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tRNA genes have been shown to act as a barrier to heterochromatin spreading, maintaining the 

position of silencing at those regions (Donze and Kamakaka, 2001, 2001; Donze et al., 1999; 

Simms et al., 2004, 2008).    Lastly, it has been shown that Pol III complexes and TFIIIC are 

capable of acting as a barrier to cryptic Pol II transcription, blocking progression of elongating 

Pol II (Korde et al., 2014; Wang et al., 2014). Cohesin, condensin, and nucleosome positioning 

are important to some of the extra-transcriptional effects of Pol III genes (Donze et al., 1999; 

Good et al., 2013; Kendall et al., 2000).  The extra-transcriptional functions of 5S genes are less 

robust; it has been reported that a positional effect of Pol II genes occurs near 5S genes located at 

the distal end of the rDNA region, but that 5S genes are incapable of preventing heterochromatin 

spreading into nearby regions (Buck et al., 2002; Donze and Kamakaka, 2001).     

5S genes and their potential to impact silencing 

 While the importance of Pol I transcriptional machinery is important in determining the 

silencing of the NTS regions, the effect of Pol III transcription on rDNA silencing and the 

associated instability associated with its loss is a relative unknown (Buck et al., 2002; Cioci et 

al., 2003; Ha et al., 2012).  However, the 5S gene shows organized nucleosome positioning, and 

is associated with DNA bending. Cohesin and condensin localize both upstream and downstream 

of 5S genes, and these factors have been associated with tRNA mediated extra-transcriptional 

effects (Almouzni et al., 1991; Harris et al., 2014; Huang et al., 2006; Johzuka et al., 2006; 

Mayan and Aragón, 2010; Shukla and Bhargava, 2017). Active 5S genes are also associated with 

acetylated histones, though Sir2p activity deacetylates histones in the nearby NTS regions (Bryk 

et al., 1997; Imai et al., 2000; Lee et al., 1993; Smith and Boeke, 1997).  Pol II transcription 

from cryptic promoters is associated with removal of condensin at the rDNA regions, and 

resulting Pol II transcription proceeds through the coding region of 5S (Kobayashi and Ganley, 



24 
 

2005; Li et al., 2006a).  However, Pol III complexes at tDNAs have been shown to inhibit read-

through transcription of Pol II through their gene bodies, which appears more efficient in 

blocking Pol II cryptic promoter transcription than the Pol III complexes assembled at 5S genes 

(Korde et al., 2014; Wang et al., 2014). Furthermore, Pol III complexes at 5S genes have been 

reported to produce an insulator effect on Pol II reporter transcription at nearby locations, similar 

to that seen at active tRNAs (Buck et al., 2002).   

The identification of these multiple extra-transcriptional effects leads to an interesting 

possibility that 5S genes bound by active Pol III transcription complexes might in some capacity 

impact rDNA silencing at the NTS regions.  CHAPTER 2 will explore research involved in 

investigating the role of RNA polymerase III complex binding on rDNA silencing, 

recombination, and Pol II transcription at the rDNA region. In developing procedures in which to 

study these extra-transcriptional effects, CHAPTER 3 outlines a novel method that was designed 

in the pursuit of regulating target genes to investigate Pol III and rDNA silencing. This method 

will have greater applications outside of this project to other yeast researchers as well.  

CHAPTER 4 summarizes the information we have learned so far and explores possible future 

research that would help to further our understanding of Pol III complex binding and potential 

impacts on rDNA silencing.    
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CHAPTER 2 

RNA POLYMERASE III COMPLEXES REGULATE rDNA SILECING IN 

SACCHAROMYCES CEREVICIAE 

 

Introduction 

 The yeast ribosomal DNA (rDNA) region is on chromosome XII, and consists of about 

150 copies of a tandemly repeated array which consists of the Pol I transcribed 35S gene, the Pol 

III 5S gene, and two non-transcribed spacer regions between the two genes named NTS1 and 

NTS2 (Johnston et al., 1997; Petes, 1979; Rubin and Sulston, 1973).  Within the NTS regions 

there are two bi-directional Pol II promoters, E-Pro and C-Pro, as well as a Fob1p binding 

replication fork block site in NTS1 and an origin of replication site in NTS2 (Ganley et al., 2005; 

Linskens and Huberman, 1988).  The rDNA region is known to be a hotspot for recombination 

events, and due to the homology between neighboring arrays these recombination events create 

the variance seen in rDNA copy number (Johzuka and Horiuchi, 2002; Keil and Roeder, 1984; 

Kobayashi and Horiuchi, 1996; Kobayashi et al., 1998; Sinclair and Guarente, 1997).  In 

addition to the normal recombination events which occur due to DNA damage, recombination in 

the rDNA region is also generated by a Fob1p binding site within NTS1, which acts as a barrier 

to replication and can induce strand damage at the paused replication fork (Kobayashi and 

Horiuchi, 1996).  

Copy number change occurs when homologous recombination randomly utilizes a 

template at a different repeat from the site of DNA damage, causing either an amplification of 

copy number or a loss of copy number, depending on the location of the array utilized as a repair 

template (Kobayashi et al., 1998, 2001; Sinclair and Guarente, 1997).  The use of a random 

template for repair can be restricted by the binding of cohesin complexes, which maintain 
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localization of the damaged DNA to its sister chromatid and maintains faithful repair and copy 

number during recombination (Kobayashi and Ganley, 2005).   

 In order for proper loading of cohesin to the NTS regions, a proper chromatin landscape 

must be maintained. This is done in yeast by a complex known as the RENT complex (regulator 

of nucleolar silencing and telophase exit), which contain the SIR2 histone deacetylase, NET1 

nucleolar localization protein, CDC14 phosphatase, and possibly other unidentified proteins as 

well (Shou et al., 1999; Straight et al., 1999).  The NET1 protein localizes the RENT complex to 

both the FOB1 binding site within NTS1 and the promoter region of the 35S gene in NTS2, and 

RENT association with the NTS regions occur independently of each other, and perturbations in 

RENT association with one spacer may not affect the nucleosome modifications of the other 

(Buck et al., 2002, 2016; Cioci et al., 2003; Huang and Moazed, 2003; Shou et al., 2001).  Once 

localized to the NTS regions Sir2 histone deacetylase initiates deacetylation of histones, and this 

deacetylation both blocks transcription from endogenous and integrated Pol II promoters and 

facilitates the recruitment of cohesion to the NTS regions (Bryk et al., 1997; Imai et al., 2000; 

Kobayashi and Ganley, 2005; Li et al., 2006; Smith and Boeke, 1997). This inhibition of Pol II 

promoters in the NTS regions has been given the name rDNA silencing. 

 Splitting the NTS regions is the 5S gene, which is transcribed by Pol III and codes for the 

5S ribosomal RNA.  Not all 5S genes are active at a time, and the Pol III complex occupancy of 

any given 5S gene is extremely variable and transient (French et al., 2008).  5S specific 

transcription factor TFIIIA is essential for transcription of 5S, and nucleosome positioning and 

acetylation of histone tails at the gene is essential for this factor to bind to its recognition site, the 

internal control region (ICR) (Challice and Segall, 1989; Howe and Ausió, 1998; Howe et al., 

1998; Lee et al., 1993). Pol III transcription factors TFIIIB and TFIIIC have been shown to 
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associate with nucleosome remodelers, and Pol III genes are known to override nucleosome 

positioning, creating a nucleosome free region in genic region and nucleosome positioning 

immediately outside of the gene (Kumar and Bhargava, 2013).  This requirement for histone tail 

acetylation and nucleosome repositioning at 5S genes occurs nearby the rDNA silencing at NTS 

regions, and opens the possibility that Pol III complex assembly at 5S genes could play a role in 

rDNA silencing.  When rDNA silencing is abolished the E-Pro and C-Pro Pol II promoters 

transcribe non-coding RNAs within the NTS regions, and some of these transcripts have been 

shown to be transcribed through the 5S gene (Kobayashi and Ganley, 2005; Li et al., 2006).  Pol 

III complexes which do not require TFIIIA, such as those that bind to tRNAs and some extra-

TFIIIC (ETC) sites, have been shown to block Pol II transcriptional elongation (Korde et al., 

2014).  This begs the question whether or not the transcription from the NTS cryptic Pol II 

transcription can cause the disassociation of Pol III complexes that incorporate TFIIIA, or if the 

transcripts which are generated through the 5S gene occur only in the absence of the Pol III 

complex.   

 Here the role of Pol III complex occupancy at 5S gene in rDNA silencing in yeast was 

explored.  In this study MET15 reporter genes integrated by both TY1 integration and SphI 

insertion to the NTS2 region in mutants with modified binding sites for or production of both the 

general Pol III transcription factor TFIIIC and specific 5S transcription factor TFIIIA.  These 

mutants were then plated onto lead nitrate media and analyzed by color assay and Northern blot 

for transcription of the MET15 gene. Additionally, the 5S gene and Reb1p binding sites were 

located to a region which has previously been used to study read-through elongation of Pol II.  

These results indicate that Pol III complexes both globally and at 5S play a role in rDNA 
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silencing, and could act as a blocker of elongation from the cryptic Pol II promoters in the NTS 

regions. 

Methods 

Yeast Strains 

Table 2.1 contains the yeast strains used in this study.   

 Table 2.1 S. cerevisiae strains used in Chapter 2  

Name Genotype Source 

DDY3 MATa his3-11 leu2-3,112 lys2△ trp1-1 ura3-1 J. Rine 

JS 325 MATα leu2△1 trp1△63 met15△1 his3△200 ura3-167 

RDN1(NTS2)::TY1MET15 

J. Smith 

DDY 

3538 
MATα  ADE2  his3△1  leu2△0  lys2△0  met15△0  TRP1 ura3△0 D. 

Donze 

DDY 

4607 
MATa   ADE2   his3-11   leu2-3,112   lys2△  trp1-1   ura3-1   

tv(uac)d△::URA3 

Korde et 

al., 2014 

DDY 

4817 
MATa   ADE2   his3-11   leu2-3,112   lys2△  trp1-1   ura3-1   tv(uac)d Box 

A mutant 

Korde et 

al., 2014 

DDY 

4925 
MATa   ADE2   his3-11   leu2-3,112   lys2△   trp1-1   ura3-1   tv(uac)d 

box B point mutant  

Korde et 

al., 2014 

DDY 

5154 
MATα  leu2△1 trp1△63 met15△1 his3△200 ura3-167 

RDN1(NTS2)::TY1MET15 TFC6 promoter mutant 

this 

study 

DDY 

5155 
MATα  leu2△1 trp1△63 met15△1 his3△200 ura3-167 

RDN1(NTS2)::TY1MET15 TFC6 promoter mutant 

this 

study 

DDY 

5156 
MATα  leu2△1 trp1△63 met15△1 his3△200 ura3-167 

RDN1(NTS2)::TY1MET15 TFC6 promoter mutant 

this 

study 

DDY 

5265 
MATa    ADE2  his3-11   leu2-3,112   lys2△   trp1-1   ura3-1  

met15::TRP1 

this 

study 

DDY 

5272 
MATα  ADE2  his3-11   leu2-3,112   lys2△  trp1-1   ura3-1  met15::TRP1 

forward SPHI:MET15:NTS2 ICR DrdI mutant 

this 

study 

DDY 

5273 
MATα  ADE2  his3-11   leu2-3,112   lys2△  trp1-1   ura3-1  

met15::TRP1forward SPHI:MET15:NTS2  

this 

study 

DDY 

5274 
MATα  ADE2  his3-11   leu2-3,112   lys2△  trp1-1   ura3-1  

met15::TRP1forward SPHI:MET15:NTS2  

this 

study 

DDY 

5275 
MATα  ADE2  his3-11   leu2-3,112   lys2△  trp1-1   ura3-1  met15::TRP1  

forward SPHI:MET15:NTS2 ICR DrdI mutant 

this 

study 

DDY 

5276 
MATα  ADE2  his3-11   leu2-3,112   lys2△  trp1-1   ura3-1  

met15::TRP1reverse SPHI:MET15:NTS2  

this 

study 

 

(Table 2.1 continued) 
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Name Genotype Source 

DDY 

5277 
MATα  ADE2  his3-11   leu2-3,112   lys2△  trp1-1   ura3-1  

met15::TRP1reverse SPHI:MET15:NTS2  

this 

study 

DDY 

5277 
MATα  ADE2  his3-11   leu2-3,112   lys2△  trp1-1   ura3-1  

met15::TRP1reverse SPHI:MET15:NTS2 ICR DrdI mutant 

this 

study 

DDY 

5278 
MATα  ADE2  his3-11   leu2-3,112   lys2△  trp1-1   ura3-1  

met15::TRP1reverse SPHI:MET15:NTS2 ICR DrdI mutant 

this 

study 

DDY 

5375 
MATa   ADE2   his3-11   leu2-3,112   lys2△   trp1-1   ura3-1 

tv(uac)dD::REB1 forward orientation 

this 

study 

DDY 

5376 
MATa   ADE2   his3-11   leu2-3,112   lys2△   trp1-1   ura3-1 

tv(uac)dD::REB1 forward orientation 

this 

study 

DDY 

5378 
MATa   ADE2   his3-11   leu2-3,112   lys2△   trp1-1   ura3-1 

tv(uac)dD::REB1 reverse orientation 

this 

study 

DDY 

5379 
MATa   ADE2   his3-11   leu2-3,112   lys2△   trp1-1   ura3-1 

tv(uac)dD::REB1 reverse orientation 

this 

study 

DDY 

5388 
MATa   ADE2   his3-11   leu2-3,112   lys2△   trp1-1   ura3-1 

tv(uac)dD::RDN5 forward orientation 

this 

study 

DDY 

5389 
MATa   ADE2   his3-11   leu2-3,112   lys2△   trp1-1   ura3-1 

tv(uac)dD::RDN5 forward orientation 

this 

study 

DDY 

5391 
MATa   ADE2   his3-11   leu2-3,112   lys2△   trp1-1   ura3-1   

tv(uac)dD::RDN5 reverse orientation 

this 

study 

DDY 

5392 
MATa   ADE2   his3-11   leu2-3,112   lys2△   trp1-1   ura3-1   

tv(uac)dD::RDN5 reverse orientation 

this 

study 

DDY 

5398 
MATα  ADE2   his3-11   leu2-3,112   lys2△   trp1-1   ura3-1  met15△1 

RDN1 TY1:MET15  

this 

study 

DDY 

5456 
MATa, ADE2, lys2△ ,  leu2-3,112,  trp1-1   ura3-1  met15△ 1  

RDN1(NTS2)::TY1MET15  pzf1△ ::HIS3,URA3: pDD 1326 

this 

study 

DDY 

5526 
MATa, ADE2, lys2△ ,  leu2-3,112,  trp1-1   ura3-1  met15::TRP1forward 

SPHI:MET15:NTS2 tfc6 promoter mutant #3 TFC6:9XMYC:TRP1 

this 

study 

DDY 

5527 
MATα, ADE2, lys2△ ,  leu2-3,112,  trp1-1   ura3-1  met15::TRP1forward 

SPHI:MET15:NTS2 tfc6 promoter mutant #3 TFC6:9XMYC:TRP1 

this 

study 

DDY 

5529 
MATa, ADE2, lys2△ ,  leu2-3,112,  trp1-1   ura3-1  met15::TRP1reverse 

SPHI:MET15:NTS2 tfc6 promoter mutant #3 TFC6:9XMYC:TRP1 

this 

study 

DDY 

5531 
MATa, ADE2, lys2△ ,  leu2-3,112,  trp1-1   ura3-1  met15::TRP1 reverse 

SPHI:MET15:NTS2 tfc6 promoter mutant #3 TFC6:9XMYC:TRP1 

this 

study 

DDY 

5555 
MATa, ADE2, lys2△ ,  leu2-3,112,  trp1-1   ura3-1  met15△ 1  

RDN1(NTS2)::TY1MET15  pzf1△ ::HIS3, LEU2:pDD 1332 

this 

study 

DDY 

5582 
MATα, ADE2, lys2△ ,  leu2-3,112,  trp1-1   ura3-1  met15::TRP1forward 

SPHI:MET15:NTS2 pzf1△ ::HIS3, URA3:pDD 1326 

this 

study 

DDY 

5583 
MATα, ADE2, lys2△ ,  leu2-3,112,  trp1-1   ura3-1  met15::TRP1forward 

SPHI:MET15:NTS2 pzf1△ ::HIS3, LEU2:pDD 1332 

this 

study 

DDY 

5596 
MATα, ADE2, lys2△ ,  leu2-3,112,  trp1-1   ura3-1  met15::TRP1reverse 

SPHI:MET15:NTS2 pzf1△ ::HIS3, URA3:pDD 1326 

this 

study 

DDY 

5597 
MATα, ADE2, lys2△ ,  leu2-3,112,  trp1-1   ura3-1  met15::TRP1reverse 

SPHI:MET15:NTS2 pzf1△ ::HIS3, LEU2:pDD 1332 

this 

study 

mailto:MAT@%20%20ADE2%20%20%20his3-11%20%20%20leu2-3,112%20%20%20lys2△%20%20%20trp1-1%20%20%20ura3-1%20%20met15△1%20RDN1%20TY1:MET15
mailto:MAT@%20%20ADE2%20%20%20his3-11%20%20%20leu2-3,112%20%20%20lys2△%20%20%20trp1-1%20%20%20ura3-1%20%20met15△1%20RDN1%20TY1:MET15
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Plasmids 

Table 2.2 contains the plasmids used in this study. 

Oligonucleotides used 

Table 2.3 contains the oligonucleotides used in this study 

 Table 2.2 Plasmids used in CHAPTER 2  

Name Description Source 

pCRII-

TOPO 

pCRII-TOPO cloning vector Invitrogen 45-0641 

BSSK+ pBluescript SK+ Statagene 

pRS 403 HIS3 integrating vector Sikorski and 

Hieter (1989) 

pRS 404 TRP1 integrating vector Sikorski and 

Heiter 1989 

pDD 412 5S RDN5 in BSSK+ D. Donze 

pDD 523 pADHI  URA3 vector Catherine Fox 

pDD 1260 Cis1 tDNA delete into BSSK+ Korde et al., 2014 

pDD 1298 TOPO cloned 5S-NTS region into pCRII-TOPO this study 

pDD 1299 pDD 1298 with ICR mutant this study 

pDD 1301 transfer of 5S-NTS ICR mutation to BSSK+ this study 

pDD 1305 pDD 1301 with forward SPHI:MET15:NTS2 this study 

pDD 1306 pDD 1301 with reverse SPHI:MET15:NTS2 this study 

pDD 1311 pDD 1260 with forward Reb1p binding site substitution this study 

pDD 1312 pDD 1260 with reverse Reb1p binding site substitution this study 

pDD 1313 pDD 1260 with forward 5S substitution this study 

pDD 1314 pDD 1260 with reverse 5S substitution this study 

pDD 1326 pADH1:PZF1 TFIIIA overexpression with URA3 this study 

pDD 1332 tDNA:5S TFIIIA free with Leu2 this study 

 

TY1:MET15:NTS2 crosses into W303 

DDY 5150 was mated with DDY 5267 and sporulated to create TY1:MET15 haploids. 

The new strain was again mated and sporulated for a total of six times in the method described 

above to create the TY1:MET15:NTS2 into the W303 background.   
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 Table 2.3 Oligonucleotides used in CHAPTER 2  

ID # Sequence  Description 

ACT1-

A 

ATGGATTCTGGTATGTTCTACCGC  ACT1 upstream 

ACT1-B TAATACGACTCACTATAGGGCAACTCTCAATTCGTTGT

AGAAGG 

ACT1 antisense 

CDS/T7 promoter 

NIH-

325 

GCATAATGGAGTGGATCCCTCTTCAGAAGAAGAGTGC

AGC 

NTS1 cloning 

DDO-

071 

GATTAAGTTGGGTAACGCCAGGG Plasmid sequencing  

DDO-

198 

GCACTCTCAGTACAATCTGC pRS universal 

upstream 

DDO-

792 

CAACTCATCCAGGCTTTCTCGAACAAAAAATGGAATGT

TGTTTATCTTCTTTTGCAGATTGTACTGAGAGTG 

ETC6 URA3 KO 

top 

DDO-

793 

ATTTGCTGTCTTCTGTAAGGAAATAGAAGGGATTCAGT

ATCACCCGGAAAGCTCTCCTTACGCATCTGTGCGG 

ETC6 URA3 KO 

bottom 

DDO-

794 

TCTTTTCTTTGCCGGTATTACT ETC6 KO check 

DDO-

795 

TGATGCTTCTGGAATCACCG ETC6 KO 

downstream check 

DDO-

1366 

CATGCTGCAGCTAATATCACC SUT 467 probe 

DDO-

1404 

TAATACGACTCACTATAGCACAAGAGTGGTGCTTCTGT

C 

SUT 467 PROBE 

T7 

DDO-

1766 

GCAGCACCTGAGTTTCGCGTAGACGACAAAGTCCAAC

TACTCGGTCAGGCTCTTACCAGC 

5S ICR mutant top 

DDO-

1767 

GCTGGTAAGAGCCTGACCGAGTAGTTGGACTTTGTCGT

CTACGCGAAACTCAGGTGCTGC 

5S ICR mutant 

bottom 

DDO-

1768 

TACAAGAGGTAGGTCGAAACAG NTS2 cloning 

DDO-

1769 

CCTGCCACCATCCATTTGTC NTS2 integrant 

verification 

DDO-

1774 

GCCATCTCATTTCGATACTGTTC MET15 DEL check 

upstream 

DDO-

1775 

CTTCTTACTTATACGGTGGTAC MET15  toward 

ECO RI 

DDO-

1778 

GCTTCATTGTAGATAGTACCGTG MET15 Toward 

NCO I 

DDO-

1783 

TAATACGACTCACTATAGCCGTATTTAATTGGCTGACA

G 

MET15 northern 

probe T7 

DDO-

1838 

GCCAACTTACAAGCATGCGGGGAACTGTGGTGGTTGG

CA         

MET15 AT SPH I 

upstream  1 
 

(Table 2.3 continued) 

 



44 
 

ID # Sequence  Description 

DDO-

1840 

GCCAACTTACAAGCATGCGAAACCTCCATCATCCTCTT

TTG                           

MET15 AT SPH I 

downstream 1 

DDO-

1842 

AACCCAATGAGCATAATGGAG RDN5 insert 

upstream check 

DDO-

1843 

CGGTGCCGTAAATGCAAAAC RDN5 insert 

downstream check 

DDO-

1844 

TAGTTGAACAGTATCGAAATGAG MET15 marker 

upstream check 

DDO-

1845 

TTCGCTGGCCAAAAACCATG MET15 insert 

downstream check 

DDO-

1848 

CACGTGAAGCTGTCGATATTGGGGAACTGTGGTGGTTG

GCAAATGACTAATTAAGTTAGTCAAGGGCAGATTGTA

CTGAGAGTGC 

MET15 pRS 

knockout top 

DDO-

1849 

GAAACCTCCATCATCCTCTTTTGTAACTTGGTCCTACA

ATAAATTTATCCAGTGTGACAGCTTTACTCCTTACGCA

TCTGTGCGG 

MET15 pRS 

knockout top 

DDO-

1850 

TTAACCTCTAAAATCTCTGATATC MET15 KO 

upstream check  

DDO-

1904 

GATCCATGATGACCTAGATGTTACCCGGGTAAAGAGC

CCCATTATCAGCTGG 

Reb1p site top 

BamHI forward 

DDO-

1905 

AATTCCAGCTGATAATGGGGCTCTTTACCCGGGTAACA

TCTAGGTCATCATG 

Reb1p site bottom 

EcoRI forward 

DDO-

1906 

GATCCATGATGACCTAGATGCCGGGTAAGTAAAGAGC

CCCATTATCAGCTGG 

Reb1p site bottom 

EcoRI  reverse 

DDO-

1907 

AATTCCAGCTGATAATGGGGCTCTTTACTTACCCGGCA

TCTAGGTCATCATG 

Reb1p site top 

BamHI  reverse 

DDO-

1916 

TGCTTTTGCTTTGAATTCTGTCATATCCTATTGCTATTA

G 

5S PCR with 

5'EcoRI  

DDO-

1917 

GCATAATGGAGTGAATTCCTCTTCAGAAGAAGAGTGC

AGC 

5S PCR with 

3'EcoRI 

ROOG-

324 

TGCTTTTGCTTTGGATCCTGTCATATCCTATTGCTATTA

G 

5S PCR with 

5'BamHI 

ROOG-

325 

GCATAATGGAGTGGATCCCTCTTCAGAAGAAGAGTGC

AGC 

5S PCR with 

3'BamHI 

DDO-

1931 

AAGAACTAACTATCAAATAAGGGCATTAAGCACAGTA

GTAACTGTTGAAATCGCTGTCAAGCAGATTGTACTGAG

AGTGC 

TFIIIA pRS KO 

top 

DDO-

1932 

AAAATGGCAAATATGTATATCAGTAATATAATTAGCAT

ATAAAATAAAAAAAAAAAATGCCTCCTTACGCATCTG

TGCGG 

TFIIIA pRS KO 

bottom 

DDO-

1933 

GTAGTCTGACATGATCACTTG TFIIIA KO 

upstream check, 

w/198 
 

(Table 2.3 continued) 
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ID # Sequence  Description 

DDO-

1941 

AATATTTATAGCTCAATCGATATGGGAGGAGAGGTTCT

AAATAATG 

TFIIIA ADH1 

clone top ClaI 

DDO-

1942 

CAACGGCTCCATGTGCTCGAGCAGTGAGATATACCAAT

TGCAG 

TFIIIA ADH1 

clone bottom XhoI 

DDO-

2088 

TCTCTTTGGTAAGGATCCTTTATCTCATGTTGTTCGTTT

TG 

tG(GCC)B -120 

upstream BamHI 

DDO-

2089 

GGCCGCAACCGAATTGCGCAAGCCCGGAATC tG(GCC)B-5S 

overlap 223 bp 

w/2088 

DDO-

2090 

TGCGCAATTCGGTTGCGGCCATATCTACCAG 5S upstream 

tG(GCC)B overlap 

DDO-

2091 

AAATTATAGGAACTCGAGAAAAAAAGATTGCAGCACC

TGAGTTTC 

5S 

DOWNSTREAM 

T6 Xho I  

DDO-

2092 

AAATTATAGGAACTCGAGGTAGGTTAGTTATGGGATTT

AG 

5S downstream 

terminator XhoI 

 

TFC6 promoter mutation into ETC6 

JS 325 strain had ETC6 promoter mutation via URA3 insertion and mutant substitution in 

the manner described by Kleinschmidt et al. (2011). 

PCR amplification for gene deletion 

The met15Δ::TRP1 fragment for MET15 deletion was amplified via PCR using Q5 

polymerase (NEB M0491S) with oligos DDO -1848 and -1849 using pRS 404 plasmid DNA as 

template. The pzf1Δ::HIS3 fragment for PZF1 deletion was amplified via PCR using Q5 

polymerase with oligos DDO -1931 and -1932 using pRS 403 plasmid DNA as template.   

SphI:MET15:NTS2 Cloning 

The RDN5 and flanking regions of NTS1 and NTS2 were amplified via PCR using Taq 

polymerase with oligos NIH -325 and DDO -1769 using wild-type W303 DDY 3 genomic DNA 

as template, and fragments were purified using  DNA cleanup (Zymoclean, D4006).  Fragments 
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were cloned in the pCRII-TOPO (Invitrogen 45-0641) according to the manufacturer’s protocol, 

and the products were transformed into competent E. coli. The resulting plasmid was named as 

pDD 1298, which was then mutagenised to introduce a scramble mutation in the ICR of the 5S 

gene by primers DDO -1766 and -1767 using PFU polymerase, and then digested with DpnI at 

37°C for 3 hours.  The resulting strain was named as pDD 1299.  pDD 1299 and pBluescript 

SK+ were cut using endonucleases BamHI and NotI at 37°C for 2 hours, and then were gel 

purified using gel extraction (Zymoclean, D4008), and the RDN1 region from pDD 1299 was 

ligated into Bluscript SK+ using T4 ligase for 1 hour at room temperature and transformed into 

competent E. coli cells.  The resulting plasmid was named as pDD 1301. The SphI:MET15  DNA 

construct was amplified using oligos DDO -1838 and -1840 with Q5 polymerase and DDY 3 

genomic DNA.   This DNA construct and pDD 1301 were digested with SphI for 2 hours at 37°C 

and then ligated together using T4 polymease at room temperature for 1 hour, then transformed 

into competent E. coli.  Orientation was confirmed with EcoRI digestion and the subsequent 

plasmids were named as pDD 1305 and pDD 1306.  To create constructs for integration into the 

yeast chromosome pDD 1305 and pDD 1306 were digested with BamHI and NotI for 2 hours at 

37°C and gel purified using the gel extraction (Zymoclean, D4008).   

Plasmid construction 

The PZF1 gene was amplified via PCR using Q5 polymerase (NEB M0491S) with oligos 

DDO -1941and -1942 using DDY 3 genomic DNA as template. pDD 523 was digested with  

ClaI and XhoI at 37°C for 2 hours, and was gel purified using a gel extraction (Zymoclean, 

D4008.)  Cut vector and PZF1 construct were ligated using T4 ligase for 1 hour at room 

temperature and transformed into competent E. coli.  The resulting plasmid was labeled as pDD 

1326.  The Gly(GCC)B:5S:Leu2 two fusion products were amplified via PCR using Q5 
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polymerase oligos DDO -2088 and -2089, and DDO -2090 and -2091 with DDY 3 genomic 

template.  These two products were fused via PCR with oligos DDO -2088 and -2091 to create 

one product.  This fused product and pRS 425 were digested with BamHI and XhoI for 2 hours at 

37°C and then gel purified using gel extraction (Zymoclean, D4008).  Cut vector and fusion 

product were ligated using T4 ligase for 1 hour at room temperature and transformed into 

competent E. coli. The resulting plasmid was named as pDD 1332. 

RDN5 and Reb1p binding site integration at tV(UAC)D 

Reb1p binding site forward and reverse templates were amplified using DDO -1904 and -

1905 and DDO -1906 and -1907 with genomic DNA and Q5 polymerase.  These were then 

cloned into cut pDD 1260 which was previously digested with BamHI and EcoRI using T4 

ligase, and the resulting plasmids were named pDD 1311 and 1312.  RDN5 forward and reverse 

templates were amplified using DDO -1916 and ROOG -325 and DDO -1917 and ROOG -324, 

respectively, using pDD 412 as template and Q5 polymerase.   These templates were then cloned 

into pDD 1260 as above and named pDD 1313 and 1314.  Plasmids were then linearized and 

transformed into DDY 4607 in the manner as described by Korde et al. (2014).   

Yeast transformation for plasmid transformation 

Yeast cells were grown overnight at 30°C, 400μl of culture was pelleted, washed with 1X 

TEL and then incubated in 100μl 1X TEL for 30 minutes at room temperature.  5μl of single 

stranded salmon sperm and 1μl of plasmid DNA (~500 ng) were added and cells were incubated 

30 minutes at room temperature. 700μl of PEG:TEL (1X TEL with 40% Polyethylene glycol, 

Sigma P3640) was added and cells were incubated at room temperature for 1 hour.  88μl of 
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Figure 2.3. Loss of TFIIIIC global activity increases NTS2 silencing in SphI:MET15:NTS2 

strains. A. FS:MET and FS:MET tfc6promoter mutant strains were streaked onto lead nitrate 

plating media for 7-10 days.  B. RS:MET and RS:MET tfc6 promoter mutants were plated onto 

lead nitrate plating media for 7-10 days.   C. Different colored isolates were harvested from the 

lead nitrate plates in A and B and streaked a second time onto lead nitrate plating media for 10 

days.   Strains used: WT, DDY 3; FS:MET, DDY 5273, RS:MET, DDY 5276, FS:MET tfc6p, 

DDY 5526 and 5527; RS:MET tfc6p, DDY 5529 and 5531. 

 

would remain constant or whether the phenotype was variable, isolates which showed specific 

coloration were harvested and streaked for a second time onto lead nitrate and allowed to grow 

for an additional 10 days (Figure 2.3 C). These results showed that the tan phenotype yielded tan 
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and brown phenotype, which would seem to indicate a stable transcription of MET15, with 

occasional trends towards MET15 repression, potentially due to loss of the reporter by 

recombination.  The white colony phenotype yielded white, brown, and brown sectored colonies, 

which would indicate increased MET15 expression with occasional trends towards MET15 

repression, potentially due to increased recombination events.  Brown colonies only yielded 

brown colonies, which would seem to indicate that once the MET15 reporter gene is repressed, it 

remains repressed in subsequent generations.   

Modulating TFIIIA dosage changes MET15 expression in NTS2 reporter strains. 

TFIIIC is essential for Pol III complex formation at all Pol III genes, and so a mutant that 

impacts TFIIIC levels will disrupt Pol III complex binding at all Pol III genes, even those outside 

of the rDNA region.  This could lead to factors outside of the rDNA region causing an impact on 

rDNA silencing and MET15 reporter transcription.  Additionally, localized disruption of TFIIIA 

binding at 5S caused no immediate change in MET15 expression associated with a nearby 

MET15 integration.  To explore if the effect seen by global TFIIIC reduction is caused by 

changes in Pol III complex occupancy at 5S genes or a total decrease in Pol III complex 

assembly, a method to change the amount of available TFIIIA protein within the cell was 

pursued. To control the amount of TFIIIA available to the cell, we targeted the expression of 

PZF1, the gene which codes for TFIIIA. Increases in available TFIIIA have been shown to 

increase 5S transcription, probably due to an increase in 5S gene activation and Pol III 

complexes binding to the region (Rollins et al., 1993).  Therefore, increasing PZF1 transcription 

should increase the number of Pol III complex bound 5S genes, while a reduction or loss of 

PZF1 transcription would reduce or abolish the number of Pol III complex bound 5S genes.   
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As PZF1 is an essential gene, loss or severe reduction to PZF1 is fatal to the yeast.  To 

compensate for the essential nature of the PZF1 gene, a diploid needed to be generated in order 

to facilitate modifying the transcription of PZF1.  To facilitate the creation of a TY1: MET strain 

with the changes in expression of PZF1, the TY1:MET strain was backcrossed with a W303 

strain to generate a W303 isogenic TY1: MET strain.  Then met15Δ/TY1:MET15 and met15Δ/F- 

or RS:MET15 diploid were generated, and a copy of PZF1 was deleted to create strains 

heterozygous for PZF1.  In order to increase transcription of PZF1, a vector in which PZF1 is 

under the control of an ADH1 promoter was created. This ADH1pro-PZF1 vector overexpresses 

PZF1 compared to the endogenous gene, and this vector was transformed into the PZF1 

heterozygotes. These strains were sporulated to haploids and strains which were both TY1: M or 

S:MET and chromosomally pzf1Δ and carrying the PZF1 overexpression vector were identified. 

In order to study the effect of TFIIIA loss on MET15 NTS2 reporter transcription, a vector which 

expressed the 5S gene in the absence of TFIIIA was created by fusing the 5S sequence adjacent 

to a cleavage site on a tRNA. A plasmid shuffle from the ADH1pro-PZF1 vector to the tRNA:5S 

vector was then performed on TY1:MET- or S:MET-pzf1Δ strains to yield viable cells in the 

absence of TFIIIA (TFIIIA free).  

 The PZF1 overexpression and the TFIIIA free strains were then streaked onto lead 

nitrate plating media for 7 (WT, PZF1-overexpression)-10 (TFIIIA free) days to observe the 

effects of overexpressing PZF1 on rDNA silencing (Figure 2.3).  Both the PZF1 overexpression 

strains and the TFIIIA free strains showed white colony color, indicating that both an 

overexpression of PZF1 and a loss of PZF1 create an increase in MET15 expression.  

Overexpression of PZF1 caused a darker color phenotype in both the forward and the reverse 

orientations of MET15, with a slightly darker phenotype expressed in the RS:MET strain.  In the  



58 
 

 

Figure 2.4. Changes in TFIIIA concentration causes a change in rDNA silencing of MET15.  A. 

TY1:M, TY1:M overexpressing PZF1, TY1:M TFIIIA strains were streaked onto lead nitrate for 

7-14 days. B. FS:MET15, FS:MET15 PZF1 overexpressing, and FS:MET TFIIIA free strains 

were plated onto lead nitrate plating media for 7-10 days.  C. RS:MET, RS:MET PZF1 

overexpressing,, and RS:MET TFIIIA free strains were plated for 7-10 days on lead nitrate 

plating media. Strains used. TY1:M, DDY 5398; TY1:M overexpressing PZF1, DDY 5456, 

TY1:M TFIIIA Free, DDY 5555; FS:MET, DDY 5273, FS:MET PZF1 overexpressing, DDY 

5582; FS:MET TFIIIA free, DDY 5583; RS:MET, DDY 5276, RS:MET PZF1 overexpressing, 

DDY 5596; RS:MET TFIIIA free, DDY 5597. 

 

 

TFIIIA free strains, the FS:MET showed a tan color phenotype, while the RS:MET strains 

showed a white color phenotype with the loss of TFIIIA.  This result indicates that increases of 
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TFIIIA causes a suppression of MET15 expression, where as a loss of TFIIIA causes either no 

change in expression or an increase in expression compared to the normal S:MET colonies.   As 

the TFIIIA free strains were shifted from the PZF1 overexpressing strains, it can be assumed that 

the dark colony color seen in the PZF1 overexpressing strains is a result of MET15 suppression, 

and not a result of looping out, otherwise there would be no MET15 gene in the TFIIIA free 

strains as well. 

5S can partially block read through transcription of Pol II in an orientation dependent 

manner  

Previous work has shown that genes with bound Pol III complexes or pseudo-genes 

which recruit TFIIIC are capable of blocking Pol II read through transcription in an orientation 

independent manner (Korde et al., 2014; Wang et al., 2014).  REB1 binding sites bound by 

Reb1p, such as those seen at the terminator sites of the 35S gene, have also been shown to block 

read-through transcription of Pol II in synthetic systems and through genomic screening (Colin et 

al., 2014). The cryptic Pol II promoters E-Pro and C-pro at the NTS regions of rDNA produce 

transcripts which read through the 5S gene site, as well as towards the REB1 bound terminator 

sites of 35S genes (Ganley et al., 2005; Li et al., 2006).   To investigate whether the 5S gene was 

capable of blocking Pol II progression we utilized the tV(UAC)D gene in between the SES1-

ATG31 region, in which cryptic transcription elongation upstream of the highly active SES1 gene 

is blocked by the tRNA gene, resulting in a non-coding RNA SUT467 (Korde et al., 2014).  The 

endogenous tRNA gene was replaced with a 5S gene in both orientations in order to study if the 

5S gene can block read-through transcription of Pol II.  REB1 binding sites were also integrated 

at the tRNA gene (Figure 2.5 A).  
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Figure 2.5. 5S is capable of partially blocking read through transcription in an orientation 

dependent fashion. A. Schematic of the 5S and Reb1p binding sites integrated to the tRNA gene 

between SES1 and ATG31.  B. Northern blots were performed on RNA from strains with 

tV(UAC)D A-box mutant, tV(UAC)D B-box point mutant, Reb1p binding sites integrated at 

tV(UAC)D in both orientations, and 5S integrated at tV(UAC)D in both orientations.  Strains 

used: WT, DDY 3; tRNA A-box mutant, DDY 4817; B box mutant, DDY 4925; REB1 F, DDY 

5375 and 5376; REB1 R, DDY5378 and 5379; 5S F, 5388 and 5389; 5S R, DDY 5391 and 5392. 

 

 

Northern blot was performed probing for the SUT467 RNA product to identify read through 

transcription of the different integrants to the tV(UAC)D site (Figure 2.5 B).  The wildtype strain 

shows the normal SUT467 transcript size, tRNA A-box and B-box mutant show the long RNA 

transcript, indicative of read through transcription. The Reb1p binding sites with both forward 

and reverse orientations show predominately the short transcript of SUT467, with a small amount 

of read-through transcript, as was seen in the synthetic systems.  The 5S forward orientation 

overwhelmingly showed the long transcript, while the 5S reverse showed both the long and short 
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transcript. These results indicate that Reb1p binding site is capable of blocking read through of 

its binding site regardless of orientation, while 5S was only partially able to block read-through 

transcription in the reverse orientation and only minimally in the forward orientation.   

Conclusions 

 These results indicate that Pol III complexes bound to 5S genes play a role in 

rDNA silencing and recombination at the NTS2 region in yeast.  Decreases in total 5S gene 

occupancy by Pol III complexes, whether by loss of the TFIIIA protein or a reduction in the 

TFIIIC subunit Tfc6p, cause an increase in expression of genes whose promoters are near the 5S 

gene and an increase in recombination along the NTS2 region.  While this could seem to indicate 

a possible positional effect of Pol III promoters on Pol II gene expression and recombination at 

NTS2, the loss of the Pol III complex at only the specific 5S gene within the same array as the 

reporter gene showed no effect on reporter gene expression or homologous recombination.  As 

the effects are only seen when total 5S gene occupancy is reduced, this would seem to indicate 

that the loss of silencing of the reporter and an increase in recombination events is due to a larger 

phenomenon associated with the population of 5S genes and not a simple positional effect. 

Additionally, increasing 5S gene occupancy by raising the amount of TFIIIA created different 

results, depending on the integration method of the reporter gene.  The TY1:MET strains showed 

a loss of silencing of the reporter gene and an increase in recombination events, while the S:MET 

strains showed a drastic increase in repression of the MET15 gene regardless of orientation.  This 

divergence indicates that there is a difference in how the 5S genes impact silencing due to the 

method used to integrate the reporter.  The results from the S:MET strengthen the argument that 

there is an impact on rDNA silencing due to total 5S gene occupancy, as when TFIIIA was 

increased rDNA silencing was increased in a reversible manner.  The same events that cause an 
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increase in silencing in the S:MET strains may also be occurring in the TY1:MET strains, though 

the TY1 element may be in some fashion responsible for creating the different effect seen in the 

silencing of MET15  in these strains. 

 Lastly, 5S genes show the potential to block Pol II read-through transcription when the 

Pol III complex is bound to the 5S gene.  The reverse orientation of 5S partially blocked read-

through transcription of Pol II at SUT467, while the forward orientation mostly allowed the read-

through of Pol II.  The partial blocking of Pol II by 5S genes in the reverse orientation could 

potentially be due to the transient nature of 5S genes; when the Pol III complex is bound it 

blocks read-through transcription and creates the shorter transcript, when Pol III complex is not 

bound it allows for the generation of the longer transcript.  The difficulty of forward oriented 5S 

to block read-through transcription may be more due to the location in which it was integrated 

and less to do with the overall ability for Pol III complexes at 5S to block transcription.  The 

nucleosome arrangement and the availability of the 5S ICR to TFIIIA is an important factor that 

is necessary for Pol III assembly at 5S genes (Howe and Ausió, 1998; Howe et al., 1998; Lee et 

al., 1993). Perhaps the localization to the SUT467 region created an inhibitory nucleosome 

positioning that was not present in the reverse orientation.  It may also be that the Pol III 

complexes can only block Pol III read-through transcription in an orientation dependent manner.    
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CHAPTER 3 

TIGHTENING THE SPIGOT: HMR-E SILENCER INSERTION 

REDUCES LEAKY EXPRESSION OF GENES UNDER THE CONTROL 

OF INDUCIBLE YEAST PROMOTERS 

 

Introduction 

The use of inducible/repressible promoter systems has become an important tool in both 

basic research and in synthetic biology.  Two popular promoter systems in yeast are the Tet-off 

(TetO7) and the UAS-GAL1 promoters, and extensive strain libraries with essential genes under 

the control these promoter systems have been generated to deplete these gene products where 

viable gene deletion is not possible (Hughes et al., 2000; Liu et al., 1992; Ramer et al., 1992). 

Though these libraries have undeniable value in characterizing the effect of gene depletion on 

cellular function for most essential genes, there are two major issues of concern with the use of 

these promoters. The first is the strength of the promoter, as these strong promoters in the 

induced state can lead to abnormally high expression of the regulated gene (Bellí et al., 1998; 

Johnston and Davis, 1984). For particular genes this overexpression can be toxic, cause a change 

in phenotype, or aberrantly affect cellular processes that may not be immediately apparent (Liu 

et al., 1992; Rine, 1991).  Additionally, these promoters can produce a basal level of 

transcription even in the repressed state, commonly referred to as “leaky transcription”. While in 

many cases the effect of leaky transcription may be negligible, there are particular essential 

genes in which this low expression level is sufficient to maintain normal or near normal activity, 

leading to difficulty in obtaining a depleted phenotype (Hosoda et al., 2011; Mnaimneh et al., 

2004; Nevoigt, 2008). 

The HMR-E silencer is a genomic element that represses transcription from the HMRa 

locus in Saccharomyces cerevisiae via a Sir protein dependent silencing mechanism (Aparicio et 
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DDo# Sequence Description 

2036 CCTGCTCGCATTTAACTTCTG FAD1 

upstream  

2041 CGACTTATAGTAGTACTCCATGTCTGAGGAGCTTGGCCCATTAGTCT

TTACTGAATTGTTCATTTTGAGATCCGGGTTTT 

PRI1 GAL1 

depletion 

ATG 

2042 GGCACCGATTTCAAATCTGTC PRI1 

downstream  

2043 GTCTATGTGTAAGTAAGAGTTTGTTATCTCATAACACATCTCAGCAG

CCTTGCTCAACTGCATTTTGAGATCCGGGTTTT 

FAD1 

GAL1 

depletion 

ATG 
 

2044 
CCTGGCAATCTTTTCCTCCGT FAD1 

downstream 

2065 GATCGTAGGTCAGGTTGCTTTCTCGTTTTAGAGCTAG HMR-E at 

TetO7 

sgRNA top 

2066 CTAGCTCTAAAACGAGAAAGCAACCTGACCTAC HMR-E at 

TetO7 

sgRNA 

bottom 

2067 AGGAATTGATCTATATTACCCTG  TetO7 

upstream 

2068 AAAGTGACTCTTAGGTTTTAAAACGAAAATTCTTATTCTTGAGTAAC

TCTTTCCTGTAGATTTTTTTAAATCGCAATTTAATACC 

HMR-E 

w/TetO7 

homology 

top 

2069 TGTTATCCCTAGCGGATCTGCCGGTAGAGGTGTGGTCAATAAGAGC

GACCTCATACTATATAAGCTCATAACTTGGACGG 

HMR-E 

w/TetO7 

homology 

bottom 

2107 GAACTGGGTTCAGTGAAAAGAGAACGTGAAGATGATGATGAACCG

GCTTCTTTAGATTTCCGTACGCTGCAGGTCGAC 

PRI1 pYM5 

3X-myc tag 

top 

2108 GCTATAGTAGTCATATATATATATATACACCCTTTTTATTGTTACAA

AAAGATTTCACCAATCGATGAATTCGAGCTCG 

PRI1 pYM5 

3X-myc tag 

bottom 

2109 GCACCTGAAAAAGCACCTAAG PRI1 myc 

check 
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Essential Genes 

 The essential genes utilized in this experiment and their cellular function is outlined in 

Table 3.4. 

Table 3.4 Identification of essential genes under control of inducible promoters 

Gene Loci Transcript role 

NOP7 YGR103W involved in the processing of 60S ribosomal subunit 

PZF1 YPR186C TFIIIA, 5S gene specific transcription factor 

PRI1 YIR008C catalytic subunit of DNA primase 

FAD1 YDL045C flavin adenine dinucleotide synthase 

REB1 YBR049C Pol I and II transcriptional enhancer and Pol I terminator 

 

Cloning of CRISPR gRNA plasmid and construct 

To express the chimeric guide RNA to target the HMR-E silencer into existing 

chromosomally integrated TetO7 promoter strains of the Yeast Tet-Promoters Hughes Collection, 

or yTHC (Hughes et al., 2000), oligos DDO -2065 and DDO -2066 were cloned into pML 107 

(Laughery et al., 2015). Plasmid pML 107 was obtained from Addgene. The plasmid was 

digested with SwaI overnight at 25°C, heat inactivated at 65°C for 30 minutes, digested with BclI 

for 2 hours at 50°C, and then gel purified (Zymo Gel DNA recovery kit, D4008). Oligos were 

denatured at 55°C for 10 minutes and allowed to anneal at room temperature for 30 minutes.  

Double stranded annealed primers and digested pML 107 were ligated overnight in 50 μl 

reactions using T4 ligase (NEB M0202S), and 5μl ligation was transformed into competent 

DH5α E. coli cells and plated onto LB agar containing 100 μg/ml ampicillin. Plasmid isolates 
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were verified by PCR and sequencing of the insert. The resulting plasmid was designated as pDD 

1330. 

HMR-E donor template 

The HMR-E donor insert for CRISPR mediated insertion was amplified via PCR using 

Q5 polymerase (NEB M0491S) with oligos DDO -2068 and DDO -2069 using S. cerevisiae 

wild-type W-303 (DDY 3) genomic DNA as template.  These oligos contained homology to each 

side of the TetO7 promoter adjacent to the guide RNA-Cas9 targeted cleavage site and homology 

to HMR-E on the 3’-ends. 

Site-Directed mutagenesis 

A double stranded ~100 bp HMR-E sequence containing homology to the kanMX-GAL1-

promoter vector pFA6a-kanMX6-pGAL1 (Longtine et al., 1998) was amplified by PCR using 

oligos DDO -2029 and -2030 and DDY 3 genomic DNA as template and Q5 polymerase.  The 

resulting fragment was inserted into pFA6a-kanMX6-pGAL1 vector by site-directed mutagenesis 

using Q5 polymerase.  The mutagenized plasmid was then transformed in DH5α E. coli as 

described above, and the resulting HMR-E containing plasmid was designated pDD 1328.   

Yeast transformations for CRISPR mediated insertions 

Yeast strains were grown overnight in YPD media (1% yeast extract, 2% peptone, 2% 

dextrose) at 30°C. Cells from 400 μl overnight culture were pelleted, washed in 400 μl 1X TEL 

(0.1M LiAc, 10mM Tris HCL, 1mM EDTA), and re-suspended in 100 μl of TEL for 30 minutes 

at room temperature. 5 μl of denatured single stranded salmon sperm DNA, 1 μl pDD1330 (~500 

ng), and 5 μl DDO-2068/2069 amplified HMR-E donor insert were added and cells were 

incubated 30 minutes at room temperature. 700 μl of PEG:TEL (1X TEL with 40% Polyethylene 
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glycol, Sigma P3640) was added and cells were incubated at room temperature for 1 hour.  88 μl 

of DMSO was added and then cultures were heat shocked at 42°C for 10 minutes.  Cells were 

then washed once with water and then plated onto yeast minimal media lacking leucine. Leu+ 

colonies were verified for proper integration for HMR-E by PCR and DNA sequencing. 

Integration of kanMX-pGAL1 promoter with and without HMR-E 

Integration cassettes were amplified from pFA6a-kanMX6-pGAL1 and pDD1328 using 

oligos specific for each gene as follows: PZF1, DDO-1886 and DDO-1887; PRI1, DDO-2041 

and DDO-2033; FAD1, DDO-2043 and DDO-2035. Resulting PCR products were transformed 

into yeast strain DDY 3381 as described above, and were selected on YPD plates containing 400 

μg/ml G418. Proper integration in resulting strains was verified by PCR, and then these strains 

were sprorulated to create haploid isolates containing the GAL1 promoters. 

Construction and Integration of 3X-myc epitope tags 

Fragments to integrate the 3X-myc tag at the C-terminus of PRI1 were amplified by PCR 

with Q5 polymerase using oligos DDO -2107 and DDO -2108 and plasmid pYM5 (Knop, et al., 

1999) as template.  The PCR product was transformed into the appropriate yeast strains and 

integrants were selected on minimal medium lacking histidine, then verified by PCR with DDO -

408 and DDO -2108.   

Spot Assays 

Yeast were grown in 4 ml cultures of YPD or YPGal (2% galactose) overnight at 30°C.  

Cell concentrations were estimated by measuring the OD600, and cells were diluted to a final 

density of 1.0 OD600 in 1ml of water. 1:10 serial dilutions were made for a total of 5 dilutions 

and 5 μl of each of these dilutions were pipetted onto indicated agar media.    
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Growth Curves 

Yeast strains for study with the TetO7 promoters were grown to mid-logarithmic phase 

(~0.8-1 OD600) in YMD + ALL (Dextrose 2%, Yeast Nitrogen Base 0.67%, 30 µg/ml adenine, 

20 µg/ml histidine, 40 µg/ml leucine, 40 µg/ml lysine, 20 µg/ml methionine, 30 µg/ml 

tryptophan, 20 µg/ml uracil), inoculated into repressive media (YMD + ALL with 10 μg/ml 

doxycycline hyclate (U.S. Biological, # 010967) or YMD + ALL with 10 μg/ml doxycycline 

plus 5 mM nicotinamide) and grown for 15 or 22 hours at 30°C. Yeast strains containing the 

GAL1 promoters were grown to mid-logarithmic phase in YMGal + ALL (2% galactose), 

inoculated into repressive media YMD + ALL or YMD + ALL with 5mM nicotinamide and 

grown for 15 hours at 30°C. Cultures were diluted to 0.1 OD600 in 20ml of repressive media, and 

were then grown at 30°C and OD600 was measured every hour for a seven-hour period.  

Western Blots 

Yeast strains engineered to contain 3X-myc-tagged-PRI1 driven by the unmodified and 

HMR-E modified TetO7 promoters were grown at 30°C to mid-log phase in 200 ml of YMD + 

ALL media.  40 ml of cell culture was harvested for the zero-hour initial sample, and then 

cultures were shifted to an OD600 of 0.3 in 250 ml of YMD + ALL + doxycycline and grown at 

30°C, then aliquots of the culture were harvested for each time point.  Cultures were again 

diluted to an OD600 of 0.5 in 40 ml of YMD + ALL + Doxycycline for the last two hours. 

Proteins were extracted using native protein extraction protocols and quantified using the 

Bradford Assay (Bio-Rad, # 500-0205). 60 μg total protein/lane were loaded and run on an 8% 

SDS-PAGE gel, transferred to a PVDF membrane (Immobuilin P-EMD Millipore) via semi-dry 

transfer, and membranes were stained with reversible Ponceau stain (Sigma P7170).  After 

Ponceau staining, membranes were decolorized using 0.1N NaOH, and blocked with PBST-
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BLOTTO (1X Phosphate Buffered Saline pH 7, 0.1% Tween 20, 0.05% dry milk) for one hour.  

Membranes were then transferred to 10 ml PBST-BLOTTO with anti-myc antibody diluted 

1:5000 (Santa Cruz SC-40) and were shaken overnight at 4°C.  Membranes were washed 3 times 

for 5 minutes with PBST, and then transferred to 10 ml PBST-BLOTTO with 1:5000 anti-mouse 

HRP antibody (GE Healthcare NXA831) and shaken for 1 hour at room temperature.  

Membranes were washed 5 times for 5 minutes with PBST, and then 1 ml of mixed luminol 

reagents (Bio-Rad #170-5061) were added to the membrane, and decanted after 1 minute of 

incubation.  Blots were visualized using Bio-Rad molecular imager ChemiDoc XRS+ and 

quantified using Bio-Rad Image Lab 6 software. 

Results 

Insertion of HMR-E adjacent to TetO7 driving essential genes yields a slower growth 

phenotype under repressing conditions. 

 

The yeast HMR-E region was inserted into the genome upstream of the TetO7 operator in 

strains of the yTHC via CRISPR-Cas9 mediated integration for the essential PZF1, PRI1, and 

FAD1 genes (Figure 3.1A, see methods). Cultures of strains containing the endogenous wild type 

yeast promoters, the unmodified TetO7 promoter, and the HMR-E modified TetO7 promoter were 

serially diluted and spotted onto YPD, YPD plus doxycycline, and YPD plus doxycycline and 

nicotinamide agar plates and allowed to grow for 48 hours.  Included in this assay was the 

TetO7:NOP7 strain from the yTHC for use as a positive control for doxycycline repression, as it 

was previously characterized as exhibiting a slow growth phenotype when repressed (Mnaimneh, 

et al., 2004).  No noticeable detrimental effects were observed in the growth of the HMR-E 

promoter mutant strains in comparison to wild type or the unmodified TetO7 cells in the absence 

of doxycycline (Figure 3.1B). In the presence of doxycycline the unmodified TetO7 promoters  
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Figure 3.1. HMR-E integration upstream of TetO7 promoter causes slow growth phenotype.  A. 

Schematic of HMR-E insertion upstream of the TetO7-CYC1TATA promoter in the Yeast Tet-

Promoters Hughes Collection, yTHC (Mnemiah, 2004). B. Spot assay of yeast with modified 

Tet-off promoters.  Samples were diluted to 1.0 OD600, then 1:10 serial dilutions were made and 

5 μl each dilution was plated onto YPD, YPD+10 μg/ml doxycycline, and YPD+10 μg/ml 

doxycycline+5 mM nicotinamide (TetO7 indicates unmodified promoter, H-TetO7 indicates the 

HMR-E modified promoter). C. Growth curves of WT, unmodified, and modified TetO7 

promoter strains in YMD + ALL + 10 μg/ml doxycycline or YMD + ALL + 10 μg/ml 

doxycycline with 5 mM nicotinamide (indicated by the suffix -N) after 16 or 23 hours of growth 

in repressive media. Strains shown are: WT, R1158; TetO7:NOP7, TH_2087; TetO7:PZF1, 

TH_3023; H-TetO7:PZF1, DDY5542; TetO7:PRI1, TH_4715; H-TetO7:PRI1, DDY5545; 

TetO7:FAD1, TH_3866; and H-TetO7:FAD1, DDY5548. Results were confirmed for three 

independently isolated strains of each HMR-E modified genotype. 

 

 

exhibited wild-type growth as previously reported (Mnaimneh, et al., 2004), however strains 

containing the HMR-E modified promoter showed a slow growth phenotype compared to their 

unmodified counterparts (Figure 3.1B). Upon inclusion of the Sir2 inhibitor nicotinamide in the 

doxycycline plates, the modified TetO7 promoter strains grew comparably to wild type. The 
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control unmodified TetO7:NOP7 strain showed no change in slow growth phenotype in the 

presence of nicotinamide.   

The growth of these strains was also assessed in liquid media, where cells were grown to 

log phase in YMD + ALL and then shifted to YMD + ALL + doxycyline orYMD + ALL + 

doxycycline + nicotinamide for 16 to 23 hours to before measuring optical density on an hourly 

basis.  Strains containing the modified promoters grew at about half the rate of the strains with 

unmodified or endogenous promoters under repressing conditions; however, upon addition of 

nicotinamide, these strains grow at a similar rate as the parent strains lacking HMR-E (Figure 3.1 

C).  Taken together, these results indicate that the insertion of HMR-E upstream of TetO7 reduces 

the level of leakiness at these inducible loci, and this reduction is dependent on the Sir protein 

silencing mechanism. 

Insertion of HMR-E adjacent to GAL1 promoter also reduces leaky expression. 

The use of the CRISPR-Cas9 system to integrate HMR-E downstream of the UAS site of 

the GAL1 promoter was not feasible, as Cas9 also efficiently targeted the native GAL1 promoter 

site, resulting in inviability when cells were plated on media containing galactose as a sole 

carbon source (data not shown).  To address this issue, we used site-directed mutagenesis to 

insert HMR-E into the GAL1 promoter of the previously described targeting plasmid pFA6a-

kanMX6-pGAL1 (Longtine et al., 1998).  The insertion was between the UASG site and the 

TATA box of the GAL1 promoter (Figure 3.2 A), and the resulting targeting construct was 

integrated in front of each of the target genes PZF1, PRI1, and FAD1.   Dilutions of strains 

containing the endogenous yeast promoters, the normal GAL1 promoters, and the modified GAL1 

promoters were spotted onto YPGal, YPD, and YPD with nicotinamide and grown for 48 hours. 

When grown on media containing galactose, no growth defect is observed due to the inclusion of  
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Figure 3.2. Insertion of HMR-E between UAS and TATA box of GAL1 promoter causes slow 

growth phenotype.  A. Schematic of HMR-E integration into the GAL1 promoter region.  B. Spot 

assay of yeast with WT, unmodified, and modified GAL1 promoters.  Samples were diluted to 

1.0OD600, diluted in series 1:10 and plated onto YPGAL, YPD, and YPD+5mM nicotinamide 

(pGAL indicates unmodified GAL1 promoter, H-pGAL indicates the HMR-E modified promoter).  

C. Growth curves of WT, pGAL, and H-pGAL strains in YMD + ALL or YMD + ALL + 5mM 

nicotinamide after 16 hours of growth in repressive media. Strains used were: WT, DDY5570; 

pGAL:REB1, DDY5571; pGAL:PZF1, DDY5558; H- pGAL:PZF1, DDY5559; pGAL:PRI1, 

DDY5562; H-pGAL:PRI1, DDY5563; pGAL:FAD1, DDY5566; and H-pGAL:FAD1, DDY5567.  

Results were confirmed for three independently isolated strains of each HMR-E modified 

genotype. 

 

the HMR-E insert compared to the unmodified GAL1 promoter or wild type strains (Figure 3.2 

B).  When the cells are grown on dextrose, slow growth phenotypes are observed in the HMR-E 

containing strains, but not in the unmodified GAL1 promoter or wild type strains. A previously 

described strain containing the GAL1 promoter upstream of the essential gene REB1 (Wang and 

Donze, 2016) was used as a control for depletion of an essential gene, and was inviable on 

glucose.  When exposed to the silencing inhibitor nicotinamide the HMR-E containing inducible 

promoter strains regulating PZF1 and FAD1 resumed normal growth, confirming the Sir protein 
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dependence of the slow growth phenotype.  However, when both the unmodified and modified 

GAL1:PRI1 strains were grown on complex media in the presence of nicotinamide, both showed 

slow growth phenotypes in a manner which seems to be related to the addition of nicotinamide 

and not the activity of the promoter.   

These strains were also assayed for growth rate in liquid minimal media. Cultures were 

grown to log phase in YMGal + ALL and then shifted to YMD + ALL or YMD + ALL + 

nicotinamide for 16 hours, then optical density was measured hourly.  The modified HMR-

E/GAL1 promoters showed between a 2- to 4-fold decrease in growth rate compared to the 

unmodified GAL1 and endogenous promoters, and this slow growth phenotype was relaxed in 

the presence of nicotinamide (Figure 3.2 C). In contrast to the results seen in the spot assays, 

there was no observable growth defect in the modified or unmodified GAL1:PRI1 strains when 

grown in the liquid minimal media containing nicotinamide.  These results again indicate that the 

insertion of HMR-E between the UASG and TATA box of the GAL1 promoter reduces the level 

of leakiness at these inducible loci, and this reduction is dependent on the Sir protein silencing 

mechanism.    

HMR-E inclusion reduces protein levels expressed from both induced and repressed TetO7. 

The ultimate goal of this study is to reduce the level of protein expression enough to 

allow the TetO7 strain collection and GAL-regulated promoter system to be more universally 

useful by inducing phenotypes when essential genes are depleted. To monitor the effect of 

including HMR-E at the protein level, three copies of the myc epitope tag was inserted at the C-

terminus of PRI1 in strains under the control of unmodified and modified TetO7 promoters.  

Strains were grown to log phase under inducing conditions, samples were harvested, and then the 

remainder of the cultures was shifted to repressing media. After media shift, samples were  
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Figure 3.3. Insertion of HMR-E in TetO7 promoter decreased protein level expression.  Western 

blot time course of myc-tagged TetO7 and H-TetO7 PRI1 strains in the absence of repressor and 

after addition of 10 μg/ml doxycycline to repress expression.  Protein expression was quantified 

using BioRad Image Lab 6 software and normalized to unrepressed TetO7:PRI1 protein 

expression. Strains shown are TetO7:PRI1-3X-myc, DDY5588, and H-TetO7:PRI1-3X-myc, 

DDY5589. 

 

harvested at various times for Western blot analysis.  Expression from the HMR-E modified 

TetO7 promoter was reduced ~5-fold compared to the unmodified promoter when cells were 

cultured under inducing conditions, and reduced a further 10-15 fold after repression of the 

promoter (Figure 3.3A and B).  These results indicate that the HMR-E insert reduces protein 

expression when inserted adjacent to the TetO7 promoter both in the induced and repressed 

states.   

Discussion 

Inducible promoter systems in yeast and other model systems suffer from two major 

limitations. When induced, expression levels can be higher than the normal level of the targeted 
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gene, which can induce unwanted overexpression phenotypes. Additionally, under repressing 

conditions, depending on the particular gene, leaky expression can be high enough to result in no 

observable phenotype. We have demonstrated that the insertion of the HMR-E silencer into the 

TetO7 and GAL1 promoters controlling the essential genes PZF1, PRI1, and FAD1 reduces leaky 

protein expression. This reduction allowed more complete protein depletion, and created more 

severe phenotypic changes under repressed conditions compared to strains with these genes 

driven by the unmodified inducible promoters. The TetO7 -HMR-E modification can be 

introduced directly into strains from preexisting collections via guided genome editing using 

CRISPR-Cas9, which would allow easy modification of individual strains from existing 

collections. Our results demonstrate that this simple modification protocol will expand the utility 

of such collections by imparting depletion phenotypes in isogenic strains where none had been 

observed.  

The modification of the GAL1 promoter template described here will also allow creation 

of isogenic strains that are more effectively depleted for the desired protein.  While the desired 

results were obtained for our test genes, it may be necessary to insert HMR-E at various locations 

around the GAL1 promoter or UAS to achieve the desired expression levels, but this would 

simply involve the design of a few additional oligonucleotides. The introduction of this 

modification into preexisting strains or when generating new strains is a quick and easy solution 

to the study of genes which either possess a phenotype in the induced state, or which require 

greater depletion of protein levels to produce a detectable phenotype. The strategies and 

modified GAL1 promoter template plasmid described here should be of general value to the yeast 

community. 
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CHAPTER 4 

     DISCUSSION AND FUTURE DIRECTIONS 

 

Pol II transcription in the rDNA region is due to cryptic promoter regions found within 

the NTS regions, and is regulated by the silencing of those promoters by the histone deacetylase 

activity of Sir2p (Ganley et al., 2005; Imai et al., 2000; Li et al., 2006).  Reporter genes, such as 

MET15, when translocated into the rDNA region are impacted by the silencing state of the NTS 

region (Bryk et al., 1997; Smith and Boeke, 1997).  Separating the two NTS regions is the 5S 

gene, and while the specifics of 5S gene transcription and the nucleosome positioning associated 

with Pol III complex binding is understood, its effect on the silencing of nearby NTS region is 

poorly researched (Helbo et al., 2017; Howe et al., 1998; Rubin and Sulston, 1973; Shukla and 

Bhargava, 2017; Vitolo et al., 2000).  In CHAPTER 2 the effects of Pol III transcription factor 

binding (both locally and globally) on MET15 gene expression when transposed or integrated to 

the NTS2 region was investigated.   

A TFIIIC compromised TFC6 promoter mutant was utilized in strains with the MET15 

reporter gene integrated into the NTS2 region (Kleinschmidt et al., 2011; Smith et al., 1999).  

The results show that in the tfc6 promoter mutants, there is an increase in MET15 expression 

when MET15 was inserted with its promoter proximal to the 5S gene (TY1:MET and RS:MET), 

while a minimal effect was shown in those strains whose MET15 promoters were situated distal 

to the 5S gene (FS:MET).  These results would indicate that Pol III complexes at the local Pol III 

genes cause a positional effect on the MET15 genes whose promoters were in the nearby region 

of the 5S gene, while having limited effect on the MET15 integrant whose promoter was away 

from the 5S gene.  This would corroborate a number of other sources that have seen Pol III 
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positional effects on Pol II promoters (Buck et al., 2002; Hull et al., 1994; Kinsey and 

Sandmeyer, 1991; Simms et al., 2008).  

However, the increase in colonies that have a sustained dark brown coloration provides a 

potentially different possibility.  These sustained dark brown colonies could be the product of 

looping out of MET15, which would indicate that DNA instability was induced as a result of the 

TFC6 promoter mutant (Smith and Boeke, 1997).  Looping out occurs at the rDNA region when 

DNA damage occurs and homologous recombination is initiated, losing the reporter gene in the 

process.  An increase in DNA damage and recombination is not particularly surprising in the 

reverse orientation strains, as transcription in the NTS region by Pol II promoters has been 

shown to increase the susceptibility of DNA damage (Ganley et al., 2005; Li et al., 2006). What 

is intriguing is that looping out occurred in the FS:MET strains which didn’t show a strong 

change in MET15 expression.  This eliminates the possibility that the increase in recombination 

is due solely to the increase in MET15 expression, indicating that there may be more occurring 

due when Pol III complexes are disrupted than just a simple positional effect on Pol II 

transcription.    

The idea that a positional effect contributes to the increased expression of MET15 at the 

rDNA region is also contradicted by the results looking at Pol III complex binding on a local 

scale.  A mutation in the local ICR of the 5S gene, which disrupts TFIIIA binding, did not cause 

a color change or a change in MET15 expression in strains with MET15 integration in the same 

copy as the ICR mutant 5S gene, regardless of MET15 orientation.  These results conflict with 

the theory that it is just a positional effect that is causing the increased MET15 expression in the 

TFC6 promoter mutants, as if that was the only factor involved with the change observed then 

there should be an effect seen based on a local scale in the ICR mutants. A possible explanation 
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is that the effect of the TFC6 promoter mutants might be due to a global change either in rDNA 

or due to some effector outside of the rDNA region.   

A potential concern in the use of the ICR mutants was that the method in which the 

FS:MET and RS:MET WT and ICR mutants were integrated does not control for the particular 

chromosomal site integration.  It is possible that location of the reporter integrant in the rDNA 

region may affect how susceptible the expression of MET15 is to the influences of Pol III 

complexes.  As each rDNA copy is a possible target for integration of the NTS2-MET15 

reporter, it is unlikely that the integrants in the various S:MET strains occurred in the same 

location as the S:MET ICR mutants.   This concern is given some validity in that some strains 

where the S:MET constructs were integrated did not show repression of MET15 (results not 

shown), and it is possible that these particular integrants are at a location which is less 

susceptible to 5S mediated control of MET15 or rDNA silencing in general.  With that being the 

case, it is also possible that these particular ICR mutants integrated into a location that is 

resistant to changes in rDNA expression.  This is also a matter of some concern for the difference 

seen between the forward and reverse MET15 orientations, if the forward orientation is located in 

a region less susceptible to change compared to the reverse orientations this may contribute to 

the lack of color variation seen in the forward orientation when mutated. This would not be as 

likely to contribute to the variation seen in any of the global or rDNA specific changes in Pol III 

complex assembly, as the TFIIIC and TFIIIA mutants were integrated into the WT S:MET 

strains, so they would theoretically have similar location within the rDNA array.   

While the obvious solution to the problem of integration location is to find the location of 

the insertion of the various integrants, the ability to identify the specific repeat in which 

integration occurs is in itself difficult.  The rDNA consists of a region of approximately 150 
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repeats which all have similar sequence homology, which is indeed the issue that generated the 

problem in the first place (Johnston et al., 1997).  Any attempt to sequence the MET15 or the 

ICR mutant will confirm that it has indeed integrated to the rDNA, but will not identify the 

particular copy location within the rDNA.  Repeat regions are weakness to any attempts at a 

Next-Gen sequencing solution, as short sequence reads make it impossible to distinguish 

different repeats.  A solution to locating the particular integration site along the array could be to 

utilize a pulse field electrophoresis and Southern blot with digestion at either the MET15 gene, or 

in the case of the ICR mutants, the DrdI mutation to identify relative location.   

 A potential solution to the ICR mutant-MET15 integration being different than the control 

strains is not to try to identify the location of the specific insertion, but to use emerging 

technologies to rescue the genotype once the integration has already occurred.  In this instance 

one could utilize the same ICR mutant integration, then using several representative isolates, 

target the native CGG site 6bp from the ICR mutation with CRISPR Cas9 to integrate the 

wildtype sequence to the particular repeat.  This could be done by designing a gRNA 

incorporating the ICR mutation, but use the WT 5S sequence as a repair template.  In this 

manner you could essentially “repair” the ICR mutation back to the WT template, and be assured 

that the WT and mutant is at the same specific repeat of the rDNA.  Additionally, while the ICR 

mutant abolishes TFIIIA binding at a particular repeat, there is the possibility that the loss of 

TFIIIA binding is not sufficient to change MET15 expression at the rDNA, but it may be 

possible that localized Pol III complex binding is sufficient to change the silencing at the rDNA 

region.  To investigate if this is possible there would need to be a way to fix Pol III complexes to 

the rDNA on a near-permanent basis.  Fortunately, tRNA genes show stable Pol III complex 

occupancy at all tDNAs in yeast, and could be substituted in place of the 5S gene (Ruet et al., 
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1984).  This would ensure that a Pol III complex is bound at that particular repeat, and any 

particular impact of the localized Pol III complex could be studied.   

 To try to identify if the changes occurring due to the global loss of TFIIIC was due to 

changes in the rDNA region or changes outside of the rDNA region, mutants with varying levels 

of TFIIIA expression were generated.  An interesting contrast occurred when TFIIIA was 

overexpressed, in the TY1:MET strains MET15 expression was increased, while in the S:MET 

strains MET15 expression was suppressed, with a stronger repression in the reverse orientation.  

Strains with no TFIIIA, rescued by a tRNA-5S fusion plasmid, all showed a lighter colony 

phenotype, with the TY1:MET and RS:MET showing a white colony phenotype and a FS:MET 

showing a light tan colony phenotype.  Obviously, the increase in TFIIIA production and 

presumed increase in 5S Pol III complex occupancy has an effect on MET15 expression at NTS2, 

however the different results between integration sites is puzzling.  Additionally, the differences 

in both the depth of color between the FS:MET and RS:MET , as well as the difference in tan vs 

white in the TFIIIA free strains could be further evidence of an orientation dependent influence 

on MET15 expression.   

A possible explanation to why TFIIIA overexpression causes a different color phenotype 

in the TY1:MET and S:MET strains has to do with the use of the TY1 element to integrate 

MET15 into the NTS2 region.  TY1 elements preferentially integrate into the DNA within 

proximity of the -1 to -3 nucleosomes of the Pol III genes, and the integrating TY1 for the 

TY1:MET strains contains their terminal repeats nearest to the indicated promoter region of 

MET15 (Mularoni et al., 2012; Smith et al., 1999).  If the observed effect is due to influences 

that are localized near the 5S gene the long terminal repeats or the TY1 GAG-POL promoter may 

change the way certain effectors, such as RENT and cohesin, interact with the region, thereby 
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changing the expression of MET15.  This phenomenon would not be seen in the S:MET strains, 

as there is no long terminal repeat or additional elements added except for the presence of 

MET15. 

Regardless of the differences between methods of integration and the particulars of the 

result it is evident that a change in the Pol III complex occupancy at the rDNA region is 

responsible for changes in the regulation of rDNA silencing and rDNA stability.  This leads to an 

interesting possibility that Pol III occupancy might have a function in cohesin or condensin 

binding and play a role in the overall nucleolar organization of the rDNA region.  Both cohesin 

and condensin bind to the NTS regions of the rDNA, and have a role in rDNA silencing, 

recombination, and nucleolar morphology (Harris et al., 2014; Johzuka et al., 2006; Kobayashi 

and Ganley, 2005).  Additionally, changes in rDNA organization within the nucleolus have been 

associated with cellular conditions such as nutrient starvation and cellular stress, which are 

associated with regulators that affect Pol III transcription (Tsang et al., 2007; Upadhya et al., 

2002).  Perhaps changing Pol III occupancy is in some way signaling regulatory events 

associated with different cellular states that haven’t been explored in this study.  More work 

should be done utilizing cohesin and condensin mutations to identify how the changes in 5S total 

gene occupancy and Pol III global gene occupancy effect rDNA silencing. 

Additionally, all of these effects have been looked at in the NTS2 region; it would also be 

of interest to see if the changes in MET15 expression associated with Pol III complexes could 

occur in the NTS1 region as well.  This could be performed utilizing a similar 5S-NTS construct 

to what was generated to create the MET15 integration at the SphI site, but with homology 

further into the NTS1 sequence.  Then, instead of integrating MET15 into the SphI site at NTS2, 

integrate the reporter into the endogenous SspI site located in the NTS1 region.   This site is 
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about 197bp downstream of the 5S region, and the TOPO cloning vector utilized to initially 

clone the 5S-NTS region has no SspI sites in the sequence, so there would be no need to transfer 

clones between plasmids.  Then the MET15 reporter gene could be easily induced into yeast to 

create new SspI:MET15 strains.   

The 5S genes and Reb1p binding sites were tested to see if read through transcription of 

Pol II was capable through those regions.  Bound Reb1p blocked read through transcription, but 

the 5S genes only partially blocked read through transcription in the reverse orientation, and not 

at all in the forward orientation.  The partial blockage of the reverse orientation could be due to 

the nature of the 5S gene, 5S genes unlike tRNAs are not continuously bound, and the Pol III 

complex transience may explain why read through could occur. When the Pol III complex is 

bound at active 5S genes transcription of Pol II through the 5S gene would be blocked, when Pol 

III vacated the gene Pol II transcription could occur.  It is a little surprising that the forward 

orientation did not block Pol II read through transcription at all.  It is possible that Pol II 

interaction with the 3’ end of 5S causes a dissociation of the complex while interaction with the 

5’ end does not.  It is also possible that the size difference between tRNA and 5S caused a 

repressive nucleosome positioning that prohibited TFIIIA from binding to the complex at all, so 

no inhibition could occur.   

Overall, this leads to Pol III complexes at 5S playing an intriguing role in rDNA silencing 

in Saccharomyces cerevisiae.  It also has a potential to lead to a greater impact into 5S rDNA 

arrays in other organisms as well.  In humans, as well as other organisms, the 5S gene exists as a 

repeat array that is situated separately from the Pol I driven 45S genes. While the 45S and 5S 

array are not in direct contact, the 5S array is localized to the nucleolar periphery (Haeusler and 

Engelke, 2006; Yu and Lemos, 2016).  The 5S and 45S gene arrays are subject to a wide range of 
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copy number variations, both between organisms as well as between cell types (Gibbons et al., 

2015). While there is a variation in copy number between different organisms and cell types, the 

proportion of 45S repeats and 5S repeats seems to be maintained to an even level in healthy cells 

(Gibbons et al., 2015).  How this conserved copy number variation is maintained is currently a 

topic of investigation of other labs. 

Pol III transcription in mammals is regulated at both the 5S gene and other genes by 

regulation of the TFIIIB and TFIIIC complexes by multiple growth factors and tumor 

suppressors, in cancer cells, mutations in these tumor suppressors cause an increase in Pol III 

complex assembly by the deregulation of the TFIIIB complex (White, 2004).  Additionally, both 

TFIIIB and TFIIIC subunit transcription is upregulated in tumor cells, further exacerbating the 

proliferation of Pol III complexes bound to gene bodies (White, 2004).  In addition to changes in 

Pol III transcription, tumor cells have also recently been shown to have a divergence in copy 

number from healthy cells, with an amplification of 5S repeats and a loss of 45S repeats (Wang 

and Lemos, 2017).  Considering the results shown here, the possibility that there may be extra-

transcriptional effects of Pol III complexes at 5S genes that contribute to the changes at the 5S 

rDNA in humans is not without merit.  Further studies investigating the role of Pol III complex 

assembly should be performed to understand any role it may have in the stability of the rDNA.   
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