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ABSTRACT 

 

Early diagnosis and treatment of an infection and the selectivity of the treatment 

method are three parameters, which if optimized will greatly enhance a patient’s 

prognosis. Thus these three components have been, and continue to be extensively 

studied. Advances in biosynthesis and nanofabriciation have provided researchers with 

new tools with which to improve diagnostic and therapeutic techniques. Of these, 

inorganic nanoparticles (NPs) have shown great promise. Metallic nanoparticles have 

been demonstrated to successfully serve as antimicrobials, platforms for the 

transportation of therapeutic molecules, CT and MRI contrast agents, and thermal 

ablation. The recent paradigm of theranostics proposes substances that serve both 

diagnostic as well as therapeutic functions. Metallic nanoparticles are well suited as 

substrates for multifunctional particles for several reasons including; offering high-

density surface ligand conjugation, a reduction in payload degradation, a method of target 

transfection, and the possibility of controlled release. Additionally, metallic nanoparticles 

have the benefits of tunable morphologies, large surface area-to-volume ratios, 

physiologically robust chemistries, and ease of bulk synthesis. Furthermore, functional 

ligands bound to the NP surface and provide additional functionality such as enhanced 

solubility, selectivity, and antimicrobial efficacy. This report includes two studies which 

explore the synthesis and functionality of a theranostic conjugate nanoparticle. Studies 

were conducted to assess the development of a diagnostic antimicrobial nanoparticle 

(DAN) comprised of an iron oxide MRI contrast core, an antimicrobial colloidal silver 

shell, and a selective antimicrobial ceragenin surfactant (CSA-124). The composition of 
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each component of the DAN has been characterized and its functionality evaluated. 

Preliminary data has suggested that such a theranostic nanoparticle can successfully be 

synthesized and its ability as an MRI contrast agent and antimicrobial shows great 

promise.  
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CHAPTER 1. INTRODUCTION 

As synthetic control, manipulation, and understanding of inorganic nanoparticles 

and their uses increase, so too does the interest, research, and development in the field. 

Inorganic nanoparticles are being synthesized and studied for uses as antimicrobials, MRI 

contrast agents, CT contrast agents, thermal ablation, and delivery platforms for RNA, 

DNA, peptides, fluorescent markers, and other small molecules[1-7]. The highly specific 

tunability of inorganic nanoparticles with respect to size, shape, texture, shell thickness, 

resonance frequencies, and surface chemistries as well as their economic cost and ease of 

bulk synthesis make them ideal for this wide range of utility [8-10]. Recently several 

combination nanoparticles have been developed to accomplish multiple functions such as 

theranostics which both aid in the diagnosis and treatment of disease [11-14].  The 

following sections address the many specific characteristics of functionalized 

nanoparticles which impact this project. 

 

1.1 The Clinical Need 

 The application of this research is primarily to address the clinical problem of 

deep tissue infections associated with implantation of orthopeadic devices, specifically 

total knee replacements. Such incidents occur in up to 1.9% of total knee anthroplasties, a 

surgery that was performed an estimated 800,000 times in 2006 with increasing 

frequency [15]. Unresolved infections associated with orthopedic implantation can result 

in implant loosening, anthrodeses, amputations, and possible death [16]. In treating 

implant related infections, current antibiotic regiments alone have shown to be 
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insufficient. Often, surgical debridement is necessary which entails resection 

anthroplasty, systemic antimicrobial treatment, then a re-implantation of the surgical 

divice. This surgery is terribly invasive and involves an extensive recovery period. Dr. 

Vinod Dasa of LSU Department of Orthopedic Surgery, a collaborator of this project, 

states that a major problem associated with implantation related infections is that the 

exact location of infection often cannot be determined before surgery. The leading culprit 

of implantation related infection, representing over 50% of incidents, is Staphylococcus 

aureus and coagulase-negative staphylococcus species [15]. For this reason S. aureus is 

the primary test model in this study. Currently employed techniques to combat 

implantation related infections include using antimicrobial laced bone cements, “clean air 

measures”, and administration of systemic antibiotics at the time of implantation [17]. 

The objective of this research project has been to develop a selective antimicrobial agent 

capable of not only combating infection but also indicating the specific location of 

infection; hopefully preventing the need for such invasive operations. 

 

1.2 Metallic Nanoparticle Background 

The most basic characteristic of the metallic nanoparticle is nanoparticle (NP) 

size. Much research has been conducted regarding NP size with regard to synthesis 

techniques, vascular retention times, interstitial access, ability to cross the blood-brain 

barrier, optical properties, and cytotoxicity. It has been demonstrated that particles greater 

than 200nm in diameter are more prone to activate the complement system and thus be 

cleared from the circulatory system.  Nanoparticles with a diameter under 100nm are 

capable of penetrating blood vessel pores and NPs under 20nm can access interstitial 
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spaces [18]. This characteristic has been termed the enhanced permeability and retention 

(EPR) effect [3, 19]. Another parameter dependent on size is the NP surface area to 

volume ratio. As the diameter decreases, the relative surface area increases, thus smaller 

particles are capable of binding and delivering a greater payload per mass NP. That being 

said, smaller NPs are not always advantageous. Toxicity is also thought to be related to 

NP size with particles under 100nm having been shown to elicit pulmonary inflammation 

and oxidative stress [18].   

The antimicrobial characteristics of the metallic NP are also of great significance 

to this study. A vast amount of research has been and continues to be devoted to gold 

nanoparticles as vehicles of drug delivery and diagnostics, partly due to its bioinert 

character. Dr. Deepthy Menon and colleagues demonstrated biocompatibility of 

gold/iron-oxide nanoparticles for concentrations as high as 500 µg/mL and 48 hours 

incubation with no apoptotic signaling or ROS generation [20]. Silver however is not 

bioinert and has been shown to be an affective antimicrobial. Silver impacts microbial 

systems through several mechanisms resulting in the disruption of many crucial cell 

functions such as cell wall and nucleic acid synthesis, translation, protein structure, and 

membrane ion pumps. As a result of silver’s multiple mechanisms, it is very difficult for 

a microbe to develop resistance [10, 21]. Silver was also demonstrated to neither elicit 

genotoxic nor cytotoxic reactions when used as a device coating [22]. Another study 

showed the EC50tox of SNPs to be between 1000 ppm and 1500ppm [23]. Because of its 

biocompatibility and antimicrobial nature, silver is currently being incorporated into 

many products such as medical device coatings, wound dressings, dental resins, and 

washing machines [2, 10, 21, 23].  
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Magnetic nanoparticles are also of great interest for their potential as in vivo 

diagnostic agents. Unique optical properties allow some metallic NPs to be used as CT 

contrast agents [18, 20, 24]. Others possess specific magnetic characteristics highly suited 

for MRI T1 and T2 contrasting [1, 13, 14, 25-27]. Tagging metallic NPs with fluorescent 

antibodies is yet another diagnostic technique. The studies herein focus on using 

ironoxide nanoparticles as a T2 MRI contrast agent. Several iron oxide nanostructures 

have proven to be highly effective in MRI diagnostics by enhancing negative contrast, 

some of which are routinely used in clinical applications [27, 28]. Superparamagnetic 

iron oxide nanoparticles (SPIONs) are one such nanoparticle that has been used clinically 

with great success as a T2 MRI contrast agent in products such as Feridex, Resovist, and 

Combidex, which have been used in the diagnosis of spleen, liver, and bone marrow 

related ailments [27]. Iron oxide contrast agents decrease the T2 relaxation times of water 

protons in neighboring tissue resulting in dramatically decreasing T2-weighted MRIs 

signal intensities [1, 12, 29]. They can vary in size from 30-150 nm, and are typically 

coated in hydrophilic surfactants such as dextran, starch, albumin, silicones, and 

polyethylene glycol [25]. Required properties for all iron oxide contrast agents include 

that they must be reasonably magnetic, reach a magnetization greater than 45 emu-1, and 

be paramagnetic, meaning they only possess a magnetic moment when in the presence of 

a magnetic field [27]. 
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1.3 Ligand Background  

The ligands comprising the surface of conjugate nanoparticles are of extreme 

importance in that they impact solubility, selectivity, vascular retention times, 

agglomeration, toxicity, and antimicrobial efficacy.  

Surface charge is critical to many of these characteristics. Particles with a 

moderately neutral charge will be more likely to agglomerate resulting in shorter shelf 

lives, a lower solubility threshold, and an increased probability of removal from in vivo 

circulation[1, 30, 31]. Furthermore, cationic ligands have been liked to greater toxicity. 

Hong et al. and Mecke et al. demonstrated that positively charged dendrimers porate lipid 

bilayers whereas exposure to neutrally charged dendrimers did not result in pore 

formation. Leroueil et al. also demonstrated cationic nanomaterials disrupt solid-

supported lipid bilayers, irrespective of shape, size, or chemical composition [30]. Once 

in the body, nanoparticles are removed from circulation; predominantly in the liver and 

spleen through opsonization, recognition, and removal by the mononuclear phagocyte 

system (MPS) [32]. In general, neutral to negatively charged nanoparticles with 

hydrophilic polymer surfaces exhibit prolonged circulation times [31]. It was also 

demonstrated by Dr. Danscher et.al. that gold nanoparticles were not able to pass the 

blood-brain or placental barriers but may encounter some simple filtration in the renal 

glomeruli[33]. Another study suggests that inhaled SNPs are engulfed by alveolar 

macrophages and experience no significant translocation from the lung to any other 

organs after seven days[34]. 
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Hydroxypropyl cellulose and polyacrylic acid are two ligands incorporated in the 

conjugate nanoparticles described in this report. Both polymers have been commonly 

used to aid in nanomaterial dispersion[35, 36]. They are hydrophilic, negatively charged, 

nontoxic, and inexpensive. HPC has been widely used in the food industry and PAA can 

be found in hand sanitizers, toothpastes, and shampoos[37, 38]. Also, PAA is found 

clinically, used synthetic tear solutions. One study has demonstrated that pharmaceuticals 

conjugated with HPC exhibit unexpectedly reduced in vivo irritation and concluded HPC 

to be a suitable pharmaceutical carrier [39]. Another study used HPC as a stabilizer with 

Naproxen nanosuspentions to achieve greater drug solubility [40]. The LD50 of HPC and 

PAA for mice is >5g/kg and 4.6 g/kg respectively [41, 42]. It should also be noted at this 

time, that the PAA used in the nanoparticle conjugates presented in this project is not 

intended to freely interact with its environment as it is serves as the substrate for the 

formation of silver shell and attachment of additional ligands. 

Another ligand molecule imperative to this study is CSA-124, a synthetic mimic 

of natural antimicrobial peptides. Antimicrobial peptides are a promising antimicrobial 

tool as they provide both strain selectivity and novel modes of action capable of 

circumventing traditional resistance mechanisms. Major problems with these peptides 

however, are their high cost of bulk synthesis and poor structural stability in the presence 

of protease. New analogues of antimicrobial peptides, Cationic Steroid Antibiotics 

(CSA), have been developed which replicate the selectivity and antimicrobial 

characteristics and offer increased stability and ease of synthesis. CSAs have been shown 

to be effective against tobramycin-resistant Pseudomonas aeruginosa, drug resistant 

strains of Helicobacter pylori, vancomycin-resistant S. aureus (VRSA), and 
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periodontopathic bacteria such as Streptococcus mutans and Porphyromonas species [43-

45]. Recently Dr. Paul Savage of Brigham Young University synthesized a novel CSA, 

CSA-124, with a thiol terminated side chain which may allow for specific binding to a 

nanoparticle surface. 
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CHAPTER 2. SYNTHESIS AND CHARACTERIZATION OF 
CERAGENIN FUNCTIONALIZED IRON CORE, SILVER SHELL 

NANOMATERIALS 

 

Brief Summary: New synthesis techniques are providing increasing control over 

many inorganic nanoparticle characteristics, facilitating the creation of new 

multifunctional theranostics, or therapeutic and diagnostic agents. This report proposes 

the synthesis of a combination nanoparticle comprised of an iron oxide core for enhanced 

T2 MRI contrast diagnostics, a colloidal silver shell acting as an antimicrobial and 

therapeutic vehicle, and a cationic steroid antibiotic (CSA) surfactant providing microbial 

selectivity. Herein we present new methodology for iron core, silver shell nanoparticle 

(NP) synthesis and functionalization. A polyacrylic acid functionalized iron nanoparticle 

is synthesized by a high temperature organic phase reduction followed by thiol 

functionalization and gold cluster seeding. A silver shell is formed through AgNO3 

reduction, and an oriented monolayer of the thiolated ceragenin, CSA-124, is bound 

through a self-assembly process.  The process and products are characterized throughout 

synthesis through TEM, DLS, FT-IR, UV-Vis, ICP-OES, HPLC-ESI-TOF-MS, DC 

magnetization and susceptibility, X-ray diffraction, and in vitro MRI. Synthesized 

Diagnostic Antimicrobial Nanoparticles (DANs) were found to have a spherical 

morphology with a diameter of 32.47 +/- 1.83 nm, a hydrodynamic diameter of 53.05 +/- 

1.20 nm, a maximum magnetic moment of 12 emu/g NP, or 54 emu/g Fe, with little 

variation due to temperature, and be predominantly paramagnetic. X-ray diffraction 

advocates that the iron oxide core is maghemite. In vitro MRI studies show that DANs 

contrast well as concentrations as low as 9 ppm, and successfully adhere to and S. aureus.  
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2.1 Introduction 

As synthetic control, manipulation, and understanding of inorganic nanoparticles 

increase, so too does the interest, research, and development in the biomedical field. 

Inorganic nanoparticles are being synthesized and studied for use as antimicrobials, MRI 

contrast agents, CT contrast agents, thermal ablation targets, and delivery platforms for 

RNA, DNA, peptides, fluorescent markers, and other small molecules.[1-7] The highly 

specific tuneability of inorganic nanoparticles with respect to composition, morphology, 

shell thickness, resonance frequencies, and surface chemistries as well as their 

economical and facile bulk synthesis make them ideal for this wide range of 

applications.[8-10] Recently several hybrid nanoparticles have been developed to 

accomplish multiple functions, such as in theranostics wherein the particle both aids in 

the diagnosis and treatment of disease.[11, 12] 

Superparamagnetic iron oxide nanoparticles (SPIONs) are one such inorganic 

nanoparticle that has been used clinically with great success as a T2 contrast agent for 

magnetic resonance imaging (MRI). SPIONs are the primary active component of 

products such as Feridex, Resovist, and Combidex, which have been used in the 

diagnosis of spleen, liver, and bone marrow related ailments.[27] Iron oxide contrast 

agents work by decreasing the T2 relaxation times of water protons in neighboring tissue 

and dramatically decreasing signal intensities in T2-weighted MRIs.[1, 12, 29] They can 

vary in size from 30-150 nm and may be coated in dextran, starch, albumin, silicones, 

polyethylene glycol, and many other hydrophilic surfactants.[25] One property common 

to all MRI contrast agents is that they must be paramagnetic, meaning they only possess a 
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magnetic moment when in the presence of a magnetic field and this induced 

magnetization should be on the order of 45 emu g-1. [27] 

 Among inorganic nanoparticles, silver has shown to be an affective antimicrobial 

as well as therapeutic carrier agent. Silver has been demonstrated to deactivate bacteria 

through several different mechanisms, thereby making it very difficult for an 

antimicrobial to develop resistance.[46] Because of its biocompatibility and antimicrobial 

nature, silver is currently being incorporated into many products such as dental resins, 

medical device coatings, wound dressings, and washing machines.[2, 10, 21] 

Furthermore, noble metal nanoparticles such as silver, also offer an attractive vehicle for 

small molecule delivery due to their robust functionalization chemistries, large surface 

area/volume ratios, readily tunable morphologies, and ease of bulk synthesis.[47] They 

also offer high-density surface ligand attachment and reduced degradation of the 

therapeutic agent.[18, 48, 49]  

 Antimicrobial peptides, which provide bacterial membrane selectivity and novel 

modes of action, are a promising means of controlling bacterial growth because they are 

capable of circumventing traditional resistance mechanisms. However, several constraints 

to the general clinical use of these peptides are their high cost of bulk synthesis and poor 

structural stability in the presence of proteases. New mimics of antimicrobial peptides, 

ceragenins or CSAs, have been developed which mimic the selectivity and antimicrobial 

characteristics of antimicrobial peptides while offering increased stability and ease of 

synthesis. CSAs have been shown to be effective against tobramycin-resistant P. 

aeruginosa, drug resistant strains of H. pylori, vancomycin-resistant S. aureus (VRSA), 
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and periodontopathic bacteria such as Streptococcus mutans and Porphyromonas 

species.[43-45]  

 This report describes a synthesis procedure for the creation of Diagnostic 

Antimicrobial Nanoparticles (DANs) comprised of an iron oxide core, reduced silver 

shell, and CSA-124 surfactant for the purpose of selectively diagnosing and treating 

microbial infections. The synthetic process and resulting materials are characterized by 

several methods including transmission electron microscopy (TEM), dynamic light 

scattering (DLS), Fourier transform infrared spectroscopy (FT-IR), Inductively coupled 

plasma optical emission spectrometry (ICP-OES), ultraviolet-visible spectroscopy (UV-

Vis), High Performance Liquid Chromatography – Electrospray Ionization tandem Time 

Of Flight Mass Spectrometry (HPLC-ESI-TOF-MS), and DC magnetization and 

susceptibility. It is the objective of this study to present a viable synthesis procedure by 

which to consistently synthesize DANs as well as demonstrate their selective diagnostic 

potential. 

 

2.2 Material and Methods 

Materials: 

The following materials were ordered from Sigma-Aldrich®: polyacrylic acid 

(average MW 1800), triethylene glycol (99%), iron acetylacetonate (99.9%), ethyl-

dimethyl-aminopropylcarbodiimide, cysteamine hydrochloride (98%), 2-(N-

morpholino)ethanesulfonic acid, silver nitrate(>99%), ammonium hydroxide (28-30%), 

N-hydroxysulfosuccinimide (98.5%), sodium hydroxide (NaOH), 

tetrakis(hydroxymethyl)phosphonium chloride (THPC, 80% in water), tetrachloroaurate 
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trihydrate (HAuCl4), and dialysis membranes (10,000 Da). Acetic acid (99%) was 

obtained from Fisher Scientific®. Formaldehyde (36.5-38%) was obtained from 

Mallinckrodt Chemicals®. CSA-124 was prepared by functionalizing a ceragenin, CSA-

13, with a thiol group on a short PEG tether.  Synthetic details for CSA-124 will be 

reported elsewhere.  All other chemicals were used as received unless otherwise noted.  

Mueller Hinton Broth, and Nutrient Agar, pH6.0 with 0.8%NaCl was purchased from 

Himedia®/VWRTM. 

 

Methods: DAN synthesis 

 

Figure 1.1 An overview of the synthesis process is presented. Fe-PAA NPs are 
synthesized; they are then functionalized and seeded with gold NPs (1). Silver ions from 
AgNO3 are reduced onto the gold particles (2). Finally, CSA-124 is bound to the surface 
of the silver shell (3). 

 

Polyacrylic Acid-Coated Iron Nanoparticle Synthesis 

Iron-Polyacrylic Acid nanoparticle (Fe-PAA NP) synthesis was based on the 

thermal decomposition methods employed by Ming Ling et al.[35] All reactions were 
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conducted in an argon atmosphere. First, 1.0 gram of polyacrylic acid was added to 25 ml 

triethylene glycol, followed by the addition of 2.0 mM (706 mg) iron acetylacetonate 

(Fe(acac)3) solution and stirred until dissolved. Using a Glas-Col 500 mL, 325 watt 

heating mantle regulated by a Glas-Col power regulator the mixture was slowly heated to 

190˚ C over 30 minutes, then rapidly heated to reflux at 275˚ C where the temperature 

was held for 20, 30, or 40 minutes.  

To purify the resulting mixture, 30 mL ethyl acetate (EtOAc) was added. The mixture 

was then shaken and centrifuged at 5870xg for 30 minutes. The supernatant (EtOAc and 

dissolved impurities) was removed and discarded. The black precipitate was further 

purified via liquid/liquid extraction by first re-suspending in 5-10 mL DI water and then 

adding 20-30 mL EtOAc, centrifuging once at 3000 g for 5 minutes, and removing the 

supernatant of EtOAc and dissolved impurities. The liquid/liquid extraction process was 

repeated for a total of two iterations. Removal of residual EtOAc was accomplished via 

dialysis (MW cutoff 10,000 Daltons) over a 24-36 hour period. This procedure yielded a 

solution of 28.5 ppm iron content. The Fe-PAA NPs were characterized using TEM, 

DLS, ICP-OES, and FT-IR. 

 

Thiol Functionalization 

The functionalization protocol was as follows: for each 1 mL of Fe-PAA NP used, 

0.4 mL 2-(N-morpholino)ethanesulfonic acid (MES buffer) at 500 mM and 2.6 mL DI 

water were added and mixed. Next, 3.5 mL EDC/sulfo-NHS solution  (52 mM EDC & 

10.13 mM Sulfo-NHS) was added to the solution and allowed to react at 37˚ C and under 
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gentle agitation for 30 minutes. To this solution, 0.5 mL cysteamine hydrochloride at 

0.265mM was added and left to react at room temperature for four hours. Purification 

was conducted by 24 hour dialysis, during which time the water bath was exchanged 

three times. This procedure yielded an 8.0 mL solution of 2.75 ppm iron content. 

 

Figure 2.2 Functionalization schematic of the PAA surfactant through an EDC/Sulfo-
NHS workup. Carboxylic acids are activated with EDC then functionalized with 
cysteamine, resulting in terminal thiols allowing for strong gold seed adhesion. 
 

Gold Nanoparticle Synthesis 

Gold NPs with approximate diameters of 5 nm were prepared using a modified 

procedure outlined by Duff et. al.  Briefly, 1.0 mL of 0.06 mmol NaOH and 2 mL of 

THPC (12 µL in 1 mL of DI water) were mixed with 200 mL of DI water.  After 15 min, 

4 mL of 1% (w/v) aqueous HAuCl4 was added and continued to stir for an additional 40 

min.  The solution immediately transitioned from clear to a red-yellow colored solution.  

Before use, the gold NPs were refrigerated and aged for 3 days.  
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Gold Seeding 

 A 3 mL aliquot of gold NP solution (18.7 ppm) was mixed with the 8 mL thiol-

functionalized MNP solution for 3 hours at 25˚ C. The sample was then centrifuged at 

9180xg for ten minutes. Centrifugation was repeated for a total of three times, removing 

the supernatant between each iteration. After completion of the third centrifugation, the 

precipitant was resuspended in 2.5 mL DI water, resulting in a solution of 0.300 ppm iron 

content. The concentrations of gold seeded iron nanoparticles (Au-Fe-PAA) were 

measured using ICP-OES and images were obtained using TEM (specific protocols 

below). 

 

Silver Shell Formation   

Silver shell formation was conducted according to a modification of the method 

of the Jackson et al.[9]  Silver was reduced on the gold seeded, iron core as follows: 2.0 

mL of 5 mM AgNO3 was added to the 2.5 mL Au-Fe-PAA NP solution and mixed. 

Seventy micro liters of formaldehyde solution (36.5-38%) was then added and mixed. 

Finally, 20 μL ammonium hydroxide (28-30% NH3 content) was added in 5 µL 

increments, stirring between additions. After the addition of ammonium hydroxide, a 

visible change in color from translucent purple-brown to dark brown-black was 

observable with the unaided eye. This procedure yielded a 4.6 mL solution of 60.5 ppm 

iron content.  
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CSA Self Assembly 

Immediately after completion of the silver coating process, 50 μL of 0.17 mM 

CSA solution (CSA, DI water, and acetic acid at a pH 4.5) was added and mixed for 1 

hour. The resulting nanoparticle solution was purified via dialysis as described above.  

 

Methods: Nanoparticle Characterization 

Fourier Transform Infrared Spectroscopy (FT-IR): 

FT-IR measurements and analysis were performed on freeze-dried samples of Fe-

PAA nanoparticles and cysteamine functionalized Fe-PAA NP using a Bruker Tensor 27 

FT-IR using a standard room-temperature DTGS detector & OPUS 6.5 Data Collection 

Program. The freeze-dried samples were ground onto the surface of a KBR plate and 

measured. The absorbance values were normalized against a KBR plate with no sample.  

 

Ultraviolet-Visible Spectroscopy (UV-Vis): 

The UV-Vis results were obtained using a ThermoSpectronic Genesys 6 

(Rochester, NY) using Malvern ZEN0040 disposable cuvettes. Nanoparticle samples 

were diluted to roughly 0.02 ppm in DI water and filtered using a Thermo Scientific 

Nalgene 0.2µm surfactant-free cellulose acetate membrane. Absorbance was recorded 

from 200-700nm at 25˚ C.  
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X-Ray Diffraction  

 The core-shell nanoparticles were characterized by powder X-ray diffraction to 

determine the structure of the iron oxide core.  Diffraction experiments were performed 

using a Bruker Kappa APEX II CCD single crystal diffractometer equipped with a Mo Kα 

source (λ = 0.71073 Å) and graphite monochromator.  Approximately 0.1 mg of core-

shell nanoparticles was adhered to the tip of a MiTeGen fiber using Paratone-N oil.  A 

series of five phi scans (image width = 180 °) were then collected with different detector 

orientations covering a 2θ range of 10-50 ° at a detector distance of 100 mm.  These 

images were merged and integrated using the XRD2 Eval program in the Bruker APEX2 

software.  A background subtraction was applied using the EVA 2 program. 

  

Dynamic Light Scattering (DLS): 

Hydrodynamic diameters were measured using a Malvern Zetasizer nano series 

(Worcestershire, UK). NP samples from various stages of synthesis were diluted to 

roughly 0.02 ppm in NaHCO3/DI (100 mM) then filtered using a Thermo Scientific 

Nalgene 0.2 µm surfactant-free cellulose acetate membrane. Samples were measured in 

Malvern ZEN0040 disposable cuvettes at 25˚ C.  

 

Transmission Electron Microscopy (TEM): 

The TEM images were obtained using a JOEL 2011 TM (Tokyo, Japan). 

Nanoparticle samples were diluted to roughly 25 ppm in DI water and 5 µL was applied 

to an Electron Microscopy Sciences carbon film 400 square mesh copper grid and 

allowed to air dry. Images were taken at 150,000X. TEM images were analyzed using 
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Metamorph Advanced software. The diameters of 25 nanoparticles of each type were 

measured using digital calipers and statistical significance was determined using a one 

sample t-test. 

 

CSA Quantification by High Performance Liquid Chromatography – Electrospray 

Ionization tandem Time Of Flight Mass Spectrometry (HPLC-ESI-TOF-MS) 

A five point standard curve, R2 = 0.9942, was constructed by comparing known 

concentrations of CSA-124 dissolved in 25% v/v acetonitrile (ACN) in DI to the 

integrated area of its HPLC-ESI-TOF-MS peak. CSA-124 displaced from DANs and run 

through HPLC-ESI-MS/MS were then quantified by comparison to this standard curve. 

To remove CSA from the DAN, 5.5 µL DL-Dithiothreitol (DTT) was added to 500 µL 

CSA-SNPs and allowed to react for one hour at 37° C. The DTT displaces the CSA from 

the SNP surface resulting in DTT-SNPs and a solution of CSA and unreacted DTT. This 

was then separated via centrifugation for 15 minutes at 12xg. The supernatant was 

removed and concentrated from 500 µL to 250 µL by vacufugation and 250 µL of 

ACN/DI (50% v/v) was then added to the solution bringing the final solution to 25% 

ACN. The samples were then analyzed by HPLC-ESI-TOF-MS (Agilent 1200 with a 

binary pump/Agilent ESI TOF 6210 PALO ALTO, CA). The LC column used was a 

normal phase Acclaim® Mixed-Mode HILIC-1, 3µm Analytical (2.1 x 150mm). Samples 

and standards were injected at 2 µL. The first mobile phase was 90% ACN in water with 

0.1% formic acid while the second mobile phase was water with 0.1% formic acid. The 

ESI parameters used are as follows: nitrogen temperature 325° C, nitrogen flow 5 L/min, 
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nebulizer pressure 20 psi. The DTT-SNP pellet obtained from the previously mentioned 

centrifugation was quantified by ICP-OES. 

 

Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES): 

ICP-OES data were collected using a Varian Vista MPX (Palo Alto, CA). The 

mass of a 10mL glass test tube was recorded, 100µL of NP sample, 1mL nitric acid, and 

10mL of DI water were added. Masses were recorded after each addition. The iron, 

silver, and gold concentrations of this solution were measured by the Vista MPX. Using 

these results and the component densities, the concentrations of the original samples were 

calculated. 

 

DC magnetization and susceptibility:   

The magnetic properties of the nanoparticles were measured with a Quantum 

Design Physical Property Measurement System (PPMS) using the ACMS option.  This 

utilizes a DC, Faraday-extraction technique in which the sample is quickly pulled (at a 

speed of 100 cm/s) through a set of detection coils.  Zero-field cooled (ZFC) and field-

cooled (FC) magnetic susceptibility data were measured as a function of temperature at a 

constant field of 1000 Oe.  The magnetic hysteresis of the nanoparticles was determined 

from the field dependence of the DC magnetization from 0 to 9 T at a temperature of 3 

K.    
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Contrast Concentration Dependence 

 To determine contrast dependence on DAN concentration, five 1.5 mL centrifuge 

tubes were filled with an agarose/ DAN solution and imaged with MRI at the following 

concentrations: o ppm, 1.6 ppm, 3.3 ppm, 9.8 ppm, and 27.9 ppm. Also, to determine the 

impact the DAN’s silver shell has on its contrast capabilities, five 1.5 mL centrifuge 

tubes were filled with a solution of agarose and the iron oxide core at the following 

concentrations: 0.0 ppm, 1.6 ppm, 3.3 ppm, 9.6 ppm, and 26.6 ppm. These ten samples 

were aligned and imaged in a single image using the following parameters: TR: 3000, 

TE: min/full, EC: 1/1 41.7 kHz, FOV: 16x12/z, thickness 6 mm. The resulting image was 

analyzed using image J and the gray scale values of each sample were recorded.  

 

Magnetic Resonance Imaging  

 Sample preparation for magnetic resonance imaging (MRI) was conducted as 

follows. 10 mL of Muller Hinton Broth (MBH) was inoculated with one loop of S. aureus 

and incubated 24 hours at 37˚ C.  Three mL of inoculated broth was then added to two 

test tubes. To one of these test tubes 300 µL DANs at 200 ppm was added, while the 

other test tube received 300 µL Ag-Au-Fe-MNP (no CSA) at 200 ppm. Two other test 

tubes were prepared by adding 3 mL DI and 300 µL DANs. These four solutions were 

allowed to rest at room temperature for 30 minutes, then all were filtered through a 0.45 

µm, surfactant-free, cellulose acetate syringe filter with the exception of one of the 

DAN/DI samples which serves as a positive control and was filtered using a 0.2 µm filter. 

The filters were removed from their casing and suspended in the center of at block of 
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agarose approximately 2”x3”x3” in size. All samples were imaged under the following 

parameters: TR: 3000, TE: min/full, EC: 1/1 41.7 kHz, FOV: 16x12/z, thickness 1mm. 

 

2.3 Results and Discussion  

The DANs synthesis is a multi-step procedure and is outlined in Figure 1. The 

core of the DAN is an iron nanoparticle with a polyacrylic surface ligand (Fe-PAA) 

synthesized through thermal reduction of iron oxide in an organic solvent. After 

synthesis, the polyacrylic acid surfactant is modified with cysteamine through an ethyl-

dimethyl-aminopropylcarbodiimide (EDC) chemistry reaction (described in Figure 2), 

resulting in a distal thiol group on the polyacrylic that will readily bind with gold and 

silver. The cysteamine “activated” product is then reacted with gold nanoparticles, or 

“seeds”, which interact with functionalized Fe-PAA through thiol linkages.[50] This 

seeded surface provides nucleation sites for silver reduction and shell formation resulting 

in a colloidal shell several nanometers thick. Lastly, the CSA-124 is attached to the silver 

shell via its thiolated ethylene glycol side chain providing a uniform orientation of the 

compound with two primary amines on the distal portion of the molecule free to interact 

with the environment.  

Functionalization of the iron with polyacrylic acid provides for a hydrophilic 

particle improving colloidal solubility in the follow-on aqueous reactions. Additionally 

the PAA surfactant provides a platform for gold seeding and colloidal shell formation. 

The functionalization procedure of PAA was modified from of the protocol Ken-Tye 

Yong et al. developed for the functionalization of carboxylate modified polystyrene 

beads[8]. The carboxyl groups of the PAA were activated by ethyl-dimethyl-
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aminopropylcarbodiimide (EDC) and N-hydroxysulfosuccinimide (Sulfo-NHS), and then 

reacted with the primary amine groups of cysteamine hydrochloride (CH), resulting in an 

amide bond linkage. An EDC/Sulfo-NHS workup is a well-established, facile method for 

bonding molecules through their carboxylic and amine groups and has also been utilized 

in CA/BMPA-coating magnetic nanoparticles,[51]  protein coupling, [52] and protein 

film deposition.[53] Once bound to the NP surface, the cysteamine offered a primary 

thiol group that was ideal for the attachment of colloidal gold used in shell growth. 

The method of colloidal attachment of gold nanoparticles to the thiol-

functionalized PAA and silver reduction was based on a method previously presented by 

Jackson and Halas.[9] In our modification, silver from AgNO3 was reduced onto the gold 

seed nucleation sites bound to the PAA through cysteamine. This method provides 

adequate control over shell thickness while maintaining colloidal stability in follow-on 

aqueous CSA functionalization reactions. The CSA functionalization reaction is 

conducted immediately following silver shell reduction to add bulky surface groups 

providing steric hindrance and bound surface charges to reduce agglomeration of the 

finished particles.  If surface functionalization is not conducted within hours of the silver 

reduction step, particles will rapidly agglomerate.  

The composition of the nanoparticles was analyzed using FT-IR, ICP-OES, and 

UV-VIS. FT-IR was employed to verify the addition of cysteamine to the carboxy terminus 

of the polyacrylic acid surfactant on the Fe-PAA NP. In this reaction, a carboxyl group is 

converted into an amide bond (as seen in Figure 3). The FT-IR peaks for carboxyl and 

amide groups are commonly found at 1780-1710 cm-1 and 1690-1620 cm-1, 

respectively.[54] In the FT-IR spectra of Fe-PAA NPs in Figure 3a there is a clear peak at 
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1726 cm-1  indicative of the carboxyl group. In Figure 3b the 1726 cm-1  maxima peak is 

greatly reduced while a clear peak arises with a 1619 cm-1  maxima indicating that many, 

though not all, of the carboxyl groups have been converted to amides. 

 

Figure 2.3 The FT-IR spectra shown indicate a shift in bond energy upon functionalization 
of Fe-PAA with cysteamine. 

Through ICP-OES, concentrations of iron, gold, and silver were monitored 

throughout the synthesis process. Using this information and the known sample volumes 

it was possible to track the mass balance of each element. ICP-OES data shows that the 

compositions of DANs are 76.64% silver, 22.75% iron, and 0.61% gold.  Based on the 

mass balance of iron, it was determined that the synthesis procedure from Fe-PAA NPs 

through functionalization, gold seeding, and silver coating resulted in a 8.6 percent yield 

with the bulk of losses being attributed to centrifugal purification. It is suspected that 

substituting magnetic separation for centrifugation during the purification process could 

minimize these losses. Iron was chosen to be the element monitored for percent yield 
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because it was the only element added in the first step and not introduced again 

throughout the process.  

UV-VIS spectroscopy was used to monitor to process progress between steps.  

After NP-PAA functionalization, curve “a” in Figure 4 was obtained.  This curve served 

as a baseline or comparison point for subsequent measurements.  Curve “b” represents 

the UV-Vis spectra obtained after purification of gold seeded Fe-PAA NPs.  This curve 

clearly differs from the baseline curve and closely parallels the absorbance spectra of a 

gold NP control (Supporting Information section).  

 

Figure 2.4 UV-Vis absorption spectra of DANs at different stages of development are 
shown. Series (a) shows Fe-PAA NP, (b) shows Au-Fe-PAA NP, and (c) shows Ag-Fe-
PAA. 

The similarity between the Au-MNP and gold seed control curves supports the 

assertion that gold seeds were successfully attached to the PAA coating of the iron NPs. 

Curve “c” depicts the absorbance spectra obtained after silver was reduced onto the Au-

Fe-PAA. As with the gold seeded NPs, the silver coated NP curve is distinctly different 

from both the previous curves and shows the clear red shifting commonly associated with 
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metal nanoshell synthesis.[9] This strongly indicates that a silver shell was successfully 

reduced onto the particle surface, thus supporting the ICP-OES findings. 

 

Figure 2.5  X-ray diffraction pattern of DAN core 

To determine the exact structure of the DAN’s iron oxide core, x-ray diffraction 

was employed. A powder diffraction pattern of the core-shell nanoparticles is shown in 

Figure 2.5.  The reflections due to the iron oxide core are indexed as blue lines and the 

reflections due to the silver shell are indexed as black lines.  The indexed reflections 

indicate that the iron oxide core is maghemite.  This is consistent with the brown color of 

the core nanoparticles. 

  

The shape and size of nanoparticles at various stages of synthesis were 

determined using a combination of TEM and DLS. The TEM images displayed in Figure 

6 show the growth of the nanoparticles as gold seeds were attached (Figure 6b) and a 

silver shell was reduced onto the Fe-PAA NP (Figure 6c). It is also evident that the Fe-
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PAA NPs have a rough spherical morphology that became more regular and smooth as 

gold and silver were added in following processes.  

 
 
Figure 2.6 TEM images of the nanoparticles at three stages of development are shown: 
(a) Fe-PAA nanoparticles, (b) Au-Fe-PAA, and (c) Ag-Fe-PAA with CSA-124 
surfactant. 
 
 

Analysis of the TEM images using Advanced Metamorhph was used to determine 

nanoparticle size and is presented in Table 1. One sample t-test analysis of these values 

found that the diameter increase after gold seeding was not statistically significant 

(P>0.05) while the diameter increase after silver shell reduction was (P<0.05). 

Hydrodynamic diameters, as determined through DLS, are also included in Table 1. As 

expected from a reasonably monodisperse product there is substantial agreement between 

the values generated from the TEM image and the DLS results. As the multi-step 

synthesis continues larger particles with larger hydrodynamic diameters are produced as a 

result of the addition of the silver coating and CSA-124 addition.  
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Table 2.1 Nanoparticle diameters and hydrodynamic diameters 

Nanoparticle  Diameters as Determined by TEM 

nanoparticle average diameter (nm) 

FA-PAA NP 9.42 +/- 0.5 

Au seeded-Fe-PAA NP 11.01 +/- 0.5 

DAN 32.5 +/- 1.8 

Hydrodynamic Diameter as Determined by DLS 

nanoparticle hydrodynamic diameter (nm) 

Fe-PAA NP 45.56 +/- 1.0 

DAN 53 +/- 1.2 

*DLS was conducted in 100mM NaHCO3 at 25° C 

 

To quantify the CSA bound to colloidal silver, a standard curve of integrated peak 

area vs CSA concentration was constructed using HPLC-ESI-TOF-MS (see Supporting 

Information). CSA was then displaced from the DAN surface and analyzed, again using 

HPLC-ESI-TOF-MS. The corresponding CSA concentration was determined to be 1.34 

mg/L for a 500µL sample, or 4.01x1014 CSA molecules. Using ICP-OES it was 

determined the same 500µL sample contained roughly 5.27x1012 DANs, thus we 

conclude there are on average 76.1 CSA-124 molecules bound to each DAN. As the 

packing density and uniformity of the CSA-124 surfactant layer is critical to both particle 

stability and bacterial adhesion, future work will examine the optimization of this 

process. 
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Figure 2.7a shows a slightly inverse relationship between magnetization and 

temperature and that the magnetization of DANs at a physiological temperature is 

roughly 0.02 emu. Figure 2.7b is a hysteresis loop of the DANs. The DAN magnetization 

was measured as a function of applied field from 0 to 90,000 Oe.  As seen in the graph, 

the magnetization of DANs increases quickly with the applied field, tending toward 

saturation at fields > 5000 Oe. The maximum magnetization is roughly 12 emu/g NP, 

which is 54 emu/g Fe.  This value is comparable to the iron oxide T2 contrast agents 

currently in clinical use; Feridex and Combidex have magnetizations of 45 emu/g Fe and 

61emu/g Fe respectively [27].   

The inset shows an expanded view of the low-field region of the magnetization in 

which a hysteresis is observed with a remnant magnetization, Mr ~ 3.0 emu/gm, and a 

coercive field, Hc ~ 300 Oe.  The data suggest that the majority of the nanoparticles are 

paramagnetic and at least some subset of the nanoparticles have a ferromagnetic 

component to their magnetization.  This is likely a result of the size distribution of the 

particles used in the iron core, some of which will be above the critical transition size 

from superparamagnetic to ferromagnetic, roughly 10nm.[55]  

 In Figure 2.8, a clear correlation is seen between nanoparticle concentration and 

MRI contrast, known as negative contrast. The paramagnetism of the NP’s causes the 

relaxivity of nearby water molecules to drop, and a decrease in relaxivity results in a 

lower pixel intensity. Using ImageJ, the pixel intensity of each tube was measured 
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Figure 2.7 Graph (a) shows magnetization as a function of temperature. The hysteresis 
loop in graph (b) shows NP magnetization as a function of magnetic field. 

 

 

Figure 2.8 MRI of NPs dispersed in agarose at various concentrations (left). Graph of 
resulting pixel intensity for each sample concentration (right). 

 

then plotted against particle concentration, as seen in Graph 1. On average, pixel intensity 

drops by 16.7 gray scale units for each additional ppm DAN. Figure 8 also shows the 

similar contrast of DANs and Fe-PAA NP indicating that the maghemite core is not 
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compromised by the formation of the silver shell. In fact, DANs seem as though they 

may have slightly increased contrast ability. This can potentially be explained by Dr. 

Vuong et.al. who postulate that surrounding a paramagnetic NP with a shell prevents it 

from directly coordinating with the select few neighboring water molecules but rather 

allows its effects to be distributed amongst a greater surface area and thus affecting a 

greater number of water molecules.[56] 

 

Figure 2.9 Magnetic Resonance Images of syringe filters suspended in agarose. Image 
"a" is a positive control, image "b" is a negative control, and image "c" is the treatment. 

 

Determination of in vitro contrast of bacteria by DANs was assessed by exposing 

S. aureus to DANs, running this solution through a syringe filter, suspending this filter in 

a block of agarose, and imaging with MRI, seen in image Figure 2.9.c. Filter pores, 

450nm, were chosen to be large enough to allow DANs to pass unhindered yet retain all 

bacteria. As a negative control, S. aureus was also exposed to DANs devoid of CSA-124, 

(Fe core with silver shell only) and filtered, image 2.9b. A positive control of total DAN 

capture using a 200nm filter that captured bulk of the DAN’s on the filter media can be 

seen in Figure 2.9a. As anticipated, Figure 2.9a shows the greatest contrast, Figure 2.9b 
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shows no contrast and Figure 2.9c shows moderate contrast. This suggests that DAN 

attachment does occur, though the efficiency of the attachment is far below 100%.  This 

may be caused by variation in the particle CSA -124 functionalization.  As noted above 

the average functionality is 76.1 CSA/particle but distribution is currently unknown, as 

such large numbers of particles may have little or no CSA attached. The images also 

supports that DANS devoid of CSA do not adhere to the S. aureus, nor are they trapped 

in the filter. To ensure the attachment of CSA-124 to the NP surface did not affect filter 

permeability, fully conjugated DANs in DI were filtered and also resulted in no contrast 

(data not shown).  

2.4 Conclusions  

The results in this study suggest that the synthesis process described above 

successfully generates the desired iron containing, silver shell nanoparticle with a 

ceragenin monolayer surface functionalization. The FT-IR spectrums support the addition 

of a mercapto group to the Fe-PAA NP. ICP-OES demonstrated the final product is 

comprised of 76.64% silver, 22.75% iron, and 0.61% gold with ~8% total yield. Both 

TEM and DLS results demonstrate predictable growth of the particle with each additive 

process step. These results indicate that gold and silver were successfully deposited onto 

the Fe-PAA NPs, yielding a final nanoparticle of 32.474 +/- 1.83 nm diameter and 53.053 

+/- 1.202 nm hydrodynamic diameter.  Furthermore, these particles were shown to be 

predominantly paramagnetic and possess a strong magnetic moment of 54 emu/g Fe. 

These characteristics are representative of clinically adopted T2 MRI contrast agents, 

making DANs a good candidate for diagnostic use. MRI of DANs and maghemite core 

NPs at various concentrations suggest a 16.7 gray scale unit reduction in pixel intensity 
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for each ppm DAN. DANs have also demonstrated an ability to adhere and contrast S. 

aureus in vitro. The results presented in the report indicate DANs to be a potentially 

viable diagnostic contrast agent for deep tissue infection. Further work must be done to 

assess the cytotoxic qualities of DANs as well as their diffusion characteristics using a 

more advanced tissue phantom.  
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CHAPTER 3. SELECTIVE ANTIMICROBIAL: SILVER NANOPARTICLE 
WITH SELF ASSEMBLING CERAGENIN MONOLAYER 

 

Brief Summary: This report explores silver nanoparticles conjugated to ceragenin, or 

cationic steroidal antimicrobials (CSA-SNPs), as a gram-positive selective antimicrobial. 

Herein, CSA-SNPs are characterized using TEM, DLS, zeta potential, and HPLC-ESI-

TOF-MS. The antimicrobial properties and microbial selectivity are determined through 

MIC/MBC studies, confocal imaging, MATLAB image analysis, and video monitored 

interactions between bacteria and CSA-SNPs using laser trapping techniques. 

Cytotoxicity is also determined via live/dead staining and flow cytometry. Average 

particle size as determined through TEM analysis and hydrodynamic diameter 

determined via DLS are 63.5 +/- 38.8 nm and 102.233 +/- 2.3 nm respectively. The zeta 

potential of the SNP before and after CSA attachment is -18.23 mV and -8.34 mV. 

MIC/MBC data suggests CSA-SNPs are eight times more effective against 

Staphylococcus aureus than SNPs alone. Furthermore, MATLAB analysis of confocal 

imaging found that 70% of CSA-SNPs are within 2 µm of S. aureus whereas this 

percentage falls to below 40% with respect to Escherichia coli. These results are 

bolstered further by laser trapping experiments demonstrating selective adherence 

ofCSA-SNPs conjugates with bacterial strains. Cytotoxicity studies of CSA-SNPs against 

3T3 fibroblasts indicate 50% cell viability at 50 ppm. 
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3.1 Introduction  

A significant source of difficulty in treating infections is the broad spectrum 

activity of state-of-the-art antibiotics. In the attempt to eliminate pathogenic microbes, 

many antibiotic treatments also kill or inhibit the natural microbial fauna [57].  Natural 

microfauna aid in acquiring nutrients and provide protection against colonization by 

pathogenic microorganisms[57]. When these natural bacterial populations become 

compromised, opportunistic pathogens such as Clostridium difficile, Candida ablicans, 

and Staphylococcus aureus can impair post-treatment recovery or require additional 

treatment [57-60]. Selective antimicrobial agents aim to treat infections while leaving 

native microbiome unaffected.  

Advances in the chemistry of inorganic nanoparticles, has lead to a rapid increase 

in the number of types and potential uses for nanoparticles [10, 61-63]. Nanoparticles can 

be facilely manufactured from a large variety of materials, as well as in a variety of 

shapes, sizes, number of layers, and surface chemistries. An area of particular interest is 

the use of nanoparticles as a vehicle for the delivery of drugs [62]. Nanoparticles offer a 

high surface area-to-volume ratio allowing high drug carrying capacity and additionally 

nanoparticles can be targeted to infected tissues and regions to deliver sustained drug 

treatment [18, 64, 65]. Ligands attached to nanoparticles are also less prone to 

degradation than when free in solution [18]. Additionally, for amphiphillic molecules 

with thiol groups it is thermodynamically advantageous to self-assemble on noble metals 

such as silver or gold [66, 67]. Particles less than 200 nm are more likely to remain in 

circulation in vivo than larger nanoparticles [18]. Taken together this ability to 
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manipulate the composition, morphology and surface chemistry of nanoparticles make 

them excellent candidates for selective antimicrobials.  

Silver has long been known to have antimicrobial properties and correspondingly, 

silver nanoparticles (SNPs) and other silver nanomaterials have been shown to posses 

similar antimicrobial properties [61, 68-72]. Silver is used as an antimicrobial in several 

devices including bandages, antibacterial gels, and catheters [73]. Silver impacts 

microbial systems through several mechanisms resulting in the disruption of many crucial 

cell functions such as cell wall and nucleic acid synthesis, translation, protein structure, 

and membrane ion pumps. Without these functions, cell division inhibition or death often 

occurs. This combination of potent antimicrobial activity and limited cytotoxicity makes 

SNPs potentially favorable as an alternative to traditional antibiotics as a treatment for 

infections. 

Natural cationic peptides display potent antimicrobial properties with low rates of 

resistance and varying levels of selectivity. However, many are vulnerable to protease 

activity, limiting their usefulness as an antibiotic in vivo [74, 75]. Ceragenins, also called 

cationic steroid antimicrobials (CSAs), are synthetic molecules designed to imitate the 

activities of these naturally occurring antimicrobial peptides [76]. CSAs have been 

demonstrated as effective antimicrobials against drug-resistant strains of Pseudomonas 

aeruginosa [77], Helicobacter pylori [78], Staphylococcus aureus [79], and periodontic 

bacteria such as Streptococcus mutans and Porphyromonas species [80]. A novel 

ceragenin, CSA-124, has been synthesized with a terminal thiol group allowing for 

specific covalent bonding to noble metals.  
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Herein we demonstrate the synthesis of a CSA-124 conjugated SNP (CSA-SNP) 

with improved antimicrobial activity and physical selectivity for Staphylococcus aureus. 

The particles composition and physical properties are explored through TEM, DLS, ICP-

OES and LC-ESI-MS. The antimicrobial efficacy is demonstrated with standard 

MIC/MBC assays and mammalian cytotoxicity of the CSA-SNP constructs are quantified 

using live/dead staining and flow cytometry. Physical selectivity is demonstrated both 

qualitatively and quantitatively through confocal microscopy and laser trapping analysis.  

 

3.2 Methods and Materials  

Materials 

SmartSilverTMAS was purchased from NanoHorizons Inc (Bellefonte, PA). 

Dialysis membranes (10,000 Da) were ordered from Sigma-Aldrich®. TEM grids and 

paraformaldehyde (16%) were obtained from Electron Microscopy Sciences (Hatfield, 

PA). The Acclaim® Mixed-Mode HILIC-1 normal phase LC column was ordered from 

ThermoScientific (Logan, Utah). For cell culture, DMEM-RSTM, Trypsin (0.25% (1X 

solution), and DPBS/modified(1X) are HyClone® products and also ordered through 

ThermoScientific. Sytox® Red dead cell stain was purchased from Molecular ProbesTM 

by Life Technologies Corporation TM and Live BacLightTM Bacterial Gram Stain Kit was 

purchased from InvitrogenTM Molecular ProbesTM (Eugene, Oregon). CSA-124 was 

prepared by functionalizing a leac ceragenin, CSA-13, with a thiol group on a short PEG 

tether.  Synthetic details for CSA-124 will be reported elsewhere.  All other chemicals 

were used as received unless otherwise noted. For bacterial culture Mueller Hinton Broth, 

and Nutrient Agar, pH6.0 with 0.8%NaCl was purchased from Himedia®/VWRTM, and 
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Mannitol Salt Agar was purchased from acumedia®/Neogen® corporation Lansing, 

Michigan.  

 

Methods 

Conjugating Silver Nanoparticles with CSA-124  

An appealing quality of the CSA-SNPs is the easy of conjugation. A four mL 

suspension of SNPs in DI water at 300ppm was mixed with 50µL CSA-124 in DI water 

at 0.2 mM. This solution was allowed to react overnight at room temperature, then 

purified in dialysis sacks, pore size 12,000 Da MWCO, for 24 hours changing water 3 

times.  

 

Dynamic Light Scattering (DLS): 

Hydrodynamic diameters were measured using a Malvern Zetasizer nano series 

(Worcestershire, UK). NP samples from various stages of synthesis were diluted to 

roughly 0.02 ppm in NaHCO3/DI (100 mM) then filtered using a Thermo Scientific 

Nalgene 0.2 µm surfactant-free cellulose acetate membrane. Samples were measured in 

Malvern ZEN0040 disposable cuvettes at 25˚ C. In determination of zeta potential, NPs 

were suspended in DI, filled a Zetasizer nano series folded capillary cell, and also 

measured using a Malvern Zetasizer nano series (Worcestershire, UK) at 25 ˚ C. 

 

Transmission Electron Microscopy (TEM): 

The TEM images were obtained using a JOEL 2011 TM (Tokyo, Japan). 

Nanoparticle samples were diluted to roughly 25 ppm in DI water and 5 µL was applied 
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to an Electron Microscopy Sciences carbon film 400 square mesh copper grid and 

allowed to air dry. Images were taken at 150,000X. TEM images were analyzed using 

Metamorph Advanced software. The diameters of 25 nanoparticles of each type were 

measured using digital calipers and statistical significance was determined using a one 

sample t-test. 

 

CSA Quantification: 

A five point standard curve, R2 = 0.9942, was constructed by comparing known 

concentrations of CSA-124 dissolved in 25% v/v acetonitrile (ACN) in DI to the 

integrated area of its HPLC-ESI-TOF-MS peak. CSA-124 was displaced from the SNP 

and run through HPLC-ESI-MS/MS, then quantified by comparison to this standard 

curve. To remove CSA from the SNP, 5.5 µL DL-Dithiothreitol (DTT) was added to 500 

µL CSA-SNPs and allowed to react for one hour at 37° C. The DTT displaces the CSA 

from the SNP surface resulting in DTT-SNPs and a solution of CSA and unreacted DTT. 

Particles were then separated via centrifugation for 15 minutes at 12xg. The supernatant 

was removed and concentrated from 500 µL to 250 µL by vacufugation and 250 µL of 

ACN/DI (50% v/v) was then added to the solution bringing the final solution to 25% 

ACN, mirroring the standard curve solution. The samples were then analyzed by HPLC-

ESI-TOF-MS (Agilent 1200 with a binary pump/Agilent ESI TOF 6210 PALO ALTO, 

CA). The LC column used was a normal phase Acclaim® Mixed-Mode HILIC-1, 3µm 

Analytical (2.1 x 150mm). Samples and standards were injected at 2 µL. The first mobile 

phase was 90% ACN in water with 0.1% formic acid while the second mobile phase was 

water with 0.1% formic acid. The ESI parameters used are as follows: nitrogen 
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temperature 325° C, nitrogen flow 5 L/min, and nebulizer pressure 20 psi. The DTT-SNP 

pellet obtained from the previously mentioned centrifugation was quantified by ICP-

OES. 

 

Cytotoxicity Analysis 

Murine 3T3 fibroblast cells were seeded onto 12-well plates in 500 µL of growth 

medium (DMEM, 10% FBS) and allowed to grow for 48 hours till 80% confluent. The 

medium was then replaced with 600 µL medium containing incremental concentrations 

of CSA-SNPs. Live controls received 600 µL of the growth medium containing no CSA-

SNPs. Dead controls received 600 µL of growth medium as well as 150 µL of 70% 

ethanol solution. The cells were incubated at 37 °C in 5% CO2.  

The 3T3 cells were incubated in the CSA-SNP medium for 24 hours. Then the medium 

was removed and collected. The cells were lifted from the 12- well plates using Trypsin 

and collected in combination with the previously removed media. The cells were then 

separated through centrifugation and resuspended in 1 mL phosphate-buffer saline (PBS; 

-Ca, -Mg). The cells were stained for viability using Sytox Red, 1 µL for 15 minutes, 

then separated via centrifugation, and fixed in 350 µL of 1% polyformaldehyde (PFA) 

solution. The live and dead counts were evaluated using flow cytometry. 

 

Hemolytic Characterization  

The hemolytic properties of CSA-SNP were assessed using the ASTM E2524-08 

protocol Standard Test Method for Analysis of Hemolytic Properties of Nanoparticles. 
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This test evaluates the effect CSA-SNPs have on the integrity of red blood cells by in 

vitro exposure and quantification of hemoglobin released. First hemoglobin standards 

were made covering a range from 0.025 to 0.8 mg/L and a standard curve was generated. 

Hemoglobin is oxidized to methemoglobin by ferricyanide in the presence of alkali. This 

concentration can be determined by measuring absorbance at 540 nm.  Blood was diluted 

in PBS (–Ca2+/Mg2+), to hemoglobin concentration of 10 mg/mL. In a test tube 700 µL 

PBS, 100 µL diluted blood solution, and 100 µL CSA-SNP solution were mixed and 

placed on an orbital shaker for 30 minutes. The samples were then placed in a water bath 

set to 37 ˚C for 3 hours and 15 minutes. Next samples were centrifuged for 15 minutes at 

800xg and the supernatant was collected. 100 µL of supernatant was added to a 96 well 

plate along with 100 µL cyanmethemoglobin reagent, covered, gently shaken, allowed to 

react for 10 minutes, then its absorbance at 540 nm was measured on a plate reader. This 

absorbance was compared to the standard curve to determine hemoglobin concentration. 

This concentration divided by the total hemoglobin concentration of the diluted blood 

solution yields percent hemolysis. A 10% Triton X solution was used as the positive 

control to determine total blood hemoglobin. Each sample was run in triplicate and 

known standards were run with each sample to ensure they matched up properly with the 

standard curve.   

 

Brightfield Imaging of Cell Morphology. 

   To qualitatively asses cell heath after CSA-SNP exposure, 3T3 fibroblasts were 

seeded with DMEM/10%FBS into 9 wells of a MULTIWELLTM 12 well tissue culture 

treated plate and incubated at 37˚ C and 5% CO2 until 50% confluent, about two days. 
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The media was removed from all wells. Three of these wells were exposed to 600 µL 

DMEM/10%FBS, three received a 600 µL solution of CSA-SNPs in DMEM/10%FBS at 

15ppm, and three wells received 600 µL solution of CSA-SNPs in DMEM/10%FBS at 

37ppm. Samples were incubated 24 hours, again at 37˚ C and 5% CO2. Wells were 

imaged using a Nikon eclipse TS100 brightfield microscope (Melville, NY), 

PHOTOMETRICS® CoolSNAP camera (Tucson, AZ), and MetaMorph® Advanced 

image analysis software.  

 

Minimum Inhibitory Concentration & Minimum Bactericidal Concentration  

The minimum inhibitory concentration (MIC) was determined using a protocol 

modified from that of J. M. Andrews[81].  Briefly, the inoculum was prepared by mixing 

one loop of the desired bacteria in 10 mL of Mueller Hinton Broth (MHB), which was 

then incubated at 37˚ C overnight. This inoculum was found to be ~1.6 x 108 cfu/mL by 

plating serial dilutions. For testing, inoculum was used promptly that day and diluted to 1 

x 106 cfu/mL. Alternatively, a McFarland Standard could be used in inoculum 

dilution[82]. In preparation of the serially diluted 96 well plate, 100 µL of pure MHB was 

added to each well. Next 100 µL of the antimicrobial solution, CSA-SNPs mixed in 

phosphate buffered saline (PBS) to 480 ppm, was added to the first well of each row. 

Then using a multichannel pipette set to 100 µL, the CSA-SNP/MHB solution was 

serially diluted across, thus making each consecutive well 50% the concentration of the 

well preceding it. At this time 100 µL of the prepared inoculum was added to each well 

and the plate was incubated overnight. The MIC is defined as the most dilute 

concentration of an antimicrobial that will inhibit visible growth of a microbe after 
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overnight incubation[81, 82]. Each row should contain a live control/negative control, i.e. 

a well that contains no antimicrobial. Each row should also include a well consisting of 

only the pure MHB. This well should remain clear after incubation, thus ensuring that the 

MHB was not contaminated at any point in the study. These two controls also serve as a 

means of comparison for the treatment wells, one representing uninhibited growth and 

the other representing no growth. Minimum bactericidal concentration (MBC) was then 

determined using methods established by LJ.de Nooijer and Wallert and Provost Lab[83, 

84]. To each well of the 96 well plate with a concentration equal to or greater than that of 

the MIC, 40 µL, 5 ppm 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium 

bromide (MTT) was added and the plate was incubating 4 hours at 37˚C [83]. Any 

indication of color change from yellow to purple precipitate indicates viable bacteria. 

This can be confirmed by adding 150 µL MTT solvent to each well and measuring 

absorbance at 590nm; deviation in absorbance from a no bacteria control will indicate 

viable bacteria are present. The most dilute concentration of antimicrobial agent that 

results in no viable bacteria is the MBC [85]. All trials were run in triplicate.  

 

Confocal Imaging 

Spatial selectivity of the CSA-SNPs to S. aureus was visualized using Leica 

Microsystems DM IRE 2 confocal microscope system and corresponding software. E. 

coli and S. aureus were cultured in Mueller-Hinton nutrient broth for 24 hours at 37°C. 

After incubation, E. coli and S. aureus was diluted to roughly 1x107 cfu/mL. Dilutions 

were into sterile bacterial broth. Five hundred µL of each dilution was then placed into 

the same well of a Lab-Tek® II Chambered #1.5 German Coverglass System. The co-
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culture of bacteria was allowed to affix to the slide for 1 hour undisturbed. The solution 

was then removed. Next, the co-culture was exposed to SNP-CSA diluted into PBS+ Ca2+ 

and Mg2+ at 24 mg L-1. The co-culture was exposed to the CSA-SNP on a wobble plate. 

This solution was removed after 30 minutes. The well was rinsed with 500 µL of PBS+ to 

remove excess nanoparticles. After the rinse was removed, the co-culture was stained 

with Life Technologies™ LIVE BacLight™ Bacteria Gram Stain Kit. In accordance with 

manufacturer’s protocol, the stain was prepared by mixing 1.5 µL of BacLight 

component A (SYTO® 9) and 1.5 µL of component B (hexidium iodide) into 500 µL of 

PBS - Ca2+ and Mg2+. The bacteria were allowed to stain for 15 minutes in the dark, and 

then imaged using Leica Microsystems DM IRE 2 confocal microscope system and 

software. 

 

Image Analysis 

Quantitative analysis was performed on the confocal and TEM images using the 

Image Processing Toolbox in MATLAB (MathWorks, Natick, MA).  For TEM analysis: 

grayscale images were converted to binary images with a threshold calculated by Otsu’s 

method [28]. After comparison with the original images, thresholds were manually 

adjusted if necessary. Binary morphological operations were performed to identify 

nanoparticles, which were then counted as groups of connected pixels. Finally, effective 

diameters were estimated given a known area of pixels for each nanoparticle and 

assuming a circular cross-section; n=397 nanoparticles.  

For quantitative confocal analysis, images from each imaging channel were read 

into MATLAB.  A threshold was again calculated by Otsu’s method [28] and modified 
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manually after comparison with the overlay of the three channels (due to differential 

uptake of each stain, cell morphology was used when necessary to aid in manual 

threshold determination).  Next, the centroids of isolated objects (S. aureus cells, E. coli, 

and silver nanoparticles) in each channel were identified.  Using the two-dimensional 

distance formula, the distance from the centroid of a single nanoparticle to the centroid of 

every S. aureus and E. coli was calculated; the minimum distance of those calculated for 

S. aureus and E. coli represents the closest of S. aureus and E. coli, respectively, to that 

nanoparticle.  This process was repeated for each nanoparticle in the image.  Statistical 

analysis, specifically student’s T-Test for significance and Ripley’s K-function [29] for 

clustering, were performed. 

 

Optical Trapping 

The basic design of the optical trap setup can be found in Supplemental 

Information. The instrument (MMI CellManipulator, MMI, Zurich, Switzerland) was 

fabricated to work as an optical trapping system with force measurement capabilities. The 

optical trapping laser used was an 8 W Nd: YAG (yttrium aluminum granet) laser 

emitting light at a wavelength on 1070nm. The laser beam used was expanded to fit the 

back aperture of the microscope objective. The objective used was a 100X plan fluro 

objective (Nikon Instruments). A galvanometer was used that could create up to 20 

individual traps simultaneously using a time-sharing mode. The instrument was designed 

as an optical trapping system using a Nikon TE2000 for imaging. Also, for this study 

CSA-NPs were synthesized of polystyrene beads functionalized with a colloidal silver 

shell and CSA-124. These particles share the same surface chemistry as the CSA-SNP 
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but are larger, roughly 1micron. This is necessary as optical capture is not feasible for 

smaller objects. 

A glass slide was passivated with dried milk, and a diluted sample of CSA-MP 

and S. aureus was placed on the surface. The slide was then sealed with a glass coverslip 

and parafilm. The slide was then placed under 100x oil immersion objective and the laser 

turned on. Two traps were created, one for a single bacteria and another for a CSA-MP 

nanoparticle. The laser power was adjusted to about 30% to minimize potential spurious 

laser interactions and heating. The trap containing the bacteria was slowly moved to 

approach the S. aureus to eventual contact, as indicated by slight displacement of both. In 

this series of measurements the staph/CSA-NP adduct was annealed about 2 seconds 

before moving the traps apart. The same procedure was followed with identical beads that 

did not contain CSA-124.  Results reported are based on an average of 200 trials repeated 

over 80 sets of independently prepared microscope. 

 

3.3 Results and Discussion 

Nanoparticle size was determined through TEM image analysis and DLS. These 

results are reported in Table 1. As expected the hydrodynamic diameter determined via 

DLS is greater than the diameter determined via TEM due to the presence of solvated 

surfactant on the particle surface. Also of note is that the hydrodynamic diameter 

increased as the positively charged CSA-124 molecules were added to the system, 

indicating self-assembly on the nanoparticle surface. While size of CSA-SNPs is not 

critical in these experiments, it is relevant to colloidal stability and in vivo 

biocompatibility. Larger particles are more likely to settle from solution potentially 
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irreversibly aggregating and increasing apparent size. Also, nanoparticles possessing a 

diameter greater than 200nm are more prone to activate the complement system and thus 

be cleared from the circulatory system [31].  Nanoparticles with a diameter under 100nm 

are capable of penetrating blood vessel pores and NPs under 20nm can access interstitial 

spaces[18]. This characteristic has been termed the enhanced permeability and retention  

(EPR) effect [3, 19]. 

 

 

Table 3.1. Nanoparticle characterization 

 

 

 

 

 

 

 

 
Figure 3.1 TEM of CSA-SNP 

Parameter HPC-SNP CSA-SNP 

SNP diameter via TEM analysis (nm)  63.5 +/- 38.8 

Hydrodynamic diameter (nm) 81.9 +/- 9.4 102.233 +/- 2.3 

Zeta potential (mV) -18.23 +/- 0.83 -8.34 +/- 1.05 
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Figure 3.2 Histogram of CSA-SNP size as determined by TEM image analysis 
 

As expected, the nanoparticle gains positive charge after the addition of CSA, a 

cationic steroidal antimicrobial, and purification of the resulting particles. This data 

supports the fact that CSA was successfully conjugated to the nanoparticle surface. It is 

also relevant because the nature of the surface charge also effects the nanoparticles’ in 

vitro and in vivo interactions. Particles with a moderately neutral charge will be more 

likely to agglomerate resulting in shorter shelf lives, a lower solubility threshold, and an 

increased probability of removal from in vivo circulation [30]. Once in the body, 

nanoparticles are susceptible to opsonization, recognition, and removal by the 

mononuclear phagocyte system (MPS). In general, neutral to negatively charged 

nanoparticles with hydrophilic polymer surfaces exhibit prolonged circulation times [31].  

An appealing quality of the CSA-SNP is the ease of noble metal nanoparticle 

conjugation. CSA-124 has been specifically synthesized with a thiol-terminated 

polyethylene glycol side chain which favorably binds to noble metals. The 
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SmartSilverAS silver nanoparticles, from this point referred to as SNPs, used for this 

procedure are stabilized with hydroxypropyl cellulose (HPC), which provide the NPs 

with high solubility in aqueous and organic alcohol sovent systems. and biocompatibility.  

Because CSA-124 has greater thermodynamic and steric stability than HPC on the 

surface of the SNPs, CSA-124 spontaneously displaces a portion of the HPC molecules. 

For the quantification of CSA-124 bound to the SNP surface, a standard curve 

was first constructed of integrated peak area vs known CSA concentration using HPLC-

ESI-TOF-MS (Supporting Information). The CSA was displaced from the SNP surface 

using DTT, the particles were separated by centrifugation, and analyzed using HPLC-

ESI-TOF-MS. The corresponding CSA concentration was determined to be 1.5 mg/L for 

a 500µL sample, or 4.52x1014 CSA molecules. Using ICP-OES and estimates of particle 

size from TEM it was determined the same 500µL sample contained roughly 1.32x1011 

SNPs, thus we conclude there are on average 3,424 CSA-124 molecules bound to each 

SNP. Future work will concentrate on optimizing this parameter. 

 

Figure 3.3 MIC and MBC of CSA-SNP against various bacteria 
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The antimicrobial results for the minimum inhibitory concentration (MIC) and 

minimum bactericidal concentration (MBC) are reported here in figure 3.3. As the graph 

indicates, CSA-SNPs are more efficacious against S. aureus, MIC 15 ppm, somewhat less 

effective against E. faecalis and E. coli, MIC 30, and least effective against P. 

aeruginosa, MIC 60. The data also suggests that CSA-SNP expresses higher selectivity 

toward gram positive bacteria, S. aureus and E. faecalis, than gram negative bacteria, E. 

coli and P. aeruginosa. This could be due in part to electrostatic attraction between the 

cationic steroidal antimicrobials and the negatively charged peptidoglycan, of which 

gram positive bacterial express in much greater quantities[86]. Ruparelia et al. 

determined the average MIC of SNPs against four different strains of E. coli and three 

different strains of S. aureus[87]. The average MIC against both E. coli and S. aureus 

was reported to be 120 ppm, making CSA-SNP’s roughly 8 times more effective against 

S. aureus and 4 times more effective against E. coli. Our own determination of the MIC 

of SNPs was obtained using the same protocol as above and found to be roughly 250 ppm 

for both S. aureus and E. coli. Selectivity of CSA-SNPs was further explored through 

confocal imaging. 

 

Figure 3.4 (A) Cytotoxicity of CSA-SNPs. (B) Hemolytic character of CSA-SNPs 



53 
 

The concentration dependent toxicity of CSA-SNPs to mouse 3T3 fibroblasts was 

determined by cell treatment followed by flow cytometry, and is presented in figure 3.4. 

The CSA-SNPs show very limited toxicity below 39.8 ppm, and reach the 50% viability 

threshold at ~50 ppm. Differences between neighboring columns were not found to be 

significant by one-way ANOVA with Bonferroni’s posttest (p < 0.05), however all non-

neighboring columns are significantly different. The hemolytic assay shows nearly 

identical results with increasing hemolysis at 37.5 ppm and slightly over 50% hemolysis 

occurring at 50 ppm. All values calculated in the hemolysis assay are significantly 

different except 0.4ppm vs 10ppm as determined by one-way ANOVA with Bonferroni’s 

posttest (p < 0.05). These findings suggest a ~ 3.3 fold difference between MIC and 

EC50tox for S. aureus and 3T3 cells respectively. Simultaneous testing of SNPs alone 

showed little cytotoxicity up to 200 ppm. This result is supported by the work of Jain et 

al. who reported that the IC50 for SNPs against Hep G2 cells to be 251 ppm. These 

findings suggest that CSA-SNPs are roughly 5 times more toxic to 3T3 cells than SNPs 

alone [88].  

 

Figure 3.5 Brightfield images of 3T3 fibroblasts; "a" received 0 ppm CSA-SNP, "b" 
received 15 ppm CSA-SNP, and "c" received 37 ppm CSA-SNP 
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The cytotoxic effects of CSA-SNPs were also qualitatively assessed via 

brightfield imaging. In Figure 3.5a the typical spindle morphology of healthy 3T3 

fibroblast cells can be seen. Figure 3.5b, representing the MIC of S. aureus at 15ppm 

CSA-SNP, the cells appears to have slightly reduced size but retain their characteristic 

spindle morphology. CSA-SNP at 37 results in stark contrast in cell morphology 

indicative of cytotoxicity. These results are consistent with those from the hemolysis and 

flow cytometry studies.   

Qualitative image analysis of the confocal overlays (Figure 3.6) suggests that the 

CSA-SNPs are distributed spatially closer to S. aureus cells than E. coli.  Analysis of 

these images provides the closest S. aureus and E. coli to each SNP; histograms and 

simple statistics are shown in Figure 3.7 and Table 3.2, respectively.  

 

 

Figure 3.6 Confocal imaging of S. aureus (red), E. coli (green), and nanoparticles (blue). 
Images "B" and "D" are enlarged segments of "A" and "C" respectively. The NPs in "A" 
and "B" are CSA-SNPs while the NPs in "C" and "D" are SNPs 
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Figure 3.7 Histogram of distances: experimental (top), negative control (bottom), SNPs 

to S. aureus (left), and E. coli (right). 

Table 3.2 Statistics from quantitative image analysis 

 

Samples 
Ave. Distance from 

NP to Cell (µm) 

CSA-SNP to S. aureus 1.283 

CSA-SNP to E. coli 3.4886 

SNP (neg. control) to S. aureus 4.8638 

SNP (neg. control) to E. coli 3.9910 

 

Table 3.2 illustrates the distribution of distances for both experimental and 

negative control groups. The difference in average distance between CSA-SNP and S. 

aureus vs CSA-SNP and E. coli is statistically significant, as is the difference in average 

distance between the CSA-SNP treatment samples and the SNP negative control samples.  
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More than 70% of the CSA-SNPs are within 2 microns of a S. aureus; this percentage 

decreases drastically to less than 40% for CSA-SNPs to E. coli.  CSA-SNPs also show a 

higher incidence at distances greater than 5 microns for E. coli relative to S. aureus.  This 

is confirmed by the averages and standard deviations in table 3.2; CSA-SNPs, on 

average, are closer to S. aureus than E. coli.  The standard deviations indicate less 

dispersion amongst the CSA-SNP to S. aureus data than that to E. coli.  A student’s T-

Test confirms that there is a statistically significant difference between the mean 

distances of CSA-SNPs to S. aureus and CSA-SNPs to E. coli.  Ripley’s K-function 

clustering analysis indicates that the CSA-SNPs are spatially clustered, particularly on 

shorter scales. 

The negative control data shows no significant difference between the SNP to S. 

aureus distance and the SNP to E. coli distance.  This is highlighted by large standard 

deviations for both negative control groups.  However, the mean CSA-SNP to S. aureus 

distance is statistically significantly different than the SNP to S. aureus average distance. 

Selectivity was then qualitatively demonstrated through video observation and 

optical trapping technology. Optical tweezers are capable of manipulating living cells and 

nanoparticles by placing pico Newton forces upon them by focusing a laser beam through 

a microscope objective. The beam waist, which is the narrowest part of the focused beam, 

contains a light gradient. The gradient attracts dielectric particles to the center of the 

beam. The highly focused infrared laser is positioned in this area and an optical trap is 

created. Optical trapping has the capability to manipulate small biological objects such as 

single bacterial cells as well as nanoparticles. The wavelength does not harm living cells.  

The optical trapping at cellular level provides insight into biological interactions. Optical 
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trapping of CSA-SNP and staphylococcus aureus were visualized in manipulated to show 

particular selectivity for one another. 

Video clip 1 is a 300 frame-length movie. The compressed video clip can be 

replayed clip by clip in Window Media Player frame by frame. Initially S. aureus is 

trapped in the left upper corner and a CSA-NP is trapped in the middle of the screen. The 

interesting spot of reference is frames 139-158; the S. aureus is manipulated to slowly 

approach the CSA-NP and allowed to incubate for 1.2 seconds. The trap is then moved 

but staph is adhered to CSA-124. In frames 200-215 and 250-285 the same procedure is 

repeated and another two more bacteria adhere to the same CSA-NP. 

An optical trap was used to show the adhesion of CSA-NP to S. aureus. A single 

bacterium was trapped in one specific trap and CSA-NP was trapped in another 

simultaneous trap. The bacteria were manually moved to approach the CSA-NP. The 

bacterium was then allowed to touch and incubate for a period less than two seconds. The 

two traps were then moved apart. The result was the S. aureus remained attached and was 

not able to be pulled apart by the force of the optical trap.  The video shows that three 

separate bacteria can attach and bind two one CSA functionalized particle. The procedure 

was repeated with nanoparticles lacking CSA-124 surfactant. The nanoparticles without 

CSA-124 did not allow S. aureus to adhere.  

 

3.4 Conclusion 

Recent research indicates that there are potential downsides to indiscriminate use 

of broad spectrum antimicrobials. Off target effects can wipe out the body’s natural 

microbial fauna, leaving niches available for opportunistic pathogen invasion, leading to 
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longer recovery times and the possibility of additional infection. Furthermore, by 

exposing the body’s many bacterial strains to sub biocidal concentrations of broad 

spectrum antimicrobial, one increases the risk that these pressures will cause the 

development of new resistant strains. Increased affinity of an antimicrobial towards its 

target also potentially reduces the required effective dosage, increasing therapeutic index 

 Silver has been used clinically as a broad spectrum antimicrobial since it was 

approved by the FDA in the 1920s[88]. Resent research however, indicates that there are 

many downsides to indiscriminate antimicrobials including longer recovery times, 

increased risk of further infection, and higher incidence drug resistance. The data 

presented in this report suggests that the antimicrobial qualities of silver can be 

complemented, as well as made more selective toward specific classes of bacteria via 

conjugation with selective ligands such as CSA-124. Silver alone has MIC’s of 120 ppm 

against both S. aureus and E. coli whereas CSA-SNPs express an MIC of 15 ppm and 

30ppm toward S. aureus and E. faecalis respectively and an MIC of 30 ppm and 60ppm 

toward E. coli and P. aeruginosa respectively. These findings were further supported 

through MATLAB analysis of confocal images, indicating that while in co-culture 70% 

of CSA-SNPs were within 2 microns of S. aureus while less than 40% were within 2 

microns of an E. coli. Video images of laser captured nanoparticle interactions with both 

bacteria also show clear selectivity for the gram positive S. aureus over the gram negative 

E. coli. Future work will focus on optimizing ligand concentration, verifying the 

mechanism of ligand affinity, and improving compatibility.  
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CHAPTER 4. CONCLUSIONS AND FUTURE WORK 

 

4.1 Conclusion 

 Chapter 2 demonstrated a proof of concept for diagnostic, antimicrobial 

nanoparticles comprised of a maghemite core, gold nano-seeds, silver shell, and CSA-124 

surface molecules. Characterization through numerous methods advocates that the 

synthesis process described successfully generates the proposed product. The FT-IR 

spectrums support the addition of a mercapto group to the Fe-PAA NP. ICP-OES 

demonstrated the final product is comprised of 76.64% silver, 22.75% iron, and 0.61% 

gold with ~8% total yield. Both TEM and DLS results demonstrate predictable growth of 

the particle with each additive process step. These results, along with the UV-vis  spectra 

indicate that gold and silver were successfully deposited onto the Fe-PAA NPs, yielding a 

final nanoparticle of 32.474 +/- 1.83 nm diameter and 53.053 +/- 1.202 nm hydrodynamic 

diameter.  Furthermore, these particles were shown to be predominantly paramagnetic 

and possess a strong magnetic moment of 54 emu/g Fe due to their maghemite core; 

characteristics representative of clinically used T2 MRI contrast agents, making DANs a 

good candidate for diagnostic use. MRI of DANs and maghemite core NPs at various 

concentrations suggest a 16.7 gray scale unit reduction in pixel intensity for each ppm 

DAN and significant contrast with as little as 9 ppm. DANs have also demonstrated an 

ability to adhere and contrast S. aureus in vitro. The results presented in the report 

indicate DANs to be a potentially viable diagnostic contrast agent for deep tissue 

infection 
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The data presented in chapter 3 suggests that the antimicrobial qualities of silver 

can be complemented as well as focused toward specific classes of bacteria via 

conjugation with selective ligands such as CSA-124. Silver alone has MIC’s of 120 ppm 

against both S. aureus and E. coli whereas CSA-SNPs express an MIC of 15 ppm and 

30ppm toward S. aureus and E. faecalis respectively and an MIC of 30 ppm and 60ppm 

toward E. coli and P. aeruginosa respectively. These findings were further supported 

through MATLAB analysis of confocal images, indicating that while in co-culture 70% 

of CSA-SNPs were within 2 microns of S. aureus while less than 40% were within 2 

microns of an E. coli. Video of laser captured nanoparticle interactions with both bacteria 

also show clear selectivity for the gram positive S. aureus over the gram negative E. coli. 

CSA-SNPs have however shown to be relatively cytotoxic and hemolytic with a 

therapeutic index of roughly 3.  

 

4.2 Future Work 

 While this report has demonstrated a very promising proof of concept, there is 

much optimization to be done with regard to both DANs and CSA-SNPs. Synthesis of the 

DAN core should be adjusted to yield only particles under 10 nm or a separation step will 

need to be added to remove larger, ferromagnetic particles, thus making DANs 100% 

paramagnetic. Additionally, there are many other paramagnetic contrast compounds that 

could be employed as the DAN core to make a T1 contrasting DAN. Future work should 

include additional in vitro MRI testing using a more complex tissue phantom. 

 The other major parameter in need of optimization is that of the surface molecule 

attachment. The proper number of CSA-124s to be attached for optimal antimicrobial, 
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selective, and cytotoxic characteristics should be assessed. Also, exploring other selective 

surface molecules may be necessary if CSA-124 proves to be too toxic or not adequately 

selective. Work can be done in encapsulating CSA-124s in liposomes. This would 

decrease cytotoxicity as well as provide longer circulation time in vivo. Lastly, once the 

necessary optimizations have been achieved and the cytotoxic and hemolytic qualities 

have been minimized, an animal trial could be conducted to access the full potential of 

the conjugate nanoparticles.  
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