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ABSTRACT

A semigroup lias the congruence extension property (CEP) provided that 

each congruence on each subsemigroup can be extended to the semigroup. 

This property, along with the ideal extension property (IEP) and the group 

congruence extension property (GCEP) are studied in this work. W hether each 

of these properties is productive, hereditary or preserved by homomorphisms 

is determined (except for the homomorphic property for CEP). Conditions 

under which the homomorphic image of a semigroup with CEP has CEP are 

established.

Disruptive element and disruptive pair theory is developed and shown to 

be an im portant concept in the study of CEP and IEP.

Properties of semigroups with CEP are sought. It is proved that each 

semigroup with CEP has index less than four, and that this is both necessary 

and sufficient for a cyclic semigroup to have CEP. It is established that a 

group has CEP if and only if it is a torsion group with GCEP. In particular, 

an abelian group has CEP if and only if it is a torsion group.



Introduction

Motivation for this work was provided by the 1972 paper of Albert Stralka 

regarding the extension of congruences in semigroups. While extensive liter­

ature on group congruence extensions has existed for many years, results on 

semigroup congruence extensions remain limited. Recent results on algebra 

extension which appear the papers of Biro, Kiss, and Palfy and of Day have 

had a  significant influence on this work.

The objectives of this research are:

(1 ) Provide useful methods of detecting whether a semigroup has the congru­

ence extension property (CEP); and

(2) Find conditions under which the homomorphic image of a semigroup with 

CEP also has CEP.

Groups and cyclic semigroups are considered first, since these are impor­

tan t atoms in all semigroups. These are studied in Chapters 2 and 3.

A property which is similar to  the congruence extension property in an 

algebra and called the ideal extension property (IEP) is studied in Chapter 4.

In Chapter 5, a theory pertaining to the relations between the congruences 

on a semigroup and those on its homomorphic images is presented. Special 

tools whose names are borrowed from terms in category theory are developed 

and studied. Based on this analysis, we have derived results which give con­

ditions for a  homomorphic image of semigroup with the congruence extension 

property (CEP) to  also have CEP.

Chapter 6  deals with methods to determine whether a  semigroup has CEP.



These are mostly useful to establish that a semigroup does not have CEP.

Examples are the primary concern of the results of Chapter 7. This de­

velopment is rendered in the spirit of “new examples from old” . Many of the 

examples presented prior to this chapter are computer generated examples of 

finite semigroups. This chapter opens a path to infinite examples. It is limited 

in the variety of types of examples however.

Chapter 8  presents some useful diagrams to summarize the results of the 

other chapters. It also lists some questions which remain open to future re­

search on the congruence extension property for algebraic semigroups.



CHAPTER 1

BASIC CONCEPTS

The primary purpose of this first chapter is to establish the notions that 

will be used in the rest of this work, to recall previous work done in related 

areas, and to present a few general results tha t will be employed in later 

chapters.

A congruence a on a semigroup S  is defined to be an equivalence relation 

on S  which is compatible with the semigroup operation, i.e.,

(1) A s Q v , where A s  — {(x ,x):x  G 5} is the diagonal of S  (er is reflexive);

(2) c " 1 =  <r, where <7 - 1  =  {(6 , a): (a, 6 ) E <r} (c  is symmetric);

(3) a  o er C a-, where er o er is the composition of a  with itself (er is transitive); 

and

(4) If (a, b) E er and (c, d) E er, then (ac,bd) E er (<r is compatible).

It is well-known that if condition (1) and (3) are present, then condition 

(4) is equivalent to the statement: If (a, 6 ) E a and 9 E S t then (os, 6 s) E o 

and (sa ,s 6 ) E <r (see [Clifford and Preston, 1963]).

If S  is a semigroup, T  is a subsemigroup of S  and <r is a congruence on 

T, then a  congruence er on a subsemigroup Q of S  is called an extension  of <r 

provided T  C Q and a  n  (T  x  T) =  a.

A semigroup S  is said to have the congruence exten sion  property  

(CEP) provided that for each subsemigroup T  of $  and each congruence c  on
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T, <r has an extension to S.

The following example illustrates that an extension of a congruence need 

not be unique.

1 . 1  E xam p le , Congruence extensions are not always unique. Let S  = 

{1 ,2 ,3 ,4 ,5} with multiplication defined by the Cayley table:

1 1 1 1 1  

1 1 1 1 1  

1 1 3  3 3 
1 2 3 4 5 
1 2 3 4 5

Let T  be the subsemigroup {3,4,5} and let a  =  {(4,5), (5,4)} U A t-  Then <r 

is a  congruence on T  and each of the following is an extension of <r to $:

<7 =  {(4,5),(5 ,4), (1,3), (3 ,1)} U A s

and

~  { (4 ,5 ),(5 ,4 ),(1 ,2 ),(2 ,1 )}  U A s.

If S  is any semigroup, observe that the diagonal A s  =  { (s ,s ):s  € 5} is a 

minimal congruence on S  and 5" x S  is a maximal congruence on 5.

For a semigroup 5 , let C(S) =  {a: <r is a congruence on 5}. Then p|{cr: a € 

C(S)} =  A 5  and \J{<r:o- € C(S)} =  S  x S.

Observe that a finite semigroup S  whose order is less than or equal to three 

m ust have the congruence extension property, since the only congruences on a 

proper subsemigroup T  of S  are T  x T  and A t ,  and thus (5  x S )  D (T  x T )  =  

T  x T  and A s D (T  x T) — A t-
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If 5  is a semigroup and p is a subset of 5 x 5 ,  then the congruence 

generated by p on S  (denoted (p)s) is the minimal congruence on S  containing 

p. It is immediate that (p) 5  =  p|{<r:<r 6  C(S) and p C <r}.

When no confusion seems likely, we write (p) for (p)s.

1 . 2  P ro p o s itio n . Let S  be a semigroup. Then S  has the congruence 

extension property (CEP) i f  and only i f  each subsemigroup o f S  has the con­

gruence extension property.

P ro o f. If each subsemigroup of S  has CEP, then since S  is a  subsemigroup 

of itself, then S  has CEP.

On the other hand, suppose that 5  has CEP. Let T  a subsemigroup of 5, 

let i f  be a  subsemigroup of T , and let er be a congruence on K .  Since K  is 

a subsemigroup of $  and S  has CEP, there is an extension <r* of er to 5 , i.e., 

<r* D {K  x K ) =  <r. Let W = er* fl (T x T). Then a  is a congruence on T , 

<r D (A' x K ) = er* n  (A' x K )  =  er, and hence er is an extension of er to T . We 

conclude that T  has CEP. |

We will use IN throughout to denote the set of all positive integers and 

for n  6  IN, p ^  denotes the n-fold composition of a relation p.

The following result concerning congruences generated by a  given relation 

can be established using results found in [Clifford and Preston, 1963]. A proof 

is presented here from basic concepts to illustrate some of the techniques to be 

employed in later arguments.

1.3 P ro p o s it io n . Let S  be a semigroup, T  a  subsemigroup o f S , <x a
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congruence on T , 6 = a  U A 5 , and let p — {(*ay, zby): (a,i>) € ^ ,* ,y  € S 1}. 

T ien  the congruence generated by u is given by

Ms = IJ P(n)-
n€lN

P ro o f. Let er* = |J  p<nL We first want to prove that er* is a congruence
nClN

on 1S'.

Since A s C i  C / ? C / ,  we have that er* is reflexive.

In view of the fact th a t <r is symmetric and A 5  is symmetric, we see that 

6 is symmetric. It follows that p is symmetric. Let n  E IN. To see that p ^  is 

symmetric, let (c ,d) E p*n\  Then there exist elements e i ,e 2, . . .  ,e n =  d in  5  

such that (c, ei), (ei, e2) , . . . ,  (en- i , d) are in p. Since p is symmetric, we have 

that (e j, c), (e2, e j , (d, en_ i ) are in p. Reversing the order of this sequence 

we have tha t (d, en_ i ) , . . .  ,(e 2 ,e i) ,(e i ,  c) are in p, and we see that (d, c) E p(n* 

and p is symmetric. From this it follows that er* is symmetric.

To see th a t er* is transitive, let ( a ,6 ),(&, c) E <r*. Then (a, 6 ) E p ^  and 

(b, c) E p^m  ̂ for some n ,m  E IN. Thus (a ,c) € p ^  o p^m) =■ c  er*, and

we conclude th a t er* is transitive.

To complete the argument that er* is a  congruence, we need to show that 

it is compatible with the multiplication on S. For this purpose, let (c, d) E er* 

and let 1  e  S. Then (c,d) E p(m  ̂ for some m  E IN. Thus there exists a 

sequence e i 1 e2 , . . . , e m =  d in  S  such th a t (c ,e i) ,(e i ,e 2 ) , . . . , ( e m_ i,d )  are in 

p. From the definition of p, we have that (sc, ae2), (se i, se2 ) , . . . , (aem_ j , sd) 

are in p, and hence (sc, sd) E p C er*. Similarly, (cs,ds) E er*. We conclude 

th a t er* is a congruence on S.
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Observe that tr C £ C p C cr*.

Let /? be a congruence on S  such tha t tr C (3. We next show that tr* C 

/?. Now A s  C /? and hence 5 =  er U A 5  C  /?. Since /? is compatible with 

multiplication on S, tr C /?, and from the definition of />, we have p C 0. For 

each n  € IN, we have (in view of the transitivity of (3) tha t p ^  C (3. It follows 

th a t tr* =  |J  p(n) C /?.
nglN

Now (<r)s is defined to be the minimal congruence on S  containing cr. 

Since (tr)s contains cr, we have that <x* C (<7 ) 5  from the previous paragraph. 

From the minimality of {er)s, we conclude tha t (<r)s =  tr*. |

1.4 P roposition . Let S  be a semigroup, T  a  subsemigroup o f S , and Jet 

tr be a congruence on T . Then tr has an extension to S  i f  and only i f  {tr)s  is 

an extension o f tr to S.

Proof. Suppose that tr is a  congruence on T  and tr has an extension to

S  Let o  be an extension of cr to S. Then cr is a congruence on S  containing

cr, and hence (0 ) 5  C Zr, Now (0 ) 5  D (T  x T) C a  fl (T X  T )  =  tr. Since 
*

tr C (T  x T )  and cr C (<r)s, we have that tr C (0 ) 5  Cl (T  x T ). We conclude 

th a t {0 ) 5  D (T  x T) =  tr.

The converse is immediate. |

1.5 Corollary. Let S  be a  semigroup. Then S  has the congruence ex­

tension property (CEP) i f  and only i f  for each subsemigroup T  o f S  and each 

congruence tr on T f {tr)s fl (T  x T) = tr.

1 . 6  C orollary. A  semigroup S  has the congruence extension property 

i f  and only i f  for each subsemigroup T  o f S  and each congruence tr on T,
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{a)s n  (T x T) C <r.

P ro o f. This follows from the fact that the reverse containment is always 

valid and from 1.5. |

1.7 P ro p o s itio n . Let S  be a semigroup which is a  union of a tower of 

subsemigroups {S n:n  €  IN}. Then S  has the  congruence extension property 

(CEP) i f  and only i f  each S n has the congruence extension property.

P ro o f. If S  has CEP, then from 1.2, we see that each S n has CEP.

On the other hand, suppose th a t Sn has CEP for each n € IN. Let T  be a 

subsemigroup of S  and let <r be a congruence on T . Let Tn — T  0  S n for each 

n  € IN. Then T  — TC\S — T f \  |J  S n =  [J Tn. Now, for each n € IN, Tn is a
n€lN n£lN

subsemigroup of S n. Moreover, since S n C 5'n+ j, Tfli?n C T n $ n+i and hence 

Tn C Tn+i for each n  6  IN. Let crn = tr Pi (Tn x Tn,) for each n  G IN. Then crn 

is a congruence on Tn. Since Tn C Tn+i, <r H (Tn x Tn) C er H (Tn+i x Tn+1) 

and thus on C o-n+ 2 .

Since Tn is a subsemigroup of Sn and S n has CEP, <rn has an extension 

if n to S n. W ithout loss of generalization, we can assume th a t this extension is 

the minimal extension,i.e., crn — {<rn)sn • Note th a t <rn C an+i and S n C S n+i 

for each n  e  IN and hence a n =  {<rn)Sn Q {<*n)sn+i Q {<J-n+ i)s B + 1  =  Let

o  =  U ?«•
n€lN
We claim th a t Tr is a  congruence on S. It is clear th a t o  is reflexive and 

symmetric. To show transitivity, suppose that (a, 6 ) and (6 ,c) are in  <f. Then 

(o ,6 ) € <rm and {6 , c) G crn for some m , n  € IN. We can assume th a t m < n. 

Thus (a, b) € <rm £  and hence (a, 5) and (6 , c) are both in trn. I t  follows
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that (a, c) E <rn C a  and cr is transitive.

To complete the argument that cr is a congruence, it remains to show that 

<r is compatible with the multiplication on S. For this purpose, let (a, 6 ) £ <r 

and let a £ 5 . Then (a, b) 6  o m and s E Sn for some m ,n  E IN. If m  = n, 

then (so, sb) £ <rm C  cr. If m  <  n , then (a, 6 ) £ irm C a n and hence (sa, si) £ 

^  o. If n <  m, then s € Sn Q $m and (sa , sb) E <rn £  &■ In any case, 

(sa, sb) £ if. Similarly, (aa,i>s) £ if. We conclude that a  is a congruence on S . 

Observe that a =  |J  <rn C (J a n = a.
nelN  nglN

To complete the proof that <r is an extension of tr to S , it remains to 

demonstrate that a PI (T  x  T )  C tr. Let (®,y) €  a  I"1 (T  x T). Then (* , y) E <fm 

and (x,y) E (Tn x  Tn) for some m ,n  £  IN. If m  ~  n, then (x,y) €  if m H 

(Tm X Tm) =  trm. If m  <  n, then (*,y) E 7rm C trn and (x,y)  €  {Tn x  Tn). 

Thus (x,y) E trn n  {Tn x Tn) = crn C cr. If n  < m , then (x ,y ) € and 

(x ,y) £ {Tn x Tn) C (Tm x Tm). Thus (x,y) € trm D (Tm x Tm) =  <rm C tr.

Thus a is an extension of cr to 5 , and we conclude tha t S  has CEP. |

1.8 L em m a. Let S  be a  semigroup which is a  union o f  a  fower o f sub-

semigroups {S a: a  E A }, Jet cr be a congruence on a subsemigroup T  o f f \  Sa
a  e x

and let cra =  {o)sa for each a  E A . Then tr* — {J tra is  a congruence on S.
ct£A

P ro o f. Note that <ra C trp for a < j3, A s  — IJ A sa , and for each a E A,
a £ A

A sa C tra . Thus A s  C (J tra =  tr* and tr* is reflexive.
C*G A

From the fact th a t cr* is a union of symmetric relations, it follows that cr* 

is symmetric.

To see that tr* is transitive, let ( a , 6 ) and (6 ,c) be in tr*. Then ( a ,b) E trp
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for some ft G A , and (6 , c) € <r7  for some 7  G A . W ithout loss of generalization 

we can assume th a t /3 <  7 . Then C and hence (a, b) and (fc, c) are in 

<t7 . Since <rT is transitive, we have that (a ,c) € <r7  C tr*. It follows that tr* is 

transitive.

Let (a, 6 ) G cr* and let s G 5. Then (a, b) £  <ra for some a  G A  and 

j  £ 5(j for f3 G A . If a  =  then (sa,sfe) € ^  If a  < /?, then

(a , 6 ) G <7 a C 0-^3 and (sa, sb) G 073 C a*. If /3 <  a , then s 6  C and 

(sa, s 6 ) £ erQ C cr*. In any case, cr* is compatible with the multiplcation on 5, 

and thus is a congruence on S. |

A congruence a  on a semigroup S  is called a  principal congruence if a  

is generated by a single pair (a, 6 ) G {S x  S).

N otation . If S  is a semigroup and (a, 6 ) G (S  x £ ), then the minimal 

congruence on S  containing the pair (a,fc) is denoted by a 5 (a , 6 ).

If 5  is a  semigroup and (a, b) G (S  x  5), then a 5 (a, &) can be constructed 

as follows:

0 0  -  {(a, 6), (6 , a)}

aj =  ao U A 5

a 2 =  {(xcy,xdy):(c,d)  G a lt x t y  G S 1}

Then

nGN

A semigroup S  is said to have the principal congruence extension
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property (PCEP) p ro v id e d  t h a t  fo r e a c h  ( a ,  b) £ (S  x S)  a n d  e a c h  Bubsem i- 

g ro u p  T  o f  S ,  o 5 (a ,  b ) D ( T  x T )  — a T ( a , 6).

The existence of a maximal extension of a congruence for a subsemigroup 

T  of a  semigroup S  is essential to our proof of the equivalence of the congru­

ence extension property and the principal congruence extension property for 

semigroups.

Let T  be a subsemigroup of a semigroup S  and let cr be a congruence on 

T.  A pair (T*,<r*) is said to be a m ax im al ex ten s io n  of cr provided that 

T* is a  subsemigroup of S  containing T  and cr* is an extension of cr to T* 

which does not extend to a subsemigroup of S  which contains T* as a proper 

subsemigroup.

1.9 L em m a. Let S  be a semigroup, T  a subsemigroup o f S,  and let cr be 

a congruence on T.  T ien  cr has a maximal extension.

P roof. Let V  =  { (P ,7r ) :P  is a subsemigroup of S  containing T  and it 

is an extension of <r to P}. Then (T,tr) € V  and hence V  /  0. Define < 

on V  by (P ,tt) <  (J2,p) provided P  C R  and p is an extension of tt to R . 

Then <  is a partial order on V.  From the Hausdorff Maximality Principal, 

V  contains a maximal chain C. Let T* =  |J{P :(P ,7r) £ and ^  <T* = 

U ((oi) p :( P , t t ) £ C}.  Then cr* is a congruence on T* by Lemma 1.8, and since 

(<r)p is an extension of cr by Lemma 1.4, we have th a t <r* is an extension of cr.

To see that (T m,cr*) is a  maximal extension of <r, suppose that e* has an 

extension p  to a  subsemigroup M  of S  containing T*. Then p  is an extension 

of <t to M  and hence (Af, p) G C. In view of the maximality of C, we have that
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M  =  X"*, and conclude that (X*,(r*) is a maximal extension of <r. |

The following example illustrates that a maximal extension need not be 

unique,

1.10 E x am p le . A  maximal extension congruence is not always unique. 

Let S  be the semigroup of example 1 .1 , let T  = {1,2,4,5}, and let <r = 

{(1,2), (2,1), (4 ,5),(5 ,4)} U Ax- Then the congruence er whose classes are 

{1,2,3} and {4,5} are both maximal extensions of cr to S. In view of the fact 

that S  has CEP, each maximal extension of cr must have S  as its semigroup.

If V  is a class of relations on a semigroup 5 , then \ f  V  denotes the con­

gruence on S  generated by {J V.

The next result was presented for algebraic varieties in [Day, 1970]. Its 

adaptation to semigroups and the maximality argument in the proof that fol­

lows is new.

1.11 Theorem . A semigroup S  has the  congruence extension prop­

erty (CEP) i f  and only i f  S  has the principal congruence extension property 

(PCEP).

Proof. Suppose that S  has PCEP, let T  be a  subsemigroup of S  and let 

cr be a congruence on T . In view of 1.9, we see that cr has a maximal extension 

(M , <r*). We will produce an extension of cr by producing an extension of tr* 

to  S.

Let V  =  {pip  is a  congruence on S  and p fl (M  x M )  C cr*}. Now V  is 

not empty, since A 5  € V.
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Let p £ 7>) and let D  =  {b £ S: (6 , m) £ p for some m £ M }.  Then D is a 

subsemigroup of S.

We claim that D  =  jW. Now A m  C A 5  C p and hence M  C £>. Define 

7  =  {(Pi?) € (i? x Z>):(p,m) £ p and (q,m ) £ p for some m £ JW}.

We will show that 7  is a  congruence on D.  It is immediate that 7  is 

reflexive and symmetric. To see that 7  is transitive let (p,q),(?>r) £ 7 . Then 

G P f°r some m  £ M . Also (g ,n ) ,( r ,n )  £ p for some n  £ M.  We 

obtain that (?,Tn),(n,g) £ p and hence (m ,g),{$,n) £ p. Since p is transitive, 

we have that (m ,n ) £ p. Thus, (p ,m ),(m ,n ) £ p and (r ,n )  £ p. From 

(p ,n ) ,( r ,n )  £ p and the definition of 7  we conclude that (p ,r) £ 7  and 7  

is transitive. Finally, to see th a t 7  is compatible with multiplication on D , 

let (p, q) £ 7  and let d £ D.  Then (p, m ),(q ,m ) £ p for some m  £ M  and 

(dp,dm ), (dq,dm) £ p. It follows that (dp,dq) £ 7 , and 7  is a congruence on

Now if (a ,6 ) £ pH  (M  x Af), then (a ,6 ) £ p. Since {&,&) £ p, we have 

that (a, b) £ 7 . It follows that 7  is an extension of a* to D.  In view of the 

maximality of (Af,<x*), we see that M  =  D.

Let a  £ V  and let /? £ "P. We claim that a  V € V.  Let (a, b) £ (a  V /3) H 

(M  x M).  We want to show that (a, 6 ) € er*. Since (a ,b) € a  V/3, there exists a 

sequence a ~  x 0iXi ,X2 , . . .  t x n = b i n S  such th a t (a ,» i)  £ a , (mi, m2 ) € /?, —  

We can assume th a t (®n_l t 6 ) £ /?. Now a £ M  and (a,® i) £ a . Thus x 2 £ M , 

since a  £ V  and M  =  D.  We also have (x 2 >®i) G /3» since (xi,® 2) £ A  and 

from /? £ 7*, we have z 2 G Af. Continuing recursively, we have th a t *< € Af 

for i =  0 , 1 , . . . , n . Hence, (a,b) € {a fl ( M  x Af)) V (/? fl (M  x Af)) C <r*. We 

conclude that (a  V (3) £ V.
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We next claim that Y ? e  P . Observe that \ f  V f \ { M  x M ) — (J{pn(M  x 

M ) i p  G P }. Let (a, 6) 6 ( V ^ )  C X M).  We want to show that (a, 6) G 

er*. Since ( a ,6) G V there exists a  sequence a =  *0 )®i»*2 , • • • > =  6 

in S  such that ( a , i i )  6 c*i, (*1 , 3:2 ) £  a 2, (xm_i,6 ) € a m for some

a,- G P  for i — 0 , l , 2 , . . . ,m .  From (a ,* i)  £ a i  and (*1 , 3:2 ) G 0 :2 , we have 

(a,®2) £ (cci V a 2) G P , and hence (a, x2) G cr*. From (a ,* 2) G (a i V a 2) and 

(®2 ,* 3 ) £ Q3 , we have ( a ,*3 ) G (a i V a 2 V £*3 ) G P , and hence (a, * 3 ) G cr*. 

By recursion, we obtain th a t ( a , 6 ) G cr*, and conclude th a t \ / V  £ P .

Let S =  V P . We claim that S n  ( M  x M ) =  cr*. To see this, first observe 

tha t 5 G P  from the preceeding paragraph. Thus S fl (M  X M )  C cr*. Let 

( a , 6 ) G cr*. Then a s (a, 6 ) fl (M  x M ) = a w (a , 6 ) C cr*. Thus a s (a, 6 ) G P  

and (a, 6 ) G V 'P ~  ^  follows th a t cr* C 6 and 6 n  (M  X M ) =  cr*.

We conclude that S  has CEP.

The converse that CEP implies PCEP is immediate. |

1 . 1 2  P ro p o s itio n . Let S  be a semigroup and T  a  subsemigroup o f S  such 

that S \ T  (the complement o fT  in S ) is an ideal o f T .  Then every congruence 

on T  can be extended to S.

P ro o f. In view of 1.11, it suffices to  show th a t each principal congruence 

on T  extends to S. Let (a, 6 ) G (T  x  T) and let (c, d) G a 5 (a, 6 ) n  (T x T ). Let 

(c,d) =  (si<w2 , 5 3 6 3 4 ) [or (3 1 6 5 2 , 5 1 0 3 4 ) or (3 3 0 3 2 , 3 3 0 3 3 ) or (3 1 6 3 2 , 3 3 6 3 4 )] for 

some 3 i , 3 2 , 3 3 , 3 4  G S . Since S \ T  is an ideal of £ , s; G T  for t =  1 ,2 ,3 ,4 . It 

follows tha t (c,d) G a r (a , 6 ) and a 5 (a, 6 ) is an extension of a T(o ,6 ). |

Observe th a t if 5 , T , and cr are as in 1.12, then cr =  cr U [(5 \T ) x (5,\T)]
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is an extension of tr to S.

1.13 Corollary. Let S  be a monoid and tr a congruence on the group of 

units f f ( l )  o f S. Then tr i a s  an extension to S.

P r o o f . . This follows immediately from 1.12 and the known fact that 

S \ H( 1 )  is an ideal of S . |

We adopt the following standard convention: If S  is a  semigroup, then 

S 1 = S  if S  is a  monoid (has an identity), and S l = S  U {1} (5  with an 

identity adjoined) otherwise.

1.14 P roposition . A  semigroup S  has the congruence extension property 

(CEP) i f  and only i f  S 1 has the congruence extension property.

P roof. Let S  be a  semigroup. If S  = S 1, there is nothing to prove. Thus 

we assume th a t S  ^  <91.

Let us first see th a t if cr is a congruence on 5 , then tr has an extension to 

iS1. Define <r =  tr U {(1,1)}. Then cr is the desired extension.

If S 1 has CEP, then it follows immediately from 1.2 th a t S  has CEP.

On the other hand, suppose that S  has CEP. Let T  be a subsemigroup of 

S 1. Now if 1 ^ T, then T  is a subsemigroup of S  and in view of the fact that 

5  has CEP, each congruence on T  can be extended to  S  and hence to S 1 as 

above. We thus can assume that 1 E T .

Let (a, 6) €  (T  x  T). To complete the proof (using 1.2), we need to show 

th a t otsl n  (T  x T )  C txT(a, b). If a  =  6 , then 0 5 1  =  A 5 1  and A 5 1  fl (T  x  T )  =  

A y  C a r (a ,6 ). We can thus assume th a t a ^  b. If a ^  1 and 6 ^ 1 ,  then
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a 5 t (a}6 ) =  a 5 (a,6 )U { (1 ,1 )}  a n d a s l n ( T x r )  =  (a ^ (a , 6 ) U { ( l , l ) } n ( r x r )  =  

a T(a,b) U {(1,1)} =  a T(a,£). In the case that b = 1 (or similarly th a t a =  1), 

let (c,d) € a s l (a, 1) n ( T x  T).  We consider three cases:

(1). If d =  1, then c = an for some n  € IN and hence (c,d) — (c, 1) =  

(an , l )  6  a T(a, 1 ).

(2). If c =  1, then the argument is dual to that of case (1).

(3) If c ^  1 and d ^  1, then (c, d) € a s  (a, 1) fl (S  x S)  (which is a 

congruence on S)  and hence (c,d) E a T(a, 1 ). |

A sem ig ro u p  v a r ie ty  is a class of semigroups which is closed under sub­

semigroups, homomorphic images, and cartesian products. Much of the study 

of the congruence extension property to date has been restricted to varieties 

(see [Biro, Kiss, and Palfy, 1977]). If we consider the class of semigroups 

with the congruence extension property, we have seen th a t it is closed under 

subsemigroups (1 .2 ) and we will address the problem of homomorphic images 

later. However, this class is not closed under cartesian products as illustrated 

in the following example.

1.15 Exam ple. The congruence extension property (CEP) is not pro­

ductive. This is an example of a  semigroup S  which has GEP but S  x S  does 

not have CEP.

Let S  =  {1,2,3} w ith multiplication defined by the Cayley table: '

1  1  1  

1 1 2  

1 2  3

Then S  has CEP, since each order 3 semigroup m ust have CEP. Rename the
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elements of S  X S  according to the following scheme:

1 =  (1,1) 4 =  ( 1 , 2 ) 7 =  (1,3)
2 =  (2,1) 5 =  (2,2) 8  =  (2,3)
3  =  (3,1) 6  =  (3,2) 9  =  (3,3)

The Cayley table for S  x  S  is

1 1 1 1 1 1 1 1 1  

1 1 2  1 1 2  1 1 2  

1 2 3 1 2 3 1 2 3  
1 1 1 1 1 1 4  4 4 
1 1 2 1 1 2 4 4 5  
1 2 3 1 2 3 4 5 6  
1 1 1 4 4 4 7 7 7  
1 1 2 4 4 5 7 7 8  
1 2 3 4 5 6 7 8 9

Let T  =  {1 ,4 ,5 ,7 ,8} and let tr — {(7,8), (8,7)} U A y. Then T  is a  Bubsemi- 

group of S  x S  and a  is a  congruence on T . The congruence on S  X S  generated 

by a  is

=  {(1.2), (2,1), (4,5), (5,4), (7 ,8 ), (8 ,7)} U A(JS1<S).

Now {<r)(sxs) n ( T x T )  = { (4 ,5 ),(5 ,4 ),(7 ,8 ) ,( 8 , 7)}U A y ^  <r. It follows that 

S  x  S  does not have CEP.

A group G is said to have the g ro u p  co n g ru en ce  e x te n s io n  p ro p e r ty  

(GCEP) provided that for each subgroup H  of G and each congruence <r on 

H,  there exists a extension of cr to G.

This property will be discussed in detail in a  later chaper.

1 .16 N o tes . The following is a list of facts about congruences in groups 

(see [Clifford and Preston, 1961] and [Bird,Kiss, and Palfy, 1977]).
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(1) [Clifford and Preston, 1961]. Let G be a  group and er a  congruence on G. 

Then there exists a normal subgroup N  o f G such that (a, b) £ <r i f  and 

only i f  a 6 -J  £ N .

(2 ) [Biro,Kiss, and Palfy, 1977]. Let G be a  group. Then G has the group 

congruence extension property (GCEP) i f  and only i f  whenever H  is a 

subgroup o f G and K  is a normal subgroup o f H , there exists a normal 

subgroup N  o f G such that N  n  H  = K .

(3) Corollary. A  group G such that every subgroup H  o f G is normal in G has 

the group congruence extension property (GCEP), or equivalently, abelian 

and hamiltonian groups have GCEP.

The following study of periodic semigroups is based on some of the work 

found in [Stralka, 1972], and is included to complete the material in this area.

1.17  L em m a. Let S  be a  semigroup, let x £ S , and let n £ 1N such that 

x n = x. Then a^+C"-1)* — x for each k £ IN.

P ro o f. The proof is by induction on k.

For the case th a t k = 1, we have a:n+tn- i )  — ® 3 n - 1  =  x nx n~1 =  ®a: n ~ 1 =  

x n — x.

Assume that the result is true for k  =  m  — 1, i.e., a.»+(»-1 )(w»-i) =  Xm 

Then for k ~  m , we have that ajn+(»-i)*» — x n+mn-m _  jcm n - m + i a, n - i  _  

x x n - i  =  x n =  x. |

An element a; of a  semigroup S  is said to be a p e r io d ic  e lem en t provided 

there exists n  £ IN with 1 <  n  such th a t x n — x. The least such n  is called 

the p e r io d  of x. We say th a t S' is a p e r io d ic  se m ig ro u p  if every element of
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S  is periodic.

A semigroup S  is said to be a  u n ifo rm ly  p e r io d ic  sem ig ro u p  provided 

that there exists n  € IN such that x n — x  for every x 6  S.

1.18 P ro p o s itio n . A  Unite periodic semigroup is uniformly periodic.

P ro o f. Let 5  =  { x i, « 2 , . . . ,  s n} and let pi denote the period of Xi for each 

i  =  1 , 2 , . . . ,  n. Let m  be the least common multiple of {pi — 1: i  — 1 ,2 , . . . ,  n} 

and let p =  m + 1. Then for each i, there exists fcj £ IN such that ki(p i—1 ) =  m. 

Let t G IN with 1 <  i  < n. Then asf =  *J" + 1  =  -

Xi from Lemma 1.17. |

A semigroup S  is said to be m ed ia l if for each x ,y t z ,w  G S , xyzw  — 

xzyw . It has been shown in [Anderson and Hunter, 1962] th a t this condition 

is equivalent to x y zx  = xzyx.

1.19 N o tes .

(1) [Stralka, 1972]. A semilattice has the congruence extension property. Re­

call that a sem ila ttic e  is a commutative semigroup in which each element 

is idempotent (i.e., e2 = e for each element e).

(2 ) [Stralka, 1972]. Let S  be a medial semigroup and let A  be a subsemigroup 

o f the regular elements o f S  such that A  is a band o f groups. Then each 

congruence on A  can be extended to S .

(3) [Biro, Kiss, and Palfy, 1977]. A medial uniformly periodic semigroup has 

the congruence extension property.

A h o m o m o rp h ism  of a semigroup S  is a map <f>:S —* T  from S  to a
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semigroup T  such tha t <f>(xy) =  <f>(x)tf)(y) for each x ,y  € S.

If M  is a  subsemigroup of a semigroup S  and <f>\ S  —► M  is a  homomor­

phism of S  onto M  such that <f>\M =  1 m  (the identity of M ), then 0 is called 

a h o m o m o rp h ic  r e tra c t io n  of S  onto M  and M  is called a h o m o m o rp h ic  

r e t r a c t  of S.

1.20 P ro p o s itio n . Let S  be a semigroup, M  a homomorphic retract of 

S , and let <r be a congruence on M . Then there exists an extension o f <r to S.

P ro o f. Let <f>:S—* M  be a homomorphic retraction. Defines* =  {(a, 6 ) £ 

(S  x 5 ):(^ (a ),^ (6 )) €E c}. Then cr* is an extension of <r to S. |

1.21 C o ro lla ry . Let S  be a commutative semigroup having a group 

minimal ideal M . Then each congruence on M  can be extended to S.

P ro o f. Let e be the identity of M . Then x t-+ ex is a homomorphic 

retraction of S  onto M . |

1.22 C o ro lla ry . I f  S  is a finite commutative semigroup, then each con­

gruence on the minimal ideal M (S ) o f S  can be extended to S.

It is well-known that the minimal ideal of a  compact commutative semi­

group is a  group.



CHAPTER 2

THE GROUP CONGRUENCE EXTENSION PROPERTY

Much of the work in this chapter is an amalgamation of the work of 

previous authors. These results will be used in later chapters.

A study of congruences on groups appears in [Biro,Kiss, and Palfy, 1977] as 

a  digression in their study of the congruence extension property for varieties 

of algebras. Their study was restricted to varieties (a class which is closed 

under subalgebras, products, and liomomorphisms). The congruence extension 

property for semigroups is not productive (closed under products), but it is 

productive in the case of abelian groups.

A non-abelian group G such th a t every subgroup of G is a normal subgroup 

is called a h a m ilto n ian  g ro u p .

It has been shown [Rotman, 1965] th a t a  hamiltonian group G is of the 

form G =  Q x A  x 2?, where Q is the quaternions, A is a (abelian) group 

in which each element has order 2, and B  is an abelian group in which each 

element has odd order.

A group G is called a t-g ro u p  if the relation is a normal subgroup o f is 

transitive among the subgroups of <?, i.e., if Z, M , and N  are subgroups of G 

such that L < M  < N , then L < N  (where <3 indicates normal subgroup).

Recall from Chapter 1  th a t a  group G has the group congruence extension

19
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property (GCEP) provided that for each subgroup H  of G and each congruence 

<r on H , then exists a  congruence 7r on G such th a t ifn  (H  x H ) =  <r, i.e., a  has 

an extension to G. It is immediate that a group with the congruence extension 

property will also have the group congruence extension property. However, 

the converse of this statem ent is not true, as will be shown later in the next 

chapter.

2.1 N o tes . The following sequence of results is contained in [Biro,Kiss, 

and Palfy, 1977], [Best and Tausky, 1942], and [Zacher, 1952]. Let G be a 

group and <r a congruence on G.

(1) There exists a  normal subgroup N  of G such th a t (<t, ft) € <r if and only if 

ab-1 e  N .

(2) If e is the identity of G1 then N  — { g  €  G: ( g , e )  €  tr}  (in (1)).

(3) A group G has the group congruence extension property (GCEP) if and 

only if whenever S  is a subgroup of G and i f  is a normal subgroup of H , 

there exists a  normal subgroup N  of G such th a t N  C\H = K .

(4) A group G has GCEP if and only if each homomorphic image of G has 

GCEP.

(5) [Biro,Kiss, and Palfy, 1977] In  a finite group G with GCEP, the relation 

is a  normal subgroup o f is transitive among the subgroups of G.

(6 ) If G  has GCEP, then every subgroup of G has GCEP.

(7) If G has GCEP, then every subgroup of G is a  t-group.

(8 ) [Best and Taussky, 1942] A p-group G which is a  t-group is either abelian 

or hamiltonian.

(9) [Biro,Kiss, and Palfy, 1977] A finite group with GCEP is solvable.
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(10) [Zacher, 1952] If G is a solvable finite t-group and the prime divisors of 

the order of G are pi <  p% <  ■ • • <  pr , then there exist Sylow pi-subgroup 

Pi of G such that:

(i) For each i, 1 <  j  < r , Pi is abelian or Hamiltonian; and

(ii) 1  <  i < j  < r  implies Pi is normal in Na(Pj) (the normalizer of Pj in 

G), and for each g  6  Pi, there exists n  € IN such tha t g ~ 1a g  =  a n  for all

a € Pj.

(11) [Biro,Kiss, and Palfy, 1977] A finite group G has GCEP if and only if G 

is a solvable t-group.

(12) (see [Howie, 1976]) Let G be a group, M  and N  normal subgroups of 

<7, and let <tm  and cr?v be the congruences defined on G by M  and N , 

respectively. Then trm  fl <?& = % njv and <tm  ° &N — &m n •

(13) [Best and Taussky, 1942] A normal subgroup of a  t-group is a t-group.

An immediate consequence of 2.1(1) and 2.1(2) is th a t the group defined 

on a group G  by the universal congruence G x G is just G, and the group 

corresponding to  the diagonal congruence A q is the trivial group consisting of 

the identity of G.

2.2 P roposition . A group G such that each subgroup is  normal has the 

group congruence extension property.

Proof. Let H  be a subgroup of G and suppose that <r is a congruence 

on H . Then <r determines a  normal subgroup K  < H . Let <r =  {(a, 6 ) 6  (G  x 

G): o6 _ 1  6  K }.  Then i f  is a  subgroup of G, and hence, from our hypothesis, we 

have th a t K < G . It follows that or is a  congruence on G. Clearly, x H ) =



22

<T. |

2.3 C o ro lla ry . Abelian and hamiltonian groups have the group congru­

ence extension property (GCEP).

2.4  P ro p o s itio n . Let G be a Unite group. Then G has the group congru­

ence extension property (GCEP) i f  and only i f  G has the congruence extension 

property (CEP).

P ro o f. This is immediate from the fact th a t a  Bubsemigroup of a  finite 

group is a subgroup. |

2 .5  P ro p o s itio n . Let {G „:a  € A} be an ascending family o f groups with 

the group congruence extension property (GCEP), and let G ~  6  A}.

Then G has the group congruence extension property.

P ro o f. Let H  be a  subgroup of G? and let i f  be a normal subgroup of H . 

For each a  € A, let H a = H  C\ Ga. Then H a is a  subgroup of Ga for each 

a  6  A. Let K a — K  ft Ga . Then K a is a  subgroup of Ga for each oc G A.

We claim that K a is a normal subgroup of HQ for each a  €  A. To prove 

this let x  6  K a , and let y  € H a . Then a €  i f  and y e  H . Since K  < H , 

y~ l z y  €  K .  Since x  and y  are both in Ga , we have y~*xy €  Ga, and thus 

y~*xy  € (Ga H K )  =  K a . It follows tha t K a is a normal subgroup of H a .

In view of the fact th a t Ga has GCEP for each a  € A, we see th a t there is a 

normal subgroup N a of Ga such that N a C\Ha ~  K a . Let N  =  (J{*^a:0£ € A}. 

We will prove th a t N  is a normal subgroup of G.

To see that N  is a  subgroup of G, let x ,y  G N .  Since {Ga :a  € A} is
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ascending, there exists /? £ A  such that x ,y  6  Gp. Thus x ,y  €  N  fl Gp =  Np. 

It follows th a t x y ~ 1 £ Np C N  and N  is a subgroup of G.

To establish that N  is normal in G, let * £ N  and let y  £ G. Then, since 

{Ga : a  £ A }  is ascending, there exists j3 £ A  such th a t x ,y  £ Gp. In particular, 

x  £ Np. In view of the normality of Np in Gp we have th a t y~ l xy  £ Np C N  

and hence N  is normal in G.

From the fact that N  D H  = K ,  we conclude th a t G has GCEP. |

2.6 E xam ple. This is an example of a  finite group which does not have 

the  congruence extension property (GEP). Let G = S s (the symmetric group 

on five elements). It is well known th a t G is not solvable. In view of 2.1(11), 

we see that G does not have the group congruence extension property (GCEP). 

From 2.4, we conclude that G does not have CEP. It was observed in [Best 

and Taussky, 1942] that S n is a t-group for each n  ^  4.

2.7  E xam ple. The additive group of real numbers ]R has the group 

congruence extension property (GCEP) (2.3) but does not have the congruence 

extension property (CEP), since IR contains the additive semigroup IN which 

does not have CEP (see 1 .2 ).

2 . 8  Exam ple. This is an example of a group Q which has the congru­

ence extension property (GEP), but Q x Q does not hare GEP. Let Q be the 

quaternion group. Then Q is a  finite group with the group congruence exten­

sion property (GCEP) and hence Q has CEP by 2.4. To see that Q x Q does 

not have CEP, we will show that it does not have GCEP (since, again Q x  Q 

is finite).
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Let G =  (i) x Q, where (i) denotes the subgroup of Q generated by i. 

Then G is a subgroup of Q x Q. We claim that G does not have GCEP. Let 

H \ =  (z) x {j). Then Hi is a normal subgroup of G. Let

H i =  {(*, j ) ,  ( -* , - j ) ,  (1 , ! ) , { - ! ,  —!)}■

Then Hz is an normal subgroup of H i. Now * =  ( i ,k) € G and y  =  ( i , j )  6

H 2. Moreover, x~~l yx  =  (~z,-A )(z, j)(z, A) =  (—i3, —Jfejfe) — (z,zA:) =

Thus, x~*yx £  i f 2 - It follows that H 2 is not normal in G. Thus G is not a t-

group, and hence does not have GCEP. Since GCEP is hereditary, we conclude 

that Q x Q does not have CEP.

A 0 -finite group is called a to rs io n  g ro u p . THb conforms to the usual 

definition of a  torsion group, i.e., a  torsion group is a  group in which each 

element has finite order.

2 . 0  E x am p le . This is  an example o f  a torsion group which does not have 

the  congruence extension property (CEP). Let Q be the quaternion group of 

2.8. Since Q X Q is finite, it is a  torsion group. Thus Q x Q is a  torsion group 

th a t does not have CEP.

2.10 Lem m a. Let G be a torsion group. Then G has the congruence 

extension property (CEP) i f  and only i f  G has the group congruence extension 

property ( GCEP).

Proof. It will be sufficient to show th a t each subsemigroup of G  is a 

group. To prove this let T  be a  subsemigroup of G and let x €  T . Then 

x n €  T  for each n  €  IN. Since G is a  torsion group, there exists m  € IN such



25

th a t x m = e (the identity of G). It follows th a t e ? T .  Since x  * x m 1 =  e, we 

see th a t * - 1  =  ® m _ 1  is also in T, and hence T  is a  subgroup of G. |

2.11 Theorem . Let G be a group. Then G has the congruence extension 

p r o p e r t y  (GEP) i f  and only i f  G is a torsion group with the  group congruence 

extension property (GCEP).

Proof. Suppose that G is a  torsion group with GCEP. Then G has CEP 

from. 2 .1 0 .

Suppose, on the other hand, th a t G has CEP. Then G does not contain 

an infinite cyclic group, since otherwise G would contain a copy of the additive 

semigroup IN of natural numbers and this would be contradictory to the fact 

th a t CEP is hereditary (1 .2 ). It follows th a t G is a  torsion group. Since CEP 

implies GCEP, we conclude th a t G is a torsion group with GCEP. |

2.12 Corollary. Let G be an abelian group. Then G has the congruence 

extension property (CEP) i f  and only i f  G is a torsion group.

2.13 Corollary. The homomorphic image o f a group with the congruence 

extension property (CEP) has the congruence extension property.

Proof. Suppose that G has CEP and that IT is a  homomorphic image of 

G. Then, according to 2 .1 1 , G has the group congruence extension property 

(GCEP) and is a  torsion group. It follows from 2.1(4) that S  has GCEP. It 

is immediate th a t H  is a torsion group. Thus from 2.11, we conclude that H  

has CEP. |



CHAPTER 3

CYCLIC SEMIGROUPS

Cyclic semigroups are the atoms of every semigroup, i.e., each semigroup 

is a  union of its cyclic subsemigroups. Thus a  characterization of cyclic semi­

groups with the congruence extension property (CEP) is an im portant step 

in searching for a  general characterization. We present a  characterization of 

cyclic semigroups with CEP in this chapter (3.8). As a  consequence of this 

result, it is established th a t each semigroup with CEP must have index a t most 

three (3.9).

A semigroup S  is called a cyclic sem igroup if S  is generated by some 

a e  S . We write 0(a) =  { a ,a 2 , a 3, .. .}  and denote th a t S  is cyclic with 

generator a by writing S  =  9(a).

Observe th a t a  semigroup S  is cyclic if and only if S  is a homomorphic 

image of the additive semigroup of positive integers.

3.1 P roposition . A n infinite cyclic semigroup does not have the congru­

ence extension property (CEP).

P roof. Suppose th a t S  is an infinite cyclic semigroup with generator a. 

Then S  =  { a ,a 2 , a 3, . ..} . Let T  =  {a2 ,a 3 ,a 4, . ..} .  Then T  is a subsemigroup 

of S . Let I  = {a2 ,a 4 ,a s ,a fl, ...} . Then J  is an ideal of T  and p = ( I  x J)U  A y 

is a congruence on T .

26
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Suppose tha t p is an extension of p to S . Then (a, a) e  A 5  C p and 

(a 2 ,a 4) G p C p, and hence (a2, a5) €  p. It follows that (a3, a5) €  p (1 (T x  T). 

In view of the fact that (a3, a5) ^ p, we see that p cannot be an extension of 

p , This contradiction proves that an extension cannot exist, and hence S  does 

not have CEP. ■

Let S  be a finite cyclic semigroup. A number s £ IN is called the index  

of S  provided that S  — { a ,a 2 , a 3, . . .  ,a n} with these element distinct and 

an+1 =  a* for 1  <  s < n.

Observe th a t a finite cyclic semigroup of index s can be written

S  — {a, a2, . . . ,  a a_1} U . . .  , a n}

and hence

5  =  {a,u 2 , . . . , u i- 1 } U M (5 ), 

where M (S )  is the minimal ideal of S  and is a cyclic group.

3.2 L em m a. Let S  be a finite cyclic semigroup o f index 2 and let T  be a 

proper subsemigroup o f S . Then T  is a  subgroup o f the minimal ideal M (S )  

o f S .

P roof. Let S  = {a} U M (S )  and let T  be a subsemigroup of S. If o were 

in T, then we would have T  — S . Thus a tfzT  and T  C M (S ). |

3 .3  P roposition . Let S  be a  finite cyclic semigroup o f index 2. Then S  

has the congruence extension property (GEP).

P ro o f. Let 5  =  {a} U M (S )  be a finite cyclic semigroup of index 2, let 

T  be a  subsemigroup of S , and let <r be a congruence on T. Since M (S )  is
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a cyclic group, it has the group congruence extension property (GCEP) from

2.3. In view of the fact that M (S )  is a finite group, each subsemigroup of 

M (S )  is a group, and hence M (S )  has CEP. Now if a £ T , then T  = S  and 

there is nothing to prove. Thus we can assume th a t T  is a  subsemigroup of 

M (S ). Let o* be an extension of cr to M (S ).

We claim that F  =  cr* U {(a, a)} is an extension of o* (and hence of o) to 

S. It is immediate that F  is reflexive, symmetric, and transitive.

It remains to show th a t if ( a " ,a m) £ o* (1 <  m ,n ) , then (an+1 ,c m+1) € 

cr*. From 2.1(1), there exists a  (normal) subgroup N  of M (S ) such that 

o* = {(a,i>) € (M (5) x M (S)):ab~1 € IV}. Since (an ,a m) £ <r*, we have

that ana~m £  N . Let u  =  ana~m. Then u £ N  and uam =  an. Thus

uam+1 = an+1, so tha t u = an+1 a - (m+1). I t follows that £ N

and £ N  and (cn+1 ,a m+1) £ cr*. We conclude that S  has CEP. |

3 .4  L em m a. Let S  = {a, a 2 }U M (S) he a finite cyclic semigroup o f index 

3 and let T  be a  subsemigroup o f S , then either:

(i) T  =  5 ;

(ii) T  — H  for some (normaj) subgroup o f M (S);

(Hi) T  = 6(a2); or

(iv) T  = 0(a?) U M (S ).

P ro o f. Let H  =  T  fl M (S )  and observe that i f  is a  subgroup of Af(S). 

If a £ T, then T  =  S . If a  i  T  and a 2  £ T, then T  =  T  fl M (S ) = H <  M {S). 

We therefore, hereafter in this proof, assume that a £  T  and th a t a2  £ T. 

From the fact th a t a2 € T, we conclude th a t a2k 6  T  for all k £ IN.

If a3 £  T , we claim that T  =  {a2} U M (S ), To see this, let n  £ IN with
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n  > 2. Then a?n+1 — a2̂ n~ ^  • a3, and hence a2n+1 G T  for n  > 2. It follows 

in this case that T  — {a2} U M (S).

If a2Tn+1 G T  for some m G IN, we claim th a t o3 G T . To see this, observe 

that there exists r  G IN such that a2m+1ar =  a3, since M (S ) is a finite cyclic 

group. Now if r  is even, then ar G T  and we have that a3 G T . If r ~  2j  + 1  for 

som ej G IN, i.e., r  is odd, then a3 =  a2m+1a2*+1 — 02m+2>+2 — a2("»+j+i) g j 1,

From these observations, we conclude th a t T  = 0(a2) if no odd power of 

a is in T , and T  — 9{a2) U M (S ) otherwise. |

3.5 Lem m a. Let S  = {a, a2}U M (£) be a finite cyclic semigroup o f index 

3 and let T  be a subgroup o f M (S ). Then each congruence <r on T  can be 

extended to S .

P ro o f. There exists a  normal subgroup H  of T  such th a t cr =  {(®,j/) G 

(T  x  T): x y ~1 G if} . Since M (S )  is a finite cyclic group, it has the congruence 

extension property. Thus cr has a extension cr* to M (S ). Let

<7 =  cr* U { (a ,a ),(a2,a 2)}.

Then cf is an equivalence relation on S  and extends cr. It remains to show that 

cr is compatible with multiplication on S . For this purpose, let (ar ,a m) G o  

and let a3 G £ , with r ,m ,s  G IN. We want to show th a t (ar+ ' , a m+*) G <r.

If 3 <  s, then a" G Af(£), and hence (ar+*,am+*) € cr* C a.

If s =  1 or s = 2, then (ar+ ,,a m+*) G <r* by the same argument used in 

the proof of 3.3.

Finally, we have (o ,a)(o2,a 2) =  (a3,a 3) G A*f(S) C  o* C  o. |

3.0  Lem m a. Let S  =  {a, a2} U M {S) be a cyclic semigroup o f index 3,
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and Jet T  = {a2} U M(S) .  Then each congruence o  on T  can be extended to 

S.

Proof. Let <r be a congruence on T  and let <7 =  <r U {(a, a)}. We claim 

th a t o  is an extension of cr to S . It is immediate that cr extends cr and is an 

equivalence relation on S. I t remains to show that cr is compatible with the 

multiplication on S . For this purpose, let (ar ,a m) £ cr and let a9 £ £ , with 

r ,m ,s  £ IN. We claim that (or+a,a m+a) £ cr C cr.

Suppose that r  >  1. Then m  > 1 and hence («r ,a n ) £ <7 . Now if s > 1, 

then (ar+% am+<) € cr follows from the fact that cr is a congruence on T. If 

s = 1, then (ar+1, am+1) £ <7 follows by using the argument in the proof of 3.3.

U r  =  If then m  =  1 and hence (o1+*,a1+*) £  A t  C <t . §

3.7  Lemma. Let S  =  {a, a2} U M ( S )  be a  cyclic semigroup o f index 3, 

and let T  =  0(a2). Then each congruence <r on T  can be extended to 5 .

P roof. Now T  =  {a2} U H , where H  = T  fl M ( S )  is a subgroup of M fS1). 

Let cr be a congruence on T,  and let erjj be the restriction of cr to H.  Then 

<7 h  extends to a congruence crjvf on M(S) ,  and cr* =  {(a2,a 2)} U c m  is an 

extension of cr to the subsemigroup {a2} U M ( S )  of S.  According to  3.6, cr* 

extends to a  congruence W on S.  It is immediate th a t cr is an extension of cr 

to S . |

3.8  T heorem . Let S  be a cyclic semigroup. Then S  has the congruence 

extension property (CEP) i f  and only o f S  is finite and S  has index at most 3.

P ro o f. Suppose th a t S  is a finite cyclic semigroup with CEP and let s
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denote the index of S.

Suppose th a t 4 <  s. Denote S  — { a ,a2, a3, . . .  ,a n} U M (S), let T  = 

{a2 ,a 3, . . .  ,a n} U M (5), and let I  =  {a2 ,a 4 ,a 5 ,a 6, . .. ,o n} U M(S) .  Then T  

is a subsemigroup of S  and I  is an ideal of T.  Let cr =  ( I  x I )  U A t - Then cr 

is a congruence on T. Let ~a be an extension of <r to S.  Then (a 2 ,a 4) 6  cr C cr 

and a € S.  Thus (a3, a5) G a. We thus have that (a3 ,a 6) G <r fl (T  x T) =  <r. 

Prom this contradiction, we conclude th a t s < 3.

If S  is a finite cyclic semigroup of index s <  3, then it follows from 3.3,

3.4, 3.5, 3.6, and 3.7 th a t S  has CEP. |

A semigroup S  is said to be ^-finite provided that each cyclic subsemi- 

group of S  is finite.

3 .9  Theorem . Let S  be a semigroup with the congruence extension 

property (CEP). Then S  is 9-Unite and each cyclic subsemigroup o f S  has 

index at most 3.

P roof. Each subsemigroup of S  has CEP from 1.2. Thus each cyclic 

subsemigroup of S  has CEP. The conclusion follows from 3.8. |

The following example shows th a t the converse of 3.9 is not valid.

3 .10  E xam ple. This is an example o f a Unite semigroup S  such that each 

element has index at m ost 2 and S  does not have the congruence extension 

property (CEP).
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Let S  =  {1,2 ,3 ,4 ,5} with Cayley table given by:

1 1 3  3 3 
1 2 3 4 4
3 3 1 1 1
3 4 1 1 1
3 3 1 1 1

Let T  be the subsemigroup {1,2,4,5} and let a  be the congruence on T  defined 

by<r =  « 3 ,5 ) ,(5 ,3 )} U A r .

The congruence on S  generated by <r is

M s  =  {(3,4), (4 ,3 ),(3 ,5 ), (5 ,3 ),(4 ,5 ), (5,4)} U A s ,

and {(r} 5  fl (T  x T) /  <r. It follows that S  does not have CEP.

Now 0(1) =  {1}, 0(2) =  {2}, 0(3) =  {1,3} (3s =  3), 0(4) =  {1,3,4} 

(4 4  =  4 2 =  1 ), and 0(5) =  {1,3,5} (54  =  52  =  1). It follows that each of 1,2, 

and 3 have index 1 and tha t each of 4 and 5 have index 2.



CHAPTER 4

THE IDEAL EXTENSION PROPERTY

In this chapter we discuss the im portant concept of the ideal extension 

property (IEP) of a  semigroup (ideals of subsemigroups are determined by 

ideals in the parent semigroup). The relation between the congruence extension 

property (CEP) and IEP is investigated. It is established th a t IEP is preserved 

by homomorphisms (4.3).

A special class of semigroups called ideal semigroups (congruences are de­

termined by ideals) is discussed in detail and those with CEP are characterized 

(4.9).

This chapter is rich in examples which yield a substantial quantity of 

information on semigroups with IEP.

A semigroup S  is said to  have the id ea l e x ten s io n  p ro p e r ty  (IEP) 

provided th a t for each subsemigroup T  of S  and each ideal I  of T  there exists 

an  ideal J  of S  such th a t J  l~l T  =  I .

4.1 P ro p o s itio n . A semigroup S  has the idea1 extension property (IEP) 

i f  and only i f  each subsemigroup o f S  has the ideal extension property.

P ro o f. If every subsemigroup of S  has IEP, it is clear tha t S  has IEP.

Suppose th a t S  has IEP, let T  be a subsemigroup of £?, let K  be a sub- 

semigroup of T , and let I  be an ideal of K .  Since K  is also a  subsemigroup of 

S  and S  has IEP, there exists an ideal J  of S  such that / n K  — I .  Now J O T

33
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is an ideal of T  and J  C\T f\ K  — J  C\K = I .  I t follows th a t T  has IEP. |

4 .2  E x am p le . To see that the semigroup {IN, + ) does not have the ideal 

extension property (IEP), let T  =  {2 ,3 ,4 ,5 ,. . .}  and let I  =  {2 ,4 ,5 ,6 , . . .} .  

Then T  is a  subsemigroup of IN and I  is an ideal of T.

Suppose there exists an ideal J  of IN such that J O T  — I .  Then 2 6 / C  /  

and 1 G IN. Thus 2 +  1 =  3 6  J .  We obtain that 3 G J  Pi T , but 3 ^ I .  This 

contradiction establishes that (1N,-+) does not have IEP.

As a consequence of 4.1, we see th a t the additive semigroup IH =  [0 ,oo) 

does not have the ideal extension property, since IN is a  subsemigroup and IN 

does not have the ideal extension property.

4 .3  P ro p o s itio n . A  homomorphic image o f a semigroup with the ideal 

extension property (IEP) has the ideal extension property.

P ro o f. Let <f>: S  —*■ 5* be a  homomorphism of a semigroup S  with IEP 

onto a  semigroup S*. Let T * be a subsemigroup of S * and let I * be an ideal 

of T*. Then T  =  is a subsemigroup of S  and I  =  is an ideal

of T . Since S  has IEP, there exists an ideal J  of S  such th a t J  ft T  = I .  Let 

J * — Then, since <f> is onto 5*, we have th a t J * is an ideal of 5*.

To complete the proof, we will establish th a t J* fl T* =  /*.

Let x G J* flT*. Then $ _ 1 (x) C J  and ^ - 1 (x) C T . Therefore, <ff~1(x) C 

J  n  T  = I .  It follows th a t x  G <£(J) =  I*.

Let y G I*. Then ^ ( y )  C / =  J n T .  Thus y €  <f>( J f \ T )  =  =

J* fl T \

We conclude that J* n  T* =  7*, and hence S * has IEP. |
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For a subsemigroup T  of  a semigroup S  and a €  T,  we let J t (&) denote 

the ideal of T  generated by a,i.e.,

J T (a) = T 'a T 1 -  {a} U o T U T aU  TaT.

A semigroup S  is said to have the principal ideal exten sion  property  

(PIEP) provided that for each subsemigroup T  of S  and each a  €  T, —

Js(a)  ("1 T.

4 .4  T h e o re m . Let S  be a semigroup. Then S  has the ideaJ extension 

property (IEP) i f  and only i f  S  has the principal ideal extension property 

(PIEP).

P ro o f. Suppose that S  has the principal ideal extension property, and let

T  be a subsemigroup of S  and I  and ideal of T. Let J  =  (J J s (a ) . Then J  is
a e l

an ideal of S  and /  fl T  =  ( U «7s(<0) fl T  — U (Js(o )  n  T)  =  (J J r (u )  =  P
a6 /  a £ l  a Si

We conclude th a t S  has the ideal extension property.

On the other hand, suppose that S  has the ideal extension property, and 

let T  be a  subsemigroup of S  and a €  T . Then, since Jr{a ) is an ideal of 

T , there exists sin ideal I  of 5  such th a t I  fl T  =  Since a € L, we

have tha t J s ( ° )  £  I t  and hence Js(o ) fl T  C I  fl T  = Jx{a)• To establish 

the other inclusion observe th a t Jr(a)  = T l aT l C S 1a S 1 =  «7s(u) and hence 

J t {o)  i- D T . |

A congruence <r on a  semigroup S  is called an id ea l congruence provided 

th a t there exists an ideal I  of S  such th a t <r =  ( /  x I )  U A 5 .

A semigroup S  is called an id ea l sem ig ro u p  if each congruence on S  is
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an ideal congruence.

4.5 P ro p o s itio n . Let S  be an ideal semigroup. Then:

(1) S  has a zero element 0; and

(2) I f  p is  a congruence on S , then p — (I  x  I)U  A s, where I  =  {® £ S: (*,0) £

P}•

P ro o f. To prove (1), observe that A =  { (s,a):s  G 5} is a congruence 

on S . Since 5  is an ideal semigroup, there exists an ideal I  of S  such that 

A  =  (J  x I )  U A. Thus I  x I  C A and 1 x 1 =  {(0,0)}. We conclude that 

I  = {0} and S  has a  zero element 0.

To prove (2), let p be a congruence on S . Then, since S  is an ideal 

semigroup, there exists an ideal J  of S  such th a t p =  (J  X  I)  U A $ . Let 

J  = {x £ 5:(® ,0) £  />}. Then J  is an ideal of S  and J  C I .  To complete 

the proof, we will Bhow that I  C J.  Let x £ I .  Then (®,0 ) € / x J C p .  We 

conclude th a t ® €  J.  I

4.6  P ro p o s itio n . The homomorphic image o f an ideal semigroup is an 

ideal semigroup.

Proof. Let 5  be an ideal semigroup and let <f>: S  —► T  be a homomorphism 

of 5 onto a semigroup T  and let <r be a congruence on T . Define p =  {(®,y) £ 

S  x 5:{^(®),<^(y)) £ tr}. Then p is a  congruence on S . Since 5 is an ideal 

semigroup, p = ( I  x I )  U A s  for some ideal I  of S. Let J  = ^ (/)-  Then J  is 

an ideal of T.

We claim th a t <r = (J  x J )  U A t . Suppose th a t (^(®),^(t/)) £ <r. Then 

(®,y) € p. If ® =  y, then (®,y) £ A t - If ® ^  y, then (®,y) £ I  x  I  and
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(<f>(z),<f>{y)) G J  x J- It follows that cr C ( /  x / )  U At*

On the other hand, let (a,b) G J  x J .  Then a =  ^ (a) and b = ip(y) for 

some (a ,y ) G ( I  x I) .  Thus (a ,y ) € p and we conclude th a t (0 , 6 ) 6  cr. It 

follows that cr — (J  x J)  U A t  and T  is an ideal semigroup. |

4.7  P roposition . Each ideal semigroup with the congruence extension 

property (CEP) has the ideal extension property (IEP).

P ro o f. Let S  be an ideal semigroup with CEP, T  a subsemigroup of 5 , 

and let I  be an ideal of T . Then cr = ( I  x J) U A t  is a  congruence on T. 

Since S  has CEP, there exists an extension cr of cr to S . Since S  is an ideal 

semigroup, there exists an ideal J  of S  such that <f — (J  x J )  U A s. Since 

(7 = ? n ( ! T x  T ), we obtain th a t I  — J  f ) T,  and hence S  has IEP. |

4.8  Exam ple. This is an example of an ideal semigroup which has the 

ideal extension property and does not have the congruence extension property.

Let S  =  {1 ,2 ,3 ,4 ,5} with Cayley table:

1 1 1 1 1  

1 1 1 1 2  

1 1 1 3  1  

1 1 3  4 1 
1 2  1 1 5

Let T  =  {1,2,3}. Then T  is a  subsemigroup of S  and a  =  {(2,3), (3,2)} U 

A y  is a congruence on T  and (cr)s contains the pair (2,1) =  (5,5)(2,3). Thus 

its restriction to  T  is not a.

4.0  P roposition . Let S  he an ideal semigroup. Then S  has the congru­
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ence extension property (CEP) i f  and only i f  S  has the ideal extension property 

(IEP) and each subsemigroup o f S  is an ideal semigroup.

P ro o f. Suppose th a t $  has IEP and that each subsemigroup of S  is

an ideal semigroup. We claim that S  has CEP. For the purpose of proving

this claim, let T  be a subsemigroup of 5  and let cr be a congruence on T.
»■

Then, since T  is an ideal semigroup, there exists an ideal J  of T  such that 

<r — ( I  X I )  U A y. Since S  has IEP, there exists an ideal J  of S  such that 

J  fl T  = I .  Let ? = ( J x  J ) U A s .  Then cr is a  congruence extension of a to 

5 , and hence 5  has CEP.

Suppose, on the other hand, that S  has CEP. Then S  has IEP from 4.7. 

Let T  be a subsemigroup of S  and let <r be a congruence on T . Then, since S  

has CEP, there exists an extension <r of <r to S . Since S  is an ideal semigroup, 

there exists and ideal J  of S  such that W = (J  x J )  U A 5 . Let I  = J  V\T.  

Then I  is an ideal of T  and a — ( I  x / )  U Ay- We conclude that T  is an ideal 

semigroup. |

4 .10  E x am p le . This is an example o f a semigroup S  such that each 

subsemigroup o f S  is an ideal semigroup and S  does not have the congruence 

extension property (CEP).

Let S  = {1 ,2 ,3 ,4 ,5} with multiplication table:

1 1 1 1 1  
1 1 1 2  3 
1 2  3 1 1  
1 1 1 4  5 
1 4  5 1 1
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Now S  is congruence free and each subsemigroup of 5  is an ideal semigroup. 

The only ideals of S  are S  and {1}. The semigroup S  does not have CEP, and 

hence does not have IEP.

To see that S  does not have CEP, consider the subsemigroup T  — {1,3,5} 

and let a  =  {(1,5), (5, l)}U A y. Then a  is a  congruence on T , Since (2,2) € A s 

and (1,5) € a , we have that (2 ■ 1,2 * 5) =  (1,3) €  (ot)s. Thus (1,3) € 

{a ) 5  fl (T  x T), but (1,3) $ a . It follows tha t a  does not extend to S , and we 

conclude th a t S  does not have CEP.

4.11  P roposition . Let S  be an ideal semigroup. Then S  is congruence 

free i f  and only i f  S  is O-simple.

Proof. Suppose first that S  is O-simple and let f  be a congruence on 

S . Then there exists an ideal J  of 5  such th a t tr =  ( /  x I )  U A s. Since S  is 

O-simple, either I  =  {0 } or I  =  S . If I  — {0 }, then <r — As* If I  =  S , then 

tr =  S  x S. In any case, we conclude th a t S  is congruence free.

Now suppose that S  is congruence free and that J  is an ideal of S. Then 

p =  (I  X  I )  U A s  is a  congruence on S . Since S  is congruence free, either 

p =  A s  or p =  S  x S . If p = A s, then I  =  {0 }. If p = S  x  S f then I  = S . We 

conclude th a t S  is O-simple. |

A  commutative semigroup S  which has the congruence extension property 

(CEP) has the ideal extension property (IEP). This is established as a  corollary 

in chapter 6 .

4 .12  E xam ple. This example shows that the property o f being an ideal 

semigroup is not productive. Let T\ =  {1,2} and let Tj =  {1,2,3} with
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multiplication tables:
1 1 
1 1

and
1 1 1 
1 1 2 
1 2  3

respectively. Let S  = Ti x  T2 and rename the elements of S  according to the 

following scheme: 1 =  (1,1), 2 =  (1,2), 3 =  (1,3), 4 =  (2,1), 5 — (2,2), and 

6 =  (2,3). Then the multiplication table for S  is:

1 1 1 1 1 1  
1 1 2  1 1 2  
1 2  3 1 2  3 
1 1 1 1 1 1  
1 1 2  1 1 2  
1 2  3 1 2  3

Then each of T\ and T2 are ideal semigroups. Consider a s (5 ,6) and 

observe th a t for each ideal K  of 5 , 1 E K .  In particular, if 5 e  K ,  then 

(1,5) € (K  x  K ). However, (1,5) ^  a s (5,6). It follows th a t S  is not an ideal 

semigroup.

4 .13  E x a m p le . This is  an example o f  an ideal semigroup which contains 

a subsemigroup which is not an ideal semigroup. Let 5  be the  semigroup of 

Example 4.8, i.e., 5  =  {1,2 ,3 ,4 ,5} with multiplication table:

1 1 1 1 1  
1 1 1 1 2  
1 1 1 3  1 
1 1 3  4 1 
1 2  1 1 5
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Let T  be the subsemigroup {1,2,3}. Then S  is an ideal semigroup. Ob­

serve that each ideal of T  must contain 1. Let a  =  {(2,3), (3,2)} U A y. Then 

a  is a  congruence on T  and a  =£ (I  x 7) U A r  for any ideal 7 of T . We conclude 

that T  is not an ideal semigroup.

4.14 E xam ple. This example illustrates that the ideal extension property 

(IEP) is not productive. Let S  — {1,2} with multiplication:

1 1 
1 1

and let T  =  {1,2,3} with multiplication:

1 1 1 
1 1 1 
1 2  3

Then each of S  and T  have IEP. In S  x T  we rename the elements according 

to the scheme: 1 =  (1,1), 2 =  (1,2), 3 =  (1,3), 4 =  (2,1), 5 =  (2,2), and 

6 — (2,3). The multiplication table for S  x T  is:

1 1 1 1 1 1  
1 1 1 1 1 1  
1 2  3 1 2  3 
1 1 1 1 1 1  
1 1 1 1 1 1  
1 2  3 1 2  3

Consider the subsemigroup U = {1,2,4,5} of S  x T  and let I  = {1,5}. 

Then I  is an ideal of U. Let J  be any ideal of S  x T  containing J. Then 5 € J  

and 3 £  5  x T, and hence 3 • 5 =  2 €  J . We see th a t 2 6 J  H U, but 2 ^ 7 .  We 

conclude th a t S  x  T  does not have IEP.
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4.15 E xam ple . This is an example of a cyclic semigroup which is not an 

ideal semigroup. Let S  — { a ,a2} U M (5), where M (S ) =  {a3  =  a 7 ,a 4 ,a 5 , a 6}, 

be a  finite cyclic semigroup of index 3. Let <t =  a s (a 3 ,a s). Then a =  

{(a3 ,a 5 ) ,(a 4 ,a 6 ) ,(a 5 ,a 3 ) ,(a 6 ,a 4)} U A 5  and <r ^  ( I  x I )  U A 5  for any ideal I  

of



CHAPTER 5

HOMOMORPHISMS

The study of congruences in semigroups is closely related to the study of 

homomorphisms, since the k ern e l of a  homomorphism <f>‘. S —* X  defined:

ker^ =  {{a) &) £ S  x Sx<j>(a) — <̂ (6)}

is a  congruence on S , and each congruence <r on a  semigroup S  may be regarded 

as the kernel of the natural homomorphism it: S  —► S/<r. We consider this 

connection in detail when congruences on subsemigroups of 5  can be extended 

to S.

It remains an unsolved problem to determine whether the homomorphic 

image of a  semigroup with the congruence extension property (CEP) also has 

CEP (see [Biro,Kiss, and Palfy, 1977]). Some partial results in this connection 

are obtained in 5.23 and 5.24. These are applied to show th a t the ideal quotient 

image of a  semigroup with CEP also has CEP. In light of the groupoid example 

of [Biro,Kiss, and Palfy, 1977] (discussed in 5.12 and 5.27) which shows that 

the homomorphic image of a groupoid with CEP need not have CEP, it ap­

pears th a t associativity has an im portant role in a resolution of this problem. 

Recall th a t a g ro u p o id  is a set with a  binary operation (not necessarily asso­

ciative). Indeed, the groupoid under consideration is not associative. There is 

yet another feature of this groupoid th a t comes to the attention of the reader. 

This groupoid is finite and contains no idempotent element. It is well known 

th a t finite semigroups have idempotents.

43
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If <̂ : 5  — T is a  homomorphism of a  semigroup S' onto a semigroup T , P  

is an ideal [or subsemigroup] of S , and Q is an ideal [or subsemigroup] of T, 

then it is well-known that <f>(P) is an ideal [subsemigroup] of T  and is

an ideal [subsemigroup] of S.

5.1 L em m a. Let <f>: S  —► T  be a  homomorphism o f  a semigroup S  onto 

a  semigroup T, let Q be a  subsemigroup o f T , and let <r be a  congruence on 

Q. Then the relation p =  x (<£(*)> € ff} ls a

congruence on the subsemigroup 0 _1(Q).

P ro o f. It is immediate th a t p is reflexive and symmetric. To see that 

it is compatible with multiplication on let € p and let t G

<£-1 (Q). Then {4>{xt),4>{yt)) -  (<f>(x)<j>(t),<j>(y)$(t)) €  <r, since (x ,y )  € p and <r 

is compatible with multiplication on Q.

To see that p is transitive, let (s,f),(f,u>) G p. Then (tf>(s),<f>(t)) and 

(<^(f),^(tw)) are in o. Since <r is transitive, we have that G <r.

Hence (s,u?) G p and p is transitive. |

The relation p in 5.1 is called the p u llb ack  relation of <r.

5.2 P roposition . Let S  be a semigroup. Then the following are equiva­

lent:.

(1) The semigroup S  has the congruence extension property (CEP);

(2) For each subsemigroup T  o f S  and each homomorphism <f>:T —* Q o f T  

onto a semigroup Q, there exists a homomorphism  7 : 5  —* R  o f S  onto a 

semigroup R  and an embedding a: Q —*■ R  such that the following diagram 

commutes:



where i:T  —*■ S  is the inclusion map; and 

(3) For each suibsemigroup T  o f S  and each congruence <r on T , the congruence 

{<r)s has the property that (<r)s fl (T  x  T ) — <r.

Proof. To prove that (1) implies (2), suppose th a t S  has CEP, let T  

be a subsemigroup of 5 , and let fr.T  —*■ Q be a  homomorphism of T  onto 

a  semigroup Q. Let <r =  ker(<£)= {(a, b) €  (T  x  T):<f>{a) =  ^(6)}. Then er 

is a  congruence on T. Let <r be an extension of <7 to S  and let R  = S jo , 

Let y : S  —* R  be the natural homomorphism. Since ker 0  C  ker7 , there is a 

one-to-one homomorphism o: Q —»■ R  such th a t the above diagram commutes.

To prove th a t (2) implies (1), suppose th a t the condition of (2) holds. Let 

T  be a  subsemigroup of S  and let a  be a congruence on T. Let Q = T jo  and 

let <j>:T —y Q be the natural homomorphism. Let 7 :S  —* R  and a:Q  —* R  

be the homomorphisms which the condition states exists to make the diagram 

above commute. Then <r =  ker7  is an extension of <r to  S.

That (3) implies (1) is immediate, since (in the case of the condition of

(3)), (<r)s is an extension of a  to S.

To prove th a t (1) implies (3), suppose th a t S  has CEP, let <r be a  con­

gruence on a  subsemigroup T  of S , and let a  be an extension of <r to  S . Then 

v  Q {o)s Q Of since {<r)s is the congruence on S  generated by <7 . In view of 

the fact th a t 7r is and extension of <r, we see th a t <7 fl (T  x  T) =  tr, and hence 

{<7) s  fl (T  x  T ) =  a. |

6 .3  N o tes . The following is a summary of some basic facts found in
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[Clifford and Preston, 1963] and in [Howie, 1976].

(1) I f  p is a congruence on a  semigroup S , then S /p  is a semigroup with the 

operation defined by a*b* =  (at)* for each a*,b* 6 S /p , and the map 

p*:S —* S /p  defined by p{x) =  x* is a homomorphism, where x* denotes 

the p-class o f x.

(2) Let p be a congruence on a semigroup S . I f  <f>: S  T  is a homomorphism  

su c h  th a t  p C  ker <f>> then there exists a unique homomorphism 0: S /  

p —* T  such that <f> and 0  have the same range and the following diagram 

commutes:
&

S —   >T

S /p
1S / p

0

-* S /P

(3) Corollary. I f  p and <r are congruences on S  with p C <r, then there exists 

a unique homomorphism 0 i S / p  —► S / p  such that the following diagram 

commutes:
<r*

S ----------- > S/cr

0

s b
ls/p

S /p

5 .4  P ro p o s itio n . Let S  be a semigroup, T  a subsemigroup o f S , cr a 

congruence on T , and let a  be a  congruence on S. Then a  is an extension of a 

i f  and only i f  there exists an embedding <f>:T/cr —> S/<r such that the following 

diagram commutes:
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S  — —— * Sf(T
A <4«

i <j>

T  ^ - 4  T /tr

where i is the inclusion map  of T  into S , and a  and (3 are natural homomor- 

phisms.

P ro o f. Suppose first that F  is an extension of cr. Then <f> is induced, 

since ker/? — a C o 1 — k e ra . To see tha t <f> is one-to-one, let s , t  € T  such that 

<j>(/3(s)) =  <f>((3(t)), Then a(z(t)) =  a(i(s)) and ( t , j )  € F. Since F f l(T x T )  =  <r 

and t ,s  € T , we have that ( t,s )  € <r. It follows that (3(t) — (3(3), and <(> is 

one-to-one.

On the other hand, suppose tha t the one-to-one homomorphism a  exists 

which makes the diagram above commute. Let (s, t )  € F  fl (T  x T). Then 

za(s) =  zct(f). From the diagram, we have <j>((3(s)) = <(>((3(t)). Since <f> is one- 

to-one, we see that /?(s) =  /3(f). Since /3 =  ker<r, we conclude that (s ,t)  £ o, 

and F  is an extension of a  to 5 . |

5.5 Corollary. Let S  be a semigroup. Then S  has the congruence exten­

sion property (CEP) i f  and only i f  for each  su b sem ig ro u p  T  and each homo­

morphism <j>:T —* K  o f T  onto a semigroup K , there exists a homomorphism  

7 : iS —* R  onto a semigroup R  and an embedding a: K  —> R  such that the 

diagram

S  * R

i a

<b
T — “ ----->K

commutes, where i is the inclusion o f T  into S.
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5.6 N otes. The bicyclic sem igroup IB is the semigroup on two gener­

ators p and q with an identity subject to the relation qp=  1 (see [Clifford and 

Preston, 1961]).

(1) If  4> is a homomorphism  of IB onto a semigroup S,  then either <f> is an 

isomorphism or ^(IB) is a cyclic group.

(2) Corollary. I f  a is a  congruence on IB, then IB/<7 is isomorphic to IB or is 

a cyclic group.

5.7 E xam ple. The semigroup IB does not have the congruence extension 

property (CEP).

Let T  be the subsemigroup {p,p2, . . .}  of IB, and let I  — {p3,p 4t ...} . 

Then I  is an ideal of T  and T j l  is a  three element semigroup { r ,r 2,0}, where 

r r 2 =  0. Let <r be the congruence on T  defined by <r — ( I  x I )  U Ax* Suppose 

th a t <r can be extended to a congruence p on IB. Then the diagram:

IB --------- ► IB /a
A A

i <f)

T --------- ► T /tr

commutes and 4> embeds T/cr into IB/p. Now IB/p is either a  cyclic group or 

is isomorphic to IB. In either of these cases we would have th a t ^(0) is a zero 

element for the image, which cannot be the case. We conclude that IB does 

not have CEP.

6.8  P roposition . Let S  be a  finite cyclic semigroup o f index s and let 

<f>: S  —*■ T  be a homomorphism o f S  onto a  semigroup T . Then T  is a cyclic 

semigroup with index t such that t < s.
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P roof. Let S  — {a, a2, . . .  ,a * ,a s+1, . .. , a n+1 =  a®} and let b =  ^(<z). 

Then b is a  cyclic generator for T. Let t be the index of T. Then 6 n + 1  =  

^(on+1) =  4>{a*) =  ba implies that t < s. |

5.0 Corollary. Let S  be a finite cyclic semigroup with the congruence 

extension property and let <f>: S  —* T  be a  homomorphism o f S  onto a  semigroup 

T. Then T  has the congruence extension property (CEP).

Proof. This follows from 3.8 and 5.8. |

5.10 P roposition . Let S  be an ideal semigroup with the congruence 

extension property and let S  —> T  be a homomorphism o f S  onto a semigroup 

T . Then T  has the congruence extension property.

P roof. In view of 4.7, we see tha t T  is an ideal semigroup. From 4.10, 

it sufficisis to show th a t T  has the ideal extension property and that each 

subsemigroup of T  is an ideal semigroup. For this purpose, let P  be a sub­

semigroup of T . Then Q =  <£- 1 (P ) is a subsemigroup of S  and hence is an 

ideal semigroup. Again, P  =  is an ideal semigroup. Let I  be an ideal 

of P  and let M  — <£- 1 (I). Then M  is an ideal of S  and there exists an ideal 

J  of S  such tha t J  D Q = M . Let K  — Then K  is an ideal of T  and

K  fl P  = I .  I t follows that T  has the ideal extension property and hence has 

the congruence extension property from 4.10. g

5.11 N o te . It was established in [Biro,Kiss, and Palfy, 1977] that if G 

ib a  finite group with the group congruence extension property (GCEP) and 

<f>:G —* H  is a  homomorphism of G onto a group i f ,  then S  has GCEP. An
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alternate argument is provided by observing that H  is solvable and hence is a 

t-group. A finite solvable t-group is known to have GCEP,

5.12 E x am p le . This is an example of a groupoid S  with the congruence 

extension property and a groupoid X  which is a homomorphic image of S  and 

does not have the congruence extension property.

This example appears in [Biro,Kiss, and Palfy, 1972], We let S  be the set 

{1 , 2 ,3 ,4 ,5}  with multiplication table:

3 3 3 3 3
3 3 3 4 4 '
3 3 2 5 4
4 4 5 5 4
4 4 4 4 4

It is a  m atter of checking to verify th a t S  has CEP. Let X  =  {a, 6 , c, d) 

with multiplication table:

c c c c 
c c c d 
c c b d 
d d d d

Define <f>: S  —> X  by $(1) — a, <f>(2) ■— h, ^(3) — c and ^(4) =  ^(5) =  d. Then 

<f> is a homomorphism of the groupoid S  onto the groupoid X .

Let Y  denote the subgroupoid {a, b, c} of JC, and let a  =  {(a, 6 ), (fe, a)} U 

A y . Then a  is a congruence on Y .  However, the congruence on X  generated 

by a  is ( a ) x  ~  X  x X .  Thus {a ) x  n{K  x Y )  ^  a  since (c,5) E ( a ) j t f l ( y  x  Y)  

bu t is not in a. I t follows th a t X  (which is a homomorphic image of S ) does 

not have CEP.

Observe th a t (c ,6 ) E {a)x  because X  is not associative. Notice that 

(6 , a) E a  and thus (6 ,o )(d ,d) ~  (id, ad) =  (d,c) E (a )x - Also notice that
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((6 d)c,(ad)c) =  (d ,6 ) G {a)x-  By symmetry and transitivity, we obtain that 

(c ,6 ) €  (<x)x- On the other hand, if S  were associative, then (bdc, adc) — 

((6 d)c, (ad)c) =  (6 (dc),a(dc)) and thus (d ,6 ) — (d,c). From this, we have 

(c, b) =  (c, d) * (d, b) =  (c,d) * (d, c) =  (c,c) £ A y , where * is defined by 

(x ,y )  * (y, z) =  (®,z). In this case the congruence would extend.

5.13 L em m a. Let S  be a  semigroup and <f>: S  —► X  be a homomorphism  

o f S  onto a  semigroup X ,  let a  be a congruence on X , and Jet p be the pullback 

o f a  to S. Then ker 0  C p. Moreover;

(1) I f  p — A s, then a  = A x ;

(2) I f  a  = A x , then p — ker <j>;

(3) I f  a  =  A x  and tf> is one-to-one, then p = A 5 ;

(4) p = S  x  S  i f  and only i f a  = X  x X ; and

(5) I f  (3 is a congruence on X  with pullback <r, and a  C j3, then p C <r.

P ro o f. To see that k er^  C p, let (ic,y) G ker p. Then tf>(x) =  <f>(y)t so 

th a t (^(®), G A x  C a . It follows th a t (s ,y )  G p .

To prove (1), suppose th a t p = A s , and let (®,y) € a . Let a, 6 G S such 

th a t ^(o) =  * and <f>(b) =  y. Then (^(n),^(&)) G a  and (a,h) G p. Since 

p =  A s , a — b, and hence ® =  ^(fe) =  y. Thus a  C A x  and a  =  A x-

To prove (2), suppose th a t a  = A x- Let (a, 6) G p. Then (<f>(a),ij>(b)) G 

a  — A x  and ^(o) =  <f>(b). We conclude th a t (a, 6) G ker <£, and p C ker 

Since we have already shown th a t ker ̂  C p, we see th a t p — ker 4>.

To prove (3), suppose th a t <x — A x  and th a t <f> is one-to-one. Let (a, b) G p. 

Then (<£(a), <£(&)) G a  =  A x , and hence <f>(a) = <f>(b). Since <f> is one-to-one, we 

have a = 6 , and (a, 6 ) G As- Thus p C A s  and p =  A s-
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To prove (4), first suppose that p = S  x  S ,  and let (®,y) G X  x  X .  Let 

a, 6  € S  such that — x  and <̂ (6 ) =  y . Since p =  S  x  5 , we have (a , 6 ) € p , 

so th a t = (x ,y)  E a. Thus a = X  x  X .  Suppose, on the other

hand, that a  =  X  x  A", and let (a, 6 ) G S  x  S.  Then G X  x  X  =  a ,

and hence (a, 6 ) G p. It follows th a t p = S  X S.

To prove (5), suppose that 0  is a  congruence on X  with pullback er, and 

th a t a  C 0. Let (a, 6 ) G p. Then (^ (o ),^ ( 6 )) G ex, and hence (<^(a),^(fe)) G 0. 

Since cr is the pullback of 0 , we conclude that (a, 6 ) G <r and p C  <r. |

5.14 P ro p o s itio n . Let <f>:S —* X  be a homomorphism o f a semigroup 

S  onto a semigroup 1 ,  « 2  a  relation on X , p2 a  relation on 5 , a  =  U
nGlN

(the transitive closure of ol2), and Jet p =  (J p ^  (the transitive closure of
nGlN

p2). Then

(1) I f  p2 is contained in the pullback o f a 2, then p is contained in the pullback 

o f ol;

(2) I f  the pullback o f ex2 is contained in p2, then the pullback o f a  is contained 

in p; and

(3) I f  p2 is the pullback o f a 2, then p is the pullback o f a .

P ro o f. To prove (1), suppose that p2 is contained in the pullback of ol2 

and let (o,5) G p. Then there exist r 0  ̂ 1 , 1*2 , . . .  , r n G S  such that a  =  t*o, 

b =  r n , and ( r i_ i ,r ;)  G p2 for i  =  1,2, Since p2 is contained in the

pullback of a 2, we have th a t ) , G ex2 for i =  1 ,2 , . . .  ,n , and hence

(^ (a ) ,^ ( 6 )) G a . We conclude that p is contained in the pullback of a .

To prove (2), let (a, 5) be in the pullback of a. Then (^(a), (£(&)) G a , 

and thus there exists t o , t i , . . . , t n G X  such th a t to =  t n — <j>(b), and
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(<i_i, if) € ot2 for i  =  1,2, . . . , n .  Let r 0 =  o, rn =  6, and r; E S such that 

for i  =  1,2 ,. . . , n  -  1. Then (0(ri_i,<£(ri)) € for i =  1 ,2 , . . . ,n ,  

and hence ( r ;_ ! , r*) G p2 for i  — 1 , 2 , . . . ,  n, since the pullback of a 2  is contained 

in p2 > I t follows that ( a ,6) G p , and we conclude tha t the pullback of a  is 

contained in p.

The conclusion of (3) is an immediate consequence of (1 ) and (2). |

5.15  P roposition . Let <f>: S  —► X  be a  homomorphism o f a  semigroup 

S  onto a  semigroup X .  Let p be a  congruence on S  ancf define a  =  |J  a ^  

where a 2 = { (x ty) € ( X  x  X ) : ( x , y )  — (<f>(a),<f>{b)) for some (a,b) G p}. Then 

a  is a congruence on X .

Proof. Now a  is the transitive closure of a 2. Hence it is sufficient to show 

that <x2 is reflexive, symmetric, and compatible with the multiplication on X .

Since A s  C p, {(<^(s),^(s)):.s G 5} C a 2. Let x G X  and let s G S  such 

that ^(s) =  ®. Then (x , x )  G a 2, and we conclude th a t a 2 is reflexive.

The symmetry of a2 is immediate from the symmetry of p.

Finally, to show th a t a 2 is compatible with multiplication on X ,  let 

(®, y) £ a 2 and let z  G X .  Then =  (<f>(a),<f>(b)) for some (a, ft) G p.

Let s G S  such th a t <f>(s) =  z. Then, since p is a  congruence, (so,sft) G p and 

(z x , z y ) =  (^(^)^(a),^(a)^(ft)) =  (^(sa),^(sft)). We conclude that ( zx , zy)  G 

a 2 and similarly (x z , y z ) G a 2. |

The congruence a  in 5.15 is called the pushout of the congruence p.
. «1

5.16 L em m a. Let fr.S X  be a homomorphism o f  a  semigroup S  

onto a semigroup X .  Let p be a  congruence on $  and  define a 2  =  {(®,y) G
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(-X- x  X ) : ( x , y )  =  (0(a), 0(6)) for some (a, 6 ) G p}. I f  ker 0  C  p, then a 2  is a  

congruence on X ,  and hence 0,2 is the pushout o f p to X .

Proof. Let (a,to) and (iv,y)  be in 0 2 . Then there exist (a,c) and (<f,6 ) 

in p such th a t (x ,w )  — (0(a), 0(c)) and (w t y ) =  0(d), 0(6)). Since w =  0(c) =  

0(d), we have that (c,d) G ker0  C  p. Thus (a ,c ),(c ,d ) and (d ,6 ) are all in p. 

Since p is transitive, we conclude th a t (<x, 6 ) G p. Thus (®,y) =  (0(a), 0(6)) and 

(a, b) G p. We conclude that (x ,y )  G ot2  and a 2 is transitive. The conclusion 

follows from 5.15. |

5 .17  L em m a. Let <j>:S X  be a homomorphism o f a  semigroup S  onto 

a semigroup X ,  let a  be a congruence on X  and let p be the pullback o f ot to 

S. Then a  is the pushout o f p to X .

Proof. Now p =  {(a, 6 ) G 5 x  S: (0(a), 0(6)) G ct}. Let a 2 =  {(*>!/) £ 

X  x X :  ( i,! /)  — (0(a), 0(6)) for some (a, 6 ) G p}. Then a  =  {J (transitive
n€lN

closure) is the pushout of p by definition. Now if (a, b) G ker 0, then 0(a) =  

0(6), (0(a), 0(6)) G A x  C a  and (a, ft) G p. Thus ker0  C p. Prom 5.16, a 2  is 

a congruence on X  and hence ot2 =  a  is the pushout of p.

It remains to show th a t a 2  =  F°r this purpose, let (a;,?/) G o;2. Then 

(®*y) =  (0(a), 0(6)) fof  some (a , 6 ) G p, and (a;,y) G ot. We have tha t a 2 Q <*•

To prove the other inclusion, i.e., that a  C  a 2, let (®, y) G a ,  and let 

a, 6  G S  such that x  =  0(a) and y — 0(6). We see th a t (0(a), 0(6)) =  (® ,t/) G a 

and hence (a, 6) G p . From this and the definiton of a 2, we have (x,y)  G a 2. 

It follows that a  =  a 2. |

5 .18  L em m a. Let $ : S  —* X  be a homomorphism o f  a semigroup S  onto
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a semigroup X .  Let p be a congruence on S  and let a  be the pushout o f p to 

X . Let <7 be the pullback o f a  to S . Then p C  cr.

P ro o f. Let (c,d) G p. Then (0(c), 0(d)) G « 2  C a . Thus (c,d) G {(0 , 6 ) G 

S  x  Si (0(a), 0(5)) G a} =  <r. We conclude that p C  <r. 1

5.19 L em m a. Let <f>;S —* X  be a homomorphism o f  a  semigroup S  onto 

a  semigroup X ,  let p and o  be congruences on S , and let a  and 0  be the 

pushouts o f p and <r, respectively. I f  p C  cr, then a C 0.

P ro o f. Let a 2 =  G X  x X : (®,y) =  (0(a), 0(5)) for some (a, 5) G p}

and let (32 =  {(#»y) G X  x X :(® tj/) =  (0 (a ) ,0(6)) for some (a , 6 ) G <7}. Then 

a  is the transitive closure of 0C2 and 0  is the transitive closure of 02- It will be 

sufficient to show that <*2 C 02. Let (®,y) G Then (x ,y ) =  (0(a), 0(5)) for 

some (a ,5) G p■ Since p C <r, we have th a t (a, 5) € <7 and hence (®,y) G |

5 .20 L em m a. Let <j>:S —> X  be a homomorphism o f a  semigroup S  onto 

a semigroup X , let Y  be a subsemigroup o f X ,  let T  =  0 “ 1 (Y"), let a  be 

a congruence on Y ,  let a  = (a)x> let p be the pullback o f a  to T , and let 

p = {p)s- Then a  is the pushout o f p.

P ro o f. Let a j  =  a l l A ^ ,  and let =  {(*uy, x v y ) : ( u , v )  G a i  and ®,y G 

X 1}. Then a  is the transitive closure of Let 0 2 — {(0(a)j 0(^)): (a > &) € p}- 

To establish th a t a  is the pushout of p, we need to show th a t a  =  (J 0 ^ .
n€W

To show that |J  0 ^  £  2 , it is sufficient to show th a t 02 Q a , since a  
n e w

is a  congruence (and hence is transitive). To establish th iB  containment, let 

(a1, 5') G 02- Then a' =  0(a) and 5' =  0(5) for some (a, 5) G p (from the
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definition of /?2 ). Now p = (J p%*\ where P2 =  {(sct,adt): (c,d) E (p U A s)
nSlN

and s , t  E S'1}. We consider four cases:

C ase  1. If (a, ft) E p, then (0(a), 0(6)) E ot C a , since p is the pullback of a 

(and hence a  is the pushout of p from 5-17).

C ase  2. Suppose that (a, ft) =  (sct,sd t) for some (c,rf) E p and s , t  E S 1. 

Then (0(c), 0(d)) E a  (again, since a  is the pushout of p from 5.17), Thus 

(0(a), 0(ft)) =  (<f>(sct), <f>(sdt)) =  (0(s)0(c)0(t),0(.s)0(d)0(t)) E 0C2 C a.

C ase  3. If (a, 6 ) =  (set, set) for some (c,c) E A s, then (a, ft) E A 5 . Thus 

(0(a), 0(a)) E A x  C a .

C ase  4. Suppose that there exists a  sequence c q ,c i ,. . .  ,c m such that a =  Co, 

ft =  cm, and (c j_ i, Cf) E P2 for i — 1 ,2 , . , . ,  cm. Then (0 (c ;_ i), 0(c;)) E c*2 and 

« « ) ,# ( * ) )  €  a i m) C 5 .

To show the other inclusion, note again that since p is the pullback of a , 

a  is the pushout of p by 5.17. Since p C p, the pushout of p is contained in 

the pushout of p from 5.17. Thus a  is contained in the pushout of p. Now, 

the pushout of p is a  congruence on X  which contains a , and hence it must 

contain a . |

5.21 L em m a. Let 0: S  —> X  be a. homomorphism o f  a semigroup S  onto 

a  semigroup X , Let p be a  congruence on S  and let a  be the pushout o f p to 

S . Then p is the pullback o f a  i f  and only i f  her 0 C p.

Proof. Let a be the pushout of p and suppose that ker0 C  p. Then
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a  — (J a 2n\  where a 2  — {(^(«), ^(&)): (ct, 6 ) € p}. From 5.16, we obtain that 
nGlN

a  — ct2 m  this case. It follows th a t if (^ (a ) ,^ ( 6 )) E a , then (a, 6 ) E p, and 

hence p  is the pullback of a .

On the other hand, if p is the pullback of ot, since A x  C  a , we have ker <f> 

(=  pullback of A x  from 5.13) is contained in p from 5.14. |

If a  and (3 are congruences on a semigroup S , then a  V /? denotes the 

congruence on S  generated by a  U (3.

5.22 L em m a. Let <f>: S  —► X  be a  homomorphism  o f a semigroup S  onto 

a semigroup X .  Let p be a congruence on S  and let ot be the pushout of p to 

X . Then <r = p V k e r^  is the pullback o f a  to S .

Proof. Let p  be the pullback of a  to S . Then p  =  {(s,<) 6 5  x 

S'. (<f)(s)i<f>(t)) E a} . Now k er^  C  p and p C  p  by 5.18. Since p  is a  con­

gruence on S y we obtain that a — p V ker <f> C  p.

To establish the other inclusion, let (c,d) E p. Then (<^(c), <fi{d)) = (x ,y)  6
(tila.  Recall that a  =  u  <*2 \  where a 2  =  {(^(a),^(&)):(a,&) € p}. 

neN
If (®,y) E a 2, then (x ,y) =  (<f>(a)y<f>(b)) for some (a, b) E p. Thus = 

(f>{a) =  x  and <f>(d) =  <£(6 ) =  y. It follows th a t (c,o) E ker <£, (u ,6 ) E p,

and (6 , d) E ker <f>. In view of the transitivity of <r — <j> V ker <f>, we have that

(c, d) E er.

If there exists (x ,z), (z ,y ) E a 2, then 

(x ,z ) — (0(o),^(e)) for some (a ,e) E p and

(z ,y ) s= (0 (/) ,^ (6 ))  for some ( / ,  6 ) E p.

Since z =  >̂{e) — * =  ^(a) =  ^(c), and y =  <̂ {d) = ^(5), we have
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that

( c ,a )  G ker<£, ( a ,e )  G p , ( e ,/ )  €  ker<£, ( /,& ) G p, a n d  (6 ,d )  G ker<£.

Thus (c, d) G ker V p — o.

An extension of this argument establishes tha t (c,d) G cr if we assume
/ v

th a t (z ,y ) £ for some m  €  IN* It follows that fi C cr.

Prom the arguments above, we conclude that p  = o  =  p V ker <j>, ■

5.23 T heorem . Let <f>:S —* X  be a  homomorphism o f a semigroup S 

onto a  semigroup X , Jet Y  be a  subsemigroup o f X , and Jet a  be a congruence 

on Y . I f  the pulJback o f {a)x  JS an extension of  the pullback o f o l, then a 

extends to a  congruence on X .

P roof. Let T  =  ^ - 1 (y ) ,  a =  (a).*-, p  the pullback of a  to T ,  and let 

p = (p)s-  Prom 5.20, a  is the pushout of p and by 5.22, cr =  p V ker <f> is the 

pullback of a . According to our hypothesis, we have that <r fl (T  x T ) = p .

We will show that a  is an extension of a  to X . For this purpose, let 

(a;, y) G cl D (F  x y ). Since <t is the pullback of a , there is a pair (a , b) G o such 

th a t (x,y)  — (<£(a),^(6 )). Since (®,y) G (y  x Y ), it is also true that (o ,6 ) G 

( T x T ) .  Thus (a,b) G o / l ( T x T )  — p. It follows that (x ,y ) =  G a,

since p  is the pullback of a . We conclude th a t a  fl ( Y  x  y )  C a , and a  is an 

extension of a. |

G.24 T heorem . Let <jnS —► X  be a homomorphism o f  a  semigroup S  

with the congruence extension property (CEP) onto a  semigroup X ,  Jet Y  be 

a subsemigroup o f X  and Jet T  =  ^ - 1 (y ). Suppose that (ker^ 0  (T  x T ) } 5  =  

ker (?!>. Then each congruence on Y  can be extended to X .
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Proof. Let a be a congruence on Y and let p be the pullback of a  to 

T  — <£_ 1 (Y). Let a  — (a )*  and let p =  (p )s • Then, according to 5.20, a  is 

the pushout of ~p. Since p is the pullback of a , ker </> fl (T x T)  C p. From our 

hypothesis th a t {ker^ ft (T  x  T) ) s  =  ker<f>, we have that ker^  C p. Thus, by 

5.21, p is the pullback of a .

To see that a  is an extension of a  to X ,  let (x, y) G a  0  (Y x Y). Then 

(x,y)  =  (<f>(a),<j>(b)) for some (a, 5) G p, since p is the pullback of a . As a 

consequence of the fact that S  has CEP, we have th a t p fl (T x T) =  p. Since 

(* jy) 6 Y x Y, we have that (a,b) € T  x T  and hence ( a ,b) E pf l  (T  x  T)  = p. 

We conclude th a t (sc,y) =  (<f>(a),<f>(b)) E a  from the fact that p is the pullback 

of a, It follows th a t a  fl (Y x Y) C a. g

5.25 Corollary. Let <f>: S  —> X  be a homomorphism o f a semigroup 5  

onto a semigroup X ,  Jet Y be a subsemigroup o f X , and let T  — <ji"1 (Y). I f  

<f>\(S\T) is one-to-one, then each congruence on Y can he extended to X .

Proof. Let a  be a congruence on Y and let p be the pullback of a  to T.

Observe th a t ker^  =  (ker ̂ n (T x T ))U A s , and hence (k e r^ f l(T x T ))s  =  

ker <j>. Therefore, by 5.24, a  can be extended to X . %

5.26  Corollary. Let S  be a  sem ig ro u p  w ith  th e  congruence extension 

property (CEP) a n d  let I  be an ideal o f S , T h e n  S / I  h a s  the congruence 

extension property.

Proof. Let X  = S / I , <f>: S  —* X  the natural homomorphism, let Y be a 

subsemigroup of X , T  =  <̂ - 1 (Y), and let 0 =  <f>(I) be the zero element of X .  

We consider two cases:
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C ase 1. If 0 € Y , then /  C  T, so tha t ( I  x I)  (1 (T x T)  =  J  x I  and 

hence (ker^ fl (T  x  T) ) s  =  ( I  x I )  U A s =  ker^. It follows from 5.24, that 

each congruence on Y  can be extended to X .

C ase  2. If 0 ^ Y , then T(~)I = 0. Let a = , let p  be the pullback of a

to T  and let p  =  {p ) s • Since 5  has CEP, p fl (T x T) ±= p. Let <r =  p V ker <f> be 

the pullback of a . Then <r = p U ( I x I )  and <rn(TxT)  = (p U (Ix I) )n (T  x T ) =  

p fl ( T  x T)  = p. The conclusion that a  extends a  now follows from 5.23. |

5.27  Exam ple. We investigate the groupoid example of 5.12 in view of 

the results of 5.23 and 5.24. Recall that S  =  {1 ,2 ,3 ,4 ,5} and X  =  {<x,6 ,c,c} 

with <f>: S  —► X  defined by <£(1 ) =  a, <f>(2 ) =  6 , $(3) =  c, and < (̂4) =  ^(5) =  d. 

Now Y  =  { a ,6 ,c} is a  subgroupoid of X  and T  = =  {1,2,3} is a

subgroupoid of S . We list some relations determined by a  below by exhibiting 

their classes:

a  {a, b}, {c}

p =  the pullback of a  {1*2}, {3}

p = {p)s  

(a ) x

a  = the pullback of {a)x

{1,2,5}, {3,4}

by Cj

{1,2,3,4,5}

Since a is not an extension of p, the hypothesis of 5.23 does not hold. 

Morover, (ker<£ D ( T  x  T ) ) s  = A s  ^  ker and thus the hypothesis of 5.24 

does not hold. It is also evident that {a ) x  is not an extension of a .



CHAPTER 6

DISRUPTIVE ELEMENTS AND DISRUPTIVE PAIRS

One of the features of this chapter is a characterization of semigroups with 

the congruence extension property (CEP) in terms of disruptive pairs (6.11). 

Unfortunately, disruptive pairs are difficult to identify in a semigroup. Disrup­

tive elements are more generally accessible in semigroups, but their absence 

does not guarantee that the semigroup has CEP (6.13). It is true however, 

th a t a  commutative semigroup with CEP contains no disruptive elements.

An element a  of a  semigroup S  is said to be a  d is ru p tiv e  e lem en t if 

there exists a subsemigroup T  of S  such that a E T  and Jt {&) C Js(a) H T  

(proper containment). Recall that Jr {a) = T l aT 1 is the ideal of T  generated 

by a.

In view of 4.4, we see th a t if 5  is a  semigroup, then these are equivalent:

(1 ) S  has the ideal extension property (IEP);

(2) S  has the principal ideal extension property (PIEP); and

(3) (S' contains no disruptive elements.

A element r  of a  semigroup S  is called a re g u la r  e lem en t provided there 

exists t E S  such th a t rtr  — r. The element t  is called an inverse for r. 

Observe that if e is an idempotent element of S , i.e., e2  =  e, then e is regular.

6.1 P ro p o s itio n . Let S  be a  commutative semigroup and let T  be a 

subsemigroup o f S , Then no regular element o f T  is disruptive in T .

61
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Proof. Let r  be a regular element of T  and let t £ T  be an inverse of

r. Let p £ Js{r ) n T . Then p =  s r for some s £ S 1 and p £ T . Therefore,

p it  =  srtr  =  sr — p. Since p ,t  £ T , we have p £ */r(T’)j ai*d hence J t(^ )  =

fl  T. We conclude that r  is not disruptive in T . |

6.2 Corollary. No idempotent element o f  a commutative semigroup is a 

disruptive element.

A commutative semigroup which consists entirely of idempotents is called 

a  sem ilattice.

6 .3  Corollary. Each semilattice has the ideal extension property.

6.4 T heorem . Let S' be a commutative semigroup. I f  S  has the con­

gruence extension property (CEP), then S  has the ideal extension property 

(IEP).

Proof. Suppose, for the purpose of proof by contradiction, th a t 5  does 

not have IEP. Then 5  contains a  disruptive element a, and consequently there 

exists a subsemigroup T  of S  containing a such th a t J t ( o ) C  Js(<r) fl  T. Let 

s € $  such th a t sa £ T  and sa ^  ta  for all t  £ T 1.

According to 6.2, a a2. Since T  is a subsemigroup of S , we have 

(a ,a 2) £ (T  X T). Now sa £ T  and sa2 =  (sa)a £ T . Thus (sa ,sa2) £ 

a s {a,a2) n ( T  x T). In view of the characterization of a r (a ,a 3) following

1 .8 , and the facts th a t sa /  ta  for all t £ T 1 and sa ^  sa2, there is no 

transition in T  linking sa  to sa2, and hence (sa ,sa2) ^  a T(a ,a2). We obtain 

th a t a T (a ,a2) ^  a s (a ,a2) D (T  x T). By 1.11, this contradicts that 5  has
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CEP, i

0.6  Corollary. Let S  be a  commutative semigroup with the congruence 

extension property (CEP). Then S  contains no disruptive elements.

0.0  P roposition . Let <j>:S —* X  be a .homomorphism of a commutative 

semigroup S  onto a semigroup X . I f  b is a disruptive element of X , then each 

element o f <̂ - 1 (6 ) is a disruptive element o f S.

P ro o f. Let Y  be a subsemigroup of X  such th a t b G Y  and J y ( 6 ) C

Jx{fy  fl Y .  Let a G (f>~x(b). Now there exists r  G X  such tha t rb G Y

and rb ^  qb for all q G Y 1. Let s € 0 -1 (r), and let T  =  ^ - 1 ( y ) .  Then

<f>(sa) =  (f>(s)<f>(a) =  rb G K, and hence sa G T.

Suppose that sa = ta  for some t G T 1, and let q =  ^(t). Then ^(s)^(a) =  

^(t)^ (a), so that rb =  qb and q E Y 1. This contradiction proves th a t sa ta 

for all t G T 1, and hence a is disruptive. |

0 .7  Corollary. Each homomorphic image o f a commutative semigroup 

with the ideal extension property has the ideal extension property.

We consider some examples of commutative semigroups which do not have 

the ideal extension property (IEP) due to the presence of a  disruptive element. 

It follows from 6.4 th a t these examples do not have the congruence extension 

property (CEP).

0 .8  E xam ple. Consider the semigroup (IN, •), where ■ is the usual multi­

plication on IN. The element 6 is disruptive. To see this, let T  — { 2 ,4 ,6 ,...} . 

Then 3 • 2 =  6 G T, but no product of elements of T  is 6. We conclude that
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(IN, *) does not have IEP and does not have CEP.

6 . 0  E x am p le . The semigroup (IN,+ ) does not have CEP. We claim that 

4 is disruptive. Let T  — {4 ,6 , 8 , . . Observe that 2 +  4 =  6  E T, but no two 

elements of T  have sum 6 .

6 . 1 0  E x am p les . From 6 .8 , 6.9, and in view of 1.2, we see tha t each of 

the following do not have CEP: IH =  ([0, oo),+ ), (1R, -f), and (IR, •), where IR 

denotes the real numbers.

Let S  be a  semigroup, T  a  subsemigroup of S  and let ®,y £ T . A M alcev  

ch a in  from x  to y  in T  is a  sequence of pairs ( p i ^ p i )  £ (T  x  T )  for i  =

1 , 2 , . . .  ,m  such that pD = x  and pm =  y,  Each pair (pf_ i,p i) is called a link  

of the chain and we say tha t x  and y are linked  in T  by the Malcev chain 

{(p ,-i ,pf): i =  1 ,2 , . . . ,  m}. This is denoted

(s ,y )  =  (p0 ,P i) * (p i,p2) * • • • * (Pm-l ,Pm)

Let S  be a  semigroup. A pair (a, b) E (S  x S ) is called a d is ru p tiv e  p a ir  

provided that there exists a subsemigroup T  of S  and elements x £ T  fl J s ( a ) 

and y £ T  f l  Js{b) such th a t x is linked to y  in S  be a Malcev chain with links 

of the form where E S 1 and u tv £  { a ,6 }, but x is not

linked to y  in T  by a Malcev chain with links of the form (tjtt<2 >t3 t>t2 )» where 

f I , € r 1 and u ,v  £ {a,b}.

If 5  is a semigroup, T  is a  subsemigroup of S , and (a, 6 ) E (T  x  T ), then 

a T(a,&) =  {(®,y) E (T  x  T ) ix  is linked to y by a  Malcev chain in T  with links 

of the form (iaii/2, where , <2 , < 3 , <4  E T 1 and u ,v  £ {a, 6 }}. This is
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a consequence of the characterization of a T{a,b) as the transitive closure of 

£*2  =  {(rct,rd t):(c ,d )  G a x ,r ,t  G T 1}, where a i = A t  U {(a,b)f (b,a)}, which 

follows 1.8 in Chapter 1.

6.11 T h e o rem . A  semigroup S  has the congruence extension property 

(CEP) i f  and only i f  S  X S  contains no disruptive pairs.

P ro o f. Suppose th a t S  x S  contains a  disruptive pair (a, b). Then there 

exists a  subsemigroup T  of S  and elements x  G T  fl Js{<*)  and y  G T  fl Js{b) 

such that x  in linked to y  in S  by a Malcev chain with links of the form 

(si-us2 , 5 iv s 2 ), where Si,S 2 € S'1, and u ,v  G {a, &}, but x is not linked to 

y  in T  by a Malcev chain of the form (fi« f 2 , t iv t 2 ), where <1 , ( 2  £ T 1, and

G { a ,&}. Thus G a s (a,i>) 0  (T X T), bu t (:c,y) ^  a T(a, &). It follows

from 1.11 th a t S  does not have CEP.

The converse follows from the fact th a t if (x ,y )  €  a 5 (a, 6 )fl(IT x T), where 

a,& G T  for some subsemigroup T  of S , and (x ,y ) £ a r (a,&), then (a:,3/) is a 

disruptive pair. |

6.12 P ro p o s itio n . Let S  be a  commutative semigroup and let a be a 

disruptive element o f S . Then (a, a2) is a disruptive pair in S  x S.

P ro o f. Since a is a disruptive element of 5 , there exists a subsemigroup 

T  of S  such that Jx (a ) C «^s(°) H T. Let s G S 1 such that sa  G T  but t € T. 

Now a  ^  o2  from 6.2 and sa ^  sa2 (otherwise sa  =  sa ■ a). We also have 

sa2 = sa  • a €  T, since sa  G T  and a G T . Thus sa  and sa2 are linked by a 

Malcev chain with one link (sa ,sa 2) in S } but sa  and sa2 are not linked in T  

by a Malcev chain with links of the form (<a,ta2) or (ta 2 ,fa ), since sa /  fa
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and sa ^  ta 2 (otherwise 3a = t a ’ a and ta  £ T ) for all t  £  T . |

6 .13  E x am p le . This is an example of a  semigroup which has no disrup­

tive elements and does not have the congruence extension property (CEP).

Let S  — {1 ,2 ,3 ,4 ,5} be the semigroup of 4.8. The multiplication table 

for 5  is
1 1 1 1 1  

1 1 1 1 2  

1 1 1 3  1  

1 1 3  4  1 
1 2  1 1 5

We claim that S  has no disruptive elements. Observe that 1,4, and 5 are 

idempotent elements and hence are not disruptive.

Let T  be a subsemigroup of S  such that 2  € T . Then 22 =  1 € T, and 

so { 1 , 2 }  C  JT(2) .  Now J t ( 2)  C  J s ( 2 )  =  { 1 ,2 } .  Thus J s ( 2 )  =  J t ( 2 )  for all 

subsemigroups T  of 5  containing 2. It follows that 2 is not disruptive. The 

same type of argument used to show that 2  is not disruptive also works to 

show th a t 3 is not disruptive.

Now S  does not have CEP, since T  — {1,2,3} is a  subsemigroup of 5 , 

<r =  {(2,3), (3,2)} U A t  is a congruence on T  and a — (o )s  contains the pair 

(2,1) =  (5,5)(2,3). We conclude th a t a  n (T  x  T )  ^  cr and S  does not have 

CEP.



CHAPTER 7 

FURTHER RESULTS AND EXAMPLES

This chapter is devoted to the expansion of the class of known examples of 

semigroups with the congruence extension property (CEP). There are numer­

ous examples of finite semigroups with CEP. Indeed, every semigroup of order 

3 or less has CEP. This is due to the fact that the only congruences on an order 

two semigroup S  are A 5  and S  x 5 , and these always extend. The following 

table details the number of semigroups with CEP for orders 3 through 6 .

Order Semigroups CEP % CEP

3 18 18 1 0 0

4 126 1 1 2 8 8

5 1,160 773 6 6

6 15,973 6,490 40

The initial example of this chapter shows that left trivial semigroups (du­

ally right trivial semigroups) have CEP. Thus, an infinite set given left trivial 

multiplication is an example of an infinite semigroup with CEP. T hat a left 

trivial semigroup has CEP is also a consequence of the theorem of [Biro, Kiss, 

and Palfy, 1977] th a t a  uniformly periodic medial semigroup has CEP. Our 

approach to the example is to demonstrate the extension.

Example 7.2 is yet another example of an infinite semigroup (group) with 

CEP. This semigroup is commutative (and hence medial), but it is not uni­
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formly periodic. That it has CEP is a  consequence of 2.11.

Example 7.6 demonstrates that semigroups do not generally have maximal 

CEP homomorphic images. This question arises naturally from the fact that 

semigroups have maximal semilattice homomorphic images and semilattices 

have CEP by [Stralka, 1972].

An attem pt was made to determine which completely simple semigroups 

have CEP (see [Clifford and Preston, 1961]). We conjecture that (indepen­

dent of the sandwich function) if the Schutzenberger group has CEP, then so 

does the completely simple semigroup. Using a special result regarding the 

structure of subsemigroups (7.7) when the sandwich function maps the entire 

domain the the identity of the group (and thus the semigroup is a  threefold 

product), it was established that completely simple semigroups of this type 

having Shutzenberger groups with CEP do have CEP (7.8).

7.1 E x am p le . A  left trivial semigroup has the congruence extension 

property (CEP). Let S  be any set with left trivial multiplication, i.e., xy  =  x  for 

all x ,y  € S . It is well known and simple to show th a t any equivalence relation 

on S  is a congruence. We claim th a t 5  has CEP. Let T  be a subsemigroup of 

S  and let o be a congruence on T. Then <r =  <r U A 5  is an equivalence relation 

on 5  and hence is a  congruence extension of <r.

7.2 E x am p le . The group 7Z,(p°°), where p  £ IN is a  prime, which consists 

of the p  th. roots of unity for n  = 0 ,1 ,2 ,••• as a subgroup of 1R/ZS is an 

example of a  group with the congruence extension property (CEP). This is a 

consequence of 2 .1 1 .
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If S  is a semigroup, then S \ =  S'U{1 } is the semigroup S  with an identity 

adjoined (even if S  already has an identity), and So =  SU{0} is the semigroup 

S  with a  zero adjoined (even if S  already has a zero).

If cr is a congruence on S , then <Ti =  <x U {(1,1)} is a congruence on Si 

and (To =  <r U {(0,0)} is a congruence on So- For the congruence extension 

property (CEP), these are equivalent:

(1) S  has CEP;

(2 ) S i has CEP; and

(3) So has CEP.

If S  is a  nondegenerate semigroup with an identity e such th a t S  is an 

ideal semigroup, then S i is not an ideal semigroup, since the congruence which 

identifies 1 and e is not determined by an ideal of S i.  However, if S  is an ideal 

semigroup, then so is S q.

7.3 P roposition . Let S  be an ideal semigroup. Then So is an ideal 

semigroup.

Proof. Let cr be a  congruence on So- Then «r fl {S  x S) is a  congruence 

on S.  In view of the fact that 5 is an ideal semigroup, we see th a t there exists 

an ideal I  o f S  such th a t ( r n (S x 5 )  =  ( J x l ) U  A 5 . Let

J  =  I U {a: G So: (*> 0) € <*}•

Then J  is an ideal of S q.

We claim tha t <r =  ( J  x J )  U A 5o.

Let (a,&) G <t. If a  =  0 or 6  =  0, then 0 , 6  G J .  If a  /  0 ^  b, then 

(a, b) G <r D (5 x S)  C (J  x I )  U A 5  C (J  x J )  U A s0. In any case, we have that
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er C  (J  x  J )  U A s 0•

To show the other inclusion, let (a, b) £ J  x J .  If (a, &) £ I  x / ,  then 

(0 , 6 ) £ cr. If (a ,0 ) ,(b ,0) £ cr, then (a,b) £ a , since <r is symmetric and 

transitive. It remains to show that if (a,0) €  <r, 0  £ S, and b £ I ,  then 

(a, b) £ cr (or the dual case). Since (a,0) £ a, we have th a t ( a t , 0 ) £ cr for all 

t  G 5 , so th a t again by symmetry and transitivity, we have (a, at) £ a for all 

i £  S.  If at = a for all t £ S t then a  is a zero for S  and hence a £ I .  It at ^  a 

for some t £ S , then (a, at) G <r fl (S  X S)  C ( /  x I )  U A s ,  and hence a, at £ J, 

since at ^  t. Again, we have that a £ I ,  and (a, b) £ ( I  x  I )  fl (S  x S) C cr. |

7 .4 E x a m p le . A  zero semigroup has the congruence extension property 

(CEP). If S  is a zero semigroup, i.e., S  has a  zero element 0 and xy =  0 for 

all x fy  £ S,  then S  has CEP. To see this, let T  be a  subsemigroup of S. Then 

0 £ T . The congruences on a zero semigroup are the equivalence relations. 

Thus if o- is a congruence on T, then <r is an equivalence on T  and <r — <r U A 5  

is an equivalence (hence a  congruence) relation on S . I t follows that S  has 

CEP. Moreover, for each (0 , 6 ) £ S  x  5 , a s (a , 6 ) =  { (a ,6 ) ,( 6 , a)} U A 5 .

7.5  Exam ple. The additive semigroup IN o f natural numbers does not 

have a maximal homomorphic image with the congruence extension property 

(CEP). Suppose th a t IN has a maximal CEP homomorphic image H . Then H  

is a cyclic semigroup with CEP. Hence, according to  3.8, H  is a finite cyclic 

semigroup with index at most 3. Let T  be a  finite cyclic semigroup with index 

at most 3 and order greater than the order of H . Again, by 3.8, T  has CEP 

and hence is a CEP homomorphic image of IN. In view of the maximality of 

H , we see th a t T  is a homomorphic image of H . This is not possible, since
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H  has fewer elements than T . We conclude th a t IN has no maximal CEP 

homomorphic image.

7.6 L em m a. Let G be a $-finite group, L  a  left trivial semigroup, 72 a 

right trivial semigroup, and let e denote the identity o f G. Let S  =  L  x G x R, 

let T  be a subsemigroup of S , and suppose that (a, g, 6) g  T. Then (a, e, 6) g T.

Proof. Let (a ,g ,b ) g T. Then (a ,g ,b )n =  (a ,gn ,b) for each n  g IN. Thus 

(a ,gn,b) g T  for each n  g IN. Since G is ^-finite, there exists m  g IN such that 

gm = e. We conclude that (a, e, b) g T. |

7 .7  L em m a. Let L be a left trivial semigroup, R  a right trivial semigroup, 

G a 6-finite group, and let T  be a subsemigroup o f S  =  L x G  x R . Then there 

exist A  C  L , B  C R , and a subgroup H  o f G such that T  = A  x H  x B.

P roof. Let H  =  {g g  G :(a ,g ,b ) g  T  for some a g  L  and b g  72}. 

Then H  is a  subsemigroup of G. As it was observed in the proof of 2.10, each 

subsemigroup of a torsion group is a subgroup, and hence i f  is a subgroup 

of G. Let A  =  {a g  L:(a ,g ,b)  g  T  for Borne g g  G and b g  72} and let 

B  = {b g  R :(a ,g ,b )  g  T  for some a g  L  and g g  G}. Then A  C  L, B  C  72, 

and T  C  A  x  H  x  B .

To show th a t A  x H  x B  Q T , let (a, k, b) g A  x H  x B . Since a g  A, there 

exists g g  G  and y  g 72 such th a t (a ,g ,y )  g T . Since h g  H , there exist r  g  L  

and s g 72 such th a t (r ,h ,s ) g T. From the fact th a t 6 g  B ,  we have that 

(p ,w ,b) g  T  for some p g  L  and w  g G. Since G is 0-fmite, (p ,e ,i)  g  T , and 

(a ,e ,y ) g T  from 7.6. In view of the facts th a t (a ,e , y), (r, h ,s),(p ,e ,b )  g  T, 

we see th a t their product (a, h, b) g T . |



72

7.8 T h e o rem . Let L  be a left trivial semigroup, R  a right trivial semi­

group, and let G be a  group. Then S  = L  x  G x  R  has the congruence extension 

property (CEP) i f  and only i f  G has the congruence extension property.

P ro o f. If S  has CEP, then for d £ L  and /  £ R , the subsemigroup {d} x  

G x  { /}  has CEP by 1.2. Since this subsemigroup (subgroup) is isomorphic to 

G , we conclude that G has CEP.

Suppose, on the other hand, th a t G haB CEP. Let T  be a subsemigroup 

of 5  and let <r be a congruence on T . Since G has CEP, G is ^-finite from

3.9. From 7.7, there exist A  C L, B  C R , and a subgroup H  of G such that 

T  -  A x  H  x B .

Let <rn =  {(u,u) £ H  x H :((a ,u ,b ) ,(x ,v ,y ))  £  <r for some a ,x  £ L  and 

some b,y £ R}.

It is immediate th a t ctr is reflexive and symmetric. To see th a t crH is 

transitive, suppose that (u ,u), (u,io) £ cr#. Then there exist a ,x ,r ,s  £ L  and 

b ,y ,t ,p  £ R  such that

( ( a , u , 6 ) , ( a , u , y ) )  £ cr

and

((r ,v ,i) ,(s ,w ,p ))  £ a.

Multiplying both of these on the left and on the right by (a, e, b) (where e is 

the identity of G) and observing th a t (a, e,b) £ T , since (a,«,&) £ T  by 7.6, 

we obtain tha t

((a,u,6),(a,i> ,6)) £ <r

and

((a ,v,6),(a ,u;,6))  £  cr.
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Since cr is transitive, we have that

((a ,u, b), (a, w, b)) £ cr,

and hence (n,to) £ cr#. We conclude that a-#  is transitive and is therefore an 

equivalence relation on H .

To show that cr# is compatible with the multiplication on i f ,  let (u ,u) £ 

cr# and let g £ i f .  Then there exist a, x € L  and bt y  € R  such that 

((o ,w ,i), (a ,n ,p ))  £ cr and (a, <7 , 6) £  T. Since cr is a  congruence on T , we 

have that ((a,tt,&) • (a ,p ,6),(a;,n ,y) -(a ,p ,6 )) =  ((a ,up ,6),(* ,np ,6)) £ cr, so 

that (ug,vg)  £ <7 # . This (together with its dual) proves th a t cr# is a congru­

ence relation on H .

Let <ta =  {(flj®) € A  x  j4 .:((a ,u ,6 ),(s ,v ,j/)) £ cr for some u ,v  £ i f  and 

some b,y  £ £ } .

Let cr# =  {(6,p) & B  x 5 :  ((a, u, 6), (as, v, 3/)) £ cr for some a,® € A  and 

some tc,n £ H }.

Then a a  is a congruence on A  and cr# is a  congruence on B . To varify 

th a t cr, 4 is a  congruence on A  first observe that <ta is reflexive and symmetric. 

For the purpose of proving that <ta is transitive, let (o,x),(a:,<) £ a a - Then 

there exist u ,v ,tu ,z  € H  and b ,y ,c ,k  €  B  such that

( (a ,u , 6 ),(a;,t/,p)) £ cr

and

( ( a ; , t o , c ) } ( f , z , f c ) )  £  cr.

Now (as in the argument for cr#), we have

((a ,e , £>), (x ,e ,y )) £ cr
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and

((®,e,c),(*,e,A:)) € <r.

M ultiplication of the la tter by (x, e,y) on the right yields,

((® ,e ,y ),(t,e ,y )) G er.

Since cr is transitive, we have

( (a ,e , 6 ) ,( t ,e ,y ))  G ef

and hence (a, i) G <t a - I t follows th a t a a  is transitive and is therefore an 

equivalence on A. Since A  is left trivial, we conclude that cr^ is a congruence 

on A.

Let <t i  be an extension of er  ̂ to L, let <tr be an extension of <tb to R  (see 

7.1), and let <tq be an extension of <rjj to G,

Define a -  { ((a ,u ,6 ),(® ,u,y)):(a,® ) G €  <tq and (6 ,y) G <rfi}.

Then iris a congruence on S  and cr C a. It remains to show th a t irn (T x T ) =  cr.

Let ( (o ,u ,6 ),(a;,u ,y)) G a  fl (T  x T). Then (o ,x ) G 0  (A x A) =  crA , 

(u ,v) G <rtj fl {H  x H ) — <t h , and (b,y) G crR f \ ( B  x  B ) ~  <t b >

Since (at x)  G <7a» there exist h ,g  G H  and s , t  G B  such that

( ( a , h , s ) , ( ® , y , f ) )  G cr.

Since <r is compatible with multiplication on T , we have ((a, hn , s), (x ,g n , t)) G 

cr for each n  G IN. Since T  is 0-finite, we have th a t ((a, e, s ) ,(x ,e ,t) )  G cr, 

where e is the identity of G.

Since (6 ,y ) G cr#, there exist z ,w  G H  and p ,m  G A  such tha t

((P>*j&)»(”*>w»y)) G
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As in the preceeding paragraph, we have ((pte , 6 ), (m ,e ,y )) G <r.

From the fact that (« ,v) G crji, we have that ((r,tt,c ), ( k ,v , j ) )  G <r for 

some r,Ar G A  and c ,j  G B . Thus each of the pairs

P i  =  ( (a ,  e, s ) ,  (®, e , t ) )

P2 -  ((r ,u ,c ),(fc ,u ,j))

and

^3 =  ((PiC.&Mm.e.y)) 

is in or. Since o' is a congruence on T , we have that

P i - P 2 ‘P3 =  ((a, u, 6), (®, v , j/))

is in <r. It follows th a t cr fl (T  x  T ) C <r, |



CHAPTER 8

SUMMARY AND OPEN QUESTIONS

In the table and diagrams below, we summarize some of the attributes of:

(1) The congruence extension property (CEP);

(2) The principal congruence extension property (PCEP);

(3) The ideal extension property (IEP);

(4) The principal ideal extension property (PIEP);

(5) Ideal semigroups (IS); and

(6 ) The group congruence extension property (GCEP).

The term “hereditary” refers to subsemigroups in all cases except for 

GCEP. In this case it refers to subgroups. The term  “homomorphic” means 

preserved by homomorphisms.

Hereditary Productive Homomorphic

CEP yes (1 .2 ) no (1.15) ?

IEP yes (4.1) no (4.14) yes (4.3)

IS no (4.13) no (4.12) yes (4.6)

GCEP yes (2 .1 ) no (2 .8 ) yes (2 .1 )

W hether CEP is preserved by homomorphisms remains an open question. 

Chapter 5 gives some partial results for this problem. For quotient homomor-
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phisms (with ideal kernel), the answer is yes (5.25). If the domain semigroup 

is an ideal semigroup, then the answer is also yes (5.10). For groupoids, the 

answer (in general) is no (5.12).

The following implication diagram summarizes the relations between these 

properties for semigroups:

Index< 3

3.10.. 3.9

1.11 6.10 
PCEP-*— ^CEP*— >No disruptive pairs

IS
4.7

.. 4.8

PIEP<— »IEP<— *No disruptive elements
4.4 def

(1 ) A commutative semigroup with CEP has IEP (6.4);

(2) For an ideal semigroup, CEP<— tlEP plus each subsemigroup is an ideal 

semigroup (4.9); and

(3) For a  cyclic semigroup, C E P<— * index< 3 (3.8).

(4) A commutative semigroup with no disruptive pairs has no disruptive ele­

ments (6 .1 1 ).
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The following diagram summarizes the relations between these properties 

for groups:

def 2 . 1

C E P— >GCEP<— >Solvable t-group

2.7

2.11

GCEP +  Torsion group 

An abelian group has CEP if and only if it is a torsion group (2.12).

O P E N  Q U E ST IO N S.

(1) The main problem still remaining is whether the congruence extension 

property (CEP) is preserved by homomorphisms.

We conjecture that this is true. An extensive computer search for a  counter­

example among the lower order semigroups was conducted. None were discov­

ered. In view of the groupoid example of 5.12, it appears that a  proof must 

involve some consequence of associativity.

(2 ) A  complete characterization o f semigroups with the congruence extension 

property (CEP) is not known.

We are searching for a characterization which involves properties of semigroups 

which are easily detected. The characterization which we presented in Chapter
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6  involving disruptive pairs does not enjoy this feature. A place to start is 

perhaps the condition th a t the index be less than four. In view of the example 

of a semigroup with index 2 th a t does not have CEP (3.10), it is immediate 

that this condition will not stand alone (although the converse holds with just 

this condition (3.9)).

(3) I t is not inown whether each completely simple semigroup whose Shutzen- 

berger group has the congruence extension property (CEP) has CEP.

We conjecture that this is true. The special case, where the sandwich function 

maps the entire domain to the identity of the group is established in Chapter 

7. The technique which was employed in that argument does not extend to the 

case where the sandwich function is more complicated, since subsemigroups do 

not generally have a product structure.

(4) I t is yet to be determined whether the structure o f the lattice o f congru­

ences o f a semigroup reveals information regarding' the congruence exten­

sion property (CEP) for the semigroup.

We have not considered this problem here. It appears th a t there is some 

potential for such a  connection, and th a t this could lead to  a resolution of 

open question (1 ).
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