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Abstract 

In the field of reinforcement learning, robot task learning in a specific environment with a 

Markov decision process backdrop has seen much success.  But, extending these results to 

learning a task for an environment domain has not been as fruitful, even for advanced 

methodologies such as relational reinforcement learning.  In our research into robot learning in 

environment domains, we utilize a form of deictic representation for the robot’s description of 

the task environment.  However, the non-Markovian nature of the deictic representation leads 

to perceptual aliasing and conflicting actions, invalidating standard reinforcement learning 

algorithms.  To circumvent this difficulty, several past research studies have modified and 

extended the Q-learning algorithm to the deictic representation case with mixed results.  

Taking a different tact, we introduce a learning algorithm which searches deictic policy space 

directly, abandoning the indirect value based methods.  We apply the policy learning algorithm 

to several different tasks in environment domains.  The results compare favorably with value 

based learners and existing literature results. 
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Chapter 1.  Introduction 

1.1.  Thesis Statement 

In this thesis, we claim that a robot utilizing a small number of training episodes and 

employing a deictic representation in conjunction with a Markov state representation, can learn 

a deictic satisficing task policy applicable to an environment domain.  This long-winded 

statement may be interpreted in a number of ways.  To make it more concrete, in this 

introductory chapter we present an example and relate it to our claim.  The following 

subsections cover the questions:  What is a robot?  What is meant by an environment and an 

environment domain?  What is a state representation and a deictic representation?  What is a 

deictic satisficing task policy?  How can a robot learn?  What are training episodes?  Hopefully, 

answering these questions helps the reader better understand the boundaries and meaning of 

our claim.  Note that the example is intended for the uninitiated in machine learning.  Also, we 

cover these topics in more detail in later chapters.   So, we urge the experienced reader to skip 

or skim the following sub-sections. 

1.1.1.  The Robot 

The word “robot” has a colorful beginning in Karel Čapek’s play R.U.R. (1920).  In the play, 

robots are manufactured humans forced to work in servitude, eventually revolting and 

destroying humanity.  Our robots are not so sensational. 

In the non-fiction world, robots come in many flavors and varieties.  Although the word 

“robot” is used for online software agents such as chatbots and robot financial advisors, we 

limit the meaning to an embodied agent, restricted in movement by the laws of physics.  So for 
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our meaning, robots are mechanical agents operating in the physical world, viewing their 

surroundings with sensors and applying forces through effectors. 

Sophisticated robots, capable of performing tasks requiring mobility and object 

manipulation, are expensive.  For example, the iCub robot, used for research such as ours, costs 

about $250,000.  Unfortunately, this price is beyond reach, so we experiment with simulated 

robots.   In the following paragraphs, we describe a simulated research robot in more detail. 

The simulated robot has two arms with hands capable of picking up and putting down 

objects.  The hands have enough precision for writing text on a whiteboard.  The independent 

motorized propulsion of the robot’s wheels allow for a zero degree turning radius.  The robot 

has batteries for powering the motors and actuators and executing actions is the major 

component of battery depletion.  The detailed physics of the robot’s movements are not 

simulated but this could be added if needed for the problem.   

For all of our research and experiments, the robot utilizes high level actions.  The control 

of the robot at lower action levels is assumed to be flawless, making all high level actions 

deterministic.  Examples of high level actions are moving forward one unit and turning in-place 

either left or right by 45 degrees.  

High level actions are built from lower level actions such as the primitive actions of the 

robot’s motors and actuators.  For example, the high level action of picking up an object uses 

lower level actions to make the robot’s arm move the hand toward the object, open the fingers, 

and grasp the object.   

Lower level actions, in many cases, use sensor feedback to compensate for the inaccuracy 

of the primitive actions.  The sensors used for feedback may be different from the ones used for 
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the task being learned.  An example is accurately controlling the robot wheels.  To accomplish 

this, a shaft mounted encoder disc with evenly spaced markings are detected with an 

led/photocell arrangement to form a feedback signal measuring actual angular position of the 

motor shaft.  Non-primitive actions are similar to tasks and in fact, a learned task may later be 

an action in another task.  In this way, the robot has a hierarchy of actions using a variety of 

feedback sensors, all constructed from lower level actions in the hierarchy with primitive 

actions at the bottom.   

For sensors, the robot has vision, audio, touch, ultrasonic, and RFID (radio frequency 

identification) capabilities.  The touch sensors are for collision detection during motion.  The 

RFID sensors have a multitude of uses including location detection and object type 

identification.  For converting raw vision and audio sensor inputs to something more 

meaningful, the robot is equipped with a supervisory machine learning visual classification 

system and a speech recognition system.  The ultrasonic sensors are used in conjunction with 

the visual classification system to determine object distance. 

1.1.2.  An Example Environment 

The physical surroundings of the robot are termed the robot’s environment.  In many 

cases, the robot’s physical body is also considered part of the environment.  Later in this 

document, we discuss the robot’s mental environment.  All environments we consider are 

discrete time environments (as opposed to continuous time environments).  A common simple 

environment is a grid world environment consisting of rooms or mazes located on a grid of tiles.  

Our example is a two-room environment where the tile size is larger than the robot (overhead 

view).  The rooms, shown in Figure 1.1, share a wall with a single tile width doorway.  In our 
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discussions, we use N, S, E, W (north, south, east, and west) and combinations NE, NW, SE, and 

SW for describing directions.  As depicted, the robot is located in the west (left) room and is 

facing east.  The eastern (right) room has a charging station tile where the robot may recharge 

its battery while located on top of that tile.  Each floor tile has a RFID tag with a unique 

information value readable by the robot’s RFID sensor.  

 

Figure 1.1.  A two-room grid environment with a robot in the left room and charging station tile 
in the right room.  The robot’s task is to find the charging station from any starting tile. 

A blinking LED in the NW corner of each room is used by the robot to discern its 

orientation.  For the west room, the LED color is red and is blue for the east room. 
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In the thesis statement, we use the snippet “environment domain”.  We define this to 

mean a set of similar environments that differ in one or more specification parameters.  For our 

two-room example environment, we define seven specification parameters:  length and width 

of each room, location of the doorway between the two rooms, the location of the charging 

station tile, and the orientation of the rooms (the rooms could be oriented north and south for 

example).  Obviously, we are able to specify a very large number of “two-room” environments 

using various combinations of parameter values. 

For the two-room environment, we limit the robot’s movement to the tile directions N, S, 

E, and W and along the diagonals of NE, NW, SE and SW, moving one tile per movement action.  

The robot has three high-level actions: forward, rotate left 45 degrees, and rotate right 45 

degrees.  We abbreviate these action by F, L, and R.  After a rotation action, the robot is facing 

in a new direction and a forward action (F) would propel the robot in the new direction.  If the 

robot is facing a wall either head on or diagonally and tries to execute a F (forward) action, the 

action fails and the robot does not move but may receive a negative reward from the 

environment.  By using these actions, we say we are taking the robot’s point of view.  We could 

have used actions of “go north”, “go north-west”, “go south”, etc.  We call the latter choice the 

observer’s point of view. 

1.1.3.  State and Deictic Representations 

We define state to mean a description of the robot’s situation in an environment at a 

certain time point.  In any instance of our example environment, the robot is always located on 

a specific tile and facing in one of eight directions.  These two pieces of information, the tile 

identification and robot’s facing direction, are one way to express the current state.  If the 
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robot performs an action successfully and either moves to a different tile or rotates to a new 

direction, the current state transitions to another state.  In summary, our state representation 

for this environment consists of two features, tile tag id and robot facing direction.  This type of 

representation is called propositional and is discussed in more detail in Chapter 2.    Note that 

we have other choices for features to represent state.  For example, we could use the robot’s 

ultrasonic distance sensors and define a North-distance feature and an East-distance feature.  

Combining those two features with a LED color feature would allow us to replace the tile tag id.  

Getting more sophisticated, we could use the robot’s relationship to other objects like the 

doorway and the charging station.   

For any instance of our example environment, there are a certain number of possible 

states.  If we change the environment (like specifying larger rooms), the number of states may 

change.  In the environment shown in Figure 1.1, there are 100 tiles and the robot can face in 8 

directions which results in 800 states.  By doubling the room dimensions, the number of states 

quadruples to a total of 3200 states.  Changing the doorway location and/or charging station 

location does not change the number of states but may change state descriptions. 

Now we examine deictic representations.  A deictic representation, unlike a state, is a 

partial description of the robot’s situation.  This partial description focuses on the objects 

important to the task being performed and is normally taken from the robot’s point of view.  To 

illustrate the difference between a state and a deictic description, let’s consider the “exit room” 

task for the situation shown in Figure 1.1.  Suppose the RFID under the robot has a value of 

‘T37’.  Since the robot is facing east, the state is (“Tile”=’T37’,”Facing”=’east’).  For the deictic 

description, the important object is the doorway since the robot’s task is to exit the room.  
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From the robot’s point of view, the doorway is to its left.  A deictic description for this situation 

could be (“DoorwayDirection”=’Left’).  Notice if the robot is facing east on another tile close to 

the current tile, the state is changed but the deictic description is still 

(“DoorwayDirection”=’Left’).  This is typical for states and deictic descriptions – many states 

may have the same deictic description.  As we discuss later, this can be a blessing and a curse. 

1.1.4.  Deictic Satisficing Task Policy 

We use the word policy to mean a mapping from situations to actions.  A robot has a 

policy for each task it knows how to perform.  The task’s policy dictates the actions the robot 

takes in response to the situations it encounters from the start of the task until the task is 

completed.  For our robot, a task is performed as follows, repeated as needed:  

1. The robot reads its sensors and determines the current situation. 

2. If the current situation is the “task complete” situation then stop. 

3. The robot uses the task policy to map the current situation to an action. 

4. The robot performs the action.  

For any given task, there may be more than one way to perform the task, some better 

than others.  Each of these “ways” corresponds to a different policy.  Given some measure of 

“best” or “optimal”, we say the task policy is optimal if following this policy results in the best 

measure of performance.  For example, our measure may be completing the task in the 

shortest period of time.  Then, a policy that allows the robot to accomplish this would be an 

optimal policy.  Note, that there may be more than one optimal policy. 

The word “satisficing” was coined by Herbert Simon in 1956 [44] to mean a way of acting 

that may not be optimal but is “good enough”.  So, we say a satisficing task policy is a good 
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policy but not necessarily an optimal policy.  Why would our robot not use an optimal policy for 

all of its tasks?  Well, it may be the case that learning an optimal task policy in a certain 

environment would take a long time, not worth the effort – a “good enough” policy would do.  

Another reason is the satisficing policy may be usable in a number of similar environments and 

an optimal policy would only apply to a single specific environment. 

A deictic task policy is a policy where the situations are encoded into deictic descriptions 

and the task policy maps deictic descriptions to actions.  As an example, in the previous sub-

section our robot translated its current situation into the deictic description 

(“DoorwayDirection”=’Left’).  Since the robot’s task is to exit the room, a reasonable task policy 

mapping of the deictic description to action is (“DoorwayDirection”=’Left’) ==> L.    

1.1.5.  Robot Learning 

A useful robot has capabilities.  We divide these capabilities into two broad categories: 

perception and performance.  Perception deals with the robot’s ability to translate sensor 

readings into information.  A perception capability could be simple such as reading an RFID tag 

or more complicated like face recognition.  Although perception is extremely important, we do 

not study it in this work.  We assume the robot has the perception functions we need.  The 

second category, performance, is about taking actions to achieve an objective.  How does the 

robot acquire performance capabilities?  The obvious answer is to have a software engineer 

program the robot to do all its tasks.  Another answer, the one we are interested in, is to have 

the robot learn these capabilities.  Hence, our work focuses on the performance category, 

specifically robots learning to perform tasks. Basically, a robot learning to perform a task 
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translates to (somehow) filling in the task policy with a good (or possibly optimum) action for 

each situation the robot may find itself in. 

We, as humans, typically learn by being “told” where we use the word “told” somewhat 

loosely.   Some examples of being “told” are watching a how-to video, reading a textbook, and 

being taught by another person.  Sometimes though, we learn a task on our own.  An example 

of this is mastering a new video game.  This type of learning utilizes trial and error – we try 

different actions and see what happens.  We play the video game over and over again, 

gradually making improvements in our techniques, until we have learned to play the game 

proficiently.  This is how our robot is to learn tasks – by trial and error.  We call “playing the 

game” a training episode.  The robot is started in an initial situation and it then tries to perform 

the task.  At first it is not very good – either failing or taking many more actions than needed.  

But, as it gathers more experience, the robot’s performance improves.  Finally, after some 

number of training episodes, it reaches a satisficing level of performance in the task. 

1.1.6.  Example Environment Task 

We have completed each piece of the thesis statement.  Let’s now give a preview of 

what’s to come – the proverbial “where’s the beef?”.  At the core of “the beef” is the notion of 

learning to perform the task in a number of similar environments (the environment domain).  

To explain, we continue the example and cover how a robot uses a well-known learning 

algorithm to learn a task policy (using states) for a specific two-room task.    We follow that with 

a discussion of a task policy using deictic descriptions where the deictic policy is applicable to a 

range of environments. 
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The example task the robot learns is the “go to charging tile” task.  As the task name 

indicates, the robot, starting in either of the two rooms, executes actions to move to the 

charging station tile.  For scoring the robot’s performance, the robot begins the task with a 

battery charged to 100 energy units and is debited 1 energy unit for each action it takes.  The 

best performance is completing the task with the most energy units.  The robot fails the task if 

it runs out of battery energy before reaching the charging station tile. 

To learn a task, the robot must have a learning algorithm.  The learning algorithm controls 

the robot’s behavior during training.  As the robot moves around, directed by the learning 

algorithm, the situations it encounters, the actions it takes, and the scores it receives are used 

to update the learning algorithms internal data structures.  At some point, the learning 

algorithm completes and the end result is a policy for doing the task.  After that, the robot uses 

the task policy to perform the task, no longer needing the training algorithm. 

We train the robot by giving it a training algorithm and letting it attempt the task over 

and over again.  As stated previously, each attempt is called a training episode.  At the start of 

each episode, we give the robot the 100 energy units and place it in a random location in one of 

the two rooms (but not on the charging tile).   The training algorithm takes over the robot and 

starts moving the robot.  The episode ends either when the robot reaches the charging station 

tile or it runs out of energy by taking an excessive number of actions.  

For an example training algorithm, we use the Q-learning algorithm [3].  The algorithm 

maintains a Q-value (a real number) for each state-action pair.  For our example environment 

there are 100 tiles and the robot can face in 8 directions which results in 800 states.  Note that 

for 8 of these states, the robot is on the charging station, leaving 792 possible starting states.  



11 
 

Since there are 3 actions, the total number of Q-values to learn is 2376.  Each state/action pair’s 

Q-value is the maximum score the robot would expect to receive if it started in the state and 

took the action and then completed the task in the best possible manner.  The Q-learning 

algorithm starts with some initial Q-value (perhaps 0.0 or a random number) for each state-

action pair.  Then as the robot takes actions, repeatedly transitioning from a current state to a 

next state, the current state/action Q-value is refined with an update rule based on the 

transition.  Under certain assumptions, the Q-values will converge and stop changing.  The task 

policy is filled in by examining the Q-values for each state/action and using the action with the 

largest Q-value for that state.  The resulting task policy is guaranteed to be an optimal policy if 

the Q-values have converged.  

To give a feel for Q-learning performance on the “go to charging tile” task, we carried out 

an experiment with Q-learning using a typical setup and tuning.  The robot was started in all 

792 initial states and then allowed to concentrate on the ones it was having trouble with.  After 

922 episodes, the robot learned a task policy for the  “go to charging tile” task which it could 

use for all 792 starting states.  This policy was a satisficing policy  but was optimal for 556 of the 

starting states.  Comparing the policy to the optimal policy, the learned policy was non-optimal 

for only 6% of the states.  The total number of actions taken by the robot during learning was 

32736.  Not counting time to set up episodes, this translates into about 9 hours of training time 

if each action takes 1 second to complete.   Note, a completely optimal policy could have been 

learned if we had allowed the training to continue for a longer time. 

Our robot, after using Q-learning, has a satisficing task policy for the specific two-room 

environment shown in Figure 1.1.  But, if we change to a two-room environment with a 
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different doorway location or a different charging tile location or different size rooms, our task 

policy will no longer work.  The robot must go through the learning process for the changed 

environment. 

Now, we look at the case of using deictic descriptions instead of states.  The deictic 

descriptions are encoded using features and then mapped to deictic descriptors which we cover 

in more detail in Chapter 2.  For the task, the two important features from the robot’s point of 

view are 1) “where is the charging tile?” and 2) “where is the doorway?”  In fact, if the robot 

sees the charging tile, it does not care where the doorway is.  The robot’s perception functions 

must recognize the doorway, the charging station tile, and their direction relative to the robot.  

These features are utilized to form the seven deictic descriptors shown in Table 1.1.  The first 

three descriptors, D1, D2, D3, are encountered in the left room of the example where there is 

no charging station tile signified by “ChargeTileDir=None.  Descriptor D3 is translated into 

English as “there is no charging tile in this room and the doorway is to my left or behind me”.  

The remaining four are encountered in the right room.  So, every situation in the example two-

room environment will be perceived as one of these seven descriptors.  In fact, these 

descriptors are independent of the domain’s 7 specification parameters and therefore usable in 

any instance two-room environment.   

For training, the robot was started in 2 locations in the west (left) room.  The first was in 

the upper left corner facing east and the second along the west wall 6 tiles down facing south.  

The robot learned the deictic task policy shown in Table 1.1 using our learning algorithm which 

we cover in Chapter 4.  In the table, the robot knows the task is complete when it perceives 

deictic descriptor D7 (charging tile is under the robot). The learned deictic task policy is optimal 
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for all 792 starting states.  During training, the robot used a total of 1015 actions, taking about 

17 minutes at 1 second per action.  This is a large reduction compared to Q-learning which took 

9 hours for training.  Directionally, this makes sense.  Q-learning had 2376 values to learn by 

gathering data from results of many episodes.  The deictic policy has only 6 physical  actions to 

learn.  Also note that the deictic policy can be used for many different 2-room environments 

whereas the Q-learning policy is specific to this 2-room environment. 

Table 1.1.  The robot’s deictic descriptor policy for the “go to charging tile” task. 

Deictic 
Descriptor 

ChargeTileDir DoorwayDir Action 

D1 None Front F 

D2 None Left L 

D3 None Right R 

D4 Front  F 

D5 Left  L 

D6 Right  R 

D7 Under  Q 

 

1.2.  Thesis Outline 

The outline of the thesis is as follows.  Chapter 2 covers background information such as 

reinforcement learning, Markov decision processes, transfer learning, hierarchical task 

decomposition, and partially observable environments.  Related works are covered in Chapter 

3.  In Chapter 4, we introduce our basic learning algorithm.  Following that, in Chapter 5, we 

test our algorithm on seven example environment domains and compare the performance with 

Q-learning, R-max and existing works if available.   In Chapter 6, we improve our basic algorithm 

with experience retention memory and reversible actions.  We end with a summary, 

conclusions, and future work in Chapter 7. 



14 
 

Chapter 2.  Background 

2.1.  Reinforcement Learning and Markov Decision Processes 

Reinforcement learning is a branch of machine learning where an agent (in our case a 

robot) learns how to act optimally in an environment with rewards (or costs) as its only 

feedback on performance.  A robot deciding on what actions to take at each time step from a 

starting position to an ending position is often modeled as a Markov decision process (MDP).  In 

Sutton’s and Barto’s introductory text on reinforcement learning [6] they comment about 

MDPs:  “they are all you need to understand 90% of modern reinforcement learning”.  In a 

more recent text [7], Otterlo and Wiering state: “In fact MDPs have become the de facto 

standard formalism for learning sequential decision making.”  So, in the following, we briefly 

describe the nomenclature and learning algorithms for MDPs as normally encountered in the 

reinforcement learning literature [7]. 

A MDP is a tuple 𝑀 =  (𝑆, 𝐴, 𝑇, 𝑅) where 𝑆 is a finite set of states {𝑠1, … , 𝑠𝑛}, 𝐴 is a finite 

set of actions {𝑎1, … , 𝑎𝑘}, 𝑇 is the state transition probabilities from the current time step 𝑖 to 

the next time step 𝑇(𝑠, 𝑎, 𝑠′) = Pr(𝑠𝑖+1 = 𝑠′ | 𝑠𝑖 = 𝑠, 𝑎𝑖 = 𝑎), and 𝑅 is the scalar reward 

function 𝑆 × 𝐴 × 𝑆 → .  

The action taken by a robot in a state is determined by its policy.  A robot policy can be 

deterministic: 𝜋(𝑠): 𝑆 → 𝐴 or stochastic: 𝜋(𝑠, 𝑎): 𝑆 × 𝐴 → [0,1].  We only utilize deterministic 

policies in our work. 

When a robot learns a task in an environment modeled as a MDP, the state transition 

probabilities and reward function are typically not known to the robot.  In situations where the 

robot is expected to learn by trial and error (i.e., reinforcement learning), the methods are 
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generally divided into value function approaches and policy search [4] with value function-

based approaches being by far the most prevalent.  

The value to the robot of being in a particular state of an environment modeled as a MDP 

is related to the robots policy and the discounted rewards it receives by following that policy 

[6].  The value to the robot of a state 𝑠 under a policy 𝜋 is defined recursively by the Bellman 

Equation [1]: 

𝑉𝜋(𝑠) = ∑ 𝑇(𝑠, 𝜋(𝑠), 𝑠′)(𝑅(𝑠, 𝜋(𝑠), 𝑠′) + 𝛾𝑉𝜋(𝑠′))

𝑠′

 

where 𝛾 is the reward discount rate, 0 ≤  𝛾 ≤ 1. This value is unique when either the discount 

rate is strictly less than one or the policy leads eventually to the task completion state. 

The value of an action 𝑎 taken by a robot using policy 𝜋 in a state 𝑠 is the Q function 

defined as: 

𝑄𝜋(𝑠, 𝑎) = ∑ 𝑇(𝑠, 𝑎, 𝑠′)(𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉𝜋(𝑠′))

𝑠′

 

Here, the robot takes the action (which may not be its policy) and thereafter follows its policy. 

The maximum value of a state is given by the Bellman [1] optimality equation: 

𝑉∗(𝑠) = max
𝑎

∑ 𝑇(𝑠, 𝑎, 𝑠′)(𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉∗

𝑠′

(𝑠′)) 

𝑉∗(𝑠) is short hand for 𝑉𝜋∗
(𝑠) where 𝜋∗ is the optimal policy 𝜋∗ which maximizes the sum of 

the rewards received by the robot while performing a task. 

There are basically two types of learning algorithms for the case of unknown state 

transition probabilities and reward function: model based (where some sort of model of the 

transitions is developed during exploration) and methods where no transition model is used.  
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An important learning method of the latter type is Q-learning [3] which updates the Q function 

incrementally by taking actions and sampling the environment.  Take for example a robot in 

state 𝑠𝑖 which takes an action 𝑎𝑖  and then receives a reward 𝑟𝑗 and transitions to state 𝑠𝑗.  The 

Q function is updated by: 

𝑄(𝑠𝑖, 𝑎𝑖) = 𝑄(𝑠𝑖, 𝑠𝑖) +  𝛼 [𝑟𝑗 + 𝛾 max
𝑎𝑗

𝑄(𝑠𝑗, 𝑎𝑗) − 𝑄(𝑠𝑖, 𝑎𝑖)] 

where 𝛼 is the learning rate parameter, 0 <  𝛼 ≤ 1.  Watkins [3] shows that with enough 

exploration, the Q function updating will converge to the optimal 𝑄∗.  Then, the optimal policy 

for any state 𝑠 is to choose the action 𝑎 which maximizes 𝑄∗(𝑠, 𝑎). 

An example model-based method is the R-max algorithm [8].  This method maintains a 

model which is optimistically initialized.  The agent or robot always follows an optimal policy 

obtained from the model (no exploration phase is needed) and updates the model as the 

environment is observed.  States move from unknown to known as the robot gains experience.  

Once all states are labeled known, learning is complete.  As a side note, in most of our 

experiments, the number of actions required to learn a policy favors a model-based algorithm 

such as R-max (orders of magnitude reduction over Q-learning in some cases).  Obviously, this is 

very important for robot task learning time and user time. 

A key observation is policies learned by the above methods, if given enough samples, are 

optimal.  For the given specific environment, the robot will receive the maximum reward when 

following the policy from a start state to a goal state.   

2.2.  Hierarchical Task Decomposition and Semi-Markov Decision Processes 

Learning large complicated tasks is a difficult undertaking for robots.  As humans, we 

commonly break such problems into smaller chunks which are easier to learn.  In school, our 
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teachers guided us in this way, instructing on, for example, addition and subtraction followed 

by multiplication and division.  This strategy of task decomposition has been used by many 

researchers for reinforcement learning [20,32,38,40,42,43,50,60,71,88].   Sutton, Precup, and 

Singh [9] brought together many of the earlier works into a general framework for temporal 

abstraction with an extended action called an option.  An option is a closed-loop policy for 

taking actions over a period of time and can be treated in the MDP framework as a kind of 

super action with primitive actions being a special case option.  The motivation for developing 

options was for improved learning performance.   Note that using options does not give the 

agent/robot any additional “powers” as explicitly stated in the text  “one can ultimately do just 

as well with primitive actions as one can with options” [9]. 

An option is defined as a tuple (Ι, 𝜋, 𝛽).  The first component, Ι, is a subset of the MDPs 

non-terminal  states and is called the the initiation set.  An option may only be selected when 

the current state is a member of the initiation set.  The second component is the option policy, 

𝜋, defined as a MDP policy.  The third component is a termination condition, 𝛽, which gives the 

probability of ending the option for any encountered state. 

Learning a task with options is accomplished in steps.  The first step is dividing the task 

into smaller pieces.  This is most often done by the teacher [17,19,32] but there are works [97] 

for automating the decomposition.  The next step is learning a policy for each piece to develop 

each option.  This learning may be accomplished with any of the standard reinforcement 

learning algorithms.  The option learning starts at the lowest level and progresses hierarchically 

to the top level options.  Finally, the overall task is learned using an action set which includes 

the previously learned options and perhaps primitive actions. 
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2.3.  Partially Observable Markov Decision Process 

A partially observable Markov decision process (POMDP) is frequently used to describe 

environments where the robots view of the current situation is not complete or is inaccurate 

with respect to the task being performed.  In other words, a POMDP is a MDP where the robot, 

for some reason, does not obverse the true current state of the environment but some 

part/distorted version of it.  For example, the robot’s sensors could be noisy or some object in 

the environment is hidden from the current view of the vision system. 

Mathematically, a POMDP adds two elements to the MDP formalism [72]: a set of 

observations, Ω =  {𝑜1, … , 𝑜𝑚} , and an observation function 𝑂: 𝑆 × 𝐴 →  Π(Ω).  This function 

gives a probability distribution over the set of observations for each action 𝑎 and resulting state 

𝑠′.  So, as the robot takes actions, it perceives a series of observations, each of which depend 

on the true state with probability  𝑂(𝑜 | 𝑠′, 𝑎).   

This uncertainty of the current state results in the robot being unsure of the proper action 

to take.  Obviously, POMDPs are more difficult to analyze than MDPs and reinforcement 

learning techniques for MDPs do not extend to POMDPs.  Crook, in his dissertation [67], 

presents a lengthy discussion of the many approaches researchers have taken to ease the 

robot’s predicament of learning a task policy in partially observable environments.  Many of the 

methods rely on recovering or estimating the underlying MDP.   

For our case, the robot has the ability to observe the complete current state but chooses 

to focus on only part of the task environment.    This seems counterintuitive at first glance.  

Why put yourself in a more difficult learning situation?  Later in this work, we show that there 

are advantages to taking this approach. 
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2.4.  Transfer Learning 

Learning tasks from scratch can be difficult.  The idea of “transfer learning” is to build on 

knowledge of previously learned tasks to help in learning new tasks, especially for speeding up 

the learning process.  Transfer learning for tasks covers not only tasks in the same environment 

domain (multi-task learning) but also learning from tasks in entirely different environment 

domains.  In this work, we only consider multi-task learning where task environments are 

drawn from a common environment domain and each task has a final state (a goal).  Most 

research in multi-task learning assumes each task has the same state-space and action set.  We 

relax this and only require the same action set. 

As previously discussed, Q-learning may be used to learn a MDP (task) policy tabula rasa.  

Let us suppose we want our robot to learn policies for ten MDPs, all taken from the same 

environment domain.  The straightforward approach is to train the robot using Q-learning on 

each of the MDPs, learning 10 policies, and be done with it.  But, suppose we want to teach the 

robot how to complete a task for any MDP from the environment domain.  How can we do 

that?  This cannot be done with Q-learning – a policy is learned for each MDP as it is needed.  

So, we turn to transfer learning to make learning a policy for a new MDP quicker. 

Taylor and Stone [5] produced a transfer learning framework which we briefly cover here.  

Their work differentiates RL transfer learning methods categorized using five basic dimensions.  

These are: task difference assumptions, source task selection, task mappings, transferred 

knowledge, and allowed learners.  Their survey assumes the RL problems are Markov decision 

processes.  We are interested in task differences as they are the most applicable to our work.  

Also note that the meaning of the word “task” is different from a layperson’s conventional 
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definition.  Its meaning includes not only what is to be accomplished but also the environment 

and situation in which the task is performed.  Taylor and Stone state this explicitly by equating 

task and MDP. 

The task difference assumptions divide methods by differences of source MDPs and 

target MDPs in transition functions, reward functions, state spaces, goal states, start states, 

action sets and/or state features.  They also add the number of objects in source and target 

tasks to cover relational reinforcement knowledge transfer.  Some of these differences interact.  

For example, if the action sets are different then the transition functions must be different to 

account for the dissimilar actions.  The opposite does not need to be true, the transition 

function can change with equal action sets.  Our allowable task differences include all the above 

except the action set.   

Taylor and Stone also layout 5 transfer learning metrics which compare the benefits of 

using a transfer method over not using the method.  These are named “Jumpstart”, 

“Asymptotic Performance”, “Total Reward”, “Transfer Ratio” and “Time to Threshold”.  The 

“Jumpstart” metric measures the improvement in the initial performance, the “Asymptotic 

Performance” in the final performance, and the “Time to Threshold” somewhere in between.  

The “Total Reward” and “Transfer Ratio” measure improvements in total reward.   

2.5.  Environment Domains and Domain Tasks 

In the transfer learning section above, task and Markov decision process were used 

interchangeably.  A robot performing an episodic task in an environment modeled as a MDP 

begins in an initial state and, after some number of actions, ends in a final state completing the 

task.  Learning the task is the process of learning a policy that the robot uses to go from the 
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initial state to the final state.  We, however, are interested in a more general definition of a 

task, one where the robot learns a single policy that covers all MDPs drawn from an 

environment domain.  So, for us, a domain task policy applies to all the MDPs as opposed to 

each instance MDP having its "instance" task policy.  Once the domain task policy is learned, 

the robot may use it to perform the task in any instance MDP.  We presented an example of 

this in Chapter 1 where the robot learned a single deictic descriptor policy which covered a 

multitude of 2-room environments. 

For our work, an environment domain consists of a prototype environment and a set of 

specification parameters.  Each environment instance is a result of a particular setting of 

parameter values applied to the prototype environment and is modeled by a MDP.  An 

environment has a set of configurations which are arrangements of elements drawn from a 

world.  Each state of the instance MDP corresponds to a configuration of the instance 

environment.  A total configuration is the arrangement of elements and a robot in a particular 

pose.  We sometimes, when discussing configurations, leave out the word "total" if in the 

context the meaning is clear.  The robot has a set of physical actions applicable to the domain 

environments.  When the robot performs a legal action for the current configuration, the 

current configuration changes deterministically to a new configuration.  Certain configuration 

and action pairs are not legal.  In these cases, if the robot attempts the action, the configuration 

does not change and the robot may receive a negative reward. The user is able to initialize an 

environment to any configuration of the environment instance.   

As a recap, we offer this listing of meanings of terms: 
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 World: A (perhaps stylized) subset of the "real" world.  Examples are the blocks world 

and the grid world.  We do not define these rigorously but use them as a backdrop for 

describing what kind of environment we are discussing. 

 Environment domain: A family of environments defined by a prototype environment 

and a set of specification parameters. 

 Prototype environment: The environment that forms the basis for all instance 

environments (and MDPs) in an environment domain.  The prototype environment has 

elements from a world, a set of physical robot actions, and a set of configurations.  

Every configuration can be reached from any other configuration by applying actions 

from the action set. 

 Specification parameters: The parameters used to make an instance environment.  For 

example, consider a grid world environment domain where the prototype environment 

is a single room and an exit door. The specification parameters could be the room size 

and door location.  Then, any environment instance could be created by specifying 

values for these parameters. 

 Instance environment: One of the environments of an environment domain. All instance 

environments of an environment domain have the same set of robot actions.  The set of 

configurations for an instance environment depend on the prototype environment and 

parameter values used to define the instance. 

 Environment configuration: A complete description of an instance environment 

situation.  A MDP state (or deictic description) of any desired class (atomic, 

propositional, relational, etc.) may be derived from a configuration.   
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 Domain task: A task defined for all instance environments of an environment domain.  

The initial and final task situations are spelled out in a global manner relative to 

elements in the prototype environment and independent of the environment domain’s 

specification parameters.  There exists a domain task final situation function which maps 

any instance environment configuration to a boolean value where True signifies the 

configuration is the final task situation. 

2.6.  Representing the Environment 

Robots typically map their sensor readings (percepts) into some sort of internal 

representation.  These representation methods can be divided into 4 basic classes: atomic, 

propositional, deictic, and relational [16].  In the atomic state class, each percept is mapped to a 

distinct symbol.  For the propositional state class, percepts are commonly represented as a 

vector of attribute/value pairs.  The relational representation class is more structured, using 

descriptions similar to first-order logic to encode the environment objects and relations 

between objects.  The deictic representation, in some ways, bridges the gap between 

propositional and relational representations [12].  Unlike the other classes, the robot takes part 

dynamically in what is perceived.  Using a focusing mechanism, the robot centers its attention 

on what is important to the task at hand and essentially ignores the rest.  

To be concrete, we look at a configuration from a warehouse environment and present 

example representations for the 4 classes.   Our coverage is weighted towards the deictic 

representation since it is a central component of our work.  The interested reader is directed to 

Mitchell [113] for an excellent treatment of propositional attribute/value representations and 

to van Otterlo [16] for the relational representation. 
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Consider a robot in a warehouse having 4 pallets with 5 colored boxes stacked as shown 

in Figure 2.1.   The robot can move from pallet to pallet and pick up and put down a box.  The 

robot’s task is to pick up the green box.  So, for each class, we define a representation 

framework and then use it to instantiate a state (or description) of this particular environment 

configuration. 

2.6.1.  Atomic Representation 

For the atomic state, our approach is to assign a distinct numeric symbol to each possible 

configuration.  To accomplish this, the image of the scene from the vision sensor becomes the 

input to a neural net which produces a unique scene number.  The neural net is sophisticated 

enough to ignore minor variations in the image so as not to yield false changes in scene.  The 

scene number is the state representation.  Perhaps this configuration is state ‘1057’ or maybe 

state ‘4821’ – it doesn’t matter as long as each configuration is mapped to a distinct numeric 

symbol.   

2.6.2.  Propositional Representation 

The propositional representation is more expressive.  We specify a set of features 

(attributes) to capture the essence of every possible configuration.  In our example 

representation, each pallet is represented by a feature so we have features “Pallet1”, “Pallet2”, 

“Pallet3”, and “Pallet4”.  The value of a pallet feature is a string of the box names on the stack, 

separated by spaces and bottom box first.  For example, “B2 G1” is the string representing the 

stack of 2 boxes on pallet3 so feature “Pallet3” has the value “B2 G1”.  The robot position is 

conveyed by the feature “RobotPos”.  This feature has the integer value of the pallet the robot 

is currently facing.  The robot can be holding a box which is represented by the feature 
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“HoldingBox” which has a value of the box name or None if not holding a box.  Table 2.1 shows 

the propositional state representing the environment configuration of Figure 2.1.  Note, we did 

not represent the box colors but this would be easy to add. 

 
Figure 2.1.  A warehouse environment with pallets and colored boxes.  The robot’s task is to 
pick up the green box. 

Table 2.1.  A propositional state for the warehouse environment with a robot, 4 pallets, and 5 
boxes.  The robot is facing pallet2 and is not holding a box. 

Feature 
Number 

Propositional 
Feature 

Feature 
Value 

1 Pallet1 “R2 B1” 

2 Pallet2 “R1” 

3 Pallet3 “B2 G1” 

4 Pallet4 “ “ 

5 RobotPos 2 

6 HoldingBox None 

   

2.6.3.  Relational Representation 

The relational representation defines the scene in terms of objects with properties and 

relations between objects.  Typically, a scene configuration is described as a list of ground facts 

[18].  For the example, we could use the predicates ‘on’, ‘clear’, and ‘facing’.  The scene is then 



26 
 

encoded as the list [on(R2,Pallet1), on(B1,R2), clear(B1), on(R1,Pallet2), clear(R1), 

on(B2,Pallet3), on(G1,B2), clear(G1), clear(Pallet4), facing(Robot,Pallet2)]. 

2.6.4.  Deictic Representation 

In the deictic representation, a deictic description’s meaning is relative to the entity that 

uses it and the setting in which it is used [12].  Although the other 3 representations are silent 

about what particular task the robot is undertaking, the deictic representation description of a 

situation is constructed with the task in mind and depends on what the robot is focused on.  

Note, we do not call this description a deictic state as we reserve the word “state” to denote a 

Markov representation of the configuration.  We use the word “description” to signify a deictic 

representation of an environment configuration.  We further logically map the deictic 

descriptions to what we call the deictic descriptors.  So, continuing with our example, suppose 

the robot’s task is to pick up the green box and it is currently focused on red box R1.   From the 

robot’s point of view and its task, the scene could be described by the features “Holding” and 

“Focus”.  The “Holding” feature is obviously the object in the robot’s hands.  In a propositional 

representation, this would have a value like the name of the box.  But, for the deictic 

representation, we take the task into account.  Since the robot is interested in the green box, 

we give the “Holding” feature 3 possible values, ‘GreenBox’, ‘NonGreenBox’, and ‘None’.  The 

“Focus” feature is what the robot is currently looking at.  This could be the pallet, a box, or the 

robot could be looking above the stack.  Therefore, we give the “Focus” feature values of 

‘Pallet’, ‘GreenBox’, ‘NonGreenBox’, and ‘AboveStack’.  Since the robot is currently focused on 

the red box R1, the deictic feature values would be (“Focus”=’NonGreenBox’, 

“Holding”=’None’).    Table 2.2 shows the table of deictic descriptors derived from the deictic 
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description features.  Notice that we only have 9 descriptors as opposed to 12 possible 

combinations.  This is because the descriptors take the task into account and once the robot 

has the green box, the task is over so there is no need to worry about the focus feature. 

Table 2.2.  The deictic descriptors for the “pick up the green box” task. 

Deictic 
Descriptor 

Focus Holding 

D1 Pallet None 

D2 AboveStack None 

D3 notGreenBox None 

D4 GreenBox None 

D5 Pallet notGreenBox 

D6 AboveStack notGreenBox 

D7 notGreenBox notGreenBox 

D8 GreenBox notGreenBox 

D9  GreenBox 

 

So what are these deictic descriptors and how do they come about?  As the robot 

changes its focus, different parts of the environment come into view.  For each of these 

environment sub-sections, the robot reads its sensors and internally maps the objects in the 

view to names. 

Deictic Name:  A deictic name is a name (chose by the designer of the RL method) that 

 can refer to an object or a set of objects in the environment without using the object's name. 

For example, a deictic name could be “the_box_I_am_looking_at”.   

Deictic values are defined as follows. 

Deictic Value: A deictic value can be a boolean, a number, a string, or a deictic name. 

For each task, the robot has a set of features tailored for the task.  We call these the deictic 

features.   

Deictic Feature: A deictic feature is a deictic name that takes a deictic value as its value. 
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Examples of deictic features are “RobotPosition” and “DoorDirection”. 

Deictic Description:  A deictic description is a list (conjunction) of (deictic feature, deictic value) 

pairs.   

An example of a deictic description is [(“RobotPosition”, 2), (“DoorDirection”, ‘South’)]. 

Finally, a deictic descriptor is the same as a deictic description except it may contain a “don’t 

care” true term in place of a deictic feature/value pair in the deictic description.  These two 

notions are used somewhat interchangeably. 

As mentioned above, the number of descriptors is less than the number of configurations 

which results in perceptual aliasing conditions.  This is easily illustrated in our example for the 

three cases where the robot is facing different pallets and observing the bottom box on the 

pallet.  In each case, an atomic, propositional, or relational representation would result in three 

distinct states.  However, for the deictic representation, each case results in the same deictic 

descriptor D3 as shown in Table 2.2.  The robot is not holding a box and is observing a non-

green box. 

Now let’s cover the robot’s focusing mechanism in more detail.  The robot, for each task 

and associated environment domain, has methods for changing its focus of attention.  The first 

method and simplest is to have the focus pointer move when the robot physically moves.  The 

second method is a focus pointer action.  The robot performs the focus pointer actions 

mentally, there is no physical movement.  As such, the focus pointer actions are not included in 

the environment domain physical action set.  To illustrate each of these methods, let’s look 

again at Figure 2.1.  For this environment, the robot has a physical action to move from one 

stack to the next.  So, in this case, we elect to have the robot’s focus pointer move with the 
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robot.  When the robot stops at a stack, the focus pointer is on the pallet of that stack.  If the 

robot moves to a new stack, the focus pointer moves to the pallet of the new stack.  This is an 

example of the focus pointer movement tied to a physical movement.  Once the robot is facing 

a stack, it can perform a mental focus pointer action to move the focus up the stack to the first 

box on the pallet.  Then, if desired, the robot could perform the mental action again to focus on 

the next box on the stack.  Each time the focus pointer moves, the perceived deictic features 

are updated which may result in a descriptor change.  Note that the robot’s focus pointer may 

also include some different parts of the environment such as, in the example, what it is holding. 

For our learning methods, the descriptors must be independent of the environment’s 

specification parameters and pertinent to the robot’s task.  We require the maximum number 

of descriptors to remain constant when the environment’s size changes.  Again looking at 

Figure 2.1, suppose each environment instance can have a different number of named boxes, 

more colors than just green, red, and blue, and any number of pallets.   The robot’s task is to 

pick up the green box (there is only one green box in any environment instance).  Forming 

descriptors from the features “Holding” and “Focus” described above meets our requirements.  

No matter how many boxes there are or their names or their color, they each belong to either 

the ‘NonGreenBox’ or ‘GreenBox’ category.  The number of pallets does not matter either since 

the “Focus” feature only returns the generic name ‘pallet’.     

Another requirement for deictic descriptors is that there must be at least one descriptor 

which signifies the task is complete.  In our example, when the feature “Holding” has the value 

of ’GreenBox’, the task is complete.   



30 
 

2.7.  Physical and Mental Environments 

The physical environment can include the robot but not always.  For example, in the 

blocks world, the gripper is typically not included in the environment description.  In contrast, a 

grid world environment almost always includes the robot.   In any case, the robot is the only 

agent and any change in the environment is due to a robot action.  The only exception to this is 

when the user initializes the environment during episodic training.   

Besides the physical environment, we utilize a nonconcrete environment we call a mental 

environment.  This environment contains the deictic focus pointer discussed in the previous 

sub-section and the abstract machinery for managing the current policy which we discuss 

shortly.  Like the physical actions used in the physical environment, the robot has mental 

actions at its disposal.  The robot is able to “move” the focus pointer and switch the currently 

active policy with mental actions.       

Using a deictic representation for a task policy brings along the blessing and curse of 

many environment configurations mapping to a single deictic descriptor.  We saw this in the 2-

room example in Chapter 1.  The blessing is the reduction in the size of the policy.  The curse is 

the partial-observability problem - in this case commonly called perceptual aliasing.   For our 

algorithm, perceptual aliasing becomes a problem when performing the task requires the robot 

to executed different physical actions in response to the same deictic descriptor.  To handle this 

situation, we give the robot the ability to switch to a different policy.  This adds a hierarchical 

capability but makes learning more difficult for the robot.  It must figure out when it needs to 

use an alternate policy and also learn the alternate policy. 
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Having a mental environment forces us to include it in the description of the states in a 

MDP.  In Chapter 4, we discuss in more detail how this is handled with a Z-state, a combination 

of the state of the mental environment and the state of the physical environment.  Also, the 

robot’s starting point for a task includes how the mental environment is initialized.  We 

designate one policy to be the “main” policy.  When a task is started, the main policy is the 

current policy.  The initialization of other pieces of the mental environment are handled on a 

task by task basis.   

2.8.  Optimal and Satisficing Behavior 

As discussed in the introductory section of Chapter 1, the phrase “satisficing behavior” 

means a way of acting that may not be optimal but is “good enough”.  Of course, we would like 

our robot to learn a domain task policy that is optimal for each instance environment.   But, if 

this is not possible, we may nonetheless choose a satisficing domain task policy to avoid 

training the robot optimally on every instance MDP.   

In the 2-room example in Chapter 1, the robot learned an optimal deictic policy for “go to 

charging tile” task.  This is not the case for all the remaining examples.  For the test examples 

where our learning algorithm finds a less than optimal policy, we compare the robot’s 

performance to the optimal performance and to a robot taking random actions to reach the 

task’s goal.   
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Chapter 3.  Related Works 

Most all of our representation methods are relative to the robot and use a variation of 

the deictic state representation class.  The robot does not name objects directly but uses 

indirect naming.  For example, the top block on a stack of blocks could be “the-top-block-on-

the-stack-of-blocks-I-am-facing”.  The deictic representation class was introduced by Agre and 

Chapman [14].   They used deictic representation in a video game to show how much simpler it 

was as compared to the relational representation.  Their work did not involve learning. 

Whitehead and Ballard [15] were the first to develop a reinforcement learning algorithm 

using a deictic representation.  They realized the major problem of deictic representations 

which they named “perceptual aliasing” now more commonly called partially observable.  They 

performed experiments and observed that even if the agent is started at the optimal policy, the 

classical reinforcement learning system becomes unstable and actually moves away from the 

optimal policy.  Their learning algorithm, Lion, is based on Q-learning but includes a component 

that suppresses action-values of inconsistent decisions, in effect, avoiding aliased states.  They 

tested Lion on blocks world tasks which were divided into difficulty classes of “easy”, 

“intermediate”, “difficult”, and “most difficult”.  Their results showed the Lion algorithm could 

learn to solve all the tasks perfectly except for the “most difficult” class of tasks for which it 

failed about 10% of the time. 

McCallum, a student of Ballard, developed a series of reinforcement learning algorithms 

[13] for agents with “selective perception” and “hidden” states.  His idea is that an agent needs 

to narrow its focus to the items related to the task (which we also follow).  A real-world agent 

would, in practice, not be able to always perceive the entire environment, resulting in hidden 
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state.  To neutralize the partial observability of selective perception and hidden state, his 

algorithms use short-term memory to remember percepts/features of previous time periods.  

Not all of his experiments ended with success, including the blocks world example of 

Whitehead and Ballard [15]. 

Muñoz [37] developed an algorithm called CANDID for embedded agents.  His agent uses 

“deictic sensors” and can only observe a fraction of the environment.  The deictic sensors are: 

 Foveal sensor, the visual focus of the agent, gives information about the 

environment (like block, ground, and color) at the location of the focus. 

 Peripheral sensors (4 total) give partial details of the visual field around the focus.  

Each sensor indicates the presence or absence of an object.  The peripheral 

sensors are located above, below, left, and right of the foveal sensor. 

The agent has 4 actions to move the visual focus.  It can move the sensors as a group one 

visual position left, right, up, or down. 

The CANDID algorithm has two tables, one related to successful trials and the other to 

failed trials.  For successful trials, each state-action pair’s entry in the successful table is 

incremented.  Similarly, for failed trials (when too many actions are taken), each state-action 

pair’s entry in the failed table is incremented.  These two tables are used to select actions 

during an episode.  Specifically, for a situation, the algorithm chooses the action with the 

highest possibility of obtaining a positive reward.  The CANDID algorithm learns reliable and 

general behaviors with acceptable (as opposed to optimal) performance.  It can also handle a 

moderate level of perceptual aliasing. 

The CANDID algorithm has 4 main tuning parameters: 
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 N:  This parameter determines the initial value of the statistics and a weighting 

parameter.  N is in the range of 50 to 200. 

 Maximum Actions:  This parameter is the number of actions allowed in a trial and 

determines when a failed episode occurs. 

 Maximum Repetitions:  This parameter determines how many times a specific task 

is attempted and is helpful for learning the task in a difficult environment 

instance. 

 Maximum Episodes without a Policy Change:  This parameter is the stopping 

criteria for CANDID. 

To speed up learning, five heuristics are also used (which we will not discuss here). 

The author presents an example task (similar to Whitehead and Ballard [15]) where the 

agent must find a specific block in a group of from 5 to 8 blocks in a visual 12x10 scene with the 

bottom two rows being the “ground”.  The performance of CANDID is compared empirically to 

Q-learning, backward Q-learning (updates are done after each trial), and SARSA(1).  The results 

showed that CANDID is better than the other algorithms for this task.  Later in this document, 

we compare our algorithm to CANDID. 

Deictic state representation was revisited by Finney, Gardiol, Kaelbling, and Oates [12].  

They used a history of observations to combat the deictic representation’s partial-observability 

problem per McCallum [13].  A standard Q-learning algorithm with a neural net function 

approximator was chosen for the experiments.  Using a similar blocks world setup as 

Whitehead and Ballard [15], they compared the learning performance of the deictic 
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representation to a fully observable propositional representation.  As the title of their paper 

suggests, their empirical results showed deictic representation worsens learning performance. 

Ravindran [17] studied MDP minimization by exploiting structure and symmetries of the 

problem.  He was able to use deictic representation in some restricted settings and was able to 

use the deictic representation in a hierarchical manner. 

Learning a large MDP can be very difficult and time consuming.  To ease this problem, 

hierarchical reinforcement learning breaks a large MDP into smaller chunk MDPs.  The smaller 

MDPs are easier/faster to learn.  Sutton et al. [9] defined the term options for temporally 

extended actions which combined concepts from previous research into a simpler 

reinforcement learning framework.   

Croonenborghs et al. [19] extended options to the relational domain to aid in transfer 

learning.  Their method first learns a task utilizing primitive actions and a relational 

reinforcement learning algorithm (like relational Q-learning).  The relational options are then 

induced from a dataset extracted from the Q-function of the task.  Their experiments showed 

that using the induced options in the task improved learning performance over the primitive 

actions case.   The following discussion describes their grid world example in more detail. 

Each of the grid world environments has a sequence of rooms connected by colored 

doors with colored keys on the floor.  In each room, the robot must navigate using actions up, 

down, left and right to a key whose color matches that of the exit door.  Once the robot is at 

the proper key, it must pick up the key and then navigate to and through the exit door.  If, 

when entering a room, the robot already possesses the correct colored key, it can bypass 

getting another key and proceed directly to the exit door.  The robot’s goal is reached when it 
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exits the last room in the sequence.  To make this task difficult and not consistently solvable by 

relational reinforcement learning (or in fact any other reinforcement learning method), the 

researchers specified that the robot must be able to perform the task (without relearning) 

when presented with new, never seen before environments where the number of rooms is 

varied, the sizes of the rooms are varied, the door locations are varied, and the location and 

number of keys is varied.   

This environment/task specification is not amenable to a propositional version of Q-

learning or R-max and is difficult for relational Q-learning.  So the researchers approached the 

problem with a hierarchical method using skills (options).  Their method of learning skills 

involves 4 steps.  In the first step, the agent learns (or partially learns) the task using a relational 

reinforcement learning algorithm [18].  For the next step, they create a binary policy-based 

labeled dataset of state-action pairs extracted from the Q-function of the first step.  Then, from 

this dataset, they induce a relational decision tree that predicts whether the action will be 

executed by the policy.  Finally, they extract a relational policy for the option.  Because options 

induced in this way may not always terminate, all non-goal states are given a non-zero 

probability of terminating the option.  For the grid world skill/option learning, the agent 

explores for 200 episodes with a maximum of 500 actions per episode.  If the goal is reached, 

the agent receives a reward of 1 and 0 otherwise.  Two options, “pickup_key” and “find_door”, 

are learned from a dataset created from 100 of the episodes.  Note that the agent always 

perceives the complete description of the configuration consisting of the dimensions of the 

different rooms, the locations and colors of the doors, the location and colors of the keys, the 
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keys the agent possesses, the agent’s location and the goal location.  The agent also uses the 

typical up, down, left, and right movement actions and an action for picking up keys. 

Croonenborghs et al. [19] performed experiments using their grid world and showed 

results for using only primitive actions and cases using options.  Using relational reinforcement 

learning with primitive actions resulted in a policy that could perform the task about 70% of the 

time but required a very large number of actions.  Using relational reinforcement learning with 

relational options, the policy was able to perform the task successfully more than 90% of the 

time and achieved an order of magnitude reduction in primitive actions. 

Fern et al. [11] describe learning large relational MDPs by generating multiple trajectories 

using the current policy structure from a MDP simulator as samples for a supervised learning 

task.  The improved policy structure is induced from the trajectory state-action pairs.  They use 

approximate policy iteration to learn in policy space instead of the more common value-

function methods.  The downside of this approach is the required simulator for sampling from 

any state at any time step. 

The blocks world has been a favorite testing environment for relational reinforcement 

learning [18, 21, 22, 28, 65, 74, 91, 96, 109].   A recent and perhaps best performing algorithm 

of this group is Sarjant’s CERRLA algorithm [28, 109].  The CERRLA algorithm produces policies 

directly, using the Cross-Entropy Method (CEM) to control policy creation, from a set of learned 

relational condition-action rules.  The Cross-Entropy Method assigns a sampling probability to 

each condition-action rule.  These probabilities are gradually modified by CEM to produce 

policies (randomly sampled) with improved rules.  An inferred partial model of the environment 

is used to help in rule creation resulting in human comprehensible policies.  Sarjant evaluated 
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CERRLA on four environments, the blocks world and three computer games.  His results show 

that CERRLA is able to learn, in less time, equal or better behavior compared to existing 

relational reinforcement algorithms.  For the blocks world case, when trained on environments 

with differing number of blocks, CERRLA does not consistently find an optimal policy for the 

"stack block A on block B" task, but still maintains a relatively high performance.  In Chapter 5, 

we compare our algorithm to CERRLA and other relational reinforcement learning algorithms. 

The blocks world was also tackled using a propositional representation by Irodova and 

Sloan [112] and Langlois and Sloan [110].  These use essentially the same approach so we 

describe the latter, more recent research.   In their approach, they represent each state by a 

fixed number of features: 

1. Number of blocks. 

2. Number of stacks. 

3. Number of blocks in the highest stack. 

4. Number of highest stacks. 

5. Number of blocks in the second highest stack. 

6. Number of second highest stacks. 

7. Number of stacks of height one. 

8. Number of blocks above block A. 

9. Number of blocks above block B. 

10. Number of blocks in stack with block A. 

11. Number of blocks in stack with block B. 

12. Is the top of block A clear? (Boolean). 
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13. Is the top of block B clear? (Boolean). 

14. Is block A on the floor? (Boolean). 

15. Is block B on the floor? (Boolean). 

16. Are blocks A and B in the same stack? (Boolean). 

They use a novel method for actions (instead of the move(X,Y) type actions)  which allows them 

to have a constant number of actions independent of the number of blocks.  These actions are 

connected to the set of features.  They define symbolic names to form actions which are: 

1. RestOne – stack with one block that is not a or b. 

2. RestMiddle – any stack of height different from tallest, and greater than one that does 

not contain blocks a or b. 

3. Blocka – stack that contains block a. 

4. Blockb – stack that contains block b. 

5. Tallest – tallest stack, may contain blocks a and/or b. 

6. Floor 

There are 27 actions of the form SymbolNamei-to-SymbolNamej.  For example, the Tallest-to-

Floor action moves the top block of the tallest stack to the floor.  They learn a Q-function for 

each of the 27 actions where each Q-function is a linear combination of the above 16 features.  

For training, they ran 60,000 episodes, 9000 for 3 block cases, 15,000 for 4 block cases, and 

36,000 for 5 block cases.  They then tested on cases with 3 to 10 blocks.  For the on(A, B) task, 

the performance was good, reaching the goal in about 93% of the test trials. 
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Chapter 4.  Learning Deictic Descriptor Task Policies 

4.1.  Introduction 

This chapter begins discussion of our deictic descriptor task policy learning algorithm 

where the robot perceives the environment configurations as Markov states and deictic 

descriptors.    After learning the task policy, the robot needs only the deictic description to 

perform the task.    

Our objective is to create an algorithm which learns a universal deictic task policy 

applicable to any environmental drawn from an environment domain.   Can we use a 

modified/extended state based algorithm for our deictic policy learning?  Let's briefly discuss 

this question.  For a state and a task, we can calculate a value for being in the state using a 

value based learning algorithm like Q-learning.  Then, the policy can be derived from the values.  

Not so for the deictic descriptors.  The deictic representation suffers from perceptual aliasing 

[15] and thus when more than one state maps to the same descriptor, the descriptor value 

function is not defined.  We could try to augment our descriptors to make them have a one-to-

one mapping with states. Like chemical elements, we could have descriptor isotopes, each 

isotope mapping to a state.  Then, after learning the state values, the assigned action for a 

descriptor would somehow be chosen using the values of the descriptor isotope collection.  At 

a high level, this value-based approach is the direction researched in the past with unfavorable 

results.  So, we take the "path less traveled" and learn the deictic policy directly, without 

learning an intermediate value function. 

The algorithm we describe is similar to other RL algorithms in that the robot learns by 

exploring the environment.  How this exploration is done is part of the learning algorithm.  For 
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example, a popular exploration policy for Q-learning is ε-greedy in which ε fraction of the time a 

random action is chosen and at all other times, an action is chosen using the current Q-function 

derived policy.  Many other exploration methods have been used with Q-learning such as upper 

confidence bound (UCB) and soft-max action selection [6].  In contrast, the R-max learning 

algorithm always follows its currently calculated optimal policy [8].  For our algorithm, like R-

max, we also always use the current policy for choosing the next action.  However, for us this 

strategy has a downside.  The incomplete/imperfect policy may lead the robot in “circles”, 

repeating the same action or sequence of actions over and over again.  For example, suppose 

for the current situation the policy says rotate left a half turn.  After performing the rotation, 

for the new situation the policy says rotate right a half turn.  After this the robot is back where 

it started and ends up rotating left and then right forever.  For the R-max algorithm, this kind of 

phenomena was reported by Grześ and Hoey [80].  We have also observed this in tests with R-

max but in our experience, the problem occurs infrequently.    A simple solution is to add a limit 

to the number of actions allowed in an episode.  Then, when a repeated sequence of actions is 

encountered, the episode ends when the action count reaches the limit.  As an example, the 

CANDID algorithm [37] uses this method.  Unfortunately, for our deictic policy learning 

algorithm, looping behavior is much more frequent.  For example, when learning the name-tags 

task, more than 82% of episodes end because of a repeated sequence situation.  In this case, 

using the simple solution adds many unneeded robot actions to the learning process.   

Obviously, a better solution is desired.   So, to detect the repeated sequence situation at the 

earliest possible time, we allow the robot to observe not only the deictic descriptors but also 

the Markovian states.  The algorithm keeps a path of full state information and as soon as a 
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repeat is discovered, the algorithm realizes it must repair the flawed deictic policy.  Note that 

after learning the deictic descriptor policy, the states are no longer needed and performing the 

task may proceed without the Markovian states. 

A second issue encountered when learning deictic descriptor policies is the conflicting 

actions problem which is related to perceptual aliasing [15].  The conflicting actions problem 

occurs when the Markovian world has 2 (or more) situations mapping to the same deictic 

descriptor and each situation requires a different action.   Our learning algorithm manages this 

conflicting action problem by using sub-policies.  Sub-policies are alternative policies to the 

main policy.  The algorithm uses special actions we call “mental” actions to select and return 

from an alternate policy (we limit alternate policy selection to be non-recursive).  This feature 

adds a hierarchical quality to the algorithm but also adds complexity.  Although a sub-policy 

permits multiple actions per deictic descriptor, the algorithm must decide when to switch to 

and return from the alternate policy.  Also, the overall size of the policy is increased. 

Adding mental action results in a mental environment.  The robot can always view its 

mental environment but it still must be kept up with.  Our algorithm utilizes what we call a Z-

state for this purpose.  A Z-state is the combination of the Markovian physical state and the 

mental state.  At a minimum, the mental state consists of a current alternate policy index and a 

call stack of the previous switched-to alternate policies.  The mental state may also include 

attention pointers like the focus pointer.  Z-states are used during deictic policy learning.  After 

learning is complete, the Z-states are no longer needed but the mental environment must be 

maintained during task performance. 
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4.2.  The Basic Deictic Descriptor Task Policy Learning Algorithm 

Let’s move on to the algorithm.  Note that we describe the algorithm with pseudocode 

somewhat similar to the python programming language and use terms like procedure and 

routine.  As discussed above, the robot perceives the environment’s configurations as 

Markovian states and deictic descriptors.  In the following discussion, we use the terms state 

and descriptor in place of Markovian state and deictic descriptor. 

The top-level procedure for our algorithm, named LearnPolicy, has the purpose of 

learning a deictic policy for a domain task.  Roughly speaking a deictic policy P maps descriptors 

to actions; namely P consists of a set of rules of the form 𝐷𝑒𝑖𝑐𝑡𝑖𝑐𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟 →  𝐴𝑐𝑡𝑖𝑜𝑛.   A 

simplified overview schematic of the procedure is shown in Figure 4.1. 

The LearnPolicy procedure is given a list of training examples which are supplied by the 

user.  Each training example is an instance environment along with an initial state.  The initial 

state corresponds to an initial configuration of the instance environment.  The procedure 

begins by creating an empty seed policy and initializing the totalCost variable to zero.  Then, 

starting with the first environment/start-state pair, it calls the ExtendPolicy procedure (see 

overview in Figure 4.2).  The ExtendPolicy procedure creates a list of policies which, when used 

by the robot, perform the domain task successfully for the given instance environment.  The 

LearnPolicy then uses these successful policies as seed policies to the ExtendPolicy procedure 

for the second training example.  These steps are continued for each training example.  After 

the last pair has been processed, each policy in the final list of successful policies has worked in 

each of the environments.  Each of these policies also carries a total cost value which is the sum 

of the costs debited the robot during task execution in each of the environments.  The 
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LearnPolicy returns the policy (or policies) with the minimum total cost.  Note that if at any 

step, none of the seed policies produce success lists, the LearnPolicy procedure returns an 

empty list indicating failure. 

 
Figure 4.1.  A simplified overview of the LearnPolicy procedure. 

Now, given the above algorithm overview, let’s delve deeper with a description in 

pseudocode.  The top-level/main procedure of the algorithm processes the list of training 

examples in a sequential manner.  The pseudocode for this top-level procedure, LearnPolicy, is 

shown in Figure 4.3.  The LearnPolicy procedure requires three arguments: 
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 Env:  The environment object used for initialization, perceiving states and 

descriptors, performing actions,  receiving rewards, and communicating task 

completion status.  Basically, this object is how the learning algorithm interacts 

with the world. 

 s0List:  This is the list of training examples.  Each element is an initializer for the 

instance environment for the domain task. 

 maxSize:  This an integer representing the limit to the size of a deictic descriptor 

policy. 

The procedure begins by creating a success list (successList0) initialized to a tuple with elements 

of 0 and policy (lines 2,3,4).  The policy is actually an empty deictic descriptor seed policy and 

the 0 represents the incurred cost of the policy so far.   Line 5 starts the main loop for 

processing each of the training examples.  A new empty success list (sucessList1) is created in 

line 6 followed by a loop which calls the subroutine ExtendPolicy for each tuple in successList0.  

The ExtendPolicy subroutine is described in detail below.  It returns a list of successful policies 

and costs for the training example and trial policy.   If this list is not empty, it is added to the 

successList1.  After all the policies in successList0 are tried, it may be the case that no policies 

were extended.  This is a failed situation and is tested in line 12.  Once all the training examples 

have been processed, lines 16-25 determine the best policy (or policies) which is then returned. 

The heart of the processing, in its most basic form, is the ExtendPolicy procedure (see 

pseudocode in Figure 4.4).  The purpose of the ExtendPolicy procedure is to find extensions to a  
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Figure 4.2.  A simplified overview of the ExtendPolicy procedure. 

seed policy (which may be empty) where the extended policies allow the robot, starting in a 

given initial situation of a given environment, to complete the domain task.  The inputs to this 

procedure are an environment, a deictic policy, an action set, an initial state, a total cost and a 

maximum policy size.  The environment may be any instance environment from the domain of 

the domain task.  The deictic policy is a seed policy which may be empty.  Actions from the 

action set are candidates for policy extension entries.  The initial situation is the state 

corresponding to an initial configuration of the instance environment.  The maxSize is an 
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integer representing the maximum number of entries allowed in an extended policy.  We 

discuss the totalCost argument later.  The ExtendPolicy procedure extends the seed policy by 

adding new action entries from the given action set to the seed policy, perhaps creating 

multiple extended policies.  The new entry positions are found by exploring the environment.  

The procedure has 2 sections: the episode section and the policy-extending section.  In the 

episode section (lines 6-28), the robot starts in the initialized environment and repeatedly takes 

actions using the current deictic policy.  Note that the policy is composed of a main policy and 

zero or more sub-policies  which are indexed by the z-state’s ‘m’ element (z.m) where the z-

state is the combined mental and physical state (the Markovian state).  The episode ends in one 

of 4 ways.  The first is when the task completes successfully and the policy either confirms this 

(the 'Q' mental action) or has no entry yet for the descriptor (lines 22-27).  Either way, the 

current policy is updated with the mental 'Q' action and added to the success list.  In the second 

case, the task is complete but the policy has a non-quit entry for the descriptor.  This indicates a 

flawed policy and the policy is discarded.  The third case occurs when a repeated sequence is 

detected (line 18).  This also indicates a flawed policy and the policy is discarded.  In the final 

case, the robot has reached a point in the environment where the deictic policy has no entry for 

the current descriptor (lines 14-16).  This is a learning situation and the policy needs extending 

to cover the newly seen situation.  This brings us to section 2 of the procedure.  Before 

extending the policy with a new action entry, section 2 (lines 30-33) first checks that the policy 

size is less than the maxSize parameter.  If the policy is deemed extendable, extended versions 

of the policy are created and added to a policy stack.  Each new policy has an applicable 

candidate action inserted to cover the encountered situation.  The next trial policy is then 
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popped off the policy stack and another episode is start (lines 34 and 35).  Once the policy stack 

is empty, the ExtendPolicy procedure returns the success list to the main training example 

processing procedure.  Note that if the seed policy fails (the first episode tests the seed policy) 

then an empty list is returned indicating a flawed seed policy.  Also, if the seed policy is 

successful, no extensions are made, and the seed policy is returned as the only element of the 

success list.  Thus, we see that the only case where extended policies are returned is when the 

robot encounters a learning situation during the first episode using the seed policy. 

The ExtendPolicy procedure uses several subroutines to perform its duties.  These 

subroutines are not described in detail but the following briefly outlines their meaning and role: 

 Env.Init(s0):  This function initializes the environment to the configuration 

corresponding to the Markovian state s0.  This may involve the robot signaling the 

user and request the initialization.  The user would respond by manually arranging 

the environment to the requested state and then instructing the robot to 

continue.  Obviously, this is undesirable but sometimes unavoidable.  In Chapter 6 

we improve the algorithm to minimize environment initializations. 

 Env.Descriptor:  This function returns the deictic descriptor for the current 

environment configuration.  For the robot, learning this function is a prerequisite 

to learning the deictic descriptor task policy. 

 DoAction(Env, z, action):  This is the interfacing procedure which directs the robot 

to perform a mental or physical action.  DoAction returns the new z-state, the cost 

of performing the action, and a flag signifying the task completion status.  
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Detecting the task completion is feedback from the environment Env which may 

or may not be automated by the user. 

 PolicySize(P):  This function returns the number of action entries in policy P. 

 CreatePolicyExtensions(P, actionSet, m, d):  This procedure creates extended 

policies from policy P, each with an action entry from the action set for the sub-

policy indexed by m (m=0 means the main policy) and the descriptor d.  The 

extended policies are returned in a list.   

Figure 4.3.  The pseudocode for the LearnPolicy procedure of the basic deictic policy learning 
algorithm. 
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Figure 4.4.  The pseudocode for the ExtendPolicy procedure of the basic deictic policy learning 
algorithm. 

As mentioned above, the user is responsible for choosing domain training instance 

environments and initial conditions for learning the domain task.    This choice could be random 

but this may not be the best strategy.  For example, suppose our user wants to show off her 

robot's learning ability by having it learn the blocks world on(A,B) task for instance 

environments of up to 100 blocks starting with any arrangement of these blocks.  For training 

purposes, should the user start with an environment of 100 blocks, arrange them randomly in 

stacks, and instruct the robot "Learn the task"?  Remember, the robot doesn't even know what 
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the goal of the task is and even a 10 block environment has over 58 million starting 

configurations.  Humans, not knowing what the goal is, would find the 100 block environment 

difficult.  For our algorithm, just like humans, starting with small environments and then 

graduating to larger environments results in a quicker, less costly learning experience for the 

robot.  As we discuss later in the blocks world example, our first training example has the A and 

B blocks on the table.  The second is block B stacked on A. We continue with a few 4 block 

examples, a couple of 5 block, a 6 block, a 7 block, and end with a 10 block example.  After 

processing this list of training examples, the robot has learned how to do the on(A,B) task for 

any number of blocks.  If we assume it takes a couple of seconds to move a block to a new 

location, 30 seconds to set up a configuration, and we use the best version of our algorithm 

(see Chapter 6), the robot learns the task in less than an hour.  In contrast, using the basic 

algorithm discussed above would result in a 4 day learning time.  Reversing the order of the 

environments for training causes the best algorithm to take over 4 hours and the basic 

algorithm 18 days. 

In the next chapter, we use a set of 7 worlds/tasks to test learning algorithms.  We 

describe each world environment and its sizing dimension or dimensions along with one or 

more tasks applicable to the environment.  The details of starting configurations, determining 

the task completion configuration or configurations, action list, and how actions produce valid 

and invalid transitions are included in the description. 
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Chapter 5.  Testing the Deictic Policy Learning Algorithm 

5.1.  Metrics and Assumptions for Task Learning 

As discussed in previous chapters, the robot’s objective during task learning is to create a 

task policy.  To do this, the robot utilizes a learning algorithm.  Since some learning algorithms 

are better in some sense than other algorithms, we outline how we evaluate learning 

algorithms when these algorithms are used for robots.  In all cases, we assume the robot is 

learning online as opposed to learning, for example, in a simulation and then transferring the 

policy to the robot.  The emphasis here is the robot’s physical actions take time (on the order of 

seconds) to perform and time is valuable.  Also, we assume the user/trainer may not be a 

roboticist but does understand how to use tools for teaching the robot such things as object 

recognition and feature categories and how to set up training scenarios.  So, we assume for 

robot task training, the user’s time is valuable and setting up training trials takes time.   

Training a robot to perform a task has some pre-task-training costs and some during-task-

training costs.  For now, we ignore the pre-task-training costs and consider only the training 

costs incurred while actually training to perform the task.  Using the maxim “time is money”, 

the two largest time consuming components during task training are the number of robot 

physical actions taken and setting up (or resetting) the environment configuration for episodes.  

For example, consider a blocks world environment of ten blocks arranged in an initial 

configuration, C0,  of stacks on the table.  The user wants the robot to learn the task of 

arranging the blocks until block A is on block B.  The robot learns the task by trial and error 

where each trial is setup by the user to the initial configuration, C0.  This process can take a lot 

of trials and each trial may end in a different configuration making it more difficult for the user.  
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We could make an accurate timing calculation that included times for each action and times to 

reset to the initial configuration from any other configuration but, we won’t.  We opt to use a 

simple metric using a single time, Ta,  for each action and a single time, Te, for setting up an 

episode (trial).  Our simple metric is the sum of the number of actions taken by the robot during 

all trials times Ta plus the number of trials times Te.  For the example, let’s assume each robot 

action of moving a block takes about 4 seconds to complete and the user spends about 30 

seconds to reset the block configuration to C0.  If training takes a total of 6000 actions and 280 

episodes then our simple metric has a value of 6000*4 + 280*30 --> 9 hours.  Wherever 

possible, we use this metric to compare our task learning algorithms to other task learning 

algorithms.   

Now, we spend the rest of this chapter looking at different environments and tasks: 

 Name tags world:  A robot learns to alphabetize name tags on a table. 

 Blocks world:  A robot learns to arrange blocks so that block A is on block B. 

 Whiteboard world:  A robot learns how to add binary numbers. 

 Warehouse world:  A robot learns how to find a green box and pick it up. 

 Grid world:  A robot learns to navigate an unfamiliar sequence of rooms. 

 Warehouse world:  A robot learns to move a size-ordered stack of boxes. 

 Manufacturing world:  A robot learns about inspecting hidden box contents. 

For each of these, we describe the learning difficulty, what robot actions are used, the 

propositional and deictic representation, and the training examples.  Then we compare our 

basic deictic task policy learning algorithm to the Q-learning algorithm, the R-max algorithm, 
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and any available prior works.  In Chapter 6, we substantially improve the basic algorithm and 

present a summary comparison with results of this chapter. 

5.2.  Name Tags World: Alphabetize Name Tags 

For this environment and example task, imagine a table with a number of distinct name 

tags on it.  A small robot on the table starts at the left-most name tag and its task is to arrange 

the tags in alphabetical order, ending up at the right-most name tag.   The robot has actions for 

moving left/right along the table.  Using its left or right hand, it may pick up the name tag it is 

facing and it may put down a name tag in an empty position it is facing.  At the user’s 

discretion, the robot may have a left or right hand preference (which hand it uses first when 

both hands are empty).  Each action has an associated cost of 1 unit of energy.  In some 

situations, an action is illegal and attempting the action results in no change to the 

environment.  An example is the robot attempting to pick up a name tag when the robot is 

facing an empty tag position.  When the robot is positioned at the right-most tag with the name 

tags in alphabetical order, the robot receives a status from the environment signaling the task is 

complete.   

5.2.1.  Environment Domain 

We want the robot to learn to perform this task for any number of name tags and for any 

names on the tags.  So, the environment’s size varies with the number of name tags. 

Making the example specific, let’s suppose we have six name tags on the table with the 

robot facing the left-most tag as shown the top of Figure 5.1.  For 6 tags, there are 720 of these 

initial/starting configurations.  The complete physical configuration of the robot/environment is 
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described by the position of the robot and the position of each name tag on the table or in the 

left or right hand of the robot.   

 
Figure 5.1.  A name tag task example.  The top is the initial configuration.  The bottom is the 
final configuration with the name tags alphabetized.  

Note that the number of distinct legal configurations (robot and name tags) is surprisingly 

large at 120,960.  Of these 120,960 possible configurations, only 1 is the task complete 

configuration (bottom of Figure 5.1).  After task learning, the robot can start in any initial 

configuration and using its learned policy, complete the task without performing any illegal 
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actions.  Note, the number of environmental configurations (robot and tags) increases rather 

quickly with the number of name tags (Table 5.1) making this a very challenging learning task 

for the robot.  For the 6 name tags task, a robot acting randomly takes about 300 million total 

actions on average (about 420,000 per initial configuration) to complete the task for all the 

starting configurations.  This would take the robot over 9 years if it could perform 1 action per 

second. 

Table 5.1.  The number of name tag initial configurations, environment configurations (includes 
the robot), and task goal configurations for alphabetizing name tags task. 

No. of 
name tags  

No. of initial 
configurations 

No. of environment 
configurations 

No. of task complete 
configurations 

2 2 24 1 

3 6 180 1 

4 24 1 440 1 

5 120 12 600 1 

6 720 120 960 1 

8 40 320 14 515 200 1 

10 3 628 800 2 395 008 000 1 

15 1 307 674 368 000 2 667 655 710 720 000 1 

 

5.2.2.  Actions 

To transition from a starting configuration to the completed task configuration, the robot 

has 5 actions: 

 R: the robot moves right to the next name tag position.  The robot cannot move 

past the right-most name tag and attempting this results in no movement. 

 L: the robot moves left to the previous name tag position.  The robot cannot move 

past the left-most name tag and attempting this results in no movement. 
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 G: the robot picks up the name tag it is facing with its left hand or right hand if it 

has a name tag in its left hand (left-handed robot).  If the robot is facing a position 

with no name tag, nothing changes in the configuration. 

 PL: the robot places the name tag in its left hand on the table.  The robot must be 

facing an empty name tag position for this to succeed.  

 PR: robot places the name tag in its right hand on the table.  The robot must be 

facing an empty name tag position for this to succeed. 

5.2.3.  Propositional Representation 

The propositional attributes and their values we use for describing the 6 name tag 

environment configurations are (Table 5.2) the position of the robot, “RobotPos”, with an 

integer value of 1 to 6, what the robot’s left hand is holding, “LHolding”, with a string value of 

the name or ‘None’, what the robot’s right hand holding, “RHolding”, and the 6 name tag 

position, “NtagPi”, content name strings or ‘None’ for an empty position.      

Table 5.2.  The propositional representation for the initial configuration of 6 name tags as 
shown in the top of Figure 5.1. 

 Feature  
Number 

Propostional 
Feature 

Feature
Value 

1  RobotPos 1 

2  LHolding None 

3 RHolding None 

4 NtagP1 Dan 

5 NtagP2 Ann 

6 NtagP3 Bob 

7 NtagP4 Fay 

8 NtagP5 Cal 

9 NtagP6 Eve 
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For each learning episode, the robot is placed in a starting configuration and either 

finishes the task or is stopped after a large number of actions have been taken.   This episodic 

learning is repeated until the robot can perform the task for all 720 initial configurations. 

5.2.4.  Deictic Representation 

For the deictic descriptors, the robot has two different modes of attention, one when it is 

not holding any name tags and the other when it is holding 1 or 2 name tags.  So, when the 

robot is not holding a name tag, its focus pointer is on the cards in front of it.  This makes sense 

since it is trying to determine if the name tags are in the correct order.  But, when it is holding a 

name tag, it is interested in the relation of that name tag to the one in front of it.   To 

differentiate these modes, the robot has a feature, “Holding”, with a value equal to the number 

of name tags it is holding, 0, 1, or 2.  When its hands are empty, the robot’s focus is on the 

name tag it is facing and on the name tags on either side of the “facing” name tag.  We call 

these the left tag, the facing tag, and the right tag.  The robot wants to know if these name tags 

are out of order so we use 2 boolean features, “LeftNotOk” and “RightNotOk”.  The 

“LeftNotOk” feature has a value of False unless the left  and facing tags are not in the correct 

order.  If robot’s position is at the left-most name tag then there is no “left tag” so “LeftNotOk” 

is False.  The “RightNotOk” feature is like the “LeftNotOk” feature except it compares the right 

tag with the facing tag.  The robot also has a boolean feature for detecting if it is facing the 

right-most name tag, “PosRight”, where a value of True indicates the robot is facing the right-

most name tag.  With these 3 features, “LeftNotOk”, “RightNotOk”, and “PosRight”,  we have 6 

realizable deictic descriptors (two of the eight combinations are not possible when the robot is 

at the right-most name tag).   Note that the features do not depend on the number of name 
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tags or the actual names on each name tag.  This means that these deictic descriptors are 

independent of the environment domain’s specification parameters.  

The comparisons change when the robot has picked up a name tag.  Now it is focused on 

the alphabetical relation of the name tag in its hand to the name tag it may be facing.  There 

are 3 cases for comparisons.  The first is right after the robot picks up a name tag and is facing 

an empty name tag position.  There is no comparison for this case.  The second and third cases 

are when the robot is facing a name tag.   So, to cover these different cases, we have a feature 

“Compare” with values ‘None’, ‘Ok’, and ‘NotOk’.  The value is ‘NotOk’ when the name tag in 

the robot’s hand is not in alphabetical order with the name tag it is facing.  Note that if the 

robot is holding 2 name tags, no comparison is made.  Again, in this mode, the descriptors do 

not depend on the number of name tags or the actual names on each name tag.  Also note that 

the robot’s focus is related to the physical actions and no mental focus pointer actions are 

required for this task. 

Table 5.3 shows the 10 descriptors which follow our deictic mantra “focus on what is currently 

important to the task”.  The robot must be taught to recognize these 10 descriptors before 

deictic descriptor task policy learning begins.   

5.2.5.  Training 

 As discuss in Chapter 4, the deictic descriptor task policy learning algorithm requires a list 

of training examples.  Since the learned deictic descriptor task policy will work on any number 

of tags, we have many choices of training examples.  So, to make learning faster, we give the 

robot small examples, one with 2 name tags, one with 3 name tags, and the last with 4 name 

tags.  For the 2 name tags, the robot learns how to swap the name tags.  The 3 name tags is a 
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little more difficult with no name tag ending in its starting position.  In the 4 name tag case, the 

order starts out completely reversed.  Here are the 3 initial arrangements of name tags: 

1. [Bob, Ann] 

2. [Bob, Cal, Ann] 

3. [Dan, Cal, Bob, Ann] 

Table 5.3.  The deictic descriptors formed from the 5 features of the alphabetize name tags 
task.  Blanks are “don’t care” entries. 

Deictic 
Descriptor 

Holding LeftNotOk RightNotOk Compare PosRight 

D1 0 False False  False 

D2 0 False True  False 

D3 0 True False  False 

D4 0 True True  False 

D5 0 False   True 

D6 0 True   True 

D7 1   Ok  

D8 1   NotOk  

D9 1   None  

D10 2     

 

The robot, using the above examples, learns the deictic policy shown in Table 5.4.  The 

two right-most columns are the main-policy and a sub-policy.  When the robot perceives the D2 

descriptor (facing tag and right tag out of order), it uses the mental action ‘x1’ to switch to the 

sub-policy and then executes the get action G.  The sub-policy remains in effect until the robot 

perceives the D7 descriptor.  It then drops back into the main-policy with the mental quit 

action, ‘q’, and executes a left action ‘L’.  Examining this policy closer, we see that the sub-

policy and the latter part of the main-policy form a “swap” sequence of two adjacent name 

tags.  The deictic descriptor D9 is also interesting in that it has different physical actions in the 

main and sub-policies.  In the main policy, the robot puts  the name tag in its right hand back 
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Table 5.4.  The deictic descriptor task policy for alphabetizing name tags.  The right two 
columns are the action entries. 

Deictic 
descr 

Holding LeftNotOk RightNotOk Compare PosRight Main-
policy 

Sub-
policy 

D1  0 False False  False R  

D2  0 False True  False x1 G 

D3 0 True False  False L  

D4 0 True True  False   

D5 0 False   True Q  

D6 0 True   True   

D7 1   Ok  L q 

D8 1   NotOk   G 

D9 1   None  PR R 

D10 2      PL 

 

on the table whereas in the sub-policy, the robot moves right.  This represents a perceptual 

aliasing situation where the Markov state actions are different.  Also note that two of the 

descriptors have no action entries.  The learning algorithm discovered that these two situations 

can never occur during task execution using this deictic policy.  This is not an unusual 

consequence since the user is responsible for coming up with the deictic descriptors in the first 

place and cannot completely foresee how the  learning algorithm will use them.   

Now, let’s use the deictic policy on the 6 name tags environment shown in Figure 5.1.  

The execution steps are show in Table 5.5 with time step 0 being the initial configuration with 

the robot facing the left-most name tags (we have abbreviated the name tags and the robot is 

shown as a left hand and right hand contents).    Since the D and A tags are not in order, the 

robot starts a swap sequence in time step 0.  It uses this same swap sequence 4 more times on 

its march to the right-most name tag.  In one case (see time step 21), the robot has to move 

back to the left to fix the D and C tags.  This example makes use of every descriptor which has 
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an associated action (or actions).  Also, the environment does not need to signal the robot that 

it has completed the task.  The robot knows the task is complete when it perceives the D5 

descriptor.  The reader probably recognizes that the robot has learned the “insertion sort” 

algorithm.  This is the algorithm that people often use to sort bridge hands [108]. 

Table 5.5.  The robot’s task execution sequence for alphabetizing the name tags in Figure 5.1.  
The robot is using the deictic descriptor task policy of Table 5.4. 

Time 
step  

Deictic 
descriptor 

No. of mental, physical 
configurations 

Action 

0 D2   D   A   B   F   C   E 

(_,_) 
x1, G 

1 D9   _   A   B   F   C   E 

(D,_) 
R 

2 D8   _   A   B   F   C   E 

    (D,_) 
G 

3 D10   _   _   B   F   C   E 

    (D,A) 
PL 

4 D7   _   D   B   F   C   E 

    (_,A) 
q, L 

5 D9   _   D   B   F   C   E 

(_,A) 
PR 

6 D1   A   D   B   F   C   E 

(_,_) 
R 

7 D2   A   D   B   F   C   E 

    (_,_) 
x1, G 

8 D9   A   _   B   F   C   E 

    (D,_) 
R 

9 D8   A   _   B   F   C   E 

        (D,_) 
G 

10 D10   A   _   _   F   C   E 

        (D,B) 
PL 

11 D7   A   _   D   F   C   E 

        (_,B) 
q, L 

12 D9   A   _   B   F   C   E 

    (_,B) 
PR 

13 D1   A   B   D   F   C   E 

    (_,_) 
R 

14 D1   A   B   D   F   C   E 

        (_,_) 
R 

15 D2   A   B   D   F   C   E 

            (_,_) 
x1, G 

16 D9   A   B   D   _   C   E 

            (F,_) 
R 

 

(table cont’d.) 
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Time 
step  

Deictic 
descriptor 

No. of mental, physical 
configurations 

Action 

17 D8   A   B   D   _   C   E 

                (F,_) 
G 

18 D10   A   B   D   _   _   E 

                (F,C) 
PL 

19 D7   A   B   D   _   F   E 

                (_,C) 
q, L 

20 D9   A   B   D   _   F   E 

            (_,C) 
PR 

21 D3   A   B   D   C   F   E 

            (_,_) 
L 

22 D2   A   B   D   C   F   E 

        (_,_) 
x1, G 

23 D9   A   B   _   C   F   E 

        (D,_) 
R 

24 D8   A   B   _   C   F   E 

            (D,_) 
G 

25 D10   A   B   _   _   F   E 

            (D,C) 
PL 

26 D7   A   B   _   D   F   E 

            (_,C) 
q, L 

27 D9   A   B   _   D   F   E 

        (_,C) 
PR 

28 D1   A   B   C   D   F   E 

        (_,_) 
R 

29 D1   A   B   C   D   F   E 

            (_,_) 
R 

30 D2   A   B   C   D   F   E 

                (_,_) 
x1, G 

31 D9   A   B   C   D   _   E 

                (F,_) 
R 

32 D8   A   B   C   D   _   E 

                    (F,_) 
G 

33 D10   A   B   C   D   _   _ 

                    (F,E) 
PL 

34 D7   A   B   C   D   _   F 

                    (_,E) 
q, L 

35 D9   A   B   C   D   _   F 

                (_,E) 
PR 

36 D1   A   B   C   D   E   F 

                (_,_) 
R 

37 D5   A   B   C   D   E   F 

                    (_,_) 
Q 

 

5.2.6.  Q-learning and R-max Comparisons 

For example comparisons, we ran the robot with Q-learning and R-max algorithms on the 

small 6 name tag environment of Figure 5.1 and using the propositional representation.  For 
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each learning episode, the robot is placed in a starting configuration and either finishes the task 

or is stopped after a large number of actions have been taken.   This episodic learning is 

repeated until the robot can perform the task for all 720 initial configurations.  For the 

performance metric, we using 1 second per physical action and 10 seconds to set up an 

episode.  For the deictic learning, we did a learning session with the small training set 

environments of 2 tags, 3 tags, and 4 tags and one with the 6 name tag environment.  In all 

cases, each action costs the robot 1 unit.  Also, for Q-learning and R-max, the robot received a 

reward of 10 units when completing the task.  The results (Table 5.6) show the robot learns a 

task policy quicker with the deictic algorithm than with either Q-learning or R-max.  Also, using 

smaller environment instances for training examples improves the deictic learner’s metric. 

Table 5.6.  The algorithm performance results for the task of alphabetizing 6 name tags. 

Task: Alphabetize 6 name 
tags 

Q-learning 
 (6 tags) 

R-max  
(6 tags) 

Deictic with small 
training examples 

Deictic  
(6 tags) 

No. of physical actions 9191263 799369 12474 70322 

No. of training episodes 32446 750 2094 8230 

Training time metric (Days) 110 9.34 0.39 1.77 

 

For the deictic descriptor policy, the robot has learned how to use “insert sort” [108] and 

can alphabetize any number of name tags with any names on them.  In contrast, when using 

either of the other two policies (Q-learning, R-max), the robot can only alphabetize these 6 

name tags with the specific 6 names.  But, it is very, very good at doing these specific 6 name 

tags.   In essence, the robot has memorized what to do for any situation.  On average, the robot 

only requires 42% of the time required by the deictic policy to perform the 6 name tag task. 
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5.3.  Blocks World: Stack Block A on Block B 

The blocks world environment we use consists of two or more blocks on a table with each 

block labeled with a distinct name.  The blocks are arranged on the table in stacks of one or 

more blocks and there is room on the table to accommodate the largest number of stacks (all 

stacks having a single block).  An environment configuration captures the block/block and 

block/table situation with the on(X,Y) relation, independent of where blocks are physically 

located on the table.   For example, the configuration for the blocks/table in Figure 5.2 using 

relational ground facts is: 

{ on(C, Table), on(E, Table), on(A, E), on(G, A), on(B, Table), on(H, B) } 

Note that moving a whole stack from one place on the table to another place on the table does 

not change the environment configuration. 

 
Figure 5.2.  A blocks world example configuration for the on(A,B) task.  The physical location of 
the blocks on the table is not captured, only the relationship between the blocks and the table. 

In the relational representation setting, a popular blocks world task is the on(A,B) task 

where blocks are moved around until block A is on block B.  For example, Dzeroski, Raedt, and 

Driessens [18] used relational-RL (Q-RRL and P-RRL) to learn this task and we use their example 

as our guide in the following description. 

                                                         Table (T) 

D

C 

D
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D
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D
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D

G 

D

H 
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  The environment configurations they used are as we describe above with one block 

named A, another block named B and zero or more remaining blocks also having distinct 

names.  The robot consists of a single gripper and has a parameterized high-level action 

move(X,Y) where X  is a variable for a block name and Y is a  variable for a block name or the 

table.  For our work, this high-level action is implemented using the robot’s underlying control 

system, vision system, and primitive actions.  The robot’s vision system knows the physical 

position of all the blocks and their names and the control system, using this information, plans a 

list of primitive actions to move block X to the top of block Y.  If either of the blocks is not clear, 

the plan is infeasible and the high-level action fails resulting in no moved block.  If Y is the table 

then only block X must be clear since the table can always accept another block.  Note a 

significant difference between our implementation and Dzeroski’s is that our learning algorithm 

must learn which actions are valid for each block configuration.  In Dzeroski’s description, the 

robot is given the actions applicable for each configuration it encounters. 

5.3.1.  Actions 

In a propositional representation of the blocks world, specifying actions for moving blocks 

from stack to stack or to the table requires some innovation.  The relational action, move(X,Y), 

has the action parameterized with variables X and Y.  Since variables are not allowed in the 

propositional blocks world, some other actions must be used.  A straightforward solution is to 

have N2 actions of the form MOV.X.Y where N is the number of blocks, X is a block name, Y is a 

block name or Table, and X <> Y.  The underlying control system parses the action to obtain the 

block names and with its knowledge of block locations, makes the required move (if the move is 

valid for the current situation).  We cannot use this approach since our goal is to learn a single 
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policy applicable to a blocks world independent of the number of blocks in the environment.  

So, in our implementation, we have 2 move actions.  The first, MOVS, moves a block from one 

stack to another and the second, MOVT, moves a block from a stack to the table.  To implement 

these actions, we add functionality to the robots underlying vision system.  As described above, 

the robot’s vision system sees all the blocks and their names and knows the complete block 

object layout.  We add to this vision system a robot controllable object “pointer” used to focus 

attention on a single block and the stack it is part of.  We call the “pointed to” block the focus 

block and its stack the focus stack.  The robot can move the object pointer with mental actions 

NEXT and UP where NEXT moves the object pointer to the next stack’s bottom block and UP 

moves the object pointer up a block in that stack.  If the robot has moved the pointer to a 

block, it can issue the PUT mental action which results in a “virtual” sticker being put on that 

block (only one block can be stickered at a time).  This sticker distinguishes the block as the 

block to be moved.  The robot can then move the object pointer to a different stack and issue 

the action MOVS which commands the gripper to move the “stickered” block to the top of that 

stack.  Of course this action fails if the “stickered” block is not clear.  The MOVS action also 

removes the virtual sticker from the “stickered” block, allowing the virtual sticker to be reused.  

The robot has an additional action, MOVT, which commands the gripper to move the top block 

of the focus stack to the table.  Thus, with these 3 mental actions and 2 physical actions, the 

robot can find specific blocks and move them from place to place without the need of 

parameterized actions.  Here is a synopsis of the actions: 

 UP: Mentally move the focus pointer to the block above the current focus block.  If 

the current focus block is the top block in the stack then nothing happens. 
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 NEXT: Mentally move the focus pointer to the next stack’s bottom block.  This 

makes this stack the focus stack for physical moves.  If there is only one stack then 

nothing happens. 

 PUT: Mentally put the virtual sticker on the focus block.  This mental action fails if 

the virtual sticker is in use on a block. 

 MOVS: Physically move the stickered block to the top of the focus stack.  This 

action fails if there is no stickered block, or if the stickered block has a block on it, 

or if the stickered block is also the top block in the focus stack. 

 MOVT: Physically move the top block of the focus stack to the table.  This action 

fails if the focus stack is a single block stack. 

5.3.2.  Environment Domain 

Although having a small action set is nice, it comes at a significant price in terms of the 

number of environment configurations.  The total configuration now includes not just the 

physical configuration but also the mental configuration of where the focus block is and where 

(if any) the stickered block is.  This method increases the number of environment configurations 

by (roughly) a factor of N2 when N is the number of blocks (see Table 5.7).  Also, each physical 

move action is accompanied by some number of mental actions, making the sequence of 

actions longer and the determination of applicable actions more complicated. 

5.3.3.  Propositional Representation 

There are a number of ways to propositionally represent the mental and physical aspects 

of our block world configurations.  For our scheme, each block has a feature and the object 

pointer has 2 features.  There is also a feature naming the stickered block.  The block feature is 
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“On<BlockName>” where BlockName is replaced with the block name.  The “OnX” feature for 

the block named X has a value equal to the name of the block on block X or “None” if block X is 

clear.  The “Stickered” feature has the value of the name of the stickered block or ‘None’ if no 

block is stickered.  The focus pointer features are “Stack” and “Position”.  The “Stack” feature 

has the value equal to the name of the bottom block of the focus stack.  The “Position” feature 

has the value 1 if the focus block is the bottom block, 2 for the next block up, and so forth.     

Table 5.7.  The number of configurations for different numbers of blocks. 

No. of 
blocks  

No. of physical 
configurations 

No. of mental, physical 
configurations 

3 13 156 

4 73 1 460 

5 501 15 030 

6 4 051 170 142 

7 37 633 2 107 448 

8 394 353 28 393 416 

9 4 596 553 413 689 770 

10 58 941 091 6 483 520 010 

 

Figure 5.3 shows an example block world configuration of 8 blocks and Table 5.8 the 

propositional representation.  The action MOVS is valid for this configuration and would move 

block D onto block G changing block C “OnC”=’None’, and block G “OnG”=’D’.  The MOVT action 

is also valid and would move block G to the table.  In our implementation, the NEXT action uses 

alphabetical order so NEXT will move the focus pointer to the block F stack.  The UP action will 

move the focus pointer to block G.  Note that the focus pointer is restricted to point to a block 

so if it is pointing to the top block in a stack and the MOVT action is executed, the pointer will 

move down to the new top block in the stack.  Note that the focus pointer features are part of 
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the mental environment and not needed for a robot using the move actions MOV.X.Y as 

described in Section 5.3.1. 

Table 5.8.  The propositional representation for the block configuration of 8 blocks as shown in 
Figure 5.3. 

 Feature  
Number 

Propostional 
Feature 

Feature
Value 

1  Stack E 

2  Position 2 

3 Stickered D 

4 OnA G 

5 OnB H 

6 OnC D 

7 OnD None 

8 OnE A 

9 OnF None 

10 OnG None 

 

  
Figure 5.3.  A blocks world example configuration for the on(A,B) task.  Block D is shown 
“stickered” and the deictic focus pointer is on block A. 

5.3.4.  Deictic Representation 

The robot uses its focus pointer not only for move and put actions but also for perceiving 

the environment with deictic descriptors.  For this task, the robot is interested in several things: 

where is block A, where is block B, have I placed a virtual sticker on a block, what’s on block A, 
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what’s on block B, etc.  The robot does not care about the names of other blocks, only their 

relation to blocks A and B like if they are on block A or B.  So, it classifies non-A-or-B blocks as 

“other” blocks, bucketing them into one large group.  This is important because it makes the 

descriptors independent of the number of blocks in the environment.  So, we give the robot 2 

deictic features associated with the focus pointer and one related to the virtual sticker.  The 

first is “FocusBlock”.  This feature has 3 possible value, ‘A’, ‘B’,  and ‘O’ where ‘A’ indicates the 

focus is on block A, ‘B’ indicates the focus is on block B, and ‘O’ indicates the focus is on some 

other block, not A or B.  The second feature is “OnFocusBlk” which in words asks “What is on 

the focus block”.  It has the same 3 possible values as the “FocusBlock” feature plus ‘None’ 

indicating the top of the focus block is clear.  So, for example, if the focus block is block B and 

block A is directly on top of B then “FocusBlock”=’B’ and “OnFocusBlk”=’A’.  The third feature is 

a boolean feature associated with the virtual sticker, “VSinUse” which is True if a block has 

been stickered and False otherwise.  This feature is also independent of the number of blocks in 

the environment.  The combinations of these features results in 20 (not 24) deictic descriptors 

since block A cannot be on itself and the same for block B.  Table 5.9 shows these 20 deictic 

descriptors.  The 20 descriptors allow the robot to focus its attention on the objects important 

to completing the task.  Also, the robot does not care how many blocks are in the environment 

when performing the task.  It does, however, care about the number of blocks it has to deal 

with while learning the task.  Since, at the beginning of the learning process, the robot does not 

even know what the task is, it behooves the user to start with a small number of blocks in the 

environment. 
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Table 5.9.  The deictic descriptor features for the blocks world on(A,B) task. 

Deictic 
Descriptor 

FocusBlock OnFocusBlk VSinUse 

D1 O A False 

D2 O B False 

D3 O O False 

D4 O None False 

D5 O A True 

D6 O B True 

D7 O O True 

D8 O None True 

D9 A B False 

D10 A O False 

D11 A None False 

D12 A B True 

D13 A O True 

D14 A None True 

D15 B A False 

D16 B O False 

D17 B None False 

D18 B A True 

D19 B O True 

D20 B None True 

 

5.3.5.  Training 

For teaching the robot the on(A,B) task, we start with small environments and then move 

on to larger ones.  The 11 initial configurations are shown in Figure 5.4.  The focus pointer starts 

at the bottom block of the left-most stack in each of the configurations shown.  As outlined 

above, the deictic policy learning algorithm uses both the propositional states and the deictic 

descriptions. 

Let’s take the starting configuration 3 in Figure 5.4 as an example.  The robot’s focus 

begins on block B.  The robot converts its sensors readings and focus pointer information into 

values for the propositional features and deictic features as shown in Table 5.10 and Table 5.11. 
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Figure 5.4.  The eleven training examples for learning a deictic policy for the on(A,B) task.  The 
hash marks represent the table.  Training example 1 is block A and block B on the table.  
Training example 2 is block B on block A and block A on the table. 

 The deictic features for this starting configuration correspond to deictic descriptor D16 

from Table 5.9. 

As the robot explores, each of these is updated and used for deictic policy learning.  After 

the deictic descriptor task policy is learned, it is used for performing the task.  The focus pointer 
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is still used but the rest of the propositional state is not needed.  Table 5.12 displays the deictic 

descriptor policy.  The Q-learning and R-max algorithms use the propositional features for both 

learning and task execution.  Again, we emphasize that the features and values used for the 

deictic descriptors do not change as the number of blocks change which means the deictic task 

policy is universally applicable to any size blocks environment for the on(A,B) task.   

Table 5.10.  The propositional features and values for training example #3 (see Figure 5.4). 

Feature 
Number 

Propositional 
Feature 

Feature 
Value 

1 Stack B 

2 Position 1 

3 Stickered None 

4 OnA D 

5 OnB C 

6 OnC None 

7 OnD None 

 

Table 5.11.  The deictic features and values for training example #3 (see Figure 5.4). 

Feature 
Number 

Deictic 
Feature 

Feature 
Value 

1 FocusBlock B 

2 OnFocusBlk O 

3 VSinUse False 

 

In contrast, the number of propositional features and values change as the number of 

blocks varies.  For Q-learning and R-max, actions must be learned for the new propositional 

states if the deictic block move mechanism is not used.  Another interesting point concerns the 

propositional versus deictic features with respect to relations.  In the name tags world of the 

previous example, we required the robot to know an alphabetical relation between name tags 

for some of the deictic features.  The robot didn’t require any such relational information for 

the propositional features because the physical layout of the name tags could be used.  In this 
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blocks world with no physical block locations, relations are natural for both propositional and 

deictic features. 

Table 5.12.  The deictic descriptor policy for the on(A,B) task. 

Deictic 
Descriptor 

FocusBlock AboveFocus VSinUse Action 

D1 O A False UP 

D2 O B False UP 

D3 O O False UP 

D4 O None False NEXT 

D5 O A True  

D6 O B True UP 

D7 O O True UP 

D8 O None True NEXT 

D9 A B False MOVF 

D10 A O False MOVF 

D11 A None False PUT 

D12 A B True  

D13 A O True  

D14 A None True NEXT 

D15 B A False Q 

D16 B O False MOVF 

D17 B None False NEXT 

D18 B A True  

D19 B O True MOVF 

D20 B None True MOVS 

 

5.3.6.  Q-learning and R-max Comparisons 

The robot learns the deictic task policy show in Table 5.12 using the 11 training 

configurations of Figure 5.4.  As in the name tags world, some of the deictic descriptors are not 

used or needed.  Using this learned deictic descriptor task policy, we tested the robot on 

100,000 randomly generated blocks world environments where we varied the number blocks 

from 2 to 25 and the number of initial stacks from 1 to 5.  The robot reached the on(A,B) task 

goal in every case.  We ran experiments to compare learning times for our deictic policy 
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learner, Q-learning, and R-max.  For the value-based learners, we used the robot’s total time 

required to learn a policy to perform the on(A,B) task for all 5 block and 6 block environment 

configurations.  These results are compared with the time required for the robot to learn a 

universal deictic descriptor task policy.  These experiments all used the virtual sticker 

mechanism for moving blocks.  Since the value-based learners can use the propositionalized 

relational actions move(X, Y) --> MOV.X.Y, we also included experiments using these actions 

instead of the virtual sticker actions.  Here (Table 5.13) are the results (1 second per physical 

action, 10 seconds to setup an episode): 

Table 5.13.  The comparison results for the on(A,B) task learning. 

Task = on(A,B) Q-learning 
VS moves 

R-max  
VS moves 

Deictic Q-learning 
MOV.X.Y 

R-max 
MOV.X.Y 

No. of physical actions 2019895 512626 22583 128811 157638 

No. of episodes 385551 65762 9777 4230 4845 

Training metric (Days) 68 13.5 1.39 1.98 2.39 

 

The results show that the deictic learning algorithm outperformed the Q-learning 

algorithm and the R-max algorithm.  Also, the Q-learning algorithm slightly outperformed the R-

max algorithm when using the MOV.X.Y actions.  In all our other experiments, R-max is 

normally much better than Q-learning. 

5.3.7.  Comparisons with Existing Works 

The blocks world on(A,B) task has been used for testing in many relational reinforcement 

learning settings.  Sarjant [109] compiled results of many of these algorithms including CERRLA 

[28], P-RRL [18], RRL-TG [87], RRL-RIB [21], RRL-KBR [74], TRENDI [22], TreeNPPG [91], MARLIE 

[65], and FOXCS [96].  The results are shown in his table [109] which I reproduce in Table 5.14.  

The results show that for the on(A,B) task, the relational reinforcement learning algorithms can 
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learn a general policy for the task anywhere from 90% to 99% of the time.  The required 

number of episodes for the best algorithms ranges from 2000 to 10000.  In contrast, our basic 

deictic algorithm learns a general policy 100% of the time and takes about 10000 episodes.  Our 

improved deictic algorithm (see Chapter 6) learns a general policy for this task in less than 500 

episodes. 

Table 5.14.  RRL algorithm results (from Sarjant [109]). 

 

In Chapter 3, we covered the propositional approach of Langlois and Sloan [110].   Their 

results were good, reaching the on(A,B) task goal about 93% of the time for 3 to 10 block cases.  

5.4.  Warehouse World: Pick Up the Green Box 

For this example, we use a variation of the blocks world task introduced by Whitehead 

and Ballard [15].  In their original version, the agent is presented with blocks arranged in stacks 

on a conveyor belt.  One of the blocks is green and the others may be red or blue in any 

combination.  The agent has a gripper with an action for picking up a clear block and an action 

for putting down a block either on the belt or on a clear block.  The task is complete when the 

gripper picks up the green block.  When the agent performs the task successfully, the blocks 
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disappear and a new configuration of blocks comes down the conveyor belt.  But, if the robot 

takes too many actions before picking up the green block, the blocks fall off the end of the belt 

and again a new configuration of blocks comes down the conveyor.  The agent has the ability to 

move “focus of attention” markers.  There are two types of markers, overt and perceptual.  The 

agent uses an overt marker in conjunction with actions.  For example, the agent may use action 

PUT_AT_M to place the block the gripper is holding to a place pointed to by overt marker M.  

The perceptual markers are for collecting focused information about the current block 

configuration.  Our world is slightly different with a movable robot instead of a gripper and 

boxes on pallets in a warehouse instead of blocks on a conveyor belt.  We also allow additional 

colors for the boxes (although we start with green, red, and blue like the original specification).  

The robot has physical actions for moving to the next stack of boxes or the previous stack of 

boxes.  While facing a stack, it can move its “focus of attention” from the pallet to each box in 

the stack to above the top box.  We call this the robot’s focus pointer as we did in the blocks 

world.  The difference here is that moving the focus may be accomplished with physical actions 

as well as mental actions.  The focus pointer moves to a new stack when the robot moves to a 

new stack so in this case, a physical movement action is also moving the focus.  Once facing a 

pallet of boxes, the focus pointer is moved up the stack using a mental action.  The robot has 

physical actions to get the top box on a stack and to put the box it is holding on a stack or on an 

empty pallet.  Here we add another nuance to the task.  We want the robot, when moving 

boxes, to preferentially put the box on an existing stack, not on an empty pallet.  The robot’s 

task is to find the green box and pick it up, perhaps having to move other boxes out of the way.   
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5.4.1.  Environment Domain 

For this warehouse world, the environment specification parameters are N and M where 

N is the number of boxes (which is also the number of pallets) and M is the number of colors.  

In this world, unlike the blocks world, the physical location of the boxes comes into play.  A 

pallet may be empty or have a stack of 1 or more boxes on it.  This greatly increases the 

number of configurations compared to the blocks world with N distinct blocks.  For example, in 

the blocks world with 5 distinct blocks there are 501 physical configurations.  In a warehouse 

world with 1 green box, 4 other boxes (either blue or red), and 5 pallets, there are 10080 

configurations, a 20 fold increase.  Adding in the robot’s position, focus, and holding a box or 

not holding a box increases the number of configurations to 160720.  Adding colors also 

increases the number of configurations.  In the preceding example, adding yellow as a color 

choice increases the number of configurations from 10080 to 51030. 

5.4.2.  Actions 

In this warehouse world, the robot’s actions are divided into 3 categories.  The first is 

actions for moving from stack to stack.  The second category is actions for moving its focus.  

Picking up and putting down boxes makes up the final category.  The following describes each 

action available to the robot in this box world:  

 NXT: The robot moves to the next stack of boxes.  The focus moves to the new 

stack of box and is on the pallet. 

 U: The robot moves its focus up.  This is a mental action.  This action fails if the 

robot is holding a box. 
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 G: The robot picks up the top box of the stack of boxes it is facing.  The focus 

tracks the box.  The robot can only hold a single box so this action fails if it is 

holding a box. 

 PP: The robot places the box it is holding on an empty pallet.  The focus tracks the 

box.  This action fails if the robot is not holding a box. 

 PS: the robot places the box it is holding on the top box of the stack of boxes it is 

facing.  The focus tracks the box.  This action fails if the robot is not holding a box. 

5.4.3.  Propositional Representation 

The propositional representation for this example is modeled like the physical layout of 

the stacks on pallets.  The number of pallets (and maximum number of stacks), Np, is equal to 

the number of boxes, N, so we define features, “Palleti” for i = 1...Np, one for each pallet.  The 

value of a pallet feature is a string representing a stack with each symbol in the string 

representing a box.  For example, “BRG” is a stack of 3 boxes and the top box is the green box.  

An empty string signifies the pallet is empty.  The robot position feature, “RobotPos”, has the 

integer value of the pallet the robot is currently facing.  The robot can be holding a box which is 

represented by the feature “HoldingBox”.  This feature’s value is the color of the box the robot 

is holding or ‘None’ if the robot is not holding a box.  The last feature, “FocusPos”, specifies the 

robot’s focus pointer location.  The “FocusPos” feature has a value of  -1, 0, 1 to M, or M+1 

where M is the number of boxes in the stack.  The following defines the different meanings: 

 FocusPos = -1: Robot is focused on the box it is holding. 

 FocusPos = 0: Robot is looking at the pallet. 
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 FocusPos = 1..M: Robot is focused on box i in the stack where i = 1 is the bottom 

box. 

 FocusPos = M+1: Robot is gazing above the stack of boxes. 

Figure 5.5 depicts a warehouse world of 5 boxes with the robot facing a red box on 

pallet2.  From the figure, it is not possible to obtain the robot’s focus but let’s assume it is on 

the red box.  For this environmental configuration, our propositional representation is shown in 

Table 5.15.  

Figure 5.5.  A robot world of boxes and pallets for the “pick up the green box” task. 

5.4.4.  Deictic Representation 

Now we turn to the deictic features.  For this task, the robot should be looking for the 

green box, clearing it and then picking it up.  We want the learned deictic policy to be universal, 

independent of the number of boxes and the number of colors.  Also, we want the robot to 

preferentially not put boxes on an empty pallet.  So, we give the robot 3 features, “FocusObj”, 

“Holding”, and “OneStack”.  The “FocusObj” feature gives information about the focus and has 

values of ‘Pallet’, ‘AboveStack’, ‘Green’, and ‘notGreen’.  The ‘Pallet’ value indicates the focus is 
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on the pallet.  The  ‘AboveStack’ value denotes the focus is above the stack.  The ‘Green’ and 

‘notGreen’ values signify the focus is on a box with either a green or non-green color.  The 

“Holding” feature has values of ‘Green’, ‘notGreen’, or ‘None’ depending on whether the robot 

is holding a green or non-green box or not holding a box.  The boolean feature “OneStack” is 

True when there is only one stack.  The robot needs to know this because it cannot use the 

action of moving a box from one stack to another stack unless there is more than a single stack.  

Table 5.16 displays the 18 deictic descriptors formed from these features. 

Table 5.15. The propositional features and values for the configuration show in Figure 5.5. 

 Feature Feature 
name 

Feature 
Value 

1 RobotPos 2 

2 HoldingBox None 

3 Pallet1 “RB” 

4 Pallet2 “R” 

5 Pallet3 “” 

6 Pallet4 “BG” 

7 Pallet5 “” 

8 FocusPos 1 

 

5.4.5.  Training 

In these “Pick up the green box” task learning experiments, we change the cost of the two 

put actions so the robot would find it less costly to move a box to another stack than to the 

floor.  For the experiments with the value-based method, we removed the “FocusPos” feature 

and the action for changing the focus (U).  This was done because the mental action and focus 

are not needed or useful to the learning algorithms and doing so lowers the learning size of the 

task, improving their performance.  Even so, both Q-learning and R-max took a large number of 
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actions and episodes to learn the 5 box, 3 color environment “Pick up the green box” task.  The 

Q-learning tuning parameters were adjusted (but not optimized) to get better performance.   

Table 5.16.  The deictic descriptor features for the “pick up the green box” task. 

Deictic 
Descriptor 

FocusObj Holding OneStack 

D1 Pallet None False 

D2 AboveStack None False 

D3 notGreen None False 

D4 Green None False 

D5 Pallet notGreen False 

D6 AboveStack notGreen False 

D7 notGreen notGreen False 

D8 Green notGreen False 

D9 Green Green False 

D10 Pallet None True 

D11 AboveStack None True 

D12 notGreen None True 

D13 Green None True 

D14 Pallet notGreen True 

D15 AboveStack notGreen True 

D16 notGreen notGreen True 

D17 Green notGreen True 

D18 Green Green True 
 

For our algorithm, we again took advantage of the deictic learner’s ability to find a 

universal policy and used 4 training examples: a 2 box, a 3 box, a 4 box, and a 7 box task.  These 

training examples are displayed in Figure 5.6.  The robot, using our deictic descriptor policy 

learning algorithm, learned the universal policy shown in Table 5.17. The deictic policy is fairly 

simple.  If, at the start, there is only one stack, the robot gets the top box from the stack.  If 

that’s the green box, then it has finished.  If not, it puts the box on an empty pallet and now 

there are two stacks.  This then starts the normal task execution with more than one stack.  

Now, the robot moves its focus up the stack it is facing.  If it doesn’t find the green box, it 
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moves to the next stack.  If it does find the green box in the stack it is facing, it gets the top box 

from the stack.  If it is the green box then the task is complete.  If it is not the green box, it 

moves to the next stack and puts the box on that stack.  It then moves to the green box stack 

and repeats moving non-green boxes to the next stack until it picks up the green box.  Then the 

task is complete. 

5.4.6.  Q-learning and R-max Comparisons 

The learned deictic task policy was tested on all 10080 5 block, 3 color initial 

configurations and completed all with no problems.  Then, 10000 randomly generated 

configurations of 6 to 15 boxes and 5 colors were tested.  The robot finished each of the 10000 

tasks flawlessly.   The robot used the Q-learning algorithm and the R-max to learn the “pick up 

the green box” task for the 5 box, 3 color environment.  The Q-learning algorithm learned Q 

values for 280,000 states and the R-max modeled over 45,000 states.  The performance for 

each is shown in Table 5.18.   Also, the deictic learner’s performance was optimum. 

5.4.7.  Comparison with Existing Works 

In Whitehead and Ballard [15], their agent was tested in random configurations of 4 

blocks.  They categorized easy configurations where the green block was the only block in a 

stack to the most difficult where the green block was at the bottom of a stack of 4 blocks.  They 

ran tests of 1000 episodes with the agent failing after 30 physical actions on any episode.  They 

found the agent learned to reliably solve all but the most difficult problems and then only failed 

10% of the time.  They ran experiments with increased number of blocks and found 

performance degraded.  In contrast, our robot, after learning a deictic descriptor policy, can 

perform the task flawlessly for any number of boxes. 
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Figure 5.6.  The four training examples for the “pick up the green box” task.  A group of hash 
marks represents a pallet.  Training example 1 has 2 pallets with a red box on a green box on 
the first pallet. 

Muñoz [37] used his CANDID algorithm (see Chapter 3 for details) on a “find a specific 

block” task.  The CANDID algorithm could find a general policy almost 100% of the time after 

12000 episodes compared to our basic algorithms 3000 episodes. 

5.5.  Whiteboard World: Add Binary Numbers 

The whiteboard world consists of a large dry-erase board, an eraser, and various colored 

dry-erase markers.  In its initial state, the whiteboard may be blank or contain symbols.  The 

robot stands in front of the whiteboard with a marker in its left hand.  The robot has high-level 
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actions for writing/erasing symbols on the board, for moving its hands to different positions 

with respect to the board, and exchanging markers for a different color.  The high-level write 

actions come in 2 types – overwrite and non-overwrite.  In overwrite mode, performing a write-

symbol in a position containing an existing symbol first has the robot erase the existing symbol 

and then write the new symbol all as one high-level action.  The non-overwrite mode forces the 

robot to perform 2 actions: an erase action and then a write action of the new symbol. 

Table 5.17.  The deictic descriptor task policy table for the “pick up the green box” task. 

Deictic 
Descriptor 

FocusObj Holding OneStack Action 

D1 Pallet None False U 

D2 AboveStack None False NXT 

D3 notGreen None False U 

D4 Green None False G 

D5 Pallet notGreen False PS 

D6 AboveStack notGreen False  

D7 notGreen notGreen False NXT 

D8 Green notGreen False  

D9 Green Green False Q 

D10 Pallet None True G 

D11 AboveStack None True  

D12 notGreen None True  

D13 Green None True  

D14 Pallet notGreen True  

D15 AboveStack notGreen True  

D16 notGreen notGreen True PP 

D17 Green notGreen True  

D18 Green Green True Q 

 
 
Table 5.18.  The learning metrics for Q-learning, R-max, and deictic learner for the “pick up the 
green box” task. 

Pick up the green box Q-learning 
(5 box, 3 color) 

R-max  
(5 box, 3 color) 

Deictic 
(universal) 

No. of physical actions 8860357 402673 14939 

No. of training episodes 1239840 24319 3004 

Training metric (Days) 246 7.48 0.52 
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Our robot task for the whiteboard world is adding binary numbers.  The robot is initially 

positioned at the whiteboard which contains two binary numbers, one above the other as 

shown in Figure 5.7.  The robot’s hand holds a black marker which it can use to write symbols in 

overwrite mode.  Starting at the least significant pair of digits, the robot’s task is to write the 

answer to the addition problem using its actions of moving its hand left or right and to write 

symbols in the results location and optionally above the addends.  The robot’s hand is limited to 

writing symbols in the single line below the addends or the single line above the addends.   

An initial environment configuration is the addends as strings of length equal to the 

length of the resulting sum (leading 0’s are added if needed),   a blank-filled result string, and 

the robot’s hand at the right-most result position.  A legal configuration includes an initial 

configuration and any configuration where the robot has moved its hand and/or written one or 

more symbols in the result line or above the addends.  Note that the robot may write a symbol 

anywhere in the result or above the addends by moving its hand left or right.  In other words, it 

is not limited to writing the result in right-to-left order.  The task goal is considered reached 

when the result string is equal to the sum of the addends and the robot’s hand is to the left of 

the sum.  Note that any symbols written above the addends are ignored in determining a 

correct result.   

5.5.1.  Environment Domain 

The environment instances for this whiteboard world are distinguished by a single 

specification parameter, the number of bits used in the addends.   So, for example,  a size 5 

environment instance would allow addends values up to decimal 31 or binary 11111.  Table 

5.19 displays the number of initial environmental configurations and the number of possible 
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legal configurations for various size addends assuming the robot only writes ‘0’, ‘1’, anywhere 

in the result line and does not write anything above the addends.   Also, these configurations 

include the robots hand position.  We see that even for small size environments, the robot has 

plenty of room to make mistakes.   

 

 

 

 

 

 

 
 
Figure 5.7.  A whiteboard environment with a robot adding two binary numbers. 

5.5.2.  Propositional Representation 

The propositional representation of the binary addition environment has 4 features.  The 

first is the robot’s hand position, “HandPos”, with an integer value representing the distance in 

digits from right most addend digit. The remaining three are the first addend (“Addend1”), 

second addend (“Addend2), and the sum (“Sum”).  Each of the addends has a value which is a 

string of the digits 0 and 1.  The sum feature value is a string (initially blank) of length equal to 

the length of the answer containing whatever symbols the robot has written so far.  The task is 

considered complete when the addition of the 2 addend values results in the sum value and the 

robot’s hand is positioned to the left of the left-most results digit.  Table 5.20 shows an 

example of the propositional representation of the 4-bit problem 1010 + 1101 where the 

01100010110011001 

00101110010001100 

             0101 
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robot’s hand is over the third digit position of the sum and the robot has written (somewhat 

incorrect) symbols. 

Table 5.19.  The number of initial configurations and legal configurations for different numbers 
of addend bits for the binary addition task assuming the robot only writes in the result line.  The 
robot’s hand position is considered part of the configuration. 

No. bits in 
addends 

No. of initial  
configurations 

No. of possible legal  
configurations 

3 64 14 355 

4 256 218 475 

5 1 024 3 146 139 

6 4 096 43 806 843 

7 16 384 596 540 475 

8 65 536 7 996 088 763 

9 262 144 105 916 021 947 

10 1 048 576 1 389 945 502 395 

 

Table 5.20.  An example propositional representation features and values for the 4-bit binary 
addition problem 1010 + 1101. 

Feature Feature 
name 

Feature 
Value 

1 HandPos 2 

2 Addend1 “01010” 

3 Addend2 “01101” 

4 Sum “011 1” 

 

5.5.3.  Actions 

For the binary addition task, we present two deictic representation approaches based on 

two action sets.  The first action set uses “compound” actions where a compound action is a 

joined physical action and a mental policy switch action.  The second action set allows two 

physical actions in the same perception cycle.  Neither action set includes mental actions for 

the focus pointer.  The focus pointer is always located at the robot’s hand position and moves 

with the hand. 
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Let’s first look at the compound actions approach.  In the previous name tags example, 

the robot, after perceiving a deictic descriptor, performed any mental policy switch action from 

the current policy, switched policies and retrieved the physical action from the new policy.  

Here, we turn the order around and perform the physical action before the mental policy 

switch action.  This makes a single deictic descriptor policy entry contain a physical action and a 

mental action which we specify as a single compound action.  Here are the actions for this 

representation version: 

 W0.s, W1.s: The robot writes the symbol ‘0’ (or ‘1’) at the current sum hand 

position and then switches to the sub-policy (compound action).  This action fails if 

the robot is already in the sub-policy. 

 W0.q, W1.q: The robot writes the symbol ‘0’ (or ‘1’) at the current sum hand 

position and then returns to the main-policy (compound action).  This action fails 

if the robot is not in the sub-policy. 

 W0, W1: The robot writes the symbol ‘0’ (or ‘1’) at the current sum hand position.  

No policy switch is performed. 

 L: The robot moves its hand left one digit.  The focus moves with the hand.  This 

action fails if the hand is already past the left most digit position. 

 R: The robot moves its hand right one digit.  The focus moves with the hand.  This 

action fails if the hand is already at the right-most digit position. 

Now, let’s look at the case where we allow two physical actions per perception cycle.  The 

two actions can occur only when the robot is writing a ‘0’ or ‘1’ digit (not when moving left or 

right).  The second action following a ‘0’ or ‘1’ write is to make a “carry” mark similar to how 
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school children are taught to add.  The actions for moving left and right do not change.  Here 

are the “write” actions: 

 W0C, W1C:  The robot writes the symbol ‘0’ (or ‘1’) at the current hand position 

and then makes a “carry” mark above the next addend column to the left.  The 

hand position is returned to the focus pointer position.  These all occur in the 

same perception cycle but cost the robot more than the single action situation. 

 W0, W1: The robot writes the symbol ‘0’ (or ‘1’) at the current sum hand position. 

5.5.4.  Deictic Representation 

The mental focus pointer for the binary addition task is initialized to the robot’s starting 

hand position at the right-most digit column.  The left, ‘L’, and right, ‘R’, physical actions move 

the hand and the focus pointer left and right.   

For the compound action set, the robot perceives the addend digits in the focus pointer 

column and also whether or not it has written a symbol in the result sum for that column.  Note 

that when the robots hand/focus position is to the left of the result, it perceives blank addend 

digits and a blank result.  So, taking a simple approach, we use only one deictic feature, 

“AddInfo”.  The “AddInfo” feature has 6 possible values.  If the robot has written a symbol or if 

there is already a symbol in the result for the column, “AddInfo” has the value ‘Written’.  

Otherwise, the “AddInfo” value is a string containing the 2 addend symbols which is one of 

“00”, “01”, “10”, “11”, or “  “.  With only a single feature, each possible value translates into a 

deictic descriptor giving a total of 6 descriptors.  For the dual physical action set, we still use the 

“AddInfo” feature but add a boolean “Carry” feature.  The “Carry” feature is True if the column 

has a carry mark above it.  This doubles the number of deictic descriptors to 12. 
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5.5.5.  Training 

Learning the binary addition task is not easy.  So, as in other tasks, we choose to start 

with small training examples and move on to larger ones.  For the binary addition task, we use 

the 7 problems: “0+0”, “0+1” , “1+0” , “01+01”, “001+011”, “011+001”, and “0011+1011”.   

The robot, using our deictic descriptor policy learning algorithm and the action set with 

compound actions, learns the binary addition policy shown in Table 5.21.  The policy consists of 

a main policy and a sub-policy.  The main policy performs the additions “0+0 --> 0”, “0+1-->1”, 

and “1+0-->1” with non-compound writes.  But when it encounters the D4 (“11”) descriptor, it 

uses a compound action W0.s to write a ‘0’ and switch to the sub-policy.  While in the sub-

policy, the additions are made as if there is a “carry” bit until it perceives the D1 (“00”) 

descriptor.  In this situation, it uses the compound action to write a ‘1’ and switch back to the 

main policy.  Note that 3 of its available actions, W1.s, W0.q, and R, are not used.  With this 

deictic descriptor task policy, the robot can add any length binary numbers. 

Table 5.21.  The deictic descriptor policy for the binary addition task using compound actions. 

Deictic 
Descriptor 

AddInfo Main Policy 
Action 

Sub-Policy 
Action 

D1 “00” W0 W1.q 

D2 “01” W1 W0 

D3 “10” W1 W0 

D4 “11” W0.s W1 

D5 “  “ Q  

D6 Written L L 

 

The robot, using our deictic descriptor policy learning algorithm with the dual actions,  

learns the binary addition task policy shown in table 5.22.  This policy uses all the actions except 

the right, R, action. 
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Table 5.22.  The deictic descriptor policy for the binary addition task using “carry” action. 

Deictic 
Descriptor 

AddInfo Carry Policy 
Action 

D1 “00” False W0 

D2 “01” False W1 

D3 “10” False W1 

D4 “11” False W0C 

D5 “  “ False Q 

D6 Written False L 

D7 “00” True W1 

D8 “01” True W0C 

D9 “10” True W0C 

D10 “11” True W1C 

D11 “  “ True  

D12 Written True L 

 

5.5.6.  Q-learning and R-max Comparisons 

The two deictic descriptor task policies learned by the robot are universal policies for the  

binary addition environment domain.  The policy using the compound action set is optimal.  The 

policy using the dual physical action (carry mark) is not optimal but some would consider it 

satisficing.   

The robot using the Q-learning or R-max algorithm perceives the complete state of the 

environment and therefore must learn the proper sequence of actions for each binary addition 

problem.  Learning one 4-bit addition problem does not help in learning a different 4-bit 

addition problem (or any other larger bit addition problem).  But, by adding leading zeroes, any  

1-bit, 2-bit, or 3-bit number can be made to look like a 4-bit number.  So, using this technique, 

we can say the policies are universal up to a 4-bit size.   

We trained the robot using the Q-learning and R-max algorithms on the 4-bit 

environment for which there are 256 starting configurations.  Table 5.23 summarizes the results 
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for the robot’s learning performance using our deictic task policy learning algorithm versus the 

Q-learning and R-max algorithms.  As previously indicated, the deictic descriptor task policies 

allow the robot to add any size numbers.  The results indicate the significant benefit of training 

on smaller numbers.  Also, we ran a 2-bit case for the R-max algorithm.  The results show that 

even with this small a problem, the deictic learning algorithm had better performance metrics. 

Table 5.23.  The comparison results for the algorithms on the binary addition task. 

Adding binary numbers Q-learning 
(4-bit) 

R-max  
(4-bit) 

R-max 
(2-bit) 

Deictic 
(compound) 

Deictic 
(carry write) 

No. of physical actions 4159986 1808754 5686 1222 1727 

No. of episodes 125440 47904 255 324 364 

Training metric (Days) 62.7 26.5 0.0953 0.0516 0.0621 

 

5.6.  Grid World: Learn a Universal Policy for Room Navigation 

In Chapter 1, we used a simple grid world environment with 2 rooms.  Here, we use more 

complicated environments from the grid world as described in Croonenborghs et al. [19] for 

their work using skills (options) for reinforcement transfer learning in a relational 

representation setting.  Their research was covered in Chapter 3 but we expand the description 

here to blend in with our work. 

The robot’s task is to learn a universal policy for a finite set of similar grid room 

environments.  By universal policy, we mean a policy that the robot can use successfully on any 

environment instance drawn from the set of environments.  Also, the robot is only allowed to 

use a small subset of environments for learning – the unseen environments are used for testing 

the robot’s (hopefully) universal policy.  The task is considered complete if for every 

environment E in the set of environments, the robot, starting in E’s initial configuration, reaches 
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the goal configuration using the universal policy.   This is very similar to what we have been 

doing with our deictic policies.  

Each instance in the grid world environment set has a sequence of rooms connected by 

colored doors.  Every room has colored keys on the floor with at least one that matches the 

color of the exit door.  To reach the goal, the robot, starting in the first room, must navigate to 

a key whose color matches that of the room’s exit door.  Once the robot is at the proper key, it 

must pick up the key and then navigate to and through the exit door to the next room.  If, when 

entering a room, the robot already possesses the correct colored key, it can bypass getting 

another key and proceed directly to the exit door.  The goal is reached when the robot exits the 

last room in the sequence.  The environment instances are generated by varying the 

parameters of a grid world specification.  These parameters are the number of rooms, the room 

sizes, exit door location, entry door location, and the location, color, and number of keys.   

5.6.1.  Environment Domain 

For this problem, we use the specification parameters from the original paper.  There, 

they used rooms with dimensions of between 3 and 5 units and each room could have from 1 

to 3 colored keys.  The number of rooms in the sequence of rooms varied between 1 and 5.  For 

each room, the exit door can be located anywhere on any wall.  The entry door can be located 

on any wall except the exit door wall.  Of course, these choices must be physically realizable 

with the 2-d layout of the rooms.  With this specification parameters, the number of initial 

configurations can be very large.   For example, consider the smallest room (size 3 by 3) with 

from 1 to 3 keys, each of a color red, blue, or green.  By varying entry and exit door locations, 

exit door color, key and key locations and colors,  884,520 partial environments can be 
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specified.  For the next largest room, a 3 by 4, the number of partial environments jumps to 

2,721,074.  Now, if we make environments from a sequence of such rooms, the set of 

environments becomes very, very large. 

5.6.2.  Actions  

Before discussing the propositional and deictic representation features, let’s specify the 

robot’s available physical actions.  The action set is chosen to be “deictic friendly” meaning 

relative to the robot’s point of view.  So, the robot actions for our version of the grid room 

environment are different than the up, down, left, and right of the original paper.  These 

original actions are relative to a person viewing the room from above on a computer screen.  

The robot may think the action ‘up’ means to jump!  Our robot has a facing direction and so the 

actions are relative to this direction.  The robot’s physical actions are: 

 F: The robot moves one tile forward in the facing direction unless it is facing a wall 

or an exit door for which it has no key.   

 L: The robot rotates left 90 degrees of facing direction.  The robot stays on the 

same tile, only its facing direction changes. 

 R: The robot rotates right 90 degrees of facing direction.  The robot stays on the 

same tile, only its facing direction changes. 

 P: The robot picks up the key or keys on the tile it occupies.  

So, the robot can only move in the direction it is facing and must rotate its body to move 

in a different direction.  The downside of this action set is that it increases the number of 

configurations.  For each tile position, the facing direction of the robot must be included.  
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5.6.3.  Propositional Representation 

Now let’s cover our propositional features for the rooms and for the robot.  For the 

rooms, there are 3 static features and one dynamic feature (the keys).  These features are: 

 RoomSize<i>:  The ith room’s size, L by W.  L and W can be 3, 4, or 5. 

 ExitLocCol<i>:  The ith room’s exit door location and color, (x, y, d, c).  The x,y 

coordinates are the location of the tile in front of the door.  The direction d is 

direction robot travels to pass through the door.  The color of the door is c. 

 EntryLoc<i>:  The tile location of the entry door and direction of the robot when it 

enters this ith room from the exit door of the previous room.  This, in effect, links 

this room to the previous room.  There is no entry door for the first room 

 Key<i>.<k>: The ith room’s kth key (k = 1, 2, or 3) represented by a tuple (x, y, c) 

where x, y is the grid location of the key and c is its color.  If the robot picks up the 

key, the value becomes (-1, -1, c).   

There is a feature associated with the robot.  This feature is: 

 RobotLocDir:  This feature’s value is the robot’s location and facing direction.  

The value is a tuple (r, x, y, d) where r is the room number, x, y is the robot’s 

grid coordinate for the room and d is its facing direction.  When the robot exits 

the last room, the value is (0,0,0,0) signifying the robot has exited the last 

room. 

Figure 5.8 shows an example environment with 2 rooms.  The robot is in the first room, 

facing east.  There are 3 keys in the room (yellow, green, and red).  The exit door is red.  To 

reach the goal, the robot must get the red key and exit room 1 through the red door.  Then, in 
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the second room, get the yellow key and exit through the yellow door.   Alternatively, the robot 

could get the red and yellow keys from the first room and skip picking it up in the second room.  

Table 5.24 shows the propositional representation of the rooms. 

   
Figure 5.8.  An grid world environment for the “navigate rooms with keyed doors” subtask.  The 
robot is in the upper left corner of the west room.  The west room contains 3 colored keys 
(yellow, green, red) and has a red exit door.  Only the red key will open the red door.  The 
subtask goal is reached when the robot exits the second room’s yellow door. 

5.6.4.  Deictic Representation 

Turning to the deictic descriptors, we consider what is the robot focusing on to reach the 

environments’ goal.  The robot is concerned with the exit door and the keys and does not care 

at all about the size of the room.  So, when the robot enters a room, its focus pointer is on the 
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exit door and one of the keys on the floor (call it the focus pointer key).  It has a single mental 

focus pointer action, NK, which is to move the focus pointer to the next key.   

Table 5.24.  The propositional representation for the 2 rooms environment (Figure 5.8) 

Feature No. Feature name Feature Value 

1 RobotLocDir (1,1,1,E) 

2 RoomSize1 (4,4) 

3 ExitLocCol1 (4,3,E,R) 

4 Key1.1 (4,2,Y) 

5 Key1.2 (1,3,G) 

6 Key1.3 (2,4,R) 

7 RoomSize2 (3,3) 

8 ExitLocCol2 (3,3,S,Y) 

9 EntryLoc2 (1,1,E) 

10 Key2.1 (3,1,Y) 

11 Key2.2 (2,3,P) 

 

If the robot needs a key, it is concerned with the location of the key in relation to itself.  If 

the robot has the correct key then it is concerned with the location of the exit door in relation 

to itself.  With this in mind, we make the deictic descriptors a function of several features:   

 RobotOutside: This boolean feature is True if the robot has exited the last room. 

 HoldingMkey: This boolean feature is True if the robot is holding a key matching 

the exit door color. 

 KeyDir:  This feature’s value is the direction of the key the robot is focusing on 

relative to the robot’s facing direction.  The values are ‘forward’, ‘left’, ‘right’, or 

‘over’.  The ‘over’ value means the robot is over the key.   

 KeyMatch:  This boolean feature is True if the color of the key that the robot is 

focusing on matches the color of the exit door. 
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 ExitDir:  This feature’s value is the direction of the exit door relative to the robot’s 

facing direction.  The values are ‘forward’, ‘left’, or ‘right’. 

The deictic descriptors are a function of these features as shown in Table 5.25. 

Table 5.25.  The deictic descriptor features for the “navigate rooms with keyed doors” subtask. 

Deictic 
Descriptor 

RobotOutside HoldingMkey KeyDir KeyMatch ExitDir 

D1 False False forward False  

D2 False False left False  

D3 False False right False  

D4 False False over False  

D5 False False forward True  

D6 False False left True  

D7 False False right True  

D8 False False over True  

D9 False True   forward 

D10 False True   left 

D11 False True   right 

D12 True     

 

5.6.5.  Training 

We used a single environment for training the robot.  The environment (see Figure 5.9) 

has 5 rooms with three of size 3x3 and one each of size 4x4 and 5x5.  There a total of 14 colored 

keys spread around the rooms.  The robot is started in the center of the north room facing 

west.  To reach the outside (the goal), it must collect the correct key for each door while 

navigating through each room.  For this example, an optimal path requires 48 actions to exit the 

navy door in the fifth room.  The robot, using this training example with the deictic descriptor 

task policy learning algorithm, learns the policy shown in Table 5.26. 
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Figure 5.9.  Training environment containing 5 rooms connected by keyed doors.  The robot, 
shown as an arrow, is located in the north room facing west.  To reach the last room and exit to 
the outside, the robot must navigate through the rooms, unlocking doors as it goes by 
collecting the Teal, Gold, Yellow, Violet, and Navy keys on its way. 

5.6.6.  Q-learning and R-max Comparisons 

For learning time comparisons, the same 5 room example (Figure 5.9) was used for 

training the robot with Q-learning and R-max as was used by the deictic policy learning 

algorithm.  Although the value-based algorithms cannot provide a universal policy, the training 

times reflect, at least qualitatively, the difficulty of learning in this environment.  The Q-learning 

algorithms was the poorest performer (Table 5.27), taking 124 days of elapsed time to train the 

robot assuming 1 second per robot physical action and 10 seconds to setup the environment 

for each episode.  The robot training time for R-max was about 14 days and the for deictic 

about 1.3 days.   
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Table 5.26.  The deictic descriptor task policy table with features and actions for the “navigate 
rooms with keyed doors” subtask. 

Deictic 
Descriptor 

RobotOutside HoldingMkey KeyDir KeyMatch ExitDir Action 

D1 False False forward False  NK 

D2 False False left False  NK 

D3 False False right False  NK 

D4 False False over False  NK 

D5 False False forward True  F 

D6 False False left True  L 

D7 False False right True  R 

D8 False False over True  P 

D9 False True   forward F 

D10 False True   left L 

D11 False True   right R 

D12 True     Q 

 

The robot learned an optimal policy for each of the methods but of course, only the 

deictic policy is universal.  In fact, the deictic policy is optimal for all such environments when 

all key colors are distinct.  When there are keys with the same color, there are situations where 

the deictic policy may not lead the robot optimally.  The first situation is when a non-door key 

in an earlier room may be less costly to collect in the earlier room than the same color key for a 

door in a later room.  The second situation is when there are duplicate door colored keys in a 

room.  The deictic policy leads the robot to the first door key it focuses on which may not be 

the best key from a navigation perspective. 

Table 5.27.  The comparison results for the algorithms on the “navigate rooms with keyed 
doors” subtask. 

Navigate rooms with 
keyed doors 

Q-learning 
 

R-max  
 

Deictic 

No. of physical actions 10508649 1204321 74945 

No. of episodes 16749 2794 3698 

Training metric (Days) 124 14.3 1.30 
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5.6.7.  Comparisons with Existing Works 

Chapter 3 summarized the approach of Croonenborghs et al. [19], the originators of this 

learning task.  As previously covered, they performed two sets of experiments using relational 

reinforcement learning.  Note, they used the phrase “primitive actions” for non-option actions 

and sometimes the word “skills” for option type actions.  In the following, we will follow their 

nomenclature for actions. 

The first experiments, the primitive action case and the one most comparable to ours, 

used movement actions of up, down, left, and right for navigating to keys and exit doors.  These 

experiments were done mainly to compare with the options (skills) based tests.  We use them 

for comparisons with our deictic policy learning algorithm.  The agent learned a policy using 

relational reinforcement learning with a training set of instance environments.  The agent 

always perceives the complete description of the environment consisting of the dimensions of 

the different rooms, the locations and colors of the doors, the location and colors of the keys, 

the keys the agent possesses, and the agent’s location.  The resulting learned policy was not 

universal, allowing the agent to reach the task goal only about 70% of the time.  Also, when the 

agent did reach the goal, the number of actions taken was very large and far from optimal.  In 

contrast, a robot using our algorithm and primitive actions learns a deictic policy which always 

reaches the task goal and in many cases is optimal.   

To improve the performance of the agent, they devised a method for learning skills 

(options).  Using the learned skills “pickup_key” and “find_door”, the learned relational policy 

performed better, solving over 90% of the environments.  Also, the number of primitive actions 

used was greatly reduced over the non-options case.  They did not report if the completed tasks 
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were performed optimally.  In any case, the task completion results are closer to our deictic 

policy results.  

5.7.  Warehouse World: Move a Size-Ordered Stack of Boxes 

In the warehouse world, the robot is stacking/unstacking boxes, moving them from one 

pallet to another.  The robot has actions for moving the top box on the stack it is facing to 

another stack or an empty pallet.  We visited a similar world in the previous “Pick up the green 

box” task.  For this example of the warehouse world, we add constraints to box movements.  

The environment consists of 3 pallets and a number of different size boxes.  The pallets, located 

in 3 corners of the warehouse, are labeled in clockwise order “Source”, “Temporary”, and 

“Destination”.   The initial configuration of the environment has all the boxes stacked on the 

“Source” pallet in size order with smallest on top and the robot facing the “Destination” pallet.  

The robot’s task is to move a box at a time until all the boxes are on the “Destination” pallet 

with the constraint that no box can ever be placed on a smaller box.  The robot may use the 

“Temporary” pallet as a holding spot if needed.  The reader may have recognized this 

task/environment as the Tower of Hanoi puzzle with  boxes and pallets replacing the rings and 

poles.   

5.7.1.  Actions 

The move actions for the environment are at a higher-level than the previous “Pick up the 

green box” task.  In this warehouse world implementation, the robot has macro actions for 

moving a box from one stack to another.  For example, let’s suppose the robot is facing the 

“Destination” pallet and it wants to move the top box of the “Source” pallet to the empty 

“Temporary” pallet.  It moves to the “Source” pallet, gets the top box, moves to the 
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“Temporary” pallet and puts down the box.  The robot ends up facing the “Temporary” pallet.  

These 4 “less higher-level” actions form a macro action we could name MST for move “Source” 

to “Temporary”.  This is what we do except we take the robot’s point of view. Using the robot’s 

viewpoint, the robot calls the stacks “the stack I am facing”, “the stack to my left (counter-

clockwise)”, and “the stack to my right (clockwise)”.  As in the example, the robot has actions 

for moving a box from one stack to another stack (or empty pallet) and after the move, the 

robot ends up facing the stack it moved the box to.  There are 6 move actions: 

 MLR: The robot moves the top box from the left stack onto the right stack or 

empty pallet.  The right stack is now the facing stack. 

 MRL: The robot moves the top box from the right stack onto the left stack or 

empty pallet.  The left stack is now the facing stack. 

 MLF: The robot moves the top box from the left stack onto the facing stack or 

empty pallet.  The facing stack remains the facing stack. 

 MRF: The robot moves the top box from the right stack onto the facing stack or 

empty pallet.  The facing stack remains the facing stack. 

 MFL: The robot moves the top box from the facing stack onto the left stack or 

empty pallet.  The left stack is now the facing stack. 

 MFR: The robot moves the top box from the facing stack onto the right stack or 

empty pallet.  The right stack is now the facing stack. 

Note that for all move actions, attempting to move a box onto a smaller box fails and neither 

the box nor the robot moves.  Also, a careful examination of cases reveals that the last two 

move actions, MFL and MFR, are not strictly needed to perform the task.  The first case is the 
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initial situation where the robot is facing the empty “Destination” pallet.  Obviously, with an 

empty pallet it cannot use MFL or MFR.  The robot’s first action must either move the top 

“Source” box to the “Temporary” pallet or to the “Destination” pallet using MRL or MRF 

respectively.  In either situation, the robot ends up facing the box it has just moved.  In fact, the 

robot always ends up facing the box it has just moved.  So, using  a MFL or MFR, the box it is 

facing is either 1) moved back to where it came from, cancelling the previous move or 2) moved 

to a stack which could have been reached using a single move instead of a double move.  So 

why include these moves?  They can be useful for undoing “mistakes”.  The robot sometimes 

gets itself into a situation where it has no legal move except a MFL or MFR.  For example, take 

the 2 box case, a large box and a small box.  If the robot performs the sequence MRF, MRL, 

MRF, it ends up facing the temporary stack with the small box on the large box.  Now the robot 

has no legal action except a MFL or MFR.  

5.7.2.  Environment Domain 

For N boxes, there are 3N legal ways to stack them on the 3 pallets.  When we include the 

robot’s three possible positions, the number of legal environment configurations increases to 

3N+1.  But because of the box order constraint and the fact that the robot always faces the last 

box moved, the number of “reachable” configurations is smaller.  Figure 5.10 is an example of 

this.  Here, the number of boxes is N = 3.  The starting configuration (not shown) had the 3 

boxes on the source stack, smallest on top.  Presumably, the robot has moved boxes and is now 

facing the largest box on the temporary stack.  Since the robot is facing the largest box, the 

robot’s last action moved this largest box from either the source or destination stack to the 

temporary stack.  But the largest box could not have been on either the source or destination 
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stack – this violates the size ordering constraint of no box may be placed on a smaller box.  

Therefore, this configuration could not have been reached by the robot.   The number of 

reachable configurations is 2(3N-1).  Table 5.28 shows the number of legal and reachable 

configurations for N = 3 to 10.  We see from the table that the number of configurations is not 

large.  The reason we include this task in our examples is because the minimum number of 

actions to perform the task is large at 2N-1. 

 
Figure 5.10.  An unreachable configuration of boxes. 
 
5.7.3.  Propositional Representation 

For the propositional representation, we use similar features as we used in the “Pick up 

the green box” task.  Here, the boxes are named numerically by size like 1 through 5 for five 

boxes.  The environment configurations are specified with 4 features.  The first is the robot 

position “RobotPos”, the pallet the robot is facing.  This feature has one of 3 possible values S, 

T, or D meaning “Source”, “Temporary”, and “Destination”.  The remaining 3 features describe 

the pallet stacks.  These features are “PalletS”, “PalletT”, and “PalletD”.  The value of each is a 

list of box names representing the boxes stacked on that pallet.  The first box name in the list is 
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the largest box.  An example configuration is shown in Table 5.29 where we have 5 boxes with 3 

boxes, 5, 4, 3 on the “Source” pallet, 2 boxes, 2 and 1, on the “Temporary” pallet, and the 

“Destination” pallet is empty.  The robot is facing the “Temporary” stack. 

Table 5.28.  The number of legal and reachable configurations for different numbers of boxes.  
The optimal (minimal) number of actions to move the stack is shown in the last column. 

No. of 
boxes 

No. of legal  
configurations 

No. of reachable  
configurations 

Minimum number 
of actions required  

3 81 52 7 

4 243 160 15 

5 729 484 31 

6 2 187 1 456 63 

7 6 561 4 372 127 

8 19 683 13 120 255 

9 59 049 39 364 511 

10 177 147 118 096 1023 

 

5.7.4.  Deictic Representation 

We want the robot to perform the task regardless of the size of the environment (the 

number of boxes) or the size of each box but still adhere to the box stacking constraint.  So, for 

the deictic descriptor representation we use features which do not include these sizes.   

Table 5.29.  An example propositional representation of 5 boxes with 3 boxes on the source 
pallet and 2 boxes on the temporary pallet.  The robot is facing the temporary pallet. 

Feature Feature name Feature Value 

1 RobotPos T 

2 PalletS [5,4,3] 

3 PalletT [2,1] 

4 PalletD [ ] 

 

The number of boxes is reflected in the boolean feature “IsEven” which is True if the 

number of boxes is even.  For this task, the robot is interested in the relation of the top-of-stack 
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box sizes, not in their absolute sizes.  So, we use 3 relational boolean features which compare 

the boxes on the top of each stack.  These features are “F>R”, “F>L”, and “R>L” which in words 

mean “the top box I am facing is larger than the top box on the right stack”, “the top box I am 

facing is larger than the top box on the left stack”, and “the top box on the right stack is larger 

than the top box on the left stack”.  Note that for these comparisons, a pallet is considered 

larger than any box and no pallet is larger than any other pallet.  For these 3 features, there are 

8 combinations of True/False assignments but only 4 of these are possible situations.  First, the 

assignments (F>R=False, F>L=True, R>L=False) and (F>R=True, F>L=False, R>L=True) are not 

logically possible.  Continuing, except for the initial configuration, the robot is facing a stack 

because it just moved a box from some other stack.  Therefore, the top box of the stack the 

robot is currently facing (the F stack) cannot be larger than both the right and left top boxes.  

But two of the 8 combinations have F>R and F>L and so are not possible.  This eliminates two 

more combinations  leaving 4 possible cases as shown in Table 5.30.  Note that the initial 

environment configuration is case 2.  The last feature, “EmptyRL”, is True when the pallets to 

the robot’s right and left are both empty.  This could be the task complete configuration if the 

robot is actually facing the destination pallet (but not so if the robot is facing the source or 

temporary pallet).  Also, this feature can only be True for Case 1 of Table 5.30.  So, all total, this 

results in 10 deictic descriptors as shown in Table 5.31. 

5.7.5.  Training 

For learning, the robot needs at least 2 environments, one with an odd number of boxes 

and the other with an even number of boxes.  Following our maxim “use small examples”, we 

chose a 3 box and a 4 box environment.  The robot, using these 2 small examples, learns the 
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deictic descriptor task policy shown in Table 5.32.  This policy, when used by the robot, 

performs the “move a size-ordered stack of boxes” task with any number of boxes utilizing the 

optimal (minimum) number of actions. 

Table 5.30.  The 4 possible cases for the 3 size relation features. 

 F>R F>L R>L 

Case 1 False False False 

Case 2 True False False 

Case 3 False False True 

Case 4 False True True 

 

Table 5.31.  The 10 deictic descriptors for the “move a size-ordered stack of boxes” task. 

Deictic 
Descriptor 

IsEven F>R F>L R>L EmptyRL 

D1 False False False False False 

D2 False True False False False 

D3 False False False True False 

D4 False False True True False 

D5 False False False False True 

D6 True False False False False 

D7 True True False False False 

D8 True False False True False 

D9 True False True True False 

D10 True False False False True 

 

5.7.6.  Q-learning and R-max Comparisons 

The Q-learning and R-max algorithms comparison cases were done using 3,  4,  5, and 6 

box environments.  After training, the robot performed the task in each environment using the 

optimal (minimum) number of actions.  The results are displayed in Table 5.33.  When using the 
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deictic task policy learning algorithm, the robot learned a universal policy 165 times faster than 

Q-learning and 15 times faster than R-max. 

Table 5.32.  The deictic descriptor task policy table for the “move a size-ordered stack of boxes” 
task. 

Deictic 
Descriptor 

IsEven F>R F>L R>L EmptyRL Action 

D1 False False False False False MRL 

D2 False True False False False MRF 

D3 False False False True False MLR 

D4 False False True True False MLR 

D5 False False False False True Q 

D6 True False False False False MRL 

D7 True True False False False MRL 

D8 True False False True False MLR 

D9 True False True True False MLF 

D10 True False False False True Q 

 

Table 5.33.  Training results for the “move a size-ordered stack of boxes” task.   

Move a size-ordered 
stack boxes 

Q-learning 
 

R-max  
 

Deictic 

No. of physical actions 135203 12848 256 

No. of episodes 330 49 58 

Training metric (Days) 1.6 0.15 0.0097 

 

5.8.  Manufacturing World: Inspect Box Contents 

In the previous examples, the robot, in McCallum’s terminology [13], chooses to use 

selective perception.  During task execution, the robot perceives the complete configuration of 

the environment, but chooses to concentrate on certain features and ignore others.  This 

environment is designed to show how a robot can learn a deictic descriptor task policy in a fully 

observable environment but then use the policy in a partially observable environment where 

the robot is forced to contend with hidden state during task execution.  The environment 
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consists of 3 conveyer belts, one for incoming boxes and two for outgoing boxes.  The robot’s 

task consists of 5 steps: 

1. Lift the lid of the box on the incoming conveyer belt. 

2. Inspect the contents – is the contents OK or not OK? 

3. Close the lid on the box. 

4. Place the box on either the OK outgoing conveyer or the NotOK conveyer. 

5. Push a button to move the conveyer belts to get another box and send the 

inspected box on its way. 

These steps continue until there are no more boxes to process. 

The robot has 2 difficulties in this task.  In steps 1 and 4, before taking an action, the 

robot is looking at a closed box on the incoming conveyer belt.  Taken in isolation, the two 

steps/configurations appear identical to the robot.  Should it lift the lid of the box or move the 

box to the outgoing belt?  Also in step 4, since the box is closed, how does the robot know 

whether to place the box on the OK belt or the NotOK belt?  Because of the hidden contents of 

the box, value-based reinforcement learning algorithms will not work for this task.  If we enable 

the robot to perceive the closed box contents, then the robot could acquire a policy using a 

value-based approach like Q-learning or R-max.  The learned policy by these methods would 

not use steps 1, 2, and 3.  The robot, being able to “see” the box contents without lifting the 

box lid, would optimize and just use steps 4 and 5.   

For the deictic descriptor task policy learner, the fully observable states are used for 

detecting looping behavior (not for learning the policy).  The trick we use is to allow the robot 

to have the information needed for the states but deny this information for deictic descriptors.  
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Then, the algorithm can detect looping behavior and also learn the deictic descriptor task policy 

for the partially observable problem.   So, for this “inspect box contents” task,  we make the 

task learnable by temporarily equipping the robot with an X-ray camera.  After the task is 

learned, we remove the camera and use only the deictic descriptor task policy. 

5.8.1.  Actions 

For the “inspect box contents” task, the robot has 5 actions: 

 O: The robot opens the box.  This will only succeed if there is a box on the 

incoming conveyor belt and the box is closed. 

 C: The robot closes the box.  This will only succeed if there is a box on the 

incoming conveyor belt and the box is open. 

 MOV_OK: The robot moves the box from the incoming conveyor belt to the 

outgoing Ok belt.  This action succeeds only if their is a box on the incoming belt 

and its lid is closed. 

 MOV_NOK: The robot moves the box from the incoming conveyor belt to the 

outgoing NotOk belt.  This action succeeds only if their is a box on the incoming 

belt and its lid is closed. 

 NEXT: The input conveyor belt increments to the next box to be inspected.  The 

output conveyor belts move the checked box down the line. 

5.8.2.  Propositional Representation 

In the fully observable environment, we define features for each box.  These features 

describe the location of the box, the box lid status, and the box content status.  Each conveyor’s 

possible box positions are numbered.  For the input conveyor, the box inspection position is 



114 
 

position 0.  The next box to be inspected is position 1 and so on.  The output conveyors are 

similar with the location for a newly inspected box being position 0.  When the NEXT action is 

executed, the inspected box in position 0 is now in position 1, leaving position 0 open for 

another newly inspected box.  Here is the description of each feature: 

 Box<i>Loc:  This is the location of box i.  The value of this feature is a tuple (Cnvr, 

Pos) where Cnvr is either ‘inbelt’, ‘okbelt’, or ‘nokbelt’ and the Pos is the position 

on that belt. 

 Box<i>Lid:  This is the status of the lid for box i with a value of either ‘open’ or 

‘closed’. 

 Box<i>Content:  This is the status of the contents of box i with a value of either 

‘ok’ or ‘nok’.   

5.8.3.  Deictic Representation 

With the deictic policy learning algorithm, the robot overcomes the hidden state by using 

multiple policies.  During the task learning stage, we allow the robot to perceive the full 

configuration (including the box contents) for detecting looping situations.  The deictic 

descriptors, however, only know the box content status when the box lid is open.  This forces 

the robot to open the box to determine the correct output conveyor belt.   After the robot has 

learned the deictic descriptor policy, the robot can perform the tasks in the partially observable 

environment and does not need the Markov states. 

The boolean features for the deictic descriptors are: 

 InEmpty: The boolean status of the inspection position of the input conveyor belt. 

A value of True means the position is empty. 



115 
 

 OutBox:  The boolean status of the output conveyor belts.  This feature is True if 

either of output conveyor belts have a box.  Once the NEXT action is executed, 

the box (if any) is moved down the line and this feature becomes False. 

 BoxOpen:  The boolean status of the lid of the box being inspected with True 

meaning the box is open.and “ 

 ContentOk:  This feature is the status of the box contents and has 3 possible 

values.  If the box is closed, the value is ‘unkown’.  If the box is open, it has either 

‘ok’ or ‘nok’ meaning the contents inspected ok or not ok.   

5.8.4.  Training 

Using 2 examples with a single box and an example with 2 boxes, the robot learns the 

deictic policy shown in Table 5.34.  The policy has a main policy and 2 sub-policies and performs 

as follows for a box with “ok” contents (assuming the initial configuration with the newly 

uninspected box on the input conveyor belt and no inspected box on the output conveyors):  

 The robot is mentally in the Main policy and perceives descriptor D1.  The Main 

policy action is open the box, O, so the robot opens the lid on the box. 

 After executing the open box, O, action, the contents of the box is revealed.  The 

contents are ok the robot perceives descriptor D3.   

 The Main policy action for the D3 descriptor is a mental policy switch action, x2, 

which causes the robot to switch  to Sub2 policy which contains the close box, C, 

action.  The robot performs the C action and closes the box.  With the box closed 

and still on the input conveyor belt, the robot again perceives the D1 descriptor. 
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 The robot is still mentally in the Sub2 policy so the action for descriptor D1 is to 

move the box to the “ok” output belt, MOV_OK.  Now, with the inspected box on 

an output belt, the robot perceives descriptor D4.   

 The action in the Sub2 policy for descriptor D4 is a mental action, q, which causes 

the robot to mentally switch back to the Main policy and execute the NEXT action. 

The NEXT action brings in a new box on the inspection position of the input belt 

(or not if there are no more boxes to process)  and moves the box on the output 

belt down the line.  The robot now either perceives descriptor D1 (a new box) or 

D5 if the inspection position of the input belt is empty.  The latter case results in 

the task completion status mental action Q. 

The steps above are the same for a box with “not ok” contents except the robot would 

mentally switch to Sub1 policy after opening the box and end up putting the box on the “not 

ok” output belt.  This policy is universal and can be used by the robot for any number of boxes 

on the input belt.   

Table 5.34.  The deictic descriptor task policy for the “inspect box contents” task.   

Deictic 
Descriptor 

InEmpty OutBox BoxOpen ContentOk Main 
Policy 

Sub1 
Policy 

Sub2 
Policy 

D1 False False False unknown O MOV_NOK MOV_OK 

D2 False False True nok x1 C  

D3 False False True ok x2  C 

D4 True True False unknown NEXT q q 

D5 True False False unknown Q   

 

5.8.5.  Q-learning and R-max Comparisons 

Learning the “inspect box contents” task falls into the class of partially observable 

problems so is not learnable by the Q-learning or R-max algorithms.  The difficulty arises 
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because the robot must close the box before it can move it to the output belt.  With the box 

closed, the robot does not know which output belt to put it on.  For the deictic learner, the 

algorithm figures out (on its own) that it must “remember” the status of the box contents and 

creates sub policies for each box content situation. 

The robot took 6416 actions and 2255 episodes to learn this simple task.  Using 1 second 

per action and 10 seconds for setting up an episode, this required over 8 hours of elapsed time.  

The basic deictic descriptor policy learning algorithm performed its duty but seems deficient in 

the time efficiency department!  In the next chapter, we confront this issue with algorithm 

improvements and reduce the learning time for this task from 8 hours down to 4 minutes. 
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Chapter 6.  Improving the Basic Learning Algorithm 

6.1.  Basic Algorithm Deficiencies 

The basic algorithm introduced in chapter 4 met our requirements of learning a task 

policy applicable to any instance environment of an environment domain.  When compared 

with the value-based learning algorithms, Q-learning and R-max, the basic algorithm was 

competitive.  But, taking a close look at the paths taken during the learning process, we find 

that many action sequences are repeated.  Also, every dead end in the search for policy entries 

results in a new episode.  So to improve the performance, we borrow from the model-based 

reinforcement learning algorithms (like R-max) and include a memory for transition 

experiences.  The next section discussion how the basic algorithm is modified to include a 

memory for robot experience in the task learning process. 

6.2.  Robot Experience Retention 

At each time step during the task learning phase, the robot samples the current 

environment configuration, translate it into both a Markovian state and deictic descriptor and 

then takes an action.  This action results in a (perhaps) new configuration, state, and descriptor.  

In the basic algorithm, this transition may be repeated many times, possibly executing many 

unneeded actions.  So, to remedy this deficiency, we add a memory to retain these transition 

experiences. 

Reusing experience requires the robot to have 2 modes of operation.  The first mode is 

when the robot is performing actions in the “online” environment.  This is the mode the robot 

uses in the basic algorithm.  The second mode, the “offline” mode, is when the robot is 

performing actions from its retention memory.  For managing these modes, the robot employs 
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a “path” list.  As the robot performs actions, it keeps track of the configurations and actions it 

has taken by updating the path list.  The robot always begins in the “online” mode, updating 

retention memory and the path list as it goes.  If the robot encounters a situation it has seen in 

the past, it transfers to “offline” mode and begins taking “virtual” actions.  In “offline” mode, it 

continues to update the path list.  If at anytime while in “offline” mode, the robot comes upon a 

situation not in its retention memory, it must return to “online” mode.  The problem is that the 

robot is physically still in the position and pose it was in when it entered “offline” mode.  This 

requires the robot to use the path list to actually perform the actions it did not take while in 

“offline” mode until it is up-to-date with the unseen situation. 

In the basic algorithm version, each time a new extended policy is tried, the robot must 

restart from the initial configuration (a new episode).  This is very inefficient in physical action 

usage and episode counts.  With retention memory, we keep status information along with the 

extended policies.  Then, when we start a new extended policy, the robot is backed up to the 

untried part of the policy.  If the robot stays in the “offline” mode during this back up, then an 

initialization is not required.  This saves on physical action usage and episode counts.   

6.3.  Basic Algorithm vs Experience Retention Memory Algorithm 

We tested the improved algorithm on the 7 environment domains of the previous 

chapter.  In each case, the same training examples and costs are used.  As before, the timing is 

1 second to perform a physical action and 10 seconds to initialize the environment for a new 

episode.  The comparison results are in Table 6.1 (actions), Table 6.2 (episodes), and Table 6.3 

(training metric).  Note that the training times are now in minutes instead of days.  The results 

show significant reductions in physical actions and the required number of training episodes.   
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Table 6.1.  The physical actions taken during learning for each example task using the basic 
deictic learning algorithm and the enhanced algorithm with experience retention memory. 

Task vs Actions taken Basic 
(Actions) 

Memory 
(Actions) 

Alphabetizing name tags 12474 341 

Put block A on block B 22583 1068 

Pick up the green box 14939 980 

Adding binary numbers 1222 298 

Adding binary numbers (carry) 1727 535 

Navigating rooms with keyed doors 83681 6973 

Move a size-ordered stack of boxes 256 136 

Inspecting box contents 6416 84 

 

6.4.  Reversing Actions 

The retention memory algorithm much improves the basic algorithm but still requires a 

large number of episodes.  For example, the blocks world on(A,B) task required over 400 

episodes.  For a user, setting up the blocks for each of these episodes would not be much fun!  

So, to help with this difficulty, we add “reversing” actions to the learning algorithm.  As the 

name implies, a “reversing” action undoes an action and the reversing actions are only used 

during task learning.  So, for any environment configuration Ci and action Ak where taking 

action Ak while in Ci results in environment configuration Cj, we propose a reversing action Akr 

which when executed in Cj will result in a transition back to Ci.  To use reversing actions, the 

robot learns an “undo” function U(Ci,Ak,Cj): Ci x Ak x Cj -> Akr.  Updating the deictic learning 

algorithm with reversing actions reduces the number of episodes to one per training example.  

For the on(A,B) task, this reduces the episodes from 444 to 11, a substantial reduction. 
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Table 6.2.  The number of episodes used during learning for each example task using the basic 
deictic learning algorithm and the enhanced algorithm with experience retention memory. 

Task vs Episodes used Basic 
(Episodes) 

Memory 
(Episodes) 

Alphabetizing name tags 2094 37 

Put block A on block B 9777 444 

Pick up the green box 3004 127 

Adding binary numbers 324 70 

Adding binary numbers (carry) 1727 535 

Navigating rooms with keyed doors 4018 334 

Move a size-ordered stack of boxes 58 14 

Inspecting box contents 2255 16 

 

Learning the undo function may be easy or difficult.  For example, the left and right 

movement actions in the binary addition task are inverses of each other, hardly any learning 

required.  But, the get and put actions in the alphabetizing name tags task require the robot to 

look at which hand it used, making learning the reversing actions more difficult. 

Table 6.3.  The total time used during learning for each example task using the basic deictic 
learning algorithm and the enhanced algorithm with experience retention memory.  The 
assumptions are 1 second per physical action and 10 seconds to set up each episode. 

Task vs Learning time 
(1 second/action, 10 seconds/episode) 

Basic 
(Minutes) 

Memory 
(Minutes) 

Ratio 
Basic/Mem 

Alphabetizing name tags 557 11.9 47 

Put block A on block B 2006 91.8 22 

Pick up the green box 220.2 19.2 11 

Adding binary numbers 74.4 16.6 4.5 

Adding binary numbers (carry) 89.5 25.4 3.5 

Navigating rooms with keyed doors 1865 191 9.8 

Move a size-ordered stack of boxes 13.9 4.60 3.0 

Inspecting box contents 483 4.07 119 

 

In all our results, we have used a default of 10 seconds to set up an episode.  Suppose it 

took 100 seconds or 10 minutes instead of 10 seconds.  This may entice the user to consider 
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reversing actions.  The number of actions required for each version is roughly equivalent so, in 

Table 6.4, we show the additional time required when not using reversing actions assuming 3 

different episode setup times of 10 seconds, 100 seconds, and 1000 seconds.  The delta time 

increase proportionally with the setup time as expected. 

Table 6.4.  The total time used during learning for each example task using the enhanced 
experience retention memory algorithm and the reversing action algorithm episode set.  The 
assumptions are 1 second per physical action and 10 seconds to set up each episode. 

Task vs Additional time required of 
retention memory to reversing action   

10sec setup, 
delta hours 

100sec setup, 
delta hours 

1000sec setup, 
delta hours 

Alphabetizing name tags 0.1 0.9 9.4 

Put block A on block B 1.1 11.9 120.2 

Pick up the green box 0.1 1.9 19.4 

Adding binary numbers 0.1 1.7 17.5 

Adding binary numbers (carry) 0.2 2.5 25.5 

Navigating rooms with keyed doors 1.1 10.1 100.4 

Move a size-ordered stack of boxes 0.02 0.3 3.3 

Inspecting box contents 0.03 0.4 3.6 

 

In Table 6.5 and Figure 6.1 we show the performance metric results for the different versions of 

the deictic descriptor policy learning algorithm. 

Table 6.5.  The performance metric in minutes for each example task and each algorithm 
version.  The assumptions are 1 second per physical action and 10 seconds for episode  setup.  

Task vs Learning Metric 
(1 second/action, 10 seconds/episode) 

Basic 
(Minutes) 

Memory 
(Minutes) 

Reversing 
(Minutes 

Alphabetizing name tags 557 11.9 6.2 

Put block A on block B 2006 91.8 25.7 

Pick up the green box 220 19.2 10.7 

Adding binary numbers 74.4 16.6 7.7 

Adding binary numbers (carry) 89.5 25.4 11.5 

Navigating rooms with keyed doors 1865 191 125 

Move a size-ordered stack of boxes 13.9 4.6 3.5 

Inspecting box contents 483 4.1 2.1 
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Figure 6.1.  The performance metric in minutes for each example task and each algorithm 
version.  The assumptions are 1 second per physical action and 10 seconds for episode  setup. 
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Chapter 7.  Conclusions and Future Work 

7.1.  Summary  

The first chapter of this work introduces the thesis statement and follows with a layman's 

description of the concepts of a robot, an environment, state and deictic representations, 

satisficing behavior, and learning.  A small example is included to set the stage for learning 

universal task policies applicable to more than one specific environment.  Chapter 1 ends with a 

brief outline of the dissertation. 

Chapter 2 covers background information.  Like most other works in this field, it reviews 

reinforcement learning, Markov decision processes, POMDPs, and hierarchical decomposition.  

The area of transfer learning is also covered due to its goal of reusing policies from one 

environment to another environment.  Importantly, the chapter outlines our meanings for 

environment domains and domain tasks, physical and mental environments, and 

representation methods. 

Chapter 3 looks at related works.  Past research in learning with the deictic 

representation is emphasized.  It also briefly examines works related to the test examples and 

relational reinforcement learning. 

Chapter 4 describes the basic algorithm for learning deictic descriptor task policies.  

Instead of using a value-based method, the algorithm searches for a policy directly using a small 

number of examples.  The algorithm details are described with pseudocode and supporting 

methods are summarized. 

In Chapter 5, the policy learning algorithm of Chapter 4 is tested on seven example tasks.  

For each example, the propositional and deictic representation is presented.  The environment 
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specification parameters are reviewed along the environment domain's sizes in terms of 

configurations and varied parameters.  The training examples used for learning are discussed, 

emphasizing that, because of the universal nature of a deictic descriptor policy, smaller is better 

in terms of learning times.  Where possible, the Q-learning algorithm and R-max algorithm are 

employed to produce comparisons in learning times.   

Chapter 6 improves the basic deictic descriptor task policy learning algorithm by adding 

experience retention memory to reduce repeated action sequences and by allowing reversing 

actions to reduce the number of episode setups required.  Results are given, showing large 

reductions in the performance metric over the basic algorithm of Chapter 4. 

7.2.  Conclusions 

The deictic descriptor task learning algorithms developed from our research allow a robot 

to learn a deictic task policy for an environment domain and domain task when the instance 

environments are modeled by MDPs.  These policies are universal in nature and can be learned 

by using a small number of training examples.   

The deictic descriptor task policy algorithms were tested using a simulated robot in 7 

example environment domains.  The robot learned a satisficing and sometimes optimal deictic 

descriptor task policy for each example domain.   Where applicable, Q-learning and R-max 

comparisons were made.  The performance of each learning algorithm was based on the 

elapsed time needed by the robot to learn a task policy for a relatively small instance 

environment of the domain.  The timing used for the metric in all cases assumed 1 second per 

physical robot action and 10 seconds to set up an episode.  The chart in Figure 7.1 summarizes 

the results of the comparisons.  Note, these comparisons are meant to be a qualitative measure 
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of the relative learning performance of the deictic descriptor task policy learning algorithm.  No 

transfer learning methods were used to help improve the Q-learning and R-max algorithms task 

learning performance.  Also, typical tuning parameter values were used for the Q-learning 

algorithm. 

Figure 7.1.  A performance metric comparison of deictic descriptor task policy learning, Q-
learning, and R-max. 

7.3.  Future Work 

The use of the deictic representation in reinforcement learning is not as well explored as 

other representation methods.  For us, there seems to be a large amount of research 

opportunities to be had.  Here, we give a few ideas of some of these we are interested in 

pursuing.  



127 
 

7.3.1.  Deictic Descriptor Functions with Variables 

In relational reinforcement learning settings, it is natural to use variables as task 

arguments.  This feature would be nice for deictic descriptor task learning.  For example, the 

deictic descriptor function for the "stack block A on block B" task has the actual block names 

hardcoded into the function.  The same goes for the "pick up the green box" task. Bringing 

these out as variables would not be difficult. But just replacing the A and B names or the color 

Green attribute with new names or colors would not be enough because the functions contain 

references to "other" blocks and "other" boxes. The robot may need to understand relations 

and logical expressions. Using variables in tasks would also be beneficial for using these tasks as 

high-level actions in a hierarchical manner.  Using the variable arguments would allow the high-

level actions to be customizable in the new learning task. 

7.3.2.  Learning Deictic Descriptor Functions from Imitation 

In imitation learning, someone, perhaps an expert, demonstrates the task to the robot, 

helping the robot learn. For the propositional Markovian state case, the robot observes the 

states as the demonstration progresses, seeing the path from start state to ending state.  In the 

deictic case, the descriptors are task specific so the robot could also learn the descriptors from 

the sequence of configurations seen along the path.  How to learn these deictic descriptors is 

an interesting area of study. 

7.3.3.  Interruptible Deictic Descriptor Policies 

The robot, when performing a task, should be able to respond to abnormal events.  The 

simplest kind of event would not change the actual task sequence, just put it on hold while the 

other task is performed.  This would be fairly easy to implement by saving the current situation 
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and perhaps restart information.  The more difficult case, where the task actions need to 

reordered or change is an interesting problem and requires more study. 
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