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ABSTRACT 

Ceria is an earth-abundant material that has been widely used in heterogeneous catalysis, 

environmental catalysis, and energy applications thanks for its ability to readily convert between 

different oxidation states.  The objective of this study is to theoretically elucidate the reaction 

mechanisms for the conversion of model organic compounds on ceria, in order to gain insights 

for the design of cost-effective and selective ceria-based catalysts.  Acetaldehyde, acetic acid, 

and para-nitrophenyl phosphate monoester were selected as the model compounds to probe ceria 

surfaces.  Density functional theory calculations can provide accurate predictions of adsorption 

and reaction energetics, which can be used to calculate the necessary kinetic parameters in the 

microkinetic model that can validate hypothesized reaction mechanisms.  This methodology is 

also able to generate additional insights regarding the dominant surface species, the existence of 

transient surface species, and the role of active sites such as defects.  Based on the spectroscopic 

evidence from surface science experiments, we were able to validate the proposed reaction 

mechanism for temperature programmed desorption of acetaldehyde and acetic acid on ceria 

surfaces.  Particularly, the catalytic role of surface oxygen vacancy during the formation of 

ethylene, acetylene and crotonaldehyde in the AcH-TPD was examined.  The desorption of 

crotonaldehyde is found to be the rate-limiting step.  However, pre-existing oxygen vacancy is 

not required in the AA-TPD due to facile surface reduction induced by deprotonation of acetic 

acid.  We found the ketene pathway was energetically more favorable than the acetone pathway 

under UHV condition.  Our results showed that ceria can be effective in the dephosphorylation of 

selected monoesters including p-NPP, due to facile P-O ester bond scission.  However, the 

subsequent step-wise hydration is found to be rate-limiting.   
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INTRODUCTION 

1.1 Catalysis Related Properties of Ceria 

Ceria is a well-known material in heterogeneous catalysis, environmental catalysis, and energy 

applications [1, 2].  Ceria is shown to enhance the redox activity of metal catalysts in a number 

of technological reactions, including the automotive three-way catalysis [3, 4], water-gas shift 

(WGS) [5], hydrocarbon reforming [6], CO2 reduction [7], and combustion of soot and volatile 

organic compounds [8].  Ceria has also been used as key components of solid electrolytes and 

even electrodes in solid oxide fuel cells [9], and energy carriers in solar thermochemical reactors 

[10].  Many of its useful properties can be traced to the ability of the Ce cation to readily convert 

between the +3 and +4 oxidation states chemically and structurally.  Meanwhile, cerium is the 

most abundant of the lanthanides in Earth’s crust, with its abundance being comparable to 

common metals such as chromium, nickel, and copper, and higher than tin and lead.  The unique 

chemical properties of ceria coupled with availability makes it a highly attractive material for 

current and future catalytic and energy applications. 

Different from other rare-earth elements, cerium dioxide (CeO2) is a more stable phase 

than the sesquioxide phase (Ce2O3) under ambient conditions.  Identified as the fluorite structure 

(space group Fm3m), CeO2 has its 4 Ce atoms locate in the face-center and corner sites of the 

unit cell, while 8 O atoms locate inside the unit cell with each O atom adopting a tetrahedron 

coordination configuration, as shown in Figure 1.1a.  Among the low-index facets of CeO2, 

CeO2(111) turns out to be thermodynamically the most stable one, followed by (110) and (100) 

surfaces [11].  CeO2(111) thin film can be grown on several metal substrates, such as Ru(0001) 

[12], Cu(111) [13], Pt(111) [14], Rh(111) [15] and other fcc single crystal metal surfaces [12, 16, 
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17], via depositing Ce metal onto the metal substrates under a background O2 partial pressure; 

due to the more reactive nature, CeO2(100) thin film turns out to be more difficult to grow but 

has been managed on substrates such as SrTiO3(100), α-Al2O3, Pd(100), Pt(100), biaxially 

textured Ni(100) and yttria-stabilized ZrO2(100) [18].  An advantage of the thin film format as  

 

 
Figure 1.1.  (a) Conventional unit cell for CeO2 bulk, space group Fm3m; (b) Low-energy 

electron diffraction (LEED) pattern and scanning tunneling microscopy (STM) image of 

CeO2(111) thin film grown on Ru(0001); (c) High-resolution STM image of CeO2(111) thin 

film; (d) High-resolution STM image of largely reduced CeO2-x(111) thin film.  Reprinted with 

permission from Zhou J et al., J Phys Chem C 112:9336-9345;  © 2008 American Chemical 

Society 

 

grown on conductive metals is that electron-based characterization techniques, including 

scanning tunneling microscopy (STM), can be applied to probe the surface [19, 20], which is not 

possible on bulk ceria due to its insulating nature.  Along with other surface probing techniques 

such as atomic force microscopy [21], detailed information about the surfaces of both pristine 

and defective single crystal ceria has been obtained, which provides structural insights for 

constructing models of ceria on which to study chemical reactions theoretically.  High-resolution 

STM images show the hexagonal structure of the (111) thin film surface (Figure 1.1c), and the 

symmetry is maintained even when the thin film surface has been largely reduced (Figure 1.1d).   
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Regarding its unique catalytic performance, the redox and acid-base properties of ceria 

deserve the compliments, and both properties are common features of reducible oxides [22-26].  

By definition, the redox reaction consists of a reduction reaction and a complementary oxidation 

reaction, both of which involve an equal number of electron transfer.  In terms of electron 

transfer, the reduction step leaves two extra electrons to ceria and each electron is backed to one 

Ce4+.  The localization of the extra electron on the Ce 4f orbital results in Ce3+, which induces 

the volume expansion effects [27].  The acid-base property (sometimes mentioned as amphoteric 

property), comes from the catalyst that contains both accessible Lewis acid and base sites.  For 

instance, on ceria surfaces, exposed Ce and O are the so-called acid and base sites, respectively.  

With respect to chemical reactions involving organic oxygenates e.g. CxHyOz, the advantage of 

such catalyst is that the acid site can anchor and activate the functional group such as carbonyl, 

while the base site can activate C-H bond if ⍺-H is available.  Particularly, the ratio of available 

acid and base sites and their spatial distribution on the catalyst surface can fundamentally affect 

the activity of catalyst as well as the selectivity of corresponding surface reaction [26].  

Therefore, redox and acid-base properties are closely correlated via the common oxygen 

component involved in the surface chemical reactions.  For instance, CO oxidation (or surface 

reduction) not only decreases the number of surface base site, but also increases the number of 

accessible surface acid site via Vo formation. 

From the thermodynamic perspective, the Ce-O binary system can be quite complicated 

in terms of possible phases it may evolve into as a function of temperature and composition [28], 

as shown in Figure 1.2.  According to the phase diagram (Figure 1.2a), most solid phases are 

concentrated on the compositions with O mole fraction ranging from 3/5 to 2/3, which 

corresponds to a chemical formula of Ce2O3 and CeO2, respectively.  Indeed, redox reactions 
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(typically below 1000 K) on catalytic materials based on ceria may transform ceria into these 

phases by changing the O composition between the two limiting stoichiometries during the 

catalytic cycle.  However, identifying the active phase during the dynamic catalytic reactions 

remains to be a challenging task.  Further zoom-in (Figure 1.2b) of the phase diagram shows a 

 

 
Figure 1.2.  Calculated phase diagram for Ce-O binary system.  Pressure condition: 1bar.  Panel 

(b) is a zoom-in view of panel (a).  The square and circle data points in panel (b) are from [29] 

and [30], respectively.  Reprinted with permission from Zinkevich M et al., Solid State Ionics 

177:989-1001;  © 2006 Elsevier 

 

major stoichiometric intermediate phase called Ce7O12, which may need to be considered in both 

surface science and reactor condition experiments.  According to previous literature, the 

reduction limit Ce2O3 phase, can be found in three different crystal structures: hexagonal (type 

A), monoclinic (type B), and cubic (type C, bixbyite) [27].  The bixbyite is the one most close to 

the fully oxidized phase CeO2 structure-wise, because it can be constructed from 8 elementary 

units of CeO2 (each unit cell of CeO2 has 4 formula units, totally 12 atoms) with 25% of O atoms 

removed (therefore the unit cell of c-Ce2O3 has 80 atoms in total) [31].  Energy-wise, both 
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hexagonal and cubic structures are more stable than monoclinic, but only the cubic structure is 

able to explain the volume expansion effects caused by the reduction of CeO2 [27].   

 

 
Figure 1.3.  Stability plot for proposed ceria surface phases calculated by DFT and ab initio 

atomistic thermodynamic modeling.  Here “𝚯” is a quantity proportional to the extent of 

reduction in the surface and subsurface of the unit cell in the corresponding structure. Reprinted 

with permission from Olbrich R et al., J Phys Chem C 121:6844-6851;  © 2017 American 

Chemical Society 

 

Before reaching the reduction limit, surface reconstructions caused by oxygen vacancy 

ordering under 900 K annealing conditions have seen both (√7×√7)R19.1° structure with bulk 

termination as Ce7O12, and (3×3) structure with bulk termination as Ce3O5, by reducing the 

CeO2(111) ultrathin film surface grown on Cu(111) via cerium deposition [32].  More recently, 

surface reconstruction that produces (√7×3)R19.1° structure with bulk termination as Ce3O5 was 
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unveiled under higher annealing temperature by reducing the CeO2(111) thick film surface 

grown on Si(111) via thermal reduction method [33].  According to the calculated relative 

surface energy derived from ab initio atomistic thermodynamic modeling parameterized by 

DFT-calculated energetics, as shown in Figure 1.3, this (√7×3)R19.1° Ce3O5 structure is more 

stable than the (√7×√7)R19.1° Ce7O12 structure above 1040 K.   

The relevance of the above findings to ceria catalysis is: during the surface catalytic 

reactions where dynamic O exchange between adsorbates and surface operating in a rapid rate, 

surface reduction/re-oxidation may cause the catalyst surface to span a relatively wide phase 

space under high temperature conditions.  In order to better understand the structure-reactivity 

relationship, fundamental understanding of each primary phase and its corresponding vacancy 

ordering structure [34] is quite necessary.  Since the surface science experiments devised by our 

experimental collaborators usually operates under 800 K, we would focus on point and pair 

defects that are much more stable than these reconstructed phases in terms of surface free energy, 

according to Figure 1.3.  

1.2 Current Applications of Ceria in Heterogeneous Catalysis 

Due to its electronic and structural promotion effects on catalysts, over the last two decades, 

ceria has been studied extensively by the catalysis communities.  The conventional wisdom [35-

38] for studying solid catalysts is: starting from relatively simple catalytic reaction using probe 

molecule on model 2D surfaces (as shown in Figure 1.4d and e), validating hypothesis about 

reaction mechanism and active site by complementing experimental evidence (either in reaction 

or UHV condition) with electronic structure calculations and microkinetic modeling; then 

moving on to higher dimensional space, such as model 3D particles [39] (i.e. nanoparticles, as 
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shown in Figure 1.4a-c) that typically consist of multiple 2D surfaces that could potentially 

render synergistic effects (for instance in the interface) on the current catalytic system.  Catalytic 

research on ceria-based materials is no exception with model catalysts ranging from low-index 

surfaces (generally under UHV condition) to nanoparticles [1, 2, 18, 40-42], incorporated with 

advanced quantum chemical techniques such as density functional theory (DFT) [43], and ab 

initio molecular dynamics (AIMD) [44, 45], as well as larger scale molecular dynamics [39, 46], 

in order to better understand the fundamental structures and their potential relevance to reaction 

mechanisms.   

The most successful commercial application of ceria is probably the modern three-way 

converters for automotive emission control [4], where the exhaust gases of the internal 

combustion engine mainly consist of CO, HC (hydrocarbon), and NOx.  Due to its excellent 

oxygen storage capacity [47], ceria-based materials (i.e. ceria-zirconia solid solution) are used as 

the so-called oxygen storage material (OSM) in the modern three-way converters and mainly 

play the role of structural promoter for the catalytically active components [48, 49], i.e. the 

platinum group metals: Rh (catalyze NOx reduction), Pt (catalyze CO and HC oxidation), and Pd 

(catalyze CO and HC oxidation).  Due to its redox and acid-base properties, ceria can also offer 

catalytic activity in its own right, for instance activating C-H bond of HC.  With more stringent 

environmental regulations on the automotive emission control standards, more efficient three-

way catalysts are in high demand commercially, thus push forward the current knowledge on 

ceria-based materials in order to achieve such advanced technological resolution.   
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Figure 1.4.  (a)-(c) Structural evolution of simulated 3D ceria nanoparticle starting from 

different initial structures by molecular dynamics.  Reprinted with permission from Sayle TXT et 

al., Chem Commun 0:2438-2439;  © 2004 Royal Society of Chemistry  (d) and (e) refer to the 

side and top view of our 2D surface model CeO2(111) with point defect Vo, respectively, with 

green, light and dark brown spheres represent lattice Ce, surface lattice O, subsurface lattice O, 

respectively.  Molecular images in this figure and those below are created using VESTA [50].   

 

One exciting potential new catalytic application for ceria is related to biomass 

conversion.  The production of fuels and chemicals from biomass has captured significant 

research and commercial interest in recent decades [51-53].  Biomass is potentially a renewable, 

carbon-neutral source of carbon that can be supplied domestically.  Biomass conversion is an 

indirect and more technologically achievable method to harness energy from the Sun through 

converting the carbon-containing compounds accumulated by photosynthesis into fuels and 
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value-added chemicals.  Biomass utilization for fuel and chemical production is a high priority 

research area for the U.S. Department of Energy [54, 55].  Thermal, chemical, and biological 

processing and conversion of biomass have been extensively explored [52].   

 

 
Figure 1.5.  Schematic chemical conversion patterns for lignocellulosic biomass.  Reprinted with 

permission from Huber GW and Dumesic JA, Catal Today 111:119-132;  © 2006 Elsevier 

 

As shown in Figure 1.5, to convert lignocellulosic biomass (cellulose, hemicellulose and 

lignin) at scale, it needs first to be broken down (e.g. through thermochemical and hydrolysis 

methods) into a mixture of small organic compounds that are rich in functionalities, and further 

modified and purified [56].  There are two major conversion pathways: 1) hydrogenation, which 

reduces the amount of heteroatoms in the feedstock and reduces the reactivity of the compounds; 

2) C-C coupling to increase the size of carbon backbone and the fuel value of the molecules.  For 

example, aqueous reforming (hydrolysis based) routes can selectively transform biomass-derived 

furfural, hydroxymethylfurfural (HMF) and levulinic acid as platform chemicals into liquid fuels 

and value-added chemicals [53].  Benefited incorporations such as Catilin (biodiesel production 
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using mixed oxide catalyst), Velocys (microchannel reactor designed to produce fuels), ADM 

(production of propylene glycol), Virent (production of aromatic chemical) and GlucanBio 

(production of furan derivatives) have brought the technological products into market and proved 

the economic feasibility of biomass conversion technology. 

 Thanks to its acid-base and redox properties, ceria is capable of reducing as well as 

coupling biomass-derived organic oxygenates.  C-C coupling reactions include aldol 

addition/condensation of aldehydes and ketones and ketonization of carboxylic acids and esters, 

which take advantage of functional groups such as formyl and carboxyl groups.  For the aldol 

addition/condensation reaction, Barteau and coworkers [57] studied the reaction of acetaldehyde 

adsorbed on polycrystalline ceria and detected C4 species, such as crotonaldehyde, crotyl 

alcohol, and reductive coupling products such as butene and butadiene.  Dooley and coworkers 

investigated the condensation of aldehydes on ceria-based catalysts and suggested the key role of 

carboxylate in achieving high selectivity toward ketones [58].  Dumesic and coworkers [59] 

synthesized C12 or higher ketones from 2-hexanone, as shown in Figure 1.6, under reactor 

conditions (350 ℃, 5 bar) using a palladium catalyst supported on CeZrOx, and they also found 

that the selectivity of products can be controlled by changing the relative composition of the 

mixed oxide.  Resasco and coworkers [60] used CexZr1-xO2 catalyst for propanal condensation 

under 400 ℃ with the presence of He or H2.  Cosimo [61] investigated the formation of methyl 

isobutyl ketone from 2-propanol on CuCe4Ox catalyst.   

Ketonization of carboxylic acids or esters is potentially a green chemistry process, since 

it does not require the usage of solvents or other elaborate reagents [62].  Dumesic group used 

Ce0.5Zr0.5O2 catalyst for the ketonization of hexanoic acid [63], with other oxygenates 

(ketone/alcohol) presented, where 6-undecanone (C11 ketone) is observed under high temperature 
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Figure 1.6.  Conversion of 2-hexanone on CeZrOx supported Pd catalyst.  Reprinted with 

permission from Gürbüz EI et al., Appl Catal B-Environ 94:134-141;  © 2010 Elsevier 

 

regime.  Dooley and coworkers carried out a series of studies on ceria-based catalysts and 

proposed a ketonization mechanism where a surface ketene intermediate is involved that 

suggests the necessity of having -H [58, 64, 65].  More recently Resasco and coworkers further 

elaborated the mechanism, originally proposed by Neunhoeffer and Paschke [66], which 

involves a -keto-acid intermediate [67], as shown in Figure 1.7.  To be noted, the pathway that 

involves -keto-acid intermediate proposes that carbon dioxide originally comes from the 

enolate form (CH2COOH) of acetic acid [68], which is formed via -H abstraction. 
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Figure 1.7.  Liquid phase ketonization of carboxylic acid over TiO2 catalyst.  Reprinted with 

permission from Pham TN et al., J Catal 295:169-178;  © 2012 Elsevier 

 

Despite the above mentioned efforts, among others, selective conversion of organic 

oxygenates on ceria has not been achieved by traditional catalytic experiments, partly due to the 

less realistic models for the catalyst and catalytic active sites, partly due to the difficulty of 

measuring sufficiently accurate kinetic parameters in a consistent way, for instance counting the 

number of catalytic sites [69].  Surface science studies can provide fundamental insights for 

catalytic reactions conducted on the well-defined model surfaces under ultrahigh vacuum (UHV) 

condition.  As one of the benefits, relatively more clear and consistent spectroscopic evidence 

can be generated, which can be further compared with simulated spectra from microkinetic 

modeling parameterized by accurate kinetic inputs with clear microscopic meaning such as DFT 

calculated energetics.  Particularly, highlights from a series of surface science studies carried out 
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by Overbury, Mullins and coworkers [70-76] show that on CeO2(111) thin film surfaces, as 

shown in Figure 1.8, acetaldehyde (AcH) seems to be only reactive on the partially reduced  

 

 
Figure 1.8.  (a) Temperature-programmed desorption of acetaldehyde adsorbed on fully oxidized 

and partially reduced CeO2(111) thin film surfaces.  Reprinted with permission from Chen TL 

and Mullins DR, J Phys Chem C 115:3385-3392;  © 2011 American Chemical Society  (b) 

Temperature-programmed desorption of acetic acid adsorbed on fully oxidized CeO2(111) thin 

film surface.  Reprinted with permission from Calaza FC et al., Catal Today 253:65-76;  © 2015 

Elsevier 

 

surface, with no crotonaldehyde or other C4 species detected, but C2 species (C2H4, C2H2 and 

AcH) and molecular H2 observed in the temperature programed desorption (TPD) spectra [73].  

Combined with DFT calculations [75], they were able to show that acetaldehyde adsorbs very 

weakly on the fully oxidized surface, and surface oxygen vacancy as the proposed active site can 

bind acetaldehyde much more strongly and activate the carbonyl bond, which shifts to a single 
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bond and liberates the C atom to further engage in bonding with a nearby surface AcH (η-AcH).  

This leads to the formation of a C-O dimer state (denoted as D/VVo).  Reflection-absorption IR 

spectroscopy (RAIRS), together with DFT simulated IR, identified the existence of this surface 

dominant species around 300 K during the AcH-TPD experiment.  As temperature further 

increases, this C-O dimer decomposes and forms the enolate (CH2CHO, denoted as Enl/Vo) of 

AcH and simultaneously releases a AcH molecule back to the gas phase under UHV condition 

[75].  The existence of Enl/Vo has been confirmed by RAIRS and DFT simulated infrared 

spectra, which shows it is the dominant surface species between ca. 400 and 600 K [75, 77].   

As part of our early scientific discoveries, which will be further explained in Chapter 3, 

detailed mechanistic picture about the formation of various C2 products in the temperature 

programmed desorption of AcH adsorbed on the partially reduced CeO2-x(111) surface can be 

acquired [77].  However, a big discrepancy exists after comparing with the AcH temperature 

programmed surface reaction (TPSR) on various CeO2 nanoshapes under flow reactor conditions 

[78], where appreciable amount of coupling products such as crotonaldehyde has been detected, 

which does not appear in the previous surface science studies under UHV condition [73].  The 

lack of C4 product in the typical “single-ramping” TPD procedure [73], as further discussed in 

Chapter 3, is because the surface is dominated by isolated enolate species from ca. 400 K to 600 

K.  Our most recent scientific discovery devising a tailored “double-ramping” TPD procedure 

successfully captured the formation of crotonaldehyde under UHV condition.  The idea behind 

the “double ramping” procedure is to take advantage of the facile migration of oxygen vacancies 

once they are vacant via the desorption of adsorbate.  Built upon the general TPD reaction 

mechanism as proposed in our earlier findings [77], three expanded TPD reaction mechanisms 

are proposed and investigated in detail to account for the formation of crotonaldehyde in this 
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“double-ramping” TPD procedure.  Density functional theory (DFT) calculated energetics are 

fed into corresponding mean-field microkinetic model that is able to generate simulated TPD 

spectra, which can be directly compared with the experimental TPD spectra.  Once again, this 

DFT+MkM methodology is found to be very helpful for validating our mechanistic hypothesis.   

 

 
Figure 1.9.  Comparison of experimental and DFT-calculated IR spectra for acetates with 

different local environments on fully oxidized CeO2(111) thin film surface.  Reprinted with 

permission from Calaza FC et al., Catal Today 253:65-76;  © 2015 Elsevier 

 

Oxygenates with different functional groups can introduce dramatic differences in terms 

of surface chemistry on ceria.  For instance, acetic acid (AA) can be quite reactive even on the 

fully oxidized CeO2(111) thin film surface, with major products including ketene, water, CO and 

CO2 , while acetone is only a minor product, as shown in the TPD spectra in Figure 1.8b [76].  

On the other hand, as discussed earlier, AcH is not able to do so given the same surface.  Earlier 

findings show that one big difference at the initial stage of TPD is acetic acid can reduce the 
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fully oxidized surface around 300 K [76].  This surface reduction step forms a vacancy stabilized 

acetate species (denoted as Ata/Vo) that can stay on the surface until above 500 K, providing 

enough carbon supply for the subsequent C-C coupling step.  As shown in Figure 1.9, this 

argument is validated by the fact that DFT-calculated IR spectra of acetates with different local 

environments overlap with the experimental RAIRS spectra under 527 K.  To be noted, DFT-

calculated IR modes are usually red-shifted compared with the corresponding experimental IR 

modes, and their dependence on the magnitude of U is negligible [71].  Dwelled upon earlier 

proposed mechanisms for ketonization of carboxylic acids on reducible oxides, our proposed 

ketonization pathway on the fully oxidized CeO2(111) surface involving both surface bent ketene 

and oxygen vacancy stabilized β-keto acid will be explored in detail in Chapter 3.   

As one of the minor components in biomass, phosphorous (P) is quite often used as 

agricultural fertilizer and is critical for food production [79].  However, phosphorite (phosphate 

rock) is a nonrenewable resource and is distributed quite unevenly from a geographic 

perspective, which undoubtedly limit the production of P-containing fertilizer, therefore 

imposing serious threats to human society [80].  On the other hand, quite a few phosphate-

containing anthropogenic wastes do not receive enough notice in terms of recycling, such as 

agricultural runoff, industrial wastewater, and human sewage.  As a result, eutrophication 

problems have been created and threaten aquaculture industries as well as potable water 

resources [81].  For instance, organophosphates (OPs), which are found in many consumer, 

industrial, and agricultural chemical products, can be found in the above mentioned wastes and 

often possess toxicity to animals and even humans.  Removal of P from such wastes as well as 

extraction of P from biomass feedstock constitutes important steps in sustainable P use [82].  

Environmental necessity and economic and technological feasibility of such methods suggest 
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that the further development of and support for sustainable P use need to be on the agenda of 

policymakers today [83]. 

The degradation of OPs in the environment can take months and even years [84, 85].  The 

hydrolysis of the P-O ester bond by microbes is the primary pathway for OP degradation in 

nature [86].  Earlier studies have demonstrated promising catalytic activities of cerium oxide 

nanoparticles toward aqueous-phase dephosphorylation, i.e. hydrolysis, of organic and biological 

compounds including phosphopeptides, para-nitrophenyl phosphate (p-NPP), ATP, and 

phospho-tyrosine [87, 88] that parallel the function of phosphatases.  Recently, Janos et al. 

suggested that ceria-based reactive sorbents can promote the dephosphorylation of several OP 

pesticides and chemical warfare agents, which opens up a new frontier for ceria in environmental 

catalysis and may be relevant to large-scale environmental application of P recovery 

technologies [89, 90].  Manto et al. very recently studied the catalytic dephosphorylation of p-

NPP using different ceria nano-shapes in deionized water, among which nano-spheres (ca. 4 nm; 

no preferential exposed facet) showed the highest catalytic activity, followed by nano-octahedra 

(ca. 18 nm), which primarily expose (111) facets [91].  Although extensive experimental and 

theoretical studies have been reported in the literature that examine the hydrolysis mechanism of 

phosphate esters in aqueous solutions or by enzymatic complexes [92-99], the understanding of 

the dephosphorylation process on solid surfaces remains incomplete [100-104]. 

Hydrolysis of phosphate esters in water has been extensively studied theoretically [93-

99].  In general, as suggested by Warshel and coworkers [94-98], based on potential energy 

surfaces parameterized by two characteristic P-O bond distances (i.e., d(P-ONU) and d(P-OLG), 

where ONU refers to the O atom of the nucleophile (i.e. water), and OLG refers to the O atom of 

the leaving group), the hydrolysis mechanisms of phosphate monoesters in water fall into three 
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major categories: 1) the associative type, where the nucleophilic attack occurs first forming an 

intermediate complex with a pentavalent P center, followed by a second transition state 

corresponding to the P-OLG bond scission; 2) the dissociative type, where the leaving group 

departs before the nucleophilic attack and formation of the P-ONU bond; 3) the concerted type, 

where the reaction proceeds via a single transition state with both P-ONU and P-OLG bonding 

characters [95, 99].  The mechanistic preference appears to be influenced by the pKa of the 

leaving group in water, with poor leaving groups (high pKa) favoring associative mechanisms 

and good leaving groups (lower pKa) favoring dissociative mechanisms [95, 99].  Among others, 

Florián et al. used Hartree-Fock (HF) and second-order Møller-Plesset perturbation theory (MP2) 

together with the Langevin dipoles (LD) model as well as the polarized-continuum model (PCM) 

to study the hydrolysis of neutral, mono-anionic, and di-anionic MP [94].  A more recent 

example is the work of Duarte et al., who used the M06-2X and ωB97X-D density functionals 

and a mixture of implicit/explicit solvent models to investigate the hydrolysis of the di-anions of 

several aryl phosphate monoesters as well as MP in water [99].  The hydrolysis of the neutral MP 

is found to preferentially proceed via an associative mechanism, while the associative and 

dissociative mechanisms are competitive for the mono-anionic and the di-anionic MP [94].  The 

highest activation free energies for the hydrolysis of neutral, mono-anionic, and di-anionic MP 

were reported by Florián et al. to be 1.52, 1.73, and 1.65 eV in MP2+LD, and by Duarte et al. to 

be 1.54 eV in M06-2X and 1.74 eV in ωB97X-D for di-anionic MP.  On the other hand, Duarte 

et al. found di-anionic p-NPP to prefer a concerted mechanism with a single barrier calculated to 

be 1.18 eV in M06-2X and 1.08 eV in ωB97X-D [99], and they reported a threshold pKa value of 

ca. 12, below which the hydrolysis of a phosphate monoester di-anion prefers a concerted 

mechanism, and above which an associative mechanism would prevail [99].   
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The dephosphorylation and following hydration of model phosphate monoesters, 

including p-NPP and methyl phosphate (MP), on fully oxidized CeO2(111) in vacuo is studied 

here systematically, in order to shed light on the factors controlling the kinetics of this reaction 

and to help establish the range of OPs the dephosphorylation of which ceria may effectively 

catalyze under mild or ambient conditions.  The OPs are modeled in their neutral forms 

(PO(OH)2OR) in this work, e.g. p-NPP-H2 and MP-H2, which are the predominant forms in 

acidic to neutral conditions [93, 105].  The deprotonated forms (i.e., the mono-anionic p-NPP-

H1/MP-H1 and di-anionic p-NPP-H0/MP-H0) that prevail in neutral to basic solutions [106] will 

be considered in a future study.  The dephosphorylation of p-NPP is of interest because it is 

accompanied by visible color change of the solution, which allows the reaction kinetics to be 

readily analyzed using ultraviolet-visible (UV-Vis) absorption spectroscopy [91].  By 

comparison, MP is the simplest organic phosphate monoester and is used here to explore how the 

leaving group affects the activation of the P-O ester bond.  Moreover, a linear transition state 

scaling relation is proposed after considering several additional organic phosphate monoesters, 

including para-chlorophenyl phosphate (p-ClPP), phenyl phosphate (p-HPP), 2-pyridyl 

phosphate (2-py-P), and chloro-methyl phosphate (Cl-MP).  The formation and desorption of the 

resulting alcohol species (i.e. para-nitrophenol (p-NP) or 4-nitrophenol from p-NPP, and 

methanol from MP) are facile and therefore kinetically insignificant.   
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TECHNICAL APPROACH 

2.1 Density Functional Theory Calculations 

Periodic, spin-polarized DFT calculations were performed using the Vienna Ab initio Simulation 

Package (VASP) [107] in the generalized gradient approximation (GGA) using the Perdew-

Wang (PW91) exchange-correlation functional [108].  The optB86b van der Waals (vdW) 

functional was used to estimate the vdW contribution in the adsorption of AcH and CrA [109, 

110].  The projector-augmented wave method (PAW) was used to describe the core electrons 

[111], and the Kohn–Sham valence states [Ce(5s5p4f5d6s), Cl(3s3p), P(3s3p), O(2s2p), N(2s2p), 

C(2s2p), H(1s)] were expanded in a plane wave basis set with a kinetic energy cutoff of 400 eV. 

The adsorption energy of an atom or molecule was calculated as ∆Eads = Etotal – Eslab – 

Egas, where Etotal, Eslab, Egas refer to the energy of the slab with the adsorbed atom or molecule, 

the energy of the clean surface, and the energy of the atom or molecule in the gas phase in a 

neutral state, respectively.  Thus, the more negative the value of ∆Eads is, the stronger the 

adsorption is.  The minimum energy reaction path for each proposed elementary step and the 

associated transition state (TS) were determined using the climbing-image nudged elastic band 

method [112, 113] and dimer method [114, 115].  The activation energy was calculated as Ea = 

ETS – EIS, where ETS and EIS refer to the energy of the transition state and corresponding initial 

state, respectively.  The corresponding reaction energy of an elementary step is Erxn = EFS – EIS, 

where EIS and EFS refer to the energy of the initial and final state of the elementary step, 

respectively.  Both geometry optimization and transition state search were converged to the 

extent that the maximum residual force was 0.01 eV/Å or less in all relaxed degrees of freedom.  

The singlet-triplet/doublet-quadruplet splitting was checked, and the lower adsorption energy for 
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an adsorbate and the lower activation energy for an elementary reaction step (at constant spin) 

are reported below.  Transition states were verified to possess only one vibrational mode with a 

negative curvature in the direction of the bond breaking or forming process.  Vibrational modes 

and frequencies were calculated using a finite difference approximation approach of the 

dynamical matrix with a displacement of 0.01 Å.  If not specified, the ∆Eads, Ea, and Erxn values 

were calculated on p(2×2) surface unit cells.  The values reported in the main text are based on 

DFT total energies only, while zero-point energy (ZPE) and free energy corrections were applied 

in the microkinetic models. 

The DFT+U formalism of Dudarev et al. [116] was used to partially offset the 4f electron 

delocalization error in DFT at the GGA level [117].  A U value of 2 eV was used based on our 

previous studies of similar reaction systems on CeO2(111) [71, 75], which found that larger U 

values in combination with DFT-GGA gave less accurate predictions of reaction kinetics based 

on Redhead analysis [118] when compared to the peak desorption temperatures observed in 

TPD.  Small U values (≲ 2 eV) have also been recommended by other authors [119, 120] based 

on comparison with experimental reaction energetics, although large U values (≳ 4eV) are 

generally recommended based on theoretical electronic structure arguments [121, 122].  The 

equilibrium lattice constant of the CeO2 bulk was calculated to be 5.476 Å on a (151515) 

Monkhorst-Pack k-point grid at U=2 eV, in close agreement with previous experimental and 

computational values [43].   

As shown in Figure 2.1, the CeO2(111) surface was modeled primarily with a slab 

consisting of three O-Ce-O tri-layers, with the top tri-layer of the slab and adsorbate fully 

relaxed, and the remaining two tri-layers fixed at the bulk positions.  Size of surface unit cell was 

chosen to be sufficient to accommodate model compounds.  The slab was separated from its 
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periodic images in the z direction by ~12 Å of vacuum.  Adsorption was studied only on one side 

of the slab, with dipole decoupling [123] in the z direction.  The CeO2(100) surface is not trivial 

to model due to its polar nature, a checkboard pattern model with half O atoms of both top and 

bottom anion terminated layers removed was proposed in order to cancel off the surface 

perpendicular dipole [124-126], and our model of CeO2(100) with 11 atomic layers and a p(22) 

surface unit cell follows this methodology, so do others [127, 128].   

 

 
Figure 2.1.  Model fully oxidized ceria surfaces used in our studies, top view is on top and side 

view is on bottom: (a) 9 atomic layer CeO2(111), (b) 11 atomic layer CeO2(100).  Green, light 

and dark brown spheres represent lattice Ce, surface lattice O, subsurface lattice O, respectively.   
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The exact structure of the CeO2-x(111) thin films used in the TPD experiment (i.e. 

CeO1.70) [73] was not investigated by Chen et al.  STM images of CeO1.75(111) thin films 

reported in a separate study by Zhou et al. [20] showed an ordered hexagonal CeO2 lattice with 

both isolated and patches of dark depressions, presumably oxygen vacancies.  If the outermost 

O-Ce-O tri-layer had a composition of CeO1.70, it would correspond to 60% of the Ce atoms 

being in the 3+ oxidation state, or 30% of the O atoms being missing.  At the upper limit, if all of 

the oxygen vacancies are located in the surface O layer, it would correspond to a coverage of 

0.30 ML for oxygen vacancies.  It should be noted that the clustering of oxygen vacancies 

reported [129] in CeO2(111) surfaces cut from natural CeO2 crystals has been called into 

question recently, due to possible mistaken identity for naturally occurring fluorine 

contamination [130].   

For the AcH-TPD and AA-TPD modeling part, we used point oxygen vacancy (Vo) as the 

main vacancy model, which corresponds to one oxygen vacancy per (22) surface unit cell (i.e. 

0.25 ML vacancy coverage) where a Γ-centered 221 Monkhorst-Pack k-point grid was used to 

sample the surface Brillouin zone [131].  The energetics of different Vo ensembles were 

determined on p(4×4) surface unit cells where the k-point grip was sampled at the Γ-point only.  

For the dephosphorylation of p-NPP modeling part, we used a p(3×3) surface unit cell 

consistently where a Γ-centered 221 Monkhorst-Pack k-point grid was used.  

The projected density of states (pDOS, 333 Monkhorst-Pack k-point grid) calculations 

for bulk CeO2 and c-Ce2O3 (bixbyite) were based on the Heyd-Scuseria-Ernzerhof (HSE06) 

hybrid functional [132], and the corresponding optimized lattice constants were calculated to be 

5.40 Å (111111 Monkhorst-Pack k-point grid) and 11.20 Å (Γ-point only Monkhorst-Pack k-
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point grid, antiferromagnetic state), respectively.  The band gap between O 2p and Ce 4f was 

calculated to be 3.5 eV for bulk CeO2, and the Ce 4f - 5d band gap was calculated to be 2.6 eV 

for c-Ce2O3.  Therefore, the key results of our electronic structure calculations are in good 

accordance with previous literature: CeO2, 5.41 Å lattice constant (experiment [133], calculation 

[134]), O 2p - Ce 4f band gap (experiment: 3 eV [135], calculation: 3.3 eV [134]); c-Ce2O3, 

11.16 Å lattice constant (experiment [136]), Ce 4f - 5d band gap (experiment: 2.4 eV [137]).  In 

order to simulate the resonant-on mode of the angle-resovled RPES experiment, core-level (4d) 

electron excitation was done using the method of Köhler and Kresse [138]. 

2.2 Microkinetic Modeling 

To simulate the TPD process, a reaction mechanism was proposed that consisted of a series of 

surface reaction steps and desorption steps.  In accordance with the TPD experiment of Chen et 

al. [73], adsorption was assumed to occur before the temperature ramp and therefore not modeled 

directly.  The TPD process was mathematically modeled using a set of differential equations that 

expressed the rate of change for the coverage of each surface species, i, as: 

𝑑 (
𝜃𝑖

𝜃°⁄ )

𝑑𝑡
= ∑ 𝛼𝑗(𝑟𝑓,𝑗 − 𝑟𝑟,𝑗)

𝑗
 

where j is the stoichiometric coefficient of species i in step j, being positive if i is a product and 

negative if i is a reactant in step j; rj is the forward reaction rate of step j, being equal to 𝑟𝑓,𝑗 =

𝑘𝑓,𝑗 ∏ (
𝜃𝑘

𝜃°⁄ )
|𝛼𝑘|

𝑘  where the product includes all the reactants of step j (the reverse rate is 

similarly defined); and  º is the standard coverage at which the activation barriers and reaction 

energies are calculated (1/4 ML in this study).  This set of differential equations was solved 

together with ∑ 𝜃𝑖 = 1𝑖 , which includes the coverage of empty sites (*). 
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For a reaction step, the forward reaction rate constant was calculated based on harmonic 

transition state theory approximations (neglecting pV effects) [139]: 

𝑘𝑓 =
𝑘𝐵𝑇

ℎ
∙ 𝑒

−𝐺𝑎
𝑘𝐵𝑇 =

𝑘𝐵𝑇

ℎ
∙ 𝑒

𝑆𝑎
𝑘𝐵 ∙ 𝑒

−𝑈𝑎
𝑘𝐵𝑇 = 𝜈 ∙ 𝑒

−𝑈𝑎
𝑘𝐵𝑇  

where the subscript “a” indicates an activation quantity calculated as the difference between the 

TS and the initial state (IS) of a reaction step, and  is the pre-factor.  The free energy of an 

adsorbed species (including surface TSs) was calculated as [140, 141]: 

𝐺 = 𝑈 − 𝑇 ∙ 𝑆(𝑇) = 𝐸𝐷𝐹𝑇 + 𝐸𝑍𝑃𝐸 + Δ𝐸(𝑇) − 𝑇 ∙ 𝑆(𝑇) 

where EDFT is the DFT-calculated total energy, EZPE is the zero point energy, E is the change in 

internal energy with respect to temperature, and S is the entropy.  EZPE, E, and S were 

calculated from the fundamental vibrational frequencies (i) of an adsorbed species as: 

𝐸𝑍𝑃𝐸  =  
1

2
∑ ℎ𝑣𝑖 

Δ𝐸(𝑇) = 𝑘𝐵𝑇 ∑
𝛩𝑖

𝑒𝛩𝑖 − 1
 

𝑆(𝑇) = 𝑘𝐵 ∑ (
𝛩𝑖

𝑒𝛩𝑖−1
− ln(1 − 𝑒−𝛩𝑖)), 

where 𝛩𝑖 =
ℎν𝑖

𝑘𝐵𝑇
 , and kB and h are the Boltzmann constant and Planck constant, respectively.  The 

mode with the negative curvature was excluded from the calculation for TS’s.  The 

corresponding reverse reaction rate constant was calculated via the equilibrium constant, where 

G is the reaction free energy: 

𝐾𝑒𝑞 = 𝑒
−∆𝐺
𝑘𝐵𝑇 =

𝑘𝑓

𝑘𝑟
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The desorption steps were all taken to be irreversible (forward direction only) under UHV 

condition.  For the molecular desorption of AcH and CrA, the activation barrier was taken to be 

the negative of its Eads (i.e. no activation barrier for the corresponding adsorption process).  A 

typical value of 1013 was used as the pre-factor.  A reactive desorption step (i.e. C-O bond 

scission releasing C2Hx to gas phase), was treated as a reaction step, not a desorption step. 
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RESULTS AND DISCUSSION 

Previous experiments have shown that ceria can be beneficial towards C-C coupling of 

aldehydes/carboxylic acids, however the reaction mechanism and active sites remain unclear, 

which impedes finding better or novel catalysts for upgrading biomass-derived oxygenates.  

Ceria as a catalyst for recovering phosphorus from phosphates is possible but also poorly 

explored or understood, which is of high importance partly because phosphorus is a 

nonrenewable resource and because organophosphates are the main ingredients of many 

agricultural chemicals.  Both areas require fundamental insights to enable practical applications 

based on ceria.  In the following sections1, we used relevant model compounds, AcH, AA and p-

NPP, to discover the catalytic mechanisms for adol addition, ketonization, and 

dephosphorylation reactions, respectively, primarily on model CeO2(111) surfaces that are 

thermodynamically the most stable low-index facet and prevail on ceria nano-octahedra [142]. 

3.1 Transformations of Acetaldehyde and Acetic Acid on CeO2(111) 

Previously, Overbury and coworkers proposed and validated a preferred C-O dimerization 

pathway leading to enolate formation after AcH adsorption on partially reduced CeO2-x(111) 

                                                 

 
1This chapter contains four previously published articles: 1) C. Zhao et al., “Simulated 

Temperature Programmed Desorption of Acetaldehyde on CeO2(111): Evidence for the Role of 

Oxygen Vacancy and Hydrogen Transfer,” Top Catal 60 (2017): 446-458. Copyright 2017 

Springer Nature; 2) C. Zhao et al., “Coupling of Acetaldehyde to Crotonaldehyde on CeO2-

x(111): Bifunctional Mechanism and Role of Oxygen Vacancies” J Phys Chem C XXX (2018): 

XXX-XXX. Copyright 2018 American Chemical Society; 3) C. Zhao et al., “Theoretical 

Investigation of Dephosphorylation of Phosphate Monoesters on CeO2(111)” Catal Today 312 

(2018): 141-148. Copyright 2018 Elsevier; 4) Duchoň T. et al., “Covalent versus Localized 

Nature of 4f Electrons in Ceria: Resonant Angle-Resolved Photoemission Spectroscopy and 

Density Functional Theory” Phys Rev B 95 (2017): 165124. Copyright 2017 American Physical 

Society, are reprinted (adapted) here by permission of Springer Nature, American Chemical 

Society, Elsevier, and American Physical Society, respectively. 
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[75].  The structures of several reaction intermediates, such as surface adsorbed AcH (AcH*), 

vacancy stabilized AcH (AcH/Vo), vacancy dimer stabilized C-O dimer state (D/VVo), and 

vacancy stabilized enolate (CH2CHO, Enl/Vo) have been proposed, as shown in Figure 3.1.  

AcH* preferentially adsorbs in the η1 configuration with the carbonyl O located above a 

threefold hollow site above a second layer Ce cation, and the carbonyl H pointing toward a 

surface lattice O (Figure 3.1a).  It has a C-C bond length (dC-C) of 1.492 Å and a dC-O of 1.228 

Å, nearly identical to those of AcH in the gas phase (1.484 and 1.219 Å, respectively), and a 

ΔEads of -0.25 eV (relative to gas-phase AcH).  The adsorption energies and the C-C and C-O 

bond lengths of the various C2HxO species investigated in this study are summarized in Table 1.  

AcH adsorbs more strongly in an oxygen vacancy (AcH/Vo; Figure 3.1b), with ΔEads = -1.11 eV.  

The dC-C is slightly shorter (1.486 Å), whereas the dC-O is longer (1.305 Å) than AcH*, indicating 

interaction with the oxygen vacancy and partial rehybridization of the C=O bond.  Polymeric 

AcH has been explored in our previous study [75] due to earlier reports of AcH forming C-O 

linked polymers on metal and oxide surfaces at low temperatures [143, 144].  A representative 

structure that most closely matches the observed RAIR spectrum at 300 K involves the coupling 

of the carbonyl C of AcH/Vo to the carbonyl O of AcH*, followed by the bonding of the 

carbonyl C of the AcH* to a surface lattice oxygen, creating a O-C-O-C-O linkage (Figure 3.1c).  

This dimer state is more stable than both AcH* and AcH/Vo, with a ΔEads of -1.37 eV per AcH 

unit.  The carbon-surface oxygen bonds are at ~1.40 Å, and the C-O bonds in the middle of the 

linkage are at ~1.47 Å.  Longer polymeric states formed in a similar way may be present but 

have not been studied.  The enolate of AcH (Enl/Vo; Figure 3.1d) has been found to match the 

observed IR spectrum at 400 K, and is consistent with sXPS and EXAFS evidence that the ⍺-C 

becomes more negatively charged when temperature was ramped up from300 K to 400 K [73].   
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Figure 3.1.  (Top) top view and (bottom) side view (from the bottom side of the top view) of 

DFT-calculated minimum-energy structures of (a) AcH*, (b) AcH/Vo (c) D/VVo, (d) Enl/Vo, (e) 

Etx/Vo, (f) CHCHO/Vo, and (g) CH2CH2O/Vo on CeO2-x(111).  Green, light brown, dark brown, 

red, black, and white spheres represent lattice Ce, surface lattice O, subsurface lattice O, O in 

molecules, C, and H atoms, respectively.  Surface lattice O atoms bonded to C atoms in the 

molecules are considered part of the molecules.  Periodic images of the adsorbates have been 

removed for clarity. 

 

The carbonyl C-O bond is lengthened to 1.352 Å, whereas the C-C bond is noticeably shortened 

to 1.346 Å, consistent with being a C=C double bond which confirms the enolate species [75].  

Compared to gas-phase CH2CHO the ΔEads of Enl/Vo is -3.26 eV.  As mentioned below, the 

energy of Enl/Vo plus an atomic H adsorbed on an oxygen site at infinite separation is -2.01 eV 
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relative to gas-phase AcH.  Therefore Enl/Vo is the most stable of these four surface states for 

AcH, which is consistent with enolate appearing at higher temperatures than AcH and polymeric 

AcH in RAIRS [75]. 

Furthermore, in order to shed light on the high temperature decomposition mechanism 

that produces various C2 species, three additional surface intermediates are proposed in this study 

to account for the formation of C2H4 and C2H2.  They are various hydrogenated and 

dehydrogenated forms of AcH/Vo.  The hydrogenation of AcH/Vo at the carbonyl C position 

produces a vacancy-stabilized ethoxy species (Figure 3.1e).  The dC-O of Etx/Vo is 1.433 Å, and 

the dC-C is 1.524 Å, both of which are significantly longer than the corresponding bonds in 

AcH/Vo.  Thus the C=O double bond character is completely lost upon the hydrogenation of 

AcH/Vo.  The ΔEads of Etx/Vo is -3.95 eV relative to the gas-phase ethoxy radical.  The 

dissociation of a methylene H from Enl/Vo produces CHCHO/Vo (Figure 3.1f).  The dC-O and dC-

C are 1.398 and 1.337 Å, respectively.  These values are comparable to the C=C and C-O bonds 

in vinyl alcohol (1.332 and 1.374 Å) [75].  Relative to gas-phase C2H2O and C2H2, the ΔEads of 

this species is -3.75 eV and -0.24 eV, respectively.  It also possesses no vibrational mode with a 

negative curvature.  Carrasco et al. have previously reported a CHCHO/Vo state for C2H2 

adsorption on CeO2(111), with a ΔEads of -0.12 eV [145].  The dissociation of a methyl H from 

Etx/Vo, or equivalently the hydrogenation of the original carbonyl C position in Enl/Vo, produces 

CH2CH2O/Vo (Figure 3.1g).  The dC-O is 1.495 Å, much longer than a C=O double bond and 

even longer than a typical C-O single bond.  The dC-C of this state is 1.487 Å, which falls 

between the lengths of a C-C single bond and a C=C double bond [75].  Its adsorption energy 

relative to gas-phase CH2CH2O is ΔEads=-3.98 eV and relative to gas-phase C2H4 is ΔEads=+0.70 
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Table 1   Calculated minimum adsorption energies (ΔEads, in eV), magnetic 

moment (in μB), and C-O and C-C bond lengths (dC-O and dC-C, in Å), of the 

surface reaction intermediates on CeO2(111) and CeO2-x(111) 

Species ΔEads
 a Magnetic 

moment 

dC-O dC-C 

AcH* -0.25 
b 

-0.43 
b, c 

0 1.228 1.492 

AcH/Vo -1.11 
b 0 d 1.305 1.486 

D/VVo -1.37 
b, e 2 d 1.396 

1.398 

 1.472 f 

 1.482 f 

1.519 

1.520 

CHCHO/Vo
 -3.75 

g
 

-0.24 h 

0 1.398 1.337 

Enl/Vo -3.26 
g 1 d 1.352 1.346 

CH2CH2O/Vo -3.98 
g 

+0.70 h 

0 1.495 1.487 

Etx/Vo -3.95 
g 1 1.433 1.524 

H* -3.00 

-0.73 i 

1 - - 

a ΔEads is based on DFT total energy without ZPE corrections, at ¼ ML 

coverage; no co-adsorbed atomic hydrogen is included 
b With respect to gas-phase AcH 
c Calculated using optB86b van der Waals functional 
d Singlet-triple/doublet-quadruplet splitting is 0.05 eV or less 
e Averaged over 2 AcH 
f Part of the polymeric C-O-C linkage 
g With respect to gas-phase C2HxO 
h With respect to gas-phase C2Hx 
i With respect to gas-phase H2 
  

eV.  The latter indicates that the C2H4 moiety would be more stable without the C-O bond, 

although vibrational analysis finds no mode with a negative curvature, indicating that 

CH2CH2O/Vo is a local minimum on the potential energy surface.  By comparison, CHCHO/Vo 

is more stable than CH2CH2O/Vo when viewed as the adsorbed states of the respective gas-phase 

C2Hx molecules, which is consistent with C2H2 being a more reactive species than C2H4. 
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Incidentally, Enl/Vo (i.e. CH2CHO/Vo), CHCHO/Vo, and CH2CH2O/Vo, which all have 

an unsaturated C end, can all form an alternate hemicyclic structure in which the unsaturated C 

atom forms a bond to an adjacent surface O atom.  The hemicyclic forms of CHCHO/Vo (i.e., 

CHOCHO/VVo) and CH2CH2O/Vo (i.e., CH2OCH2O/VVo) are 1.28 and 0.79 eV, respectively, 

more stable than the non-cyclic, monoxy states, although the formation of the second C-O bond 

have significant activation energies and is therefore not kinetically relevant in the microkinetic 

model presented below.  On the other hand, the hemicyclic form of the enolate (i.e., 

CH2OCHO/VVo), as was initially suggested by Chen et al. [73], is 1.56 eV less stable than 

Enl/Vo.  Finally, the adsorption energy of atomic hydrogen is calculated to be the lowest on top 

of a surface lattice O, at -3.00 eV with respect to atomic H and -0.73 eV with respect to H2.  The 

ΔEads of H would be lowered to -3.48 eV, or -1.20 eV with respect to gas-phase H2, when a U 

value of 5 eV is used [71].  Previously Vicario et al. [146] reported the H adsorption energy to be 

-3.57 eV on the fully oxidized CeO2(111) surface with respect to gas-phase atomic H (U= 4 eV).  

Popa et al. [147] reported -1.21 eV with respect to gas-phase H2 (U= 4.5 eV).  Similar values 

have also been reported by other authors [145, 148].  Therefore our results are in line with 

previously reported values for the ΔEads of H on CeO2(111). 

The elementary reaction steps that comprise the proposed TPD mechanism, along with 

the activation barrier, representative pre-factor, and reaction energy for each of the steps, are 

summarized in Table 2.  These include the molecular desorption of AcH from a stoichiometric 

site (Step 1) and from an oxygen vacancy (Step 2); the coupling of AcH to form the dimer state  
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Figure 3.2  (Top) top view and (bottom) side view of DFT-calculated minimum-energy 

transition states for (a) AcH*, AcH/Vo coupling (Step 3 in Table 2); (b) D/VVo decomposition 

(Step 4); (c) AcH/Vo enolization (Step 5); (d)  C-H scission in Enl/Vo (Step 6); (e) C-O scission 

in CHCHO/Vo (Step 7); (f) Etx/Vo formation (Step 8); (g)  C-H scission in Etx/Vo (Step 9); (h) 

C-O scission in CH2CH2O/Vo (Step 10), on CeO2-x(111).  Green, light brown, dark brown, red, 

black, and white spheres represent lattice Ce, surface lattice O, subsurface lattice O, O in 

molecules, C, and H atoms, respectively.  Surface lattice O involved as Lewis base site is labeled 

the same as O in molecules to emphasize the bonding between atom/molecule and the surface. 

 

and its decomposition (Steps 3, 4); the successive dehydrogenation of AcH/Vo to Enl/Vo and 

CHCHO/Vo (Steps 5, 6), and CHCHO/Vo decomposition to C2H2 (Step 7); AcH/Vo 

hydrogenation to Etx/Vo (Step 8), followed by dehydrogenation to CH2CH2O/Vo (Steps 9) and 

then decomposition to C2H4 (Step 10); finally, H desorption as H2 (Step 11).  No rate-limiting 

step is assumed. 
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For AcH molecular desorption from a stoichiometric site (Step 1), the GGA+U-PW91 

desorption barrier is –ΔEads = 0.25 eV.  It is well known that GGA functionals systematically 

under-predict the adsorption energies of primarily physisorbed species while PW91 somewhat 

over-predict the strength of chemical bonds.  Therefore we also used a self-consistent van der 

Waals functional, optB86b [146], to calculate the ΔEads of AcH* in the η1 state, and obtained -

0.43 eV.  For Step 1 the desorption barrier is therefore taken to be –ΔEads = 0.43 eV.  Here for 

AcH*, “*” is a threefold hollow site above a second layer Ce cation, whereas the “*” site 

required by all of the others steps is a surface O site, which either accepts a dissociated H atom 

or bonds with a C center.  Both involve a stoichiometric part of the surface, and it is 

inconsequential in this particular microkinetic model to distinguish them. 

Two of the elementary steps have even smaller activation barriers than AcH* desorption 

barrier: C-O coupling (Step 3; see Figure 3.2a for snapshots of the transition state; the 

transitioning C-O bond has a length of dC-O‡ = 2.622 Å) and enolization of AcH/Vo (Step 5; 

Figure 3.2c; dC-H‡ = 1.242 Å, dH-O‡ = 1.524 Å).  This means that additional reactions can take 

place before molecular AcH desorbs on a CeO2-x(111) surface, which explains why some amount 

of the AcH molecules was retained on the surface up to high temperatures in the TPD 

experiment.  The decomposition of the C-O coupled state occurs via the loss of a methyl H and 

simultaneously produces Enl/Vo and AcH* (Step 4; Figure 3.2b; dC-O‡ = 2.605 Å, dC-H‡ = 1.348 

Å, dH-O‡ = 1.369 Å).  Given that AcH* is expected to rapidly desorb at temperatures where the 

decomposition occurs, this step is taken to release an AcH molecule to the gas phase directly. 
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Table 2.  Proposed elementary reaction steps for AcH on CeO2-x(111) and their 

properties: activation barrier (Ea, in eV); reaction energy (Erxn, in eV); and 

representative pre-factor (ν, in s-1, at 298.15 K) 

No. Step Ea ∆Erxn ν 

1 AcH* → AcH↑ + * 0.43  +0.43 1013 

2 AcH/Vo → AcH↑ + Vo 1.11 +1.11 1013 

3 AcH* + AcH/Vo ↔ D/VVo 0.11 -1.57 4.11×1011 

4 D/VVo + * → Enl/Vo + H* + AcH↑ 1.30 +0.73 2.12×1013 

5 AcH/Vo + * ↔ Enl/Vo + H* 0.32 -0.91 3.72×1011 

6 Enl/Vo + * ↔ CHCHO/Vo + H* 1.19 +1.19 1.30×1012 

7 CHCHO/Vo + H* → C2H2↑ + H* + * 0.99 +0.43 2.45×1013 

8 AcH/Vo + H* ↔ Etx/Vo + * 0.67 -0.73 1.77×1011 

9 Etx/Vo + * ↔ CH2CH2O/Vo + H* 1.31 +1.30 1.55×1011 

10 CH2CH2O/Vo + H* → C2H4↑ + H* + * 0.17 -0.64 1.40×1013 

11 2H* +Vo → H2↑ + Vo + 2* 1.75 +1.47 1013 

Ea and Erxn are based on DFT total energy without ZPE correction.  Erxn for steps 

involving multiple reactants or products are calculated with the multiple species at 

infinite separation.  

 

C2H2 desorption is proposed to involve CHCHO/Vo as the intermediate, which is formed 

through β C-H bond scission in Enl/Vo (Step 6; Figure 3.2d; dC-H‡ = 1.736 Å, dH-O‡ = 1.050 Å), 

followed by C-O bond scission (Step 7; Figure 3.2e; dC-O‡ = 1.946 Å).   On the other hand, the 

reaction path to C2H4 formation is less clear.  Mullins et al. suggested that it occurs via the direct 

hydrogenation of an enolate-like carbanion intermediate at the ⍺ C (i.e. the carbonyl C) position 

[149].  However, we could not locate such an elementary step for Enl/Vo, nor one for intra-

molecular H shift for AcH/Vo, with an activation barrier lower than 2.5 eV.  The formation of 

C2H4 via the decomposition of ethoxy was previously proposed by Christiansen et al. in a DFT 

study of ethanol conversion to ethylene on ɣ-Al2O3(111), as involving concerted β C-H and C-O 

bond scission to yield ethylene directly without any C2H4 surface intermediate [150].  Beste et al. 

have recently studied ethanol decomposition on stoichiometric CeO2(111) theoretically and 
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reported that the activation barriers for ethoxy decomposition to C2H4 exceed 2 eV for both the 

concerted and sequential mechanisms [151].  We find that interaction with an oxygen vacancy 

significantly facilitates the sequential decomposition of ethoxy to C2H4 on CeO2-x(111).  The 

minimum energy reaction pathway to C2H4 desorption begins with the hydrogenation of AcH/Vo 

to Etx/Vo, (Step 8; Figure 3.2f; dC-H‡ = 1.562 Å, dH-O‡ = 1.234 Å), followed by β C-H bond 

scission to form CH2CH2O/Vo (Step 9; Figure 3.2g; dC-H‡ = 1.627 Å, dH-O‡ = 1.111 Å).  C-O 

bond scission then releases C2H4 (Step 10; Figure 3.2h; dC-O‡ = 1.761 Å).  The reaction energy 

profile for the formation of C2H2 and C2H4 with respect to Enl/Vo, which is experimentally found 

to be the dominant surface species at high temperatures, is plotted in Figure 3.4.  All of the C-H 

bond scission steps in this mechanism involve a surface lattice oxygen (a Lewis base) as the H 

acceptor.  Incidentally, Etx/Vo and H* are calculated to be -2.3 eV with respect to gas-phase 

ethanol, which makes the recombinative desorption of ethoxy and atomic H as ethanol from 

CeO2-x(111) highly uncompetitive in vacuum.  Indeed, no ethanol was detected in the TPD 

experiment [73]. 

Several previous surface science studies have reported molecular H2 desorption on CeO2-

x(111) surfaces near 600 K, whereas this desorption channel is not operative on the 

stoichiometric CeO2(111) surface [72, 75, 152].  Evidently some type of reduced ceria site is 

active for catalyzing the recombination of atomic H, but the nature of this active site remains 

elusive.  Fernández-Torre et al. have reported in a DFT+U study that H2 can in fact dissociate on 

stoichiometric CeO2(111) with a moderate activation barrier (Ea = 1.0 eV at U=4.5 eV), but their 

results indicate that the reverse barrier for atomic H recombination is in excess of 3 eV [153].  

Similarly high barriers for atomic H recombination were reported by other groups [148, 154].  

Wu et al. have recently studied H interaction with CeO2-x(111) surfaces and reported that the 
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activation barrier for H recombination decreases with an increasing degree of surface reduction, 

but it remains more than 2 eV even on a large cluster of subsurface O vacancies (U=5 eV) [148], 

which would be inconsistent with H2 desorption around 630 K.  Moreover, the broad H2 TPD 

peak shown in Figure 1.8a suggests that there may be a distribution of sites that catalyze H2 

formation and desorption.  To ascertain the exact nature of the H2 formation site is outside the 

scope of this study.  Herein we postulate that the rate-limiting step in H recombinative desorption 

is the diffusion of atomic H across surface oxygen sites that is necessary for reaching the yet-to-

be-determined active site for the H-H bond formation.  The minimum diffusion barrier of atomic 

H on CeO2(111) is reported by Fernández-Torre et al. to be 1.8 eV (U=4.5 eV).  The diffusion 

mechanism involves the H atom hopping alternatingly between surface and subsurface O sites.  

We find the corresponding value for the H hopping barrier to be 1.75 eV at U=2 eV.  This value, 

together with a typical diffusion prefactor of 1013, is used for H2 recombinative desorption (Step 

11). 

These DFT-calculated energetics with clear microscopic meaning were fed into our 

mean-field microkinetic model, which was able to generate a simulated TPD spectra and a 

corresponding surface coverage evolution of key surface species as a function of temperature, as 

shown in Figure 3.3.  Above 200 K, two major AcH desorption waves are predicted:  One spans 

from ~330 K to 420 K, with Tp = 391 K, and the other is broader from ~520 K to 670 K with Tp 

= 602 K, which matches the 620 K shoulder in the experimental TPD (Figure 1.8a).  The 391 K 

wave originates from the decomposition of D/VVo (Step 4), whereas the 602 K wave originates 

from the recombination of Enl/Vo and H* to form AcH/Vo (reverse of Step 5), followed by AcH 

desorption from Vo (Step 2).  C2H4 desorbs from ~490 K to 670 K, with Tp = 592 K, whereas 
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acetylene desorbs from ~570 K to 690 K, with Tp = 658 K.  The H2 desorption peak is fairly 

broad from 560 K to 770 K, with Tp at 620 K.   

 

 
Figure 3.3.  Simulated (a) TPD spectra and (b) surface coverage evolution of surface species, for 

acetaldehyde adsorption on CeO2-x(111) [77].  Initial coverages (in ML): AcH* = 0.6; AcH/Vo = 

0.3; free site * = 0.1; all other adsorbates = 0; temperature = 50 K.  Ramp rate = 2 K/s. 

 

The microkinetic model also provides information on how the coverages of the surface 

intermediates evolve with temperature (Figure 3.3b).  Most of the surface reactions, as signified 

by rapid changes in surface coverages, take place around three temperaturs: ~140, 400, and 600 

K.  The formation of the C-O coupled dimer occurs almost as soon as the temperature ramp starts 

and consumes all of the AcH/Vo states, which completely out-competes the enolization of AcH 

due to a lower kinetic barrier and poor availability of stoichiometric sites needed for 

dehydrogenation to occur.  In the RAIRS experiment features associated with reduced sites, 

which remained upon heating above 220 K, were already present even below 220 K [75].  D/VVo 

is predicted to be the dominant surface species up to ~380 K, following which Enl/Vo and H* are 
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the dominant surface species all the way up to ~650 K, both of which are also consistent with the 

RAIRS study of Calaza et al. [75].  There is ~0.4 ML or more of empty site above ~120 K, so 

when H gains mobility (~520 K and above) there is space for different adsorbates to aggregate or 

separate according to their thermodynamic preference. 

Neither Etx/Vo, CH2CH2O/Vo, nor CHCHO/Vo is predicted to have any appreciable 

coverage in the range of temperature simulated, and indeed none of these species is identified on 

the CeO2-x(111) surface in the previous RAIRS study [75].  Yet significantly, the product 

differentiation (C2H4 vs. C2H2) entirely depends on the formation of these minority species.  

Finally, the coverage of oxygen vacancies (Vo) increases from zero when Enl/Vo begins to 

desorb as AcH and releases oxygen vacancies at ~560 K.  However, θVo does not recover its 

initial value of 0.3 ML because the reductive desorption as C2H4 and C2H2 annihilates some 

amount of the vacancies.  The final values of θ* and θVo are 0.81 and 0.19 ML, respectively.  In 

conclusion, the key spectroscopic outcomes of our microkinetic model are in close agreement 

with the observed desorption activities for surface species, which supports the validity of the 

proposed mechanism on the well-defined ceria surface. 

Clearly, oxygen vacancies (Vo) play a critical role in the reaction mechanism.  They 

facilitate the enolization of AcH, and C-H bond scission/formation and C-O scission in AcH and 

its derivatives.  Fundamentally, all these functions can be traced back to the fact that the acidic 

cations (Ce4+) are buried beneath oxygen anions on the stoichiometric CeO2(111) surface.  Vo 

open up access to Ce4+ and reveal the amphoteric nature of this surface, and allow the basic O 

atom in the carbonyl group of AcH to be stabilized.  The C atom in the carbonyl group (the α C) 

would thereby be freed to form a bond with another atom, such as the β C, an external H atom, or 

a nucleophilic species such as the carbonyl O of another AcH molecule or the CH2 group of an 
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enolate because the α C is electrophilic, leading to C-O or C-C coupling.  The activation of the α 

C and the availability of lattice oxygen as a Lewis base and H acceptor facilitate the enolization 

of AcH/Vo, and also β C-H scission in Etx/Vo and Enl/Vo.  Finally, the conversion of the 

carbonyl bond from a double bond to a single bond facilitates the eventual deoxygenation of the 

molecule, ending in the re-oxidation of the vacancy. 

 

 
Figure 3.4.  Schematic plot for hydrogen transfer processes and corresponding reaction energy 

profile in the high temperature regime for acetaldehyde adsorption on CeO2-x(111).   

 

The occurrence of Etx/Vo indicates that intermolecular H transfer occurs between AcH 

and/or its derivatives on CeO2-x(111), as shown in Figure 3.4.  Based on the proposed 

mechanism, the TPD of AcH adsorbed on CeO2-x(111) suggests that a window of temperature 

exists for transfer hydrogenation to occur on CeO2-x, which is bound on the upper end by H2 

recombinative desorption (Tp = 620 K).  Note that in AcH, β C-H scission occurs at a primary C.  

β C-H scission in a carbonyl compound where the β position is a secondary or tertiary C should 
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require lower temperature for activation, thereby widening the temperature window for transfer 

hydrogenation, a potential route to biomass upgrading without needing molecular hydrogen 

[155], on this particular surface. 

Till now, we were able to explain the formation of various C2 species in the typical TPD 

experiment [73].  However, in contrast to the flow reactor experiments on ceria nano-shapes 

[78], C4 species were not detected under UHV condition, even though enolate species (Enl/Vo) is 

identified to be the dominant surface species from ca. 400 K to 600 K, and its calculated 

vibrational signatures closely match RAIRS evidence in the same temperature range [75].  

Enolates are well known to be the key intermediates in aldol condensation reactions, so we have 

devised additional experiments to attempt to realize the formation of CrA in UHV experiments.  

In order to take advantages of the wide temperature window of enolate on the surface, a custom 

“double-ramp” procedure was used.  The idea behind it was to stop the experiment with the 

enolate on the surface and then cool down to add more AcH to allow them to react.  The 

procedure involved a program of cooling-dosing-ramping, breaking and stopping the ramp, then 

cooling-dosing-ramping again.  The steps performed are as follows: 1) The surface was cooled 

below the monolayer adsorption temperature of AcH (160-175K) and dosed with AcH; 2) the 

surface temperature was ramped at 2 K/s (first ramp); 3) at a set break temperature, TB, the 

heating ramp was stopped (there was no intentional dwell time at TB, and the direction of change 

of the temperature reversed toward cooling on the order of seconds once the heating was 

stopped); 4) the surface was once again cooled below the monolayer adsorption temperature for 

AcH and dosed with AcH; and finally 5) the surface temperature was ramped at 2 K/s up to 900 

K (second ramp). 
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In this section four experimental TPD profiles will be presented (Figure 3.5).  In all 

cases, the vertical axis indicates molecular gas phase concentration detected by mass 

spectrometry during TPD.  Figure 3.5a presents the TPD profile for AcH from oxidized 

CeO2(111) surface, which has a low concentration of vacancies.  Consistent with previous results 

[73, 75], mostly only molecular desorption of un-reacted AcH is observed at slightly above 200 

K.  Figure 3.5b shows the TPD profile for AcH on a partially reduced surface (~60% Ce3+).   

 

 
Figure 3.5.  Gas phase concentrations of molecules detected during typical TPD of AcH adsorbed 

on (a) oxidized CeO2(111) with few vacancies; (b) partially reduced CeO2-x(111) with ~60% Ce3+.  

TPD of AcH on CeO2-x(111) with ~60% Ce3+ for the second temperature ramp during the double-

ramp procedure described in the text where the first temperature ramp was stopped at either (c) 

410 K or (d) 530 K. 

 

Here we again see results consistent with prior studies that there are now three AcH desorption 

waves [73, 75, 77].  Signals associated with ethylene and acetylene were observed as minor 

products at temperatures similar to those reported in our previous study [73].  Figure 3.5c and 

3.5d show the TPD results from the second ramp with the TB = 410 K and TB = 530 K, 

respectively.  TB = 530 K produced a clearly distinguishable CrA peak (on the order of 5% of the 

carbon balance), while TB = 410 K did not.  In all experiments, there was little to no crotyl 
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alcohol detected, which was consistent with the fact that crotyl alcohol was a very minor product 

on ceria octahedra under flow reaction conditions [78].  Enhanced H2O production (Figure 3.5d) 

is consistent with aldol condensation, which ejects two H atoms for each CrA molecule formed 

from AcH, although the oxygen in the water may or may not originate directly from the organic 

intermediates.  The quantity of vacancies at the end of an experiment was found to be similar to 

at the beginning of experiment based on XPS.   

Building on the previously elucidated mechanism (Table 2) for the TPD of AcH on 

partially reduced CeO2-x(111) [77], we propose to extend this mechanism to include additional 

pathways to give three different CrA formation mechanisms that we denote as Mechanisms A, B, 

and C: A) coupling between Enl/Vo and AcH/Vo ; B) coupling between two Enl/Vo; C) coupling 

between a surface adsorbed AcH and Enl/Vo.  They are all based on the hypothesis that Enl/Vo is 

the key reactive intermediate and must exist on the surface in order for C-C coupling to occur, 

while they differ in the reactant that couples to Enl/Vo.  Each mechanism is restricted to a 

different C-C coupling pathway.  By doing so we aim to identify the main pathway of the aldol 

addition reaction as observed in our double-ramp experiments.  The schematics in Figure 3.6 

illustrate the three proposed TPD mechanisms. 

The extended additional steps are listed in Table 3 with their DFT-calculated energetic 

parameters.  Below, each mechanism is presented with a reaction energy profile and the 

structures of the key reaction intermediates and transition states.  The microkinetic modeling 

results for each mechanism, including simulated desorption spectra and coverage evolution of 

surface species are presented in the next subsection.   
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Figure 3.6.  Schematics for expanded TPD mechanisms A, B and C.  To be noted, upon H 

addition step in mechanism B, the following steps are the same as those in mechanism A. 

 

In Mechanism A (Figure 3.7), C-C coupling occurs between AcH/Vo and Enl/Vo (Figure 

3.7a and e) to produce CH3CHOCH2CHO (Figure 3.7b), which occupies a pair of adjacent 

surface oxygen vacancies (VVo) and a surface H, with a small Ea of 0.25 eV.  The methylene 

group (-CH2-) undergoes H abstraction (Figure 3.7f) with a nearby lattice oxygen as the H 

acceptor, with Ea = 0.65 eV.  The product, CH3CHOCHCHO/VVo (Figure 3.7c), undergoes C-O 

scission (Ea = 0.88 eV) that cleaves off the internal oxygen, which yields a vacancy-stabilized 

CrA (CrA/Vo, Figure 3.7d) and annihilates one oxygen vacancy.  The final step is desorption of 

CrA from Vo, which is common to all three expanded TPD mechanisms.  The desorption barrier 

is taken to be the reverse of the adsorption energy, which is calculated to be -1.35 eV (GGA-

PW91) and -2.12 eV (optB86-vdW).  The negative of the latter is used in the microkinetic 

modeling as the desorption barrier for CrA because it yields far better agreement with the 

experimental peak temperature for CrA than the GGA value.  However, optB86b-vdW is known  
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to over-bind molecules somewhat in many cases and there is so far no database of 

experimentally measured heats of chemisorption on oxides to gauge how accurate this functional 

is for adsorption on ceria.  The strong interaction of the carbonyl intermediates with Vo on 

CeO2(111) is a reason why alcohol species such as crotyl alcohol and ethanol do not appear as 

major products in the current and prior experiments [78], since the hydrogenation of the 

vacancy-stabilized C=O group is likely a difficult step. 

Table 3.  Extended steps in mechanisms A, B, and C for AcH TPD on CeO2-x(111) with DFT-

calculated activation energy (Ea, in eV), reaction Energy (∆Erxn, in eV), and representative pre-factor 

(ν, in s-1, at 298.15 K)# for each proposed elementary step 

Mec

h. 

No. Step Ea ∆Erxn ν 

A 12 Enl/Vo+AcH/Vo ↔ CH3CHOCH2CHO/VVo 

 

 

/VVo 

0.25  -0.53 1.47×1011 

13 CH3CHOCH2CHO/VVo+*↔CH3CHOCHCHO/VVo 

+ H* 

0.65 -0.75 3.58×1012 

14 CH3CHOCHCHO/VVo ↔ CrA/Vo+* 0.88 +0.38 2.69×1013 

B 12 Enl/Vo+Enl/Vo ↔ CH2CHOCH2CHO/VVo 1.87 +1.80 2.92×1011 

13 CH2CHOCH2CHO/VVo+H*↔CH3CHOCH2CHO/V

Vo+* 

0.00 -1.41 6.21×1012 

14-15 same as A13-A14    

C 12 Enl/Vo+AcH* ↔ CH3CHOCH2CHO/Vo 0.22 +0.13 8.07×109 

13 CH3CHOCH2CHO/Vo ↔ CH3CHOHCHCHO/Vo 1.03 -0.56 7.08×1011 

14 CH3CHOHCHCHO/Vo ↔ CrA/Vo+OH* 1.20 +1.10 1.33×1014 

15 CrA/Vo+OH*+H* ↔ CrA/Vo+H2O* 0.10 -0.07 1.05×1012 

16 H2O* → H2O↑ 0.52 +0.52 1013 

Des.  CrA/Vo → CrA↑+Vo 2.12 +2.12 1013 

Ea and ∆Erxn reported are based on DFT total energies without ZPE corrections.  CrA desorption is 

common to all three mechanisms as the final step. 
# Calculated in the harmonic approximation, except for desorption steps where a value of 1013 is 

used. 
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In Mechanism B (Figure 3.8), a pair of adjacent vacancy-stabilized enolate molecules 

(Enl/Vo) undergo self-coupling by overcoming a substantial Ea of 1.87 eV, forming 

CH2CHOCH2CHO/VVo (Figure 3.8b).  Afterwards a surface H atom is transferred with 

practically zero barrier from a lattice O site to the terminal methylene group of 

CH2CHOCH2CHO/VVo, forming CH3CHOCH2CHO/VVo (Figure 3.8c).  The subsequent steps 

are identical to Mechanism A following the formation of CH3CHOCH2CHO/VVo, although the 

prior steps in Mechanism A, i.e. C-C coupling between Enl/Vo and AcH/Vo, are not included 

here.   

In Mechanism C (Figure 3.9), the C-C coupling step occurs between surface-adsorbed 

AcH* and vacancy-stabilized Enl/Vo.  Thus this mechanism requires only one surface oxygen 

vacancy rather than a vacancy dimer as in Mechanisms A and B.  As shown in Table 3, the C-C 

coupling step only needs to overcome an activation energy of 0.22 eV, with a corresponding 

∆Erxn of +0.13 eV.  The product of the C-C coupling step, CH3CHOCH2CHO/Vo (Figure 3.9b), 

is less stable than the C-O coupled dimer and prone to decomposition.  The most facile pathway 

to CrA formation involves intra-molecular H transfer (from the methylene group to the internal 

carbonyl O) with Ea = 1.03 eV to yield a vinyl alcohol species, CH3CHOHCHCHO/Vo (Figure 

3.9c), and the OH group then dissociating with Ea = 1.20 eV.  OH can scavenge a nearby surface 

H to form water, which readily desorbs from the surface (∆Eads = -0.52 eV). 
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Figure 3.7.  Extended steps of TPD Mechanism A.  (Upper) DFT-calculated reaction total energy 

profile.  The labeled states are: (a) Enl/Vo+AcH/Vo; (b) CH3CHOCH2CHO/VVo; (c) 

CH3CHOCHCHO/VVo; (d) CrA/Vo; (e
‡) TS for C-C coupling; (f‡) TS for H abstraction; (g‡) TS 

for C-O scission.  The forward Ea’s are Ea1 = 0.25 eV, Ea2 = 0.65 eV, Ea3 = 0.88 eV, and E = 2.12 

eV.  (Lower) Snapshots of reaction intermediates and transition states, with top view on top and 

side view on bottom.  Labels correspond to those in the upper panel.  Green, light brown, dark 

brown, red, black, and white spheres represent lattice Ce, surface lattice O, subsurface lattice O, 

O in molecules, C, and H atoms, respectively.  Surface lattice O atoms bonded to C or H atoms in 

the molecules are considered part of the molecules.  Periodic images of the adsorbates have been 

removed for clarity. 
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Figure 3.8.  Extended steps of TPD Mechanism B.  (Upper) DFT-calculated reaction total energy 

profile.  The labeled states are: (a) Enl/Vo+Enl/Vo; (b) CH2CHOCH2CHO/VVo; (c) 

CH3CHOCH2CHO/VVo; (d) CH3CHOCHCHO/VVo; (e) CrA/Vo; (f
‡) TS for C-C coupling; (g‡) 

TS for H abstraction; (h‡) TS for C-O scission.  The forward Ea’s are Ea1 = 1.87 eV, Ea2 = 0.65 eV, 

Ea3 = 0.88 eV, and E = 2.12 eV.  (Lower) Snapshots of reaction intermediates and transition 

states, with top view on top and side view on bottom.  Labels correspond to those in the upper 

panel.  Green, light brown, dark brown, red, black, and white spheres represent lattice Ce, surface 

lattice O, subsurface lattice O, O in molecules, C, and H atoms, respectively.  Surface lattice O 

atoms bonded to C or H atoms in the molecules are considered part of the molecules.  Periodic 

images of the adsorbates have been removed for clarity. 
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Figure 3.9.  Extended steps of TPD Mechanism C.  (Upper) DFT-calculated reaction total energy 

profile.  The labeled states are: (a) Enl/Vo+AcH*; (b) CH3CHOCH2CHO/Vo; (c) 

CH3CHOHCHCHO/Vo; (d) CrA/Vo+OH*; (e) CrA/Vo, H2O*; (f) CrA/Vo, H2O
gas; (g‡) TS for C-

C coupling; (h‡) TS for intra-molecular H transfer; (i‡) TS for OH detaching; (j‡) TS for water 

formation.  The forward Ea’s are Ea1 = 0.22 eV, Ea2 = 1.03 eV, Ea3 = 1.20 eV, and E = 2.12 eV.  

(Lower) Snapshots of reaction intermediates and transition states, with top view on top and side 

view on bottom.  Labels correspond to those in the upper panel.  Green, light brown, dark brown, 

red, black, and white spheres represent lattice Ce, surface lattice O, subsurface lattice O, O in 

molecules, C, and H atoms, respectively.  Surface lattice O atoms bonded to C or H atoms in the 

molecules are considered part of the molecules.  Periodic images of the adsorbates have been 

removed for clarity. 
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Our microkinetic modeling effort based on the three TPR mechanisms is aimed at 

reproducing and explaining the results observed in the second ramp of the double-ramp 

experiments.  The coverages at the start of the second ramp are specified in the caption of Figure 

3.10.  They are the final results of the microkinetic model of our original TPD mechanism by 

terminating the temperature ramp at 602 K, i.e., prior to the peak of the 3rd AcH desorption wave 

in the original microkinetic model, so that a certain portion of the occupied Vo becomes 

unoccupied and available to be occupied by AcH in the second dosing.  Therefore, a mixture of 

the enolate and AcH occupy all of the Vo sites at the beginning of the simulated second ramp.  

The total coverage of Vo (0.226 ML) is less than the initial coverage of Vo used in the original 

microkinetic model (0.3 ML) because a portion of Vo has been annihilated in the reductive 

desorption of the C2 products.  Residual atomic H and newly dosed molecular AcH take up most 

of the oxidized sites.  The starting temperature and ramping rate are identical to those used in the 

original model [77].  

The simulated TPD spectra based on Mechanism A are shown in Figure 3.10a.  Three 

AcH desorption peaks are predicted, with peak temperatures (Tp) of 132, 391, and 656 K.  As 

mentioned before, the origin for the 1st AcH wave is the molecular desorption of AcH.  The 2nd 

AcH wave is due to the decomposition of a C-O coupled dimer (D/VVo), which releases an AcH 

molecule to the gas phase under UHV conditions.  The 3rd AcH wave is due to the recombinative 

desorption of Enl/Vo and H.  Compared to the our original TPD mechanism [77], the 3rd AcH 

peak temperature here is higher by ~50 K, which also applies to molecular hydrogen with Tp = 

660 K (previously 620 K).  The desorption wave for CrA is predicted to span from ca. 590 K to 

720 K, with Tp = 686 K. 
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Figure 3.10.  (a), (c), (e) Simulated TPD spectra and corresponding (b), (d), (f) coverages of 

surface intermediates as a function of temperature for AcH adsorbed on partially reduced CeO2-

x(111) based on microkinetic modeling of TPD Mechanism A, B, and C, respectively.  Initial 

coverages (in ML): Enl/Vo = 0.136; AcH/Vo = 0.090; H* = 0.193; AcH* = 0.481; all other 

intermediates = 0; free Vo = 0 ML; free site * = 0.1; T0 = 50 K; ramp rate = 2 K/s.  Surface 

intermediates with essentially 0 ML coverages are not shown in (b), (d) and (f) [156]. 
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Microkinetic modeling also predicts how the coverages of surface species evolve as a 

function of temperature.  For Mechanism A (Figure 3.10b), it can be seen that all the additional 

AcH added for the second temperature ramp has disappeared by ca. 130 K, due to either 

molecular desorption or enolization (with a concomitant increase in the coverage of Enl/Vo).  

Between ca. 130 K and 500 K the enolate is the dominant C-containing surface species.  Above 

ca. 450 K, the C-C coupling pathway is actuated to generate CH3CHOCHCHO/VVo, which 

becomes a dominant surface species between ca. 500 K and 700 K.  This happens because the 

enolate begins to recombine with H to form AcH/Vo, which then rapidly undergoes C-C coupling 

with other Enl/Vo but does not build up any appreciable coverage.  A small coverage of CrA/Vo 

also builds up between ca. 550 K and 700 K.  All other organic intermediates are predicted to 

have negligible coverages.  At the end of the temperature ramp ca. 0.1 ML of oxygen vacancy 

(out of the initial 0.226 ML) is annihilated on account mainly of CrA formation. 

The results of microkinetic modeling for Mechanism B are markedly different from those 

of Mechanism A.  As shown in Figure 3.10c, the 3rd AcH wave has a Tp = 608 K and a greater 

peak area than the 2nd AcH peak.  CrA desorption occurs with a nearly identical Tp to Mechanism 

A, but it is significantly diminished in intensity. These results are similar to the microkinetic 

modeling results of our original AcH TPD mechanism [77] because the C-C coupling pathway is 

essentially not operative in Mechanism B due to the high activation energy for the enolate self-

coupling step.  This is confirmed by the evolution of the coverages of surface species, which 

indicates that none of the C4 intermediates have any appreciable coverage over the entire 

temperature range in Mechanism B (and therefore not shown in Figure 3.10d).  Combining 

Mechanisms A and B yields results essentially identical to Mechanism A alone. 
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No CrA desorption is predicted in the simulated TPD based on Mechanism C (Figure 

3.10e).  The reason why Mechanism C fails to produce CrA is that the C-C coupling product, 

CH3CHOCH2CHO/Vo, readily breaks down and back into Enl/Vo and AcH.  The other 

desorption features are mostly identical to those based on Mechanism B.   

Overall, therefore, Mechanism A yields the best agreement with the double-ramp 

experiments on CeO2-x(111) with TB = 530 K.  The essential features of this mechanism are: 1) 

The C-C coupling step occurs in a pair of surface oxygen vacancies.  The site requirement is 

further discussed below.  2) CrA desorption, and not C-C coupling, is rate-limiting.  We have 

estimated that, if CrA desorption were not rate-limiting, the Tp of CrA desorption would be 493 

K. 

Note that ethylene and acetylene channels remain part of the expanded mechanisms, 

although their production, together with high-temperature AcH formation, is reduced compared 

to the original TPD model [77].  This is consistent with the outcome of the double-ramp 

experiments, which found ethylene and acetylene to be minor products (especially the latter).  

We attribute the difference to the existence of the CrA channel, which removes a portion of the 

enolates from the uni-molecular pathways that produce AcH, ethylene, and acetylene.  Of these, 

only the desorption of the organics as C2H2 permits H to desorb as H2, so the diminishment of 

acetylene formation means less contribution to H2 evolution from the uni-molecular pathways.  

On the other hand, the formation of each CrA molecule from two AcH molecules discharges a 

net total of two H atoms, so an H2 peak similar in size to the CrA peak should be expected and is 

indeed predicted by our microkinetic model for Mechanism A.  Since no H2O channel is 

provided for in Mechanism A whereas on the actual ceria surface some of the atomic H is almost 

certainly diverted from desorption as H2 to reduction of the surface (e.g. at loosely bound lattice 
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O sites), the predicted H2 desorption wave would be more intense in relation to CrA desorption 

than observed in the experiment. 

We attribute the face that no CrA was detected in the single-ramp experiments [75] to the 

fact that, as alluded to before, the positioning of oxygen vacancies is crucial to the bimolecular 

coupling step.  A key requirement implicit in Mechanisms A and B (but not C) is that Enl/Vo and 

AcH/Vo or another Enl/Vo must be adjacent to each other in order for aldol addition and CrA 

formation to occur effectively.  If Enl/Vo is instead surrounded by oxygen sites, C-C coupling 

can still occur (e.g. via Mechanism C), but it would not lead to CrA formation under UHV 

conditions due to the decomposition of intermediates. 

The nature of oxygen vacancies on CeO2(111) has long been debated in the literature.  

Early work based on scanning tunneling microscopy (STM) and atomic force microscopy (AFM) 

for high-temperature annealed CeO2(111) single crystal surfaces reported a predominance of 

surface and subsurface oxygen vacancy clusters, while point surface vacancies appeared to be a 

minority species [129, 157].  More recently it was demonstrated theoretically that previous STM 

studies were not capable of distinguishing oxygen vacancies from fluorine impurities, which are 

typically present at appreciable concentrations in naturally occurring CeO2, and that the vacancy 

clusters seen in STM may be clusters of fluorine atoms [130].  DFT studies based on GGA [158, 

159], GGA+U (U=4.5~5 eV) [160-162], and HSE06 hybrid functional [160] all reported that an 

isolated oxygen vacancy to be a few tenths of an eV more stable in subsurface than in surface.  

GGA+U also predicted point vacancies to be more stable than vacancy clusters, whether on 

surface or in subsurface [161, 163].  Forming a surface vacancy dimer from two surface point 

vacancies is calculated to be endothermic by ~0.3 eV [161, 163]. 
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Based on the latest findings, we surmise that the as-synthesized CeO2-x(111) films used in 

our experiments initially (Figure 3.5b) contained primarily isolated vacancies and few vacancy 

clusters since they are disfavored by thermodynamics.  When AcH was dosed onto such a 

surface, all point vacancies should be occupied by AcH and later the enolate molecules, which 

immobilized the vacancies.  Mechanisms A and B would be largely inoperative on such a CeO2-

x(111) surface.  For clusters of oxygen vacancies to appear, the following conditions must be 

met: 1) some AcH molecules desorb to vacate some vacancies; 2) vacancies are able to diffuse at 

an appreciable rate; 3) the energetics is altered to favor the aggregation of vacancies. 

What the double-ramping experiments with TB = 530 K (602 K in our microkinetic 

modeling) accomplish (Figure 3.5d), thus, is to free some vacancies while retaining some 

enolate molecules in vacancies since the 3rd AcH desorption wave is well under way by 530 K.  

When unoccupied vacancies appear at 530 K, their mobility is expected to be high because the 

diffusion barrier for oxygen vacancies via a surface-subsurface exchange mechanism has been 

calculated theoretically to be modest (Ea = 0.5 or 0.6 eV with GGA+U with U=3 [164] or 5 [165] 

respectively).  Further, our calculations show that the occupation of a surface Vo by an enolate 

can make the formation of a vacancy dimer exothermic, in contrast to the dimerization of two 

unoccupied surface point vacancies [161, 163].  As summarized in Table 4, when an enolate 

occupies a surface Vo, the energetics of a second, unoccupied Vo varies depending on its 

location, with the site in the surface that is nearest neighbor to Enl/Vo being the most favorable.  

In other words, neighbor-neighbor interaction between Enl/Vo and an unoccupied Vo (similar to 

adsorbate-adsorbate effects if Vo were considered an adsorbate) alters which state is 

thermodynamically favored relative to the energetics in the absence of the enolate.  Conversely, 

if most of the enolates desorb, the thermodynamics would revert and cause most such vacancy 
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dimers to re-disperse.  We note this stabilization does not extend to the formation of a vacancy 

trimer:  The energy of adding a third, unoccupied surface Vo to an existing Enl/VVo (enolate-

stabilized vacancy dimer) is calculated to be +0.55 and +0.37 eV (U=2 and 5, respectively). 

 

Table 4. Location, Energy (Ev, in eV), and Boltzmann Probability (P, 

in %, calculated at 603 K) for an Unoccupied Oxygen Vacancy in the 

Presence of an Enl/Vo species on CeO2(111) at U = 2 and 5 eV 

 U = 2  U = 5  

location of 2nd Vo 
a Ev 

b P Ev 
b P 

N.N., surface -0.03 60  -0.13 91 

N.N., subsurface +0.27 0 +0.27 0 

Inf. Sep., surface +0.05 9 +0.01 4 

Inf. Sep., subsurface 0 31 0 5 

a Relative to the location of the Vo occupied by the enolate, with a 

coadsorbed H at a nearby atop Osurf site.  N.N. = nearest neighbor, Inf. 

Sep. = infinite separation. 

b Based on DFT total energy without ZPE correction, relative to the Inf. 

Sep., subsurface state. 

 

In short, all three conditions above can be met if the initial temperature ramp is 

terminated at an appropriate temperature, resulting in the formation of partially occupied surface 

vacancy dimers that allow the enolate molecules to be stabilized side-by-side in vacancies, in a 

position to undergo effective adol addition in the second temperature ramp.  Using a lower TB 

(e.g. 410 K) in the initial temperature ramp could not lead to CrA formation (Figure 3.5c) 

because all vacancies are still occupied by the enolates and cannot aggregate to form vacancy 

dimers. 
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Adsorbate-adsorbate interaction is an aspect of surface chemical kinetics that 

microkinetic modeling is not capable of fully handling.  As the theoretical results above show, 

there are comparable coverages of some organic intermediate and atomic H (ca. 0.2~0.3 ML) 

between ca. 100 K and 600~700 K (Figure 3.10, depending on the mechanism).  The interaction 

 

Table 5. Interaction Energies (∆Eint, in eV) between 

Intermediates that Appear in the Proposed TPD 

Mechanisms A, B, and C, and H* or OH*. 

Relevant step Combination ∆Eint 

A12 AcH/Vo+Enl/Vo, H* +0.38 

A12 [AcH/Vo, Enl/Vo]
C-C‡, H* +0.48 

A12, A13 CH3CHOCH2CHO/VVo, H* +0.34 

A13 [CH3CHOCH2CHO/VVo]
C-H‡, 

H* 

+0.59 

A13, A14 CH3CHOCHCHO/VVo, H* +0.25 

A14 [CH3CHOCHCHO/VVo]
 C-O‡, 

H* 

+0.69 

A14, Des. CrA/Vo, H* +0.20 

B12 Enl/Vo+Enl/Vo, H* +0.24 

B13 CH2CHOCH2CHO/VVo, H* +0.24 

C12 AcH*+Enl/Vo, H* 0.00 

C12 [AcH*, Enl/Vo]
C-C‡, H* +0.02 

C12, C13 CH3CHOCH2CHO/Vo, H* +0.10 

C13 [CH3CHOCH2CHO/Vo]
C-H‡, H* +0.08 

C13, C14 CH3CHOHCHCHO/Vo, H* +0.17 

C14 [CH3CHOHCHCHO/Vo]
 C-O‡, 

H* 

+0.01 

C14 CrA/Vo, OH* -1.49 

∆Eint is the difference in DFT total energy between a pair 

of indicated species co-adsorbed in one surface unit cell 

state and at infinite separation.  “‡” refers to transition 

state. 

 

between the organic intermediates and atomic H turns out to be moderately repulsive in all cases 

(Table 5).  On the basis of that, and for consistency with our previous microkinetic model [77], 

we have treated the organic intermediates and H to have no interaction, or “at infinite 
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separation”, in the present models.  OH that has a very strong stabilizing interaction with both 

CrA/Vo and H, so they are treated as coadsorbates in the models.   

It should be noted, however, that the diffusion barrier for atomic H on CeO2(111) has 

been determined theoretically to be 1.8 eV (GGA+U; U=4.5) [153], which means that the 

mobility of H is highly limited below 600 K according to DFT, in stark contrast to H on metal 

surfaces.  The coverage of H is therefore likely to be locally non-equilibrated on the surface due 

to reactions, which complicates the estimation of coverage dependence for reaction energetics, if 

such an approach were to be used in microkinetic modeling.  The fact that the H2 and H2O 

desorption waves appear to be linked (Figure 3.5) may also be due to underlying processes, e.g. 

H atoms searching for H2 formation sites or loosely bound O anions.  If true, our TPD results 

would suggest the GGA+U diffusion barrier of 1.8 eV reported in the literature to be 

overestimated by ca. 0.2~0.3 eV, but we are unable to confirm it by locating a lower diffusion 

barrier on CeO2(111) theoretically.  The reduction of surface by atomic H via water formation on 

CeO2(111) might seem like a high-barrier process.   

To fully account for all of these effects would require a comprehensive kinetic Monte 

Carlo model with reaction energetic parameters implemented as explicit functions of local 

coverages of atomic H, organic intermediates, and surface oxygen vacancies, and with the 

mobility of H and oxygen vacancies taken into account.  It is outside the scope of the present 

study.  While our simple microkinetic approach undoubtedly contains inconsistencies, the 

purpose of adopting it is to show that the aldol addition mechanism that we propose is 

fundamentally compatible with the experimental TPD, which sheds light on the microscopic 

level intricacies of this reaction. 
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For the ketonization of acetic acid on the fully oxidized CeO2(111), we propose a TPD 

mechanism that involves a β-keto-acid species.  According to Table 6, the proposed TPD 

mechanism consists of 13 elementary steps.  Structures for the proposed reaction intermediates 

and corresponding transition states are shown in Figure 3.11 and Figure 3.12, respectively.  

 

Table 6.  Steps in proposed mechanism for AA TPD on CeO2(111) with DFT-calculated 

activation barrier (Ea, in eV), reaction energy (∆Erxn, in eV), and representative pre-factor 

(ν, in s-1, at 298.15 K)# for each elementary step 

No. Step Ea ∆Erxn ν 

1 AA* + * ↔ Ata/Vo + OH* 0.77  +0.62 3.64×1012 

2 AA* + OH* ↔ Ata* + H2O* 0.20 -0.14 3.80×1012 

3 H2O* → H2O(g) 0.52 +0.52 1013 

4 Ata/Vo + * ↔ Ket* + H* 0.95 +0.65 7.99×1010 

5 Ket* → CH2CO(g) + * 1.19 +1.09 1013 

6 Ata* + Ket* ↔ CH3CO(O)CH2COO/Vo 1.13 +0.82 1.12×1011 

7 CH3CO(O)CH2COO/Vo /Vo + H* ↔ 

CH3CO(OH)CH2COO/Vo + * 

0.66 -0.01 4.71×1012 

8 CH3CO(OH)CH2COO/Vo ↔ CH3COCH2COO/Vo + 

OH* 

0.12 -0.42 7.86×1012 

9 CH3COCH2COO/Vo + OH* ↔ β-KA* 0.36 +0.17 1.56×1012 

10 β-KA* ↔ Atl* + CO3H/Vo 0.67 +0.09 6.30×1012 

11 Atl* + CO3H/Vo ↔ Ace* + CO3/Vo 0.11 -0.91 2.67×1011 

12 CO3/Vo → CO2(g) + * 0.58 +0.58 1013 

13 Ace* → Ace(g) + * 0.44 +0.44 1013 

Ea and ∆Erxn are based on DFT total energy without ZPE corrections.   
#Calculated in the harmonic approximation, except for desorption steps where a value of 

1013 is used. 

 

 
 

Different from AcH, AA can readily reduce the oxidized surface around room temperature by 

forming a vacancy stabilized acetate (denoted as Ata/Vo, Figure 3.11a) and surface adsorbed 

water, which can readily desorb into the vacuum under UHV condition.  This accounts for the 1st 

water desorption peak in the experimental TPD spectra [76].  Then a surface adsorbed bent  
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Figure 3.11.  TPD mechanism for ketoniztion of acetic acid on the fully oxidized CeO2(111).  

(Upper) DFT-caluclated reaction total energy profile for ketene pathway (blue) and acetone 

pathway (grey).  The labeled states are: (a) Ata* + Ata/Vo, (b) Ata* + Ket*, (c) 

CH3CO(O)CH2COO/Vo, (d) CH3CO(OH)CH2COO/Vo, (e) CH3COCH2COO/Vo + OH*, (f) 

CH3COCH2COO/Vo + OH*, (g) β-KA* , (h) Atl* + CO3H/Vo, (i) Ace* + CO3/Vo.   
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Figure 3.12.  Corresponding transition states appeared in the proposed TPD mechanism for 

ketoniztion of acetic acid on the fully oxidized CeO2(111).  The labeled states are: (j) TS for 

enolization, (k) TS for C-C coupling, (l) TS for H addition, (m) TS for OH detaching, (n) TS for 

OH attacking, or β-KA* formation, (o) TS for C-C breaking and (p) TS for H transfer.   

 

ketene (denoted as Ket*, i.e. CH2COO/Vo, Figure 3.11b) is formed via ⍺-H abstraction of 

Ata/Vo with an activation energy barrier of 0.95 eV, which in contrast is much higher than the ⍺- 

H abstraction of AcH/Vo.  After this H abstraction step, C-C coupling step between the surface 

adsorbed ketene and nearby surface adsorbed Ata (denoted as Ata*) turns out to be a kinetically 

significant step with an activation energy barrier of 1.13 eV (TS is shown in Figure 3.12k).  This 
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finding is in accordance with earlier conclusions that the rate-limiting step is C-C bond formation 

on monoclinic zirconia surface [166, 167].   

The product of C-C coupling, CH3CO(O)CH2COO/Vo (Figure 3.11c), accepts a H from 

the surface lattice O and forms CH3CO(OH)CH2COO/Vo (Figure 3.11d).  This H addition 

facilitates the subsequent facile OH detaching step that cleaves off the internal O.  This surface 

adsorbed OH can rearrange itself firstly, then it attacks the carboxylate group that has been 

stabilized by the surface oxygen vacancy and forms the surface adsorbed β-keto-acid (denoted as 

β-KA*, Figure 3.11g).  The β-keto-acid then decomposes relatively easily via a C-C breaking 

step with an activation energy barrier of 0.67 eV, and forms surface adsorbed acetonyl species 

(denoted as Atl*) and a vacancy stabilized bicarbonate species (denoted as HCO3/Vo).  Next step 

is H transfer from bicarbonate to acetonyl, which forms the final surface adsorbed acetone 

(denoted as Ace*).  This step gives a relatively big energy gain about 0.91 eV.   

Our DFT calculated energy profile basically accords with the observed desorption 

activities in surface science study that acetone is only a minor product, whereas ketene is the 

major desorption product.  Our findings show that the product of C-C coupling binds weakly on 

the surface.  As a result, instead of favoring the bimolecular acetone formation pathway, the C-C 

coupling product undergoes facile decomposition and contributes to ketene desorption pathway.  

A similar microkinetic modeling methodology will also be deployed here to validate our 

mechanistic hypothesis.  We expect that it is possible to improve the catalytic performance of 

ceria towards acetone if the surface can impose a larger stabilization effect on the C-C coupling 

product than on the other reaction intermediate states.  On the other hand, if the stabilization 

effect is too strong, the catalyst surface would get poisoned by CH3CO(O)CH2COO/Vo.    
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3.2 Dephosphorylation Mechanism of Phosphate Monoesters on CeO2(111) 

Now gear will be switched to phosphorus chemistry from carbon chemistry, but the main topic is 

coherent since the catalyst being studied here is still ceria.  Firstly, we present and discuss the 

surface-assisted hydrolysis mechanism for the dephosphorylation of model phosphate monoester, 

p-NPP.  The main surface intermediates involved in this mechanism will be presented first, and 

then the mechanism and its energy profile, which starts with the adsorption of p-NPP, followed 

by the P-O ester bond scission, the formation and desorption of p-NP, the hydration of the 

remaining phosphate group, and finally the desorption of phosphoric acid (H3PO4).  Then a 

similar pathway is proposed and investigated for MP.  Finally, a linear transition state scaling 

plot is presented for the activation of the P-O ester bond on CeO2(111) for several additional 

organic monophosphates together with p-NPP and MP. 

3.2.1 Molecular adsorption of p-NPP 

Several geometries for molecular adsorption of neutral p-NPP are considered, and the minimum-

energy configuration (Figure 3.13a) involves the formation of a P-O bond between the P atom 

and a lattice O atom (Olatt) in the surface with a bond length of 1.687 Å (Table 7), while the P-O 

ester bond is lengthened from 1.619 Å in the gas phase to 1.706 Å (Table 8).  The two acidic H 

atoms are attached to the axial O atom and one of the equatorial O atoms of the phosphate group, 

respectively.  The three equatorial O atoms of the phosphate group are each located on a 

threefold hollow site above a Ce atom in the 2nd layer (designated as a 3fc site, cf. Figure 3.13b).  

The minimum-energy configuration therefore involves a pentavalent P center with a weakened 

P-O ester bond and its formation is determined to be barrier-less.  The adsorption energy of this 

adsorption state is -1.04 eV.  It is 0.77 eV less stable for both of the acidic H atoms to be 
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attached to equatorial O atoms instead (i.e., with the phosphoryl O atom (P=O) pointing away 

from surface).  Another configuration that we have investigated involves p-NPP coordinated to a 

 

 
Figure 3.13.  Top (top panels) and side (bottom panels) views of DFT-calculated minimum-

energy geometries of (a) p-NPP, (b) MP, (c) HPO3, (d) H2PO3, (e) H2PO4, and (f) H3PO4 

adsorbed on CeO2(111).  In each panel, top view is on top and side view is on bottom.  Color 

code: green=Ce, light brown=surface Olatt,, dark brown=subsurface Olatt, red=O, violet=P, 

black=C, blue=N, and white=H.  Oax, Oeq, and Olatt refer to O atom at the axial, equatorial, and 

lattice position, respectively.   

 

3fc site via the phosphoryl O at an O-Ce distance of 2.678 Å, similar to the adsorption modes that 

previous theoretical studies of phosphate adsorption on oxides have considered [88, 106].  This 

configuration is calculated to be 0.74 eV less stable than the minimum-energy configuration. 
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Table 7. DFT-calculated minimum adsorption energies (∆Eads, in 

eV) and corresponding P-O bond lengths (d(P-Olatt), in Å), Badera 

charges (in e) of the P atom and the Olatt atom beneath it, and 

magnetic moments of the systems (m.m., in B). 

Adsorbate ∆Eads d(P-Olatt) e(P) e(Olatt) m.m. 

p-NPP -1.04 1.687 +3.51 -1.34 0 

MP -1.04 1.701 +3.44 -1.31 0 

p-NPx
b -0.22 – – – 1 

p-NPb -0.42 – – – 0 

CH3O -0.63 – – – 1 

CH3OH -0.52 – – – 0 

HPO3 -3.02 1.594 +3.54 -1.43 0 

H2PO3 -3.34 1.546 +3.58 -1.47 1 

H2PO4 -1.18 1.785 +3.51 -1.13 1 

H3PO4 -1.15 1.692 +3.50 -1.33 0 

Adsorption energies are not zero-point energy-corrected.  

Adsorbate coverage is 1/9 ML.  Olatt refers to the surface O atom 

that forms a bond with P. 
a Bader charge partition analysis was performed using the approach 

of Henkelman [168], and the difference between the normal 

valence charge (6 for O and 5 for P) and Bader charge is reported 

herein.  For comparison, the charge of Olatt in bulk CeO2 is -1.22; 

the charge of P in gas phase p-NPP and MP is +3.55 and +3.56, 

respectively. 
b p-NPx: para-nitrophenoxide; p-NP: para-nitrophenol. 

 

3.2.2 Dephosphorylation of p-NPP 

The calculated reaction energy profile for the proposed surface-assisted dephosphorylation 

mechanism for p-NPP is shown in Figure 3.14.  The mechanism begins with the P-O ester bond 

scission, which begins with the H atom on the axial O atom of the phosphate group rotates to a 

position where it can form a hydrogen bond with the O atom of the p-NPx group (para-
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nitrophenoxide or 4-nitrophenoxide) and stabilize the p-NPx group once it is dissociated from the 

molecule.  The P-O bond is further lengthened to 1.858 Å in the transition state (TS, shown in 

Figure 3.14iii).  The activation barrier relative to the adsorbed p-NPP is a mere 0.13 eV (0.12 eV 

ZPE-corrected).  Once the P-O ester bond is cleaved, the axial H atom on the dissociated H2PO3 

group is transferred to p-NPx to form p-NP (Figure 3.14iv).  The p-NP presumably desorbs first 

due to weaker adsorption (∆Eads = -0.42 eV by itself, or -0.40 eV while co-adsorbed with the 

HPO3 group).  The remaining HPO3 group then re-arranges itself to adopt the minimum-energy 

configuration that occupies two 3fc sites (Figure 3.14v).  Both the hydrogen transfer step and the 

HPO3 re-arrangement step are found to be barrier-less. 

To close the catalytic cycle, the HPO3 group needs to be hydrated and desorb as H3PO4.  

We explored the direct addition of a water molecule to HPO3 and found it to be very 

endothermic with a reaction energy in excess of 2 eV.  Instead, hydration preferentially takes 

place in a step-wise mechanism (Figure 3.14).  The minimum-energy pathway begins with a 

water molecule transferring a H atom to the axial O of phosphate, which has lost a H atom in the 

previous alcohol formation step.  This hydrogen transfer step has an activation barrier of 1.05 eV 

(1.04 eV ZPE-corrected).  The remaining hydroxyl group is now located at a distance of 1.831 Å 

between the P and O atoms in the intermediate state (Figure 3.14viii).  The next step, OH attack 

forming H3PO4, is very facile with an activation energy of only 0.09 eV (0.06 eV ZPE-

corrected).  The desorption of H3PO4 is endothermic by 1.15 eV (1.07 eV ZPE-corrected).  Thus, 

our calculations show that the hydration of HPO3 and the desorption of H3PO4 are both rate-

limiting steps in the overall dephosphorylation process in vacuo, with activation energies of ca. 

1.1 eV. 
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Figure 3.14.  DFT-calculated minimum-energy reaction energy profile (not ZPE-corrected; 

entire path at zero magnetic moment) for the proposed dephosphorylation mechanism for p-NPP 

(including hydration of HPO3) on CeO2(111).  Transition states are labeled by “‡”. 

(Fig. 3.14 caption cont.) 
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Surface adsorbed species are labeled by “*”.  p-NPP, H2O, p-NP, and H3PO4 are treated as gas-

phase molecules in States (i), (i)-(v), (v)-(xi) and (xi), respectively.  Labeled activation or 

desorption processes are: A: P-O ester bond scission, Ea = 0.13 eV; B: p-NP desorption to gas 

phase, ∆Edes = 0.41 eV; C: H transfer, Ea = 1.05 eV; D: OH attack, Ea = 0.09 eV; E: H3PO4 

desorption to gas phase, ∆Edes = 1.15 eV; E’: H3PO4 desorption to aqueous phase, ∆Edes = 0.28 

eV.  Structures for states in the energy profile are shown in top and side views below the profile.  

View is rotated by 40° counterclockwise from panel (iv) to (v), and by 60° clockwise from (v) to 

(vi).  Color code: green=Ce, light brown=surface Olatt, dark brown=subsurface Olatt, red=O, 

violet=P, black=C, blue=N, and white=H. 

 

Alternatively, we have investigated a stepwise hydration mechanism that begins with 

water dissociation on the surface, followed by OH attack before H transfer.  The corresponding 

reaction energy profile is shown in Figure 3.15.  The small barrier to water dissociation (0.32 

eV, or 0.21 eV ZPE-corrected) is consistent with prior experimental [74] and theoretical [45, 

169, 170] work that reported water dissociation to be very facile and reversible on CeO2(111).  

The diffusion of a surface OH group, which positions it following water splitting for attack of the 

P center, is very facile with a diffusion barrier of ca. 0.1 eV, and so it is kinetically insignificant 

and therefore neglected from Figure 3.15.  The OH attack step itself has an activation energy of 

0.90 eV (0.92 eV ZPE-corrected), which results in a H2PO4 group.  The remaining H atom is 

transferred from the surface to the H2PO4 group with an activation energy of 0.61 eV (0.50 eV 

ZPE-corrected).  Thus the total energetic barrier that HPO3 hydration needs to overcome (i.e. 

between States vi and ix in Figures 3.14 and 3.15) is practically identical for both mechanisms 

(1.08 vs. 1.15 eV, or 1.08 vs. 1.14 eV ZPE-corrected).  We conclude that within the accuracy of 

DFT it is kinetically equivalent whether OH attack occurs before or after H transfer, at least in 

vacuo.   
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Figure 3.15.  DFT-calculated minimum-energy reaction energy profile (not ZPE-corrected; 

entire path at zero magnetic moment) for the proposed dephosphorylation mechanism for p-NPP 

(including the alternate HPO3 hydration mechanism) on CeO2(111).  Transition states are labeled 

(Fig. 3.15 caption cont.) 
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by “‡”.  Surface adsorbed species are labeled by “*”.  p-NPP, H2O, p-NP and H3PO4 are treated 

as gas phase molecules in States (i), (i)-(v), (v)-(xiii), and (xiii), respectively.  Labeled activation 

or desorption processes are: A: P-O ester bond scission, Ea = 0.13 eV; B: p-NP desorption to gas 

phase, ∆Edes = 0.41 eV; C: water splitting, Ea = 0.32 eV; D: OH attack, Ea = 0.90 eV; E: H 

transfer, Ea = 0.61 eV; F: H3PO4 desorption to gas phase, ∆Edes = 1.15 eV; F’: H3PO4 desorption 

to aqueous phase, ∆Edes = 0.28 eV.  Structures for states in the energy profile are shown in top 

and side views below the profile.  View is rotated by 40° counterclockwise from panel (iv) to (v), 

by 60° clockwise from (v) to (vi).  Color code: green=Ce, light brown=surface Olatt, dark 

brown=subsurface Olatt, red=O, violet=P, black=C, blue=N, and white=H. 

 

Experimentally, Manto et al. have reported the apparent activation energies to be 

36.6±1.2, 76.5±1.9, 82.0±3.6, and 105.4±2.9 kJ/mol (100 kJ/mol ≈ 1 eV) for the nanospheres, 

nano-octahedra (which primarily expose (111) facets), nanorods, and nanocubes, respectively, in 

comparison to 57.4±2.7 kJ/mol for commercial CeO2 powder [91].  While our DFT-calculated 

activation energies based on the rate-limiting steps are ca. 0.3 eV higher than the apparent 

activation energy corresponding to CeO2(111), such a direct comparison is not meaningful due to 

potential concentration effects (e.g. reactant/product concentrations in solution were changing 

during experiment), coverage effects (surface site competition and lateral interaction are not 

considered here), as well as solvation effects.  Solvation is expected to make the desorption of 

both the alcohol and phosphoric acid (or their deprotonated forms) much easier because they are 

well solvated by water [171, 172], so phosphate desorption may no longer be rate-limiting in 

aqueous phase.  This can be seen in Figures 3.14 and 3.15, where we have indicated the 

solvation energy for molecular p-NPP in water calculated using an implicit solvent model [173].  

We expect the species adsorbed on the ceria surface to also be partially solvated so that the 

promotional effect of solvation on desorption would be somewhat smaller than depicted.  

Presently the solvent model cannot be applied to the surface species on ceria due to problems in  



71 

 

its implementation.  Nonetheless, it is clear that the binding strengths, and thus the corresponding 

desorption barriers, of these species would be reduced at a water-ceria interface.  In addition, 

there is theoretical evidence in the literature that solvation by water can stabilize the transition 

states of the formation of polarized bonds by a few tenths of an eV [174, 175], which suggests 

that the hydration of the phosphate group should occur at more appreciable rates at ambient 

conditions than the as-calculated activation barrier of ca. 1.1 eV would suggest.  Furthermore, 

Manto et al. have shown that the apparent activation energy of p-NPP dephosphorylation can be 

correlated to the surface density of oxygen vacancies [91], which suggests that the reaction 

mechanism may be different when p-NPP interacts with an oxygen vacancy, a surface element 

that is not considered in this study.  Detailed microkinetic modeling accounting for 

adsorption/desorption, coverage and solvation effects, and varying extent of reduction in ceria 

will be attempted in the future to better validate our mechanistic model. 

3.2.3 Adsorption and dephosphorylation of MP 

The minimum-energy molecular adsorption state of neutral methyl phosphate (MP) has a similar 

configuration (Figure 3.16b) to that of p-NPP.  Its formation is likewise found to be non-

activated, just like for p-NPP.  As can be seen in Table 7, the strength of the P-Olatt bond is 

nearly identical for p-NPP, MP, and H3PO4, suggesting that the P-Olatt bond is little affected by 

substitution of the acidic hydrogen by an organic group. 

The P-O ester bond scission in MP occurs in a similar manner (see Figure 3.16) and 

produces HPO3 and methanol in one step, and it has a noticeably higher activation energy of 0.50 

eV (0.43 eV ZPE-corrected) than in p-NPP.  After the formation and desorption of methanol, the 

hydration of the remaining HPO3 group is identical to that described above.  Overall, even 
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Figure 3.16.  DFT-calculated minimum-energy reaction energy profiles (not ZPE-corrected; 

entire path at zero magnetic moment) for the proposed dephosphorylation mechanism for MP 

(dash line) and p-NPP (solid line) on CeO2(111).  Structures unique to the dephosphorylation of 

MP are shown in top and side views below the profile.  View is rotated by 40° counterclockwise 

from panel (iv) to (v).  Color code: green=Ce, light brown=surface Olatt, dark brown=subsurface 

Olatt, red=O, violet=P, black=C, and white=H.  Solvation energy of H3PO4 in water has been 

applied to the desorption energy in the final state (xi). 

 

though the methoxy group affects the activation energy of the P-O ester bond, the hydration of 

the phosphate group remains rate-limiting.  We note that P-OCH3 bond scission in a similar 

compound, dimethyl methylphosphonate (DMMP), has been reported to occur between 200 and 

400 K on CeO2(111), with which the small activation energy for P-OCH3 bond scission in MP is 
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in line [101].  It is worth mentioning that DMMP has been frequently studied as a proxy for 

certain chemical warfare agents, and what its reactivity has in common on a variety of solids 

under gas phase [100, 102-104] is P-OCH3 bond scission under mild conditions but hindered 

removal of the remaining methylphosphonic acid group due to strong adsorption.  This pattern is 

similar to the dephosphorylation of p-NPP and MP that we are reporting herein, i.e. facile P-O 

ester bond scission but hindered removal of the phosphate group, in the absence of solvation 

effects. 

3.2.4 Role of ceria surface in catalyzing hydrolysis of phosphate monoesters 

A CeO2(111) surface presents a large number of exposed Olatt atoms that can act as nucleophiles 

to coordinate to the P atoms in the phosphates, as well as Lewis bases to accept protons from the 

phosphates or from water.  As mentioned above, an optimal pentavalent structure for model 

phosphate monoesters is formed on CeO2(111) without any activation energy.  Here the P center 

is activated prior to P-O bond scission by a nucleophilic attack, although it is done by ceria and 

not water.  Then the P-O bond preferentially dissociates, followed by the hydration of the 

remaining phosphate group and its desorption as H3PO4, each of which has an activation energy 

of ca. 1.1 eV.  Thus the surface-assisted dephosphorylation process on CeO2(111) possesses 

features of both associative and dissociative mechanisms in aqueous solution but does not strictly 

conform to either. 

Although P-O ester bond scission is not rate-limiting in the dephosphorylation of p-NPP 

and MP on CeO2(111), it could be significant in other phosphate monoesters.  Thus we explored 

ester bond scission in four additional neutral organic phosphate monoesters on CeO2(111), 

including para-chlorophenyl phosphate (p-ClPP), phenyl phosphate (PP), 2-pyridyl phosphate 
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(2-py-P), and chloro-methyl phosphate (Cl-MP).  The minimum-energy geometries for the 

molecular adsorption of the four additional phosphates and the corresponding P-O ester bond 

scission transition states on CeO2(111) are shown in Figure 3.17 with additional molecular 

properties  

 

 
Figure 3.17.  Top (top panels) and side (bottom panels) views of DFT-calculated minimum-

energy geometries for: (a) molecular adsorption state and (b) corresponding transition state for P-

O ester bond scission on CeO2(111) (same below) for p-ClPP; (c) molecular adsorption and (d) 

transition state for PP; (e) molecular adsorption and (f) transition state for 2-py-P; (g) molecular 

adsorption and (h) transition state for Cl-MP.  Color code: green=Ce, light brown=surface Olatt,, 

dark brown= subsurface Olatt, red=O, violet=P, black=C, blue=N, white=H, and yellow=Cl. 
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listed in Table 8.  As shown in Figure 3.18, a linear relation with a slope of 0.66 results, which 

relates the energy of the transition state of P-O ester bond scission to the energies of the 

dissociated moieties (alkoxide and H2PO3) on CeO2(111).  The correlation is not particularly 

strong possibly because the P-O bonds in most of these phosphate monoesters are significantly 

weakened on CeO2(111), causing the activation energies of the P-O ester bond scission fall 

 

Table 8. DFT-calculated minimum adsorption energies (∆Eads, in eV) and corresponding 

P-O bond lengths (d(P-Olatt), in Å; ester bond d(P-O), in Å; gas-phase ester bond (d(P-

O)gas, in Å) included for comparison), and magnetic moments (m.m., in B). 

Adsorbate ∆Eads pKa
† d(P-

Olatt) 

d(P-O) d(P-O)gas e(P) e(Olatt) m.m. 

p-NPP -1.04 – 1.687 1.706 1.619 +3.51 -1.34 0 

MP -1.04 – 1.701 1.670 1.599 +3.44 -1.31 0 

p-ClPP -0.99 – 1.692 1.703 1.606 +3.47 -1.32 0 

PP -0.98 – 1.694 1.697 1.602 +3.47 -1.32 0 

2-py-P -0.65 – 1.690 1.694 1.666 +3.46 -1.33 0 

Cl-MP -1.03 – 1.691 1.707 1.640 +3.45 -1.32 0 

p-NPx -0.22 7.1 – – – – – 1 

CH3O -0.63 15.5 – – – – – 1 

p-ClPx -0.09 9.4 – – – – – 1 

phenoxy -0.23 10.0 – – – – – 1 

2-

oxopyridine 

-0.30 n/a – – – – – 1 

ClCH2O -0.58 n/a – – – – – 1 

Adsorption energies are not ZPE-corrected.  Adsorbate coverage is 1/9 ML.  Olatt refers to 

the surface O atom that forms a bond with P. 
† pKa values of p-NPx, CH3O, p-ClPx, and phenoxy are obtained from Ref. [95]. 
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within DFT margins of error and thus making the accurate capture of the transition states 

challenging.  Nonetheless, the energies of the dissociated moieties may still be used to provide 

quick estimates for the energies of the transition states of P-O ester bond scission and therefore 

 

 

Figure 3.18. Transition state scaling relation between the adsorption energies of the transition 

states for P-O ester bond scission of model phosphate monoesters and the adsorption energies of 

the dissociated fragments (alkoxide and H2PO3, at infinite separation) on CeO2(111).  The 

energies are referenced to the corresponding neutral gas-phase phosphate monoesters [176]. 

 

the corresponding P-O ester bond scission barriers for other phosphate monoesters.  As 

summarized in Table 9, the activation energies for activating the P-O ester bonds in these 

phosphate monoesters on CeO2(111) are also closely related to the corresponding P-O ester bond 

energies in gas phase, and they are all significantly lower than the activation energies for 

phosphate hydration and desorption in vacuo. 
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The potential significance of ceria as a catalyst for dephosphorylation is suggested by 

Figure 3.18 and Table 9.  Ceria can readily weaken the P-O ester bond to the extent that P-O 

ester bond scission is kinetically insignificant for a range of phosphate monoesters compared to 

phosphate hydration and desorption, and the proposed surface-assisted dephosphorylation 

mechanism should apply to all of the phosphate monoesters.  In other words, our calculations 

predict that the intrinsic catalytic activity of CeO2(111) toward dephosphorylation should be 

 

Table 9. Gas-phase P-O ester bond energies (Eb
P-O, in eV), 

corresponding activation energies for P-O ester bond scission 

on CeO2(111) (Ea and zero-point energy corrected value 

Ea
ZPE, in eV), energies of transition state relative to gas phase 

molecule (ΔETS, in eV), and energies of dissociated moieties 

at infinite separation relative to gas phase molecule (ΔEdiss, in 

eV) for model phosphate monoesters on CeO2(111) 

Species Eb
P-O Ea Ea

ZPE ΔETS ΔEdiss 

p-NPP 3.54 0.13 0.12 -0.91 -0.03 

MP 4.45 0.50 0.43 -0.55 0.47 

p-ClPP 3.37 0.13 0.11 -0.87 -0.06 

PP 3.47 0.13 0.11 -0.86 -0.11 

2-py-P 4.01 0.14 0.13 -0.50 0.37 

Cl-MP 4.17 0.28 0.23 -0.75 0.24 

 

independent of the alkoxide group.  This is true even for MP, in which methoxy is a poor leaving 

group that causes the hydrolysis of MP to have a significant activation energy in aqueous 
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solution.  Thus ceria and ceria related materials may have the potential to be developed into 

environmental phosphorus recovery and phosphate detoxification technologies for a variety of 

organic phosphates.  Whether ceria does have significant catalytic dephosphorylation activity 

toward other types of organophosphates, such as phosphate diesters and triesters [177] and 

phosphonates and phosphorothioates (notable examples of which include chlorpyrifos and 

glyphosate), will be the subject of our future studies. 

3.3 Resonant Photoelectron Study of the Electronic Nature of Ceria 

Oxygen storage capacity is one of the characteristic properties of ceria-based materials, and it 

can be measured conventionally by either CO/H2 consumption or O2 intake experiments.  In fact, 

the interplay sees quite a few phase transitions within the two limit phases: Ce2O3 and CeO2.  

From the electronic perspective, the oxidation state of Ce changes between 3+ and 4+, which is 

fundamentally due to the localization and delocalization of the electron at the Ce 4f level, 

respectively.  The commonly used technique to determine the relative ratio of Ce3+/Ce4+ is 

measuring the Ce 3d or 4d core level by X-ray photo-emission spectroscopy (XPS) [178]: 

quantitative analysis of the oxidation state can be achieved by linear fitting the sample’s spectra 

with the spectra of the two reference limits.  Recently, a method called resonant photoelectron 

spectroscopy (RPES) focusing on valence level has been developed and showed several 

advantages over the conventional core level XPS method [13]: higher count rates, larger contrast 

for small oxidation state fluctuation, and higher surface sensitivity.   

A closer examination of the CeO2(111) and c-Ce2O3(111) surfaces by combining angle-

resolved RPES experiments and electronic structure calculations reveals the covalent nature of 

CeO2 that lies in the hybridization of Ce 4f state and O 2p states, while a non-dispersive (i.e. 
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highly localized) 4f state only exists in c-Ce2O3 [179].  As shown in Figure 3.19, for CeO2(111), 

the hybridization of Ce 4f and O 2p states can be seen both in the on/off resonant modes in the 

angle-resolved RPES experiments, which is in qualitive agreement with the pDOS spectra 

 

 
Figure 3.19.  (I) Dispersion of the valence band in CeO2 and c-Ce2O3 in the M - Γ- M direction 

of the surface Brillouin zone followed by resonant angle-resolved photoelectron spectroscopy.  

(II) Partial density of states (pDOS) of CeO2 and c-Ce2O3 as calculated using the HSE06 

exchange-correlation functional and measured by photoelectron spectroscopy (PES).  (III) Band 

structure of CeO2 calculated along X - Γ- L for the ground state (black) and the intermediate 

4d94f1 state (red), with calculated Kohn-Sham wave functions at the point of CeO2 in the 

intermediate state. 
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calculated by DFT.  On the other hand, for c-Ce2O3(111), no admixture of Ce 4f and O 2p exists 

due to the highly localized nature of the 4f electrons.  Therefore, our study confirmed the 

covalent nature of CeO2 that is caused by cation-anion hybridization with electrons tied up in the 

ligand states. 
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SUMMARY 

The potential applications of ceria as catalyst in upgrading biomass-derived oxygenates and 

recovering phosphorus from organic pollutants have been studied throughout the research 

project, using self-consistent, periodic density functional theory calculations primarily at the 

GGA+U-PW91 level.  Mean-field microkinetic modeling using DFT-calculated energetics as 

inputs can simulate spectroscopic outcomes that can be directly compared with the spectroscopic 

evidence from surface science experiments, thus it (DFT+MkM) turns out to be a useful tool to 

validate mechanistic hypothesis.  

The temperature programmed desorption of model oxygenates, i.e. AcH and AA, on 

CeO2(111) surfaces under UHV condition have been studied in detail.  For the AcH-TPD system, 

a general TPD mechanism has been proposed to account for the formation of various C2 species.  

The outcomes of MkM are in close agreement with the observed desorption activities and 

infrared evidence.  Therefore, our results suggested that oxygen vacancies play the critical role of 

activating the carbonyl bond by stabilizing the carbonyl O with exposed Lewis acid site, which 

transforms the carbonyl bond to a C-O single bond, and allows this C atom to engage in bonding 

with another AcH.  Afterwards, decomposition of the dimer state forms the enolate (CH2CHO) 

and its derivatives, which in turn account for the formation of ethylene and acetylene via 

intermolecular hydrogen transfer and deoxygenation.   

Further attempts have been made to explain the discrepancy between the AcH-TPD 

experiment (UHV condition) and AcH-TPSR experiment (flow reactor condition).  Taking 

advantages of the surface dominant enolate species that spans a wide temperature window of ca. 

200 K, our most recent AcH-TPD experiment using a tailored double-ramping procedure 
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managed to capture appreciable amount of CrA formation under UHV condition.  Three 

expanded TPD mechanisms were then proposed to account for CrA formation, one of which was 

validated using the DFT+MkM methodology.  Therefore, our results suggested the catalytic 

active site is a vacancy dimer that is created in-situ via facile vacancy migration.   

For the AA-TPD system, our calculations showed AA could readily reduce the fully 

oxidized CeO2(111) around room temperature under UHV condition, which agrees with the 

observed early water desorption activity in the TPD experiments.  However, the kinetic 

difficulties of the acetone pathway lie in two aspects: one is the ⍺-H abstraction of the vacancy 

stabilized acetate, another is the C-C coupling step.  The weak binding of the C-C coupling 

product on the surface makes its decomposition facile, which would eventually contribute to 

ketene desorption.  This finding agrees with the experimental evidence that ketene is a major 

product other than acetone under UHV condition. 

The dephosphorylation of two model phosphate monoesters, neutral p-NPP and MP, on 

CeO2(111) has been investigated theoretically in vacuo.  A surface-assisted hydrolysis 

mechanism is proposed, which involves the barrier-less activation of the phosphates by 

adsorption on CeO2(111) and formation of a P-Olatt bond, facile dissociation of the P-O ester 

bond, hydration of the remaining HPO3 group, and desorption of H3PO4.  The last two steps are 

found to be rate-limiting in vacuo with activation energies of ca. 1.1 eV, both of which are 

expected to be reduced by solvation effects.  P-O ester bond scission in several other phosphate 

monoesters has been investigated and is found consistently to have low activation energies, in 

contrast to the large bond energy of the P-O ester bond in the isolated molecules.  The overall 

catalytic performance of CeO2(111) in dephosphorylation process is therefore predicted to be 

independent of the nature of the alkoxide group.   
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Other than its successful application in the automotive emission control industry, our 

findings provide insights for the potential engineering of ceria into viable catalysts for upgrading 

small organic oxygenates derived from biomass feedstock.  Besides, our findings suggest that 

ceria can be catalytically active toward the dephosphorylation of organic phosphates in general 

under ambient conditions and may potentially serve as the core of technologies for the recycling 

of phosphorus from, and detoxification of, organic phosphates in the environment. 
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