
Louisiana State University Louisiana State University 

LSU Scholarly Repository LSU Scholarly Repository 

LSU Doctoral Dissertations Graduate School 

6-23-2018 

A Study of Scalability and Cost-effectiveness of Large-scale A Study of Scalability and Cost-effectiveness of Large-scale 

Scientific Applications over Heterogeneous Computing Scientific Applications over Heterogeneous Computing 

Environment Environment 

Arghya K. Das 
Louisiana State University and Agricultural and Mechanical College 

Follow this and additional works at: https://repository.lsu.edu/gradschool_dissertations 

 Part of the Bioinformatics Commons, Computational Engineering Commons, Computer and Systems 

Architecture Commons, Data Storage Systems Commons, Hardware Systems Commons, Systems and 

Communications Commons, and the Systems and Integrative Engineering Commons 

Recommended Citation Recommended Citation 
Das, Arghya K., "A Study of Scalability and Cost-effectiveness of Large-scale Scientific Applications over 
Heterogeneous Computing Environment" (2018). LSU Doctoral Dissertations. 4651. 
https://repository.lsu.edu/gradschool_dissertations/4651 

This Dissertation is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It 
has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU 
Scholarly Repository. For more information, please contactgradetd@lsu.edu. 

https://repository.lsu.edu/
https://repository.lsu.edu/gradschool_dissertations
https://repository.lsu.edu/gradschool
https://repository.lsu.edu/gradschool_dissertations?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F4651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/110?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F4651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/311?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F4651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F4651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F4651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/261?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F4651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/263?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F4651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/276?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F4651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/276?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F4651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/237?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F4651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/gradschool_dissertations/4651?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F4651&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in

The Department of Computer Science

by
Arghya Kusum Das

B.Tech, West Bengal University of Technology, 2008
August 2018

A STUDY OF SCALABILITY AND COST-EFFECTIVENESS OF
LARGE-SCALE SCIENTIFIC APPLICATIONS OVER HETEROGENEOUS

COMPUTING ENVIRONMENT



Acknowledgments

I would like to thank my advisor Dr. Seung-Jong Park, co-advisor Dr. Kisung

Lee and Dr. Seungwon Yang for guiding me in proper direction throughout my

Ph.D. Thanks to Dr. Jianhua Chen for serving as my committee member and

provide her valuable opinion in other collaborative projects in our group which

enriched the thesis content. I would like to thank Dr. Prosanta Chakrabarty for

his time to serve as the Dean’s Representative in the committee. Thanks to Dr.

Ling Liu (GATECH) for collaborating with us on part of this thesis.

I would also like to thank all my team members Praveen Koppa, Sayan Goswami,

Richard Platania, Shayan Shams, Chui Hui Chiu and Dipak Singh for all their help

and suggestions. Also, thanks to the LSU-HPC and LONI (Louisiana Optical Net-

work Infrastructure) team for the excellent HPC service throughout the research.

Finally, I would like to thank the Samsung SSD team in S. Korea including

Jaeki Hong, Jinki Kim, Jay Seo and Wooseok Chang for their support in evaluating

cutting-edge hardware and cluster architectures.

This research is supported in part by the following grants: NIH-P20GM103424,

NSF-MRI-1338051, NSF-CC-NIE-1341008, NSF-IBSS-L-1620451 and LA BoR LEQSF

(2016-19)-RD-A-08

ii



Table of Contents

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER
1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Objective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Research Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Brief History of Big Data and Big Science . . . . . . . . . . . . . . . . . . . . . 7
2.2 Big Data Challenges in Genomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Computation and Storage Models for Scientific

Big Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Hardware Technologies for Big Data HPC . . . . . . . . . . . . . . . . . . . . . 14
2.5 Data Sharing Model for Scientific Big Data . . . . . . . . . . . . . . . . . . . . 15

3 PARALLEL SHORT-READ ERROR CORRECTION
USING HADOOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 GIRAPH-BASED GENOME ASSEMBLER FOR
LARGE-SCALE GENOMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 PARALLEL LONG-READ ERROR CORRECTION
WITH HADOOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

iii



5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 EVALUATING DIFFERENT DISTRIBUTED CY-
BERINFRASTRUCTURE FOR DATA AND COM-
PUTE INTENSIVE APPLICATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3 Motivation: Issue in Running Big Data Appli-

cations on Traditional Supercomputers . . . . . . . . . . . . . . . . . . . . . . . . 76
6.4 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.5 Impact of Different Hardware Component . . . . . . . . . . . . . . . . . . . . . 87
6.6 Impact of Different Hardware-Organizations . . . . . . . . . . . . . . . . . . . 92
6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 A THEORETICAL MODEL FOR COST-BALANCED
HPC CLUSTER FOR DATA SCIENCE. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.4 Proposed Model for System Balance . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.5 Experimental Testbeds: Critical Analysis of

Architectural Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.6 Cluster Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.7 Results and Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8 HIGH THROUGHPUT TRANSACTION OF BIG
BIOMEDICAL DATA WITH BLOCKCHAIN AND
P2P STORAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.4 SwarMed Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.6 Operating Cost of SwarMed on Public Net-

work (Internet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.7 SwarMed and ONC’s Interoperability Roadmap . . . . . . . . . . . . . . . 155
8.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

9 CONCLUSION AND FUTURE WORK. . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

iv



APPENDIX: COPYRIGHT AND PERMISSION INFORMATION . . . . . . . . . 172

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

v



List of Tables

3.1 Dataset (simulated and real) used to evaluate ParSECH . . . . . . . . . . . . . . 29

3.2 Accuracy of E.coli and Human genome for different cov-
erage with k = 15. (using BWA alignment) . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Performance on real E. coli genome (k = 15) . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Performance on real human genome (k = 15) . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Accuracy of S. aureus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Accuracy of R. spharoides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Accuracy of HCR 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Assembly of E. coli using k = 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6 Assembly of Yoruban male genome using k = 57 . . . . . . . . . . . . . . . . . . . . . 50

5.1 PacBio dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Illumina dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Compute environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Different types of algorithms: Widest-Path (ParLECHWP )
vs Dijkstra’s shortest-path (ParLECHSP ) vs greedy al-
gorithm (ParLECHGr). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 ParLECH accuracy: ParLECH is more accurate than
LoRDEC both in terms of alignment and gain . . . . . . . . . . . . . . . . . . . . . . . 67

5.6 Correcting human genome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1 Experimental testbeds with different configurations . . . . . . . . . . . . . . . . . . 81
6.2 Hardware components of different cluster configurations,

and their cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3 Moderate-size bumble bee genome assembly . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4 Large-size human genome assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

vi



7.1 Notations used in the model and their meaning . . . . . . . . . . . . . . . . . . . . . . 106

7.2 Cost of different hardware components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.3 Experimental testbeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.4 Data size for different benchmark applications . . . . . . . . . . . . . . . . . . . . . . . 117

7.5 Resources in each cluster architecture used for TeraSort
and WordCount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.6 Maximum available resources in each cluster architec-
ture (used for large human genome assembly) . . . . . . . . . . . . . . . . . . . . . . . . 122

8.1 Common Data Model (CDM) of health care. All the
records are synthesized with computer programs follow-
ing this model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.2 Compute Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.3 Operating cost of different designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

vii



List of Figures

1.1 Cost per genome sequence (Source: NHGRI) . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Genome sequencing pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 MapReduce model of computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Bulk Synchronous Parallel (BSP) model of computation . . . . . . . . . . . . . . 12

2.4 Distributed NoSQL storage model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Blockchain transaction model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 ParSECH architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Scalability of ParSECH with different data size and dif-
ferent #nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 ParSECH’s scaled out (4cores and 32GB memory/node)
performance vs Quake’s scaled up (20cores and 1TB
memory) performance for large data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 De Bruijn graph construction using Hadoop . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Initial Compression: Each two supersteps make a round.
Dotted lines show the messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Tip removal: Each two supersteps make a round.. Dot-
ted lines show the messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Bubble removal: Each two supersteps make a round.
Dotted lines show the messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Scalability result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1 Error correction steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Widest path algorithm has higher probability to pro-
duce correct result even when high coverage k-mers are
present in the error path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 ParLECH’s distributed architecture and error correc-
tion pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

viii



5.4 De Bruijn graph construction using Hadoop. . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.5 ParLECH scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1 Impact of each individual hardware component on exe-
cution time of the assembly pipeline in 15-DN . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 CPU utilization and I/O wait characteristics in SwatIII-
Basic-HDD (1-HDD/node) and SwatIII-Basic-SSD (1-SSD/node) . . . . . 90

6.3 Comparison of disk-write IOPS (write) on local file sys-
tem (of each datanode) and I/O throughput for HDFS-
write (across all datanodes) for HDD and SSD . . . . . . . . . . . . . . . . . . . . . . . 91

6.4 Performance comparison among different type of cluster
architectures in terms of normalized execution time and
performance-to-price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.5 Comparison of different types of cluster architecture for
human genome assembly pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.6 Performance trend using HDD and SSD in Hadoop.
SSD shows better performance and scalability in a scaled
out environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.1 Change in system’s optimum I/O balance (βopt
io ) and

memory balance (βopt
mem) as a function of application bal-

ance (γio and γmem) for different cost balance (δio and
δmem). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2 Execution time (normalized to the baseline) of Tera-
Sort and WordCount over different cluster architectures
keeping the total cost of each cluster same.. . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.3 CPU and I/O characteristics of each node of differ-
ent cluster architectures for TeraSort and WordCount
benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.4 Performance of different cluster for large size human
genome assembly (normalized to 128 nodes of SuperMikeII). . . . . . . . . . . 122

8.1 Interoperability model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.2 SwarMed’s decentralized architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.3 Smart contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

ix



8.4 SwarMed indexing service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.5 Transferring 8Mn patient record over P2P storage and
from an HTTP server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.6 Writing 8Mn patient records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.7 Swarm and IPFS writer node statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.8 Blockchain performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.9 Blockchain+Swarm write scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.10 Blockchain+Swarm write scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.11 Blockchain+Swarm design alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.12 Execution time for upload 8Mn patient records to Swarm
for sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

x



Abstract

Recent advances in large-scale experimental facilities ushered in an era of data-

driven science. These large-scale data increase the opportunity to answer many

fundamental questions in basic science. However, these data pose new challenges

to the scientific community in terms of their optimal processing and transfer. Con-

sequently, scientists are in dire need of robust high performance computing (HPC)

solutions that can scale with terabytes of data.

In this thesis, I address the challenges in three major aspects of scientific big

data processing as follows: 1) Developing scalable software and algorithms for data-

and compute-intensive scientific applications. 2) Proposing new cluster architec-

tures that these software tools need for good performance. 3) Transferring the big

scientific dataset among clusters situated at geographically disparate locations.

In the first part, I develop scalable algorithms to process huge amounts of

scientific big data using the power of recent analytic tools such as, Hadoop, Giraph,

NoSQL, etc. At a broader level, these algorithms take the advantage of locality-

based computing that can scale with increasing amount of data. The thesis mainly

addresses the challenges involved in large-scale genome analysis applications such

as, genomic error correction and genome assembly which made their way to the

forefront of big data challenges recently.

In the second part of the thesis, I perform a systematic benchmark study using

the above-mentioned algorithms on different distributed cyberinfrastructures to

pinpoint the limitations in a traditional HPC cluster to process big data. Then I

propose the solution to those limitations by balancing the I/O bandwidth of the

solid state drive (SSD) with the computational speed of high performance CPUs.

A theoretical model has been also proposed to help the HPC system designers who

are striving for system balance.

xi



In the third part of the thesis, I develop a high throughput architecture for

transferring these big scientific datasets among geographically disparate clusters.

The architecture leverages the power of Ethereum’s Blockchain technology and

Swarm’s peer-to-peer (P2P) storage technology to transfer the data in secure,

tamper-proof fashion. Instead of optimizing the computation in a single cluster,

in this part, my major motivation is to foster translational research, and data

interoperability in collaboration with multiple institutions.

xii



Chapter 1
Introduction

In the last few years, the large-scale experimental facilities made a significant

advancement in their underlying technologies including both hardware and soft-

ware. As a result, these big machines started producing an unprecedented amount

of big data. For example, next-generation DNA sequencing machines such as Illu-

mina Genome Analyzer, HiSeq, etc. in the last decade outpaced Moore’s law and

started producing multiple terabytes of data with an unprecedented throughput

never seen before. The LIGO (Laser Interferometer Gravitational-Wave Obser-

vatory) observatory at Livingstone, or the Large Hadron Collider at Geneva also

produces terabytes of data which can answer many of the arcane, fundamental

questions of basic science if analyzed properly. As a matter of fact, because of the

big budgets, big machines and significant advances in technologies, the last decade

experienced a data deluge not only in the field of life science and astrophysics, but

also in the other domains of science such as social science, environmental science,

and chemistry.

These huge amounts of big data, if analyzed properly can answer many ob-

scure and fundamental questions of different domains of science unveiling complex

patterns in human behavior or basic particles of the universe. However, the compu-

tation on these huge amounts of big data is severely constrained by the traditional

model of computation as well as the traditional HPC infrastructure. In fact, with

the last few years of experiences, it is well accepted in the researcher and HPC com-

munity that the ’traditional supercomputers focused on performing calculations at

blazing speeds have fallen behind when it comes to sifting through huge amounts

of big data’ 1. Furthermore, the sharing of big data among multiple institutes
1https://spectrum.ieee.org/tech-talk/computing/hardware/ibm-redesigned-supercomputers-

to-solve-big-data-problems

1



to advance the translational research pose extra challenges in terms of security

and privacy especially when the data is confidential and protected by government

regulations.

This thesis is motivated to help both the scientists as well as the HPC sys-

tem designers by providing a systematic approach for how to manage these data-

intensive applications both in terms of a computational model as well as cost-

effective, yet high performance cyberinfrastructure. The best practical approach

till date was originally proposed by Jim Gray in 2000 (known as Gray’s Laws [2] [3])

where he stated, 1) Bring computations to the data, rather than data to the com-

putations, and 2) The solution is in a scale-out architecture. With the increasing

data size, the first law, which basically defines the locality-based model of compu-

tation utilizing lower network bandwidth, seems to govern the scientific big data

analysis for next several years in future. Consequently, a plethora of applications

in the HPC domain needs to be redesigned and restructured to fit this model. On

the other hand, the second law, which defines the underlying distributed cyberin-

frastructure, also needs to be clarified. To this end, the question that is becoming

increasingly important is ’how does the next generation HPC cluster for scientific

big data analytics should look like’.

1.1 Goals

The thesis identified the following three different areas where the existing HPC

solutions are severely challenged by the enormous amount of data.

1. Scalability issues in existing HPC software for optimal processing of big data.

2. Issues in existing cyberinfrastructure for optimal storage and processing of

big data.

3. Robustness and scaling issues in real time sharing of big data.

The major goal of this thesis is to address the challenges in each of these pain

2



areas of scientific big data analysis. In the first part, the thesis addresses the issue

of optimal processing of big data by developing scalable software for processing

scientific big data such as genomics data using state-of-the-art programming mod-

els such as MapReduce, vertex centric graph processing, distributed NoSQL, etc.

The second part shows how these software tools developed atop those relatively

newer programming models can be benefited using the recent advances in storage

technologies such as flash-based storage and SSD. Finally, in the third part, the

thesis proposes a high throughput framework to transfer big data among multiple

clusters using Blockchain and peer-to-peer storage technology in a secured manner.

Thus, in the end, the thesis provides a holistic view of challenges and the solutions

in scientific big data processing in three different levels such as, scalable software,

high performance hardware, and high throughput transfer.

1.2 Objective

To address the challenges in scientific big data analysis, first, a specific problem

area is required to be identified in the domain of big data science. In this thesis,

the bioinformatics and biomedical domain have been selected as the major area of

focus. The challenges are enormous in terms of processing, storage, and sharing

of these datasets. This thesis will attempt to resolve these challenges from the

perspective of both software and hardware.

With the recent advances in high throughput DNA sequencing machine and dif-

ferent medical instruments, bioinformatics and biomedical datasets have exceeded

terabytes and will continue to grow as the technologies will improve. As shown in

Figure 1.1, next-generation sequencing (NGS) outpaced Moore’s law and started

sequencing at high throughput at substantially lower cost. However, lengths of

the reads are small, and the genome is oversampled to cover every nucleotide base

position with high confidence. These aspects of NGS technologies make de novo

genome analysis a severely data-intensive endeavor. Furthermore, the reads pro-

3



09−2001 07−2004 07−2007 10−2010 04−2014

1e
+0

3
1e

+0
5

1e
+0

7

Date (Month−Year)

C
os

t(
$)

Cost per 
 human genome
Moore's law

Figure 1.1: Cost per genome sequence (Source: NHGRI)

duced by these NGS platforms are more error-prone than those from conventional

Sanger sequencing. Given this high volume of erroneous genomic data, genomic

error correction and de novo genome assembly recently made their way to the

forefront of big data challenges. The fundamental model of computation for these

scientific applications is rapidly changing to address these challenges. At a broader

level, these large-scale applications are driving the need for computing based on

locality to scale to increasing amount of data. The thesis has developed software

for different phases of sequencing analysis, such as genomic error correction and

genome assembly leveraging the power of MapReduce, and NoSQL which became

the de-facto standard of distributed computing.

The second part of the thesis addresses the hardware challenges for large-scale

data. The growing size of the scientific dataset and their complex computation

4



demands more computing power from a processor as well as demands high I/O per-

formance. The research has been done in collaboration with Samsung Research, S.

Korea to access their state-of-the-art clusters powered by Samsung SSD and Intel

Xeon processor to make a comparative analysis between these novel cluster archi-

tectures and the traditional HPC cluster. The thesis provided significant insight

on how to deploy different hardware components (such as, processor, storage and

memory module and network interconnect) in a cluster to optimize it for big data

analysis. Instead of focusing only on processing speed (i.e., FLOPS) the thesis

provided more stress on overall cluster architecture so that the cluster is properly

balanced in terms of both performance and economy. Besides experimental evalu-

ation, the thesis also develops a theoretical model extending Amdahl’s second law

to derive the configuration of an optimally balanced cluster architecture to resolve

the performance and cost conundrum in big data analytic cyberinfrastructure. 2 3

Finally, in the third part, the thesis addresses the challenges involved in shar-

ing and transferring the big data among multiple clusters situated in a different

geographical location. Sharing of big data across multiple clusters located in insti-

tutes to foster translational research has never become an easy job. The scenario

is further complicated when the data needs to be protected by regulations. For ex-

ample, a patient’s healthcare information if shared, needs should be protected with

HIPAA regulation. To this end, the thesis has developed a high throughput plat-

form for sharing biomedical data leveraging the decentralized model of Blockchain

technology while holding the technology’s security and privacy promises. The the-

sis developed the framework using Blockchain with peer-to-peer storage technology

to enable managing large-scale data lacking with the vanilla Blockchain.
2Second part of the thesis is done in collaboration with Samsung Ltd., S.Korea.
3Several developments/outcomes/observations of this thesis has been used for procuring and

setting up the Delta cluster at LSU (CCT) in collaboration with IBM which has been published
as a dynamic white paper [1]

5



1.3 Research Outline

The rest of the thesis is organized as follows. Chapter 2 discusses the back-

ground of the study including programming model of different big data analytics

software used in this study and a brief overview of the SSD storage architec-

ture. Chapter 3 proposes a large-scale genomic error correction tool that has been

developed to address the challenges involved in improving the quality of second-

generation sequencing data, specifically high-throughput Illumina short read data

that introduces almost 1% of errors in the datasets which typically have billions

of base pairs. Chapter 4 proposes a big data genome assembly software to address

the challenges involved in the assembly of this high-throughput, short read data

generated by Illumina. Chapter 5 then proposed another error correction tool for

the third-generation PacBio sequencing platform which emerges recently with bet-

ter promises of more complete assembly comparing to Illumina platform because

of the significant rise in the read length but, severely limited in terms of quality

with because of a significantly high error rate of 15%. Then, Chapter 6 focuses

on the cyberinfrastructure that these software tools need for good performance.

It evaluates different types of hardware infrastructure and provides an in-depth

understanding of the system characteristics of these data- and compute-intensive

applications. Based on this evaluations, Chapter 7 of the thesis proposes a theo-

retical model which points out the major shift from traditional HPC cluster with

petaflops of processing power to a balanced cyberinfrastructure answering the ques-

tion, how much I/O bandwidth or memory is required per GHz of processing power

so that expected performance can be obtained in a cost-effective way. Chapter 8

covers the final aspect of the big data challenges i.e., big data transaction. This

chapter proposes a high throughput architecture for sharing large-scale scientific

data among different clusters or computing environment situated in geographically

disparate locations. Finally, Chapter 9 concludes the thesis.

6



Chapter 2
Background

This chapter describes the background of big data challenges in the scientific

computation. After providing a brief history of big data and big science the chapter

focuses on the big data challenges specifically in bioinformatics and biomedical

domain which is a major part of this thesis. Then, this chapter describes the basic

programming models, hardware, and technologies which are used in this thesis to

address the big data challenges to facilitate the discussion throughout the thesis.

Some key terminologies are also clarified here which are used later in the thesis.

2.1 Brief History of Big Data and Big Science

The modern data revolution started after the term big data is coined by Roger

Mougalas of O’Reilly media, and Hadoop [2] is developed in 2005, one year after

the term Web 2.0 emerged and the MapReduce [3] model is published by Google.

Not only in the field of big sciences, big data is found to be ubiquitous. Starting

from genome analysis to astronomical analysis, from social media to e-commerce,

both scientists and business-persons wish to find patterns buried in data either

to solve fundamental questions of basic science or to gain competitive business

advantages over others.

Henceforth, the research in the field of big data started accelerating. Tons of

programming models, abstractions, and software frameworks have been proposed

in the last few years to ease the big data analysis. These frameworks abstract

away complex logic for distributed computing so that the application developers

can focus only on the scientific or business logic only. For example, MapReduce

[3], Bulk Synchronous Parallel [4], NoSQL, etc. are to name a few.

The research in the field of hardware also gained momentum by the dire need

for performance and scalability in big data processing. Hardware vendors such as

7



Samsung, IBM, Intel and Nvidia revolutionized the field of storage and processor

which accelerated the big data processing and significantly improved a throughput

of the computation.

2.2 Big Data Challenges in Genomics

Genome analysis pipeline broadly consists of five different phases, high through-

put DNA sequencing, Error removal and correction, genome assembly, alignment

to reference genome and finally variant calling and other downstream application.

As shown in Figure 2.1, among these five phases the error removal and correction

and the assembly pose the maximum challenges in terms of big data processing.

In the first phase, high throughput DNA sequencing machines such as Illumina

Genome Analyzer, HiSeq, etc. read the entire genome randomly into shorter frag-

ments called short reads. The data normally conform to higher error rate compared

to conventional Sanger sequencing. Consequently, the data is oversampled with

the motivation that correct samples will appear more than the incorrect samples in

the dataset giving an opportunity to improve the overall quality of the dataset by

statistical analysis. The second step is to employ advanced statistical analysis to

improve the quality of the data. Given the high throughput of the DNA sequencing

machine, the error correction phase is one of the most data- and compute-intensive

phase of the pipeline. The third phase is genome assembly where the small frag-

ments of the entire genome (i.e., short reads) are assembled together to reconstruct

the entire genome. This thesis focuses on de novo genome assembly, i.e., both the

error correction as well as the reconstruction of the genome is done without any

reference genome. For both error correction and genome assembly, the thesis has

used k-mer-based methodologies for its higher accuracy guarantee comparing to

other existing methodologies. In these computations, the short reads are again

divided into smaller fragments of length k called k-mer. Despite of its higher ac-

curacy guarantee k-mer based computation is complicated by the size of data. For

8



Figure 2.1: Genome sequencing pipeline

example, if k is chosen as 31 then the total possible number of unique k-mer string

that needs to be processed is 431 since each of the k = 31 locations of the string

can be replaced with any of the 4 nucleotide characters A, T , G or C.

From the above discussion, it can be seen that the huge amounts of raw genome

data further complicated with k-mer based methodologies pose several challenges

in the field of bioinformatics in terms of optimal processing and storage of big

data. This thesis is motivated to resolve these challenges using the state-of-the-art

programming models for big data analysis (such as, MapReduce, Bulk Synchronous

Parallel, and NoSQL) along with the recent advances in the hardware technologies.

2.3 Computation and Storage Models for Scientific Big Data

2.3.1 MapReduce

MapReduce [3] is one of the earliest programming models that revolutionized

the field of big data analytics and became a de facto standard of distributed com-

puting. The fundamental philosophy of this programming model can be found

in the traditional functional programming languages, (such as Python, ML, Scala,

9



etc) where multiple data are processed using the same function in parallel using two

programming constructs called ’map’ and ’reduce’. The major motivation behind

this programming model was to reduce the costly utilization network bandwidth

and enable locality-based processing.

Figure 2.2 describes the MapReduce programming model. In this model, the

data is distributed over different nodes of a compute cluster using a distributed

file system (DFS). The model consists of three distinct phases, map, shuffle and

reduce. The map phase considering locality reads the data from the DFS in the

form of disjoint sets or splits called block. Then, a user-defined function is applied

independently to each record of each block in parallel to get some information

in a key-value pair format. These intermediate key-value pairs are then grouped

together based on the corresponding keys, sorted and finally sent to the reducer.

This phase is called shuffle. Finally, the reducer applies a function to aggregate

or merge the information of each intermediate key-value pair and write the final

output to the DFS.

There are many different implementation of MapReduce such as Hadoop [2]

and Spark [5]. Spark computes data in memory for faster speed whereas Hadoop

focuses on disk-based computation, thus enabling a huge amount of data processing

at lower cost. This thesis focuses on using Hadoop to address the challenges the

challenges in genomic analysis.

2.3.2 Bulk Synchronous Parallel (BSP)

Bulk Synchronous Parallel (BSP) [4] model was originally proposed by Valiant

in 80’s but found its utilization recently when large-scale graph processing became

the mainstream for many of the data-driven scientific and business applications and

Google published their BSP-based graph automated graph processing framework

called Pregel [6]. The major motivation behind developing this programming model

was to address the iterative challenges in MapReduce. Large-scale graph processing

10



Figure 2.2: MapReduce model of computation

is core part of many different scientific or business applications. The computation

consists of many iterations which are severely constrained by the I/O bandwidth

of the disk in the vanilla MapReduce i.e., Hadoop.

BSP models enable vertex-centric graph processing described in Figure 2.3.

A user-defined program called vertex-program is applied to each vertex of the

graph similar to the map phase of MapReduce. Then this computation proceeds

in the form of superstep. Each superstep consists of a map-like computation step

discussed earlier followed by a synchronization step. This synchronization step is

called barrier synchronization when each vertex sends the output of the correspond-

ing instance of vertex program to all other vertices. The next computation step

starts on the basis of the received messages. Like MapReduce, there are several

implementation of BSP enabled graph processing such as Giraph [7] and GraphX

[8]. Since the major focus is to enhance the performance of iterative computation,

unlike Hadoop, all these implementations are operated in memory. This thesis uses

Giraph to address the challenges the challenges in genomic analysis.

11



Figure 2.3: Bulk Synchronous Parallel (BSP) model of computation

2.3.3 Distributed NoSQL Storage

The fundamental model of NoSQL storage can be found in traditional hash

table implementation where the data is stored in a tabular format as key-value

pairs. The model became popular after Google publish their new distributed stor-

age system called BigTable [9]. The major motivation of this storage model was to

address the limitation in the relational database and enable faster data read/write.

Unlike the B-tree indexing structure in relational or SQL database, NoSQL

or Not-only-SQL databases either use log-structured merge tree (LSM tree) or

murmur hashing. The obvious benefit of using LSM tree or hashing is to lower

space utilization for indexing. Also, it spends less amount of time for calculating

indexes which is critical for faster data read or write. The entire dataset is parti-

tioned over different nodes of a computing cluster. During writing the data, these

NoSQL databases complies with CAP theorem while guaranteeing either even-

12



tual consistency or some form of lazy consistency. During reading the data, these

databases schedule a number of instances of the query based on the number of

partitions where each query-instance is responsible for searching a partition. Fig-

ure 2.4 shows the user’s view of a general purpose NoSQL database where many

different clients (or, users) are querying different servers in parallel using APIs to

gain uniform access to the data which is partitioned over the servers. There are

Figure 2.4: Distributed NoSQL storage model

many different implementations of NoSQL databases based on their consistency

guarantees or based on their storage technologies. For example, DynamoDB [10],

CouchDB [11], etc. guarantee availability and partition tolerance whereas Hazel-

cast [12], Redis [13], Hbase [14], MongoDB [15], etc. guarantees consistency and

partition tolerance. On the other hand, MongoDB and HBase both are disk-based

NoSQL primarily focusing on large-scale storage whereas Hazelcast and Redis are

in-memory NoSQL focusing on faster computation. This thesis uses Hazelcast to

enable faster computation in the area of bioinformatics.

13



2.4 Hardware Technologies for Big Data HPC

Although different big data analysis software tools significantly reduced the

network bandwidth requirement, the locality-based computation demands signifi-

cantly more compute cycles per processor than ever before, with extreme I/O and

memory performance also required. Consequently, the landscape of HPC infras-

tructure is evolving rapidly. Hardware vendors (e.g., Samsung, IBM, Intel, etc)

and large-scale HPC cluster providers (e.g., XSEDE, NSF Cloud, etc.) started

spending millions of dollars and significant amount of effort to come up with op-

timal hardware and cluster architectures that is required for high performance of

these big data analytic tools.

For example, Samsung developed high performance solid state drives (SSD)

to improve the I/O bandwidth and reduce the I/O wait in big data applications.

Comparing to 100-200MBPS of I/O bandwidth of a typical mechanical hard disk

drive (HDD) an electronic SATA SSD provides almost 500-600MBPS showing an

almost 4-5 times improvement. The technologies in SSD is also rapidly evolving.

An NVMe SSD provides 2-3GBPS incurring another 4-5 fold improvement com-

pared to the SATA SSD. In summary, from early 2000, the bandwidth increases

at a sharp rate showing an improvement of almost 20 factors in the recent years.

On the other hand, the cost of storage bandwidth started declining to change the

performance point for big data analysis.

In the field of processing technology (e.g., CPU and GPU) also the improve-

ment is quite significant. IBM developed Power8 processor which exploits 8 in-

dependent threads (simultaneous multithreading) of execution to maximize its re-

source utilization ability aiming at different big data applications. Intel released

Knights Landing (KNL) processor with over 8 billion transistors aggregated up to

76 cores per die and 4 hardware threads per core. Knights Landing is marked as

the largest chip Intel has ever made and is capable to deliver more than 6 Ter-

14



aFLOPS. On the other hand, NVIDIA’s latest Tesla P100 GPU with 3840 CUDA

cores (64 CUDA cores per SM) is capable to deliver a performance more than 21

TeraFLOPS if used properly in conjunction with NVLink interconnect.

In collaboration with different hardware vendors such as, Samsung and IBM,

this thesis is motivated to evaluate cutting-edge hardware technologies and cluster

architectures to accelerate big data analytics. Beyond experimental evaluation, the

thesis is also motivated to develop an easy-to-use theoretical model to help and

contribute towards the effort of system designers who are thriving for architectural

balance in HPC infrastructure in terms of both performance and economy.

2.5 Data Sharing Model for Scientific Big Data

Blockchain has recently emerged as a new technology for the transactions over

the Internet. Although, it is well explored in the domain of financial services (such

as, bitcoin [16]) mainly because of its security promises and decentralized trust

model, it is relatively new in the domain of data interoperability.

For security, Blockchain uses a Markle tree-based mechanism further strength-

ened by an SHA-2-based cryptographic hash. As shown in Figure 2.5, the Merkle

tree in a block of a Blockchain network consists of nodes containing SHA2-based

cryptographic hashes. The leaf nodes are hashes of a transaction or set of trans-

actions. Nodes further up in the tree are the hashes of their respective children.

There are several implementations of Blockchain. Bitcoin [16], Ethereum [17], Hy-

perLedger [18], etc. are few of the open source Blockchain frameworks available. In

this thesis, we explore the blockchain’s opportunities in healthcare interoperability

with Ethereum which features smart contract functionality to facilitate general

purpose online contractual agreements.

Although Blockchain (such as, Ethereum) promises for security and privacy in

transferring the data there are few limitations when it comes to transferring big

data. To address the solution for managing large-scale data, common and crucial

15



Figure 2.5: Blockchain transaction model

for medical records but lacking with the vanilla Blockchain technology, we explore

the possibilities in peer-to-peer storage model.

As shown in Figure 2.5 this peer-to-peer storage is an extension and com-

plementary to the existing Blockchain ecosystem. The same Merkle tree-based

approach is used in the peer-to-peer storage model. Instead of a transaction (as in

vanilla Blockchain), the leaf nodes consist of hashes to raw data blocks.

Among many peer-to-peer storage implementations (such as Swarm [19], Storj

[20], etc. this thesis explores Swarm which is an open source peer-to-peer storage

platform developed over Ethereum.

16



Chapter 3
Parallel Short-read Error Correction using Hadoop

A scalable and accurate error correction tool is essential for all next-generation

sequencing (NGS) projects as high-throughput sequencing machines have started

producing terabytes of data with significantly higher error-rates compared to con-

ventional Sanger sequencing. This work develops ParSECH, a scalable and fully

distributed error correction software based on k-mer spectrum analysis, without

the need of a reference genome. To achieve high scalability over terabytes of data

and hundreds of cores, ParSECH utilizes two open-source big data frameworks:

Hadoop and Hazelcast. To achieve high accuracy, unlike existing error correction

tools that use a single k-mer coverage cutoff to detect errors, ParSECH determines

the skewness involved in the k-mer coverage of each individual read, followed by

correcting the errors in each read separately for low and high coverage regions of

the genome. The scalability of ParSECH is demonstrated by correcting the errors

of both simulated and real whole human genome data with coverage ranging from

2x to 40x. ParSECH can correct the largest dataset (452GB human genome),

which could not be handled by the existing error correction tools, in about 39

hours. For a small E.coli genome dataset, ParSECH demonstrates 94% accuracy,

higher than 90% accuracy of Quake.

3.1 Introduction

Recent technological advances have dramatically improved next generation se-

quencing (NGS) throughput at a substantially lower cost. However, the reads

produced by these NGS platforms are more error prone than those from conven-

tional Sanger sequencing. For example, Illumina HiSeq produces errors at a rate of

1% per base sequenced [22]. For Pacific Bioscience, the error rate is approximately

This chapter previously appeared in the proceedings of BICOB 2017 [21]

17



15% [23]. Given that these high-throughput technologies typically produce bil-

lions of base calls per experiment, millions of errors are expected per experiment.

Consequently, it is imperative to develop accurate and scalable error correction

tools to improve the quality of these large-scale genome datasets. To be useful

in practice, these software tools must be distributed, scalable and should make

economical use of time and memory while also correcting the errors of the large

datasets with high accuracy. However, most of the existing error correction soft-

ware (e.g., [24, 25, 26, 27]) are limited by the computation power and memory space

available in a single compute node, consequently, far from producing satisfactory

result when applied to large NGS datasets.

To address this limitation, ParSECH is developed. It is the first distributed

error correction tool based on k-mer spectrum, which can work on a cluster of

commodity hardware. ParSECH utilizes two state-of-the-art big data frameworks:

Hadoop for distributed data processing and Hazelcast for distributed in-memory

storage to store k-mer spectrum. The underlying design principle of ParSECH

carefully considers data locality to scale with terabytes of data.

The distributed error correction algorithm is a modified version of digital nor-

malization [28], which can produce competitive accuracy for genomic dataset. To

achieve high accuracy on different datasets, unlike existing error correction tools

that use a single k-mer coverage cutoff to detect errors, ParSECH determines the

skewness involved in the k-mer coverage of each individual read, followed by cor-

recting the errors in each read separately for low and high coverage regions of the

genome. In addition, ParSECH is fault tolerant, that is, it can continue to operate

properly in the event of a failure of one or more nodes in the compute cluster which

is a desired property of any big data analytic tool.

The scalability of ParSECH is demonstrated by correcting the errors of both

simulated and real whole human genome data with coverage ranging from 2x

18



(22GB) to 40x (452GB). ParSECH can correct the largest dataset (452GB real

human genome dataset available with NCBI accn. #SRX016231), which could

not be handled by the existing error correction tools, in about 39 hours. For a

small E.coli genome dataset (NCBI accn. #SRX000429), ParSECH demonstrates

94% accuracy, higher than 90% accuracy of Quake.

The rest of the chapter is organized as follows. Section 7.2 discusses the re-

lated work. Section 3.3 presents the error correction algorithm and architecture.

Section 3.4 demonstrates the accuracy and scalability of ParSECH, and Section

5.5 concludes this chapter.

3.2 Related Work

The most popular methodology for error correction is the spectral alignment

approach based on k-mer counting [29]. This approach first counts the multiplicity

of each unique k-mer and then applies a threshold such that k-mers with multiplic-

ity below the threshold are considered erroneous (i.e., erroneously altered during

the base-call) and systematically edited into high-multiplicity k-mers.

Based on this basic framework, many error correction tools have been devel-

oped by considering the trade-off among accuracy, speed, and memory and storage

efficiency. Reptile [26] and Hammer [30] use a Hamming distance-based approach

between neighboring reads to achieve good accuracy. Quake [24] uses a qual-

ity score-based probabilistic k-mer count, followed by a majority voting for base

correction to achieve high correction accuracy. ParSECH also uses similar k-mer

counting like Quake. However, unlike Quake’s single coverage cutoff to classify true

and erroneous k-mers, ParSECH finds the skewness in the k-mer abundance in a

read to better differentiate between true and erroneous reads and then separately

edits the errors of low and high coverage reads to achieve higher accuracy.

To improve the performance of error correction for large-scale datasets, ex-

isting error correction tools utilize advanced encoding schemes and in-memory

19



data structures, such as suffix tree and Bloom filter, to store k-mers. For exam-

ple, Quake [24] uses Boost library’s dynamic_bitset to address the high memory

challenge for correcting large-scale datasets. RACER [31] uses a 2-bit encoding

of nucleotides and a 64-bit k-mer representation to achieve memory efficiency.

SHREC [32] and HiTEC [33] use a suffix array index of the input reads to locate

and correct errors while Lighter [34] and Musket [35] use a bloom filter for correct-

ing errors. Despite of the improved memory efficiency of these existing tools, it is

not clear how well they can address the data challenges involved in ever-growing

volume of NGS data using a single node limited by memory as well as compute

cores. To solve this issue, ParSECH provides a distributed solution for sequencing

error correction tuned to work on a scale-out cluster where computation resources

can be added according to the increasing data demand.

Several alternative attempts have also been made to handle the large volume

of data using the recent advances in computing technologies. DecGPU [36] imple-

ments a distributed GPU-based algorithm that is much faster than most of the

error correction tools. However, the proposed GPU-based algorithm is limited by

the small size of GPU memory per compute node. Furthermore, the high cost of

GPU and main memory cumulatively incurs huge computation cost for handling

a large amount of data. On the contrary, [23] proposes a disk-based methodology

using BOND trees [37] for error correction, to handle a large amount of NGS data

at lower cost. However, the disk-based approach is slower than other tools.

ParSECH resolves this conundrum of performance, cost, and data-handling-

capability prevalent in NGS data while also producing high accuracy. Unlike ex-

isting error correction algorithms discussed above, ParSECH is distributed, fault

tolerant, and also tuned to work on a scale-out cluster of commodity hardware.

Like [24, 26, 30, 33, 32], ParSECH also belongs to the family of k-mer spectrum-

based methods that uses majority voting for error correction.

20



However, for improved accuracy, ParSECH considers low coverage and high

coverage region separately instead of using a single k-mer coverage threshold. Par-

SECH’s Hadoop-based k-mer counting method is more scalable over large dataset

than any of the existing methodology (e.g., Jellyfish-based method of Quake). Par-

SECH stores the large k-mer spectrum data into a distributed in-memory NoSQL

database called hazelcast [12] enabling O(1)-search, which is faster than both suffix

array approach of [32, 33] as well as bloom filter approach of [36, 34]. Further-

more, the Hadoop- and Hazelcast-based distributed algorithm enables hundreds

of searches in parallel, thus making voting process for error correction fast and

scalable.

3.3 Methodology

3.3.1 Distributed Big Data Frameworks

1) Hadoop: Hadoop was originated as the open-source counterpart of Google’s

MapReduce. It reads the input data from the underlying Hadoop Distributed File

System (HDFS) in the form of disjoint sets or partitions of records. Then, in the

MapReduce abstraction, a user-defined map function is applied to each disjoint set

concurrently to extract information from each record in the form of intermediate

key-value pairs. These key-value pairs are then grouped by the unique keys and

shuffled to the reducers. Finally, a user-defined reduce function is applied to the

value-set of each key, and the final output is written to the HDFS.

2) Hazelcast: Hazelcast [12] is an open source distributed in-memory NoSQL

database (or, simply a key-value store). In a Hazelcast cluster, data is evenly dis-

tributed among the nodes using murmur hashing allowing horizontal scaling both

in terms of available storage space and processing power. Hazelcast provides hash

table functionality such as, get and put to insert and retrieve records in O(1) time.

Because of its operational similarity with hashtable, to refer to Hazelcast, the rest

21



of the chapter will use distributed NoSQL or distributed hashtable interchange-

ably. Hazelcast creates multiple in-memory instances of hashtable over multiple

nodes and enables communication and load balancing among all these instances

transparent to the users.

3) Reasons for using Hadoop and Hazelcast: Sequencing error correction is

not only data- and compute- intensive but also search-intensive where the search

space, that is, the size of the k-mer spectrum increases almost exponentially with

the value of k (Maximum 4k unique k-mers) and the total number of searches

increases linearly with the sequence coverage. For example, a large genome with

1billion reads of length 100bp involves approximately 80billion searches in a set of

almost 10billion unique k-mers followed by complex statistical computations. Ex-

isting technologies can hardly handle this challenge. Hence, an extremely scalable

framework is required.

Fortunately, these data challenges can be addressed using the relatively new

big data analytic software tools, Hadoop and Hazelcast. The O(1) (asymptotically

lowest) search complexity of Hazelcast makes the search process faster than any

other data structure. Furthermore, being distributed in nature, Hazelcast can hold

much larger size of k-mer spectrum data in memory compared to existing tech-

nologies. Finally, if designed properly, Hadoop- and Hazelcast-based distributed

algorithm can enable hundreds of thousands of searches in parallel depending on

availability of cores, thus makes the k-mer searching and the statistical computa-

tions for error correction fast and scalable.

3.3.2 ParSECH Architecture

Figure 3.1 shows the error correction pipeline of ParSECH. It has three different

phases: 1) count k-mers, 2) locate errors, and 3) correct errors. The HDFS is used

to store the raw short read sequences which acts as input to ParSECH. Whereas,

Hazelcast is used to store the k-mer spectrum in memory in a distributed way.

22



Figure 3.1: ParSECH architecture

Each phase of ParSECH consists of a parallel and distributed Hadoop MapReduce

(or Map-only) jobs that do the required computation for that phase. In the first

phase, only Hadoop is used to count the k-mers. In the subsequent phases both

Hadoop and Hazelcast are used to locate and correct the errors. Finally, the

corrected reads are written on the HDFS.

3.3.3 Counting k-mers

Algorithm 1 describes the MapReduce algorithm for counting k-mers. The map

function scans each read of the dataset and emits each k-mer with an associated

count of occurrences (the product of the probability of the correct call to each

base of the k-mer as shown in line 3 to 6) as key-value pair. After the map

function completes, the shuffle phase partitions these intermediate key-value pairs

(i.e., k-mer and icount) on the basis of the keys. Finally, the reduce function

sums together all counts emitted for a particular k-mer as shown in line 9 to 12.

Once the final k-mer count (i.e., the k-mer spectrum) is generated, it is loaded to

Hazelcast (in-memory NoSQL) as shown in line 14 using Hazelcast’s put method.

3.3.4 Locating Errors

Algorithm 2 shows the ParSECH’s parallel methodology for locating the error

bases in shortreads. This is a Hadoop map-only job which is distributed over

23



Algorithm 1 Count k-mer
1: procedure map(String read) //compute parallel on all reads
2: kmers[]=getAllKmers(read)
3: for each kmer in kmers[] do
4: intermediateCount=

∏k−1
i=0 pc(bi) //pc(bi) is probability of correct call to base bi

5: emitIntermediate(kmer, count) //Intermediate key-value pair for reduce
6: end for
7: end procedure
8: procedure reduce(String kmer, iterable intermediateCount) //compute parallel on all unique k-mers
9: for each c in intermediateCount do

10: finalCount += c
11: end for
12: emitFinal(kmer, finalCount)
13: putCountToNoSQL(kmer, finalCount) //write the k-mer count on Hazelcast in-memory
14: end procedure

multiple cores over multiple nodes. To filter the true and error reads ParSECH

first calculates the Pearson’s skew coefficient of the k-mer coverage of each read

(Line 5 and 6). If the skewness lies in a certain interval (specified as uBound and

lBound in line 7) the read is filtered out as true reads without any error (line 7-9).

All the erroneous reads (i.e., reads with sufficient skew in their k-mer coverage) are

then classified into high and low coverage area. As shown in line 11, if the median

k-mer multiplicity of each read is greater than or equal to the median coverage of

the entire k-mer spectrum then the read is classified to be in high coverage area of

the genome. Otherwise, the read belongs to low coverage area. Then for high and

low coverage reads, two different thresholds are chosen to identify the error k-mers

(line 12 and 14). Then the subsection (line 22) of all the error k-mers is calculated

to localize the error in order to find the erroneous base(s). Finally these error reads

with all its error bases are written to HDFS with its coverage information (line

23).

3.3.5 Correcting Errors

Algorithm 3 shows the pseudo code of ParSECH’s correcting error phase. Par-

SECH uses majority voting with two different criteria to correct errors in high and

low coverage reads. As shown in line 2-7, for high coverage area, ParSECH edits the

error base b so that the low multiplicity k-mers correspond to that base are trans-

formed to high multiplicity (i.e., multiplicity greater than the thresholdhigh). The

24



Algorithm 2 Locate errors
1: procedure map(String read) //compute parallel on all reads
2: for each kmeri in read do
3: counts[] ← getCountFromNoSQL(kmeri)
4: end for
5: {mean,med, sd} ← findStats(counts[])
6: skew ← (mean−median)

sd
//Pearson’s Coefficient

7: if skew ∈ (lBound, uBound) then
8: trueReads[] ← read
9: emit(trueReads[]) //Filter out correct reads

10: else
11: if med ≥ medkmerspectrum then
12: locateErrorBases(counts[], thresholdhigh, highCov)
13: else
14: locateErrorBases(counts[], thresholdlow, lowCov)
15: end if
16: end if
17: end procedure
18: function locateErrorsInRead(double[] counts, double threshold, String covInfo)
19: for each kmeri with count < threshold do
20: errorKmers[]← kmeri
21: end for
22: errorBases ← getSubSection(errorKmers[)
23: emit(read, errorBases[], covInfo)
24: end function

base yielding the maximum number of high multiplicity k-mers are selected as the

correct base. If two bases produce same number of k-mers exceeding thresholdhigh,

the base producing the maximum cumulative sum of multiplicity of k-mers are se-

lected as the correct base.

On the other hand, for low coverage area, ParSECH edits each error base of

a read in a way, so that the base that produces lowest amount of skew in the

k-mer coverage of the read is selected as the correct base (line 8-13). The separate

treatment of low and high coverage reads significantly increases the chance of an

error being successfully corrected (True-Positive).

3.3.6 Advantages of Skew-based Filtering

The skew-based filtering methodology can better distinguish between low cov-

erage true k-mers and high coverage error k-mers than the existing methodology

(e.g., Quake) which uses only one k-mer coverage cutoff. For example, if a read

belongs to the low coverage area of the genome then, all its k-mers (which are

indeed true) may have a low multiplicity which can be frequently misclassified as

errors based on the cutoff (or, threshold-cutoff) used. On the contrary, the skew-

25



Algorithm 3 Correct errors
1: procedure map(String read, int errorBases[], String covInfo) //compute parallel on all error reads
2: if covInfo = "highCov" then
3: for each kmer with error base b do
4: newKmers[b′][]←replaceBase(b, b′) //b′ ∈ A, T,G,C
5: C[b′][]← getCountFromNoSQL(newKmers)
6: end for
7: correctBase ← argmaxi |{C[i][j] > thresholdhigh | 1 ≤ j ≤ m}|
8: else if covInfo = "lowCov" then
9: for each kmer with error base b do

10: newKmers[b′][]←replaceBase(b, b′) //b′ ∈ A, T,G,C
11: C[b′][]← getCountFromNoSQL(newKmers)
12: end for
13: correctBase ← base producing k-mers with lowest skew
14: end if
15: end procedure

based filtering uses a skew-interval to classify true and error reads before using the

threshold-cutoff which significantly reduces the chance of misclassification.

Furthermore, the accuracy of the method has lower dependency on value of k

than existing methodology as median statistics is used for distinguishing between

true and error k-mer. Median statistics is robust, that is, for a small value of k a

few substitution errors will not alter the median k-mer abundance of the read [28].

However, these errors will increase the skewness of the read. The robustness of the

median statistics in the presence of sequencing error can be shown mathematically

as follows: The total number of k-mers generated from a read of length l

nk = l − k + 1 (3.1)

After sorting all the k-mers of the read in ascending order of their abundance in

the entire genome (obtained during k-mer counting), the position of the median

can be expressed as,

pmed =
nk

2
(3.2)

The left side of pmed presents the k-mers with lower abundance. All the k-mers

with errors will fall in this left side. Let us consider, for a maximum of emax base

26



errors the median statistics will remain unaltered. Hence, it can be said,

k.emax ≤ pmed (3.3)

where each error base may correspond to maximum k k-mers.

=⇒ emax ≤ pmed

k
(3.4)

It means, in case of a minimum of 2bp errors in an Illumina read of 100bp (which

is common), k can be chosen any number between 15 and 19. However, it should

not be very small. In average, good and almost invariant accuracy can be obtained

for most of the genome sequences with k greater than 10.

3.3.7 Resource Utilization

ParSECH implements three different strategies to better utilize the available

resources which may vary between a single desktop to a large cluster. First, a

replication strategy where the entire k-mer spectrum is replicated to main memory

of each node of the cluster and each hadoop worker use their local copy minimizing

the network usage. If the number of unique k-mer is less, this strategy yields the

best performance. Second, a distributed-memory-based strategy where the k-mer

spectrum is distributed over main memory of the all the nodes of the cluster and

the searches from each Hadoop worker is redirected to the node where a k-mer is

hashed. It can handle relatively larger amount of data in memory but for network

usage, it is not as fast as the replication strategy. Third, a disk-based strategy to

handle any amount of data trading-off between memory (high-performance, high-

cost) and disk (low-performance, low-cost) utilization. In fact, the Hadoop-based

algorithms are developed with the minimum assumption of memory size which

need to hold only a single read with all its k-mer abundance statistics.

27



3.3.8 Fault Tolerance

ParSECH is fault tolerant, that is, in case of one or more node failure in the

cluster it continues to work properly. ParSECH’s fault tolerance comes by repli-

cation and re-execution. Both the big data analytic software tools (i.e., Hadoop

and Hazelcast) selected to develop ParSECH makes three replicas of the dataset

in different nodes in the cluster. However, the replication factor can be configured

based on the resource availability. In case of a node failure, ParSECH will start

re-execution on a different replica of that subset of data.

3.4 Evaluation

3.4.1 Dataset

Table 3.1 shows the overview of all the dataset used for ParSECH’s perfor-

mance analysis. To evaluate ParSECH, both simulated (using art_illumina simu-

lator) and real short reads have been used. Reads are simulated from two different

whole genome sequences, 1) relatively smaller E.coli genome (4.6million bp) and

2) large size human genome (3billion bp). First, to shed light on different aspect of

scalability and accuracy of ParSECH, this chapter used the simulated single end

short read dataset (D1 and D2 in Table 3.1) of both the species ranging between

2x to 20x coverage. Then, to show ParSECH’s performance to handle real dataset,

and to compare it with other existing tool (e.g., Quake) the real paired end short

read datasets for both the species are used. These real datasets are downloaded

from NCBI. The size of the real human short read sequences (D4 in Table 3.1) is

452GB is the largest among all the dataset.

3.4.2 Accuracy on Simulated Data

We measure ParSECH’s accuracy in terms of gain as introduced in [38]. Gain

indicates the fraction of errors effectively corrected from the genome dataset. It

28



Table 3.1: Dataset (simulated and real) used to evaluate ParSECH

ID Species Source Reference
genome

Read
length

Genome
length

Coverage Size
(GB)

D1 E. coli Simulated
with 0.5%
error rate

NC
_000913

100 4639675 2x, 5x,
10x, 20x

0.87,
0.166,
0.314
,0.632

D2 Human Simulated
with 0.5%
error rate

UCSC 100 3× 109 2x, 5x,
10x, 20x

13, 27,
58, 116

D3 E. coli SRX000429 NC
_000913

2× 36 4639675 162x 3.2

D4 Human SRX016231 UCSC 2× 100 3× 109 47x 452.0

can be formally defined as follows,

Gain =
TP − FP

TP + FN
(3.5)

where, TP (true-positive) indicates the number of errors which are successfully cor-

rected, FP (false-positive) is the number of true bases which are changed wrongly,

and FN (false-negative) is the number of errors which are falsely detected as cor-

rect. Table 3.2 shows the accuracy of simulated e.coli and human genome. For
Table 3.2: Accuracy of E.coli and Human genome for different coverage with
k = 15. (using BWA alignment)

Dataset Cov. TP FP FN Gain (%)
E.coli 2.5x 90058 3427 154 96.03
E.coli 5x 224915 8966 218 95.92
E.coli 10x 448994 18372 833 95.73
E.coli 20x 900776 34544 1079 96.05
Human 2.5x 60909869 1740388 4461108 90.51
Human 5x 121819797 3499257 8906416 90.51
Human 10x 243642050 7004946 17810303 90.50
Human 20x 488367549 12825818 35716293 90.73

E.coli dataset, ParSECH achieves almost 96% gain. For Quake, the accuracy of

such dataset is reported as 90% as reported in the their paper [24]. On the other

29



hand, for the large and complex human genome ParSECH’s accuracy is more than

90% which cannot be handled with most of the existing tools in real time.

3.4.3 Scalability on Simulated Data

To show the scalability of ParSECH the simulated human genome datasets with

different coverage are used. For this purpose, LSU HPC cluster called SuperMikeII

is used where each node has 16cores and 32GB of memory. However, for ParSECH

only 4cores per node are used to demonstrate ParSECH’s performance on scaled

out cluster. Among those 4cores, 2 are used for Hadoop and other 2 are used

for Hazelcast. All the nodes of the Hadoop cluster is connected through 1Gbps

ethernet network. A maximum of 128 nodes is used with this configuration. This

configuration is a good representative of a commodity cluster of cheap harware on

which ParSECH shows almost linear scalability with increasing number of nodes.

1) Strong scalability: Figure 3.2a and 3.2b show the strong scalable nature of

execution different phases of ParSECH. That is, for a fixed size of data, ParSECH’s

execution time decreases almost linearly with the increasing number of nodes.

Here, the strong scalability of ParSECH is shown for 2x and 20x coverage (i.e.,

the two extreme cases for simulated reads from whole human genome) dataset.

However, it is true for all the other dataset also.

2) Weak scalability: Figure 3.2c demonstrates the excellent weak scalability

nature of ParSECH. That is, the execution time of ParSECH remains almost same

if the number of nodes are changed in the same ratio as that of the data size.

3.4.4 Accuracy on Real E. coli Genome

To compare the accuracy of ParSECH’s error correction algorithm with that of

Quake an E. coli dataset is used. This dataset consists of 20816448 million paired-

end reads each of length 36 bp with an error rate of 0.51%. This benchmark dataset

has been used by many error correction tools to evaluate their performance.

30



16 32 64 128

5
1

0
2

0
5

0
1

0
0

2
0

0
5

0
0

Number of Nodes in log scale

E
x
e

c
u

ti
o

n
 t
im

e
 i
n

 l
o

g
 s

c
a

le
 (

m
in

)

KmerCount
LocateError
CorrectError
Total

(a) Strong scalability of
ParSECH: Execution time
for simulated short reads
generated with 2.5x cover-
age (14GB) of whole hu-
man genome

16 32 64 128

5
0

1
0

0
2

0
0

5
0

0
1

0
0

0
2

0
0

0
5

0
0

0

Number of Nodes in log scale

E
x
e

c
u

ti
o

n
 t
im

e
 i
n

 l
o

g
 s

c
a

le
 (

m
in

)

KmerCount
LocateError
CorrectError
Total

(b) Strong scalablity of
ParSECH: Execution time
for simulated short reads
generated with 20x cover-
age (116GB) of whole hu-
man genome

16:2.5x:14GB 32:5x:28GB 64:10x:58GB 128:20x:116GB

5
0

1
0

0
2

0
0

5
0

0
1

0
0

0
2

0
0

0

#Nodes : coverage (data−size)

E
x
e

c
u

ti
o

n
 t
im

e
 i
n

 l
o

g
 s

c
a

le
 (

m
in

)

KmerCount
LocateError
CorrectError
Total

(c) Weak scalability of
ParSECH: Execution time
of simulated short reads
with varying coverage of
whole human genome on
varying #nodes

Figure 3.2: Scalability of ParSECH with different data size and different #nodes

Table 3.3: Performance on real E. coli genome (k = 15)

Metric ParSECH Quake
Gain(%) 94.10 90.03
% of original reads aligned (using BWA)
successfully after correction

93.5 86.55

#cores 16 16
Time (hour) 1.73 1.3

ParSECH successfully corrected (i.e., TP) 956563632 base errors in this dataset.

The corresponding FP and FN are 14450760 and 44570376 respectively. Conse-

quently ParSECH achieves 94.10% gain whereas Quake achieves 90% (shown in

Table 3.3). Almost 93.50% of the input reads are successfully aligned after correc-

tion with ParSECH. The corresponding count for Quake is only 86.55%. This is

because Quake removes many reads from the dataset as well as trim several reads

into shorter length which are not considered by the alignment software. On the

other hand, ParSECH attempts to correct all the error bases in each read instead

of removing it.

31



Table 3.4: Performance on real human genome (k = 15)

Metric ParSECH Quake
Gain(%) 94.3 -
% of original reads aligned (using BWA)
successfully after correction

96.2 -

#cores 512 (128 nodes) -
Time (hour) 39.09 failed

3.4.5 Scalability on Real Human Genome

To demonstrate the capability of ParSECH to handle very large scale complex

genomes, ParSECH processed Yoruban male (NCBI accn. #SRA000271) dataset.

This Illumina paired end dataset has a total of 1424378028 reads each of length

101, i.e., coverage of 47X. As shown in Table 3.4, the process took almost 39 hours

over 128 nodes (i.e., 512 cores). After correction, ParSECH achieves 94% gain

(TP=780598920, FP=12936036 and FN=17309923). 96% of all the input reads

are successfully aligned to the reference genome after correction. On the other

hand, Quake could not process this huge dataset in the available infrastructure

mainly because it cannot scale over multiple node. Using the processing power of

a single node it could not process the entire dataset in the maximum amount of

time allocated for a single job in the HPC cluster. It is worthy to mention here

that for Quake a single scaled up node with 1TB memory is used so that Quake

never runs short of memory. However, for ParSECH the same scaled out setup is

used as mentioned earlier (i.e., 32GB memory per node).

Figure 3.3 compares the best performance of ParSECH and Quake in terms

of execution time over many subsets of human genome of varying size. Again,

Quake used the same scaled up node (1TB DRAM) and ParSECH used the same

scaled out cluster (32GB DRAM/node). For the small data Quake outperforms

ParSECH because of ParSECH’s parallel computing overhead. However, for large

data (> 10GB) ParSECH shows better result. Finally, Quake could not process

the 452GB data in maximum allocated time but ParSECH completed in 39 hours.

32



5GB subset
Human

10GB subset
Human

15GB subset
Human

24GB subset
Human 

452GB entire
Human

Data set size (GB)

Ex
ec

ut
io

n 
tim

e 
(h

ou
rs

)

0
10

20
30

40

5GB subset
Human

10GB subset
Human

15GB subset
Human

24GB subset 452GB entire
Human

Data set size (GB)

Ex
ec

ut
io

n 
tim

e 
(h

ou
rs

)

0
10

20
30

40 ParSECH
Quake
ParSECH
Quake

1.73 1.34

3.93

1.95

6.32

11.10

7.82

13.24

39.09

Quake
did
not

finish
in

max
allo−
cated
time

Figure 3.3: ParSECH’s scaled out (4cores and 32GB memory/node) performance
vs Quake’s scaled up (20cores and 1TB memory) performance for large data

3.5 Conclusion

This work presents ParSECH, a scalable, fully distributed, fault tolerant se-

quencing error correction software which utilizes the power of current state of the

art big data analytic software tools, Hadoop and Hazelcast to scale with huge

volume of sequencing data producing good accuracy.

ParSECH’s algorithm has potential to detect and correct errors in RNA and

metagenome sequences also as it detects the errors based on k-mer coverage skew

of each read (unlike single coverage cutoff used in other tools) and corrects errors

separately for low and high coverage areas. Also, the big data processing framework

(based on Hadoop and Hazelcast) developed in this work can also handle the data

challenges in other applications in the sequencing pipeline e.g., genome assembly,

variant calling etc.

33



Chapter 4
Giraph-based Genome Assembler for Large-Scale Genomes

Managing prodigious volumes of NGS input data in a cost-effective way forces

a growing number of sequence analytic applications to run on scaled out cluster

of low-cost commodity hardware. Large-scale de novo genome assembly is no ex-

ception. However, traditional MPI-based assembly software cannot scale well with

huge volume of data unless sophisticated and costly compute resources are provided

which are unavailable to most researchers. The model of underlying computation

should be changed significantly to address this critical need. In this work, GiGA, a

parallel Giraph-based Genome Assembler is developed which uses de Bruijn graph

approach for the assembly. GiGA uses recent big data analytic software, Hadoop,

and Giraph which carefully consider data locality, thus automatically scale with

terabytes of data on low-cost commodity clusters. The benchmark-evaluation over

GAGE datasets shows that GiGA achieved significantly higher scalability, sub-

stantially lower misassembly and competitive NG50 compared to other assembly

software. GiGA performs almost 1.5x faster than Contrail, a Hadoop-based genome

assembler developed for commodity cluster. GiGA’s capability to assemble large-

scale vertebrate genomes over hundreds of cores is shown by assembling a human

genome dataset (SRA000271) of size 452 gigabyte and almost 2 billion reads with

512 cores in almost 8.5 hours.

4.1 Introduction

The genome input data size already exceeded terabytes and will continue to

grow as the technology improves. At the same time, the hardware cost for storage

and processing this huge amounts of big data is increasing linearly that will soon

turn the computational cost to the most dominant one. To address this challenge,

This chapter is published in JBCB [39]. Reprinted by permission

34



many of the sequence analytic applications are being forced to run on scaled out

clusters of commodity hardware so that low cost hardware resources can be added

to these clusters as the need arises in future.

As a consequence, the fundamental model of computation is changing rapidly

in many of the sequence analysis applications. Deviating from traditional compute-

intensive parallel programming model (e.g., MPI, etc.), scientists are increasingly

using the data-centric frameworks, such as Hadoop, Giraph [40], Pig [41] etc. which

have recently emerged as big data analytics software and are tuned to work on

large clusters of commodity hardware. For example, Crossbow [42] uses Hadoop

to detect single nucleotide polymorphisms (SNPs) in whole-genome sequencing

data. The BioPig toolkit [43] uses Pig (an analytics tool based on Hadoop) for

k-mer counting, pathogen detection, etc.

De novo genome assembly is an important application in the sequence analysis

pipeline. However, limited works (e.g., Contrail [44]) have been done to optimize

large-scale assembly application atop scaled out clusters of commodity hardware.

Most of the existing assembly software such as ABySS [45], etc., use MPI, and

can not scale with terabytes of data unless the sophisticated hardware is used. On

the other hand, the performance of Contrail [44], the Hadoop-based assembler is

severely constrained by huge amounts of disk I/O.

This work resolves both the problems by proposing GiGA, A Giraph-based

Genome Assembler. GiGA uses the power of Hadoop and Giraph (a large scale

graph processing framework developed atop Hadoop) to achieve high performance

and scalability over hundreds of compute nodes in a commodity cluster. The use of

Hadoop automatically scales the application over terabytes of data by moving the

computation to the data as opposed to moving the data to the computation as is

done in traditional parallel programming paradigms (e.g., MPI). Furthermore, the

use of Giraph [40] enables in-memory de Bruijn graph processing which performs

35



a magnitude faster than the disk-based approach adopted in Contrail.

The rest of the chapter is organized as follows. In Section-4.2 discusses the re-

lated work to the study, issues in existing assemblers and describes the motivation.

Section-4.3 describes the Hadoop and Giraph-based approach adopted in GiGA

in details. Section-4.4 shows the performance of the assemblers both in terms of

accuracy and scalability. Finally, Section4.5 concludes the study.

4.2 Related Work

A plethora of genome assembly software tools have been developed in the last

few years. This section discusses the current state of de Bruijn graph oriented

assembly software.

Velvet [46], Minia [47], Allpaths [48], Platanus [49], etc.are some of the

examples which uses efficient in-memory data structure to assemble large genomes

in a single machine. But given the exponential growth of sequencing data, it is

not very clear how will these stand-alone assembly-performs behave in future for

large and complex genome datasets. A much better approach is to distribute the

computation for large genome assembly into multiple nodes of a compute clus-

ter. Parallel genome assembly software traditionally uses MPI to distribute the

assembly workload across several machines. For example, ABySS [45], PASHA

[50], RAY [51], Meraculous [52] use MPI for the assembly process. The scalabil-

ity of these assemblers over large-scale sequencing data is severely constrained by

three factors that are addressed in this work. First, the data input phase is not

parallel in most of these assemblers. That is, the input sequence data is read by

only one process (possibly with multiple threads but in a single machine) and is

distributed to other processes over multiple machines for assembly. It means a sig-

nificant amount is spent for I/O which does not scale at all. Second, huge volumes

of data are transferred over the network during the assembly process which poses

a huge communication bottleneck. This communication bottleneck impacts the

36



performance adversely when terabytes of input sequence data are assembled over

hundreds of cores. Third, the sequential part of the graph simplification stage (in

particular, compressing each linear path in the graph into one vertex) limits the

scalability severely. Although these parallel assemblers process several linear paths

in parallel, k-mers sharing the same path are merged one by one. That is, these

algorithms are bounded by O(n) where n is the number of nodes in the longest

linear path in the de Bruijn graph

Contrail [44] was introduced to address these scalability issues associated with

the de novo assembly of larger genomes on top of commodity hardware. It uses

Hadoop [53] (an open source implementation of Google’s MapReduce) to make the

computation parallel across a cluster consisting of hundreds of machines. Hadoop

stores the input data in a distributed file system called Hadoop Distributed File

System (HDFS) and reads the data in parallel with multiple processes over multiple

machines. Thus, the I/O bottleneck of the MPI-based assemblers were eliminated.

Hadoop also considers data locality. That is, it moves the computation to the

place where data reside instead of moving huge volumes of data over the network.

This eliminates the network bottleneck prevalent in the MPI assemblers. Thus,

Contrail achieved high scalability using the power of Hadoop. However, its perfor-

mance is severely constrained by Hadoop’s limitation on iterative computation. De

novo genome assembly using de Bruijn graph is essentially a large-scale graph pro-

cessing problem involving many iterative computations. These iterative steps in

Contrail are represented as separate MapReduce jobs which leads to huge amounts

of disk I/O. Huge amounts of graph data are read/written to the disk during setup

and teardown of each MapReduce job. Furthermore, after each map phase, a huge

volume of shuffled data is written to the disk which again makes the process ex-

tremely slow. If the disk I/O bottleneck can be reduced then the assembly process

can gain significant performance boost with high scalability.

37



Motivated by this, in the Giraph-based assembler, we use distributed memory

approach to design the de Bruijn graph simplification algorithms (compressing lin-

ear paths and removing tips and bubbles). However, developing in-memory graph

simplification algorithms considering data locality for terabytes of sequencing data

is not an easy job. This research uses Valiant’s Bulk Synchronous Parallel (BSP)

[54] processing model as a theoretical background and developed the algorithms

with Giraph, an in-memory graph processing framework developed on Hadoop.

Furthermore, unlike existing assemblers, the graph simplification algorithms are

fully parallel and bounded by O(logn) where n is the length of the longest linear

path. Section-4.3 provides a detailed description of the algorithms.

4.3 Methodology

4.3.1 Programming Model of Hadoop and Giraph

Before explaining the algorithms in detail let us discuss the programming model

of Hadoop and Giraph to facilitate the discussion.

Hadoop is an open-source implementation of Google’s MapReduce [3]. Hadoop

reads the data from Hadoop Distributed File System (HDFS). The data is read in

the form of disjoint sets records. Then, in the MapReduce abstraction model, a

map function is defined by the user which is applied to each disjoint set simulta-

neously to process each record of each set and output an intermediate key-value

pairs for each of the records. These intermediate key-value pairs are first written to

the local file system, sorted and then, hashed to the corresponding reducer based

on the unique keys. Finally, a user-defined reduce function (that performs some

aggregation operation) is applied to the value-set of each key, to produce the final

output which is again written to the HDFS.

Giraph was originated as the open-source counterpart of Google’s Pregel [6].

In the first phase Giraph leverage Hadoop mappers and reads the data for HDFS in

38



parallel by several processes over multiple machines. The computation of Giraph

is inspired by Valiant’s Bulk Synchronous Parallel model. This is basically an

iterative computation model where each iteration is called a superstep. In each

superstep, a user-defined program, called a vertex-program, is executed over all the

vertices. At the end of each superstep, any vertex can send a user-defined message

to any other vertices to initiate the next superstep. Alternatively, the vertices can

vote to halt if a certain condition is fulfilled. The computation stops when all the

vertices unanimously vote to halt in the same superstep.

4.3.2 De Bruijn Graph Construction

Figure 4.1: De Bruijn graph construction using Hadoop

Building a de Bruijn graph with Hadoop is shown in Figure 4.1. In the map

phase of the Hadoop-based algorithm, each read is divided into several substrings of

length k. These substrings are known as a k-mer. Two consecutive k-mers conforms

a key-value pair, representing a vertex and an edge from that vertex respectively.

39



Additionally, the value field also contains an integer (1) which corresponds to the

frequency count of the key. A similar process is repeated for the reverse complement

of the reads. After the successful completion of the map function, the shuffle

phase partitions the intermediate key-value pairs on the basis of the keys to collect

the edges of the graph emitted from the same source k-mer. Finally, the reduce

function aggregates the edges of each source k-mer and saves the graph structure in

the HDFS. At the same time, the frequency-counts are also added up, yielding the

actual frequency of the source k-mer. Figure 5.4 shows an example construction

of a de Bruijn graph from two short reads.

4.3.3 Graph Simplification

GiGA’s graph simplification algorithms are developed using Giraph where com-

putation proceeds in supersteps. To develop the algorithms, all the computations

involved in graph simplification process are divided into several rounds where each

round consists of two supersteps. Broadly, the first superstep identifies the in-

terrelated vertices based upon certain conditions, whereas the second superstep

computes over the interrelated vertices to simplify the graph.

4.3.4 Compress Linear Chains

The first step that follows after building the graph is compressing the linear

chains of vertices in the graph. (Refer to Figure 4.2 and Algorithm 4). The non-

branching paths of vertices can be compressed into a single vertex. The algorithm

is based on parallel random list ranking [55] where all the compressible vertices

in the linear paths are tagged with either head or tail with equal probability, and

finally, all the head-tail links are merged. The process repeats until all the vertices

in a chain are merged or a predefined number of superstep is reached.

Algorithm-4 shows the computation involved in one round of Giga’s compres-

sion algorithm. As mentioned before, each round of compression corresponds to

40



Figure 4.2: Initial Compression: Each two supersteps make a round. Dotted lines
show the messages

two Giraph supersteps. In the first superstep, all the vertices with exactly one

outgoing edge are identified as compressible and tagged with either head or tail

with equal probability. At the end of the same superstep, the required information

from each compressible vertex is sent to its predecessor. The next superstep cor-

responds to the computation in predecessors (vertices that received the messages

in the last superstep). In this superstep, the head vertices are merged with tail

vertices, and the edge information is updated. Figure 4.2 shows an example of how

the compression algorithm works. Superstep 0: In the first superstep, all vertices

with exactly one outgoing edge are identified as compressible and tagged with h

or t randomly and send a message containing the corresponding k-mer, frequency,

successor’s id and the random-tag to their predecessor. For example, A and B is

tagged randomly with h and t respectively. Observe, vertex E and G are neither

41



Algorithm 4 Compress Linear Chains
1: procedure computeParallelForAllVertices(superstepID,messages)
2: if (superstepID is even) then
3: if (vertex has a single outgoing edge) then
4: randomly assign head or tail to vertex.tag;
5: sendMessage(predecessor,{vertex.id, vertex.tag, vertex.contig, vertex.frequency,

vertex.neighbors});
6: end if
7: else
8: if (only one message is received) then
9: successor.id, successor.tag, successor.contig, successor.frequency ← parseMessage(message);

10: end if
11: if (vertex.tag is head and successor.tag is tail) then
12: concatenate last character of successor.contig to vertex.contig;
13: vertex.frequency = vertex.frequency + successor.frequency
14: deleteVertex(successor.id);
15: deleteEdge(vertex.id, successor.id);
16: addEdge(vertex.id, successor.neighbors);
17: end if
18: end if
19: end procedure

tagged nor send any message since they have two outgoing edges. In superstep 0,

all the vertices are marked with either h or t and all the t vertices send a message

to its predecessor. In superstep 1 (i.e., the second superstep), The vertices which

received the message from their successors check for h-t link and they are merged.

For example, A was tagged h. It received a message from B containing t. So, A

appends B and its edge is adjusted. In superstep 2, 3 The same steps are repeated

in the second round

In each round of compression, half of the total vertices are expected to be

compressed. The number of rounds is bounded by the longest linear path of the

graph. If the longest path has p vertices then the total number of rounds can be

asymptotically represented as O(log(p)).

4.3.5 Tip Removal

The tip removal is straightforward since dropping edges connecting to tips

does not affect the other parts of the graph (Refer to Algorithm-5 and Figure 4.3).

GiGA followed the general approach adopted in other assemblers to avoid the loss

of any genuine sequence. That is, GiGA considers a sequence of vertices as a tip

only if their length is less than 2k + 1.

42



Figure 4.3: Tip removal: Each two supersteps make a round.. Dotted lines show
the messages

Algorithm-5 shows the steps involved in one round of the Giraph-based tip-

removal process. In the first superstep, the vertices having an in-degree of one

and length less than twice of the k-mer length are identified as potential tips,

and a message is sent to their immediate predecessor. In the next superstep, the

vertices which received the message(s) from their corresponding successor(s) delete

the edge(s) that connects to that successor(s), thus removing all the existing tips

from the graph in just one single round. Removal of the tips will generate some

new linear paths in the graph that we compress again. Figure 4.3 illustrates the

entire process with a simple example. In superstep 0, vertex JK is identified as

a potential tip since its length equals 2K and it has only one incoming edge and

no outgoing edge. So, it sends a message to its predecessor G containing its own

id. In superstep 1, vertex G removes JK from its neighbors’ list. Superstep 5

43



Algorithm 5 Tip Removal
1: procedure computeParallelForAllVertices(superstepID,messages)
2: if (superstepID is even) then
3: if (Length of vertex.contig is less than or equal to 2k and the vertex has no outgoing edge) then
4: sendMessage(predecessor,vertex.id);
5: end if
6: else
7: for (each message in messages) do
8: successor.id← parseMessage(message);
9: deleteVertex(successor.id);

10: deleteEdge(vertex.id, successor.id);
11: end for
12: end if
13: end procedure

shows the final graph structure after two rounds of compression. The compression

rounds (superstep 2-5) are similar to Figure 4.2 and not shown here.

4.3.6 Bubble Removal and Contig Generation

Algorithm-6 and Figure 4.4 illustrates the steps involved in one round of

GiGA’s bubble removal process. A parameter called max_bubble_len is set to

5k. Vertices with length less than max_bubble_len, and having in-degree as well

as out-degree of one, are considered as potential bubbles. In the first superstep, ev-

ery vertex matching this criterion sends a message to their immediate predecessor

containing its own value and the frequency. In the second superstep, the ver-

tices which received the messages from their successors compute the dissimilarity

between the received k-mers from the successor-vertices using a Levenshtein-like

edit-distance algorithm which returns the minimum number of characters that can

be changed to equalize both the vertices. If the dissimilarity between the vertices

is within a threshold, then one of the vertices is a bubble. Then, the length of

the vertices and the frequency associated with both are compared. If both the

vertices have the same length, the one with the lower frequency is considered as an

erroneous vertex and is purged from the graph. Like tip removal, removal of the

bubbles will again generate some new linear paths in the graph that is compressed

again. Figure 4.4 illustrates an example. In superstep 0, Vertex F ′G′H ′I ′ and

FGHI are identified as a potential bubble and they send a message to its their

44



E containing as discussed above. In superstep 1, vertex G removes F ′G′H ′I ′ from

the graph as its frequency is less. Superstep 5 shows the final graph structure after

two rounds (Superstep 2-5) of compression which are similar to Figure 4.2.

Figure 4.4: Bubble removal: Each two supersteps make a round. Dotted lines
show the messages.

4.4 Evaluation

4.4.1 Assembly Quality Assesment

GiGA’s assembly quality is assessed by comparing it with two other assemblers,

ABySS and Contrail using the datasets in Table 4.1. The quality is compared in

terms of Corrected NG50 and missassembly using the GAGE benchmark datasets

(first three in Table 4.1) for which the reference genome is available. Then GiGA’s

scalability is demonstrated using the human chromosome (HCR-14) dataset. Fi-

nally, a large Yoruban male genome dataset is assembled to demonstrate the effi-

ciency of GiGA when assembling large-scale genome over hundreds of coes.

45



Algorithm 6 Bubble Removal
1: procedure computeParallelForAllVertices(superstepID,messages)
2: if (superstepID is even) then
3: if (Length of vertex.contig is less than equal to 5k and vertex has single incoming and outgoing edge

and the length of vertex.contig is less than 5k) then
4: sendMessage(predecessor,{vertex.id, vertex.contig, vertex.frequency, vertex.neighbors});
5: end if
6: else
7: for (each message in messages) do
8: successors[i].{successor.id, successor.contig} ← parseMessage(message);
9: i++;

10: end for
11: selectedSuccessor ← successors[0]
12: for (each successor in successors) do
13: dist← get the Levenshtein distance between selectedSuccessor.contig and successor.contig
14: if (dist less than a predefined threshold) then
15: if (successor.frequency is less than or equals selectedSuccessor.frequency) then
16: deleteVertex(successor.id);
17: deleteEdge(vertex.id, successor.id);
18: addEdge(vertex.id, successor.neighbors);
19: else
20: deleteVertex(selectedSuccessor.id);
21: deleteEdge(vertex.id, selectedSuccessor.id);
22: addEdge(vertex.id, selectedSuccessor.neighbors);
23: selectedSuccessor ← successor
24: end if
25: end if
26: end for
27: end if
28: end procedure

Table 4.1: Datasets

S. aureus R.
sphaeroides

HCR-14 E. coli Yoruban
Male

Source GAGE GAGE GAGE SRX000429 SRA000271
Read Size(bp) 255× 106 410× 106 5.9× 109 749× 106 141.5×109

Read Length
(bp)

37 and 101 101 101 36 101

Total reads 4,791,974 4,105,236 59,414,772 10,408,224 2billion
Ref. Genome
size

2,872,915 4,603,060 88,289,540 4.7× 106 3.3× 109

Dataset size
(gigabytes)

0.3 0.6 10.0 3.2 452.0

1) Corrected NG50: It is calculated in two steps. First, the contigs are broken

at each error compared with the reference genome. Then, NG50 is computed based

upon the true reference genome size. If true reference genome is not available, the

first step is omitted and calculated the NG50 based upon the estimated reference

genome size. The GAGE script is used in their website1 to calculate this.
1http://gage.cbcb.umd.edu/results/index.html

46



2) Misassembled Contigs: It is the total number of contigs that contain different

misassembly events, such as, relocations, translocations, and inversions. QUAST

[56] is used to calculate this.

4.4.2 Assembly of GAGE Benchmark Datasets

This work uses the first three datasets in Table 4.1 that are openly available

on the GAGE website, Staphylococcus aureus, Rhodobactor spharoides and human

chromosome, for benchmarking the performance of the assembler. These three

datasets are used for two distinct reasons. First, these three sample datasets

were previously assembled using conventional Sanger technology, and the finished

reference genomes are also available on the same GAGE website. Having finished

genomes enables us to evaluate the correctness of the assembler. Second, these

three datasets have been assembled before using several other assemblers during

GAGE study. Table 4.2, 4.3 and 4.4 shows the accuracy of GiGA compared to

ABySS and Contrail over GAGE datasets (S. aureus, R. spharoides and HCR14

respectively). Assembled genomes for ABySS is downloaded from GAGE website.

It can be easily observed that GIGA shows substantially lower misassembly and

higher NG50 comparing to ABySS. GiGA’s assembly quality is almost comparable

to Contrail in terms of accuracy. However, GiGA performs a magnitude faster

than Contrail that is demonstrated in the subsequent sections.

4.4.3 Assembly of E. coli

E. coli dataset consists of 10.4 million paired-end, 36 bp Illumina reads with

(NCBI Short Read Archive, accession no. SRX000429). The k-mer size of 27 is

used for the evaluation. The performance comparisons are shown in Table 4.5.

The quality of assembly in terms of NG50 length is better than ABySS, and is

comparable to Contrail. In terms of the execution time, the overall assembly was

completed in 32.3 minutes i.e. 1.7x faster than Contrail.

47



Table 4.2: Accuracy of S. aureus

GiGA ABySS Contrail
#Contigs 298 300 309
Corrected NG50 25725 241819 25200
NG50 count 34 35 30
Max contig 96737 125049 96737
Misassembled contigs 0 4 0

Table 4.3: Accuracy of R. spharoides

GiGA ABySS Contrail
#Contigs 737 1912 309
Corrected NG50 10804 4215 11718
NG50 count 134 283 126
Max contig 65538 54734 51683
Misassembled contigs 1 78 1

4.4.4 Scalability of GiGA

Figure 4.5 shows the performance of GiGA in terms of computational time

and scalability. All the experiments are performed in a cluster where each node

has 16 processing cores, 500GB hard disk and 32GB memory (RAM). All nodes

of the cluster are connected through a 40Gbps QDR Infiniband switch with a

blocking ratio of 2:1. Because of many jobs running simultaneously on the cluster,

the effective bandwidth between any two nodes were 950Mbps. GiGA’s scalability

is shown by assembling a Human chromosome (59.5 million reads), which is the

0
20

00
40

00
60

00
80

00
10

00
0

16 32 64 128 256

Number of cores

Ex
ec

ut
io

n 
tim

e 
(s

ec
on

d)

Graph construction
Graph simplification
Total assembly time

(a) Phases of GiGA

0
50

00
10

00
0

15
00

0

16 32 64 128 256

Number of cores

To
ta

l a
ss

em
bl

y 
tim

e 
(s

ec
on

d)

GiGA
ABySS
Contrail

(b) Scalability Comparison

Figure 4.5: Scalability result

48



Table 4.4: Accuracy of HCR 14

GiGA ABySS Contrail
#Contigs 76049 51790 76209
Corrected NG50 658 1269 700
NG50 count 33271 16643 34223
Max contig 19446 30053 19321
Misassembled contigs 3 17 3

Table 4.5: Assembly of E. coli using k = 27

GiGA ABySS Contrail
No.of contigs 234 251 273
NG50 191,103 96,308 119,782
Max 237, 843 268,283 236,834
Cores 16 16 16
Time (Minutes) 32.3 34.5 55.2

largest among the three GAGE benchmark datasets used in this work. The size of

this dataset is 10-gigabytes in fastq format which produces 20GB of graph.

Figure 4.5a shows almost linear scalability of both GiGA’s graph construction

and simplification phases. Figure 4.5b compares the scalability of GiGA with

ABySS and Contrail in terms of total assembly time. It is worthy to notice that

with fewer cores the performance of GiGA is comparable to ABySS. However,

after a certain point with increase in the number of cores the performance of

ABySS degrades due to network bottleneck. Since GiGA considers data locality,

it continues to speed up with the increase in the number of cores. Comparing the

best execution time, GiGA shows almost 2x better performance than ABySS. On

the other hand, even if Contrail shows good scalability because of data locality,

GiGA always shows almost 1.5x speedup because of its in-memory graph processing

comparing to Contrail’s disk-based approach.

4.4.5 Assembly of Human Genome

To demonstrate GiGA’s capability to assemble larger genomes, a Yoruban male

genome dataset (Accession #SRA000271) is used. This dataset has read length of

49



101 with 47X coverage. The size of the dataset is 452-gigabytes which produces

almost 3.5-terabytes of de Bruijn graph. Table 4.6 shows GiGA’s assembly result

for this dataset using k-mer size of 57. The entire assembly was completed in 8.5

hours over 512 cores with a high NG50 of 827. Due to time and resource limitation

on the computation cluster,ABySS could not run over 512 cores possibly because of

high communication overhead. On the other hand, Contrail, being Hadoop-based,

took an extremely long time and, finally, ran out of the storage space. Hence, a

fair comparison could not be done with these assemblers and GiGA’s performance

metrics are reported only.
Table 4.6: Assembly of Yoruban male genome using k = 57

GiGA
No.of contigs 3,032,297
NG50 827
Max 35,465
Cores 512
Time (Hours) 8.5

4.5 Conclusion

This work introduces GiGA, a Parallel Giraph Based Genome Assembler that

is developed to address the challenges involved in large-scale genome assembly,

which recently made its way to the forefront of big data challenges. Scalability

is one of the major components of next generation large-scale genome assembly

software tools that is focused on this work.

GiGA maps the entire de Bruijn graph simplification process to Valiant’s BSP

model and develops the assembler using Giraph, a state of the art, large-scale

graph processing framework developed atop Hadoop which can scale over large

commodity cluster. The evaluation over several datasets, ranging from small bac-

terial genomes to a large human genome and GAGE benchmark data, shows that

GiGA achieves significantly improved performance and scalability over hundreds

of cores with fewer misassemblies compared to other parallel assemblers.

50



Chapter 5
Parallel Long-read Error Correction with Hadoop

The third generation sequencing platforms have been emerged with a promise

of better and less fragmented assembly compared to the second generation se-

quencing platforms because of the substantial rise in the read-length. However,

the sequencing is costly and have high error rate (>15%). So, an accurate yet

low-cost error correction tool is of paramount need.

Motivated by this, this chapter developed ParLECH, a distributed, scalable,

cost-effective, de novo, hybrid error correction software tool for PacBio long reads.

ParLECH leverages the low error rate (1%), low cost and deep coverage of Illumina

short read sequences. ParLECH uses the power of MapReduce and distributed

NoSQL to analyze the high throughput Illumina reads in real time. For accuracy,

ParLECH utilizes the k-mer coverage information of Illumina sequences. This

chapter developed a distributed version of Widest-Path traversal algorithm which

maximizes the minimum k-mer coverage in a path of de Bruijn graph constructed

from the Illumina short reads. This widest path replaces the corresponding error

region in a PacBio long read.

ParLECH can handle hundreds of gigabytes (GB) of data with almost linear

scalability and high accuracy. This chapter demonstrates the data handling ca-

pability by processing a large human genome of 350GB over 128 nodes in 28.6

hours. On the other hand, ParLECH aligned almost 92% PacBio bases of an E.

coli sequence with the reference genome proving its accuracy.

5.1 Introduction

The rapid development of genome sequencing technologies has become the

major driving force for genomic discoveries. The second generation sequencing

technologies (e.g., Illumina) provided the researchers with the required throughput

51



at significantly lower cost (in the range of $41 to $502 per giga base pair [57]) that

enabled the discovery of many new species and variants. However, the short length

(a few hundred base pairs only) of reads relative to the repeat sequences resulted

in a fragmented assembly with thousands of short contigs hindering many of the

downstream applications such as genome finishing, gap filling in scaffolds, more

complete genome assembly, etc.

To address the issues with short read length, third generation sequencing tech-

nologies (e.g., PacBio, Oxford Nanopore, etc.) started emerging recently. By

producing long reads greater than 10kbp these third generation sequencing plat-

forms provide the researchers with significantly less fragmented assembly with the

promise of a much better downstream analysis.

However, the production of these long reads is costly ($2000 per giga base

pair [57]) and severely constrained by their higher error rate. For example, on an

average, a PacBio sequencing machine produces 15% of error in contrast to only

1% in an Illumina sequencing machine. Hence, an accurate error correction tool

for these long reads can be extremely helpful for more complete analysis of the

genome of different species.

This work proposes ParLECH, a distributed, scalable, cost-effective, hybrid

solution for correcting PacBio reads. ParLECH leverages the low error and high

coverage of the Illumina reads to rectify the PacBio reads. Consequently, the

Hybrid error correction reduces the coverage requirement for long reads reducing

a significant amount of cost.

ParLECH first constructs a de Bruijn graph (DBG) out of the Illumina short

read sequences and then uses the k-mer coverage information of Illumina sequences

to correct the long PacBio sequences. This approach is similar to other long read

error correction tools such as, LoRDEC [58] and Jabba [59]. However, unique to

ParLEC, an algorithm to find the widest path is developed which maximizes the

52



minimum k-mer coverage between a source and a destination node in the DBG.

The algorithm corrects the long read with significantly higher accuracy. For an E.

Coli genome, ParLEC aligned 92% of the PacBio base pairs correctly comparing

to 86% in case of LoRDEC.

This chapter develops the error correction algorithm using Hadoop MapReduce

and a distributed NoSQL called Hazelcast. Consequently, ParLEC is able to scale

with terabytes of sequencing data over hundreds of compute nodes. Scalability is

critical for hybrid error correction because of the involvement of high throughput

Illumina data which may grow up to terabytes for large and complex genomes.

ParLECH’s data handling capability is demonstrated by correcting 350GB (Gi-

gaByte) of PacBio sequences from human genome by leveraging the lower error

rate of 452GB of Illumina sequence (64x Coverage) over 128nodes in 28.6 hours.

Existing tools such as, LoRDEC [58] cannot handle this huge amount of data.

Rest of the paper is organized as follows: Section 5.2 discusses the related

work to our current effort. Section 5.3 describes the error correction procedure of

ParLEC. Section 5.4 describes the results and compare ParLEC with existing long

read error correction tools in terms of both accuracy and execution speed. Finally,

Section 5.5 concludes the paper.

5.2 Related Work

Second generation sequencing platform such as, Illumina produces short reads

at an error rate of 1-2% [22]. However, most of the errors are substitutions. Conse-

quently, the low cost of production of high coverage data enabled self correction of

errors without using any reference. Utilizing the basic fact that the k-mers result-

ing from an error base will have significantly lower coverage compared to the actual

k-mers, many error correction tool have been proposed. Quake [24], Reptile [26]

and Hammer [30], RACER [31], Coral [60], Lighter [34], Musket [35], Shrec [32],

DecGPU [36], Echo [25], ParSECH [21] etc. are to name a few.

53



Third generation sequencing platform such as, PacBio, on the other hand,

produces long reads at an error rate of 10-15% [23] which is significantly higher

compared to the Illumina sequences. Furthermore, the error model is mostly indel

prohibiting the use of the error correction tools mentioned earlier which worked

well for substitution errors of second-generation reads. Complicating the scenario,

the PacBio sequences incur almost 10 times more production-cost compared to that

of the Illumina sequences putting a practical barrier in the coverage requirement

for self-error correction of PacBio reads.

LorMA [61] is a self-correcting tool which needs almost 50x coverage. A more

efficient methodology for self-correction is proposed in Canu [62] using a tf-idf hash

of reads reducing the coverage requirement by almost a half. However, considering

10 times more cost of PacBio data still poses a severe bottleneck on its practical

use especially for complex, large genomes.

A much practical and cost-effective solution is proposed in [58, 59, 63, 64,

65, 66, 67] where the low-cost, high-quality Illumina short reads are used as a

reference to correct the PacBio reads. LoRDEC [58] developed a de Bruijn graph-

based methodology for correcting PacBio reads. After identifying the error region

in a long read, LoRDEC performs a local assembly on the de Bruijn graph prepared

from the Illumina reads to replace that region. Jabba [59] also uses a de Bruijn

graph-based approach. However, it uses different size of k-mer iteratively to polish

the unaligned regions of the long reads. Other hybrid tools adopted alignment-

based approaches where the short reads are first mapped to the long reads to create

an overlap graph followed by some consensus-based algorithm to rectify the PacBio

errors. For example, PacBioToCA [64] and LSC [65] after alignment, call for a

per base consensus to correct the errors. ColorMap [63] on the other hand, applies

a Dijkstra’s shortest path algorithm where each edge retains the information of

consensual dissimilarity. Proovread [66] reaches the consensus by repeating the

54



alignment procedure in many iterations by incrementally increasing the sensitivity

of the long reads.

Among these methodologies, de Bruijn graph-based algorithm of LoRDEC [58]

performs a magnitude faster comparing to the other tools. ParLECH, therefore,

follows a similar approach to leverage the performance promises of de Bruijn graph.

Moving a step forward, ParLECH is developed as distributed so that it can scale

over hundreds of compute nodes over terabytes of data. Furthermore, to improve

the accuracy ParLECH developed a distributed version of widest path traversal

algorithm. Unlike LoRDEC’s algorithm, it leverages the k-mer coverage informa-

tion of the short reads during the local assembly also which improves ParLECH’s

accuracy.

5.3 Methodology

5.3.1 Overview

Figure 5.1 shows the overview of ParLECH’s error correction approach. The

hybrid approach for error correction is inspired by de Bruijn graph-based approach

of LoRDEC. This approach leads to significant performance gain in terms of exe-

cution time. However, for improved accuracy, an algorithm (refer to Algorithm 7)

to calculate the widest path is implemented for DBG traversal. For better scala-

bility, The algorithm is developed using Hadoop so that it can be distributed over

hundreds of compute nodes.

To correct a long read of PacBio, ParLEC first constructs a de Bruijn graph

from the short reads of Illumina maintaining the coverage information of each

k-mer in the graph. Then it partitions a long read into weak and solid regions

(lines and rectangles in Figure 5.1) according to the k-mer coverage in short reads.

To correct the errors ParLEC then selects the k-mers around a weak that serve

as source and target nodes in the DBG. Then it follows a widest path algorithm

55



Figure 5.1: Error correction steps

between the source and target k-mer in the DBG which maximizes the minimum

coverage of the k-mers (Algorithm 7)). Once the path in the DBG is found, the

weak region in the long read is replaced with that path.

5.3.2 Error Model

Since ParLECH leverages the lower error rate of Illumina reads to correct the

PacBio sequencing errors, let us first describe an error model for Illumina sequences

and its consequence on the DBG constructed from these reads. Let us consider

two reads R1 and R2 representing the same region of the genome and R1 has one

error base. Let us assume the k-mers between the position posbegin and posend is

an error region in R1 where error base is at position poserror =
posend+posbegin

2
.

Claim 1: Coverage of at least one k-mer in the region between posbegin and

posend in R1 is lower than the coverage of any k-mer in the same region of R2

56



Proof of Claim 1: There are k k-mers between posbegin and posend in R1 and

their coverage is independent identically distributed (iid) random variables. Hence,

the minimum of all the occurrences of those k k-mers can be expressed as

Y = min(x1, x2, x3, , xn) (5.1)

The corresponding distribution i.e., the minimum of the k-mers is

P (Y ≤ x) = 1− (1− F (x))n (5.2)

Where, F (x) is the distribution of coverage of the k k-mers.

Theoretically, the k-mer coverage should follow exponential distribution [24].

Let us assume, F (x) follows an exponential distribution with rate r i.e. F (x) =

1− exp(−rx),

P (Y ≤ x) = 1− exp(−µx) (5.3)

Where, µ = rk.

For a carefully chosen cut off point (as discussed in [68] and [24]) where the

ratio of error k-mers to true k-mers is high the value of r at R1 is significantly

higher than that in R2. That means the probability of having the k-mer with

minimum coverage is higher in R1 comparing to R2 which proves the theorem.

Although the reads R1 and R2 are assumed to represent the same region in the

genome for the sake of convenience and easy understanding, the theorem can be

easily generalized for any reads with overlap where one of the reads has the error

base in the overlapped region.

5.3.3 Choosing the Right Path in De Bruijn Graph

From the short reads a de Bruijn graph is constructed where each vertex repre-

sents a k-mer. An edge (u, v) is added between two vertices u and v if there is a k−1

57



suffix-prefix overlap between u and v and weight of the edge, w(u, v) = coverage(v).

A de Bruijn graph constructed this way from reads R1 and R2 will always have

a fork structure leading to two different paths (refer to Figure 5.2). According

to Claim 1, the error path has significantly high probability of the k-mer with

minimum coverage introducing a coverage-bottleneck in that path. Hence, we

construct a widest path algorithm (refer to Algorithm 7) which always maximize

the minimum k-mer coverage in a path in a de Bruijn graph.

Figure 5.2: Widest path algorithm has higher probability to produce correct result
even when high coverage k-mers are present in the error path

5.3.4 ParLECH’s Distributed Architecture

ParLECH’s distributed architecture is inspired by ParSECH as discussed in

Chapter 3. Like ParSECH, ParLECH also uses Hadoop and Hazelcast. In Par-

LECH, Hadoop is used for MapReduce-based programming and Hazelcast is used

as an in-memory distributed storage for the de Bruijn graph along with the cover-

age information of each k-mer. As discussed in Chapter 3 Hadoop in conjunction

with Hazelcast can enable hundreds of thousands of searches in parallel depending

on availability of cores, thus makes the k-mer searching and graph traversal process

for error correction fast and scalable.

58



Figure 5.3 shows the distributed architecture and the error correction pipeline

of ParLECH. It has three different phases: 1) count k-mers, 2) locate errors, and

3) correct errors. The HDFS is used to store the raw short and long read sequences

which act as input to ParLECH. Whereas, Hazelcast is used to store the de Bruijn

graph in memory in a distributed way. Each phase of ParLECH consists of a par-

allel and distributed Hadoop MapReduce (or Map-only) jobs that do the required

computation for that phase. In the first phase, Hadoop is used to construct the

de Bruijn graph from the Illumina short read sequence. In the subsequent phases,

both Hadoop and Hazelcast are used to locate and correct the errors in the PacBio

reads. Finally, the corrected reads are written on the HDFS.

Figure 5.3: ParLECH’s distributed architecture and error correction pipeline

5.3.5 De Bruijn Graph Construction

Constructing the de Bruijn graph with Hadoop is straightforward. Figure 5.4

shows an example construction of a de Bruijn graph from two short reads. The

process is almost similar as described in Chapter 4. However, instead of only

outgoing edges from a vertex, the incoming edges of the vertex is also stored. In

the map phase of the Hadoop-based algorithm, each read is divided into several

short fragments of length k, known as a k-mer. Three subsequent k-mers are

emitted as key-value pairs, where the second one (key) represents a vertex in the

graph, the first one represents an incoming edge to the key, and the third one

59



represents an outgoing edge from the key. Both first and third k-mers act as value

for the key k-mer (i.e., the second one). Additionally, the value field also contains

an integer (1) which corresponds to the coverage of the key. After the map function

completes, the shuffle phase partitions the intermediate key-value pairs on the basis

of the keys to collect the edges and the count of occurrences from the same source

k-mer. Finally, the reduce function aggregates the incoming edges and outgoing

edges separately and then sum up the count of occurrences of each source k-mer.

ParLEC then saves the graph structure in the form of a distributed hash table in

memory using Hazelcast NoSQL where the k-mer acts as the key and its coverage

and the set of outgoing edges both act as the value.

Figure 5.4: De Bruijn graph construction using Hadoop.

5.3.6 Locating Errors in Long Read

This is a Hadoop map-only job which is distributed over multiple nodes. In this

phase, the map task scans each long read and constructs k-mer of the same length

60



as in case of the short reads. Then, the coverage information of the short read is

used to detect the errors in the long reads. Each k-mer generated from the long

read is queried in Hazelcast. If its coverage is greater than a predefined threshold

the k-mer is marked as strong. Otherwise, the k-mer is marked as weak. If it is

marked as weak, the k-mer is subjected to correction. If two or more consecutive

k-mers have coverage less than the threshold, the entire region in the long read is

marked as weak and is subjected to correction.

5.3.7 Correcting Errors in the Middle of Long Reads

Algorithm 7 Widest Path
1: procedure modifiedDijkstra(Graph, source, destination)
2: for (each vertex v in Graph) do
3: width[v] := -infinity ;
4: previous[v] := undefined ;
5: end for
6: width[source] := infinity ;
7: Q := the set of all nodes in Graph ;
8: while (Q is not empty:) do
9: u := vertex in Q with largest width in width[] ;

10: remove u from Q ;
11: if (width[u] = -infinity) then
12: break ;
13: end if
14: for (each neighbor v of u) do
15: alt := max(width[v], min(width[u], width_between(u, v))) ;
16: if alt > width[v]: then
17: width[v] := alt ;
18: previous[v] := u ;
19: end if
20: end for
21: end while
22: end procedure

Like locating errors, correction is also a Hadoop map-only job distributed over

multiple nodes. A weak region is bordered by a set of solid k-mers on each side.

The map task scans each read and takes as input the source and target solid k-

mers, the region sequence. Like LoRDEC, solid k-mers serve as source and target

nodes in the DBG. Any path between these nodes encodes a sequence that can be

assembled from the short reads. An algorithm to find the widest path in a graph

is developed which maximizes the minimum k-mer coverage of a path in the DBG.

As discussed in Claim 1, the error path has the highest probability to contain the

k-mer with the minimum coverage. As shown in Figure 5.2 Practically it means

61



that even if there are some error k-mers present with high coverage, there will be

at least a single k-mer whose coverage will create a bottleneck in the path. Hence,

the widest path algorithm selects the optimal solution that is, the correct sequence

between the source and the target k-mers with significantly high probability.

Algorithm 7 shows the widest path algorithm developed by slightly modifying

Dijkstra’s shortest path algorithm with a time complexity of O(E log V ).

Proof of correctness of Algorithm 7: Assume that at any point, let S be the

set of the vertices to which the widest path from s has been found. We prove the

correctness using induction on the size of S. The base-case is when |S| = 1, i.e.,

when s is added to S, and the correctness is obvious. Inductively assume that

for any vertex u ∈ S, we have width[u] = δ(s, u). Clearly, when we add the next

vertex, say v, it suffices to show that width[v] = δ(s, v).

Assume the contrary, i.e., δ(s, v) > width[v]. (Obviously, width[v] > δ(s, v)

does not hold as we have found at least as wide a path.) Suppose, the widest path

from s to v is P , which means

minEdgeWeight(P ) = δ(s, v) > width[v]

Note that P must leave S via an edge from x to y where x ∈ S and y /∈ S. Due

to the algorithm, we have width[y] ≥ min{width[x], weight(x, y)}, which implies

width[y] ≥ min{width[x], weight(x, y)} ≥ minEdgeWeight(P )

Finally, since the algorithm selects the largest-width vertex, and v is selected at

this point, we get

width[v] ≥ width[y]

62



By combining the inequalities, we get

width[v] ≥ width[y] ≥ minEdgeWeight(P ) > width[v]

Hence, the initial assumption is false, and the correctness follows.

5.3.8 Correcting Error at the End of Long Read

If a weak region is detected at the end of a PacBio read, the strong, boundary

k-mer in the DBG is searched. If it is the part of a chain structure of vertices

(i.e., a path where each vertex has exactly one incoming and one outgoing edge),

the entire chain after the vertex corresponding to the boundary k-mer is traversed

until a fork structure is detected. Then the weak region of the PacBio read is

replaced with that path of the DBG. Similarly, if the weak region is detected at

the beginning of the PacBio read, the chain structure is traversed before the vertex

corresponding to the boundary k-mer and replace the weak region with that path.

If the k-mer is not the part of a chain structure the weak region in the PacBio read

is discarded.

5.4 Evaluation

5.4.1 Dataset

To evaluate ParLECH, four different PacBio datasets are used as shown in

Table 5.1. All the datasets are real. The corresponding Illumina datasets are

shown in Table 5.2. The first three (i.e., E. coli, Yeast and Fruit fly) are relatively

smaller dataset and is used to compare the accuracy of ParLECH with LoRDEC.

The third one (i.e., Fruitfly) is relatively larger comparing to the firs two (i.e.,

E. coli and Yeast). This dataset is used to analyze different metrics related to

scalability and execution speed. The fourth one, a large human genome dataset

is mainly used to showcase the data handling and scaling capability of ParLECH

over hundreds of gigabytes of data over hundreds of nodes.

63



Table 5.1: PacBio dataset

PacBio
Data

Accn. # #Reads Size #Read
length

#Reads
aligned

E. coli DevNet 1129576 1.032 1120 78.97
Yeast DevNet 2315594 0.53 5874 82.12
Fruit fly Bergman Lab 6701498 55 4328 51.14
Human DevNet 23897260 312 6587 72.13

Table 5.2: Illumina dataset

Illumina
Data

Accn. # #Reads Size #Read
length

#Reads
aligned

E. coli ERR022075 45440200 13.50 101 99.44
Yeast SRR567755 4503422 1.2 101 93.75
Fruit fly ERX645969 179363706 59 101 95.56
Human SRX016231 1420689270 452 101 79.60

5.4.2 Computing Environment

For all the evaluations, LSU’s HPC cluster called SuperMic is used. Table 5.3

shows the cluster configuration. For any single job a maximum of 128 nodes are

available. Each of the node has 20 cores, 64 GB of DRAM and one hard disk

drive (HDD) with a capcity of 250GB. All the nodes are connected with a 56Gbps

InfiniBand network with 2:1 blocking ratio. It should be noted that ParLECH’s is

bottlenecked by the I/O throughput of each node of as it uses Hadoop’s disk-based

computing to save costly DRAM. The performance can be significantly improved

using multiple disks per node or deploying solid state drive (SSD). The analysis

can be seen in later in the thesis in Chapter 6 and 7.

Table 5.3: Compute environment

Maximum #nodes 128
Processor Intel IvyBridge Xeon
#cores per node 20
DRAM per node 64GB
Storage per node 250GB
Type of storage Hard dis drive (HDD)
Network 56Gbps InfiniBand

64



5.4.3 Accuracy Metrics

The major accuracy metrics that have been used are as follows:

1) %Reads and base pair aligned: To check the accuracy of ParLECH, it is

investigated that how well the corrected long reads and the base pairs aligned

to the reference genome. The percentage of base pair aligned successfully to the

reference genome indicates the ratio of the total number of bases that are aligned

successfully to the total number of base pair contained in the original dataset.

To align the E. Coli, Yeast and Fruit fly dataset to their corresponding reference

genome, BLASR [69] is used as it tends to bridge the long indels better and thus

reports longer alignments. However, for large human genome BWA-mem [70]is

used which produces the result faster.

2) Gain: After alignment, further details of each of the corrected regions is

measured in terms of gain which indicates the fraction of errors effectively corrected

from the genome dataset. It can be defined as follows,

Gain =
TP − FP

TP + FN
(5.4)

where, TP (true-positive) indicates the number of errors which are successfully cor-

rected, FP (false-positive) is the number of true bases which are changed wrongly,

and FN (false-negative) is the number of errors which are falsely detected as cor-

rect.

5.4.4 Comparing Different Graph Traversal Algorithm

The widest path algorithm (ParLECHWP or simply ParLECH) is first com-

pared with two other graph traversal algorithms such as, Dijkstra’s shortest path

(ParLECHSP ) and a greedy traversal (ParLECHGreedy) algorithm. Table 5.4 shows

the comparison result of these three different algorithms.

1) ParLECHSP : The Dijkstra’s shortest path algorithm searches for the short-

65



Table 5.4: Different types of algorithms: Widest-Path (ParLECHWP ) vs Dijkstra’s
shortest-path (ParLECHSP ) vs greedy algorithm (ParLECHGr).

Data Methodology %Aligned reads %Aligned bases

E. coli
ParLECHWP 93.69 92.15
ParLECHSP 87.55 86.49
ParLECHGr 76.68 70.92

Yeast
ParLECHWP 86.07 89.31
ParLECHSP 84.92 86.44
ParLECHGr 75.77 74.68

Fruit fly
ParLECHWP 65.92 62.42
ParLECHSP 54.53 49.41
ParLECHGr 43.97 37.44

est distance path between two strong k-mers in order to bridge the weak regions

(alternatively gap) between them in a PacBio read. The time complexity of this

algorithm is similar to the widest path algorithm. However, the major drawback is

that it cannot take the advantage of the k-mer coverage information. All the edges

are assumed to have equal weight of 1. The widest path algorithm (ParLECHWP )

always produce better result comparing to the other two for all the three datasets.

2) ParLECHGr: The greedy algorithm, on the other hand, can take the ad-

vantages of the k-mer coverage. It is a variation of depth first search. While

traversing the graph starting from a source, it selects the successor which has

maximum coverage among all. However, this algorithm diverged among a huge

number of alternatives (O(4n) where n is the number of vertices in the graph) in

the de Bruijn graph and many times ended up in a tip of an entirely different path

resulting in an exponential complexity including several backtracking and forward

movement. Hence, to restrict its execution, a branching factor b is used such that

after traversing b vertices successively in the graph starting from the source the

algorithm backtracks if the destination vertex is not found. The algorithm aborts

when all the successors of its current vertex are visited. Among all the three

algorithms, this one (ParLECHGr) produces the worst result.

66



5.4.5 Comparison with LoRDEC

Table 5.5 compares the overall alignment accuracy and gain of ParLECH with

LoRDEC. All the results are calculated on the basis of Blasr alignment. Since Blasr

algorithm is embarrassingly parallel in nature i.e., it iterates the similar process

over all the reads and generates the alignment statistics, multiple instances of Blasr

are created on the subset of a bigger dataset and computed the results in parallel.

As it can be seen, ParLECH produces significantly better accuracy both in

terms of alignment and gain over all the three datasets. Also, it can be observed

that ParLECH’s result significantly depends on the length of the PacBio sequences.

For E. coli and Yeast genome ParLECH produces significantly better result com-

paring to that of the fruit fly. The reason is that the fruit fly dataset has smaller

read-length on average. In many reads, no strong k-mers have been found and

those reads are not corrected like LoRDEC. However, unlike LorRDec, the strong

k-mers in all the reads are checked even if its length is less than 5000 which are

kept out of the computation in LoRDEC for better performance.
Table 5.5: ParLECH accuracy: ParLECH is more accurate than LoRDEC both in
terms of alignment and gain

Data Method %Aligned reads %Aligned bases %Gain

E. Coli
Original 78.97 75.07 N/A
ParLECH 93.69 92.15 90.05
LoRDEC 87.55 86.49 87.15

Yeast
Original 82.12 88.69 N/A
ParLECH 86.07 89.31 82.40
LoRDEC 84.92 87.08 81.42

Fruiy fly
Original 51.14 46.04 N/A
ParLECH 65.92 62.42 84.73
LoRDEC 54.53 49.69 85.43

5.4.6 Scalability

Figure 5.5 shows the execution time and scalability of ParLECH. As shown

in Figure 5.5a, LoRDEC outperformed ParLECH for E. Coli dataset on a single

node because of ParLECH’s parallel computing overhead. However, ParLECH can

67



1 2 4 8 16 32

#Nodes

E
xe

cu
tio

n 
tim

e 
(m

in
)

0
10

20
30

40
50

ParLECH
LoRDEC

(a) E. coli

16 32 64 128

10
20

50
10

0
20

0
50

0
20

00

Number of Nodes in log scale

E
xe

cu
tio

n 
tim

e 
in

 lo
g 

sc
al

e 
(m

in
)

KmerCount
LocateError
CorrectError
Total

(b) Fruit fly

Figure 5.5: ParLECH scalability

be easily distributed over a Hadoop cluster many nodes. Consequently, ParLECH

outperforms LoRDEC as soon as the computing load is distributed over many

nodes.

On the contrary, LoRDEC’s algorithm, especially the DBG construction pro-

cess cannot be distributed over multiple nodes. Though the error correction process

works on each PacBio read independently, the software does not take care of any

scheduling tool to distribute the load over multiple nodes leaving it to be done

manually by the user incurring a significant amount of effort.

Figure 5.5b delves deeper in to the scalability property of ParLECH. As it can

be seen, each phase of ParLECH i.e., DBG construction, error detection, and error

correction scale almost linearly with increasing number of nodes. Consequently, the

overall execution time of ParLECH shows almost linear scalability with increasing

number of nodes.

5.4.7 Processing Large-scale Human Genome

To show the data handling capability of ParLECH a large human genome

sequence dataset is processed. As shown in Table ??, this dataset consists of more

68



than 23million PacBio reads with an average length of 6587bp. The data size on

disk is almost 312GB. The corresponding Illumina dataset has more than 14billion

reads each of size 101bp yielding a total size of is 452GB on disk.

128 nodes have been used to process the data. The entire process took 28.6

hours in the computing environment as shown in Table 5.6. Table ?? shows the

result. As it can be seen ParLEC aligned 78.3% of the read correctly to the

reference genome and 75.43% bases correctly. In terms of gain, ParLECH shows

82.38% accuracy.
Table 5.6: Correcting human genome

PacBio data size 312GB
Illumina data size 452GB
#nodes used 128
Time 28.6 hours
%Read aligned 78.3
%Basepair aligned 75.43
Gain 82.38

5.5 Conclusion

This paper presents ParLECH, a scalable, fully distributed, sequencing error

correction tool for PacBio sequences which utilizes the power of the current state-

of-the-art big data analytic software tools, Hadoop and Hazelcast to scale with

huge volume of sequencing data over hundreds of nodes. A widest path algorithm

is also proposed for error correction which makes better use of the k-mer coverage

information of Illumina read sequences to rectify the long PacBio reads.

The big data processing framework (based on Hadoop and Hazelcast) devel-

oped in this paper can ease the designing and rapid prototyping of embarrassingly

parallel algorithms for massive scale data in other genomic applications. Unlike

shared nothing architecture, the framework exposes a global tabular view of the

entire genomic dataset to each computation unit (e.g., Hadoop worker) so that

complex graph analysis and/or statistical analysis algorithms can be developed

69



easily over the entire set of data in an intuitive manner. The existing standalone

codes can be easily parallelized with little or no modification with this framework.

To this end, one of the future directions of this research definitely includes extend-

ing this framework for the large-scale genome analysis pipeline including genome

assembly, variant calling, etc.

70



Chapter 6
Evaluating Different Distributed Cyberinfrastructure for Data
and Compute Intensive Applications

Scientists are increasingly using the current state of the art big data ana-

lytic software tools for their data-intensive scientific applications over HPC envi-

ronment. However, understanding and designing the hardware environment that

these data- and compute-intensive applications require for good performance re-

main challenging. With this motivation, the thesis evaluated the performance of

big data software over three different distributed-cyber-infrastructures, including

a traditional HPC-cluster called SuperMikeII, a regular datacenter called SwatIII,

and a novel MicroBrick-based hyperscale system called CeresII. The evaluation is

done using GiGA, the large-scale genome assembler developed atop Hadoop and

Giraph and discussed in Chapter 4.

To address the impact of both individual hardware components as well as

overall organization, the configuration of the SwatIII cluster has been changed in

different ways. Comparing the individual impact of different hardware components

over different clusters, a 70% improvement in the Hadoop-workload has been ob-

served and almost 35% improvement in the Giraph-workload in the SwatIII cluster

over SuperMikeII has been observed by using SSD (thus, increasing the disk I/O

rate) and scaling it up in terms of memory (which increases the caching). Then,

the chapter provides significant insight on the efficient and cost-effective organi-

zation of these hardware components. In this part, the MicroBrick-based CeresII

prototype shows similar of performance as SuperMikeII while giving more than

2-times improvement in performance/$ in the entire benchmark test.

This chapter previously appeared in IEEE BigData 2015 [71]. Reprinted by permission.

71



6.1 Introduction

Since experimental facilities at large-scale sciences, such as astronomy, coastal

science, biology, chemistry, physics, etc., have produced an unprecedented amount

of data, scientific communities encounter new challenges, such as how to store data

efficiently, how to process data optimally, etc. The fundamental model of compu-

tation involved in the scientific applications is rapidly changing in order to address

these challenges. Deviating from the traditional compute-intensive programming

paradigm, e.g., MPI, etc., many HPC applications have started using the current

state of the art big data analytic software tools, such as Hadoop, Giraph, etc., for

their data-intensive scientific workloads.

However, the traditional supercomputers, even with tera to peta FLOPs scale

processing power, are found to yield lower performance than expected, especially

because of the I/O- and memory-bound nature of the data-intensive applications.

As a result, building efficient and cost-effective hardware infrastructure became

more challenging. However, this started opening new opportunities for the hard-

ware manufacturers. Furthermore, in the last few years, an increasing number of

data-intensive HPC applications started shifting towards the pay as you go cloud

infrastructure (e.g., Amazon Web Service, Penguin, R-HPC etc.) especially be-

cause of the elasticity of resources and reduced setup-time and cost.

As a consequence, there is a growing interest in all three communities, includ-

ing HPC-scientists, hardware-manufacturers, as well as commercial cloud-service-

providers, to develop cost-effective, high-performance testbeds that will drive the

next generation scientific research involving a huge amount of big data. Also, mil-

lions of dollars are being spent in programs, such as XSEDE1 and NSFCloud2,

where system designers and scientists from different academic organizations and
1https://www.xsede.org/
2https://www.chameleoncloud.org/nsf-cloud-workshop/

72



manufacturing companies collaborated to address the challenges involved in devel-

oping novel distributed-cyber-infrastructures.

Despite this growing interest in both the scientific as well as the industrial

community, there is a limited understanding of how the different types of hardware

architectures impact the performance of these big data analytic software when

applied to real-world data and compute-intensive scientific workloads. Therefore,

it is critical to evaluate different types of distributed-cyber-infrastructure in the

context of real-world, data-intensive, high performance, scientific workloads.

In this work, a large-scale de novo genome assembly is used as one of the most

challenging and complex real-world examples of a high performance computing

workload that recently made its way to the forefront of big data challenges [72]

[73]. De novo genome assembly reconstructs the entire genome from fragmented

parts called short reads when no reference genome is available. The assembly

pipeline of the GiGA (Giraph-based Genome Assembler) involves a terabyte scale

short read data analysis in a Hadoop job followed by a complex large-scale graph

analysis with Giraph, thus, serving as a very good example of both data- as well

as compute-intensive workload.

In this work, we present the performance result of PGA atop three different

types of clusters as follows: 1) a traditional HPC cluster, called SuperMikeII (lo-

cated at LSU, USA) that offers 382 computing nodes connected with a 40-Gbps

InfiniBand, 2) a regular datacenter architecture, called SwatIII (located at Sam-

sung, Korea) that has 128 nodes connected with 10-Gbps Ethernet and 3) a new

MicroBrick-based prototype architecture, called CeresII that uses PCIe based com-

munication (also located at Samsung, Korea).

The performance analysis is divided into two parts: Firstly, the individual

impact of different hardware components over different clusters has been compared.

There was almost 70% improvement in the data-intensive graph-construction stage

73



based on Hadoop and 35% improvement in the Giraph-based, memory-intensive

graph-simplification stage in the SwatIII cluster over SuperMikeII by using SSD

and scaling it up in terms of memory. SSD increases the disk I/O rate, thus

reducing the I/O wait. Whereas, more memory increases the caching effect.

Secondly, the chapter provides significant insight on the efficient and cost-

effective organization of different hardware components by modifying the underly-

ing hardware organization of SwatIII cluster (the regular datacenter architecture)

in many different ways to better understand the impact of different architectural

balance. Here, the chapter provides significant insight on the cost-effective deploy-

ment of both a scaled out and a scaled up cluster, especially how to leverage SSDs

in a cost-effective manner. In this part, the new MicroBrick-based prototype ar-

chitecture, CeresII is found to provide almost similar performance as SuperMikeII

while yielding almost 2-times improvement in performance per dollar.

The rest of the chapter is organized as follows: Section-6.2 describes the prior

works related to the study. Section-6.3 defines the motivation of the study, that is,

the issues in a traditional supercomputer to process the big data workloads with

respect to Hadoop and Giraph. Section-6.4 describes the evaluation methodology

where the chapter sheds light on the experimental testbeds, the workload and

the input data that is used in this work. In Section-6.5, the performance result

is presented by comparing the individual impact of different types of network,

storage, and memory architectures over different clusters. Section-6.6 compares

the performance of PGA over different types of hardware organizations. Finally,

in Section-6.7 the chapter conclude this study.

6.2 Related Work

Earlier studies [74] [75], as well as the prior experiences [76], [77] show that

state-of-the-art big data analytic software tools can be useful for HPC workloads

involving huge amount of big data. Jha [75] nicely showed the convergence between

74



the two paradigms: the traditional HPC-software and the Apache Software Stack

for big data analytic. As a consequence, a growing number of codes in several

scientific areas, such as bioinformatics, geoscience, etc., are currently being writ-

ten using Hadoop, Giraph, etc. Despite the growing popularity of using Hadoop

and other software in its rich ecosystem for scientific-computing, there are very

limited prior works that evaluated different distributed-cyber-infrastructures for

these software tools when applied for data-intensive scientific workloads.

There are several performance analysis studies on using different types of hard-

ware to accelerate the Hadoop job using the existing benchmark workloads. Vienne

[78] evaluated the performance of Hadoop on different high speed interconnects

such as 40GigE RoCE and InfiniBand FDR and found InfiniBand FDR, yields the

best performance for HPC as well as cloud computing applications. Similarly, Yu

[79] found an improved performance of Hadoop in traditional supercomputers due

to high-speed networks.

Kang [80] compared the execution time of sort, join, WordCount, and DFSIO

workloads using SSD and HDD and obtained better performance using SSD. Wu

[81] found that Hadoop performance increases almost linearly with the increasing

fraction of SSDs in the compute cluster using the TeraSort benchmark. They

also showed that in an SSD-dominant cluster, Hadoop’s performance is almost

insensitive to different Hadoop performance parameters such as block-size and

buffer-size. Moon, using the same TeraSort benchmark [82] showed a significant

cost benefit by storing the intermediate Hadoop data in SSD, leaving HDDs to store

Hadoop Distributed File System (HDFS) data. Li [83], Krish [84] and Tan [85]

also reached the same conclusion as Moon [82] for other enterprise-level workloads

such as, Hive queries, HBase enabled TPC-H queries etc.

All of the above studies have been performed either with existing benchmarks

(e.g., HiBench [86]) or with enterprise-level analytic workloads, thus, they are

75



unable to address the HPC aspect of Hadoop. Furthermore, very limited studies

consider the in-memory graph processing frameworks (e.g., Giraph, etc.) even

though, graph analysis is a core part of many analytics workloads.

Many of the prior efforts, analyzed the impact of overall architecture on Hadoop

Workload instead of analyzing the impact of a specific hardware module. Michael

[87] investigated the performance characteristics of the scaled out and scaled up

architecture for interactive queries and found better performance using a scaled

out cluster. On the other hand, Appuswamy [88] reached an entirely different

conclusion in their study. They observed a single scaled up server to perform bet-

ter than an 8-nodes scaled out cluster for eleven different enterprise-level Hadoop

workloads including log-processing, sorting, Mahout machine learning, etc. The

study is significantly different in the following aspects. 1) Existing works focus

on the data-intensive, enterprise-level Hadoop jobs (e.g., log-processing, query-

processing, etc.). On the contrary, genome assembly is severely data- and compute-

intensive. Additionally, it involves a large graph analysis which is extremely

memory-intensive. 2) Existing works are limited in terms of job size. For ex-

ample, the data size chosen in [88] can be accommodated in a single scaled up

server. Such a restriction has not been put on storage space or memory. Con-

sequently, the performance comparison is more generic and realistic. 3) Unlike

the existing works, the thesis considers the genome assembly workflow instead of

choosing a single job, thus, working closer to the real world.

6.3 Motivation: Issue in Running Big Data Applications on Traditional
Supercomputers

"Traditional supercomputers focused on performing calculations at blazing

speeds have fallen behind when it comes to sifting through huge amount of Big

Data"[89]. This section briefly describes the programming model of two popular

big data analytic software tools, Hadoop and Giraph. Then, it describes several

76



issues that are observed frequently in a traditional supercomputing environment

while running the applications developed using these frameworks.

6.3.1 Programming Models for Big Data Analytic Software

Hadoop and Giraph were originated as the open-source counterpart of Google’s

MapReduce and Pregel respectively. Both the software tools read the input data

from the underlying Hadoop Distributed File System (HDFS) in the form of disjoint

sets or partitions of records. Then, the dataset undergoes a distributed computa-

tion following the MapReduce programming model. First, a map function defined

by the user is applied to each record of each disjoint set simultaneously to extract

some intermediate information from each record and written to the local file sys-

tem in the form of key-value pairs. These intermediate key-value pairs are then

grouped together on the basis of the unique keys and then, shuffled or hashed to

the reducers. Finally, the reducer applies a reduce function (also defined by the

user) to the value-list of each unique key. The final output is written to the HDFS.

The MapReduce framework enables data- and compute-intensive applications to

run large volume of distributed datasets over distributed compute nodes with lo-

cal storage. On the other hand, Giraph uses the Bulk Synchronous Parallel model

where computation proceeds in supersteps. In the first phase of a superstep, Giraph

leverages Hadoop-mappers when a user-defined vertex-program is applied to all the

vertices concurrently. In the end of each superstep, each vertex can send a message

to other vertices to initiate the next superstep. Alternatively, each vertex can vote

to halt. The computation stops when all the vertices vote to halt unanimously in

the same superstep. Giraph enables memory- and compute-intensive applications

to upload data into distributed memories over different compute nodes.

77



6.3.2 Network Issues

Traditional HPC clusters (e.g., SuperMikeII as shown in Table 6.1) use an

InfiniBand interconnect with high bandwidth and low latency to deliver short size

of messages. In addition, InfiniBand-based networks use a standard 2:1 blocking

ratio because compute-intensive applications neither produce nor exchange much

of data. However, Hadoop and Giraph were developed to work atop inexpensive

clusters of commodity hardware based on Ethernet network to exchange large

volume of data. Therefore, big data applications might suffer from bottleneck

problems over HPC-clusters with typical high blocking ratio networks

For example, during the shuffle phase of a Hadoop job, there is a huge data

movement across the cluster. However, in other phases, the data movement is

minimal in the network when mappers and reducers carefully consider the data

locality. On the other hand, Giraph is more network-intensive. At the end of each

superstep a huge amount of messages are passed across all the Giraph workers.

Furthermore, every pair of workers uses a dedicated communication path between

them that results in an exponential growth in the number of TCP connections

with the increase in the number of workers. At these points, the data network is a

critical path, and its performance and latency directly impact the execution time

of the entire job-flow.

6.3.3 Storage Issues

In a traditional supercomputing environment, each node is normally attached

with only one HDD. This configuration puts a practical limitation on the total

number of disk I/O operations per second (IOPS). On the other hand, the big

data applications that consider data locality, typically involve a huge volume of

data read/write from/to the Direct-Attached-Storage (DAS) of the compute nodes.

Therefore, the applications might suffer from I/O wait. Although some variations

of Hadoop (e.g., [90]) are optimized to read/write large volume of data from/to

78



other parallel file systems (e.g., Lustre and GPFS), thus taking advantage of huge

amount of IOPS available through the dedicated I/O servers, the performance can

be severely constrained by the network bottleneck. Additionally, it will incur extra

cost to the cluster. For simplicity, in this work, the HDFS is used as the distributed

file system and use the local file system for the shuffled data.

Hadoop involves a huge amount of disk I/O in the entire job flow. For example,

at the beginning (and the end) of a Hadoop job, all the mappers read (and the

reducers write) a huge volume of data in parallel from (to) the HDFS which is

mounted on the DAS device(s) of the compute nodes. Again, in the shuffle phase,

a huge volume of intermediate key-value pairs is written by the mappers and

subsequently read by the reducers to/from the local file system which is again

mounted on the same DAS. Giraph, on the other hand, is an in-memory framework.

It reads/writes a huge volume of data from/to the HDFS only during the initial

input and the final output.

6.3.4 Memory Issues

The traditional supercomputers normally use a 2GB/core memory as a stan-

dard configuration. This causes a significant trade-off between the number of con-

currently running workers (mappers or reducers), and the memory used by each of

them. Lower memory per worker (lower java heap space) can significantly increase

the garbage collection frequency of each worker. Also, in case of Hadoop, smaller

memory per worker puts a practical limitation on its buffer size resulting in a huge

amount of data spilling to the disk in the shuffle phase, thereby making the job

severely I/O-bound especially in case of HDD. Furthermore, the lower memory per

node hinders the caching especially for a memory-intensive graph analysis job with

Giraph that loads a huge amount of data in memory for iterative computation.

79



6.4 Evaluation Methodology

6.4.1 Experimental Testbeds

Table-6.1 shows the overview of the experimental testbeds. SuperMikeII, the

LSU HPC-cluster, offers a total of 440 computing nodes (running Red Hat En-

terprise Linux 6). However, a maximum of 128 can be allocated at a time to a

single user. SwatIII is a regular datacenter with 128 compute nodes (running on

Ubuntu 12.0.4 LTS). However, a maximum of 16 nodes has been used. SwatIII

has been configured in seven different ways to study the pros and cons of different

hardware components individually and from the viewpoint of their overall organi-

zation in a scaled out and a scaled up environment. For the sake of convenience,

each configuration is given a meaningful name as shown in Table-6.1. CeresII is

a novel hyperscale system based on Samsung MicroBrick. This study evaluated it

as a next-generation cluster which is found to resolve many of the problems in the

existing HPC-cluster and the regular datacenter. It is to be noted that a homo-

geneous configuration has been used across any cluster. The thesis reported the

performance and the price of different clusters in terms of the Hadoop datanodes

(DN) only. For the masternode, A minimal configuration is used based upon the

resources in the cluster. The subsequent sections uses the term node and datanode

interchangeably.

Table-6.2 shows the hardware specification used in different clusters and their

cost3. The cost of each node of each cluster configuration is calculated (shown in

Table-6.1) based upon this. The hardware configuration of SuperMikeII serves as

the baseline and compare all the performance results of SwatIII and CeresII, to

this baseline. Each node of SuperMikeII and any SwatIII variants has the same

number of processors and cores, in particular, 2 8-core Intel SandyBridge Xeon
3Price information is collected from http://www.newegg.com and http://www.amazon.com.

The minimum listed price is considered as per Jun 17, 2015.

80



Ta
bl

e
6.

1:
E

xp
er

im
en

ta
lt

es
tb

ed
s

w
it

h
di

ffe
re

nt
co

nfi
gu

ra
ti

on
s

Su
pe

r
M

ik
eI

I
Sw

at
II

I-
B

as
ic

-
H

D
D

Sw
at

II
I-

B
as

ic
-S

SD
Sw

at
II

I-
M

em
or

y
Sw

at
II

I-
Fu

ll
Sc

al
eu

p-
H

D
D

/
SS

D

Sw
at

II
I-

M
ed

iu
m

-
H

D
D

/
SS

D

C
er

es
II

C
lu

st
er

ca
te

go
ry

H
P

C
-

cl
us

te
r

Sc
al

ed
ou

t
Sc

al
ed

ou
t

M
em

or
y

op
ti

m
iz

ed
Sc

al
ed

up
M

ed
iu

m
-

si
ze

d
H

yp
er

sc
al

e

#
P

hy
si

ca
l-

C
or

es
/n

od
e

16
16

16
16

16
16

2

D
R

A
M

(G
B

)/
no

de
32

32
32

25
6

25
6

64
16

#
D

is
ks

/
no

de
1-

H
D

D
1-

H
D

D
1-

SS
D

1-
SS

D
7-

H
D

D
/

SS
D

2-
H

D
D

/
SS

D
1-

SS
D

N
et

w
or

k
40

-G
bp

s
In

fin
iB

an
d

10
-G

bp
s

E
th

er
ne

t
10

-G
bp

s
E

th
er

ne
t

10
-G

bp
s

E
th

er
ne

t
10

-G
bp

s
E

th
er

ne
t

10
-G

bp
s

E
th

er
ne

t
10

-G
bp

s
V

ir
tu

al
E

th
er

ne
t

C
os

t/
no

de
($

)
38

04
40

07
43

00
65

26
SS

D
:9

22
6,

H
D

D
:7

17
5

SS
D

:5
06

8,
H

D
D

:4
48

2
87

9

B
lo

ck
in

g
2:

1
-

-
-

-
-

-
#

N
od

es
fo

r
bu

m
-

bl
e

be
e

(9
0G

B
)

15
15

15
15

4
2

31

#
N

od
es

fo
r

hu
m

an
ge

no
m

e
(4

52
G

B
)

12
7

-
-

-
15

-
-

81



Table 6.2: Hardware components of different cluster configurations, and their cost

Hardware component Used in Cost ($)
Intel SandyBridge Xeon 64bit Ep
series (8-cores) processor

SuperMikeII, SwatIII 1766

Intel Xeon E3-1220L V2 (2-cores)
processor

CeresII 384

Western Digital RE4 HDD SuperMikeII 132
Western Digital VelociRaptor HDD,
500GB

SwatIII HDD-variants 157

Samsung 840Pro Series SATAIII
SSD, 500GB

SwatIII SSD-variants 450

Samsung 840Pro Series SATAIII
SSD, 250GB

CeresII 258

Samsung DDR3 16GB memory
module

SwatIII, CeresII 159

32GB 1600MHz RAM (decided by
Dell)

SuperMikeII 140 (Average)

64bit Ep series processors. To do a fair comparison, the HyperThreading has been

disabled in the SwatIII as SuperMikeII does not have it.

The first three variants of SwatIII, SwatIII-Basic-HDD, SwatIII-Basic-SSD,

and SwatIII-Memory, are used to evaluate the impact of each individual component

of a compute cluster i.e., network, storage and the memory. SwatIII-Basic-HDD is

similar in every aspect to SuperMikeII except it uses 10-Gbps Ethernet instead of

40-Gbps InfiniBand as in SuperMikeII. SwatIII-Basic-SSD, as the name suggests, is

storage optimized and uses one SSD per node instead of one HDD as in SuperMikeII

and SwatIII-Basic-HDD. On the other hand, SwatIII-Memory is both memory and

storage optimized, i.e., it uses 1-SSD as well as 256GB memory per node instead

of 32GB as in the previous three clusters.

Unlike SuperMikeII or SwatIII-Basic and -Memory which use only one DAS

device per node, SwatIII-FullScaleup-HDD/SSD and SwatIII-Medium-HDD/SSD

use more than one DAS device (Either HDD or SSD as the names suggest) per

node. They also vary in terms of total amount of memory per node. However, the

82



total amount of storage and memory space is almost same across all these clusters.

These clusters have been used to mainly evaluate different types of hardware or-

ganizations and architectural balances from the viewpoint of scaled out and scaled

up configurations. It is to be noted in case of SwatIII, the chapter uses the term

scaled up and out in terms of the amount of memory and number of disks. The

number of cores per node is always same. In either of SwatIII-FullScaleup and

SwatIII-Medium, JBOD (Just a Bunch Of Disks) configuration is used as per the

general recommendation by [2], Cloudera, Hortonworks, Yahoo, etc. Use of the

JBOD configuration eliminates the limitation on disk I/O speed, which is con-

strained by the speed of the slowest disk in case of a RAID (Redundant Array of

Independent Disk) configuration. As mentioned in [2], JBOD is found to perform

30% better than RAID-0 in case of HDFS write throughput.

The last one, CeresII, is a novel scaled out architecture based on Samsung

MicroBrick. It is an improvement over CeresI [91]. In this chapter, a prototype

version of the CeresII cluster is used for the evaluation and study. The next

chapter describes the commercial version of the cluster. One MicroBrick chassis of

CeresII has 22 computation-modules (or, compute servers). Each module consists

of one intel Xeon E3-1220L V2 processor with two physical cores, 16GB DRAM

module (Samsung), and one SATA-SSD (Samsung). Each module has several

PCI-express (PCIe) ports. Unlike SuperMikeII (traditional supercomputer) and

SwatIII (regular datacenter), all the compute servers of CeresII in a single chassis

are connected to a common PCIe switch to communicate with each other. The

highly dense servers per chassis in CeresII have a total 44 physical cores connected

through PCIe comparing to 16 physical cores per node as in SuperMikeII and

SwatIII. Furthermore, the use of SSD reduces the I/O wait and 8GB RAM per

physical core improves the access parallelism.

83



6.4.2 Understanding the Workload: Genome Assembly with Hadoop
and Giraph

De novo genome assembly problem can be interpreted as a simplified de Bruijn

graph traversal problem. The de novo assembly has been classified in two stages

as follows: a) Hadoop-based de Bruijn graph construction and b) Giraph-based

graph simplification. Following is a brief overview of the assembler.

1) Hadoop-based De Bruijn graph-construction (data- and compute-intensive

workload) The user-defined map function reads each line of the data file in fastq

format [92] and filters the lines containing only the nucleotide characters (A, T,

G, and C). These lines are known as short reads, which represent a very small

fragment of the entire genome. The map task then divides each of those reads

into several substrings of length k. These substrings are known as k-mers. Two

adjacent k-mers represent a vertex and an edge emitted from that vertex in the

de Bruijn graph. The vertex is the key and the edge from it is considered as its

corresponding value. Then reduce function collects all the edges emitted from each

vertex, aggregate and then writes the graph structure into the HDFS in adjacency-

list format. The job may produce terabytes of temporary or shuffled data based

on the value of k. For example, for a read-length of 100 and k of 31 the shuffled

data size is found to be 20-times than the original fastq input. On the other hand,

based upon the number of unique k-mers, the final output (i.e., the graph) can

vary from 1 to 10 times of the size of the input [1]

2) Giraph-based Graph Simplification (memory- and compute-intensive work-

load) This stage consists of a series of memory-intensive Giraph jobs. Each Gi-

raph job consists of three different types of computation: compress linear chains

of vertices followed by removing the tip-structure and then the bubble-structure

(introduced due to sequencing errors) in the graph. The program maintains a

counter on the number of supersteps and the master-vertex class invokes different

84



computation based on that. The software tool compresses the linear chains into

a single vertex using a randomized parallel algorithm implemented with Giraph.

The computation proceeds in rounds of two supersteps until a user-defined limit

is reached. In one superstep, each compressible vertex with only one incoming and

outgoing edge is labeled with either head or tail randomly with equal probability

and send a message containing the tag to the immediate predecessor. In the next

superstep, all the head-tail links are merged, that is, the head-kmer is extended

(or, appended) with the last character of the tail-kmer and the tail vertex is re-

moved. Each vertex also maintains a frequency counter which increments after

each extension. Tip removal is a two-step process. The first superstep identifies

all the vertices with very short length (less than a threshold) and no outgoing edge

as tips which are removed in the second superstep. Finally, the bubbles-structures

are resolved in another two supersteps. The first super step identifies the vertices

with same predecessor and successor as bubble and sends a message to their pre-

decessor with their id, value, and frequency to their corresponding predecessors.

The predecessor employs a Levenshtein-like edit distance algorithm. If the vertices

are found similar, then the lower frequency vertex is removed.

6.4.3 Input Data

Table-6.3 and 6.4 show the details of the data size used in the assembly pipeline.

In this work, two real genome datasets produced by Illumina Genome AnalyzerII,

a high throughput next generation sequencing machine. They are as follows: 1) a

moderate size bumble bee genome data (90GB) and 2) a large size human genome

data (452GB). The corresponding graph sizes are 95GB and 3.2TB (using k = 31 in

both the cases). The bumble bee genome is available in GAGE [93] website4. The

Human genome is available in NCBI website with accession number SRX0162315.
4Genome Assembly Gold-standard Evaluation (http://gage.cbcb.umd.edu/)
5http://www.ncbi.nlm.nih.gov/sra/SRX016231[accn]

85



Table 6.3: Moderate-size bumble bee genome assembly

Job Type Input Final
output

#
jobs

Shuffled
data

HDFS
Data

Graph
Construc-
tion

Hadoop 90GB
(500-
million
reads)

95GB 2 2TB 136GB

Graph
Simplifica-
tion

Series of
Giraph
jobs

95GB
(71581898
ver-
tices)

640MB
(62158
ver-
tices)

15 - 966GB

Table 6.4: Large-size human genome assembly

Job Type Input Final
output

#
jobs

Shuffled
data

HDFS
Data

Graph
Construc-
tion

Hadoop 452GB
(2-
billion
reads)

3TB 2 9.9TB 3.2TB

Graph
Simplifica-
tion

Series of
Giraph
jobs

3.2TB
(1.5-
billion
ver-
tices)

3.8GB
(3-
million
ver-
tices)

15 - 4.1TB

6.4.4 Hadoop Configurations and Optimizations

Since the goal is to evaluate the underlying hardware components and their

organizations, any unnecessary change in the source code of Hadoop or Giraph

has been avoided. Clouera-Hadoop-2.3.0 and Giraph-1.1.0 have been used for the

entire study and use the Cloudera-Manager-5.0.0 for monitoring the system behav-

ior. This section provides the evaluation methodology in details. It is worthy to

mention here, although the benchmark genome assembler (GiGA) has been used

for the evaluation purpose, the systematic analysis can be easily applied to other

data-intensive applications without any modification. To evaluate the relative mer-

its of different clusters, the evaluation started with tuning and optimizing different

86



Hadoop parameters to the baseline, that is a traditional HPC cluster, SuperMikeII.

Then, the parameters have been further modified with the change in the underly-

ing hardware infrastructure in SwatIII cluster to optimize the performance in each

configuration. A brief description of the Hadoop-parameters is as follows.

1) Number of concurrent YARN containers: After performing rigorous testing,

it is observed, 1-HDD/DN has a practical limitation on this number. For Super-

MikeII and SwatIII-Basic-HDD (1-HDD/DN cases), 8-containers/DN (i.e., half of

total cores/node) produce the best result. For any other cluster, the number of

concurrent containers per datanode is kept equal to the number of cores per node.

2) Amount of memory per container and Java-heap-space: In each node of any

cluster, 10% of the DRAM is kept for the system’s use. The rest of the DRAM

is equally divided among the concurrently launched containers. The Java heap

space per worker is always kept lower than DRAM per container as per Hadoop’s

recommendation.

3) Total number of Reducers: After observing the job profiles over multiple

datasets, we concluded that 2-times of reducers than the number of concurrent

containers gives the best performance.

4) Giraph workers: The number of Giraph workers is set according to the

number of concurrent YARN containers.

5) Other Giraph parameters: Enough memory is used always to accommodate

the graph structure in memory and always avoided using the out-of-core execution

feature of Giraph, which writes huge data to the disk.

6.5 Impact of Different Hardware Component

This section compares the individual impact of each hardware component,

such as, network, storage, and memory individually on the benchmark genome

assembler. To do that, 16 nodes in both SuperMikeII and SwatIII has been used.

Each node in both the clusters has 16 processing cores. We started by comparing

87



the impact of the network between SuperMikeII and SwatIII-Basic-HDD. Then,

we further optimized those 16 nodes of SwatIII cluster incrementally in terms

of storage by providing SSD (named as SwatIII-Basic-SSD) and then providing

more memory to each node (named as SwatIII-Memory). The reported execution-

times are the means of at least 3 runs of the assembler on each of the cluster

configurations.

6.5.1 Effect of Network: InfiniBand vs Ethernet

Figure-6.1a compares the impact of network interconnect on each stage of

PGA’s genome assembly pipeline while assembling a 90GB bumble bee genome.

The execution time is normalized to the SuperMikeII-baseline. No visible per-

formance difference (less than 2%) has been noticed on any of the stages of the

assembly pipeline even though SuperMikeII uses 40-Gbps QDR InfiniBand whereas

SwatIII-Basic-HDD uses a 10-Gbps Ethernet. The reason is as follows: although

the average latency in SuperMikeII is almost 1/14 of that in SwatIII (0.014ms in Su-

perMikeII compare to 0.2ms in SwatIII), the average effective bandwidth between

any two compute nodes of SuperMikeII was found to be almost 10-times lower

than that of SwatIII (954Mbit/s in SuperMikeII, whereas 9.2Gbit/s in SwatIII)

because of the 2 : 1 blocking ratio in the InfiniBand network.

6.5.2 Effect of Local Storage Device: HDD vs SSD

Figure-6.1b compares the execution time of SwatIII-Basic-SSD (1-SSD/node)

to the SuperMikeII-baseline (1-HDD/node). The second column of each stage of

the assembler in Figure-6.1b shows the impact of using SSD in that stage of the as-

sembly. It is observed that almost 50% improvement in the shuffle intensive graph-

construction stage because of reduced I/O wait. However, graph-simplification, a

series of in-memory Giraph jobs (that read/write data only to the HDFS), is not

affected much (less than 3%) by using SSD.

88



Graph−
Construction

Graph−
Simplification

Entire−
Pipeline

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

E
xe

cu
tio

n 
tim

e 
no

rm
al

iz
ed

 to
 S

up
er

M
ik

eI
I

SuperMikeII(40GbpsInfiniBand):15DN[BaseLine]
SwatIII−Basic(10GbpsEthernet):15DN

(a) Effect of network (InfiniBand vs Eth-
ernet).

Graph−
Construction

Graph−
Simplification

Entire−
Pipeline

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

E
xe

cu
tio

n 
tim

e 
no

rm
al

iz
ed

 to
 S

up
er

M
ik

eI
I

SuperMikeII(32GBMem+1HDD):15DN[BaseLine]
SwatIII−Storage(32GBMem+1SSD):15DN
SwatIII−Memory(256GBMem+1SSD):15DN

(b) Effect of local storage (HDD vs SSD)
and size of DRAM.

Figure 6.1: Impact of each individual hardware component on execution time of
the assembly pipeline in 15-DN

Actually, the shuffle phase of the Hadoop job experiences a lot of I/O wait

when a large number of I/O threads work concurrently to spill a huge amount of

data to the disk (by the mappers) and subsequently read by the reducers. Giraph

shows I/O wait only when it reads/writes a large graph from/to HDFS (Figure-

6.2b). I/O wait is significantly reduced using SSD (Figure-6.2c and -6.2d) instead

of HDD which improves the Hadoop performance remarkably. However, for Giraph

no notable performance improvement has been observed using SSD because of very

less I/O wait.

The system behavior is shown in Figure 6.2 and 6.3. Basically, an SSD increases

the disk IOPS per DataNode by 7 to 8 times than an HDD especially during the

shuffle phase of Hadoop which writes a vast amount of data to the local file system

as shown in Figure-6.3a. In case of Giraph, the corresponding improvement is

1.5-times as shown in Figure-6.3b. Considering the I/O throughput to HDFS, it

is also observed that also observed 1.5-times improvement in case of SSD for both

Hadoop and Giraph as shown in Figure-6.3c and -6.3d. Giraph, which writes data

89



0 20 40 60 80 100

0
20

40
60

80
10

0

Time (minutes)

C
P

U
 u

sa
ge

 (
%

)

CPU utilization
I/O wait

(a) Hadoop-based graph-construction in
SwatIII-Basic-HDD (1-HDD/node)

0 50 100 150

0
10

20
30

40
50

60
70

Time (minutes)
C

P
U

 u
sa

ge
 (

%
)

CPU utilization
I/O wait

(b) Giraph-based graph-simplification in
SwatIII-Basic-HDD (1-HDD/node)

0 20 40 60 80 100

0
20

40
60

80
10

0

Time (minutes)

C
P

U
 u

sa
ge

 (
%

)

CPU utilization
I/O wait

(c) Hadoop-based graph-construction in
SwatIII-Basic-SSD (1-SSD/node)

0 50 100 150

0
10

20
30

40
50

60
70

Time (minutes)

C
P

U
 u

sa
ge

 (
%

)

CPU utilization
I/O wait

(d) Giraph-based graph-simplification in
SwatIII-Basic-SSD (1-SSD/node)

Figure 6.2: CPU utilization and I/O wait characteristics in SwatIII-Basic-HDD
(1-HDD/node) and SwatIII-Basic-SSD (1-SSD/node)

90



0 20 40 60 80 100

0
10

0
20

0
30

0
40

0
50

0
60

0

Time (minutes)

IO
P

S

1SSD/node
1HDD/node

(a) WriteIOPS/DN in graph-construction
in SwatIII-Basic-HDD (1-HDD/node) and
SwatIII-Basic-SSD (1-SSD/node)

0 50 100 150

0
50

10
0

15
0

20
0

25
0

30
0

Time (minutes)

IO
P

S

1SSD/node
1HDD/node

(b) WriteIOPS/DN in graph-simplification
in SwatIII-Basic-HDD (1-HDD/node) and
SwatIII-Basic-SSD (1-SSD/node)

0 20 40 60 80 100 120

0.
0e

+
00

5.
0e

+
08

1.
0e

+
09

1.
5e

+
09

2.
0e

+
09

Time (minutes)

H
D

F
S

 w
rit

e 
th

ro
ug

hp
ut

 (
B

yt
es

/s
)

1SSD/node
1HDD/node

(c) HDFS-Write-throughput in graph-
construction in SwatIII-Basic-HDD (1-
HDD/node) and SwatIII-Basic-SSD (1-
SSD/node)

0 50 100 150

0.
0e

+
00

5.
0e

+
08

1.
0e

+
09

1.
5e

+
09

2.
0e

+
09

Time (minutes)

H
D

F
S

 w
rit

e 
th

ro
ug

hp
ut

 (
B

yt
es

/s
)

1SSD/node
1HDD/node

(d) HDFS-Write-throughput in graph-
simplification in SwatIII-Basic-HDD (1-
HDD/node) and SwatIII-Basic-SSD (1-
SSD/node)

Figure 6.3: Comparison of disk-write IOPS (write) on local file system (of each
datanode) and I/O throughput for HDFS-write (across all datanodes) for HDD
and SSD

91



to the HDFS only, shows the similar I/O characteristics for both IOPS per DataN-

ode (DN) and HDFS I/O throughput because they are related by the equation:

HDFS_IO_Throughput = IOPS_per_DN × Bytes_per_IO ×#DN , where

Bytes_per_IO is the characteristics of the disk. However, the HDFS throughput

characteristics across all the DN varies significantly from the IOPS per DN in case

of a shuffle-intensive Hadoop job, which writes lots of data to the local file system.

6.5.3 Effect of Size of DRAM

The third columns of Figure-6.1b shows the impact of increasing the amount

of memory per node. It is observed that almost 20% improvement in the initial

graph-construction phase from SwatIII-Basic-SSD, i.e., almost 70% improvement

to the baseline. In the Giraph phase, the corresponding improvement is 35%.

The improvement is because of the caching especially in case of Giraph, where

computation proceeds in iterative supersteps. A huge amount of data is kept in

cache and is fetched upon requirement during the next compute-superstep.

6.6 Impact of Different Hardware-Organizations

This section compares different cluster architecture in terms of raw execution

time as well as performance-to-price. Again, the execution times are the averages

of at least 3 runs of the assembler on each different hardware configuration.

6.6.1 Execution Time Comparison between SuperMikeII and SwatIII
Variants (with Moderate Size Bumble Bee Genome)

Figure-6.4a shows the relative merits of different cluster architectures in terms

of execution time. The total aggregated storage and memory space are kept almost

same across all the clusters (Except the SwatIII-Memory). The assumption behind

this experimental setup is that the total amount of data should be held entirely in

any of the clusters that cannot be compromised. The observations are as follows:

1. SwatIII-Basic: As discussed earlier in Section-6.5, for Hadoop, the SSD

variant of this scaled out cluster (32GB-RAM + 1-disk/DN & 16-DNs) shows

92



Graph−
Construction

Graph−
Simplification

Entire−
Pipeline

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

E
xe

cu
tio

n 
tim

e 
no

rm
al

iz
ed

 to
 S

up
er

M
ik

eI
I

SuperMikeII(32GBMem+1HDD):15DN[BaseLine]
SwatIII−FullScaleup−SSD(256GBMemory+7SSD):2DN
SwatIII−FullScaleup−HDD(256GBMemory+7HDD):2DN
SwatIII−Medium−SSD(64GBMem+2SSD):7DN
SwatIII−Medium−HDD(64GBMem+2HDD):7DN
SwatIII−Basic−SSD(32GBMem+1SSD):15DN
SwatIII−Basic−HDD(32GBMem+1HDD):15DN
SwatIII−Memory(256GBMem+1SSD):15DN
CeresII

SuperMikeII(32GBMem+1HDD):15DN[BaseLine]
SwatIII−FullScaleup−SSD(256GBMemory+7SSD):2DN
SwatIII−FullScaleup−HDD(256GBMemory+7HDD):2DN
SwatIII−Medium−SSD(64GBMem+2SSD):7DN
SwatIII−Medium−HDD(64GBMem+2HDD):7DN
SwatIII−Basic−SSD(32GBMem+1SSD):15DN
SwatIII−Basic−HDD(32GBMem+1HDD):15DN
SwatIII−Memory(256GBMem+1SSD):15DN
CeresII

(a) Execution time (Lower execution time
means better performance)

Graph−
Construction

Graph−
Simplification

Entire−
Pipeline

0
1

2
3

4
5

P
er

fo
rm

an
ce

/$
 n

or
m

al
iz

ed
 to

 S
up

er
M

ik
eI

I

SuperMikeII:15DN[Baseline]
SwatIII−FullScaleupSSD:2DN
SwatIII−FullScaleupHDD:2DN
SwatIII−MediumSSD:7DN
SwatIII−MediumHDD:7DN
SwatIII−Basic−SSD:15DN
SwatIII−Basic−HDD:15DN
SwatIII−Memory:15DN
CeresII:32DN

SuperMikeII:15DN[Baseline]
SwatIII−FullScaleupSSD:2DN
SwatIII−FullScaleupHDD:2DN
SwatIII−MediumSSD:7DN
SwatIII−MediumHDD:7DN
SwatIII−Basic−SSD:15DN
SwatIII−Basic−HDD:15DN
SwatIII−Memory:15DN
CeresII:32DN

(b) Performance-to-Price (Higher perfor-
mance per dollar is better)

Figure 6.4: Performance comparison among different type of cluster architectures
in terms of normalized execution time and performance-to-price

2x speedup over the baseline whereas the HDD variant performs similarly to the

baseline. For Giraph, both of them perform almost similar to the baseline.

2. SwatIII-FullScaleup: This scaled up (256GB-RAM + 7-disks/DN) small

sized cluster (only 2-DNs) takes the maximum time for any workload because of

least number of processing cores among all. Observe that for Hadoop, both SSD

and HDD variants of this scaled up cluster perform similarly, which is in contrast

with scaled out cluster (SwatIII-Basic). Section-6.6.4 discusses it in more detail.

3. SwatIII-Medium: The HDD variant of this cluster (64GB-RAM + 2-

disks/DN & 7-DNs) performs almost similar to the baseline for both Hadoop and

Giraph even though the total number of cores in the cluster is half of the base-

line. This is because of 2-HDDs and 64GB RAM per node increase the IOPS and

the caching respectively. The SSD variant performs slightly better than the HDD

because of further increase in IOPS.

4. SwatIII-Memory: The performance characteristics of this cluster is dis-

cussed earlier in Section-6.5. It is no surprise that this configuration (256GB-RAM

93



+ 1-SSD/DN & 16DNs) shows the lowest execution time among all because of the

huge amount of memory available across the cluster.

6.6.2 Performance-to-Price Comparison between SuperMikeII and SwatIII
Variants (with Moderate Size Bumble Bee genome)

It is considered that the performance as the inverse of the execution time and

divided it by the total cost of the cluster to get the performance/$. Since all

the clusters have the same amount of storage and memory space (except SwatIII-

Memory), none of them get any price benefit over another because of the total

storage or memory space. Rather, the performance to price has been compared

from the viewpoint of a proper architectural balance among the number of cores,

number of disks, and amount of memory per node. The chapter did not consider

the cost of the network for a fair comparison with SuperMikeII, the public HPC-

cluster that is shared among many users.

Figure-6.4b compares the performance/$ metric among all the clusters. The

observations are as follows:

1) SwatIII-Basic: For Hadoop, the SSD variant of this scaled out cluster shows

2-times better performance/$ comparing to the baseline as well as to its HDD

variant. However, for Giraph, it does not add any benefit. The HDD variant, as

expected, shows a similar result as the baseline.

2) SwatIII-FullScaleup: Although the performance of this scaled up cluster

is the lowest in terms of execution time, it shows high performance/$ for both

Hadoop and Giraph. For Hadoop, the SSD and HDD variants show 1.5 and 2.5

times benefit to the baseline respectively. For Giraph, the corresponding benefit is

2 and 3 times respectively for SSD and HDD. Due to the similar execution time in

both HDD and SSD variant of this scaled up cluster, the HDD variant obviously

shows better performance/$ than the SSD variant. This is again in contrast with

the scaled out (SwatIII-Basic) case

94



3) SwatIII-Medium: Both the HDD and SSD variant of this configuration

shows a similar result, almost 2-times better than the baseline for both Hadoop

and Giraph. Considering both performance and the price, it is the most optimal

configuration in the evaluation.

4) SwatIII-Memory: For Hadoop, it shows 2-times benefit to the baseline.

However, once SSD is used as the underlying storage (comparing to SwatIII-Basic-

SSD) more memory does not add any advantage in terms of performance/$. For

Giraph, it does not have any impact on performance/$ compared to the baseline.

6.6.3 Comparing SuperMikeII and SwatIII (with large human-genome)

The large human genome (452GB) produces huge amount of shuffled data

(9.9TB) as well as the graph data (3.2TB). This work used 127 DataNodes in

SuperMikeII (32GB-RAM + 1-disk/DN) and 15 DataNodes in the SwatIII-Full-

Scaleup (256GB-RAM + 7-disks/DN) HDD and SSD. Figure-6.5a and 6.5b shows

the execution time and the performance/$ respectively for the human genome

assembly pipeline. The observations are as follows:

Graph−
Construction

Graph−
Simplification

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

E
xe

cu
tio

n 
tim

e 
no

rm
al

iz
ed

 to
 S

up
er

M
ik

eI
I

SuperMikeII:128DN
SwatIII−FullScaleup−SSD:15DN
SwatIII−FullScaleup−HDD:15DN

SuperMikeII:128DN
SwatIII−FullScaleup−SSD:15DN
SwatIII−FullScaleup−HDD:15DN

(a) Execution time (Lower execution time
is better).

Graph−
Construction

Graph−
Simplification

0
1

2
3

4
5

6

P
er

fo
rm

an
ce

/$
 n

or
m

al
iz

ed
 to

 S
up

er
M

ik
eI

I

SuperMikeII:128DN
SwatIII−FullScaleup−SSD:15DN
SwatIII−FullScaleup−HDD:15DN

SuperMikeII:128DN
SwatIII−FullScaleup−SSD:15DN
SwatIII−FullScaleup−HDD:15DN

(b) Performance to price (Higher perfor-
mance/$ is better).

Figure 6.5: Comparison of different types of cluster architecture for human genome
assembly pipeline.

95



1) For Hadoop, the 127-DNs of SuperMikeII (2032-cores) show only 15-17%

better performance than 15-DNs (240 cores) of SwatIII-FullScaleup cluster (any

variant) while using almost 9-times more cores. The reasons behind the lower

performance in SuperMikeII are both the huge I/O and network bottleneck as

discussed earlier in Section-6.3 and -6.5. Again, observe that for this large dataset

also, both the SSD and HDD variants of SwatIII-FullScaleup perform similarly as

observed in Section-6.6.1.

2) For the Giraph-based graph-simplification stage also, SuperMikeII did not

show the expected performance mainly because of the network bottleneck. To

analyze the terabyte scale graph, Giraph passes a huge amount of messages across

the workers, which experience significant bottleneck by the 2:1 blocking ratio in

the InfiniBand network and the lower effective bandwidth between compute nodes

of SuperMikeII.

3) In terms of performance per dollar, the scaled up configuration shows huge

benefit over the baseline. For Hadoop, the gain is 3 to 5 times based on the storage

media. For Giraph, the corresponding gain is almost 4 to 5 times. Again, because

of the similar execution time, the HDD variant of SwatIII-FullScaleup shows better

performance per dollar than the SSD variant.

6.6.4 Performance of SSD in Scaled Out and Scaled Up Cluster

Storage optimized, scaled up cloud instances frequently come with 4 to 8-SSDs

per instance to improve the performance, consequently incurring high setup-cost

as well as service-charge. For example, AWS-i2.8xlarge offers 8-SSDs per instance

at a rate of $6.82/hour, which is one of the high-cost AWS-EC2-instances. But,

is it the effective way to deploy the SSDs? The disk controllers saturate after a

certain threshold (an observation by Szalay [94]). In this section, we compare the

performance characteristics of HDD and SSD from the perspective of scaled out

and scaled up configuration.

96



Figure-6.6a compares the performance of a single SSD and increasing number

of HDDs per node for the Hadoop-based graph-construction stage of the bumblebee

genome assembly pipeline while using a total of 15-DNs. The performance improves

almost linearly by increasing the number of HDDs per DataNode in the cluster. On

the other hand, 4-HDDs per node shows similar performance (only 5% variation)

with a single-SSD per node. At this point the job is CPU-bound, and adding

more disk(s) to the DataNodes does not improve the performance. Consequently,

any significant performance improvement is not expected after this point (that is,

more than 4-disks per node). Both Figure-6.6b as well as Figure-6.5a substantiate

the claim for moderate-size bumble bee and large-size human genome data. It

can be clearly observed that for both the data, both the HDD and SSD variant

of SwatIII-FullScaleup perform similarly where each DataNode is equipped with

7-disks. However, the SSD showed a significantly better performance than HDD

when scaled out by adding more compute nodes to the cluster because a lower

number of HDDs make the job I/O bound as shown in Figure-6.6b.

1−HDD 2−HDD 4−HDD 1−SSD

0
10

00
20

00
30

00
40

00
50

00

DAS/DN

E
xe

cu
tio

n 
tim

e 
(s

)

(a) Hadoop performance trend using 1, 2
and 4 HDD(s) and 1-SSD per node using
15 datanodes in the cluster.

2−DN:
7−Disks/DN

7−DN:
2−Disks/DN

15−DN:
1−Disk/DN

40
00

60
00

80
00

10
00

0

E
xe

cu
tio

n 
tim

e 
(s

)

SSD
HDD

(b) Hadoop performance trend for SSD
and HDD using 1, 2, 7 disks per node in
15, 7 and 2 datanodes in the cluster.

Figure 6.6: Performance trend using HDD and SSD in Hadoop. SSD shows better
performance and scalability in a scaled out environment

97



6.6.5 Performance of CeresII prototype: Samsung MicroBrick with
PCIe Communication

In this section, The chapter evaluates a Samsung MicroBrick-based novel archi-

tecture, called CeresII. As mentioned before, CeresII uses 2 physical cores, 1-SSD

and 16GB memory per compute server and uses a PCIe-based interface to com-

municate among high-density compute-servers in a chassis. For communication

between different chassis, it uses 10-Gbps Ethernet. The PCIe based communica-

tion enables building highly efficient distributed clusters of extremely low commu-

nication overhead. At the same time, the SSD based MicroBricks enables highly

efficient resource utilization at a significantly lower cost.

To assemble the 95GB bumble bee genome 32 compute-servers of CeresII were

used as Hadoop datanodes. The last columns in Figure-6.4a and Figure-6.4b show

the execution-time and performance/$ respectively for CeresII for different stages

of the assembly. CeresII shows the similar execution time to the baseline in ev-

ery stage of the assembly pipeline while giving almost 2-times improvement in

performance/$.

From the performance comparison between SuperMikeII and SwatIII, a huge

trade-off between the execution time and the performance/$ was noticed. For

example, even though the full scaled up small-sized clusters (2-DNs cases) show

extremely low performance, they show a magnitude higher performance/$. It is

also concluded that the medium-sized clusters (7-DNs) are well balanced consider-

ing both performance and cost. On the other hand, CeresII shows similar execution

time as the medium sized clusters (which is eventually same as the baseline) and

better performance per dollar. Moreover, the Samsung MicroBrick based architec-

ture consumes less power and space [91]. Hence, it is concluded that CeresII shows

the maximum benefit in terms of TCO (total cost of ownership).

98



6.7 Conclusion

This work analyzed the performance characteristics of two popular state of

the art big data analytic software tools, Hadoop and Giraph, on top of different

distributed-cyber-infrastructures with respect to a real-world data- and compute-

intensive HPC workload. The research pointed out several limitations in a tra-

ditional HPC cluster, both, in individual node layer (e.g., memory and storage)

as well as network interconnect layer. The novel MicroBrick-based CeresII-cluster

with low-power but high-density compute nodes connected with PCIe-based com-

munication interface is a good future direction to alleviate many of the existing

architectural limitations.

The research also pointed out the huge trade-off between the performance and

the price that the data- and memory-intensive HPC applications experience with

the traditional deployment of the existing hardware components. The existing

distributed-cyber-infrastructures should be modified significantly in order to pro-

vide good performance while staying within the budget. It is indeed the future

direction of the work. CeresII, from that perspective, also provides a very good

initial starting point.

99



Chapter 7
A Theoretical Model for Cost-Balanced HPC Cluster for Data
Science

High-performance analysis of big data demands more computing resources,

forcing similar growth in computation cost. So, the challenge to the HPC system

designers is providing not only high performance but also a high performance at

lower cost. For high performance yet cost effective cyberinfrastructure, the the-

sis proposes a new system model augmenting Amdahls second law for a balanced

system to optimize price-performance-ratio. The optimal balance among CPU-

speed, I/O-bandwidth and DRAM-size (i.e., Amdahls I/O- and memory-number)

are expressed in terms of application characteristics and hardware cost. Consider-

ing Xeon processor and recent hardware prices, the analysis showed that a system

needs almost 0.17GBPS I/O-bandwidth and 3GB DRAM per GHz CPU-speed to

minimize the price-performance-ratio for data- and compute-intensive applications.

The thesis substantiates the claim evaluating three different cluster architec-

tures: 1) SupermikeII, a traditional HPC cluster, 2) SwatIII, a regular datacen-

ter, and 3) CeresII, a MicroBrick-based hyperscale system. CeresII with 6-Xeon

cores (2GHz/core), 1-NVMe SSD (2GBPS I/O-bandwidth) and 64GB DRAM

per node, closely resembles the optimum produced by the model. Consequently,

CeresII shows better price-performance-ratio than both SupermikeII (65-85%) and

SwatIII (40-50%) for data- and compute-intensive Hadoop benchmarks (TeraSort

and WordCount) and a genome assembler developed using Hadoop and Giraph.

7.1 Introduction

As the scientific research is becoming more data-driven in nature, it is obvious

that providing more resources to an HPC cluster (processing speed, I/O bandwidth,

This chapter previously appeared in IEEE Cloud 2017 [95]. Reprinted by permission.

100



DRAM) will improve the performance of data-intensive scientific applications. But

at what cost? So, the major challenge to the system designers nowadays is not in

providing only high performance but in providing expected performance in reduced

cost (i.e., minimizing price-performance-ratio).

At this inflection point of HPC landscape, system designers must consider more

degrees of freedom for new cluster architecture for big data processing than for

existing HPC clusters which focus only on doing the calculation at blazing speed.

They must address such questions as to how much I/O bandwidth is required per

processing core? How much memory is required to optimize performance and cost?

These complex performance and economic factors together motivate new designs

of HPC infrastructure.

With this motivation, this work makes an initial attempt to resolve the exist-

ing performance and cost conundrum by augmenting Amdahl’s second law (i.e.,

Amdahl’s I/O and memory number) for balanced system. The thesis proposes a

simple additive model to optimize price-performance-ratio by quantifying the sys-

tem balance between CPU speed, I/O bandwidth, and size of DRAM in terms of

software application characteristics and the current trend in hardware cost. The

final outcome of this model are the two modified Amdahl’s numbers which can be

easily used by hardware vendors to propose a cost-effective architecture for data-

and compute-intensive applications.

Assuming an equal distribution of I/O and compute work in a data-intensive

application, the model suggests that a balanced HPC system needs almost 0.17-

GBPS I/O bandwidth, and almost 3-GB of DRAM per GHz of CPU speed using

Intel Xeon processor and current price trend of different hardware.

To substantiate the claim, three different cluster architectures: 1) Super-

mikeII, a traditional HPC cluster, 2) SwatIII, a regular datacenter, and 3) Cere-

sII, a MicroBrick-based novel hyperscale system are evaluated. CeresII with 6-

101



Xeon-D1541 cores (2GHz/core), 1-NVMe SSD (2GBPS I/O-bandwidth) and 64GB

DRAM per node, closely resembles the optimum produced by the model. Conse-

quently, it outperformed both the clusters for data- and compute-intensive Hadoop

benchmarks (TeraSort and WordCount) as well as the benchmark genome assem-

bler developed in the thesis (Chapter 4) based on Hadoop and Giraph. Overall,

CeresII showed 65-85% and 40-50% better price-performance-ratio over Super-

MikeII and SwatIII respectively.

The rest of the chapter is organized as follows: Section-7.2 describes the prior

work related to the current effort. Section-7.3 discusses Amdahl’s second law in

detail. Section-7.4 describes the proposed model. Then, Section-7.5 shows the

details of the experimental testbeds and classify those using the proposed model.

Section-7.6 describes the evaluation methodology for these clusters (i.e., the details

of the software and benchmarks that are used in the evaluation). Section-7.7

discusses the experimental results. Finally, Section-7.8 concludes the chapter with

possible improvement to stimulate discussion and future work.

7.2 Related Work

Numerous studies have been performed evaluating the performance implication

of different big data analytic software tools (e.g., Hadoop) on different types of

hardware infrastructures.

Hardware evaluation studies such as, [80], [81], [82], [84], etc. unanimously

concluded that the use of SSD can accelerate the Hadoop applications with respect

to standard benchmark (e.g., TeraSort, WordCount, etc.). On the other hand,

[87], [88], and [71] evaluated the overall cluster architecture for different Hadoop

benchmark. Although these studies provide good insight on the performance of

different hardware, the rapid changes in hardware technologies and the cost limits

their scope among hundreds of different architectural alternatives.

Simulation studies such as, SimMR [96], MRSim[97], MRPerf [98], etc. reduced

102



the hardware cost by creating virtual Hadoop job over simulated hardware envi-

ronment. Although simulation is more cost-effective than real hardware, it comes

with lots of software overhead. Also, the process of finding alternative architecture

is mostly driven by a trial-and-error method and prior experiences. Considering

the broad range of available hardware alternatives with more than 200 Hadoop

parameters, it is challenging to provide optimal hardware configuration and may

suffer from reliability issues [99].

Analytical models such as [99], [100], [101], etc. abstract away several per-

formance parameters and predict the performance of a Hadoop job mainly using

single- or multi-layer queuing networks. Although no overhead is involved in ana-

lytical approach, like simulation it is hard to find an optimally balanced architec-

ture in the vast range of hardware alternatives.

To date, the most practical approach to design a balanced system is to follow

Amdahl’s second law. Computer scientist Gene Amdahl postulated that a balanced

system needs 1bit of sequential I/O per second (Amdahl’s I/O number) and 1byte

of memory (Amdahl’s memory number) per CPU instruction per second. Amdahl’s

second law (with Gray’s amendment) can be used for system characterization and

proposing a balanced system. For example, Bell and Gray [102] classified the

existing supercomputers based upon Amdahl’s second law to clarify the future

roadmap of the HPC architecture. Cohen [103] applied Amdahl’s second law to

the datacenter cluster to study the interplay between processor architecture and

network interconnect in a datacenter. Chang [104] used Amdahl’s second law

to better understand the performance of hardware design implications of data

analytic systems. Szalay [94], using Amdahl’s second law, proposed a new cluster

architecture based on SSD and low power processors (such as, Intel Atom, Zotac

etc.) to achieve a balance between performance and energy efficiency.

Unlike these studies, this work considers a balanced system as one that opti-

103



mizes both cost and performance. Hence, this research did not consider the optimal

balance of the system (i.e., the I/O and memory ratio to the processor speed) as

constants as in original Amdahl’s I/O and memory number. Instead, the thesis

proposes an additive model to express the optimal system balance as a function of

both application characteristics and hardware price.

7.3 Background

7.3.1 Original Form of Amdahl’s Second Law

Computer scientist Gene Amdahl postulated several design principles in late

1960 for a balanced system. As mentioned earlier, these design principals are

collectively known as Amdahl’s second law, which is as follows:

1) Amdahl’s I/O law: A balanced computer system needs one bit of sequen-

tial I/O per second per instruction per second. From this point, this law will be

mentioned as Amdahl’s I/O number. Alternatively, Amdahl’s I/O number of a bal-

anced system can be expressed as 0.125 GBPS/GIPS (by changing in conventional

units).

2) Amdahl’s memory law: A balanced computer system needs one byte of

memory per instruction per second. From this point, this law will be mentioned

as Amdahl’s memory number.

Using the notations in Table 7.1, Amdahl’s I/O and memory numbers can be

expressed as, βopt
io = 0.125 and βopt

mem = 1.

7.3.2 Gray’s Amendment to Amdahl’s Second Law

Computer scientist Jim Gray reevaluated and amended Amdahl’s second law

in the context of modern data engineering. These amendments are collectively

known as Gray’s law. The revised laws are as follows:

1) Gray’s I/O law: A system needs 8 MIPS/MBPS I/O (same as Amdahl’s

I/O number, but in a different unit), but the instruction rate and I/O rate must

104



be measured on the relevant workload.

2) Gray’s memory law: The MB/MIPS (alternatively, GB/GIPS) ratio is rising

from 1 to 4. This trend will likely continue.

The underlying implication of Gray’s I/O Law is that it aims for systems whose

Amdahl’s I/O number matches the Amdahl’s I/O numbers of the applications (i.e.,

application balance) that run on that system. In the memory law, Gray simply put

forward the statistics reflecting the contemporary state of the cluster architecture.

Using the notations in Table 7.1 Gray’s laws can be expressed as, βopt
io = γio

and βopt
mem = 4

7.3.3 Limitations of Existing Laws

Amdahl’s second law for balanced systems does not consider the impact of

application balance (or applications’ resource requirement). Because of the di-

verse resource requirements, a one-size-fits-all design as suggested in the original

law, cannot satisfy the different resource balance ratios for a collection of analytic

applications.

Gray’s law is more realistic in the sense that it considers the impact of appli-

cation balance on the cluster architecture. However, it is limiting to reflect the

interplay between application and cost balance. The cost of hardware components

has already changed the performance point and will keep on changing it as the

technology continues to advance.

7.4 Proposed Model for System Balance

7.4.1 Problem Definition

Using the notations described in Table 7.1, the optimal system balance (i.e.,

βopt
io and βopt

mem) needs to be expressed as a function of application balance (i.e.,

γio and γmem) and cost balance (i.e., δio and δmem). Mathematically, it can be

expressed as, βopt
io = f1(γio, δio) and βopt

mem = f2(γmem, δmem)

105



Table 7.1: Notations used in the model and their meaning

Rcpu CPU speed of a given system S (GHz)
Rio I/O bandwidth of system S (GBPS)
Rmem DRAM size of system S (GB)
Wcpu Fraction of work done by the CPU for a given application W
Wio Fraction of work done by the disk(s) for W
Wmem Fraction of work done by DRAM for W
Pcpu Price per GHz of CPU speed
Pio Price per GBPS of I/O bandwidth
Pmem Price per GB of DRAM
βio System balance between I/O bandwidth and CPU speed for system S

(= Rio/Rcpu)
βmem System balance between DRAM size and CPU speed for system S (=

Rmem/Rcpu)
γio Application balance between CPU and I/O bandwidth for application W

(= Wio/Wcpu). This term quantifies to what extent the application is
I/O- or CPU-intensive. Lower value means more CPU-intensive, higher
means I/O-intensive. 1 represents both I/O- and CPU-intensive

γmem Application balance between CPU and DRAM size for application W
(= Wmem/Wcpu). This term quantifies to what extent the application
is memory- or CPU-intensive. Lower value means more CPU-intensive,
higher means memory-intensive. 1 represents both memory- and CPU-
intensive

δio Cost balance between CPU and I/O bandwidth for system S (=
Pio/Pcpu)

δmem Cost balance between CPU and DRAM for system S (= Pmem/Pcpu)
βopt
io Optimal system balance between I/O bandwidth and CPU speed (The

problem under consideration)
βopt
mem Optimal system balance between DRAM size and CPU speed (The prob-

lem under consideration)

7.4.2 Model Assumptions

For simplicity of calculation and better usability, the model first ignores the

CPU microarchitecture as in [94]. That is, the number of instruction executed per

cycle (IPC) is considered as proportional to CPU core frequency. Hence, express

the balance between I/O and CPU in terms of GBPS/GHz, and balance between

DRAM size and CPU in terms of GB/GHz.

Second, for simplicity, the model is assumed to be additive. That is, the overlap

106



between work done by I/O, and memory subsystem is ignored. This way, the total

execution time (Ttotal) of an application can be written as:

Ttotal = Tcpu + Tio + Tmem (7.1)

=⇒ Ttotal =
Wcpu

Rcpu

+
Wio

Rio

+
Wmem

Rmem
(7.2)

Third,this work assumes the total cost of the system as the summation of individual

cost of CPU, I/O, and memory subsystems only. Several constant components such

as base cost, service cost, etc. are ignored. This way, the total system cost (Ctotal)

can be written as:

Ctotal = Ccpu + Cio + Cmem (7.3)

=⇒ Ctotal = PcpuRcpu + PioRio + PmemRmems (7.4)

7.4.3 Model Derivation

In this section the main objective is to minimize the price-performance-ratio

(denoted as fcp). Assuming the performance as the inverse of the execution time,

fcp can be expressed as:

fcp = Ctotal × Ttotal (7.5)

=⇒ fcp = (Ccpu + Cio + Cmem)×

(Tcpu + Tio + Tmem)

(7.6)

107



=⇒ fcp = CcpuTcpu + CcpuTio + CcpuTmem

+CioTcpu + CioTio + CioTmem

+CmemTcpu + CmemTio + CmemTmem

(7.7)

Assuming a CPU core cannot perform disk and memory operation at the same time,

CioTmem (term-6) and CmemTio (term-8) depicts the depreciation of one component

when the other in use. That is, when the memory is in use the cost of disk

is depreciated to zero and vice versa. Hence, term-6 and 8 of Equation 7.7 are

practically insignificant and should be eliminated from Equation 7.7.

Then, by expanding all the time (T ) and cost (C) terms using Equation 7.2 and

7.4 respectively and then substituting with the notation used for system balance

in Table 7.1 (i.e., βio and βmem), Equation 7.7 can be rewritten as:

fcp = PcpuWcpu +
1

βio

PcpuWio +
1

βmem

PcpuWmem

+βioPioWcpu + PioWio

+βmemPmemWcpu + PmemWmem

(7.8)

Again, assuming a CPU core cannot perform disk and memory operation at the

same time, partial differentiation with respect to βio and βmem can separately lead

us to the optimum system balance in terms of I/O bandwidth and DRAM size

respectively, with respect to processing speed.

Partially differentiating with respect to βio, we get:

∂fcp
∂βio

= − 1

β2
io

PcpuWio + PioWcpu (7.9)

For the optimal balance (βopt
io ) between CPU speed and I/O bandwidth, Equation

7.9 should equal to 0. Then, solving for βio and replacing it with the workload and

108



technology-cost balance terms mentioned in Table 7.1 we get:

βopt
io =

√
γio
δio

(7.10)

Similarly, the optimum balance (βopt
mem) between CPU speed and size of DRAM can

be derived as:

βopt
mem =

√
γmem

δmem

(7.11)

Equation 7.10 and 7.11 show the contribution of application balance and cost

balance towards optimal system balance.

7.4.4 Observations and Inferences

Gray’s law is a special case of the model when the cost balance equals the

inverse of the application balance (i.e., the application’s CPU I/O and, memory

requirement exactly balance the contemporary cost of the hardware).

Figure 7.1 compares the model with Amdahl’s second law and Gray’s law. The

horizontal x-axis shows the different types of application balance. Value of γio = 1

presents an I/O- as well as a CPU-intensive application where Gray’s I/O law and

Amdahl’s I/O law both intersect. Likewise, γmem = 1 presents a memory and

CPU-intensive applications. It can be observed that the model suggests using less

DRAM than suggested by Gray’s memory law. However, the model yields higher

values for system’s I/O bandwidth comparing to Gray’s I/O law. This is because

the current price of magnetic disk or SSD is much lower than that of DRAM.

It can be noticed that lower balance ratio between per-GBPS-I/O-cost to

per-GHz-CPU-cost leads to higher balance ratio between system-I/O-GBPS to

system-CPU-GHz. One straightforward interpretation for this observation is that

if per-GBPS-I/O-cost starts decreasing faster than the per-GHz-CPU-cost, design-

ers should increase the system-I/O-GBPS of a single server to achieve the new I/O

109



balance ratio (GBPS/GHz). However, instead of scaling up a single server in terms

of storage, designers can scale out in terms of processor. That is, reduce the num-

ber of processor in a single server and add more servers with the same new system

balance ratio. That is, both scaled out and scaled up architecture can produce

optimal price-performance-ratio if the proper balance is maintained.

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Application's I/O balance (γio)S
ys

te
m

's
 o

pt
im

al
 I/

O
 b

al
an

ce
 (

β i
oop

t  in
 G

B
P

S
/G

H
z)

10−2 10−1 100

δ = 30

δ = 10

δ = 20

δ = 40
δ = 50

Optimal I/O bandwidth by 
 proposed model
Gray's I/O law

Amdahl's I/O law

(a) I/O balance

0
1

2
3

4
5

6
7

Application's memory balance (γmem)S
ys

te
m

's
 o

pt
im

al
 m

em
or

y 
ba

la
nc

e 
(β

m
em

op
t

 in
 G

B
/G

H
z)

10−2 10−1 100

δ = 0.1

δ = 0.2
δ = 0.3
δ = 0.4
δ = 0.5

Optimal size of DRAM by 
 proposed model
Gray's memory law

Amdahl's memory law

(b) Memory balance

Figure 7.1: Change in system’s optimum I/O balance (βopt
io ) and memory balance

(βopt
mem) as a function of application balance (γio and γmem) for different cost balance

(δio and δmem).

7.4.5 Notes on Different Types of I/O

Since the model is generalized for different types of I/O, system designers

should be careful about the following issues to maintain the system balance (i.e.,

to achieve the recommended value of βio):

1) Sequential vs Random I/O: System designers should be careful about the

application characteristics. An application with frequent random I/O (e.g., shuffle

phase of a Hadoop job) will get benefit from SSD.

2) Disk Controller: Aggregate I/O bandwidth of all the disks attached to a

compute node should be less than or equal to the bandwidth of the disk controllers.

Otherwise, disk controller will be saturated and the application cannot utilize the

110



full I/O bandwidth of all the disks. [71] demonstrated this issue.

3) Network I/O: The network I/O can be modeled similarly as the disk I/O

model. However, system designers should be careful about network topology (e.g.,

FatTree, Clos, etc.) and the blocking ratio which can be changed manually affecting

the cost per network bandwidth. Hence, to apply the proposed model for network

I/O the impact of these factors should be eliminated. That is, given the same

topology and blocking ratio system designers can easily calculate the optimum

ratio between CPU speed and network bandwidth using the proposed model.

7.4.6 An Example of Building a Balanced Cluster

This section demonstrates a real example of how to apply the model to build a

cost-effective, balanced cluster. To reflect today’s data-, compute-, and memory-

intensive scientific applications, it is considered that the work done by the CPU,

I/O and memory subsystem (i.e., Wcpu, Wio, and Wmem) are equal for that appli-

cation. That is, using the notation in Table 7.1, the application balance can be

written as, γio = γmem = 1

The unit price in Table 7.2 shows the current price trend for different processor,

storage and memory alternatives in their corresponding unit. Intel Xeon processor

is considered. As it can can be seen in Table 7.2, the cost per MBPS of sequential

I/O for both HDD and SATA-SSD is almost similar irrespective of change in storage

technology provided the same storage space per disk. Whereas, the I/O bandwidth

cost started reducing significantly with NVMe SSD. The cost per GB of DRAM is

increased almost double from DDR2 to DDR3.

The average cost of each hardware component is calculated from the available

list (Table 7.2) in terms of their corresponding unit price. For example, two differ-

ent Xeon processors, E5-series and D-series have been shown in Table 7.2. Their

respective unit prices are $42/GHz and $54/GHz. Hence, in this example, average

unit cost of the processor is selected as $48/GHz. Similarly, the cost of the DRAM

111



Table 7.2: Cost of different hardware components

Hardware components Cost($) Unit Price
Intel Xeon 64bit 2.6 GHz E5 series (8-cores)
processor

1760 $42/GHz

Intel Xeon D-1541 650 $54/GHz
Western Digital RE4 HDD (120MBPS),
500GB

132 $2252.80/GBPS/TB

Western Digital VelociRaptor HDD
(150MBPS), 600GB

167 $1900.09/GBPS/TB

Samsung 840Pro Series SATAIII SSD
(400MBPS), 512GB

450 $2250.00/GBPS/TB

Samsung NVMe SSD PM953 (2GBPS),
950GB

450 $242.52/GBPS/TB

Samsung DDR3 16GB memory module 159 $10/GB
32GB 1600MHz RAM (decided by Dell) 140 $4.37/GB

is calculated as $7.20/GB. To eliminate the impact of storage amount while cal-

culating the I/O bandwidth cost, the unit price of a disk has been calculated in

terms of cost per GBPS per TB. That is, the cost per GBPS is calculated using the

same storage capacity (1TB) for each disk. This way, the average I/O bandwidth

cost is $1661.35/GBPS.

Next, the I/O cost per GBPS and DRAM cost per GB is calculated by the CPU

cost per GHz to get the cost balance for I/O and memory respectively. Using the

notation in Table 7.1, cost balance for this example can be written as: δio = 34.61

and δmem = 0.15.

Finally, for γio = γmem = 1 (i.e., CPU-, I/O- and memory-intensive applica-

tion), using Equation 7.10 and 7.11 we get βopt
io = 0.17 and βopt

mem = 2.7.

7.5 Experimental Testbeds: Critical Analysis of Architectural Balance

Table 7.3 shows the overview of our experimental testbeds. The first one,

SuperMikeII represents a traditional HPC cluster. SwatIII represents a regular

datacenter. The last one, CeresII, is a novel hyperscale system, based on Samsung

MicroBrick. In this section we characterize all these cluster with respect to our

112



model.
Table 7.3: Experimental testbeds

Resources SuperMikeII SwatIII CeresII
Processor Two -core

SandyBridge
Xeon

Two 8-core
SandyBridge
Xeon

One 6-core Xeon

CPU core speed 2.6GHz 2.6GHz 2.00 GHz
#Cores/node 16 16 6
CPU-Speed/node 41.6GHz 41.6GHz 12gHz
Disk/node and type 1-HDD (SATA) 4-HDD (SATA) 1SSD (NVMe)
Seq I/O Band-
width/disk

0.15GBPS 0.15GBPS 2.00GBPS

Seq I/O Band-
width/node

0.15GBPS 0.60GBPS 2.00GBPS

DRAM/node 32GB 256GB 64GB
βio 0.003 0.015 0.166
βmem 0.77 6.15 5.33

7.5.1 SuperMikeII (Traditional HPC Cluster)

This LSU HPC cluster offers a total of 440 computing nodes. However, a

maximum of 128 can be allocated at a time to a single user. SuperMikeII has

two 8-core Intel Xeon E5 series processor per node thus offering huge processing

power. However, each SuperMikeII node is equipped with only one HDD (Western

Digital RE4), thus limited in terms of I/O bandwidth. Also, each SuperMikeII

node has only 32GB DRAM (Dell). As a result, SuperMikeII has βio = 0.003 and

βmem = 0.77, both a magnitude smaller than the optimum produced by the model

for a data-, compute- and memory-intensive application as shown in Equation

7.10 and Equation 7.11. Using the plot shown in Figure 7.1 (or using Equation

7.10 and 7.11 with SuperMikeII hardware cost shown in Table 7.2) SuperMikeII

provides optimal price-performance-ratio for those applications where γio = 0.0005

or γmem = .06. Hence, it can be said SuperMikeII can provide cost-optimized

performance for traditional compute-intensive applications such as supercomputing

simulations, astrophysics calculations where γio has the order of 10−3 [94].

113



7.5.2 SwatIII (Existing Datacenter)

This Samsung datacenter has 128 nodes. However, maximum 16 nodes are

used for the experiments. Unlike SuperMikeII which has only one HDD per node,

SwatIII uses 4HDDs (Western Digital VelociRaptor) per node using JBOD (Just

a Bunch of Disk) configuration while using the same processors (i.e. two 8core

Intel Xeon E5 series) as SuperMikeII. Since the I/O throughput increases linearly

with the number of disks, SwatIII’s βio = 0.015 is higher than SuperMikeII but

lower than the optimum produced by the model for an I/O- and compute-intensive

application (Equation 7.10). On the other hand, each SwatIII node has 256GB

DRAM (Samsung DDR3), thus achieving a very high value for βmem = 6.15. It

is worth noticing that βmem of SwatIII is even higher than the optimum produced

by the model (Equation 7.11). Using Figure 7.1 (or using Equation 7.10 and 7.11

with SuperMikeII hardware cost shown in Table 7.2), it can be shown SwatIII can

produce cost-optimized performance when γio = 0.01 and γmem = 1.47. That is,

SwatIII can be a good choice for moderately I/O-intensive applications and for

memory-intensive applications such as in-memory NoSQL. However, SwatIII may

show worse price-performance-ratio for many of the modern I/O-intensive big data

applications.

7.5.3 CeresII (MicroBrick-based Hyperscale System)

CeresII is a novel hyperscale system, based on Samsung MicroBrick with a

maximum of 40 nodes available to us. Each MicroBrick (or simply a compute

server) of CeresII consists of a 6core Intel Xeon D-1541 processor with a core

frequency of 2GHz, one NVMe-SSD (Samsung PM953) with an I/O bandwidth

of 2GBPS, and 64GB DRAM (Samsung DDR3). βio of CeresII is 0.17 which is

same as the optimum calculated by the model in Equation 7.10. On the other

hand, βmem of each CeresII module is 5.33. Although it is higher than the optimal,

it is less than SwatIII. Thus, CeresII is the most balanced cluster among all the

114



available resources and it is expected to get the best cost to performance for today’s

I/O-, compute- and memory-intensive applications.

7.5.4 The Relation between Cluster Balance and Cluster Capability

The I/O and memory balance terms (βio and βmem) indicates the level of

contention for I/O devices and memory subsystem respectively. The ratio between

βio (or, βmem) of two different clusters can indicate their relative level of contention

in I/O subsystem (or memory subsystem).

As a concrete example, let us consider CeresII (6 cores, 1 NVMe SSD per node,

and βio = 0.166) and SuperMikeII (16 cores, 1 HDD per node, and βio = 0.003).

For their corresponding value of βio it can be said CeresII is almost 55 (0.166/0.003)

times more balanced, or more powerful than SuperMikeII. It can be interpreted as

CeresII has 55 times less I/O contention compared to SuperMikeII. Consequently,

to achieve an optimized performance as CeresII, SuperMikeII needs almost 55

HDDs per node if those same 16 cores are used. This corollary of the proposed

model can also be verified with other well-known cluster architectures such as,

GrayWulf [105] which won the storage challenge in SC-08 with 8 cores and 30

HDDs per node (comparing to 16 cores and 55 HDDs per node as predicted by the

model).

βio and βmem can also be used to determine the scalability across different clus-

ter architectures more accurately. The speedup can be determined using Universal

Scalability Law [106] by Neil Gunther, S(p) = p
1+c1((p−1)+c2(p−1)) Where p is the

total number of processors. S(p) is the speed up. c1 is the level of contention and

c2 is the coherency delay. In absence of any coherency delay (i.e., c2 = 0), the

relative contention of two systems can be easily derived using the ratio of their

corresponding βio or, βmem to get a better estimate of scalability. However, the

detailed analysis of scalability of a data-intensive application, and modification of

the corresponding laws should possibly be the focus of a different work.

115



7.6 Cluster Evaluation Methodology

7.6.1 Hadoop Configuration Overview

To evaluate different clusters Cloudera-Hadoop-2.3.0 and Giraph-1.1.0 are used.

The Hadoop and Yarn parameters are set such that the application can make use

of maximum available processing speed, I/O bandwidth, and DRAM. For exam-

ple, all the compute cores are used for YARN where each Hadoop (and Giraph)

worker uses one core. On the other hand, keeping 10% of DRAM for system use,

the rest have been divided among all Hadoop workers equally. For Giraph, enough

DRAM has been used to accommodate the entire graph structure in memory and

always avoided out-of-core execution. The HDFS data (with replication factor 1)

was spread and the shuffled data among all the disk(s) in the node using default

scheduling of Hadoop.

7.6.2 Benchmark Application Characteristics

Table 7.4 summarizes the details of the benchmark applications: TeraSort,

WordCount, and a real world genome assembly application described as follows:

7.6.3 TeraSort

The map phase of TeraSort samples and partitions the input data based upon

only first few characters. The reduce phase then uses the quicksort algorithm to

sort each of the partitions locally. The map phase of TeraSort is CPU-intensive as

it reads only the first few characters of each row in the input dataset to generate

the key (called sample-key) for each data. However, based on the data size, the

reduce phase can be severely I/O-intensive.

7.6.4 WordCount

The map phase of WordCount parses the input dataset line by line to extract

each word. Each word is emitted with a 1 as its initial count, which is then summed

up in the reduce phase to output its frequency. Since both the map and reduce

116



Table 7.4: Data size for different benchmark applications

Job name Job
Type

Input Output #
jobs

Shuffle
data

HDFS
Data

Application
Charac-
teristics

Terasort Hadoop 1TB 1TB 1 1TB 1TB Map:
CPU-
intensive,
Reduce:
I/O-
intensive

Wordcount Hadoop 1TB 1TB 1 1TB 1TB Map and
Reduce:
CPU-
Intensive

Graph Con-
struction
(human
genome)

Hadoop 452
GB
(2B
reads)

3 TB 2 9.9
TB

3.2
TB

Map and
Reduce:
CPU-
and I/O-
intensive

Graph Sim-
plification
(human
genome)

Series of
Giraph
jobs

3.2 TB
(1.5B
ver-
tices)

3.8 GB
(3M
ver-
tices)

15 - 4.1
TB

Memory-
Intensive

phase read the entire dataset sequentially just once, both phases of WordCount is

CPU-intensive.

7.6.5 Genome Assembly

Accounting the scarcity of good big data HPC benchmark and relevant big

dataset we use the genome assembler developed in Chapter 4 built atop Hadoop

and Giraph as a real use case which represents many HPC/Datacenter applications.

1) The first stage of the assembler is a shuffle intensive Hadoop job repre-

senting an I/O-bound application. It scans through all genomic short reads (lines

containing A, T , G or C only) and divides them to a smaller fragment of length

k, called k-mer. The map phase emits two consecutive k-mers as intermediate

key-value pairs representing a vertex and an edge from it. Reduce phase aggregate

all edges from each vertex to write the entire graph structure on HDFS.

117



2) The second stage of the genome assembler represents terabyte-scale graph

processing which is the core part of many HPC problem. In this phase, each of the

linear chains in the graph structure is compressed to one vertex. Then all the tip

and bubble structures of the graph are removed as those are introduced because

of sequencing error.

7.6.6 Data Size

For both TeraSort and WordCount, a 1TB random dataset is generated as the

input. The shuffle and output data size of TeraSort is also same as its input (i.e.,

1TB in this work). The output of WordCount may vary based upon the frequency

of different words in the randomly generated dataset. However, it is closed to 1TB.

For the genome assembly benchmark application, this thesis uses a large hu-

man genome dataset (452GB), openly available in NCBI website 1 with accession

number SRX016231. The corresponding graph size is 3.2TB. The Hadoop stage of

the assembly application is severely shuffle-intensive. The temporary shuffle data

is almost 21-times more than the input size.

7.7 Results and Discussion

7.7.1 Evaluation Results of TeraSort and WordCount

Figure 7.2 compares the relative merit of all the three cluster architectures (i.e.

SuperMikeII, SwatIII, and CeresII). To show the balance between performance and

economy, that many resources are used in each cluster which keep the total cost

same across all the clusters. Table 7.5 shows the available resources for all three

clusters while keeping the total cost same across all the clusters. The cost of 16

nodes of SuperMikeII has been used as the baseline. Then, this baseline-cost is

divided by the cost of each node in SwatIII and CeresII to count the number of

nodes to be used in these two different clusters.
1http://www.ncbi.nlm.nih.gov

118



TeraSort WordCount

Applications

Ex
ec

ut
io

n 
tim

e 
no

rm
al

ize
d 

to
 S

up
er

M
ike

II 
Ba

se
lin

e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

TeraSort WordCount

Applications

Ex
ec

ut
io

n 
tim

e 
no

rm
al

ize
d 

to
 S

up
er

M
ike

II 
Ba

se
lin

e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1

0.76

0.37

1

0.79

0.35

SuperMikeII:16Nodes
SwatIII:9Nodes
CeresII:23Nodes

SuperMikeII:16Nodes
SwatIII:9Nodes
CeresII:23Nodes

Figure 7.2: Execution time (normalized to the baseline) of TeraSort and Word-
Count over different cluster architectures keeping the total cost of each cluster
same.

Table 7.5: Resources in each cluster architecture used for TeraSort and WordCount

Cluster Configurations SuperMikeII SwatIII CeresII
Total cost ($) 60864 60864 60864
Cost/nodes ($) 3804 6911 2700
#Nodes 16 9 23
Total processing speed (GHz) 665.60 374.4 276.00
Total I/O bandwidth (GBPS) 2.4 5.40 46.00
Total storage space (TB) 8.00 21.60 21.85
Total DRAM Size (TB) 0.50 2.34 1.47

TeraSort and WordCount were executed in all three cluster configurations and

measured their execution time. All results are the means of at least three runs of

each application on each configuration. Figure 7.2 shows the results normalized

to the SuperMikeII baseline. That is, the execution time of SuperMikeII is always

119



assumed as 1 and the other execution times are adjusted by multiplying them

with similar fraction. CeresII, being closer to the optimum produced by the model

performs significantly better than the other cluster architectures. The observations

are as follows:

1) Comparing to the SuperMikeII baseline, for both TeraSort and WordCount,

CeresII shows almost 65% improvement.

2) Comparing to SwatIII, CeresII shows almost 50% improvement in execution

time for TeraSort and WordCount.

7.7.2 System Characteristics

To monitor the system characteristics the Cloudera-Manager-5.0.0 is used. The

system characteristics are shown at the end of the chapter (Figure 7.3). The

observations are as follows:

1) As shown in Figure 7.3a and 7.3b, for the compute-intensive WordCount

application, on an average CeresII shows 20% better CPU utilization compared

to SuperMikeII as the goal is to perform the task as soon as possible resulting in

better price-performance-ratio. Whereas for TeraSort with an I/O intensive reduce

phase results in almost 50% better CPU utilization in CeresII than SuperMikeII.

Comparing to SwatIII, CeresII shows almost 15 to 40% better CPU utilization for

TeraSort and WordCount respectively. Since the goal is to perform the task as

soon as possible (to better utilize the system’s cost), CeresII is considered as the

best architecture.

2) Figure 7.3c and 7.3d shows the reason behind the better CPU utilization

of CeresII. Since the architectural balance of CeresII closely resembles the optimal

βio produced by the model, CeresII shows almost negligible I/O wait (less than

2%) for any of the applications. On the other extreme, SuperMikeII with only one

HDD results in extremely low βio, consequently shows highest I/O wait among all

the cluster architecture. SwatIII with four HDD per node shows an I/O wait lower

120



than SuperMikeII but significantly higher than CeresII.

3) Figure 7.3e and 7.3f compare the I/O throughput of all the clusters. CeresII

with the most optimal βio shows the highest I/O throughput and SuperMikeII with

the lowest βio shows the lowest I/O throughput among all the clusters. SwatIII

lies in between these two extremes as its βio lies between them.

0 10 20 30 40

0
20

40
60

80
10

0
12

0

Time (minutes)

C
P

U
 u

til
iz

at
io

n 
(%

)

SuperMikeII
SwatIII
CeresII

(a) TeraSort CPU utiliza-
tion

0 10 20 30 40 50 60

0
20

40
60

80
10

0
12

0

Time (minutes)

C
P

U
 u

til
iz

at
io

n 
(%

)

SuperMikeII
SwatIII
CeresII

(b) WordCount CPU utiliza-
tion

0 10 20 30 40

0
20

40
60

80
10

0
12

0

Time (minutes)

I/O
 w

ai
t (

%
)

SuperMikeII
SwatIII
CeresII

(c) TeraSort I/O wait char-
acteristics

0 10 20 30 40 50 60

0
20

40
60

80
10

0
12

0

Time (minutes)

I/O
 w

ai
t (

%
)

SuperMikeII
SwatIII
CeresII

(d) WordCount I/O wait
characteristics

0 10 20 30 40

0e
+

00
4e

+
09

8e
+

09

Time (minutes)

I/O
 th

ro
ug

hp
ut

 (
by

te
s/

se
co

nd
)

SuperMikeII
SwatIII
CeresII

(e) TeraSort I/O throughput
characteristics

0 10 20 30 40 50 60

0e
+

00
4e

+
09

8e
+

09

Time (minutes)

I/O
 th

ro
ug

hp
ut

 (
by

te
s/

se
co

nd
)

SuperMikeII
SwatIII
CeresII

(f) WordCount I/Othrough-
put characteristics

Figure 7.3: CPU and I/O characteristics of each node of different cluster architec-
tures for TeraSort and WordCount benchmark

7.7.3 Evaluation Results of Large-Size Human Genome Assembly

To assemble the large human genome (452GB), the maximum available re-

sources in each of the clusters are used to accommodate the huge amount of shuffled

data (9.9TB) and the graph data (3.2TB). That is, all 128 nodes of SuperMikeII,

16 nodes of SwatIII, and 40 nodes of CeresII were used for this application. Table

7.6 shows the cost and the configurations of the clusters. Figure 7.4a and 7.4b

121



Table 7.6: Maximum available resources in each cluster architecture (used for large
human genome assembly)

Cluster Configurations SuperMikeII SwatIII CeresII
Total cost ($) 486912 110576 108000
Cost/node ($) 3804 6911 2700
#Nodes 128 16 40
Total processing speed (GHz) 5324.8 665.6 480.00
Total I/O bandwidth (GBPS) 19.2 9.60 80.00
Total storage space (TB) 64.00 38.40 40.00
Total DRAM Size (TB) 4 4 2.56

Graph Construction Graph Simplification

ApplicationsE
xe

cu
tio

n 
tim

e 
no

rm
al

iz
ed

 to
 S

up
er

M
ik

eI
I B

as
el

in
e

0.
0

0.
5

1.
0

1.
5

Graph Construction Graph Simplification

ApplicationsE
xe

cu
tio

n 
tim

e 
no

rm
al

iz
ed

 to
 S

up
er

M
ik

eI
I B

as
el

in
e

0.
0

0.
5

1.
0

1.
5

1

1.12

0.67

1 1.02

0.80

SuperMikeII:128Nodes
SwatIII:16Nodes
CeresII:40Nodes

SuperMikeII:128Nodes
SwatIII:16Nodes
CeresII:40Nodes

(a) Execution time

Graph Construction Graph Simplification

ApplicationsC
os

t/P
er

fo
rm

an
ce

 n
or

m
al

iz
ed

 to
 S

up
er

M
ik

eI
I B

as
el

in
e

0.
0

0.
5

1.
0

1.
5

Graph Construction Graph Simplification

ApplicationsC
os

t/P
er

fo
rm

an
ce

 n
or

m
al

iz
ed

 to
 S

up
er

M
ik

eI
I B

as
el

in
e

0.
0

0.
5

1.
0

1.
5

1

0.24

0.12

1

0.22
0.15

SuperMikeII:128Nodes
SwatIII:16Nodes
CeresII:40Nodes

SuperMikeII:128Nodes
SwatIII:16Nodes
CeresII:40Nodes

(b) price-performance-ratio

Figure 7.4: Performance of different cluster for large size human genome assembly
(normalized to 128 nodes of SuperMikeII).

show the corresponding execution time and the price-performance-ratio (i.e., cost

× execution-time) respectively for the Hadoop and Giraph stages of the human

genome assembly. The results are as follows:

1) CeresII, even with almost 90% less processing speed than SuperMikeII across

the cluster, outperformed it by almost 88% in terms of price-performance-ratio. In

Giraph stage the corresponding gain in 85%. In terms of execution time CeresII

gains almost 30% and 20% respectively over SuperMikeII.

2) Comparing to SwatIII, the processing power of CeresII is 72%. However, due

to the optimal architectural balance, CeresII shows almost 50% and 30% improve-

122



ments over SwatIII in terms of price-performance-ratio for Hadoop and Giraph

respectively. For execution time, those gains are 50% and 20%.

7.8 Conclusion

Big data needs big resources. With increasing popularity of data-driven re-

search, it is obvious that providing more resources (CPU, I/O bandwidth, DRAM,

etc.) will provide more performance. So, the major challenge is now in provid-

ing expected performance in reduced cost. This thesis makes an initial attempt

to analytically resolve the performance and cost conundrum prevalent in big data

cyberinfrastructure.

The model also provides a new metric to show the capacity of the HPC clusters.

For I/O and memory-bound applications, βio and βmem can provide a better and

easy-to-use alternative to FLOPS which shows only the CPU capacity.

In this initial attempt the thesis focuses on simplicity of the model to make

it useful for practical purposes (e.g., investing for a new cluster with limited in-

formation on application characteristics). However, more subtle parameters (e.g.,

CPU multi-threading, I/O latency, etc.) can be added to improve its accuracy.

123



Chapter 8
High Throughput Transaction of Big Biomedical Data with
Blockchain and P2P Storage

This chapter introduces a decentralized medical data interoperability system,

SwarMed which leverages Blockchain technology, developed with the Ethereum

ecosystem. To address the solution for managing large-scale data, common and

crucial for medical records but lacking with the vanilla Blockchain technology, the

system is built upon Swarm, a p2p storage system and then strengthened and

secured with Ethereum Blockchain. Along with a proper consent management for

sharing sensitive data, this chapter also developed an indexing mechanism over the

immutable storage of Swarm to achieve high-throughput while sharing millions of

patient records and images among multiple parties.

SwarMed achieved a high throughput of 250K medical records per second over

a private network constructed over LSU-HPC cluster. This high throughput is 9x

more comparing to conventional way of using p2p storages in conjunction with

Blockchain. This high throughput enables the patients to get real-time access

to his comprehensive medical history and scientists to gain real-time access to

different medical data for collaborative research complying to the constraints posed

by existing laws.

The system level analysis over different design alternatives over different transfer-

and storage-architectures shows that, p2p storage platforms automatically provide

significantly better scalability over traditional HTTP with increasing number of

clients. Swarm provides 2x more I/O throughput and 10x less latency than IPFS,

another p2p storage making it a better choice for decentralized big data transfer.

124



8.1 Introduction

Blockchain has started taking the world by storm. Soon after its development

as the underlying architecture for Bitcoin, the trust-less, decentralized concept

of the Blockchain was recognized as having broader value beyond an alternative

form of currency. Starting from health care to IoT, from education to transla-

tional research, the fundamental model of trust for information sharing is rapidly

changing. Deviating from the traditional centralized architecture e.g., client-server

model, cloud, etc., many applications have started using current state of the art,

decentralized Blockchain platforms, such as Ethereum, Bitcoin, Hyperledger etc.,

not only for financial transaction but also for large-scale data transaction.

Blockchain received a significant attention in the healthcare sector. Millions

of patients’ records if analyzed properly, can have tremendous business and/or

research implications. However, the records are fractured over thousands of care

providers’ site and protected by strict regulations such as HIPAA, COPAA, CURE,

etc. As shown in this chapter, Blockchain with its smart contracts and decentral-

ized trust model can provide effective and secure solution to this problem.

However, the technology (Blockchain) even with its tremendous security promises

has severe performance bottleneck especially in terms of size of data that it can

handle per transaction hindering its large scale adaption in the healthcare domain.

The size of each block is typically limited to a few MB only irrespective of the un-

derlying Blockchain network (e.g., Ethereum, Bitcoin, Hyperledger, Parity, etc.).

The limitation in the data handling capacity also impacts the overall performance

of the network in terms of throughput and latency. Complicating the scenario, the

size of the block shares a complex relationship with the existing economy which

makes it hard to change the block size especially in the public Blockchain networks.

As a result, building an efficient and cost-effective infrastructure for transaction

of big data in a decentralized and trustless manner became more challenging, albeit

125



crucial in the domain of health care. Consequently, this started opening new

opportunities for the researchers as well as industry leaders as trillions of dollars

are already invested in on the promising decentralized technologies. Furthermore,

the technology is evolving at an unprecedented rate giving birth to an entirely new

ecosystem centering different Blockchains such as, Ethereum, Hyperledger, etc.

For example, Swarm [19] and Inter Planetary File System (IPFS) [107] are peer-to-

peer storage systems that can be used for off-chain data transaction addressing the

limitation of the block size. Whisper [108] has been emerged as a communication

protocols for decentralized applications to communicate among peers.

Hence, there is a growing interest in all the four communities, including scien-

tists, health care providers, patients, and commercial Blockchain service providers

(e.g., Ethereum community, Bitcoin, IBM, etc), to develop cost-effective, high-

throughput infrastructure for medical data interoperability that will drive the next

generation healthcare research involving huge amount of big data while at the same

time utilizing security promises of Blockchain. Millions of dollars are being spent in

programs, such as ONC’s nationwide challenge [109], where several academic orga-

nizations and industry leaders collaborated and competed to address the challenges

involved in developing a novel distributed and decentralized cyberinfrastructures

for healthcare data interoperability.

Despite this growing interest in all the communities, there is a limited under-

standing of how the different types of data storage and transaction mechanism in

conjunction with Blockchain impact the performance and scalability of the system

when applied to real-world application involving large data. Furthermore, because

of a scarcity of open source software tools, limited amount of research have been

performed over the system characteristics of the Blockchain-based system which

can help developers to identify the bottlenecks and improve the architecture ac-

cordingly.

126



This work first proposes secured, trustless, decentralized framework for medi-

cal data interoperability with proper consent among patients, providers and third-

party stakeholder. However, for this paper, this chapter focuses mainly on the

performance issues at the system level only. The framework is based on Ethereum

Blockchain and makes use of its Web3 APIs for the decentralized application

(dApp). The dApp uses a mix of an on-chain and an off-chain mechanism to

transfer the data.

To transfer the large number of EMRs, EHRs, images (such as x-ray images,

mammogram images, etc). this chapter developed an efficient indexing mechanism

over Swarm Swarm, a peer-to-peer data storage. The personal index file of a patient

grows in size as more medical records are added. The Ethereum transactions

(tx) stores only the pointer to the index file limiting the growth of block size,

thereby improving the throughput of the entire system. The architecture achieved

a constant throughput of more than 250K records per second even though more

data is added. Given the size of an address pointer to the off-chain data is 32bytes,

in a realistic scenario, this throughput is more than 9x better comparing to the

conventional way of storing all the address pointers for the data on the chain.

The rest of the chapter is organize as follows: Section 8.2 describes the prior

efforts to the current work. Section 8.3 provides the background of different tech-

nologies. In Section 8.4, the thesis discusses the high throughput architecture of

SwarMed. Section 8.5 evaluates the proposed architecture with several different

alternatives. Finally, Section 8.8 concludes the chapter.

8.2 Related Work

Earlier studies, as well as the prior experience, show that Blockchain and

its decentralized architecture can be helpful in improving the IT infrastructure

of different domains including health care [110], HPC [?], IoT [111], education

[112] etc. Among all, the healthcare sector gained the maximum focuses in the

127



last 2 years especially in response to ONC’s challenge (ONC)[109]. Following the

challenge, a plethora of works has been done finding opportunities for applying

Blockchain technology to health care to make health information exchanges (HIE)

more secure, efficient, and interoperable.

Blockchain offers an umbrella of technologies related to data security and

privacy including decentralized management, distributed ledger, immutable au-

dit trail, data provenance etc. presenting opportunities for disruptive innovation.

[113, 114], etc. envision how each of these technologies can improve the existing

infrastructure of EMR-management and insurance claim processing, the two ma-

jor foundations of the US healthcare system. [115] envisions a more transparent

treatment process by utilizing the immutable audit trail of Blockchain especially

fighting against counterfeit medicine. [116] envisions an improved relationship be-

tween patient and physician by shifting the trusted intermediary role away from

the hospital and into the Blockchain. Although these visions are laudable and

clearly show the Blockchain’s opportunities in the medical informatics, the under-

lying technology (i.e., Blockchain) has been changed at an unprecedented rate in

the last couple of years. A considerable number of Blockchain (e.g., Ethereum,

Parity, etc.) has been introduced focusing on different aspects and trade-of re-

lated security, privacy, and performance. [117] wisely captures these changes by

qualitatively evaluating the privacy and security concerns of health care from the

perspective of all different types of Blockchain including public, permissioned and

private Blockchain.

Moving a step forward, [118, 119, 120], etc. discuss the basic building blocks

and a detailed design of a Blockchain-based infrastructure to develop, govern, and

operate a network with the security necessary for many demanding use cases in the

regulated domain of health care. [121] narrowed down the problem and discusses

the opportunities of Blockchain in predictive medicine. [110] on the other hand

128



addresses the issues in the fractured medical record over different providers’ site.

[110] proposes a prototype to enable the patient to access his own medical records

fractured over multiple providers. The prototype has a serious privacy issue. The

authors proposed to use patient’s medical record to provide an incentive to the

miners as it was the only feasible option at the time of writing that paper. [122]

resolves the privacy issues by assigning the sensitivity score and controlling access

to the records according to that score. However, the framework uses a centralized

database to hold the sensitivity information which leads to a central point of failure

resulting in a denial of service. the removal of the centralized database will result in

data replication over multiple databases (located at different providers’ site). Based

on the number of patient and the granularity level of the records the design can lead

to a significant trade-off between space requirement and security. [123] proposes a

framework to share the mobile healthcare information from the patient’s wearable

devices to the healthcare providers. However, the architecture facilitates the data

flow between patients and the corresponding providers only. Consequently, it does

not contribute much towards the interoperability issues in the healthcare domain.

Although common and crucial for medical records, data management capabil-

ity is severely lacking in the vanilla Blockchain technology. Consequently, the chal-

lenges involved in big data transfer and interoperability is not effectively addressed

in the framework discussed above. However, peer-to-peer storage technologies such

as Swarm, IPFS, etc. are gaining popularity in recent years for decentralized data

transmission. For example, [111] uses IPFS to transfer the IoT data.

These peer-to-peer file system with decentralized security promises of Blockchain

can resolve many of the core issues in medical record management which is growing

at an exponential rate, however, in a fractured manner over thousands of providers’

site [110]. Use of these off-chain file system will not only make the sharing process

easier but also improves the performance issues in the existing framework while

129



preserving the decentralization philosophy. [124], in their benchmark study also

realized the need for off-chain data storage for data transfer over Blockchain. How-

ever, their study did not focus on big data transfer. [110] also separated the storage

from the Blockchain using traditional database system in each of the provider’s

site while storing all the pointers in the Blockchain. However, the storage capacity

of each individual transaction (and smart contract) is severely limited. The per-

formance of entire system goes down even for a small increase in data byte stored

as shown in this work. To remedy this, the thesis came up with an indexing mech-

anism on decentralized p2p storage, so that the system can take the advantage of

off-chain storage systems as well as get the full performance from Blockchain.

8.3 Background

8.3.1 Blockchain: Ethereum and Smart Contract

The Blockchain technology became popular predominantly with its application

in Bitcoin [16]. A chain of blocks representing the history of transaction events is

established and maintained in a fully decentralized fashion abandoning the norm of

a financial system relying upon a small number of centralized organizations such

as banks and governments. The proposed community model operates with the

mechanisms such as a consensus scheme of proof of work, secured methods with

cryptographic techniques, a privacy policy in public space, incentive-based mining,

and the distributed ledger system, i.e. Blockchain. The main nature of Blockchain

runs over peer-to-peer networking, making sure that each node keeps its own copy

of the chain and updated it together to add a new block. Soon after recognizing the

potential of this concept of decentralized autonomous organization (DAO) applied

for the Bitcoin cyber currency system, a significant amount of interest have been

exploded for other applications. Among them, Ethereum [17], BigChainDB [125],

HyperLedger [18], etc. have emerged providing Blockchain-based platform with

130



which a variety of different applications can be developed, as demonstrated by the

current work.

The Ethereum community runs a fully open public network, called the main

network, for which the cyber currency is Ether. Unlike Bitcoin, Ethereum is, in

fact, a platform providing programming tools and utilities (https://github.com/ethereum/).

Using this resource, for example, even a private network separated from the public

network can be constructed. Along with the main network, for the developmental

purpose, another public network called Testnet is also operated by the Ethereum

project. The core of this platform is an ecosystem for developing DApps (De-

centralized Applications) whose main purpose is to manage and execute Smart

Contract or contract hereafter. Contracts are the major entities to build business

or project logic on the top of the Blockchain network. Building a DApp requires

two components, the front-end, which contains user interface components as well

as APIs for interacting with contracts, and the back-end is the component capable

of executing contracts. The front-end of Ethereum DApp is basically a web appli-

cation written with HTML/Javascript. The back-end contains EVM (Ethereum

Virtual Machine), which run bytecodes of contracts and is responsible for commu-

nicating with other nodes in the network using peer-to-peer networking.

8.3.2 Peer-to-Peer Storage: Swarm and IPFS

The P2P storage systems extend the concept of the Markle tree for storage pro-

viding an immutable, easy-to-audit, tamper-proof infrastructure for storing files.

Like Blockchain, the solution is secured by Markle Hash. However, it is off-chain

and designed for higher throughput compared to the smart contract-based storage

of the main Blockchain. Furthermore, the Markle tree is constructed based on the

actual content of the files (i.e. the data itself) providing a content-based hash to

retrieve the data rather than an actual server-address in the traditional HTTP-

based system. Consequently, the data can be downloaded from the nearest peer

131



of the P2P system, rather than a specific server located significantly many more

hops apart in a traditional system. It results in a significantly higher throughput

and scalability during the data download. In addition to that, these P2P storage

systems are automatically scalable as each of the peer or the clients works as a

storage server also and they are committed by means of some incentive mechanism

of the system.

Both Swarm [19] and IPFS [107] leverage Merkle tree to distribute the data

over peers in a content addressable fashion. However, in the lower level of im-

plementation, the two systems use different types of storage technology, network

communications, and peer management protocol. For example, Swarm storage sys-

tem is basically an immutable content addressed chunk-store whereas, IPFS uses a

distributed hash table (DHT) for storage purpose. For peer management, Swarm

uses Ethereum-based protocol (commonly known as devp2p) whereas IPFS uses a

BitTorrent-based protocol (commonly known as libp2p). Both Swarm and IPFS

implement a key-based routing based on xor logarithmic distance. However, IPFS

uses iterative lookups of peers at the originator of a request (such as, the node

where a write/upload operation is performed) relying on a larger pool of peers.

Swarm on the other hand, recursively outsource the steps for looking up the peers

using only a smaller pool of active connections.

8.4 SwarMed Architecture

8.4.1 Interoperability Model

Figure 8.1 shows the interoperability model of SwarMed. In this model, the

consensus layer and the storage layer are decoupled adding a 3-phase privacy and

security to the system. In the system, the consensus layer is basically a consent

management system which spans globally across all the participants taking care of

legal issues. The actual data layer, on the other hand, forms small groups adding

132



Figure 8.1: Interoperability model

an extra layer of authentication. That is, to access the records a user needs to

have all the three, a valid consent, the private Swarm id and the actual Swarm

hash of the data. For example, tightly coupled organizations such as a medical

school and the scientists in the corresponding university and their frequent visitors

(patients) may form a group and share the data among themselves when a proper

consent is given. However, members from other groups should pass through the

authentication layer of this group in order to access the actual data.

8.4.2 Software Architecture

Figure-8.2 shows the architectural overview of SwarMed. In this proof-of-

concept version, this chapter developed SwarMed as an interoperability layer iso-

lated from the individual’s database or file system. That means the user has the

full control over how much and what types of data are to be shared.

SwarMed architecture has three different layers such as, Blockchain layer which

takes care of the consensus protocol, peer-to-peer storage layer, and data manage-

ment layer. Following is the description of each of the layers. For the sake of

brevity, this work mainly focuses on the performance issues at the system level

and avoid the intriguing details of the smart contracts that take care of the legal

consents.

133



Figure 8.2: SwarMed’s decentralized architecture

8.4.3 Blockchain Layer

This layer implements a set of smart contracts providing the full functional-

ity required to join and participate in the Blockchain network. For the prototype

implementation, this thesis uses Ethereum and the Web3.js client. While Swarm

(the peer-to-peer data storage layer) acts as the main data storage layer in the pro-

totype, Ethereum’s smart contract provides the authentication and other logistic

services to access those data. In fact, the smart contracts implemented here han-

dles a broad set of tasks, such as connecting to the peer-to-peer network, encoding

and sending transactions and keeping a verified local copy of the Blockchain.

This chapter utilizes Ethereum’s smart contracts to create consent among dif-

ferent parties to share the medical records Swarm network. For better under-

standability, the contracts are presented as the relation between the three entities

of SwarMed: patient, provider and other third party stakeholders (e.g., scientists

and researchers). Consequently, there are three different types of contract in the

system as shown in Figure 8.3a

Figure 8.3b shows the minimal structure of a smart contract. In the broad

level, all the logistics i.e., data ownership, an agreement for data sharing, etc. are

134



(a) Different types of smart contracts in SwarMed

(b) Minimal structure of a smart contract

Figure 8.3: Smart contracts

taken care of by these smart contracts by modifying the hash of the index file based

on privacy and authorization rules. It is possible to add more rules to the contract

complying with HIPAA and/or other privacy concern. The Blockchain transac-

tions carry cryptographically signed instructions to manage these properties. The

contract’s state-transition functions carry out policies, enforce data alternation

only by a legitimate entity. There are three different types of contract as follows:

1. Patient’s Personal Contract: This contract represents the relationship be-

tween a patient and the providers. Once the patient is registered to the system,

SwarMed issues a contract to the patient that can be shared with all the providers

visited in the patient’s lifetime.

This contract contains a pointer to the index of the records that are uploaded

to the Swarm cluster. For a patient, initially, the contract points to an empty

135



index file kept in Swarm. Gradually, the providers start uploading the patient’s

medical record to Swarm and subsequently add the indexes of the patient’s medical

record to the index file. As discussed earlier, since Swarm provides an immutable

storage, in this context update means creating a new index file in a new address.

This address is updated in the patient’s personal contract.

2. Provider-Stakeholder-Contract This contract represents the relation be-

tween the care providers and other stakeholders or researchers. Like the patient’s

personal contract, this contract also contains a pointer to an index file kept in

Swarm. However, this index file points to all the patients’ record that the patient

agrees to share with other third parties.

Essentially this contract has a permission flag indicating the patient’s agree-

ment on sharing the medical record. At any point of time patient can request to

revoke permission. Consequently, the provider can delete the index of that pa-

tient’s data and update the contract with a new index file following the similar

process discussed earlier.

3. Patient-Stakeholder-Contract In SwarMed, a patient can share his own

medical record directly with the stakeholders (or researchers). SwarMed did it

using a contract between a patient and a stakeholder similar to that between the

provider and stakeholder.

8.4.4 Peer-to-Peer Storage Layer

This layer stores the actual EHR data that are to be shared with the patient

and other stakeholders. The patient or other legitimate stakeholders can access

the data in Swarm using bzz protocol or its variant (e.g., bzzi and bzzr).

The major objective of using peer-to-peer storage is to provide a storage for big

data that is DDOS-resistant and fault-tolerant. Data is stored in different nodes

as small chunks and stay distributed. Consequently, there is no central target for

the content attack which is crucial for sensitive medical information.

136



As discussed earlier, using Swarm this work separated the data layer from the

logistics developed in Ethereum smart contract, thus enabling sharing of the huge

amount of data which cannot be handled using Blockchain alone. In SwarMed,

the data resides off-the-chain in its entirety and do not increase the block size at

any time. This way SwarMed guarantees eliminating any negative impact (i.e.,

lower throughput or higher latency) on the Blockchain because of the larger size

of the block. To do that SwarMed developed an indexing service over Swarm.

SwarMed keeps only one Swarm address in the Ethereum contract which points to

an index file kept in Swarm. This index file, in turn, contains the pointers to the

raw medical records. This process is discussed in detail later in this section.

Furthermore, Swarm provides an immutable data storage, i.e., the data files

uploaded once cannot be edited. By using this property, SwarMed enables an easy

audit trail off the chain in case of a malicious attack or erroneous activities in the

Swarm network so that the system can easily rollback to its previous correct state.

8.4.5 Data Management Layer

This layer consists of three different modules as follows:

1. Data Manager: This module provides the only access interface to the node’s

local database or file system. This module accommodates complex database queries

to select the subset of data that the node wants to share with the other entities of

the system. There are four distinct objectives of the data manager. Those are as

follows:

First, it allows SwarMed to operate as a separate layer isolated from the actual

medical database of the providers (or, any other parties). Thus data manager gives

extra yet easy control to the individuals (i.e., provider, patient or researcher) on

what data to share through SwarMed. Data can be chosen to be shared by the

individual based on their confidentiality or privacy.

Second, the data manager can easily integrate any type of common data

137



model (such as PCORNet) to enable systematic analysis of disparate observational

datasets which are chosen to be shared over SwarMed.

Third, data manager also allows the individuals to encrypt their data sepa-

rate from Ethereum and Swarm. It is always possible to implement or integrate

any kind of security mechanism inside data manager (such as public/private key

cryptography) before sharing it with the peer-to-peer storage in the public do-

main. Thus the data manager can work as an extra layer of security between the

individual database and the public domain storage space.

Finally, unlike existing prototypes which rely on pull model of data sharing,

data manager enables push model for an improved user experience in Blockchain

network. That means the required subset of data is prepared beforehand to reduce

the overall latency. To do that, the data manager in a node always keep track

of the contracts of that node and the data stored in that node. Whenever a new

record is added to that node the data manager checks the existing set of contracts

and upload the data to Swarm and handover the address (a Swarm-Hash) to the

index manager for further processing.

2. Index Manager: Index manager implements a query interface for the raw

medical data that are uploaded in Swarm. The index manager is developed such a

way so that the contract keeps the metadata of metadata to the raw records which

are only a single address (called swarm-hash) that points to an index file kept in

Swarm.

Broadly, the index manager collects the Swarm-hashes of raw medical records

in Swarm through the upload-manager and update those in an index file in a timely

fashion. As mentioned earlier, Swarm is an immutable peer-to-peer storage, i.e.,

the file written once in Swarm cannot be updated in place. Hence, in this context

update means creating a new version of the file with updated content (as shown in

Fig. 8.4). Once the new version of the index file is created in Swarm, its address is

138



updated in the contract. Now, that the patient obtained the indexes of his medical

records from the contract he can access it using bzz protocol (or its variation, such

as bzzi and bzzr) from the Swarm-gateway. The file cannot be accessed without

this swarm-hash.

Figure 8.4: SwarMed indexing service

Figure 8.4 shows the update procedure for the immutable index file in Swarm

and the contract in the Blockchain. Initially, the contract holds the pointer of

an older version of the index file kept in Swarm. For a new patient registered

in the system, the contract points to an empty index file. The provider gets an

old list of swarm-hashes (or, an empty list for a new patient) by accessing the

contract between the patient and the provider. Gradually, the providers start

adding patient’s medical records to swarm and populate the index file with the

139



corresponding swarm-hashes. Each time a provider upload the medical record to

Swarm, Swarm returns the manifest of these data files (or, directory). SwarMed

parses the manifest to get the swarm-hash value (i.e., the location) of the newly

uploaded files (or directory). The provider appends this swarm-hash with the old

list of swarm-hashes obtained from the old version of the contract and create a

new index file. Finally, the new index file is uploaded to Swarm and notify the

contract manager with the swarm-hash of this new index file.

It is to be noted, that the providers upload the raw medical record for their

patient only once in Swarm (similar to the existing database system). Based upon

the data-sharing-agreement defined in the contract an index file is created pointing

to the required subset of records and the contract is updated with the address

(swarm-hash) of the index file only. This way, SwarMed keeps the block-size small

and constant and avoids any data duplication.

3. Contract Manager: It provides the interface between the index manager and

the Ethereum contracts. It keeps track of all the patient’s contract in the system

and accesses the corresponding contract when required. Based on the contract, the

contract manager is responsible for reading or updating the address stored in the

contract (i.e., the address of the index file in Swarm), set or reset any permission

flags (e.g., patient’s consent on sharing a data). In sum, all the logistics that

are instantiated with an Ethereum smart contract are executed by the contract

manager.

8.5 Evaluation

The interoperability architecture of Swarmed has been evaluated mainly in

terms of throughput and latency. The thesis evaluates each of its components

separately and the architecture as a whole considering many design alternatives.

140



8.5.1 Dataset

For this chapter, a synthetic and anonymous dataset of 80million patient

records are used following the PCORnet Common Data Model (CDM) which al-

lows for the systematic analysis of disparate observational databases. As shown in

Table 8.1 this work has identified 130 different attributes for a patient and simu-

lated the records. Each records is 1.6KB in size. Like the real world, each patient

is assumed to visit many providers many times in his life span.
Table 8.1: Common Data Model (CDM) of health care. All the records are syn-
thesized with computer programs following this model

patid, birth_date, birth_time, sex, hispanic, race, biobank_flag, raw_sex,
raw_hispanic, raw_race, conditionid, encounterid, report_date, re-
solve_date, onset_date, condition_status, condition_type, condition_source,
raw_condition_status, raw_condition_type, raw_condition_source,
birth_date, birth_time, biobank_flag, raw_sex, raw_hispanic, raw_race,
diagnosisid, enc_type, admit_date, providerid, dx, dx_type, dx_source,
pdx, raw_dx, raw_dx_type, raw_dx_source, raw_pdx, admit_date,
admit_time, discharge_date, discharge_time, facility_location, enc_type,
facilityid, discharge_disposition, discharge_status, drg, drg_type, ad-
mitting_source, raw_siteid, raw_enc_type, raw_discharge_disposition,
raw_discharge_status, raw_drg_type, raw_admitting_source,
lab_result_cm_id, lab_name, specimen_source, lab_loinc, priority,
result_loc, lab_px, lab_px_type, lab_order_date, specimen_date,
specimen_time, result_date, result_time, result_qual, result_num,
result_modifier, result_unit, norm_range_low, norm_modifier_low,
norm_range_high, norm_modifier_high, abn_ind, raw_lab_name,
raw_lab_code, raw_panel, raw_result, raw_unit, raw_order_dept,
raw_facility_code, prescribingid, encounterid, rx_providerid,
rx_order_date, rx_order_time, rx_start_date, rx_end_date, rx_quantity,
rx_refills, rx_days_supply, rx_frequency, rx_basis, rxnorm_cui,
raw_rx_med_name, raw_rx_frequency, raw_rxnorm_cui, patid, pro-
ceduresid, enc_type, admit_date, px_date, px, px_type, px_source,
raw_px, raw_px_type, vitalid, measure_date, measure_time, vital_source,
ht, wt, diastolic, systolic, original_bmi, bp_position, smoking, tobacco,
tobacco_type, raw_diastolic, raw_systolic, raw_bp_position, raw_smoking,
raw_tobacco, raw_tobacco_type

141



8.5.2 Compute Environment

For the evaluation purpose the LSU HPC cluster called SuperMic is used. As

shown in Table 8.2, each node has 2 Intel IveBridge Xeon processor with 10 cores

each yielding a total of 20cores per node. Each node has 64GB of DRAM and

one hard disk drive (HDD) attached. The throughput of the disk is evaluated to

160MB/s which means a total of 106667 records from the dataset can be written

to the disk per second. To match the real world scenario, the 1Gpbs Ethernet

interface is used for all the benchmark.
Table 8.2: Compute Environment

Total number of nodes 16
Processor/node 2 Intel IvyBridge
#cores/node 20
Storage/node 1 HDD
I/O Bandwidth/node 160MB/s
DRAM/node 64GB
Netwrok interface used 1Gbps Ethernet
Effective bandwidth (iperf) 941Mbps

8.5.3 Design Alternatives Evaluated

The following four design alternatives have been evaluated to show the relative

merits of the architecture:

1. Traditional HTTP-based design: In this case, the patient’s medical data is

stored in a standard HTTP server. It is the most commonly used infrastructure

to transfer data over the Internet including the cloud-based architectures also.

2. P2P storage (Swarm and IPFS): The entire patient dataset is stored on

the P2P storage and accessed via its hash-based guarantee of data integrity. The

clients can join and leave the network any time they wish. Unlike HTTP, the data

is replicated over multiple clients automatically when they join the network and

is downloaded from the nearest source possible. Swarm and IPFS are evaluated

individually to select the most sustainable architecture for the big data transfer.

142



3. Blockchain storage: This scenario uses the smart contract storage to store

the patient records providing immutability and reliable time stamping on the data

itself. Avoiding the need to manage a separate data store, this solution stores the

data in smart contract permitting the checking of individual patient record.

5. Blockchain + HTTP-storage: In this case, the query string and the server

address are stored in the smart-contract of Ethereum. On successful execution

of the smart-contract, the data is fetched from the HTTP server in a traditional

HTTP-based manner.

4. Blockchain + P2P-storage: This is similar to the previous one but instead

of the HTTP-based query string or server address, the content-hash of the data is

stored in the Ethereum smart-contract. In this design, all the hashes are stored

in the Blockchain providing the immutability guarantee at the dataset level. The

SwarMed architecture discussed earlier in 8.4 basically an enhancement over this

design alternative.

8.5.4 Transferring Big Data over HTTP and P2P

To point out the scalability limitations of HTTP, an NPM version of the

HTTP-server is setup in one of the nodes in SuperMic cluster and 8million patient

records are kept inside the server. All the clients then read the data simultaneously

from that server. To reduce the I/O bottleneck of the server, three replicas of the

dataset has been made and the clients are scheduled in a round robin fashion to

access the data. For P2P storage, both Swarm and IPFS are used both of which

automatically replicate the data in different nodes of the clusters as each node

work both as a client and a storage server.

Because of the content-based hash, all-server-all-client design and multiple

replication of the dataset over P2P servers, P2P clients can read (download) the

data from the nearest possible server without any bottleneck issue and is expected

to scale uniformly. On the contrary, the HTTP clients need to download the data

143



from a particular server which is expected to show scalability issues with growing

number of clients.

Figure 8.5 substantiates the claim. Although HTTP performs better for a

small number of clients, its performance degrades almost linearly with the growing

number of clients. Both the P2P storage, Swarm and IPFS on the other hand,

show a uniform performance over growing number of clients (or, servers). Hence,

the P2P storage is more sustainable and cost-effective in the healthcare scenario

where millions of clients (e.g., patients, providers, and other third-party organiza-

tions) reads (download) data over the Internet every single day. In a production

environment, the service provider’s operating cost increases linearly to scale the

HTTP with growing number of clients as many servers need to be deployed.

1 2 4 8 16

50
10

0
15

0
20

0
25

0

#Clients

Ti
m

e 
to

 r
ea

d 
8M

n 
re

co
rd

s 
(s

) Swarm
IPFS
HTTP Server

Figure 8.5: Transferring 8Mn patient record over P2P storage and from an HTTP
server

144



8.5.5 Swarm vs IPFS

Figure 8.6 compares the I/O throughput of Swarm and IPFS in terms of strong

scalability. That is one Swarm or IPFS node writes 8million unique patient record

to a cluster of varying size. Swarm shows more than 2x performance gain com-

paring to IPFS. Furthermore, a slight increase is observed in the execution time

of IPFS with the increase in the number of nodes whereas Swarm shows similar

performance.

1 2 4 8 16

20
0

30
0

40
0

50
0

60
0

70
0

80
0

#Clients

Ti
m

e 
to

 w
rit

e 
8M

n 
re

co
rd

s 
(s

) Swarm
IPFS

Figure 8.6: Writing 8Mn patient records

To find the root cause of the behavior, the I/O pattern of both network and the

local file system for both Swarm and IPFS is observed on their respective writer

node (the node which writes/uploads the data from local file system to the P2P

cluster). The system characteristics are shown in Figure 8.7.

First, significantly less incoming traffic was observed in the writer node of

145



0 50 100 150

0.
0e

+
00

5.
0e

+
06

1.
0e

+
07

1.
5e

+
07

Time(s)

N
et

 r
cv

 (
B

yt
es

)

IPFS
Swarm

(a) Network received byte statistics

0 50 100 150

0e
+

00
2e

+
06

4e
+

06
6e

+
06

8e
+

06
1e

+
07

Time(s)
N

et
 s

en
d 

(B
yt

es
)

IPFS
Swarm

(b) Network sent byte statistics

0 50 100 150

0e
+

00
1e

+
07

2e
+

07
3e

+
07

4e
+

07
5e

+
07

Time(s)

D
is

k 
w

rit
e 

(B
yt

es
)

IPFS
Swarm

(c) Disk write statistics

0 50 100 150

0
10

20
30

40
50

60

Time(s)

C
P

U
 u

ril
iz

at
io

n 
(%

)

IPFS
Swarm

(d) CPU utilization statistics

Figure 8.7: Swarm and IPFS writer node statistics

146



Swarm comparing to that of IPFS (Figure 8.7a) concluding that Swarm uses more

efficient messaging service and relatively lower size of the message to synchronize its

peers comparing to IPFS. Then to delve details into the writing strategy of swarm

and IPFS, the outgoing network traffic (Figure 8.7b) was observed and the disk

I/O pattern (Figure 8.7c). Swarm uses a lazy approach for write synchronization

and replication where it writes the data onto the local disk first and then sends

to the peers in small packets. On the contrary, IPFS writes a smaller amount of

data to disk and sends it over the network for replication on other peers resulting

in significantly higher network traffic. Consequently, Swarm shows significantly

better CPU utilization (Figure 8.7d) comparing to that of IPFS yielding better

write performance.

However, Swarm and IPFS both performed similarly for reading (download)

in the cluster environment used in this chapter. This is because of their similar

key-based routing algorithm based on xor logarithmic distance.

A typical healthcare interoperability network is both read and write heavy.

Thousands of patients visit hundreds of different providers’ site generating ter-

abytes of data that need to be written (uploaded) and be available to the patients

and other third-party stakeholders to read (download). It is different from tradi-

tional write-once-read-many applications. Hence the performance should not be

bottlenecked by the read or write performance of the storage platform making

Swarm obviously a better choice in the application.

8.5.6 Blockchain Performance

Although Blockchain provides a solution to the challenges involved in providing

trust-less service in a secured and privacy-preserved way, its wide-scale adoption

is still hindered by its longer service-time and throughput especially when big

data is involved. Figure 8.8 shows a linear loss (First 4 groups of the Figure

8.8) in Ethereum Blockchain’s performance with increasing size of data. Although

147



the average size of each record is only 1.6KB in the experiments, Ethereum’s

transactional throughput shows a sharp decline with increasing number of patients’

records per transaction even-though there are less than 10 records (i.e. 16KB only)

per transaction. In terms of record-throughput, i.e., the number patient’s records

can be written and transferred through the main chain per second also decreases.

The similar trend can be found during reading the data also.

1R/Tx 2R/Tx 4R/Tx 8R/Tx 8SwH/Tx 8IpfsH/Tx

Blockchain transactions

T
hr

ou
gh

pu
t (

U
ni

ts
/S

ec
)

1
5

10
50

10
0

50
0 TxThroughput

RecThroughput

(a) Throughput

1R/Tx 2R/Tx 4R/Tx 8R/Tx 8SwH/Tx 8IpfsH/Tx

Blockchain transactions

T
hr

ou
gh

pu
t (

U
ni

ts
/S

ec
)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

TxLatency
RecLatency

(b) Latency

Figure 8.8: Blockchain performance

However, the transactional latency (first 4 groups of Figure 8.8b) remains

almost same yielding an improvement in the record latency that is the total time

spent to write and transfer one record through the chain.

Hence, a significant trade-off between throughput and latency is observed while

using the Blockchain’s storage (i.e., saving the data directly on the smart contract)

for a big dataset. On the contrary, the healthcare applications demand both high

throughput and low latency. For example, When multiple patient’s records are

shared with the scientists the system demands the throughput whereas, in a heavily

loaded emergency, the data should be written on the system as quickly as possible

demanding low latency.

148



8.5.7 Blockchain + HTTP

Many of the existing dApp in different domains including healthcare follow

this design nowadays. Although the design apparently looks efficient it has two

fundamental flaws as follows:

1) For a small number of clients, the design may guarantee efficient data trans-

fer with HTTP along with the security promises of Blockchain. However, the first

one shows scalability issue (Figure 8.5) with growing clients whereas the second

one shows tremendous bottleneck with growing size of data.

2) As the data is stored in the database or providers’ site, the design does

neither provide any guaranty on preventing DDoS nor it provides any tamper

resistance mechanism. That is, the design consideration does not provide the

fundamental requirement desired in the domain of healthcare (and possibly other

domain also). Consequently, this design alternative is not evaluated in this work.

8.5.8 Blockchain + Swarm

As discussed earlier, in this design consideration, the data resides inside a P2P

storage and the content-hash (64Bytes) is stored in the Blockchain transaction.

The system is tamper-proof, free from DDoS attack and at the same time offload

the data from the main chain to guarantee the throughput.

The last two bars of Figure 8.8 compares the performance of this design to

the Blockchain-only design. As the data size on the transaction decreases the gas

used per transaction also decreases in this current design. Consequently, many

transactions are accumulated in a block and mined simultaneously. Hence, in a

busy time when many transactions enter the Blockchain system from many clients,

the throughput will be significantly more. As shown in Figure 8.8a this design

alternative produce 25x better throughput in terms of the number of Blockchain

transaction per second compared to Blockchain alone. In terms of the number of

records transferred per second, the corresponding gain is 21x.

149



Moreover, this design improves both the throughput and latency of the system

(Figure 8.8a and 8.8b) unlike the Blockchain-only design which poses a significant

trade-off between these two.

It should also be observed that in conjunction with Blockchain, both Swarm

and IPFS performs similarly although Swarm showed better performance over

IPFS.

The major reason for selecting Swarm over IPFS in the design is its better

sustainability on big data system. Although a large-size file is not very common

in healthcare domain and it is flooded with millions of small-size file, as soon

as the file size grows beyond 10GB (e.g., a genomic sequence of a patient), the

file read/write time starts dominating the throughput of the system and Swarm

shows better promises at that time. Since one of the motivations is to transfer

large-scale anonymous data between medical school and the Universities to foster

translational research Swarm is chosen over IPFS. However, the implementation

of consent management can easily be decoupled from the storage and can easily

migrate to IPFS once the limitations are amended.

8.5.9 Scalability of Blockchain with Swarm:

Figure 8.9 and 8.10 shows the scalability of the design. Only one swarm hash

is stored per Blockchain transaction pointing to a single patient record kept in its

P2P storage. To simulate the busy scenario multiple clients have been assigned to

each Ethereum node where each of the clients sends multiple transaction requests

at once. That is, at a single time slot (less than a second) the total number of

transactions in the system can be given by #clients×#requests×#nodes. In these

set of experiments #requests is set to 2000. When there are 16 nodes, 16 clients

are assigned to each node there are 16× 2000× 16 = 512000 transaction requests

are in the system. As it can be seen in Figure 8.9a and 8.10a, in a busy scenario

with multiple clients and thousands of requests the design is weekly scalable for

150



1 2 4 8 16

10
20

30
40

50
60

70
80

#Nodes

To
ta

l T
x 

tim
e 

(s
)

1cl/node
2cl/node
4cl/node
8cl/node
16cl/node

(a) Blockchain+Swarm exe-
cution time

1 2 4 8 16

0
20

00
40

00
60

00
80

00
10

00
0

#Nodes

T
x 

T
hr

ou
gh

pu
t (

tx
/s

)

1cl/node
2cl/node
4cl/node
8cl/node
16cl/node

(b) Throughput with same
#client/node

1 2 4 8 16

60
0

65
0

70
0

75
0

80
0

#Nodes

T
x 

T
hr

ou
gh

pu
t (

tx
/s

)

(c) Throughput with same
total clients

Figure 8.9: Blockchain+Swarm write scalability

1 2 4 8 16

0
50

10
0

15
0

#Nodes

To
ta

l T
x 

tim
e 

(s
)

1cl/node
2cl/node
4cl/node
8cl/node
16cl/node

(a) Blockchain+Swarm exe-
cution time

1 2 4 8 16

0
10

00
20

00
30

00
40

00
50

00
60

00

#Nodes

To
ta

l T
x 

tim
e 

(s
)

1cl/node
2cl/node
4cl/node
8cl/node
16cl/node

(b) Throughput with same
#client/node

1 2 4 8 16

20
0

30
0

40
0

50
0

60
0

#Nodes
T

x 
T

hr
ou

gh
pu

t (
tx

/s
)

(c) Throughput with same
total clients

Figure 8.10: Blockchain+Swarm write scalability

both read and write operations (i.e., upload and download operations). That is,

the execution time remains almost similar with increasing number of Ethereum

nodes when the number of clients (alternatively number of transaction requests)

per node also increase at the same proportion. Each Swarm hash points to only

one patient record in this set of experiments yielding the same record throughput

per transaction.

A direct interpretation of this result shows the throughput of the system when

keeping the number of the client same per node. As it can be seen in Figure 8.9b

and 8.10b, the total number of transactions executed per second improves almost

linearly with the increase in number of nodes and the. On the other hand Figure

151



8.9c and 8.10c shows the throughput of the design when keeping the total number

of client same (16 in the experiment) in the system.

Hence, Blockchain with Swarm shows significant performance gain and scalable

behavior with both increase in the number of clients and nodes

8.5.10 Blockchain + Swarm + Indexing

Although Swarm in conjunction with Blockchain shows significantly better

performance comparing to the Blockchain alone, the performance of the system

can be bottlenecked with the number of hashes stored in a transaction as shown

in Figure 8.11.

(a) Design alternative #1: Keep all the
Swarm Hashes on Tx

(b) Design alternative #2: Keep only the
Index Swarm Hash on Tx

Figure 8.11: Blockchain+Swarm design alternatives

To evaluate the benefit of the indexing, a 25MB file is created including 16700

records per file. Although these many records per patient are not common in

the real world, the byte size reflects the presence of x-ray images, mammogram

images, etc. For each of these files, a Swarm hash is written on the transaction.

Since the major bottleneck is observed in the data size in Blockchain transaction

and not in the Swarm, the experiment reflects the real world scenario giving a good

quantitative metric to express the capability of the system.

To pinpoint the benefit of the design, one client is assigned per node of a 16

152



node Ethereum cluster each working as a Swarm peer also. Each client sends 200

transaction requests. The total amount of data migrated through the system can

be given by #nodes×#clients/node×#requests/client×swarmFileSize. That

is, for a 16node cluster, 1 client per node with 200 requests per clients, a total of

80GB (16× 1× 200× 25MB) data is migrated to the peers.

The first design alternative has two phases executed sequentially such as, 1)

write to the swarm and 2) write n-th hash to the smart contract. Whereas, the

second design alternative has four different phases such as, 1) write data to swarm,

2) read index-hash from Blockchain 3) read index-content from swarm 4) add index-

content to swarm with new data-hash 5) add the new index-hash to the Blockchain

Although the second alternative has many steps involved in it, most of them

can execute in a constant time and the cumulative time for all these steps are

significantly less comparing to the first step of the first design alternative when

n>1.

Figure 8.12 compares both the design. As it can be seen, the average execution

time of the first design alternative i.e., many swarm hashes on the transaction

increases exponentially with increase in the number of swarm hashes. On the

other hand, the index-based design performs almost similar for any number of

Swarm hashes as the Blockchain is kept lightweight always.

The record-throughput of both the system can be calculated as (#records/client×

#clients/node×#nodes)/averageExecutionT ime. For a 16 node cluster, 1 client

per node, 16700 records written by each client, the fist alternative shows a through-

put of 31010.60 (16700 ∗ 1 ∗ 16 ∗ 64/551.45) records/s where as the proposed

index-based design shows 9x performance gain yielding a throughput of 267033.10

(16700 ∗ 1 ∗ 16 ∗ 64/64.04) records/s

153



1 2 4 8 16 32 64

10
0

20
0

30
0

40
0

50
0

60
0

#SwarmHash/tx

A
ve

ra
ge

 E
x−

tim
e 

of
 a

 tx
 (

s)

Tx with many Swarm hashes
Tx with Swarm index hash

Figure 8.12: Execution time for upload 8Mn patient records to Swarm for sharing

8.6 Operating Cost of SwarMed on Public Network (Internet)

Table 8.3 shows the total operating cost of storage for different design alterna-

tives. It can be easily observed that the proposed design of SwarMed outperforms

all the other alternatives in terms of cost. For a fair comparison, we calculated

the cost of 1GB of patient records over the span of 10years which is a common

scenario in the domain.
Table 8.3: Operating cost of different designs

Storage type Data size Time of storage Total cost (USD)
Ethereum +
Swarm +
Index (Proposed)

1GB Immutable 0.34

Ethereum only 1GB Immutable 80500000
Amazon EBS (HTTP) 1GB 10 year 12.00
Azure RA-GRS (HTTP) 1GB 10 year 14.40

154



The cost of the Ethereum-based design architectures are calculated using Gas,

the unit of measuring the computation work or storage in Ethereum. As mentioned

in the Ethereum yellow paper [17], the fee to store 256bit word is 20K Gas. The

standard Gas-price is 3GWei (3 × 10−7 Eth)1. Assuming the value of 1Eth as

470.61USD2, the fees for storing the 256bit word can be calculated as 0.006Eth i.e.,

2.72USD. Hence, the cost of storing one bit is 0.010625USD. Using this information,

the cost of each of the design shown in Table 8.3 can be calculated as follows:

1) The proposed design of Swarmed stores only one Swarm hash of size 32bit

on the chain of Ethereum. Using the above information the total storage cost can

be calculated as 0.34USD (32× 0.010625).

2) If the entire 1GB of data is stored on the chain of Ethereum, the total cost

of storage can be calculated as 80500000USD (8× 1010× 0.010625).

3) The last two alternatives show the cost of storing 1GB of data in two popular

cloud-based storage, Amazon-EBS and Azure-RA-GRS. For a fair comparison with

immutable storage of Ethereum or Swarm, we calculated the cost of 1GB storage

in these cloud-based platform over 10years. Using the cost information available in

the corresponding websites3, 4, it is observed that the existing cloud-based storages

charges almost 35 to 42 times more per GB of storage compared to that of the

prosed design of SwarMed over a 10years of time span.

8.7 SwarMed and ONC’s Interoperability Roadmap

This section evaluates SwarMed in the context of ONC’s interoperability roadmap

[109] published in 2015.

By giving patients a immutable, trusted log of their medical history, the

SwarMed system like MedRec[110], directly addresses the ONC interoperability
1https://ethgasstation.info/
2https://www.coindesk.com/ethereum-price/
3https://aws.amazon.com/ebs/pricing/
4https://azure.microsoft.com/en-us/pricing/details/storage/blobs/

155



roadmaps principal outcome, Individuals have access to longitudinal electronic

health information, can contribute to the information, and can direct it to any

electronic location [109]

The current state of healthcare records is disjointed and fractured due to a

lack of common architectures and standards that would allow the safe transfer

of sensitive information among stakeholders in the system. On the other hand,

SwarMed provides a uniform, tamper-resistant, peer-to-peer storage for the elec-

tronic health information without any data duplication across nationwide systems

(consisting of multiple providers, and stakeholders). Hence, the entire health in-

formation is consistent with authorization and access permission. Consequently,

SwarMed is able to address the ONC’s requirement for "secure and trusted ex-

change of electronic health information, consistent with privacy protections and

individual’s preferences, across states, networks, and entities". [109]

Furthermore, SwarMed enables big data sharing in the biomedical domain us-

ing Blockchain. The high throughput architecture with its security and privacy

promises will drive the translational research including precision medicine, predic-

tive analysis, etc. which depend largely on the availability of big dataset.

8.8 Conclusion

This chapter proposed SwarMed, a scalable and robust proof-of-concept to

share large-scale medical data over the Ethereum Blockchain ecosystem. SwarMed

addresses the industry’s interoperability challenges by using block chain’s decen-

tralized security promises. At the same time, this work developed an efficient way

of accessing data off-the-chain using Swarm in conjunction with the proposed in-

dexing mechanism and surpasses the current throughput limitation of Blockchain

by several magnitudes.

Deviating from the traditional database and centralized server, many appli-

cation started using the p2p storage infrastructure for automatic scalability and

156



significantly lower cost overhead. A NoSQL-like query engine on top of this p2p

storage solution can improve the efficiency of these applications by several magni-

tudes. From that direction also, SwarMed provide a good initial starting point.

The future research direction includes adding more feature-sets in the smart

contracts to align the proof-of-concept fully with the existing regulations such as

HIPAA, CURE, COPAA, etc. The engineering infrastructure should also be im-

proved in future for better throughput and latency. A fully functional database

service over Swarm can improve this aspect. The proposed indexing service pro-

vides a good initial starting point for that.

157



Chapter 9
Conclusion and Future Work

Big data is ubiquitous. Starting from genomic analysis to medical informatics,

from astronomy to quantum physics, scientific applications are flooded with huge

amounts of data today. The data intensive nature of the applications are rapidly

shifting the computational and architectural model of traditional HPC at different

levels including the software programming model, cyberinfrastructure and transac-

tion over network. Scalability became the most desired characteristics at all these

while at the same time the costly bandwidth needs to be preserved.

This thesis first addresses the issue of scalability by designing novel algorithms

and proposing novel software frameworks for different scientific applications. Un-

like traditional MPI- or grid-based algorithms, the proposed algorithms and frame-

works are locality-based. That is, instead of moving the large datasets towards the

small-size computation these algorithms move the small-size computation to the

large datasets. This strategy saves the costly bandwidth. To this end, the the-

sis focuses mainly on the large-scale genome analysis pipeline which recently has

made its way to the forefront of big data challenges. The algorithms developed

in this thesis to handle these big data are appreciably accurate compared to the

existing tools and can scale over a hundreds of compute nodes with terabytes of

data. Furthermore, by using lower number of cores and memory per node, the

thesis showed that these algorithms and software frameworks can run on top of

scaled out cluster of commodity hardware. By developing scientific applications

for scaled out cluster, the thesis in one hand addresses the scalability issues in the

existing applications. On the other hand, by eliminating the need for sophisticated

HPC hardware, the thesis addresses the cost issues involved in data driven science.

One of our future research direction is generalize the proposed frameworks and

158



algorithms to address several other applications in the large-scale genomic analysis

pipeline such as variant calling, metagenomic analysis, gene finding etc.

The characteristics of the algorithms and software framework developed in the

thesis are substantially new. Consequently, there is limited understanding of the

underlying cyber infrastructure that they need for good performance. Hence, the

thesis also evaluates a broad range of cluster architecture required for the good

performance of these software applications. The rapid development in storage and

processor architecture have already changed the performance point. In collabora-

tion with Samsung Ltd., S. Korea, the thesis evaluates the performance implication

of different cutting edge hardware such as SSD, NVMe SSDs, etc. It also provides

significant insight on how to deploy a high performance big data analytic cluster

for data intensive science. The thesis also identified the need for a balanced cluster

in terms of both performance and economy. In the last decade HPC providers such

as NSFCloud and XSEDE have invested millions of dollars to provide resources

for data driven scientific applications with the notion that ’big data needs big re-

sources’. At this inflection point of HPC infrastructure the thesis addresses the

need for a balanced cluster architecture by providing a theoretical model for opti-

mal cluster architecture. Instead of increasing the FLOPS only, the HPC cluster for

data science should be balanced in terms of FLOPS, I/O bandwidth and DRAM.

The system designer needs to consider more degrees of freedom and answer the

questions such as ’how much memory or I/O bandwidth required per FLOPs’. By

answering such questions, the model provides an easy-to-use guideline for setting

up an HPC cluster for big data analytics. The designers can make informed choice

of hardware components to deploy a scalable and cost-effective cluster for scientific

big data analysis even when the application characteristics is not known.

Finally, the thesis provides a high throughput yet cost-effective solutions to

transfer huge amount of big data in different geographic locations. Deviating from

159



traditional client-server architecture and centralized data transfer model the thesis

proposes a decentralized interoperability model to share and transfer large volume

of data in a secured, privacy-protected and tamper-proof fashion. The proposed

data transfer architecture improves the throughput of the current Blockchain-based

decentralized transactions by several magnitudes. An indexing mechanism over a

P2P storage model is proposed so that the architecture can scale with increasing

amount of data. The decentralized interoperability model is automatically scal-

able with increasing number of clients as all the clients work as a storage-server

also to facilitate improved and high throughput data transfer over geographically

separated locations. By making each client a storage server, the decentralized

architecture also reduces the operating cost significantly comparing to traditional

HTTP or FTP-based server where more servers are required to facilitate increasing

number of clients. This part uses a large synthetic biomedical dataset.

160



References

[1] A. K. Das, S. Goswami, and R. Platania, “Ibm power8ő hpc system accel-
erates genomics analysis with smt8 multithreading,” http://www.lsu.edu/
mediacenter/docs/LSU-IBM_POWER8_GenomeBenchmark.pdf.

[2] T. White, Hadoop: The definitive guide. " O’Reilly Media, Inc.", 2012.

[3] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large
clusters,” Communications of the ACM, vol. 51, no. 1, 2008.

[4] T. Cheatham, A. Fahmy, D. Stefanescu, and L. Valiant, “Bulk synchronous
parallel computing – a paradigm for transportable software,” in Tools and
Environments for Parallel and Distributed Systems. Springer, 1996, pp.
61–76.

[5] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing,” in Proceedings of the
9th USENIX conference on Networked Systems Design and Implementation.
USENIX Association, 2012, pp. 2–2.

[6] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,” in
Proceedings of the 2010 ACM SIGMOD International Conference on Man-
agement of data. ACM, 2010, pp. 135–146.

[7] C. Avery, “Giraph: Large-scale graph processing infrastructure on hadoop,”
Proceedings of the Hadoop Summit. Santa Clara, 2011.

[8] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and
I. Stoica, “Graphx: Graph processing in a distributed dataflow framework,”
in Proceedings of OSDI, 2014, pp. 599–613.

[9] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed stor-
age system for structured data,” ACM Transactions on Computer Systems
(TOCS), vol. 26, no. 2, p. 4, 2008.

[10] D. Rangel, “Dynamodb: Everything you need to know about amazon web
service’s nosql database,” 2015.

[11] J. Lehnardt and N. Slater, “Couchdb: The definitive guide. time to relax,”
2009.

[12] M. Johns, Getting Started with Hazelcast. Packt Publishing Ltd, 2015.

[13] J. L. Carlson, Redis in Action. Manning Publications Co., 2013.

161

http://www.lsu.edu/mediacenter/docs/LSU-IBM_POWER8_GenomeBenchmark.pdf
http://www.lsu.edu/mediacenter/docs/LSU-IBM_POWER8_GenomeBenchmark.pdf


[14] A. H. Team, “Apache hbase reference guide,” Apache, version, vol. 2, no. 0,
2015.

[15] K. Chodorow, MongoDB: the definitive guide. " O’Reilly Media, Inc.", 2013.

[16] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[17] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger,”
Ethereum Project Yellow Paper, vol. 151, 2014.

[18] C. Cachin, “Architecture of the hyperledger blockchain fabric,” in Workshop
on Distributed Cryptocurrencies and Consensus Ledgers, 2016.

[19] V. Tron and A. Fischer. (2016) Swarm serverless hosting incentivised
peer-to-peer storage and content distribution. [Online]. Available: http:
//swarm-gateways.net/bzz:/theswarm.eth/

[20] S. Wilkinson, T. Boshevski, J. Brandoff, and V. Buterin, “Storj a peer-to-peer
cloud storage network,” 2014.

[21] A. K. Das, S. Shams, S. Goswami, R. Platania, K. Lee, and s.-J. Park,
“Parsech: Parallel sequencing error correction with hadoop for large-scale
genome,” in Proceedings of the 9th International BICob Conference. ISCA,
2017.

[22] D. I. Lou, J. A. Hussmann, R. M. McBee, A. Acevedo, R. Andino, W. H.
Press, and S. L. Sawyer, “High-throughput dna sequencing errors are reduced
by orders of magnitude using circle sequencing,” Proceedings of the National
Academy of Sciences, vol. 110, no. 49, 2013.

[23] Y. Gu, Q. Zhu, X. Liu, Y. Dong, C. T. Brown, and S. Pramanik, “Using disk
based index and box queries for genome sequencing error correction.”

[24] D. R. Kelley, M. C. Schatz, and S. L. Salzberg, “Quake: quality-aware de-
tection and correction of sequencing errors,” Genome biology, 2010.

[25] W.-C. Kao, A. H. Chan, and Y. S. Song, “Echo: a reference-free short-read
error correction algorithm,” Genome research, vol. 21, no. 7, 2011.

[26] X. Yang, K. S. Dorman, and S. Aluru, “Reptile: representative tiling for
short read error correction,” Bioinformatics, vol. 26, no. 20, 2010.

[27] S. Saha and S. Rajasekaran, “Ec: an efficient error correction algorithm for
short reads,” BMC bioinformatics, vol. 16, no. 17, p. 1, 2015.

[28] C. T. Brown, A. Howe, Q. Zhang, A. B. Pyrkosz, and T. H. Brom, “A
reference-free algorithm for computational normalization of shotgun sequenc-
ing data,” arXiv preprint arXiv:1203.4802, 2012.

162

http://swarm-gateways.net/bzz:/theswarm.eth/
http://swarm-gateways.net/bzz:/theswarm.eth/


[29] P. A. Pevzner, H. Tang, and M. S. Waterman, “An eulerian path approach to
dna fragment assembly,” Proceedings of the National Academy of Sciences,
vol. 98, no. 17, 2001.

[30] P. Medvedev, E. Scott, B. Kakaradov, and P. Pevzner, “Error correction of
high-throughput sequencing datasets with non-uniform coverage,” Bioinfor-
matics, vol. 27, no. 13, 2011.

[31] L. Ilie and M. Molnar, “Racer: Rapid and accurate correction of errors in
reads,” Bioinformatics, 2013.

[32] J. Schröder, H. Schröder, S. J. Puglisi, R. Sinha, and B. Schmidt, “Shrec: a
short-read error correction method,” Bioinformatics, vol. 25, 2009.

[33] L. Ilie, F. Fazayeli, and S. Ilie, “Hitec: accurate error correction in high-
throughput sequencing data,” Bioinformatics, vol. 27, no. 3, 2011.

[34] L. Song, L. Florea, and B. Langmead, “Lighter: fast and memory-efficient se-
quencing error correction without counting,” Genome biology, vol. 15, no. 11,
2014.

[35] Y. Liu, J. Schröder, and B. Schmidt, “Musket: a multistage k-mer spectrum-
based error corrector for illumina sequence data,” Bioinformatics, vol. 29,
no. 3, 2013.

[36] Y. Liu, B. Schmidt, and D. L. Maskell, “Decgpu: distributed error correction
on massively parallel graphics processing units using cuda and mpi,” BMC
bioinformatics, vol. 12, no. 1, 2011.

[37] G. Qian, Q. Zhu, Q. Xue, and S. Pramanik, “A space-partitioning-based in-
dexing method for multidimensional non-ordered discrete data spaces,” ACM
Transactions on Information Systems (TOIS), vol. 24, no. 1, 2006.

[38] X. Yang, S. P. Chockalingam, and S. Aluru, “A survey of error-correction
methods for next-generation sequencing,” Briefings in bioinformatics, vol. 14,
no. 1, 2013.

[39] A. K. Das, P. K. Koppa, S. Goswami, R. Platania, and S.-J. Park, “Large-
scale parallel genome assembler over cloud computing environment,” Journal
of Bioinformatics and Computational Biology, 2017.

[40] C. Avery, “Giraph: Large-scale graph processing infrastructure on hadoop,”
Proceedings of the Hadoop Summit. Santa Clara, 2011.

[41] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig latin:
a not-so-foreign language for data processing,” in Proceedings of the 2008
ACM SIGMOD international conference on Management of data. ACM,
2008, pp. 1099–1110.

163



[42] B. Langmead, M. C. Schatz, J. Lin, M. Pop, and S. L. Salzberg, “Searching
for snps with cloud computing,” Genome Biol, vol. 10, no. 11, p. R134, 2009.

[43] H. Nordberg, K. Bhatia, K. Wang, and Z. Wang, “Biopig: a hadoop-based
analytic toolkit for large-scale sequence data,” Bioinformatics, p. btt528,
2013.

[44] M. Schatz, D. Sommer, D. Kelley, and M. Pop, “Contrail: Assembly of large
genomes using cloud computing,” in CSHL Biology of Genomes Conference,
2010.

[45] J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. Jones, and
I. Birol, “Abyss: a parallel assembler for short read sequence data,” Genome
research, vol. 19, no. 6, pp. 1117–1123, 2009.

[46] D. R. Zerbino and E. Birney, “Velvet: algorithms for de novo short read
assembly using de bruijn graphs,” Genome research, vol. 18, no. 5, pp. 821–
829, 2008.

[47] R. Chikhi and G. Rizk, “Space-efficient and exact de bruijn graph representa-
tion based on a bloom filter,” Algorithms for Molecular Biology, vol. 8, no. 1,
p. 22, 2013.

[48] J. Butler, I. MacCallum, M. Kleber, I. A. Shlyakhter, M. K. Belmonte, E. S.
Lander, C. Nusbaum, and D. B. Jaffe, “Allpaths: de novo assembly of whole-
genome shotgun microreads,” Genome research, vol. 18, no. 5, pp. 810–820,
2008.

[49] R. Kajitani, K. Toshimoto, H. Noguchi, A. Toyoda, Y. Ogura, M. Okuno,
M. Yabana, M. Harada, E. Nagayasu, H. Maruyama et al., “Efficient de novo
assembly of highly heterozygous genomes from whole-genome shotgun short
reads,” Genome research, vol. 24, no. 8, pp. 1384–1395, 2014.

[50] Y. Liu, B. Schmidt, and D. L. Maskell, “Parallelized short read assembly of
large genomes using de bruijn graphs,” BMC bioinformatics, vol. 12, no. 1,
p. 354, 2011.

[51] S. Boisvert, F. Laviolette, and J. Corbeil, “Ray: simultaneous assembly of
reads from a mix of high-throughput sequencing technologies,” Journal of
Computational Biology, vol. 17, no. 11, pp. 1519–1533, 2010.

[52] J. A. Chapman, I. Ho, S. Sunkara, S. Luo, G. P. Schroth, and D. S. Rokhsar,
“Meraculous: de novo genome assembly with short paired-end reads,” PloS
one, vol. 6, no. 8, p. e23501, 2011.

[53] T. White, Hadoop: the definitive guide: the definitive guide. " O’Reilly
Media, Inc.", 2009.

164



[54] A. V. Gerbessiotis and L. G. Valiant, “Direct bulk-synchronous parallel al-
gorithms,” Journal of parallel and distributed computing, vol. 22, no. 2, pp.
251–267, 1994.

[55] R. J. Anderson and G. L. Miller, “A simple randomized parallel algorithm
for list-ranking,” Information Processing Letters, vol. 33, no. 5, pp. 269–273,
1990.

[56] A. Gurevich, V. Saveliev, N. Vyahhi, and G. Tesler, “Quast: quality as-
sessment tool for genome assemblies,” Bioinformatics, vol. 29, no. 8, pp.
1072–1075, 2013.

[57] M. A. Quail, M. Smith, P. Coupland, T. D. Otto, S. R. Harris, T. R. Con-
nor, A. Bertoni, H. P. Swerdlow, and Y. Gu, “A tale of three next generation
sequencing platforms: comparison of ion torrent, pacific biosciences and il-
lumina miseq sequencers,” BMC genomics, vol. 13, no. 1, p. 341, 2012.

[58] L. Salmela and E. Rivals, “Lordec: accurate and efficient long read error
correction,” Bioinformatics, vol. 30, no. 24, pp. 3506–3514, 2014.

[59] G. Miclotte, M. Heydari, P. Demeester, P. Audenaert, and J. Fostier,
“Jabba: Hybrid error correction for long sequencing reads using maximal
exact matches,” in International Workshop on Algorithms in Bioinformatics.
Springer, 2015, pp. 175–188.

[60] L. Salmela and J. Schröder, “Correcting errors in short reads by multiple
alignments,” Bioinformatics, vol. 27, no. 11, 2011.

[61] L. Salmela, R. Walve, E. Rivals, and E. Ukkonen, “Accurate self-correction
of errors in long reads using de bruijn graphs,” Bioinformatics, vol. 33, no. 6,
pp. 799–806, 2016.

[62] S. Koren, B. P. Walenz, K. Berlin, J. R. Miller, N. H. Bergman, and A. M.
Phillippy, “Canu: scalable and accurate long-read assembly via adaptive k-
mer weighting and repeat separation,” Genome research, vol. 27, no. 5, pp.
722–736, 2017.

[63] E. Haghshenas, F. Hach, S. C. Sahinalp, and C. Chauve, “Colormap: Cor-
recting long reads by mapping short reads,” Bioinformatics, vol. 32, no. 17,
pp. i545–i551, 2016.

[64] S. Koren, M. C. Schatz, B. P. Walenz, J. Martin, J. T. Howard, G. Ganap-
athy, Z. Wang, D. A. Rasko, W. R. McCombie, E. D. Jarvis et al., “Hybrid
error correction and de novo assembly of single-molecule sequencing reads,”
Nature biotechnology, vol. 30, no. 7, pp. 693–700, 2012.

[65] K. F. Au, J. G. Underwood, L. Lee, and W. H. Wong, “Improving pacbio
long read accuracy by short read alignment,” PloS one, vol. 7, no. 10, p.
e46679, 2012.

165



[66] T. Hackl, R. Hedrich, J. Schultz, and F. Förster, “proovread: large-scale high-
accuracy pacbio correction through iterative short read consensus,” Bioin-
formatics, vol. 30, no. 21, pp. 3004–3011, 2014.

[67] E. Bao and L. Lan, “Halc: High throughput algorithm for long read error
correction,” BMC bioinformatics, vol. 18, no. 1, p. 204, 2017.

[68] F. Y. Chin, H. C. Leung, W.-L. Li, and S.-M. Yiu, “Finding optimal threshold
for correction error reads in dna assembling,” BMC bioinformatics, vol. 10,
no. 1, p. S15, 2009.

[69] M. J. Chaisson and G. Tesler, “Mapping single molecule sequencing reads
using basic local alignment with successive refinement (blasr): application
and theory,” BMC bioinformatics, vol. 13, no. 1, p. 238, 2012.

[70] H. Li and R. Durbin, “Fast and accurate short read alignment with burrows–
wheeler transform,” Bioinformatics, vol. 25, no. 14, pp. 1754–1760, 2009.

[71] A. K. Das, S.-J. Park, J. Hong, and W. Chang, “Evaluating different
distributed-cyber-infrastructure for data and compute intensive scientific ap-
plication,” in IEEE International Conference on Big Data, 2015.

[72] E. Georganas, A. Buluç, J. Chapman, L. Oliker, D. Rokhsar, and K. Yelick,
“Parallel de bruijn graph construction and traversal for de novo genome as-
sembly,” in High Performance Computing, Networking, Storage and Analysis,
SC14: International Conference for. IEEE, 2014, pp. 437–448.

[73] Y. Li, P. Kamousi, F. Han, S. Yang, X. Yan, and S. Suri, “Memory efficient
minimum substring partitioning,” in Proceedings of the VLDB Endowment,
vol. 6, no. 3. VLDB Endowment, 2013, pp. 169–180.

[74] Z. Fadika, M. Govindaraju, R. Canon, and L. Ramakrishnan, “Evaluat-
ing hadoop for data-intensive scientific operations,” in Cloud Computing
(CLOUD), 2012 IEEE 5th International Conference on. IEEE, 2012, pp.
67–74.

[75] S. Jha, J. Qiu, A. Luckow, P. Mantha, and G. C. Fox, “A tale of two data-
intensive paradigms: Applications, abstractions, and architectures,” in Big
Data (BigData Congress), 2014 IEEE International Congress on. IEEE,
2014, pp. 645–652.

[76] U. C. Satish, P. Kondikoppa, S. Park, M. Patil, and R. Shah, “Mapreduce
based parallel suffix tree construction for human genome,” in 20th IEEE In-
ternational Conference on Parallel and Distributed Systems, ICPADS 2014,
Hsinchu, Taiwan, December 16-19, 2014, 2014, pp. 664–670.

166



[77] P. Kondikoppa, C.-H. Chiu, C. Cui, L. Xue, and S.-J. Park, “Network-aware
scheduling of mapreduce framework ondistributed clusters over high speed
networks,” in Proceedings of the 2012 workshop on Cloud services, federation,
and the 8th open cirrus summit. ACM, 2012, pp. 39–44.

[78] J. Vienne, J. Chen, M. Wasi-Ur-Rahman, N. S. Islam, H. Subramoni, and
D. K. Panda, “Performance analysis and evaluation of infiniband fdr and
40gige roce on hpc and cloud computing systems,” in High-Performance In-
terconnects (HOTI), 2012 IEEE 20th Annual Symposium on. IEEE, 2012,
pp. 48–55.

[79] J. Yu, G. Liu, W. Hu, W. Dong, and W. Zhang, “Mechanisms of optimizing
mapreduce framework on high performance computer,” in High Performance
Computing and Communications & 2013 IEEE International Conference on
Embedded and Ubiquitous Computing (HPCC_EUC), 2013 IEEE 10th In-
ternational Conference on. IEEE, 2013, pp. 708–713.

[80] Y. Kang, Y.-s. Kee, E. L. Miller, and C. Park, “Enabling cost-effective data
processing with smart ssd,” in IEEE 29th Symposium on Mass Storage Sys-
tems and Technologies (MSST). IEEE, 2013.

[81] D. Wu, W. Luo, W. Xie, X. Ji, J. He, and D. Wu, “Understanding the
impacts of solid-state storage on the hadoop performance,” in International
Conference on Advanced Cloud and Big Data, 2013.

[82] S. Moon, J. Lee, and Y. S. Kee, “Introducing ssds to the hadoop mapre-
duce framework,” in IEEE 7th International Conference on Cloud Computing
(CLOUD). IEEE, 2014, pp. 272–279.

[83] B. Li, E. Mazur, Y. Diao, A. McGregor, and P. Shenoy, “A platform for
scalable one-pass analytics using mapreduce,” in Proceedings of the 2011
ACM SIGMOD International Conference on Management of data. ACM,
2011, pp. 985–996.

[84] K. Krish, A. Khasymski, G. Wang, A. R. Butt, and G. Makkar, “On the use
of shared storage in shared-nothing environments,” in IEEE International
Conference on Big Data. IEEE, 2013, pp. 313–318.

[85] W. Tan, L. Fong, and Y. Liu, “Effectiveness assessment of solid-state drive
used in big data services,” in Web Services (ICWS), 2014 IEEE International
Conference on. IEEE, 2014, pp. 393–400.

[86] S. Huang, J. Huang, Y. Liu, L. Yi, and J. Dai, “Hibench: A representative
and comprehensive hadoop benchmark suite,” in Proc. ICDE Workshops,
2010.

167



[87] M. Michael, J. E. Moreira, D. Shiloach, and R. W. Wisniewski, “Scale-up x
scale-out: A case study using nutch/lucene,” in IEEE International Parallel
& Distributed Processing Symposium. IEEE, 2007.

[88] R. Appuswamy, C. Gkantsidis, D. Narayanan, O. Hodson, and A. Rowstron,
“Scale-up vs scale-out for hadoop: Time to rethink?” in Proceedings of the
4th annual Symposium on Cloud Computing. ACM, 2013.

[89] J. Hsu, “Ibm is redesigning supercomputers to solve big data prob-
lems,” https://spectrum.ieee.org/tech-talk/computing/hardware/
ibm-redesigned-supercomputers-to-solve-big-data-problems.

[90] S. Krishnan, M. Tatineni, and C. Baru, “myhadoop-hadoop-on-demand on
traditional hpc resources,” San Diego Supercomputer Center Technical Re-
port TR-2011-2, University of California, San Diego, 2011.

[91] J. Min, H. Ryu, K. La, and J. Kim, “Abc: dynamic configuration manage-
ment for microbrick-based cloud computing systems,” in Proceedings of the
Posters & Demos Session. ACM, 2014, pp. 25–26.

[92] P. J. Cock, C. J. Fields, N. Goto, M. L. Heuer, and P. M. Rice, “The sanger
fastq file format for sequences with quality scores, and the solexa/illumina
fastq variants,” Nucleic acids research, vol. 38, no. 6, pp. 1767–1771, 2009.

[93] S. L. Salzberg, A. M. Phillippy, A. Zimin, D. Puiu, T. Magoc, S. Koren,
T. J. Treangen, M. C. Schatz, A. L. Delcher, M. Roberts et al., “Gage: A
critical evaluation of genome assemblies and assembly algorithms,” Genome
research, vol. 22, no. 3, pp. 557–567, 2012.

[94] A. S. Szalay, G. C. Bell, H. H. Huang, A. Terzis, and A. White, “Low-
power amdahl-balanced blades for data intensive computing,” ACM SIGOPS
Operating Systems Review, vol. 44, no. 1, pp. 71–75, 2010.

[95] A. K. Das, J. Hong, S. Goswami, R. Platania, K. Lee, W. Chang, S.-J. Park,
and L. Liu, “Augmenting amdahl’s second law: A theoretical model to build
cost-effective balanced hpc infrastructure for data-driven science,” in Cloud
Computing (CLOUD), 2017 IEEE 10th International Conference on. IEEE,
2017, pp. 147–154.

[96] A. Verma, L. Cherkasova, and R. H. Campbell, “Play it again, simmr!” in
IEEE International Conference on Cluster Computing, 2011.

[97] S. Hammoud, M. Li, Y. Liu, N. K. Alham, and Z. Liu, “Mrsim: A discrete
event based mapreduce simulator,” in 2010 Seventh International Conference
on Fuzzy Systems and Knowledge Discovery. IEEE, 2010.

[98] G. Wang, A. R. Butt, P. Pandey, and K. Gupta, “A simulation approach to
evaluating design decisions in mapreduce setups.” in MASCOTS, 2009.

168

https://spectrum.ieee.org/tech-talk/computing/hardware/ibm-redesigned-supercomputers-to-solve-big-data-problems
https://spectrum.ieee.org/tech-talk/computing/hardware/ibm-redesigned-supercomputers-to-solve-big-data-problems


[99] X. Wu, Y. Liu, and I. Gorton, “Exploring performance models of hadoop
applications on cloud architecture,” in 11th International ACM SIGSOFT
Conference on Quality of Software Architectures. ACM, 2015.

[100] E. Vianna, G. Comarela, T. Pontes, J. Almeida, V. Almeida, K. Wilkin-
son, H. Kuno, and U. Dayal, “Analytical performance models for mapreduce
workloads,” International Journal of Parallel Programming, vol. 41, no. 4,
pp. 495–525, 2013.

[101] S. Ahn and S. Park, “An analytical approach to evaluation of ssd effects
under mapreduce workloads,” JOURNAL OF SEMICONDUCTOR TECH-
NOLOGY AND SCIENCE, vol. 15, no. 5, pp. 511–518, 2015.

[102] G. Bell, J. Gray, and A. Szalay, “Petascale computations systems: Balanced
cyberinfrastructure in a data-centric world,” 2005.

[103] D. Cohen, F. Petrini, M. D. Day, M. Ben-Yehuda, S. W. Hunter, and U. Cum-
mings, “Applying amdahl’s other law to the data center,” IBM Journal of
Research and Development, vol. 53, no. 5, pp. 5–1, 2009.

[104] J. Chang, K. T. Lim, J. Byrne, L. Ramirez, and P. Ranganathan, “Workload
diversity and dynamics in big data analytics: implications to system design-
ers,” in Proceedings of the 2nd Workshop on Architectures and Systems for
Big Data. ACM, 2012, pp. 21–26.

[105] L. Dobos, I. Csabai, A. S. Szalay, T. Budavári, and N. Li, “Graywulf: A plat-
form for federated scientific databases and services,” in Proceedings of the
25th International Conference on Scientific and Statistical Database Man-
agement. ACM, 2013, p. 30.

[106] N. J. Gunther, “A simple capacity model of massively parallel transac-
tion systems,” in CMG-CONFERENCE-. COMPSCER MEASUREMENT
GROUP INC, 1993, pp. 1035–1035.

[107] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv preprint
arXiv:1407.3561, 2014.

[108] J. Ray, “Whisper overview,” https://github.com/ethereum/wiki/wiki/
Whisper-Overview.

[109] T. O. of the National Coordinator for Health Information Technology (ONC).
(2015) Report on health information blocking. [Online]. Available: https:
//www.healthit.gov/sites/default/files/reports/info_blocking_040915.pdf

[110] A. Ekblaw, A. Azaria, J. D. Halamka, and A. Lippman, “A case study for
blockchain in healthcare:medrec prototype for electronic health records and
medical research data,” 2016.

169

https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://github.com/ethereum/wiki/wiki/Whisper-Overview
https://www.healthit.gov/sites/default/files/reports/info_blocking_040915.pdf
https://www.healthit.gov/sites/default/files/reports/info_blocking_040915.pdf


[111] N. Rifi, E. Rachkidi, N. Agoulmine, and N. C. Taher, “Towards using
blockchain technology for iot data access protection,” in Ubiquitous Wireless
Broadband (ICUWB), 2017 IEEE 17th International Conference on. IEEE,
2017, pp. 1–5.

[112] M. Turkanović, M. Hölbl, K. Košič, M. Heričko, and A. Kamišalić, “Eductx:
A blockchain-based higher education credit platform,” IEEE Access, 2018.

[113] T.-T. Kuo, H.-E. Kim, and L. Ohno-Machado, “Blockchain distributed ledger
technologies for biomedical and health care applications,” Journal of the
American Medical Informatics Association, vol. 24, no. 6, pp. 1211–1220,
2017.

[114] D. J. Bodas-Sagi and J. M. Labeaga, “Big data and health economics: Op-
portunities, challenges and risks,” International Journal of Interactive Mul-
timedia and Artificial Intelligence, no. In Press.

[115] M. Mettler, “Blockchain technology in healthcare: The revolution starts
here,” in e-Health Networking, Applications and Services (Healthcom), 2016
IEEE 18th International Conference on. IEEE, 2016, pp. 1–3.

[116] A. Gropper. (2016) Powering the physician-patient re-
lationship with hie of one blockchain health it.
[Online]. Available: https://www.healthit.gov/sites/default/files/
7-29-poweringthephysician-patientrelationshipwithblockchainhealthit.pdf

[117] Z. Alhadhrami, S. Alghfeli, M. Alghfeli, J. A. Abedlla, and K. Shuaib, “In-
troducing blockchains for healthcare,” in Electrical and Computing Technolo-
gies and Applications (ICECTA), 2017 International Conference on. IEEE,
2017, pp. 1–4.

[118] I. G. B. S. P. S. Team. (2016) Blockchain: The chain of trust and
its potential to transform healthcare our point of view. [Online]. Avail-
able: https://www.healthit.gov/sites/default/files/8-31-blockchain-ibm_
ideation-challenge_aug8.pdf

[119] R. Krawiec, D. Housman, F. M. White, Mark, F. Quarre, D. Barr,
A. Nesbitt, K. Fedosova, J. Killmeyer, A. Israel, and L. Tsai.
(2016) Blockchaina new model for health information exchanges.
[Online]. Available: https://www2.deloitte.com/content/dam/Deloitte/us/
Documents/public-sector/us-blockchain-opportunities-for-health-care.pdf

[120] C. Brodersen, B. Kalis, C. Leong, E. Mitchell, Eand Pupo, and
A. Truscott. (2016) Blockchain: Securing a new health interoperability ex-
perience. [Online]. Available: https://www.healthit.gov/sites/default/files/
2-49-accenture_onc_blockchain_challenge_response_august8_final.pdf

170

https://www.healthit.gov/sites/default/files/7-29-poweringthephysician-patientrelationshipwithblockchainhealthit.pdf
https://www.healthit.gov/sites/default/files/7-29-poweringthephysician-patientrelationshipwithblockchainhealthit.pdf
https://www.healthit.gov/sites/default/files/8-31-blockchain-ibm_ideation-challenge_aug8.pdf
https://www.healthit.gov/sites/default/files/8-31-blockchain-ibm_ideation-challenge_aug8.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/public-sector/us-blockchain-opportunities-for-health-care.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/public-sector/us-blockchain-opportunities-for-health-care.pdf
https://www.healthit.gov/sites/default/files/2-49-accenture_onc_blockchain_challenge_response_august8_final.pdf
https://www.healthit.gov/sites/default/files/2-49-accenture_onc_blockchain_challenge_response_august8_final.pdf


[121] T.-T. Kuo, C.-N. Hsu, and L. Ohno-Machado. (2016) Modelchain:
Decentralized privacy-preserving healthcare predictive modeling framework
on private blockchain networks. [Online]. Available: https://www.healthit.
gov/sites/default/files/10-30-ucsd-dbmi-onc-blockchain-challenge.pdf

[122] Q. Xia, E. B. Sifah, K. O. Asamoah, J. Gao, X. Du, and M. Guizani, “Med-
share: Trust-less medical data sharing among cloud service providers via
blockchain,” IEEE Access, vol. 5, pp. 14 757–14 767, 2017.

[123] X. Liang, J. Zhao, S. Shetty, J. Liu, and D. Li, “Integrating blockchain
for data sharing and collaboration in mobile healthcare applications,” in
Personal, Indoor, and Mobile Radio Communications (PIMRC), 2017 IEEE
28th Annual International Symposium on. IEEE, 2017, pp. 1–5.

[124] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L. Tan,
“Blockbench: A framework for analyzing private blockchains,” arXiv preprint
arXiv:1703.04057, 2017.

[125] T. McConaghy, R. Marques, A. Müller, D. De Jonghe, T. McConaghy, G. Mc-
Mullen, R. Henderson, S. Bellemare, and A. Granzotto, “Bigchaindb: A scal-
able blockchain database,” 2016.

171

https://www.healthit.gov/sites/default/files/10-30-ucsd-dbmi-onc-blockchain-challenge.pdf
https://www.healthit.gov/sites/default/files/10-30-ucsd-dbmi-onc-blockchain-challenge.pdf


Appendix:

Copyright and Permissions Information
5/28/2018 Mail - adas7@lsu.edu

https://outlook.office.com/owa/?realm=lsu.edu&vd=mail 1/1

Re: ISCA Website email

Yes, you may use the conference published paper for your thesis only.

Thanks.

N. Debnath

 

 

On 20180525 19:11, adas7@lsu.edu wrote:

From: Arghya Kusum Das 
Email: adas7@lsu.edu 
 
Message: 
Sub: Requesting Copyright Permission for papers published in BICOB-2017 for PhD Thesis 
 
Dear Sir/Madam, 
 
I would like to followup on our publications titled "GiGA: Giraph-based Genome Assembler
for Gigabase Scale Genome" and "ParSECH: Parallel Sequencing Error Correction with Hadoop
for Large-Scale Genome Sequences"  that we publiched in BICOB 2016 and BICOB 2017
respectively. 
 
Would you be kind enough to let me know the process for obtaining the copyright permission
for using these papers on my final PhD thesis? 
 
Thanks and Regards, 
Arghya Kusum Das

isca@isca‐hq.org

Sat 5/26/2018 5:51 PM

To:Arghya K Das <adas7@lsu.edu>;

172



5/25/2018 RightsLink Printable License

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=e2ea38ac-682b-40ce-9eb1-fcf902e8ac89 1/5

World Scientific Publishing Co., Inc. LICENSE
 TERMS AND CONDITIONS

May 25, 2018

 
This is a License Agreement between Louisiana State University -- Arghya Das ("You") and
World Scientific Publishing Co., Inc. ("World Scientific Publishing Co., Inc.") provided by
Copyright Clearance Center ("CCC"). The license consists of your order details, the terms
and conditions provided by World Scientific Publishing Co., Inc., and the payment terms and
conditions.

All payments must be made in full to CCC. For payment instructions, please see
information listed at the bottom of this form.

License Number 4353680266526

License date May 18, 2018

Licensed content publisher World Scientific Publishing Co., Inc.

Licensed content title Journal of bioinformatics and computational biology

Licensed content date Jan 1, 2003

Type of Use Thesis/Dissertation

Requestor type Author of requested content

Format Electronic

Portion chapter/article

The requesting
person/organization is:

Arghya Kusum Das

Title or numeric reference of
the portion(s)

PhD Student, First Author of the paper

Title of the article or chapter
the portion is from

Largescale parallel genome assembler over cloud computing
environment

Editor of portion(s) Limsoon Wong

Author of portion(s) Arghya Kusum Das

Volume of serial or
monograph.

Volume:15 Number:03

Page range of the portion

Publication date of portion Jun 2017

Rights for Main product

Duration of use Life of current edition

Creation of copies for the
disabled

yes

With minor editing privileges yes

For distribution to Worldwide

In the following language(s) Original language of publication

With incidental promotional
use

no

The lifetime unit quantity of
new product

Up to 499

173



5/25/2018 RightsLink Printable License

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=e2ea38ac-682b-40ce-9eb1-fcf902e8ac89 2/5

Title Largescale parallel genome assembler over cloud computing
environment

Instructor name SeungJong Park

Institution name Louisiana State University

Expected presentation date Aug 2018

Billing Type Invoice

Billing Address Louisiana State University
 4513 YA Tittle Avenue

 Unit 16
  

Baton Rouge, LA 70820
 United States

 Attn: Arghya K Das

Total (may include CCC user
fee)

0.00 USD

Terms and Conditions

TERMS AND CONDITIONS
The following terms are individual to this publisher:

None
Other Terms and Conditions:

STANDARD TERMS AND CONDITIONS
1. Description of Service; Defined Terms. This Republication License enables the User to
obtain licenses for republication of one or more copyrighted works as described in detail on
the relevant Order Confirmation (the “Work(s)”). Copyright Clearance Center, Inc. (“CCC”)
grants licenses through the Service on behalf of the rightsholder identified on the Order
Confirmation (the “Rightsholder”). “Republication”, as used herein, generally means the
inclusion of a Work, in whole or in part, in a new work or works, also as described on the
Order Confirmation. “User”, as used herein, means the person or entity making such
republication.
2. The terms set forth in the relevant Order Confirmation, and any terms set by the
Rightsholder with respect to a particular Work, govern the terms of use of Works in
connection with the Service. By using the Service, the person transacting for a republication
license on behalf of the User represents and warrants that he/she/it (a) has been duly
authorized by the User to accept, and hereby does accept, all such terms and conditions on
behalf of User, and (b) shall inform User of all such terms and conditions. In the event such
person is a “freelancer” or other third party independent of User and CCC, such party shall
be deemed jointly a “User” for purposes of these terms and conditions. In any event, User
shall be deemed to have accepted and agreed to all such terms and conditions if User
republishes the Work in any fashion.
3. Scope of License; Limitations and Obligations.
3.1 All Works and all rights therein, including copyright rights, remain the sole and
exclusive property of the Rightsholder. The license created by the exchange of an Order
Confirmation (and/or any invoice) and payment by User of the full amount set forth on that
document includes only those rights expressly set forth in the Order Confirmation and in
these terms and conditions, and conveys no other rights in the Work(s) to User. All rights not
expressly granted are hereby reserved.
3.2 General Payment Terms: You may pay by credit card or through an account with us
payable at the end of the month. If you and we agree that you may establish a standing
account with CCC, then the following terms apply: Remit Payment to: Copyright Clearance
Center, 29118 Network Place, Chicago, IL 60673-1291. Payments Due: Invoices are payable
upon their delivery to you (or upon our notice to you that they are available to you for
downloading). After 30 days, outstanding amounts will be subject to a service charge of 1-
1/2% per month or, if less, the maximum rate allowed by applicable law. Unless otherwise

174



5/25/2018 RightsLink Printable License

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=e2ea38ac-682b-40ce-9eb1-fcf902e8ac89 3/5

specifically set forth in the Order Confirmation or in a separate written agreement signed by
CCC, invoices are due and payable on “net 30” terms. While User may exercise the rights
licensed immediately upon issuance of the Order Confirmation, the license is automatically
revoked and is null and void, as if it had never been issued, if complete payment for the
license is not received on a timely basis either from User directly or through a payment
agent, such as a credit card company.
3.3 Unless otherwise provided in the Order Confirmation, any grant of rights to User (i) is
“one-time” (including the editions and product family specified in the license), (ii) is non-
exclusive and non-transferable and (iii) is subject to any and all limitations and restrictions
(such as, but not limited to, limitations on duration of use or circulation) included in the
Order Confirmation or invoice and/or in these terms and conditions. Upon completion of the
licensed use, User shall either secure a new permission for further use of the Work(s) or
immediately cease any new use of the Work(s) and shall render inaccessible (such as by
deleting or by removing or severing links or other locators) any further copies of the Work
(except for copies printed on paper in accordance with this license and still in User's stock at
the end of such period).
3.4 In the event that the material for which a republication license is sought includes third
party materials (such as photographs, illustrations, graphs, inserts and similar materials)
which are identified in such material as having been used by permission, User is responsible
for identifying, and seeking separate licenses (under this Service or otherwise) for, any of
such third party materials; without a separate license, such third party materials may not be
used.
3.5 Use of proper copyright notice for a Work is required as a condition of any license
granted under the Service. Unless otherwise provided in the Order Confirmation, a proper
copyright notice will read substantially as follows: “Republished with permission of
[Rightsholder’s name], from [Work's title, author, volume, edition number and year of
copyright]; permission conveyed through Copyright Clearance Center, Inc. ” Such notice
must be provided in a reasonably legible font size and must be placed either immediately
adjacent to the Work as used (for example, as part of a by-line or footnote but not as a
separate electronic link) or in the place where substantially all other credits or notices for the
new work containing the republished Work are located. Failure to include the required notice
results in loss to the Rightsholder and CCC, and the User shall be liable to pay liquidated
damages for each such failure equal to twice the use fee specified in the Order Confirmation,
in addition to the use fee itself and any other fees and charges specified.
3.6 User may only make alterations to the Work if and as expressly set forth in the Order
Confirmation. No Work may be used in any way that is defamatory, violates the rights of
third parties (including such third parties' rights of copyright, privacy, publicity, or other
tangible or intangible property), or is otherwise illegal, sexually explicit or obscene. In
addition, User may not conjoin a Work with any other material that may result in damage to
the reputation of the Rightsholder. User agrees to inform CCC if it becomes aware of any
infringement of any rights in a Work and to cooperate with any reasonable request of CCC
or the Rightsholder in connection therewith.
4. Indemnity. User hereby indemnifies and agrees to defend the Rightsholder and CCC, and
their respective employees and directors, against all claims, liability, damages, costs and
expenses, including legal fees and expenses, arising out of any use of a Work beyond the
scope of the rights granted herein, or any use of a Work which has been altered in any
unauthorized way by User, including claims of defamation or infringement of rights of
copyright, publicity, privacy or other tangible or intangible property.
5. Limitation of Liability. UNDER NO CIRCUMSTANCES WILL CCC OR THE
RIGHTSHOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL OR
INCIDENTAL DAMAGES (INCLUDING WITHOUT LIMITATION DAMAGES FOR
LOSS OF BUSINESS PROFITS OR INFORMATION, OR FOR BUSINESS
INTERRUPTION) ARISING OUT OF THE USE OR INABILITY TO USE A WORK,
EVEN IF ONE OF THEM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

175



5/25/2018 RightsLink Printable License

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=e2ea38ac-682b-40ce-9eb1-fcf902e8ac89 4/5

DAMAGES. In any event, the total liability of the Rightsholder and CCC (including their
respective employees and directors) shall not exceed the total amount actually paid by User
for this license. User assumes full liability for the actions and omissions of its principals,
employees, agents, affiliates, successors and assigns.
6. Limited Warranties. THE WORK(S) AND RIGHT(S) ARE PROVIDED “AS IS”. CCC
HAS THE RIGHT TO GRANT TO USER THE RIGHTS GRANTED IN THE ORDER
CONFIRMATION DOCUMENT. CCC AND THE RIGHTSHOLDER DISCLAIM ALL
OTHER WARRANTIES RELATING TO THE WORK(S) AND RIGHT(S), EITHER
EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. ADDITIONAL RIGHTS MAY BE REQUIRED TO USE ILLUSTRATIONS,
GRAPHS, PHOTOGRAPHS, ABSTRACTS, INSERTS OR OTHER PORTIONS OF THE
WORK (AS OPPOSED TO THE ENTIRE WORK) IN A MANNER CONTEMPLATED
BY USER; USER UNDERSTANDS AND AGREES THAT NEITHER CCC NOR THE
RIGHTSHOLDER MAY HAVE SUCH ADDITIONAL RIGHTS TO GRANT.
7. Effect of Breach. Any failure by User to pay any amount when due, or any use by User of
a Work beyond the scope of the license set forth in the Order Confirmation and/or these
terms and conditions, shall be a material breach of the license created by the Order
Confirmation and these terms and conditions. Any breach not cured within 30 days of
written notice thereof shall result in immediate termination of such license without further
notice. Any unauthorized (but licensable) use of a Work that is terminated immediately upon
notice thereof may be liquidated by payment of the Rightsholder's ordinary license price
therefor; any unauthorized (and unlicensable) use that is not terminated immediately for any
reason (including, for example, because materials containing the Work cannot reasonably be
recalled) will be subject to all remedies available at law or in equity, but in no event to a
payment of less than three times the Rightsholder's ordinary license price for the most
closely analogous licensable use plus Rightsholder's and/or CCC's costs and expenses
incurred in collecting such payment.
8. Miscellaneous.
8.1 User acknowledges that CCC may, from time to time, make changes or additions to the
Service or to these terms and conditions, and CCC reserves the right to send notice to the
User by electronic mail or otherwise for the purposes of notifying User of such changes or
additions; provided that any such changes or additions shall not apply to permissions already
secured and paid for.
8.2 Use of User-related information collected through the Service is governed by CCC’s
privacy policy, available online here:
http://www.copyright.com/content/cc3/en/tools/footer/privacypolicy.html.
8.3 The licensing transaction described in the Order Confirmation is personal to User.
Therefore, User may not assign or transfer to any other person (whether a natural person or
an organization of any kind) the license created by the Order Confirmation and these terms
and conditions or any rights granted hereunder; provided, however, that User may assign
such license in its entirety on written notice to CCC in the event of a transfer of all or
substantially all of User’s rights in the new material which includes the Work(s) licensed
under this Service.
8.4 No amendment or waiver of any terms is binding unless set forth in writing and signed
by the parties. The Rightsholder and CCC hereby object to any terms contained in any
writing prepared by the User or its principals, employees, agents or affiliates and purporting
to govern or otherwise relate to the licensing transaction described in the Order
Confirmation, which terms are in any way inconsistent with any terms set forth in the Order
Confirmation and/or in these terms and conditions or CCC's standard operating procedures,
whether such writing is prepared prior to, simultaneously with or subsequent to the Order
Confirmation, and whether such writing appears on a copy of the Order Confirmation or in a
separate instrument.

176



5/25/2018 RightsLink Printable License

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=e2ea38ac-682b-40ce-9eb1-fcf902e8ac89 5/5

8.5 The licensing transaction described in the Order Confirmation document shall be
governed by and construed under the law of the State of New York, USA, without regard to
the principles thereof of conflicts of law. Any case, controversy, suit, action, or proceeding
arising out of, in connection with, or related to such licensing transaction shall be brought, at
CCC's sole discretion, in any federal or state court located in the County of New York, State
of New York, USA, or in any federal or state court whose geographical jurisdiction covers
the location of the Rightsholder set forth in the Order Confirmation. The parties expressly
submit to the personal jurisdiction and venue of each such federal or state court.If you have
any comments or questions about the Service or Copyright Clearance Center, please contact
us at 978-750-8400 or send an e-mail to info@copyright.com.
v 1.1
Questions? customercare@copyright.com or +18552393415 (toll free in the US) or
+19786462777.

177



5/16/2018 Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet#formTop 1/1

 
Title: Evaluating different

distributedcyberinfrastructure
for data and compute intensive
scientific application

Conference
Proceedings:

2015 IEEE International
Conference on Big Data (Big
Data)

Author: Arghya Kusum Das; Seung
Jong Park; Jaeki Hong;
Wooseok Chang

Publisher: IEEE
Date: Oct. 29 2015Nov. 1 2015
Copyright © 2015, IEEE

LOGINLOGIN

If you're a copyright.com
user, you can login to
RightsLink using your
copyright.com credentials.
Already a RightsLink user or
want to learn more?

 
Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however,
you may print out this statement to be used as a permission grant: 

  
Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

  
1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users
must give full credit to the original source (author, paper, publication) followed by the IEEE copyright line ©
2011 IEEE. 

 2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original
publication] IEEE appear prominently with each reprinted figure and/or table. 

 3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval. 

  
Requirements to be followed when using an entire IEEE copyrighted paper in a thesis: 

  
1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and
month/year of publication] 

 2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis
online.

 3) In placing the thesis on the author's university website, please display the following message in a prominent
place on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the
IEEE does not endorse any of [university/educational entity's name goes here]'s products or services. Internal or
personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for
advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink. 

  
If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies
of the dissertation.

    

 
Copyright © 2018 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions. 
Comments? We would like to hear from you. Email us at customercare@copyright.com 
 

178



5/16/2018 Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet#formTop 1/1

 
Title: Augmenting Amdahl's Second

Law: A Theoretical Model to
Build CostEffective Balanced
HPC Infrastructure for Data
Driven Science

Conference
Proceedings:

2017 IEEE 10th International
Conference on Cloud
Computing (CLOUD)

Author: Arghya Kusum Das; Jaeki
Hong; Sayan Goswami;
Richard Platania; Kisung Lee;
Wooseok Chang; SeungJong
Park; Ling Liu

Publisher: IEEE
Date: 2530 June 2017
Copyright © 2017, IEEE

LOGINLOGIN

If you're a copyright.com
user, you can login to
RightsLink using your
copyright.com credentials.
Already a RightsLink user or
want to learn more?

 
Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however,
you may print out this statement to be used as a permission grant: 

  
Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

  
1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users
must give full credit to the original source (author, paper, publication) followed by the IEEE copyright line ©
2011 IEEE. 

 2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original
publication] IEEE appear prominently with each reprinted figure and/or table. 

 3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval. 

  
Requirements to be followed when using an entire IEEE copyrighted paper in a thesis: 

  
1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and
month/year of publication] 

 2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis
online.

 3) In placing the thesis on the author's university website, please display the following message in a prominent
place on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the
IEEE does not endorse any of [university/educational entity's name goes here]'s products or services. Internal or
personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for
advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink. 

  
If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies
of the dissertation.

    

 
Copyright © 2018 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions. 
Comments? We would like to hear from you. Email us at customercare@copyright.com 
 

179



Vita

Arghya Kusum Das was born in West Bengal, India, in 1986. He obtained his

bachelors degree (Bachelor of Technology) in Computer Science and Engineering

in 2008 from West Bengal University of Technology. Prior to joining the Doctoral

study at Louisiana State University, Das has multiple years of industry experi-

ence in Wipro Technologies (Hyderabad, India) and Matrix Educare Pvt. Ltd.

(Kolkata, India). He also worked as Junior Research Fellow at Indian Institute of

Engineering Science and Technology (Shibpur, India).

During the last few years of Doctoral study at Louisiana State University, Das

has worked as research assistant at the Center for Computation and Technology

of the University. During his doctoral studies at Louisiana State University, Das

has worked on multidisciplinary research projects involving large-scale scientific

datasets in the domain of bioinformatics, biomedical and environmental science.

Many of the observations, analysis and developments of his Doctoral thesis have

been used in procuring and setting up IBM Power8-based high performance com-

puting cluster called Delta at Louisiana State University.

180


	A Study of Scalability and Cost-effectiveness of Large-scale Scientific Applications over Heterogeneous Computing Environment
	Recommended Citation

	 ACKNOWLEDGMENTS 12pt
	 LIST OF TABLES 12pt
	 LIST OF FIGURES 12pt
	 ABSTRACT 12pt
	Introduction
	Goals
	Objective
	Research Outline

	Background
	Brief History of Big Data and Big Science
	Big Data Challenges in Genomics
	Computation and Storage Models for Scientific Big Data
	Hardware Technologies for Big Data HPC
	Data Sharing Model for Scientific Big Data

	Parallel Short-read Error Correction using Hadoop
	Introduction
	Related Work
	Methodology
	Evaluation
	Conclusion

	Giraph-based Genome Assembler for Large-Scale Genomes
	Introduction
	Related Work
	Methodology
	Evaluation
	Conclusion

	Parallel Long-read Error Correction with Hadoop
	Introduction
	Related Work
	Methodology
	Evaluation
	Conclusion

	Evaluating Different Distributed Cyberinfrastructure for Data and Compute Intensive Applications
	Introduction
	Related Work
	Motivation: Issue in Running Big Data Applications on Traditional Supercomputers
	Evaluation Methodology
	Impact of Different Hardware Component
	Impact of Different Hardware-Organizations
	Conclusion

	A Theoretical Model for Cost-Balanced HPC Cluster for Data Science
	Introduction
	Related Work
	Background
	Proposed Model for System Balance
	Experimental Testbeds: Critical Analysis of Architectural Balance
	Cluster Evaluation Methodology
	Results and Discussion
	Conclusion

	High Throughput Transaction of Big Biomedical Data with Blockchain and P2P Storage
	Introduction
	Related Work
	Background
	SwarMed Architecture
	Evaluation
	Operating Cost of SwarMed on Public Network (Internet)
	SwarMed and ONC's Interoperability Roadmap
	Conclusion

	Conclusion and Future Work
	 REFERENCES
	 APPENDIX: COPYRIGHT AND PERMISSION INFORMATION
	 VITA

