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ABSTRACT 

 During the operation of ultra-high-power ac arc furnace the negative effects of unbalance 

mostly occur in the secondary terminals of the transformer connected to the load. Hence 

balancing and compensating the furnace at this terminal will not only improve the transformer 

efficiency but also reduce energy losses that do occur. 

 In this thesis a computer modeling of a reference ac arc furnace in both balanced and 

unbalanced states were simulated, and the effects of a reactive balancing compensator installed 

on the secondary side of the furnace transformer was evaluated to see how much delivered 

energy improvement can be obtained. 

  The balancing compensator used is synthesized using the Currents’ Physical Components 

(CPC) based power theory, which is also used to evaluate our obtained results. The results 

obtained provide a platform for developing an adaptive balancing compensator for ac arc furnace 

operating in uneasy mode, with thyristor switched inductors used for compensator susceptances 

control. 
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CHAPTER 1. INTRODUCTION 

Steel is mainly produced in industries using electric arc furnaces. During their operation 

they cause or are sources of electrical disturbance in the grid network they are connected to. The 

energy consumption of a single electric arc furnace could be in the range from as little as 

2.5MVA to 1GVA, this is comparable to amount of power consumed by half a million 

customers. Therefore, finding ways to make sure the operate efficiently can help improve quality 

of the supply system and output of the furnace. 

 Arc furnaces operate mainly in three modes, boring mode, melting mode and refining 

mode. In the refining mode, the load at this point is a homogenous mixture of scrap, for most of 

the operation time during this period all arc are ignited, and a very few unbalance conditions can 

be encountered during this phase of operation. This phase is mainly regarded as the balanced 

state. Whereas in the boring and melting phases the arc current continuously changes due to the 

load being made up of clumps of scraps and metals which are randomly distributed and change 

positions. During this stage, the unbalanced stage, intervals where one or two arcs are not fired 

which creates asymmetry in the supply current and reduces power factor. 

1.1 Causes of unbalance 

 Due to random ignition of arcs, ac arc furnaces are powerful sources of asymmetry in 

distribution systems particularly in the boring and melting phases of the arc operation. This 

period is described as the furnace being in an uneasy mode. It applies, in particular, to ultra-high-

power arc furnaces, with power that reaches the level of 750MVA. A simplified structure of an 

ac arc furnace, along with the furnace transformer, is shown in Fig. 1.  
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Figure 1: A structure of an ac arc furnace with a transformer 

Apart from negative effects of asymmetry, a furnace in an unbalanced state, draws not only the 

active and reactive currents, but also unbalanced current which causes energy loss at delivery, 

thus it contributes to an increase in the bill for the energy needed for the furnace operation. 

Taking into account that the annual bill for energy of ultra-high-power arc furnaces, i.e., of the 

order of power 750MVA, could be at the level of $500 million, the cost of energy dissipated in 

the furnace transformer could be significant. 

1.2 Current methodology 

Compensators needed for the improvement of power factor in ac arc furnaces are 

commonly installed at the primary side of the furnace transformer. It means, they operate at a 

higher voltage, but a lower current. Current technology and practices used for power factor 

correction involves using a STATCOM which is a voltage synchronous converter-based device 

for cancelation of fast current transients and a detuned filter for reactive power compensation 

installed parallel to the arc furnace but connected to the same voltage bus. The reactive and 

unbalanced currents of the furnace cause the energy loss mainly in the furnace transformer. 

However, to reduce this loss of energy, a compensator installed on the secondary side of the 

furnace transformer is needed. It should be considered, moreover, that arc furnaces of the ultra-

high power are supplied from transformers of relatively low power as compared to the furnace 
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power. Therefore, their windings resistance is relatively high, which would result in more energy 

loss in transformer’s windings.  

1.3 Objective 

An arc furnace in uneasy state of operation stands for a load with fast varying parameters. 

A balancing compensator of such a load has to have an adaptive property. It can be built of 

thyristor switched inductors (TSI). The possibility of using thyristors for the arc furnace 

balancing depends on their switching power. However, adaptive balancing with TSI is not 

possible at lower thyristor power rating when used in ultra-high ac arc furnace, but when a single 

thyristor can switch currents of the rms value above 50 kA, it seems that the main technological 

obstacle can be overcome.  

Arc furnace imbalance is caused be different reasons and demonstrates itself in different 

ways. It could be as a result of mechanical and electrical asymmetry of electrodes and the 

furnace charge, but it is mainly due to the imbalance is caused by arcs random extinction. The 

furnace can operate with only two arcs ignited or even with unidirectional arcs. In effect of this, 

furnace can operate in different states. These states are unpredictable and of random duration. 

Some of them can be regarded as steady-state, some as transient.  

This raises a number of issues as to if it possible to balance such a device and what our 

goals are. These issues should be clarified before any attempt of implementing TSI for adaptive 

arc furnace direct balancing is considered. This thesis presents results and conclusion drawn 

from modeling a reactive balancing compensator installed directly at the arc furnace terminals.  

The reactive balancing compensator is synthesized, and its performance is evaluated using the 

Currents’ Physical Components (CPC) – based power theory, developed by L.S. Czarnecki, 
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whose material has been referenced in this thesis. This theory is currently the only one which 

provides fundamentals for such balancing compensator synthesis 
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CHAPTER 2. A REFERENCE AC ARC FURNACE 

The line reactance L, shown in Fig. 1, is commonly selected by the furnace operator to keep the 

power factor at the level of 0.71, meaning, the reactive power Q is kept on a level of the active 

power P of the furnace.  

2.1 Electric arc reference 

The electric arc is a nonlinear phenomenon and there are several different simplified 

physical models of it. Its selection has a secondary importance from the point of view of this 

thesis. Therefore, a relatively simple model is adopted here. It is assumed that the voltage on the 

arc has a constant value U0. It is shown in Fig. 2. 

 

Figure 2: A circuit (b) that approximates the arc (a). 

The symbol Rp in this model stands for the arc plasma resistance. The dc voltage on the 

arc U0 and the arc plasma resistance Rp, depend on the arc length and its geometry, are slowly 

varying parameters. It can be assumed that in short intervals of time, comparable with the period 

T, both Rp and U0 are constant. 

2.2 Electric arc furnace model 

From the electrical system perspective ac arc furnaces differ mainly as to power, furnace 

supply voltage rms value and the furnace transformer. The furnace supply voltage rms value can 

be in a range of 400 V to 1300 V. The furnace transformers could have a power comparable with 

the furnace power or a few times higher.  
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 The studies in this project are not on a specific arc furnace. They are carried with an 

intention that conclusions obtained would apply to the arc furnaces of ultra-high power. At the 

same time, it is much more convenient to analyze relatively low power furnace, regarded as a 

reference furnace, and recalculate the obtained results to a specific furnace.  

2.3 Furnace operation in state s0 

It is assumed in this report that a reference arc furnace has the line resistance, including 

the resistance of the arc plasma and the melted steel, equal to R = 0.25Ω, the line reactance equal 

to w1L = 1Ω, and it is supplied with the voltage of rms value U = 700 V, from a transformer of 

the power ratings Ss = 0.69 MVA. The reactance-to-resistance ratio of the transformer was 

assumed to be Xs/Rs = 5. It is assumed that the dc voltage on the arc is U0 = 300V.  

The results of modeling of the furnace which operates at the power factor  = 0.71 are shown in 

Fig. 3. 

 

Figure 3: The results of modeling of a furnace which operates 

at the power factor l = 0.71 in state s0. 

The state s0 in Fig. 3 denotes a balanced state of the furnace. The supply current distortion at 

such a state of the furnace is c = 1.9%. The waveforms of furnace voltage at R terminal and the 

line R current are shown in Fig. 4. 
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As long as the supply voltage rms value E = 700V and the relative transformer ratio Ss/S 

remain unchanged, the furnace currents rms values shown for the reference furnace in Fig. 3, can 

be recalculated to any furnace of the power S, multiplying the furnace current rms value be the 

scaling coefficient a = S/0.49. 

 

Figure 4: Waveforms of phase R, S, T, voltages and currents at balanced furnace operation. 

 For example, for S = 750 MVA, this coefficient is a = 1531. At a different supply voltage 

E the scaling coefficient a = S/0.49x700/E, provides only approximate values of the furnace 

currents because the arc is nonlinear. 
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2.4 Simulink Electric arc furnace model 

 
Figure 5: Simulink electric arc furnace model 
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CHAPTER 3. POWER PROPERTIES OF AC ARC FURNACE 

     3.1 CPC Power Theory arc furnace power properties 

Arc furnaces of the ultra-high power are often supplied from dedicated power plants or dedicated 

transmission/ distribution lines with sinusoidal and symmetrical voltage. Therefore, as compared 

to the level of waveform distortion and asymmetry produced by the furnace, it can be assumed 

that they are supplied with a sinusoidal and symmetrical voltage. Therefore, ultra-high power arc 

furnace can be classified as an unbalanced Harmonics Generating Loads (HGL) supplied with a 

sinusoidal and symmetrical voltage by a three-wire lines. At such an assumption, the vector of 

the arc furnace supply current 
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can be decomposed into four Currents’ Physical Components (CPC), namely 

1 G a1 r1 u1 G     i i i i i ii .                (2) 

Symbol N in (1) denotes the set of the current harmonics order n, including the fundamental 

harmonic, n = 1. Symbols ia1, ir1 and iu1 denote the active, reactive and the unbalanced currents of 

the fundamental frequency respectively, while iG is the vector of all higher order current 

harmonics generated in the furnace. 

 Due to the furnace currents asymmetry and harmonics, the furnace voltage is 

asymmetrical and distorted. Its vector u can be presented in the form. 
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The distorted component, as a response to the furnace current harmonics, can be separated from 

the furnace voltage, so that it can be decomposed to  

1 G u uu                                (4) 

where u1 is the fundamental component of this voltage. It is asymmetrical, so that it can be 

decomposed into components of the positive and negative sequences, namely 

p n
G11

  u u uu                            (5) 

In this decomposition 
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 For describing power properties of a load with the voltage and current vectors 

decomposed as shown above, the concept of a scalar product and orthogonality is needed. 

 The scalar product of three-phase vectors, defined generally as  

T

0

1, ) ( ) ( )(
T

t t dt
T

 x y  x y                      (8) 

A three-phase rms value ||.|| of three-phase vectors x and y satisfies the relationship  
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2 2 2|| || || |||| + || = x yx y                        (9) 

on the condition that they are mutually orthogonal, i.e., their scalar product (x,y) is zero. In 

particular, vectors of quantities shifted by π/2, such as the active and reactive currents, and three-

phase quantities of a different sequence are mutually orthogonal. Taking this into account, the 

active power of the fundamental harmonic at the furnace terminals can be expressed as  

T p n T
1 1 1 1 a1 r1 u11

0 0

pT nT p n
a1 1 u1 11 1

0 0

1 1 + ) ( + + )

1 1                (10)
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The active power of the voltage and current fundamental harmonic positive sequence can be 

calculated as 

p pT p p p p p
a11 1 1 1 1 1 1

0

*1 3Re{ } = 3 cos

T

dt U I
T

P U I u i     (11) 

The reactive power of the fundamental harmonic of the positive sequence can be defined as 

p p p p p p
1 1 1 1 1 1

*3Im{ } = 3 sinU IQ U I                 (12) 

Having these two powers, the active and reactive currents of the fundamental harmonic is 

defined as 

p p 1
1

p
a1 e1 e11 2Re{ }

j t
G G eU i u 1             (13) 

with 

p
1

e1 p 2
1|| ||

P
G 

u
                             (14) 

is the fundamental harmonic of the active current or the “working” active current. The current 

component 
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1                                   (18) 

is the unbalanced current of the furnace. The symbol Y1u in (17) stands for an unbalanced 

admittance of the furnace for the fundamental harmonic. This admittance can be calculated 

having known the values of the line-to-line equivalent admittances of the furnace for the 

fundamental harmonic, YRS1, YST1 and YTS1, shown in Fig. 5. 

 

Figure 6: General structure of equivalent circuit of the arc furnace for the fundamental harmonic 

With these admittances 

u1 ST1 TR1 RS1( + + )*Y Y Y Y                 (19) 
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Unbalanced loads have an infinite number of such equivalent circuits, as shown in Fig. 5, so that 

one of these three admittances can have any value, zero. Assuming that YRS1 = 0, i.e., the 

equivalent circuit has the structure shown in Fig. 6,  

 

Figure 7: Specific structure of equivalent circuit of the arc furnace for the fundamental harmonic 

with 

R1
TR1 p p

R1 T1




I
Y

U U
                             (20) 

S1
ST1 p p

S1 T1




I
Y

U U
                              (21) 

the furnace equivalent admittance is equal to 

u1 ST1 TR1( + )Y Y Y   .                        (22) 

The last current component in decomposition (2) 

h

G n

n N

 i i                                  (23) 

is the load generated harmonic current. The symbol Nh denotes the set of all orders harmonics 

of the furnace supply current, including the dc component, but without the fundamental one. 

 The three-phase rms values of the current components in decomposition (2) are 

p
a1 e1 1| || | ||| |Gi u                              (24) 

p
r1 e1 1| || | || ||| |Bi u                              (25) 
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p
u1 u1 1| || || ||| Yi u                               (26) 

2
G

h

| || | ||| | n

n N

 i i                         (27) 

Currents’ Physical Components in (2) are mutually orthogonal and consequently, their three-

phase rms values satisfy the relationship 

2 2 2 2 2
a1 r1 u1 G|| || || || || || || |||| || =   i i i ii               (28) 

 The power factor is commonly defined as  = P/S. In the presence of the load generated 

current iG, only the active power of the fundamental harmonic of the positive sequence 

contributes to the energy transfer from the supply source to the load. Therefore, the effectiveness 

of this transfer is better characterized by the power factor defined as  

p
1P

S
                                        (29) 

3.2 Current harmonic content 

 Harmonic distortion of three-phase current vector is specified in this paper as the ratio of 

three-phase rms values of harmonic current ih and the current fundamental harmonic i1, namely  

h
c

1

|| ||

|| ||
 

i
i                                       (30) 

Observe that distortion coefficient c is defined in such a way that it characterizes distortion of 

the whole three-phase current vector, but not individual line currents. 
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CHAPTER 4. FURNACE IN UNBALANCED STATES 

 The position of the furnace electrodes and arc currents are controlled individually, which 

can cause some level of the furnace electric imbalance. However, the main cause of a substantial 

imbalance of the furnace could be extinction of one of three arcs, due to the furnace charge 

movement. When an electrode is too far from the charge then the arc cannot be ignited (state s1), 

or it is ignited but only in one direction (state s2). Such situations occur mainly in the uneasy 

mode of the furnace operation. 

4.1 Furnace operation in State s1 

Let us suppose that the arc not ignited or ignited in only one direction is in the line S. The 

results of modeling the arc furnace in state s1, with parameters as shown in Fig. 3, are shown in 

Fig. 8 and Fig. 9, respectively.  

 

Figure 8: The results of modeling of a reference arc furnace in state s1 

Let us observe that the unbalanced current iu1 is the dominating current component of the furnace 

current. It is even much higher than the reactive current ir1.  

The line currents are distorted by odd order harmonics with the 3rd order being the most 

dominating. It can occur in the supply lines because of line currents asymmetry. Harmonic 

distortion of the line currents at such state amounts to dc = 8.0%. 
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Figure 9: Waveforms of Phase R, S, T, voltages and currents in state s1 

4.2 Furnace operation in state s2 

 A presence of unidirectional arc (state s2) in the furnace is not well documented in the 

literature of the subject. We can conclude, indirectly, that such states can occur from the 

presence of the even order harmonics, mainly the second order harmonic, in the furnace current. 

They cannot occur neither in state s0 nor in state 1. 
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The results of modeling the reference furnace in state s2 are shown in Figs. 10 and 11. 

 

Figure 10: The results of modeling of arc furnace in state s2 

 It is worth to observe that the furnace generated current iG has the three-phase rms value 

||iG|| comparable with the active and the reactive currents. 

 

Figure 11: Waveforms of voltages and currents of Phase R, S, T, at the furnace operation with 

unidirectional arc 
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 Distortion coefficient of the furnace current is on the level of dc = 55%. The dc 

component and the second order harmonic contribute mainly to this distortion. 
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CHAPTER 5. REACTIVE CURRENT COMPENSATION 

 The arc furnace loads the supply source with a reactive current because inductors have to 

be connected for keeping arc stability. Since the value of these inductors is selected such that the 

reactive power is comparable with the active power, the arc furnace operates in its steady and 

balanced state approximately at the power factor  = 0.7. Thus, to reduce the furnace supply 

current, compensation of the reactive current is need.  

5.1 Reactive compensation in state s0 

 Compensation of the reactive current can be achieved along with filtering of harmonics 

by resonant harmonic filters (RHFs). The technology and effectiveness of RHFs is a separate 

issue, and therefore, let us assume tentatively that compensation of the reactive current is 

separated from harmonics reduction. This is achieved by a capacitor bank connected in D 

structure as shown in Fig. 12.  

Compensation of the furnace reactive current changes the voltage at the furnace 

terminals. This changes the working point of the furnace. Consequently, this changes the 

capacitance C of the bank needed for reactive current compensation. Because the furnace is 

nonlinear, the value of this capacitance cannot be found analytically. An iterative process is 

needed for that.  

At the assumption that the reactive current should be compensated entirely, this iterative 

process for the reference arc furnace resulted in C = 0.631mF. It was assumed that capacitors of 

the bank are connected between lines, i.e., in D configuration. To-ground capacitors, they have to 

be connected in Y configuration, and, the capacitance of the bank has to be recalculated from D 

to Y configuration.  
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The capacitance C, as specified above, could be the capacitance of the bank, and the 

equivalent capacitance of harmonic filters for the fundamental frequency. It will not affect the 

furnace performance at the fundamental frequency. 

The results of modeling of the arc furnace in state s0 with compensated reactive current are 

shown in Fig. 12.  

 

Figure 12: The results of modeling of reference furnace in state s0 

 

Figure 13: Phase S compensated voltage and current waveform in state s0 

The compensated furnace operates at almost unity power factor, with the current distortion on 

the level dc = 0.5%. 

 The state s0 is the main state of a furnace operation and the furnace should be 

compensated in this state permanently and in the most economically justified way. Maybe, the 
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capacitance found above is not the economically optimum value, nonetheless, let us assume that 

the furnace is compensated permanently by a capacitor bank with C = 0.631mF. 

5.2 Reactive compensation in state s1 

 When one arc of the furnace is not ignited, i.e., it operates in the state s1, the furnace 

become overcompensated. Power quantities change to values shown in Fig. 14. 

 

Figure 14: The results of modeling of reference furnace in state s1 

 

Figure 15: Phase S overcompensated voltage and current waveform in state s1 

Thus, as it can be seen from Fig. 14, an arc extinction in a totally compensated furnace causes 

dramatic increase of the reactive current and decline of the power factor to  = 0.23. The 

unbalanced current occurs to be even higher than the reactive current. A resonance of the 

capacitor bank with the transformer inductance is responsible for such an increase in the furnace 

current. A substantial increase of the voltage at the furnace terminals occurs because of that. 
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5.3 Reactive compensation in state s2 

 The same is observed at unidirectional arc, i.e. in state s2, as shown in Fig. 16, although 

in a lower degree. 

 

Figure 16: The results of modeling of reference furnace in state s2 

 

Figure 17: Phase S compensated voltage and current waveform in state s2 

 At fixed furnace transformer parameters, meaning its stray inductance is fixed, this 

response of the system to an arc extinction can be reduced by reduction of the compensator 

capacitance C. It means however, that the furnace in the basic state, s0, cannot be compensated 

to unity power factor. 

 Use of thyristor switch inductors (TSI), which can change compensator parameters in 

time of one period T, could be another solution of the problem.  
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CHAPTER 6. UNBLANCED CURRENT COMPENSATION 

6.1 Thyristor switched inductor model 

Thyristor switched inductors, connected in parallel with a capacitor, as shown in Fig. 18a, 

are nonlinear, harmonic generating one-ports. They can be approximated in a working point 

specified by the supply voltage u(t), by a linear branch of a susceptance for the fundamental 

harmonic T1 and a current source of the current j(t), as shown in Fig. 18b. The susceptance T1 

can be controlled by changing the firing angle of thyristor in a range from Tmin to Tmax, as shown 

in Fig 18c. These two values depend on the selection of the inductance L and capacitance C. The 

one-port shown in Fig. 17a, will be referred to in this paper as a thyristor controlled susceptance 

(TCS) 

 

Figure 18: Thyristor switched inductors (a), equivalent circuit (b) and the susceptance T1 control 

range 

 Reduction of harmonics generated by TCSs, along with those harmonics generated by the 

arc furnace, although necessary, is a separate issue. Now, let us check whether balancing at the 

fundamental harmonic in a situation illustrated in Fig. 14, i.e., in state s1, is possible or not, 

meaning ignoring harmonics generated by TCSs of the compensator.  

 Having the crms values of the fundamental harmonic UR1, US1, UT1, IR1, IS1 and IT1 of the 

furnace voltages and currents, the equivalent susceptance Be1 and unbalanced admittance Yu1, of 

the furnace can be calculated from formulae (16) and (20) – (22).  
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6.2 Reactive balancing compensator and its parameters 

A reactive balancing compensator (RBC), can have a structure and parameters shown in 

Fig. 19.  

 

Figure 19: Structure and parameters of reactive balancing compensator connected at the furnace 

terminals 

It compensates the reactive and the unbalanced currents of the fundamental harmonic on the 

condition that 

ST ST TRe1 1 1 1( ) = 0B T T T                            (31) 

ST ST TRu1 1 1 1( ) = 0j T T * T   Y                (32) 

These equations have with respect to the compensator susceptances the solution 

RS u1 u11 e1( 3Re Im )/3T B  Y Y
 

ST u11 e1(2Im )/3T B Y
                                (33) 

TR u1 u11 e1( 3Re Im )/3T B  Y Y
 

When suceptance TXY1 calculated from eqn. (33) is positive, then a capacitor of capacitance 

XY
XY

1

1

T
C


                                     (34) 

should be connected between X and Y terminals.  
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When this susceptance is negative, then inductor of inductance 

XY
XY

1 1

1
 L

T
                                   (35) 

 Compensation of the reactive and unbalanced currents changes the voltage on the 

furnace. Because it the furnace is nonlinear, this changes the susceptance Be1 and unbalanced 

admittance Yu1. Therefore, parameters of the compensator can be found in an iteration process. 

6.3 Balancing compensator in state s1 

 The result of balancing the furnace in state 1 are shown in Fig. 20. Both the reactive and 

unbalanced current were reduced to a negligible value. 

 

Figure 20: The results furnace in the state s1 balancing 

 

Figure 21: Phase S compensated voltage and current waveform in state s1 balancing 
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6.4 Balancing compensator in state s2 

The result of balancing the furnace in state 2 are shown in Fig. 22. 

 

Figure 22: The results furnace in the state s2 balancing 

 

Figure 23: Phase S voltage and current waveform in state s2 balancing 

These results show that in spite almost total compensation of the reactive and unbalanced 

currents, the power factor remains practically unchanged. This is because of an increase in the 

harmonic distortion caused by harmonics generated in the furnace when it operates with a 

unidirectional arc. 

Results of modeling a compensated furnace in states s0 and s1 show that the level of the 

supply current distortion, caused by the furnace, is on such a low level that filtering of harmonics 

might not be needed. However, when a furnace is in state s2, its balancing without harmonics 

filtering seems do not provide any benefits.  
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6.5 RHF equivalent balancing compensator  

Let us replace the capacitive compensator with a resonant harmonic filter (RHF) of the 

same reactive power for the fundamental harmonic. Since harmonics of the 2nd and the 3rd order 

are dominating ones in the state s2, let us assume that the filter which replaces capacitors in Fig. 

12 is built of two resonant branches tuned to the frequency of the 2nd and the 3rd order harmonics. 

It is assumed moreover and that each branch compensates the same reactive power, i.e., Q1/2. 

The q-factor of inductors, q = 1L/R, it is assumed to be equal to 50. Such a filter with 

parameters is shown in Fig. 24.  

 

Figure 24: Structure and parameters of a filter of the 2nd and the 3rd order harmonics 

6.6 RHF equivalent balancing compensator in state s1 

The results of balancing the furnace in the state s1, with the capacitor bank with 

capacitance C = 632F, connected as show in Fig.14, replaced by RHF shown in Fig. 24, are 

shown in Fig. 25. 

 

Figure 25: The results of balancing a furnace in the state s1 with a RHF of the 2nd and the 3rd 

harmonic 
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Figure 26: Phase S voltage and current waveform in state s1 balancing with RHF 

As can be observed, relatively high generated current iG remains after compensation. A 

dc component i0 is the main component of this current. It occurs because the voltage on arcs is 

nonsinusoidal.  

6.7 RHF equivalent balancing compensator in state s2 

When the state of the furnace changes to s2, then the furnace can be balanced with results shown 

in Fig. 27. 

 

Figure 27: The results of balancing a furnace in the state s2 with a RHF of the 2nd and the 3rd 

harmonic 
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Figure 28: Phase S voltage and current waveform in state s2 balancing with RHF 
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CHAPTER 7. CONCLUSION 

The results presented in this research shows that balancing ac arc furnaces directly at their 

terminals seem to be possible. The Currents’ Physical Component based power theory seems to 

provide a useful tool for synthesis of the reactive balancing compensator for this purpose. These 

conclusions are drawn having in mind their implementation for balancing ultra-high-power 

furnaces, which, due to the level of currents, do not presently allow of using switching 

compensators, built of power transistors.   

 If the conclusions drawn in this paper are right, and other research supports and confirms 

the merits of direct balancing, the studies should be continued towards using thyristors for the 

balancing compensator control. Thyristor switched inductors will be sources of additional 

distortion of the supply current and this must be taken into account in the design of resonant 

harmonic filters integrated with the compensator. This problem presents an area for further 

studies into arc furnace compensation. 

 It will good to note that these results and conclusions made on this thesis do not take into 

account practical and economic aspects of such balancing, it is only a theoretical approach to 

balancing compensator. 
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APPENDIX: SIMULINK LAYOUT 

 

 
 

Figure 29: Simulink layout with reactive compensators 
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Figure 30: Simulink simulation with balancing compensators 
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Figure 31: Simulink simulation with balancing compensators and equivalent RHF circuit  
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