretical limits on the

number of patterns one can store in a neural network, this dissertation discusses practi­

cal limits on the number of patterns one can store. Both experimental and analytical

results are presented on the capacity of neural networks using a modification of the

delta rule.

Since the probability of storing sets of m patterns of N bits each depends on the

ability of a single neuron to separate sets of m patterns of N bits each, an upper bound

3

on the number of patterns that one can store can be determined by finding a bound on

the number of patterns one neuron can separate. Analytical results show that the proba­

bility of one neuron successfully separating m patterns of N neurons each is greater

than 50% if m is less than 2N and less than 50% if m is greater than 2N. If one

defines capacity in terms of the probability of success at storing a set of patterns, one

could say that the 50% capacity, or C50%, has an upper bound of 2N. Experimental

results show that C50% is about 1.5N using the modified delta-rule algorithm presented

in this dissertation, provided N is not too small (not less than about 50).

1.1 Physiology

The neurons of artificial neural networks are, of course, simplistic models of the neu­

rons (or nerve cells) of our nervous system. Our brains contain about 1012 nerve cells.

A typical nerve cell has inputs from hundreds or thousands of other cells, and sends its

output, in turn, to hundreds or thousands of cells.5 Thus, the total number of intercon­

nections, or synapses, is about 1014 to 1015. The nucleus of the cell, along with the

mitochondria and other organelles, is contained in the cell body, Figure 1. The den­

drites are the branching fibers coining off of the cell body that serve to pick up signals

sent from other neurons. The axon is the cylinder-shaped nerve fiber coming off the

cell body, generally a few millimeters in length. The cell membrane encloses the entire

cell.

Synapses can be either excitatory or inhibitory. At any given time the membrane

potential is the result of all the excitatory and inhibitory influences added together. At

4

Dendrites

Synapse

Nucleus

m Cell
membrane

Axon

N

5

rest the membrane potential is about 70 millivolts, positive outside. When the mem­

brane potential is depolarized from 70 millivolts to about 40 millivolts, the process

becomes regenerative, and the depolarization continues all the way to 20 millivolts,

negative outside. This pulse starts on the axon close to where it joins the cell body and

travels along the axon away from the cell body toward the terminal branches at a rate

of 0.1 to 10 or so meters per second. The magnitude of the pulse is determined by the

neuron itself and not by the intensity of the depolarization that sets it going. The cells

feeding into the neuron only effect the rate of fire of the cell.

1.2 Layout of Dissertation

In Chapter 2, the Hopfield neural network model in its simplest form is presented. The

chapters that follow will deal with various modifications of this model. Chapter 3

addresses the capacity of the Hopfield model using the delta rule. In Chapter 4 a non-

binary model is presented. In particular, models that allow each neuron one of four

possible states are discussed. Chapter 5 discusses a neural network model that allows

for shift-invariant pattern recognition. The final chapter, Chapter 6, concludes the

dissertation.

CHAPTER 2. Hopfield neural networks

Hopfield made a major contribution to the field of neural networks in 19821 when he

pointed out that certain collective computational properties emerge-when many very

simple neurons were connected together. He pointed out that the outputs of the N

binary neurons could be considered a point in N-dimensional state space and that

updating a neuron’s output using his update rule would always result in decreasing the

energy of the network, leading, eventually, to an energy minimum. The energy minima

in state space can be thought of as stored memories. Since applying the update rule

will not change the state of such a stored memory, it is a stable state of the network.

If a pattern similar to a particular stored memory is supplied to the network by setting

the outputs of the neurons to that pattern, continuously updating the network until an

energy minimum is reached can "retrieve" that stored memory. Failure to retrieve the

stored memory will occur if the energy minimum reached is a stable point other than

the desired stored memory. The network can function as a content-addressable

memory (CAM) by retrieving a pattern given only part of it, and it can function as an

error detection and correction device by retrieving a pattern given a noisy version of it.

It can also serve as a pattern classifier by storing prototypes of a pattern class and

retrieving the prototype when other members of the class are presented.

The stable points are sometimes referred to as attractors. The attraction basin of

an attractor is the set of states which have the attractor as the next stable state reached

after continuously updating the network. Since the next stable state reached depends

on the order in which the neurons are updated, the attraction basin to which a pattern

6

belongs depends on the manner in which the neural network is updated.

2.1 Update Equations of the Hopfield model

Neural network models generally assign a weight to each synapse, positive for excita­

tory synapses and negative for inhibitory synapses. Artificial neurons are usually given

a value of +1 if they are firing (or ON) and either 0 or -1 if they are not firing (or

OFF). Whether a neuron is ON or OFF depends on the summation or integration of

each input neuron times its synaptic weight. Only if this sum is greater than a particu­

lar threshold does the neuron fire.

The most common neural network model is the Hopfield model. The Hopfield

model, in its simplest form, uses the following equations to update the output of neu­

ron i:

where Vj is the output of neuron i, Ty is the weight associated with input j to neuron i,

and Uj is the threshold of neuron i. In this dissertation the thresholds will usually be

set to zero. The weight matrix T is sometimes referred to as the synaptic weight

matrix or synaptic connection matrix since weight Ty represents the strength of the

synapse from neuron j to neuron i. A positive weight indicates an excitatory synapse,

and a negative weight indices an inhibitory synapse.

N
[1]

[2]

The simple Hopfield model assumes each of the N neurons of the neural net has

inputs from each of the other N-l neurons and a synaptic weight associated with each

input. There is no direct feedback (Ty = 0, for all i). The state of the neural network is

simply the vector made up of the outputs of the N neurons. Updating the network is

viewed as being synchronous if the outputs of the neurons are updated simultaneously.

It is viewed as being asynchronous if the outputs are updated one at a time.

To input a pattern, one sets the outputs of the neurons to the binary sequence of

the pattern. If one inputs a pattern that is not a stable state, the outputs continually

change based on the above update equations until a stable state is reached. To store a

pattern (or learn a pattern), one must make that pattern a stable state by appropriately

modifying the synaptic connection matrix T.

2.2 Energy

Hopfield showed that updating a neuron’s output using Equations 1 and 2 will always

decrease the energy of the neural net if the weight matrix T is symmetric about the

main diagonal and all elements of the main diagonal are 0. The elements of the main

diagonal will be zero if direct feedback of neurons to themselves is not allowed. The

weight matrix will be symmetric if the weight representing input i to neuron j is

always equal to the weight representing input j to neuron i. In other words, the effect

that neuron i has on neuron j is always equal to the effect that neuron j has on neuron

i. Since the energy function Hopfield defined produces a local minimum when the net­

work is stable and updating a neuron will always decrease the energy, the network will

always reach a stable state if the neurons are updated asynchronously using the update

equations, Equations 1 and 2. .

Using the following measure of the energy of the neural network, Hopfield

showed that, if Ty = Tjj and Ty = 0, then Equations 1 and 2 will always lead to a

stable state:

E = - m l T V + U‘ V [3]

= -^ E E T ijV jV i + £ UiV. [4]
i j i

He showed that, if any neuron Vk changes when applying Equations 1 and 2, then the

above energy function will not increase. The change in energy AE due to updating Vk

can be calculated as follows. First, separate out all terms of Equation 4 that involve

v k.

E = -V2 X J W i + X W * + Z Ti v kv i + TkkVt Vk
i*kj*i j*k i*k

j*k

[5]

+ Z u iv i + u kv k
i/k

Assuming Ty = Tjj for all i and j, this equation can be rewritten as:

E = -V& Z E T yV jV i - STkjVjV,, - J4T* + + UkVk [6]
i^kjVi j*k i*k

j*k

Notice that VkVk in Equation 5 will always equal +1 since Vk must equal +1 or -1.

AE in response to AVk can now be calculated:

10

AE = -X T kjVjAVk + UkAVk = -AVk (XTkjVj - Uk) [7]
jVk j*k

If = 0, this can be written as

AE = -AVk (xk - Uk) [8]

According to Equation 2, Vk will only change if xk > Uk and Vk = -1 or if

xk < Uk and Vk = 1. In either case the change in energy will be non-positive. Only if

xk = Uk and Vk = 1 will AE be 0. The neural network will, therefore, always reach a

stable state if one uses Equations 1 and 2 to asynchronously update the neural net and

if all Tji are required to be 0. Notice that the change in energy, AE, will be the same

whether or not is required to be 0. A non-zero Tkk will only affect E (see Equa­

tions 6 and 7). If Tkk > E will be lower for each state. This will lead to more stable

states of the network. Some of the states, however, may not be local minima. (In the

extreme case, T would be the identity matrix, and all states would be stable). On the

other hand, if T ^ < 0, E will be higher for each state. This will tend to reduce the

number of stable states; however, updating a neuron may lead to an increase in energy.

If one requires that updating the network always leads to a stable state, then each T;i

must be non-negative.

2.3. The Hebbian Rule

As mentioned previously, to store a pattern, one must make the pattern a stable state

by appropriately modifying T. Hopfield utilizes an information storage algorithm

inspired by Hebb. If one wishes to store the set of m patterns Vs, s = l,...,m, each Tjj

11

for which i s* j is calculated as

Ty = 2 Vjs V / [9]
S=1

The diagonal elements are set to zero to avoid direct feedback of a neuron to itself:

Tu = 0 [10]

Notice that this equation will produce a symmetric connection matrix with Ty = Tj;.

The number of nonredundant connections is thus N(N-l)/2 (or
N
2)•

Example 1: Let the patterns to be stored be V1 = (+ + + +), V2 = (+ + - -), and V3 =

(- - + +) and assume each Uj = 0. The Hebbian connection matrix is:

T=

0 3 -1 -1
3 0 -1 -1

-1 -1 0 3
-1 -1 3 0

[11]

A simple check using Equations 1 and 2 will reveal that this T does indeed success­

fully store all three patterns. Notice that V3 is the complement of V2. Usually the

complement of a stored state is also a stable state. This follows from the fact that, if

pattern Vs produces xs, then the complement of Vs will produce -x s. Only if one or

more x* = 0 can the complement of Vs not be a stable state. Also, notice that pattern

(-------) is also a stable state. Such a state is often referred to as a spurious state since

it was not intentionally stored, but arose in the process of making other states stable.

12

This spurious state is, of course, the complement of pattern V1. Spurious states that are

not complements of intentionally-stored states will be referred to as non-complement

spurious states. Such states seem to occur with about the same frequency as comple­

ment spurious states.

2.4 Capacity Using the Hebbian Rule

The capacity of neural networks that use a Hebbian T is rather easy to calculate.

McEliece et a l? showed that, if m patterns are chosen at random, the maximum

asymptotic value of m in order that most of the m patterns are exactly recoverable is

r a = 2 l T N - [I2]

With the added restriction that every one of the m patterns be recoverable exactly, m

can be no more than

m = 4 l ^ N ' [13>

Our experimental results show that Equation 13 gives an accurate prediction of C100%.

This can be seen in Table 1. The data in this table was obtained as follows. For each

value of N, 100 attempts were made to store m randomly-generated patterns, each bit

of each pattern having an equal probability of being +1 or -1. Checks were made to

ensure that no two patterns differed by less than two bits or by more than N - 2 bits;

otherwise, it would not be possible to store the set of patterns, as will be proved in

Section 3.2. The table gives the number of successes in 100 attempts to store m

13

patterns of N bits each. For example, of 100 attempts to store 3 random patterns of 25

bits each, 96 were successful. When m was less than the value calculated using Equa­

tion 13, all 100 attempts were successful.

N
Number of Patterns

N
1 2 3 4 5 6 7 8 9 10 11 4 In N

25 100 100 96 81 46 35 12 2 0 0 0 1.9

30 100 100 97 90 77 38 22 2 1 0 0 2.2

35 100 100 99 98 87 57 29 10 2 0 0 2.5

40 100 100 100 97 93 57 38 8 4 0 0 2.7

45 100 100 100 100 86 77 64 39 15 3 0 3.0

Table 1. Successes in 100 trials, using Hebbian weight matrix.

CHAPTER 3. Neural Network Learning

The number of patterns one can store in a neural network can be greatly increased by

using learning algorithms other than the Hebbian rule such as the delta rule.6 Abu-

Mostafa and and St. Jacques3 indicated that the number of arbitrary patterns that one

can store in Hopfield network of N neurons is bounded above by N regardless of the

method of obtaining the weight matrix. Their definition of capacity m is that every set

of m patterns that one wishes to store has an associated zero-diagonal weight matrix T

(and threshold vector U) such that each pattern is a fixed point. Their proof is as fol­

lows. Given K patterns of N bits each, for each of the 2K choices of the first bit of

each pattern, one must find a different threshold function of N - 1 variables with K

points in the domain. Using the patterns of Example 1, notice that, for the first bit of

each pattern to remain the same upon updating requires

t 12 + t 13 + T14 > 0 [13b]

T12 “ T13 “ T 14 > 0
-T 1 2 + T13 + T14 < 0

Each of the eight choices of the first bit requires a different set of weights,

(T12> T13> T14l- Let b £_! be the number of different threshold functions of N - 1 vari­

ables with K points in the domain. One must have

B& i 2: 2k. [14]

Abu-Mostafa and St. Jacques give a proof, which they attribute to Cameron7 and

Winder,** that an upper bound to Bjjf-i is

15

(X1].
i=0

[15]

If K > N, however, then

= 2 x2 k _ 1 = 2 k . [16]

This, obviously, contradicts the condition of Equation 14. If m > N, there will exist

some sets of m patterns which cannot be stored.

There are two problems with this bound. First, if m < N, there will still be sets of

m patterns that cannot be stored due to the fact that, if two patterns differ by 1 or N -

1 bits, they cannot both be stored. Second, For m > N, the probability of storing m

randomly-generated patterns can still be very high. For large N, the probability of stor­

ing, say, 1.5N patterns will be greater than 99%, as our experimental results show.

Another important contribution to understanding the capacity of neural networks

is that of Venkatesh.4 Venkatesh calculated what he calls the "epsilon capacity" of

neural networks. He introduces error-tolerance into the retrieval mechanism by specify­

ing components in the retrieved memory which are treated as don’t-cares. The epsilon

capacity CE(N) is defined to be "the largest rate of growth of the number of associa­

tions that can be stored such that, with high probability, the retrieved memory after

one synchronous step differs from the desired associated memory in no more than

(essentially) a fraction e of components." He shows that for large N, and with 0

<£<*/£, the epsilon capacity Ce(N) is at most 2N/(1 - 2e). Thus, for perfect recall,

Cq(N) = 2N. Venkatesh does not provide the proofs of his assertions (he refers the

16

reader to his PhD thesis), but mentions that they utilize "large deviation Central Limit

Theorems, very large deviation estimates, and function counting theorems in combina­

torial geometry." He concludes from his results and those of Abu-Mostafa and St.

Jacques3 that, if N < m < 2N, then there are guaranteed to be choices of m patterns

which cannot be stored regardless of the choice of weight matrix T, but that such

choices of patterns will constitute an asymptotically negligible proportion of the total

number of choices as N approaches infinity.

In this chapter, I show that, with the delta rule, the capacity is between N and

2N. I show that certain sets of patterns cannot be stored in a neural network with a

zero-diagonal weight matrix and how to recognize such sets of patterns. In particular,

if two patterns differ by either 1 bit or N - 1 bits, they cannot both be stable.9 For this

reason, one can only define capacity in terms of the likelihood of storing a set of m

patterns rather than in terms of the ability to store every possible set of m patterns.

My definition of capacity Cp% is that one can store a random set of Cp% patterns in a

neural network of N neurons with a probability of p%. For example, if the probability

of storing a random set of m patterns is 90%, then the C^q% capacity is m.

3.1 The Delta Rule

To store the N-bit pattern Vs, first calculate the next state of each neuron using Equa­

tions 1 and 2 with pattern Vs as the input for each calculation, and then compare this

to the desired next state, pattern Vs itself. If the next state of neuron i as calculate

from Equations 1 and 2 is not equal to the desired next state of the neuron, V*, modify

17

the weight matrix T as follows:

Case 1. The desired output, V®, = 1 but the actual output, Vj, = -1: Increment each

term in Equation 1, thereby increasing Xj. For each j & i, if Vj5 = 1, increment Ty. If,

on the other hand, Vj® = -1, decrement Ty. If the amount of change is sufficient, Equa­

tions 1 and 2 will produce an output of V; = 1 the next time Vj is calculated with Vs

as input.

Case 2. The desired output, V®. = -1 but the actual output, Vj, = 1: Decrement each

term in Equation 1, thereby decreasing x;. For each j * i, if Vj® = 1, decrement Ty . If,

on the other hand, Vjs = -1, increment Ty.

These two cases can be combined using the algorithm: if V; s* V®, then, for each j

vt i, increment Ty by V® VjS. This will always result in incrementing x; if it is negative

but should be positive, and it will always result in decrementing Xj if it is positive but

should be negative. This delta rule can be written as: if the actual output, Vj is not

equal to the desired output, V®, then, for each j * i,

where c is a constant. Notice that the corrections to the weight matrix due to Vj ^ V®

cause only row i of the weight matrix to be changed; thus, if the amount of change in

[17]

or simply: for each j * i,

ATy = c (V® - Vj) Vj® [18]

the weights of row i of T is sufficient, these weights need only be adjusted once. For

Equation 18, c = Vi will produce a change of ±1 in each T- and a change of N - 1 in

Xj. This is often enough to change the sign of Xj. If it is not, Equation 18 can be

repeated for pattern Vs until the pattern is stored. This algorithm is guaranteed to store

any N-bit binary pattern.

Notice that "multiplying" V* by Vjs is equivalent to performing the ’exclusive

nor’ operation. The arithmetic required for this delta rule (Equation 18) is extremely

simple if c = xh since Tjj is either incremented by 1 or decremented by 1 depending on

the signs of V* and VjS.

3.2 Capacity Using the Delta Rule

As mentioned previously, even if N is very large, there will be pairs of patterns that

cannot both be stored simultaneously:

Theorem 1. If two patterns differ by only one bit, they cannot be stored simultaneously

in a network that does not allow direct self-feedback of neurons.

Theorem 2. If two patterns differ by N - 1 bits, they usually cannot be stored simul­

taneously in a network that does not allow direct self-feedback of neurons.

The proofs are as follows. If two patterns differ in bit i only, the calculation of Xj

(see Equation 1) will be identical regardless of which of the two patterns is applied to

the network. Since Xj will be identical for both patterns, so will Vj. If one of the two

patterns is a stable state, the other cannot also be a stable state. By a similar argument,

19

if two patterns differ in N - 1 bits, they usually cannot be stored simultaneously. In

this case, let bit i be the only bit in which the two patterns match. If application of one

pattern produces xv application of the other pattern will produce -x ; (see Equation 1).

Only if X; = 0 can both patterns be stored simultaneously. Note that, as N increases,

the likelihood that two random patterns differ by 1 or N - 1 bits decreases exponen­

tially.

Since, for any neural network requiring a zero-diagonal weight matrix, there exist

pairs of patterns that cannot be stored simultaneously, the definition used by Abu-

Mostafa and St. Jacques must be revised.

We ran several tests to determine experimentally the capacity of the model

described by Equations 1 and 2 using the delta rule of Equation 18. Attempts were

made to store randomly generated patterns (each bit with equal probability of being 1

or -1) of length N = 10 and N = 30.

For N = 10, 100 attempts were made to store 1 pattern, 100 attempts were made

to store 2 patterns, and so on up to 15 patterns. Each time a pattern was randomly gen­

erated, it was rejected if it differed by less than 2 bits or more than N - 2 bits from

any pattern already in the set The results, Table 2, indicate that the probability of

storing m randomly-generated patterns in a neural network of 10 neurons is greater

than 90% if m is less than 9, provided no pair of patterns in the set differ by less than

2 bits or more than N - 2 bits. If capacity is defined as such that the proba­

bility of successfully storing m randomly generated patterns of N bits each is 90%,

20

then 0)0% for N = 10 is approximately 0.9.

Number of Patterns 4 5 6 7 8 9 10 11 12 13 14

Trials Successful 100 99 96 99 91 80 67 34 17 11 0

Table 2. Number of successes in 100 trials for N = 10.

Table 3 shows results using N = 30. Since there are 230 possible patterns, it is

extremely unliJkely that two randomly-generated patterns differ by 1 or N - 1 bits; and

so, checking the distance between patterns is not necessary. Notice that, for N = 30,

the success rate does not drop below 90% until the number of patterns reaches 37. For

N = 30, C$o% is about 1.2.

Number of Patterns 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Trials Successful 100 98 98 99 93 86 85 73 62 48 30 29 15 9 3 1 1 0

Table 3. Number of successes in 100 trials for N = 30.

Often we were able to store sets of more than N patterns. Because of the unex­

pected nature of this phenomenon, checks were made by hand to confirm that one can

store more than N patterns in this type of neural network.

Example 2: Using N = 9, the delta rule generates the matrix

21

0 2 0 -2 4 -2 4 -4 2
3 0 -5 3 -3 -3 -5 1 -5
4 -2 0 6 -6 -2 2 0 -4

-2 4 4 0 2 -6 -2 -2 4
6 -4 -2 2 0 0 -2 4 -2
1 -1 -1 -3 1 0 -3 -5 1
3 -3 3 -3 -1 -5 0 1 -3

-3 3 1 -3 3 -5 1 0 5
4 —6 -4 6 -6 2 -4 2 0.

for the twenty patterns

(1) -1 -1 -1 -1 -1 1 - 1 - 1 1

(2) - 1 1 - 1 1 - 1 1 -1 -1 1

(3) - l i l i - l - l - l l l

(4) 1 -1 -1 -1 1 1 -1 -1 1

(5) 1 - 1 1 1 1 - 1 1 -1 -1

(6) -1 -1 1 -1 - 1 1 1 -1 -1

(7) -1 - 1 - 1 - 1 1 1 - 1 1 1

(8) -1 -1 -1 - 1 - 1 - 1 1 1 1

(9) 1 - 1 1 - 1 - 1 1 1 - 1 1

(10) 1 1 - 1 - 1 1 - 1 1 1 - 1

(11) 1 - 1 1 1 1 - 1 1 1 1

(12) - 1 - 1 1 1 - 1 - 1 1 1 1

(13) - 1 - 1 1 1 - 1 1 -1 -1 1

(14) -1 1 -1 -1 -1 1 -1 -1 -1

(15) 1 -1 -1 -1 1 1 1 - 1 -1

(16) 1 - 1 1 - 1 1 - 1 1 1 - 1

(17) 1 1 - 1 - 1 1 1 - 1 - 1 -1

(18) 1 1 - 1 1 1 1 - 1 - 1 1

(19) 1 1 1 1 - 1 - 1 1 - 1 - 1

(20) 1 1 1 1 1 -1 1 1 -1

Using Equations 1 and 2, one can check that these twenty patterns are indeed all stable

22

states of the neural network.

Note that some limit must be set on the number of iterations that one runs the

learning algorithm. Simply because the algorithm "failed" to store a set of patterns

does not mean that the set could not have been stored if the algorithm had been

allowed to continue beyond the chosen limit If one defines an iteration as success­

fully storing each pattern once (note that each time one is stored others may be forgot­

ten), then a good choice for the limit on the number of iterations is N times m for the

case of m less than N. If m is greater than N, however, the number of iterations

required increases rapidly as m increases. The results of Table 3 use m x N x 20 itera­

tions, as do most of the results in presented in this dissertation. To find out how much

improvement can be obtained using a very high limit on the number of iterations, the

test was repeated using a limit of m x N x 1000 iterations. Figure 2 shows a com­

parison between the results shown in Table 3 and the results using this very high limit

on the number of iterations. Notice that complete failure occurred at about the same

point, but that the drop-off is much sharper using a very high limit on the number of

iterations.

There are two ways of storing a set of m patterns using the delta rule. In both

cases, if the actual output Vj is not equal to the desired output, Vf, row i of the weight

matrix T is modified. This is done using Equation 18.

The first method is to store the patterns one at a time. Store the first pattern, then

store the second pattern, and so on until the last pattern has been stored. As each pat­

tern is learned, however, other patterns may be forgotten. After learning the last

Figure 2. Limit comparison, N s 30

Success rate
120

100

80

60

40

20

20 30 400 10 50 60
Number oi patterns

m x N x 1000 ~ +— m x N x 20

24

pattern, one must go back to see if the first is still stored (still a stable state). If it is

not, it will be necessary to re-leam it. One can continually iterate through the set of

patterns, checking if each pattern is still stored and re-leaming it if it has been forgot­

ten, until either all patterns have been successfully learned or a limit on the maximum

number of iterations has been reached.

The second method tends to be much faster. Notice that the calculation of the

output of neuron i, Vj, depends only on row i of the weight matrix T (see Equations 1

and 2). A pattern is stored if the output of each neuron does not change when that pat­

tern is input to the net. The set of m patterns is stored, of course, if the output of each

neuron does not change when any of the m patterns is input to the net. One can there­

fore store the set of patterns one bit at a time rather than one pattern at a time. If the

first row of the weight matrix is modified successfully, the state of the first neuron will

remain unchanged if any of the patterns are input to the net. One can then move on to

the second neuron. Modifying the second row of the weight matrix such that the state

of second neuron does not change when any of the patterns is input to the net does not

change the first row. One can modify the weight matrix one row at a time from top to

bottom. When one has successfully, modified the bottom row of the matrix, the set of

patterns is stored. If failure occurs at any row, the set of patterns has not been success­

fully learned. If, for example, one is unable to modify the first row of the weight

matrix in such a way that the first neuron will remain unchanged when any of the pat­

terns is applied to the net, one will be unable to store the set of patterns and the algo­

rithm fails. When the algorithm fails, it tends to fail much more quickly then does the

25

first algorithm. Also, when it succeeds, it tends to succeed more quickly.

Neuron i must separate the set of patterns into two groups, each pattern in the

first group having a value of 1 for neuron i, and each pattern in the second group hav­

ing a value of -1 for neuron i. Row i of the weight matrix T must be modified in such

a way that Xj > 0 when a pattern of the first group is applied to the net and x; < 0

when a pattern of the second group is applied to the net. Since Ty = 0, each neuron

must be able to separate m vectors of length N - 1. If, for any neuron i, the set of vec­

tors obtained by removing neuron i from the set of patterns is not linearly separable,

the set of patterns cannot be stored.

If the set of patterns has been randomly generated, each neuron has an equal pro­

bability of separating the set of patterns. If the probability of one neuron being able to

separate the set of patterns successfully is very close to 1 0 0 %, the probability of suc­

cessfully storing the set of patterns will be high. Figure 3 shows results of a test to

experimentally determine how many randomly-generated patterns of length N = 30 one

can store. The top curve shows the ability of one bit to separate a set of randomly-

generated patterns. Every time a set of less than 37 patterns was generated, the set of

patterns was successfully separated. Of 100 attempts to separate sets of 37 patterns, 99

were successful. The success rate gradually declined until all attempts to separate a set

of 71 patterns were unsuccessful. The bottom curve shows results of attempting to

store entire sets of randomly-generated patterns. When the number of patterns is

increased to the point where 1 bit can no longer successfully separate the sets of pat­

terns virtually 1 0 0 % of the time, the ability to successfully store the sets of patterns

Figure 3. Delta rule, N = 30

Success rate
120

100

80

60

40

20

20 30 40 500 10 60 70 80
Number ol patterns

One neuron I All neurons

27

begins to decrease very rapidly. All attempts to store 49 patterns failed even though 1

bit could successfully separate 49 patterns 76% of the time. This occurs because every

one of the 30 bits must successfully separate the set of patterns for the set of patterns

to be successfully stored. Figure 4 shows a repeat of the above test using a very high

the point where 1 bit can no longer successfully separate the sets of patterns virtually

1 0 0 % of the time, the ability to successfully store the sets of patterns begins to

decrease very rapidly.

The results of tests such as the one discussed above suggest that one can obtain

interesting results on the capacity of neural nets by studying the ability of one neuron

to separate sets of patterns. Our analysis requires defining the energy of the neural

network as did Hopfield. (The constant — is left out for simplicity).

limit on the number of iterations. Again, when the number of patterns is increased to

E = - £ £ Tij Vj Vi. [20]
» j

Using Equation 1, one can express the energy of state Vs as

[21]

One can decompose Es to obtain

N
Es = X Ejs [22]

i=l

where EjS is the component of E* in the ith direction (the contribution of the ith neuron

Figure 4. High limit, N = 30

Success rate
60

50

40

30

20

0

0

40 6020 80
Number of patterns

One neuron —I— All neurons

29

to Es). Ef can, of course, be written as

[23]

where

[24]

For state Vs to be stable, none of the Ejs can be positive. If x* is nonzero and the sign

of x* is equal to V®, then the energy Ej® will be negative. A negative EjS, therefore,

implies that, when Vs is input to the net (using Equations 1 and 2), V® does not

change and row i of matrix T does not need to be changed. If x® = 0, then E® = 0,

and V® changes sign only if it is positive (see Equation 2). If any E® is positive (or

zero when V® = 1), then pattern V® is not a stable state and has not been successfully

stored. If one then applies the delta rule, Equation 18, row i will be changed and Ej®

will be decreased by N - 1 (assuming c = xh in Equation 18).

As noted earlier, each time a pattern is stored, other patterns may be forgotten,

since storing a pattern involves changing T. Similarly, modifying row i of T to reduce

E® may increase, decrease, or leave unchanged each of the Ejs, s*s. The amount of

change can be easily calculated. If V; * V® and c = V2, applying the delta rule of

Equation 18 will change each weight in row i of T (except Ta, which we will assume

will remain zero) by

ATy = Vi® V / [25]

30

After the change in T,

Eis* = -V** XCTij + Vj* V /) V / [26]

= -Vis E Ty v/ - Vf £ V f V/ V / [27]
j*i j*i

= -V f x* - Vf V f£ VfVf [28]

The first term in Equation 28 is the value of Ef prior to the change in T. The change

in E* is

AEf' = -V* Vf 2 V /V / [29]
j*i

The summation in this equation is approximately the dot product of patterns

Vs and Vs:

£ Vf Vf = Vs-Vs - Vf Vf [30]

The dot product has limits

-N < Vs-'Vs < N [31]

and, assuming the patterns are randomly generated with each bit having an equal pro­

bability of being +1 or -1, has an expected value of zero. Combining Equations 29 and

30, one obtains:

31

AEf" = - Vf Vf (Vs-Vs - Vf V f) [32]

= 1 - Vf Vf (Vs-Vs) [33]

An example is given in Table 4. The data are from a failed attempt of neuron 1

to separate the following set of 8 patterns of length 7:

(1) -1 -
(2) 1 -

(3) 1
(4) -1 -

(5) -1 -
(6) 1 -
(7) 1

(8) -1

i'allcm count hnergy ol bil 1 ot pallcm s
s Eil Ei1 Bf Ef Ef Ef Ef Ef
1 0 ""0 ■ D~ 0 u 0 ~ XT 0
2 0 0 0 0 0 0 0 0
3 4 b 0 2 2 -2 ■2 -2
4 2 -6 b 2 2 2 ■2 2
5 2 -4 b 4 4 4 4 0
6 2 -2 b -2 -2 2 b 2
7 6 -4 -2 0 4 4 -8 0
8 6 -4 -2 0 4 4 -8 0
1 " 6 -4 -2 0 -4 4 "" •8 0
2 0 0 -4 0 4 0 4 4
3 4 -6 -4 2 -2 -2 b 2
4 4 -6 4 2 -2 -2 b 2
5 4 -4 4 -4 0 0 -8 0
6 4 -4 -4 -4 0 0 -8 0
7 8 -6 0 -2 -2 b -10 -2
8 8 -6 0 -2 -2 b -10 -2
1 8 -6 O- -2 -2 b -10 -2
2 2 -2 -2 -2 -2 -2 b 2
3 2 -2 -2 -2 -2 -2 b 2
4 2 -2 -2 -2 -2 -2 b 2
5 2 -2 -2 -2 -2 -2 b 2
6 2 -2 -2 -2 -2 -2 b 2
7 2 -2 -2 -2 -2 -2 b 2
8 2 -2 -2 -2 -2 -2 b 2
i b -4 2 4 0 4 -8 -4
2 0 0 0 -4 0 0 4 0
3 4 -6 0 -2 2 -2 b -2
4 2 -6 b -2 2 2 b 2
5 2 -6 b -2 2 2 b 2
6 2 -4 b 0 4 0 -8 4
7 6 -6 -2 2 -6 b -10 2
8 6 -6 -2 2 -6 b -10 2
1 1U -8 2 0 4 -8 -12 -4
2 4 -4 0 0 4 4 -8 0
3 4 -4 0 0 4 4 -8 0
4 2 -4 -6 0 4 0 -8 4
5 2 -4 -6 0 4 0 -8 4
6 2 -4 b 0 4 0 -8 4
7 6 -6 -2 2 -6 b -10 2
8 6 -6 -2 2 b b -10 2
1 10 -8 2~ 0 4 -8 -12 4
2 4 -4 0 0 4 4 -8 0
3 4 -4 0 0 4 4 •8 0
4 2 -4 -6 0 4 0 -8 4
5 2 -4 b 0 4 0 -8 4
6 2 -4 b 0 4 0 -8 4
7 6 b -2 2 -6 b -10 2
8 6 b -2 2 -6 b -10 2

Table 4. Ef as neuron 1 attempts to separate 8 patterns of 7 bits each.

33

The data were generated as follows:

1. Set all weights of T to 0. Set s, the pattern count, to 1.

2. Calculate and print each Ef, § = 1, 2 , 8 . If all are negative, bit 1 has suc­

cessfully separated the set of patterns, no further modifications to the weights of

row 1 of T will be necessary, and the algorithm exits.

3. For bit 1 of pattern s: If Ef > 0 (or if xf = 0 and Vf = 1), modify the first

row of T according to the delta rule, thereby, decreasing Ef by N - 1.

4. Increment s (or reset s to 1 if s = 8), and go to step 2.

The algorithm iterates through the set of patterns until either all the patterns are stored

or the limit on the number of iterations is reached.

Since all weights of T are initially zero and the first bit of pattern 1 is -1, the

weights of the first row of T are not changed after applying pattern 1 to the net. When

pattern 2 is applied to the net, x f = 0 but V 2 = 1 ; therefore, the weights of the first

row of T are changed according to Equation 18. This reduces E f by N - 1 and has

side affects of increasing E f , Ef, and Ef, while decreasing E f, Ef, and E f, as can be

seen in Table 4. Since E f does not change, remaining 0, and V f = 1, row 1 of T is

changed again, reducing E f by N - 1, increasing E f and Ef, while decreasing E f, and

leaving the rest unchanged.

The main purpose of showing this example is to examine more closely the learn­

ing algorithm and to see how the algorithm can fail. Notice that Ef remains non­

negative throughout the test Reducing E f by N - 1 increased Ef from 0 to 4;

34

reducing E f by N - 1 decreased Ef by 2, bringing it to 2; reducing E f by N - 1 and

reducing E f by N - 1 did not affect Ef; reducing Ef by N - 1 increased Ef by 4,

bringing it to 6 ; and E f and E f did not have to be reduced. The value of E f now

being 6 , applying the delta rule of Equation 18 brings it back down to 0. After a

second cycle through the set of patterns, Ef has been increased to 8 , since decreasing

E f and E f each increased Ef by 4. After several cycles, the algorithm enters an

infinite loop: reducing E f from 0 to - 6 decreases Ef by 2, but reducing E f from 0 to

- 6 and reducing E f from 2 to -4 each increase Ef by 4. The net affect is to increase

E f by 6 , thus offsetting the reduction of Ef by N - 1. Ef, therefore, remains positive;

and pattern 1 is never successfully stored.

Note that, whenever Ef is reduced by N - 1, the amount of change in Ef is

always the same (Equation 33).

Example 3: Using Equation 33, one can calculate AEf resulting from decreasing E f by

N - l :

AEf = 1—(—1)3 = 4. [34]

Notice that, in Table 4, whenever T is modified because E f is positive, E f is

decreased by N - 1 (this also follows from Equation 33) and E f is increased by 4. In

fact, this occurs the very first time T is modified.

If one uses the Hebbian outer-product weight matrix, one can calculate Ef from

Equation 33:

35

Ef = X 1 - Vf Vf (Vs-Vs) [35]
S=1

= m - X Vf Vf (Vs-Vs‘) [36]
S=1

= m - N - X Vf Vf (Vs-Vs) [37]
s*s

Writing this in the form

Ef = -(N - l) + (m-1) - X Vf Vf (Vs-Vs) [38]
S*S

allows one to see the contribution of pattern Vs, - (N -l) , along side of the contribu­

tions of the other m - 1 patterns. One can see from this equation that, if m = N, each

neuron should have a 50% chance of successfully separating the set of patterns. The

probability of storing the set of patterns, however, will be (Vi)N since each of the N

neurons must separate the set of patterns.

If, on the other hand, one uses the delta-rule algorithm rather than the Hebbian,

during each iteration through the set of patterns, only some of the patterns will require

T to be modified. For the example of Table 4, if every pattern Vs, s 1, caused a

change in T, the total change in E / would be 10 (this follows from Equation 33).

When the algorithm is in the infinite loop, only 3 of the other N - l patterns change T,

causing a change in E 21 of +6 . This is enough to offset exactly the reduction in E/ of 6

that results from applying the delta rule to V!1.

36

Suppose one uses the delta-rule algorithm to store m randomly-generated patterns

of N bits each. During each iteration through the set of patterns, only some of the pat­

terns will cause T to be modified. Suppose a fraction p of the other m - 1 patterns ini­

tially cause a change in Ef. The change in Ef will be approximately

AEf* = - (N -l) + p (m -l) - p £ Vf Vf (Vs-Vs) [39]
s*s

If p (m -l) < N -l, AEf is more likely to be negative than positive since the dot product

or two random patterns has an expected value of zero. If each AEf, s = l,...m, is more

likely to be negative than positive, then one would expect p to be less than Vi. If p is

decreased, the chance of each Ef being negative increases, and p falls further. There­

fore, if p(m-l) < N-l, then one can expect neuron i to be able to successfully separate

a set of m patterns with probability greater than 50%. Since p < 1, one can expect

neuron i to separate a set of m patterns with high probability if m < N. Since the

expected value of p is initially Vi (given a random T or an all-zero T), if m = 2N,

there will be about an equal probability that AEf will decrease as increase during the

first iteration. Since this is true for each Ef, the expected value of p will remain

approximately Vi. If p drops below Vi, each Ef will tend to decrease; whereas, if p

rises above Vi, each Ef will tend to increase. One should, therefore, expect, at best, a

50% chance of separating a set of randomly-generated patterns if m = 2N. Since each

neuron will have, at best, a 50% chance of separating the set of patterns, the probabil­

ity of storing the set of patterns will be very low.

37

Our experimental results confirm that, if m = 2N, each neuron has, at best, a 50%

chance of successfully separating the patterns. Figure 5 shows results of a study on

the ability of one neuron to separate randomly-generated patterns. The number of

neurons, N, was varied from 20 to 150; and the number of patterns, m, was varied

from - jN to over 2N. For each value of m, 50 attempts were made to separate m

randomly-generated patterns of N bits each. The top line shows the lowest value of m

for which all 50 attempts failed, and the second line from the bottom shows the lowest

value of m for which 1 or more of 50 attempts failed. The lines m = N and m = 2N

are shown for comparison. Our results showed about a 20% success rate for m = 2N.

It must be noted, however, that a limit had to be set on the number of iterations to run

the delta-rule algorithm. Often, failure to store a set of patterns occurred because the

algorithm was not allowed to run long enough. The limit on the number of iterations

for these tests was set to m x N x 20. As can be seen in Figure 2, increasing the limit

on the number of iterations can significantly improve the results. Also, as N increases,

the success rate at m = 2N improves significantly, as will be shown shortly.

Figure 6 shows results of a study on the ability to store randomly-generated pat­

terns. The number of neurons, N, was varied from 20 to 100; and the number of pat­

terns, m, was varied over a suitable range. For each value of m, 50 attempts were

made to store m randomly-generated patterns of N bits each. One line shows the

lowest value of m for which all 50 attempts failed, another line shows the lowest value

of m for which one or more of 50 attempts failed, and the lines m = N and m = 2N

are again shown for comparison. Notice that the slope of both curves is about 1.5N.

Figure 5. Delta rule, one neuron

N u m b e r ot patterns
350

300

250

200

150

100

50

0

10060 80 120 1400 20 40 160
Number of neurons

First < 100% First 0% 2N - a - N

Figure 6. Delta rule, all neurons

N u m b e r of patterns
250

200

150

100

50

0

60 8020 400 100 120
Number ot neurons

 First < 100% —1— First 0% 2N N

Figure 7 shows the relationship between the ability of one neuron to separate a

set of patterns and the ability to store the set of patterns. One curve shows the

minimum m for which 1 neuron was unsuccessfully at least once at separating the set

of patterns, and the other curve shows the lowest value of m for which at least one of

ten attempts to store the set of patterns failed. Although one neuron can successfully

separate 2N patterns of N bits each about 20% of the time, it must be able to separate

the set of patterns successfully virtually 1 0 0 % of the time in order for the probability

of storing the set of patterns to be high. In Figure 7, this limit, the point at which one

neuron can no longer separate the set of patterns virtually 1 0 0 % of the time, is only

slightly above the point at which the set of patterns can no longer be stored virtually

100% of the time. The drop-off from about 100% success to 100% failure at storing

sets of patterns can more easily be seen in Figure 8 . Notice that, for N = 20, the

drop-off begins at about m = 20; for N = 40, the drop-off begins at about m = 50; and,

for N = 70, the drop-off does not begin until about N = 100. The drop-off from about

100% success to 100% failure at separating sets of patterns can be seen in Figure 9.

As N increases, the drop-off appears to approach 2N. Tests are currently under way

using much larger N to determine if this is indeed the case.

3.3 Hetero-Associative Neural Networks

To store a pattern using the Hopfield model, one adjusts the weights in such a way as

to make that pattern a stable state. Since the pattern is associated with itself, this pro­

cedure is known as auto-associative learning. In contrast, the hetero-associative model

Figure 7. One neuron and all neurons

N u m b e r of patterns
350

300

250

200

150

100

50

0

0 20 40 60 80 100 120 140 160
Number of neurons

One neuron I A ll neurons 2N N

Figure 8. Success, 50 trials, N = 20-90

Success rate
60

5 0 -

40 -

3 0 -

2 0 -

20 40 60 80 1000 120 140 160
Number of patterns

— N - 20 —t— N - 30 N - 40 - B - N - 50

N ■ 60 N - 70 - A - N ■ 80 N - 90

Figure 9. One neuron, N = 50-150

Success rate
60

5 0 -

40 -

3 0 -

20 -

100 150 2000 50 250 300
Number of patterns

e - N ■ 70 N ■ 90 — N - 150

44

learns to associate a given input pattern with a corresponding output pattern. In

hetero-associative learning, the weights are adjusted in such a way that the given input

pattern will always produce the corresponding output pattern when input to the net.

The neuron update equations and learning algorithms for the hetero-associative model

are generalizations of the update equations and learning algorithms of the auto-

associative model.

where Ij is bit j of the input pattern and 0 ; is bit i of the output pattern. Notice that

there is no requirement that the weight matrix T be a zero-diagonal matrix.

To store the sth input/output pair Is —> 0 s, first calculate the output of each neu­

ron using Equations 40 and 41. Then compare this output, O, to the desired output 0 s.

For each bit of the actual output, 0 , that does not match the corresponding bit of the

desired output, 0 s, modify the weight matrix T as follows:

Case 1. The desired output, O®, = 1 but the actual output, Oj, = -1: Increment each

term in Equation 40, thereby increasing x;. For each j, if Ij* = 1, increment Ty. If, on

the other hand, Ijs = -1, decrement Ty. If the amount of change is enough, Equations

40 and 41 will produce an output of Oj = 1 the next time Oj is calculated with Is as

input.

[40]

1 X; > 0* [41]

45

Case 2. The desired output, Of, = -1 but the actual output, Oj, = 1: Decrement each

term in Equation 40, thereby decreasing Xj. For each j, if If = 1, decrement T;j . If, on

the other hand, If = -1, increment Tjj.

These two cases can be combined using the algorithm: if Oj * Of, then, for each

j, increment Tjj by Of If. This will always result in incrementing x5 if it is negative be

should be positive, and it will always result in decrementing X; if it is positive but

should be negative. This hetero-associative delta rule can be written as

ATjj = c (Of — O j) If [42]

If the diagonal elements of the weight matrix are not required to be zero, each

neuron must separate m patterns of N bits each; whereas, each neuron of an auto-

associative neural network must separate m patterns of N - 1 bits. Thus, the probability

of a hetero-associative neural network of N neurons storing m patterns of length N is

approximately equal to the probability of an auto-associative neural network of N + 1

neurons storing m patterns of length N + 1. As N approaches infinity, the capacity of

the hetero-associative model is equal to the capacity of the auto-associative model.

3.4. H igher-0 rder Terms

The next state of the simple neuron described previously (see Equations 1 and 2) is

found by calculating a linear combination of the other N - 1 neurons and thresholding.

Since each of the N - 1 terms of Equation 1 depends on only one neuron, the simple

neuron has order 1. A neuron of order 1 can implement only linear functions. Each

neuron must separate the set of patterns to be learned into two groups-those with a 1

46

for that neuron and those with a - 1 for that neuron-based on a linear combination of

the values of the other N - 1 neurons. This requirement of linear separability greatly

reduces the sets of patterns that can be stored. The classic example of a nonlinear

function is the exclusive-or function. If a two-input first-order neuron has an output of

- 1 for inputs (-1 , - 1), + 1 for inputs (-1 , + 1), and + 1 for inputs (+1 , - 1), then it will be

+ 1 for inputs (+1 , + 1) because of its linear nature; thus, it cannot perform the

exclusive-or function which would require an output of -1 for inputs (+1, +1). This

neuron is not able to separate the 4 patterns into the proper two groups by calculating

a linear combination of the other two neurons. By increasing the order to 2, the neuron

is capable of performing the exclusive-or function.

The Hopfield model can be converted to a second-order neuron model by having

a weight associated with each pair of neurons rather than, or in addition to, having a

weight associated with each of the individual neurons. If one multiplies the outputs of

two neurons, the product will be + 1 for inputs (-1 , - 1) and (+1 , + 1) but will be - 1 for

inputs (-1 , + 1) and (+ 1 , -1), thus allowing the neuron to perform the exclusive-or

operation. Having a weight associated with each pair will require nearly N3 weights

rather than the nearly N2 weights required by the first-order model. If symmetry is

maintained in the weight matrices, the first order model requires non-redundant

weights, and the second order model requires . Maintaining symmetry in the

weight matrices requires that a modification be made to the learning algorithm; how­

ever, this modification does not significantly affect the capacity of the neural network.

47

The next state of a second-order neuron can be calculated using the equation

*i = Z Z Tijk Vj v k [43]
js*i k*i

k*j

in place of Equation 1, and using Equation 2 for thresholding.

One can derive a learning algorithm for this model in the same manner as before.

To store pattern Vs, compare V*, the desired output of each neuron, to V;, the output

calculated using Equations 43 and 2 with Vs as the input. For each bit that changes,

modify the weight matrix T as follows:

Case 1. The desired output, V*, = 1 but the actual output, V;, = -1: Increment each

term in Equation 43, thereby increasing x;. For each Vjs and Vk such that j * i and k *

i, if VjS Vk = 1, increment Ty. If, on the other hand, Vj* Vk = -1, decrement Ty.

Case 2. The desired output, V*, = -1 but the actual output, V;, = 1: Decrement each

term in Equation 43, thereby decreasing Xj. For each j * i and k * i, if VjS Vk = 1,

decrement Ty. If, on the other hand, Vj* Vk = -1, increment Ty.

These two cases can be combined using the algorithm: if Vj * V*, then, for each j

* i, increment Ty by V* Vjs Vk. This will always result in incrementing Xj if it is nega­

tive but should be positive, and it will always result in decrementing xj if it is positive

but should be negative. This delta rule can be written as

ATijlc = c (V i* - V i) V / V k* [44]

48

Tests were run to determine experimentally the capacity of the second-order

models. In the first set of tests, only the three-dimensional weight matrix was used (see

Equation 43). In the second set of tests, both 2D and 3D weight matrices were used:

*i = X Tij Vj + x £ T p Vj Vk [45]
j*i j*i k*i

k*j

Each time that a pattern was randomly generated, it was rejected if it differed from

one of the other patterns by less than 2 bits or by more than N - 2 bits. Table 5 shows

results for N = 10 using only the 3D weight matrix. Notice that the probability of stor­

ing m randomly-generated patterns does not drop below 90% until m = 39. Thus C9 0%

is about 3.8 for N = 10.

Number of Pattern 35 36 37 38 39 40 41 42 43 44 45 46 47

Trials Successful 50 49 48 46 42 33 25 29 17 15 10 4 0

Table 5. Successes in 50 trials, 3D binary model, N = 10.

The results using both 2D and 3D weight matrices with N = 10 are shown in Table 6 .

In this case Cqq% is about 5.2. This compares to 0.9 for the model using the 2D

weight matrix alone (Table 2).

Number of Pattern! 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

Trials Successful 50 47 44 41 38 38 28 24 23 16 14 12 7 8 3 2 2 0

Table 6 . Successes in 50 trials, binary model (2D and 3D), N = 10.

Note that symmetric matrices were used to obtain the results of Tables 5 and 6 .

49

The delta rule was simply modified to maintain the symmetries

Tijk = Tfcj = Tjjjt = Tju = Tyj = Tkjj. Such symmetry reduces the number of weights to

increased capacity due to increasing the dimension of the weight matrices is propor­

tional to the increase in the number of weights used.

3.5 Unlearning

Any state Vs can be made stable by using the delta rule to decrease each E* that may

be non-negative. Conversely, a stable state can be "forgotten" or "unlearned" by

increasing the energy of the state appropriately. 11 To unlearn pattern Vs, simply apply

the following equation to T:

If the new value of Ef > 0, the state will no longer be stable. The effect that the

change in T has on stored pattern V* can be calculated easily:

less than — the number required for the asymmetric case without significantly reduc

ing the capacity. Our results are similar to those of Maxwell et a / . 1 0 in that the

[46]

where k is a positive constant. In this case

AEiS = k(N -l). [47]

AE/ = -k (l - V?V f(Vs-V's))

= -k + kVjSV/(Vs-V*))

[48]

[49]

50

The expected value of this change is -k. It has been shown by Youn and Kak12 that k

= 0.1 leads to unlearning of the spurious state without significantly affecting other

stable points.

Notice that the ratio of the constant c in the delta rule (Equation 18) to the con­

stant k in the unlearning equation determines the affect of forgetting a pattern on the

other stored patterns. Choosing k = 0.1, as Youn and Kak did, requires the weights to

be real numbers rather than integers. This significantly increases both the amount of

memory required to store the weights and the speed of the neural network. All tests

presented in this dissertation are from a neural network program that uses only integer

arithmetic. If one requires k to be 1/10 of c, one must choose c to be at least 10 to

keep the weights integers. This will significantly increase the amount of memory

required to store the weights. Therefore, incorporating unlearning into a neural network

simulation can lead to much greater memory requirements. Furthermore, using con­

tinuous unlearning significantly reduces the number of patterns one can store since the

adjustments to the weight matrix necessary to unlearn a pattern can cause other pat­

terns to also be forgotten.

3.6 Negative Feedback in Learning

The purpose of unlearning is to reduce the number of spurious states. When a pattern

is unlearned, however, states which were previously unstable can become stable. An

alternative to unlearning is to use direct feedback of neurons during the learning pro­

cedure. During learning, set each Ta = - e where e is a positive constant. This will

51

cause each Ef to be increased by e. A positive Ejs means that, during delta learning,

the weights of row i will be adjusted to decrease E*. If one uses a positive e during

learning and resets e to 0 after learning, all complements of the stored patterns will be

stable states since no EjS will be 0. The maximum value of Ejs will be -e . Using

larger e will, therefore, tend to improve the error-correcting ability of the net.

Whereas unlearning serves to increase the energy of the spurious states, learning with

negative feedback serves to reduce the energy of the non-spurious stored states.

Reducing the energy of the non-spurious stored states, in turn, tends to also increase

the energy of the spurious states.

Learning with negative feedback tends

1. to decrease the chance of learned patterns from being forgotten due to subse­

quent changes in T,

2. to increase the average size of the attraction basins of the learned patterns,

3. to reduce the size of the attraction basins of the non-complement spurious

states,

4. and to improve the performance of the neural network by improving the

error-correcting ability of the neural network.

Furthermore, it does all of the above without significantly reducing the capacity of the

model or substantially increasing the amount of memory needed to store the weights.

52

If one uses the delta rule to store a set of patterns, for some of the patterns one or

more Ef may be 0 or close to 0. For example, if bit Vjs = -1 and Ejs = 0, neuron i will

not change when pattern Vs is applied to the net, and it will not be necessary to

modify the weights of row i. Unfortunately, however, the error-correcting ability will

be very poor. If a pattern that differs from Vs in only one bit is applied to the net, the

net will have only about a 50% chance of correcting the error. Also, the complement

of Vs will not be a stable state. If one uses e = 1 during learning and resets e to 0

after learning, the maximum value of E* will be -e. Using larger e will, therefore, tend

to improve the error-correcting ability of the net.

Figure 10 shows the results of a study using e = 1. Notice that the probability of

one bit separating a set of m patterns of N bits each is not significantly worse than

when direct feedback was not used (see Figure 3).

Tables 7 and 8 show results of tests comparing the performance of the learning

algorithm using various values of e. With e = 0, the number of stable complement

states was less than the number of intentionally stored states. For e = 5 and e = 10, all

complement states are stable. Although the number of non-complement spurious states

increases as e increases, the average size of the attraction basins of the non­

complement spurious states is significantly reduced. Also, the percentage of states

which settled to the stable state closest in Hamming distance increased significantly.

Further studies are currently underway to compare more closely this method of using

negative feedback in learning to the method of continuous unlearning.

Figure 10. Delta rule, N = 30, e s 1

Success rate
120

100

80

60

40

20

20 40 600 80
Number ol patterns

54

e 0 5 10

Stored 100 100 100

Spurious 57 —92 100

Complement 58 100 100

Stored Basins 398 346 363

Spurious Basins 355 118 99

Complement Basins 375 363 356

Correct 33054 37528 38466

Table 7. Performance for e = 0, 5, and 10, using N = 10 and m = 5.

e 0 5 10

Stored 120 120 120

Spurious 69 71 85

Complement 71 120 120

Stored Basins 340 299 300

Spurious Basins 297 147 113

Complement Basins 288 295 297

Correct 28025 33642 35192

Table 8 . Performance for e = 0, 5, and 10, using N = 10 and m = 6 .

3.7 Networks of Limited Connectivity

Because the number of weights in a neural network varies with the square of the

number of neurons, a huge amount of memory is required if N is large. This can be a

particularly serious problem if one is storing images. Images of 256x256 pixels or

even 512x512 pixels are not uncommon. Even if the image is 64x64 pixels, over 16

million weights are required if the weight matrix is asymmetric.

The number of weights can be gready reduced by limiting the connectivity of the

55

network. For instance, each neuron can be connected only to those neurons within a

defined neighborhood. One would expect that, if each neuron is connected to only d of

the N neurons in the network, the capacity would be approximately equal to that of a

network of d neurons.

Simulations indicate that this is, indeed, the case. Table 9 shows results from tests

in which the total number of neurons N was varied from 30 to 90, but each neuron

was connected to only 30 other neurons. The capacity is essentially the same in all

three cases.

N
Number of Patterns

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

30 50 49 48 46 42 33 25 29 17 15 10 4 0 0 0 0

60 50 50 50 47 48 44 33 30 18 11 3 2 0 0 0 0

90 50 50 49 47 46 46 42 34 20 15 12 5 0 0 0 0

Table 9. Successes in 50 trials, d = 30.

In general, the capacity of a neural network in which each neuron is connected to

only d of the total number of neurons seems to be approximately equal to the capacity

of a neural network in which the total number of neurons is d. Figures 11 and 12 pro-

Nvide further evidence of this. In Figure 11 d is set to — , and N varies from 30 to 70.

2NIn Figure 12 d is set to — and N varies from 30 to 60.

These results should be of particular interest to those using hardware implementa­

tions of neural networks. Such hardware implementations rarely have more than about

one thousand neurons.1̂ 1 One could store large images in such networks only by

Figure 11. Delta rule, d s N /2

N u m b e r ot patterns
80

70

60

50

40

30

20

0 10 30 4020 50 60 70 80
Number of neurons

First (100% First 0% N

Figure 12. Delta rule, d - 2N/3

N u m b e r ol patterns
80

60

40

20

300 20 40 50 6010 70
Number ot neurons

First { 100% —t— First 0% N

limiting the connectivity of the model.

CHAPTER 4. Non-Binary Neural Networks

The Hopfield model requires a pattern or image to be binary. Often, however, patterns

and images are not binary and can lose much information when converted to a binary

form. In addition, the manner in which one converts to binary significantly affects the

amount of information lost. A generalized neural network model has been proposed

that allows neurons to take on more than two values. 1 6 Very few changes to the sim­

ple binary model are required to obtain an n-ary neural network model that can suc­

cessfully store and retrieve patterns

4.1. Update Equations for the Non-Binary Model

To convert a binary neural network to the more general n-ary neural network, Equation

1 need not be changed; only Equation 2 needs to be changed. For instance, for a

quaternary neural network, Equation 2 can be modified to

V j = 1

3 Xj > t

1 t > Xi > 0

- 1 0 > Xj > - t

-3 - t > Xi

[50]

where t, 0 , and -t are thresholds.

4.2. Delta Rule for the Non-Binary Mode)

One can derive a learning algorithm for this model using the same method we used to

derive the binary delta rule. To store pattern Vs, first calculate the next state of each

neuron using Equations 1 and 50 with Vs as the input, and then compare this to the

60

desired state of the neuron, Vj®. If these two values are equal, no change in weight

matrix T is necessary. For each neuron that changes, modify the weight matrix T as

follows:

Case 1. The desired output, V®, is greater than the actual output, Vj: Increment each

term in Equation 1, thereby increasing Xj. For each j * i, if VjS is positive, increment

Tjj. If, on the other hand, Vjs is negative, decrement Ty.

Case 2. The desired output, V®, is less than the actual output, Vj: Decrement each term

in Equation 1, thereby decreasing x;. For each j ^ i, if Vj® is positive, decrement Ty. If,

on the other hand, VjS is negative, increment Ty.

In general we can say: if V; * V®, then, for each j & i, increment Ty by an

amount proportional to V® VjS. This will always result in incrementing Xj if it is nega­

tive but should be positive, and it will always result in decrementing Xj if it is positive

but should be negative. This is, of course, just a more general version of the binary

delta rule-the very same equation is used (Equation 18) but the neurons are non-

binary.

The only difference in the algorithm is that Equation 50 is used instead of Equa­

tion 2 for thresholding. For the algorithm to be successful, the relationship between

the constant c in Equation 18 and the threshold t in Equation 50 must be chosen prop­

erly. We will refer to this ratio as the convergence ratio since, if it is too small, the

algorithm will not converge. With a large enough convergence ratio, any quaternary

pattern can quickly be stored using Equations 1 , 18, and 50. Since it is the ratio of t to

c that is important, we can set c to 1 and choose an appropriate threshold t.

For the binary model, we required only that the change in Xj due to the changes

in the weights (Equation 18) be large enough to change the sign of Vj. With non­

binary networks of the type described, not only does the change in X; have a minimum,

but it also has a maximum. Normally, we would not want Xj to change by more than t,

since such a change could overshoot the desired value. Suppose, for example, that the

neurons can take on the values {3, 1, -1, -3}, as in Equation 50. If the desired value

V* = 1 and the actual value Vj = - 1 , too large a change in the weights will result in

too large a change in Xj causing an output of V; = 3 the next time V s is applied to the

network.

The change in xj caused by application of Equation 18 can be calculated by com­

bining Equations 18 and 1:

Axj = X c (VjS - V j) V / Vf [51]
i**

Axj = c (Vf - V j) X (V/) 2 [52]

Using the [3, 1, -1, -3} model, the greatest change in Xj will occur if the pattern to be

stored, Vs, consists of only the values +3 and -3. In this case Equation 52 can be writ­

ten as

Axj £ c (Vjs - V j) (N - 1) 32 [53]

and the amount of change in Xj will depend on the difference between the desired

62

output, V®, and the actual output, Vj. A reasonable choice of t (assuming c = 1) is

18(N - 1). With such a choice, if V* and V; differ by 2, the change in x5 will be at

most 18(N - 1) and will never be so much that more than one threshold is crossed at a

time. For the {3, 1, -1, -3} quaternary model, repeated application of Equation 18 with

t/c = 18(N - 1) is guaranteed to quickly store any pattern.

For an n-ary neural network, it is easy to calculate a ratio t/c that is guaranteed to

allow any pattern to be stored. Let Vmax be the maximum allowable magnitude for a

neuron (Vmax = 3 for the quaternary example given above). Let be the maximum

difference between any two "adjacent" output values (Vdiff = 2 for the {3, 1, -1, -3}

model). The following convergence ratio will allow any one pattern to be stored:

t/c = Vdi([(N - 1) [54]

This is because

Axj < c Vdiff (N - 1) [55]

For the quaternary model described above, this formula gives the minimum value of

t/c that will guarantee that any pattern can be stored. For other n-ary models, there are

values of t/c below the one calculated from this formula that will also allow any pat­

tern to be stored, as will be seen shortly.

4.3. Capacity of the Non-Binary Model

Several tests were run to determine experimentally the optimal choice of the conver­

63

gence ratio and to compare the capacity of the quaternary model to that of the binary.

Sets of patterns to be learned were generated randomly; however, each time a pattern

was generated, it was compared to each of the patterns already in the set to be sure

that it differed in more than one place and less than N - 1 places from each of them.

Tests were run on the following quaternary models {3, 1, -1, -3), {2, 1, -1, -2}, and

{4, 1, -1, -4}. For each model, c was set to 1, and the value of t was varied over a

large range. For each value of t, 50 attempts were made to store 1 random pattern, 50

attempts were made to store 2 random patterns, and so on up to 15 random patterns.

Table 10 shows results for N = 10 using the values of t suggested by Equation 54

for each of the three quaternary models.

model
Number of Patterns

5 6 7 8 9 1 0 1 1 1 2 13

{2 ,1 ,-1 ,-2 } 50 50 50 49 40 19 9 0 0

{3,1,-1,-3} 50 50 50 47 39 1 2 9 1 0

{4,1,-1,-4} 50 50 49 50 36 17 3 0 0

Table 10. Successes in 50 trials, 3 quaternary models, N = 10.

Note that these results support the claim that, with such a choice of t, any one random

pattern can be stored successfully. For the {3, 1, -1, -3} model, whenever t was less

than that suggested by Equation 54, there were individual patterns that could not be

stored. For the {2, 1, -1, -2] and {4, 1, -1, -4} models, however, values of t less than

64

those suggested by Equation 54 produced slightly better results. For these two models,

the best results were obtained with

t = (N - 1) V ’ „ . [56]

These were also the minimum values of t with which one can be sure to be able to

store any one random pattern successfully.

Table 11 shows results using quaternary model (2, 1, -1, -2} with N = 30.

Number of Patterns 26 27 28 29 30 31 32 33 34 35

Trials Successful 50 49 50 45 39 26 14 2 1 0

Table 11. Successes in 50 trials, quaternary model {2, 1, -1, -2}, N = 30.

Comparing these results with those of the binary model, Table 3, one can see that, for

the quaternary model, the success rate drops below 90% at about N = 29; whereas, for

the binary model, it drops below 90% at about m = 37. The information capacity of

the quaternary model, however, is actually higher, since each pattern contains about

twice as much information.

CHAPTER 5. Shift-Invariant Neural Networks

It has long been known1 7 that neural nets possess some of the properties of associative

memory. Given a neural net trained to recognize certain patterns, as an associative

memory it must be able to retrieve a pattern given only a part of it. Simple neural nets

perform this type of memory recall when part of the pattern is simply missing. How­

ever, for a neural net to be of practical value as an associative memory, it must be able

to recognize parts of patterns that are shifted spatially with respect to the ones that

have been stored. This includes not only two-dimensional images that are shifted verti­

cally or horizontally and patterns that have missing parts, but also patterns that have

the remaining parts bunched together (for instance, a misspelled word with missing

letters), or patterns with extra parts inserted within the pattern (such as extra letters in

a word).

For the case of linearly shifted patterns, one can implement shift invariance with

a pre-processor that performs a shift-invariant transformation such as a Fourier

transformation. The associative memory is then used for storing the transformation

coefficients. The recent speech recognition system of Kohonen1 8 for example, uses an

FFT pre-processor, as does the Adaptive Pattern Recognition (ART) system of Car­

penter and Grossberg. 1 9 Alternatively, one may use a shift invariant neural network

that accepts patterns directly rather than their transforms. With such a network, it may

be easier to perform direct non-linear operations that allow recognition of patterns with

missing or extra parts. Shift-invariant associative memory using neural networks has

been described earlier by Maxwell et a / . , 1 0 Widrow and Winter,2 0 and Prados and

65

66

Kak.21

In 1947, McCulloch and Pitts2 2 discussed the idea of recognizing an object, or

apparition, that is a member, of a group of equivalent objects. The group of objects

share a common figure, and there exists a group of transformations that "take the

equivalents into one another but preserve the figure invariant". They give the example

of a square that c |n be recognized regardless of translations from one place to other

places.

They derive general methods for designing neural networks which recognize

figures (members of the group) in such a way as to produce the same output for every

input belonging to the figure. The following method is presented.

A manifold M is described by a set of coordinates (x1? x2,..., x„) constituting the

point-vector x. Denote the distributions of excitation received in M by the function

<j)(x, t) having the value unity if there is a neuron at the point x that has fired within

one synaptic delay prior to time t, and otherwise zero. Let G be the group of transfor­

mations which carry the functions <|)(x, t) describing apparitions into their equivalents

of the same figure. In the simplest case, the only case discussed in detail by McCul­

loch and Pitts, the transformation T of G can be generated by linear transformations t

of the underlying manifold M, so that T <()(x) = <()(t(x)]. For example, if G is the group

of translations, then T <t>(x) = <j>(x + aT), where aT is a constant vector depending only

upon T. If G is the group of dilations, T<J>(x) = <|>(aTx), where aT is a positive real

number depending only upon T.

67

The simplest way to construct invariants of a given distribution <|>(x, t) of excita­

tion, they claim, is to average over the group G. Let f be an arbitrary function that

assigns a unique numerical value, in any way, to every distribution <()(x, t) of excitation

in M over time. Form every transformation T<j> of <j>(x, t), evaluate f[T<|)], and average

the result over G to derive

a = 1 /N X T O L [57]
all T e G

Now, let the original manifold M be duplicated on N - 1 sheets, a manifold MT

for each T of G, and connected to M or its sensory afferents in such a way that what­

ever produces the distribution <j>(x) on M produces the transformed distribution T<j)(x)

on MT. Therefore, separately for each value of £ for each MT, the value f[T<j>£j is

computed by a similar net, and the results from all the MT’s are added by convergence

on the neuron at the point £ of the mosaic. The output of this neuron will be invariant

to any transformation T of G. This technique is very similar to the technique recently

discussed by Widrow and Winter. 2 0

There appears to be a much simpler method of obtaining shift-invariant pattern

recognition. Pitts and McCulloch hint at such a method; however, they discuss it from

the biological point of view, and their mathematics is quite complicated. They suggest

that the brain may compute the "center of gravity of the distribution of brightness" and

give the following example: "If the square should appear anywhere in the field, the

eyes turn until it is centered, and what they see is the same, wherever the initial posi­

tion of the square." Using this idea of focusing the center of attention, one can obtain

a very powerful, but simple, shift-invariant neural network. Such a neural network will

68

be presented in the next section.

5.1. Update Equations for the Shift-Invariant Model

The conventional neural network model needs to be modified only slightly to provide

such a shift-invariant neural network model. Instead of having a different set of

weights for each neuron, a neural net can use the same set of weights for each neuron.

This focusing of the "center of attention" of the neural network requires that the con­

nection matrix depend only on relative coordinates. This technique of implementing

shift invariance has been used by Maxwell et a / . 1 0

Suppose one wishes to store the following two patterns in a conventional neural

network memory: V 1 = (-1 -1 -1 +1 +1 +1) and V2 = (- 1 +1 -1 +1 -1 +1). Associated

with each of the 6 neurons is a set of weights corresponding to the effect of each of

the other neurons on it. For example, neuron 3 should have a positive weight reflecting

an excitatory effect of neuron 1 on it and negative weights reflecting inhibitory effects

of neurons 4 and 6 on it. The Hopfield model using the Hebbian storage algorithm

would assign weights of T2 0 = +2 and T2 3 = T2 5 = -2. A shift invariant neural net­

work, on the other hand, should assign weights in accordance with the relative dis­

tances between neurons. The weight T2, for instance, can be calculated as the average

° f T20, T31, T42, and T5 3 .

To obtain an update rule, Equation 1 can be modified to obtain

= £ TjV H
j*i

[58]

69

where Tj represents the connection strength between neuron i and neuron i - j. Since

there are only N - 1 weights, the capacity is extremely low. By using higher-order

terms, the capacity can be increased substantially. Weight can represent the affect

of Vj_jVi_k on neuron V;; and weight Tjy can represent the affect of Vi_jVj_JcVi_i on

Vi:

* 1 = ZTjVH + X X Tjk VH V „ + X X X Tjd VH Vi_k VH t59]
j î fcei jsti k*it/j

k*j k*il?;j
'l*k

5.2. Delta Rule for the Shift-Invariant Model

We can apply our method for obtaining a delta rule to this model as follows. To store

pattern Vs, we must input Vs to the neural network. If each bit of the output V (next

state of Vs) is equal to the corresponding bit of Vs, no changes are necessary. For each

bit that changes, modify T as follows:

Case 1. Vjs = 1 but V; = -1: Increment each term in Equation 59. If VjS_j = 1, increment

Tj; otherwise, decrement Tj. If V£jV£.k = 1, increment Tjk; otherwise, decrement Tjk.

And, if ViijV iLkV^ 1 = 1, increment Tjy; otherwise, decrement Tjld.

Case 2. V / = - 1 but V; = 1: Decrement each tenn in Equation 59. If Vjij = 1, decre­

ment Tj; otherwise, increment Tj. If V£.jV£k = 1, decrement T^; otherwise, increment

T*. And, if Vj — i i * decrement Tjki; otherwise, increment Tjki-

In general, this algorithm can be written as:

70

ATj = c (Vis - Vj) V£j [60]

ATjk = c (V is - V i)V ii jVis_k [61]

ATiu = c (Vf - ^) V ^ V k V k [62]

where c is the learning constant. If the subtracting of indices is performed modulo N,

all cyclic shifts of a pattern will be stable if that pattern is stable.

5.3. Capacity of Shift-Invariant Model

Tests were first run using the second-order terms alone, the third-order terms alone,

and the second- and third-order terms combined. Table 12 is a comparison of the

second-order model and the third-order model. Surprisingly, the second-order model

had higher capacity. When the two were combined, the results were far superior to the

results of either alone. Table 13 shows results combining first- and second-order

models. Notice that the success rates are only slightly greater then using the second-

order model alone. Table 14 shows that, using both second-order and third-order

terms, one can store as many as 16 patterns with a 90% success rate. Keep in mind

that, if all 16 patterns are successfully stored, all cyclic shifts of these 16 patterns will

also be stored. This leads to 160 stable states!

order
Number of Patterns

1 2 3 4 5 6 7 8 9 10 11 12

2D 48 49 43 39 34 26 8 1 0 0 0 0

3D 49 40 33 19 19 7 3 8 3 1 3 0

Table 12. Successes in 50 trials, 2D and 3D shift-invariant models, N = 10.

71

Number of Pattern 1 2 3 4 5 6 7 8 9 10 11

Trials Successful 48 48 46 39 43 36 14 6 1 1 0

Table 13. Successes in 50 trials, shift-invariant model (ID and 2D), N = 10.

Number of Pattern 9 10 11 12 13 14 15 16 17 18 19 20 21

Trials Successful 50 48 47 49 49 49 49 46 36 18 11 5 0

Table 14. Successes in 50 trials, shift-invariant model (2D and 3D), N = 10.

Table 15 shows results combining ID, 2D, and 3D weight matrices. Again,

including the ID weight matrix does not significantly improve the results.

Number of Pattern 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Trials Successful 50 50 50 50 50 48 50 42 30 17 13 2 2 0

Table 15. Successes in 50 trials, shift-invariant model (ID, 2D, and 3D), N = 10.

We have seen that the Hopfield neural-network model requires
N
d . nonredun-

dant connections. With the shift-invariant model there are
N -l

d nonredundant con­

nection weights. This is still a very large number for large N. For a 64x64 binary

image, one would still need over 8 million nonredundant connections, about the same

as the number required for the Hopfield model.

By limiting the connections to a neighborhood surrounding the neuron, this

number can be reduced significantly. For example, if each neuron is connected to only

those neurons within a 15x15 grid surrounding it, less than 25,000 connections would

72

be required (for a first order network). A shift invariant neural network of this kind

could be used as a low-level classifier as part of a hierarchical system. Objects

smaller than the neighborhood could be stored in the connection matrix. These small

objects could then be recognized by the low-level classifier and application of a

higher-level classifier could follow.

Note that, although there are estimated to be about a trillion neurons in the ner­

vous system, each neuron has, on average, about 1 0 0 inputs converging on it while it

in turn diverges to 100 other neurons.2 ̂ Also, when one observes an image, for exam­

ple a written page, one does not take in the entire image at once but focuses on only a

small area of the image at a time. By limiting the connectivity of a neural network as

described above, relatively small objects could be stored and could be recognized

regardless of their location in the image without using an astronomically large number

of connection weights. For a neural-network-based associative memory to be feasible

such a reduction in the number of connection weights is essential. In addition, it is

more realistic from a biological perspective to have each neuron connected to no more

than a few hundred other neurons.

CHAPTER 6. Conclusions

This dissertation has presented both analytical and experimental results on the number

of patterns one can expect to be able to store in Hopfield neural networks using a

modification of the delta rule. Analytical results indicate that the probability of one

neuron successfully separating a set of m random patterns of N bits each should fall

below 50% at about m = 2N. The following table shows experimental results on the

ability of one neuron to separate sets of patterns for C100%, C9 0 %, C50%, and Cq% for N

between 20 and 150.

Success Rate
N

20 30 40 50 60 70 80 90 100 150

^ 'l00% 1.2 1.23 1.42 1.34 1.55 1.4 1.52 1.58 1.64 1.73

Q?o% 1.4 1.47 1.65 1.6 1.73 1.62 1.75 1.76 1.68 1.79

£ 50% 1.85 1.87 1.85 1.84 1.88 1.83 1.9 1.87 1.94 1.91

Q)% 2.3 2.37 2.35 2.28 2.18 2.08 2.14 2.13 2.06 1.93

Table 16. C100%, C ^ , C50%> and Cq% for N = 20 to 150. (Separating)

The ability of one neuron to separate a set of m patterns of N bits each is directly

related to the ability of the neural network to successfully store m patterns of N bits

each. Once the probability of one neuron separating a set of patterns falls below about

99%, the ability to store the set of patterns falls very quickly. Table 17 shows experi­

mental results on the ability to store sets of patterns for C10o%, C ^ , C50%) and Cq%

for N between 20 and 100.

73

74

Success Rale
N

20 30 40 50 60 70 80 90 100

^100% 0.95 1.07 1.1 12 13 131 1.44 1.46 1.45

0)0% 1.10 1.27 1J 2 1.40 1.42 1.42 m i m o 1.49

^50% 1J0 1.40 1.45 1.48 m o m i 1-54 1.56 1.52

Q)% 1.60 1.63 1.60 1.66 \S1 m 7 1.59 1.61 1.54

Table 17. C90%, C^q%, and Cq% for N = 20 to 100. (Storing).

Figures 13 and 14 show the same results graphically.

There are two reasons why the experimental results are not as good as that

predicted by the analysis. First, because of time limitations, some limit must be set on

the number of iterations one can run the delta rule. The higher the limit is, the sharper

the drop-off from nearly 100% success to nearly 0% success. Second, as N is

increased, the beginning of the drop-off, in relation to N, is increased.

A method of improving the performance of the delta rule has been presented.

This method involves using direct negative feedback of neurons (T;i < 0) during the

learning process and removing the negative feedback afterwards. A thorough com­

parison between this method and the continuous unlearning method1 2 still remains to

be performed. It has been shown that using negative feedback during learning can

reduce the average size of the basins of attraction of the non-complement spurious

states and improve the chance that a random input will converge to the attractor closest

in Hamming distance. This leads to better performance of the neural network as a

content-addressable memory.

It has also been shown that the Hopfield model needs to be modified only slightly

to be able to store and retrieve non-binary patterns. A learning rule for such a model

Figure 13. Capacity—separating

C a p ac ity (xN)
2.5

0.5

10020 40 60 80 1200 140 160
Number ot neurons

 100% —I— 90% — 50% - s - 0%

Figure 14. Capacity—storing

C a p ac ity (xN)

B -

0.5

20 60 800 40 100 120
Number ot neurons

100% —I— 90% 50% - B - 0%

-4
CT'v

77

has been presented. Although such a model cannot store as many patterns as the binary

model, each pattern contains twice as much information as binary patterns.

A learning rule for shift-invariant neural network models has also been presented.

Such a network requires using a three-dimensional weight matrix in addition to a two-

dimensional weight matrix; however, each time a pattern is stored, all of its cyclic

shifts are also stored. For example, if N = 10, although the success rate falls below

90% when the number of patterns reaches about 17, one can store, say, 15 patterns

with all their cyclic shifts (150 patterns in all) with about a 99% success rate. If one

were to try storing all 150 patterns using the Hopfield model with both second-order

and third-order terms, the probability of success would be much less.

Since the number of weights in a shift-invariant neural network that uses both a

three-dimensional and a two-dimensional weight matrix can grow quite large for large

N, limiting the connectivity of such a model has been proposed. It appears that the

capacity of a neural network in which each neuron is connected to only d of the other

N - 1 neurons is approximately equal to the capacity of a neural network of d neurons.

We propose that a limited-diameter shift-invariant neural network could be used as a

low-level classifier as part of a hierarchical system. Objects smaller than the neighbor­

hood could be stored in the connection matrix. These small objects could then be

recognized regardless of their location in the image with any noise or other variations

in the shape of the images being removed. Application of a higher-level classifier

could follow.

78

References

1. J. J. Hopfield, “ Neural Networks and Physical Systems with Emergent Collective

Computational Abilities,” Proc. National Academy o f Science, USA, vol. 79, pp.

2554-2558, 1982.

2. R. J. McEliece, E. C. Posner, E. R. Rodemich, and S. S. Venkatesh, “ The Capa­

city of the Hopfield Associative Memory,” IEEE Transactions on Information

Theory, vol. IT-33, pp. 461-482, 1987.

3. Y. S. Abu-Mostafa and J. St. Jacques, “ Information Capacity of the Hopfield

Model,” IEEE Transactions on Information Theory, vol. IT-31, no. 4, pp. 461-

464, July, 1985.

4. S. S. Venkatesh, “ Epsilon Capacity of Neural Networks,” Proc. AIP Conference

on Neural Networks fo r Computing, pp. 440-445, Snowbird, UT, 1986.

5. David H. Hubei, Eye, Brain, and Vision, Scientific American Library, New York,

1988.

6 . D. L. Prados and S.C. Kak, “ Neural Network Capacity Using the Delta Rule,”

Electronics Letters, vol. 25, no. 3, pp. 197-199, 2nd February, 1989.

7. S. H. Cameron, “ An Estimate of the Complexity Requisite in a Universal Deci­

sion Network,” Bionics Symposium, Wright Airforce Dev. Div. (WADD) Rep.

60-600, pp. 197-212, 1960.

8 . R. O. Winder, “ Threshold Logic,” PhD Dissertation, Princeton University,

Princeton, NJ, 1962.

79

9. D. L. Prados, “ The Capacity of a Neural Network,” Electronics Letters, vol. 24,

pp. 454-455, 1988.

10. T. Maxwell, C. L. Giles, and Y. C. Lee, “ Transformation Invariance Using High

Order Correlations in Neural Net Architectures,” Plasma Preprint UMLPF #8 8 -

125, University of Maryland, 1988.

11. J. J. Hopfield, “ Unlearning Has a Stabilizing Effect in Collective Memories,”

Nature, vol. 304, pp. 158-159, July, 1983.

12. C. H. Youn and S. C. Kak, “ Continuous Unlearning in Neural Networks,” Elec­

tronics Letters, vol. 25, no. 3, pp. 202-203, February 2, 1989.

13. L. Akers, M. Walker, D. Ferry, and R. Grondin, “ A Limited-Interconnect, Highly

Layered Synthetic Neural Architecture,” in VLSI fo r Artificial Intelligence, ed.

J.G. Delgado-Frias and W.R. Moore, pp. 218-226, Kluwer Academic Publishers,

1989.

14. Z. Butler, A. Murray, and A. Smith, “ VLSI Bit-Serial Neural Networks,” in

VLSI for Artificial Intelligence, ed. J.G. Delgado-Frias and W.R. Moore, pp. 201-

208, Kluwer Academic Publishers, 1989.

15. M. Verleysen, B. Sirletd, and P. Jespers, “ A New CMOS Architecture for Neural

Networks,” in VLSI for Artificial Intelligence, ed. J.G. Delgado-Frias and W.R.

Moore, pp. 209-217, Kluwer Academic Publishers, 1989.

16. D. L. Prados and S.C. Kak, “ Non-Binary Neural Networks,” in Advances in

Computing and Control, ed. W.A. Porter, S.C. Kak, and J.C. Aravena, pp. 97-

80

104, Springer-Verlag, New York, 1989.

17. F. Rosenblatt, “ The Perceptron: A Probabilistic Model For Information Storage

and Organization in the Brain,” Psychological Review, vol. 65, pp. 386-408,

1958.

18. T. Kohonen, “ The Neural Phonetic Typewriter,” Computer, vol. 21, no. 3, pp.

11-22, 1988.

19. G. A. Carpenter and S. Grossberg, “The ART of Adaptive Pattern Recognition

by a Self-Organizing Neural Network,” Computer, vol. 21, no. 3, pp. 77-88,

1988.

20. W. Widrow and R. Winter, “ Neural Nets for Adaptive Filtering and Adaptive

Pattern Recognition,” Computer, vol. 21, no. 3, pp. 25-39, 1988.

21. D. L. Prados and S.C. Kak, “ Shift Invariant Associative Memory,” in VLSI for

Artificial Intelligence, ed. J.G. Delgado-Frias and W.R. Moore, pp. 189-197,

Kluwer Academic Publishers, 1989.

22. W. Pitts and W. S. McCulloch, “ How We Know Universals: The Perception of

Auditory and Visual Forms,” Bulletin o f Mathematical Biophysics, vol. 9, pp.

127-147, 1947.

23. W. F. Ganong, Review o f Medical Physiology, Lange Medical Publications, Los

Altos, CA, 1979.

JOB OBJECTIVE

EDUCATION
8/84 - 8/89

8/83 - 5/84

8/77 - 8/82

EXPERIENCE
5/87 - 8/89

8 / 8 6 - 5/87

8/85 - 8 / 8 6

8/84 - 8/85

11/83 - 5/84

VITA
Donald L. Prados

1515 Aztec Ave., Apt. # 8

Metairie, LA

Teaching Position in Artificial Intelligence, Neural Networks, Expert Sys­
tems, Image Processing.

Louisiana State University, Baton Rouge, LA 70803
Ph.D. in Electrical Engineering, August, 1989 (expected)
Dissertation: "The Capacity of Artificial Neural Networks Using the Delta
Rule"
M.S. in Electrical Engineering, May, 1986.

University of New Orleans, New Orleans, LA
No Degree, Electrical Engineering

Tulane University, New Orleans, LA 70118
M.S. in Biomedical Engineering, August, 1982
Thesis: "Studies on the Sensation and Pain Thresholds of Electrotactile
Stimulation"
B.S. in Biomedical Engineering, May, 1981.

Electrical Engineering: Educational emphasis on Neural Networks, Artificial
Intelligence, and Pattern Recognition. Research has involved studying the
capacity of neural networks and various learning algorithms for neural net­
works.

Biomedical Engineering: Educational emphasis on Rehabilitation Engineer­
ing, Biomechanics, and Biomaterials. Research involved studying the sensa­
tion and pain thresholds of electrotactile stimulation.

Teaching Assistantship
Electrical and Computer Engineering Dept., Louisiana State University
Instructor: Digital Logic II
Instructor/Laboratory Supervisor: Digital Logic Design Lab

Instructor ship
Electrical and Computer Engineering Dept., Louisiana State University
Instructor: Digital Logic II and Microprocessor Systems

Teaching Assistantship
Electrical and Computer Engineering Dept., Louisiana State University
Instructor/Laboratory Supervisor: Digital Logic Design Lab

Teaching Assistantship
Electrical and Computer Engineering Dept., Louisiana State University
Laboratory Assistant: Digital Logic Design Lab, Microprocessor Lab

Laboratory Technician
Physiology Dept., Tulane University Medical Center
New Orleans, LA

81

PUBLICATIONS 1. D. Prados and S.C. Kak, "Neural Network Capacity Using the Delta
Rule," Electronics Letters, Vol. 25, No. 3, 2nd February, 1989, pp. 197-199.

2. D. Prados and S.C. Kak, "Non-Binary Neural Networks," in Advances in
Computing and Control, W.A. Porter, S.C. Kak, and J.C. Aravena (Eds),
New York, Springer-Verlag, 1989, pp. 97-104.

3. D. Prados and S.C. Kak, "Shift Invariant Associative Memory," in VLSI
for Artificial Intelligence, J.G. Delgado-Frias and W.R. Moore (Eds),
Kluwer Academic Publishers, 1988, pp. 189-197.

4. D. Prados, "Capacity of a Neural Network," Electronics Letters, Vol. 24,
No. 8 , 14th April, 1988, pp. 454-455.

5. M. Solomonow and D. Prados, "Further Evidence of Learning in the Tac­
tile Sense," IEEE Frontiers o f Engineering in Health Care, 1982, pp. 82-84.

6 . M. Solomonow, D. Lazar, and D. Prados, "Advances in Electrotactile
Stimulation for Prosthetic Sensory Feedback," Advances on External Con­
trol o f Human Extremities, D. Popovic (Ed) published by Etan, Belgrade,
Yugoslavia, 1981, pp. 69-84.

CONFERENCE PRESENTATIONS

"Non-Binary Neural Networks" (see publication 2), presented at ComCon,
Baton Rouge, LA, October, 1988.

"Shift Invariant Associative Memory" (see publication 3), presented at The
International Workshop on VLSI for Artificial Intelligence, Oxford Univer­
sity, England, July, 1988.

MEMBERSHIPS Institute of Electrical and Electronic Engineers Computer Society

INTERESTS Basketball, tennis, science fiction, music

PERSONAL DATA Male, Age: 30, Single, Excellent Health

REFERENCES Dr. Alan H. Marshak, Chairman, Department of Electrical and Computer
Engineering, Lousiana State University, Baton Rouge, LA 70803, phone:
504-388-5243.

Dr. Subhash C. Kak, Department of Electrical and Computer Engineering,
Louisiana State University, Baton Rouge, LA 70803, phone: 504-388-5552.

Dr. William C. Van Buskirk, Head, Department of Biomedical Engineering,
Tulane University, New Orleans, LA 70118.

Dr. Moshe Solomonow, LSU Medical Center, New Orleans, LA.

DOCTORAL EXAMINATION AND DISSERTATION REPORT

Candidate: Donald L ou is Prados

Major Field: E l e c t r i c a l E n g in eer in g

Title of Dissertation: The C ap acity o f A r t i f i c i a l N eural Networks U sing th e D e lta Rule

Approved:

Major Professor and Chairman

Dean of the Graduate Setkfol

EXAMINING COMMITTEE:

(IXr̂ K'

JaM (rlA CiA,

Date of Examination:

J u ly 14, 1989

	The Capacity of Artificial Neural Networks Using the Delta Rule.
	Recommended Citation

	00001.tif

