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Abstract

In [BGS96], Beilinson, Ginzburg, and Soergel introduced the notion of mixed cate-

gories. This idea often underlies many interesting “Koszul dualities.” In this paper,

we produce a mixed derived category of constructible complexes (in the sense of

[BGS96]) for any toric variety associated to a fan. Furthermore, we show that it

comes equipped with a t-structure whose heart is a mixed version of the category

of perverse sheaves. In chapters 2 and 3, we provide the necessary background.

Chapter 2 concerns the categorical preliminaries, while chapter 3 gives the back-

ground geometry. This concerns both some basics of toric varieties as well as basics

of constructible sheaves in this setting. In chapter 4, we introduce the primary cat-

egory of interest, Dmix(X0) for a toric variety X0 defined over some finite field.

We prove that this is a mixed version of Db
c(X), the bounded derived category of

constructible complexes over X = X0 ×Spec(Fq) Spec(Fq), the variety obtained by

extension of scalars. In chapter 5, we introduce the standard suite functors associ-

ated to a locally closed inclusion of toric varieties, h : Y0 → X0, between the mixed

categories Dmix(X0) and Dmix(Y0). We provide some functors associated to other

special types of toric maps as well. Finally, we prove that some of these functors

commute with the realization functor r : Dmix(X0)→ Db
T,m(X0). We call this being

genuine.
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Chapter 1

Introduction

In [BGS96], Beilinson, Ginzburg, and Soergel made their seminal contribution to

the project of relating various blocks of BGG categoryO via Koszul duality. In their

paper, they construct a pair of Koszul dual rings for which the blocks in question

can be realized as categories of modules over these rings. The surprising fact is

precisely that the rings constructed are Koszul; in particular, they are graded.

There was no obvious grading on category O, so a natural question becomes,

“Where did the grading come from?” Another way to phrase it might be, “Where

did the grading go?”

This is the motivation for what we pursue in this paper. In [Bra07] and [BL06],

the authors begin to uncover the phenomenon of Koszul duality in the setting of

toric varieties. To speak of Koszul duality, one needs just such a strict grading on

the category of constructible sheaves on toric varieties. It would be nice to have

this more naturally and fully in this context.

1.1 Mixed Categories

In that paper, the authors make note that the “correct” proof relies on mixed

geometry and ends up involving what they call mixed categories. These are

special types of mixed categories, in the above sense of geometry. The authors in

this original paper work exclusively with the abelian category of perverse sheaves

on a flag variety. Let us be precise and give a definition of this notion of mixed:

Definition 1.1.1. Let M be a finite-length abelian category. A mixed structure

on M is a function

wt : Irr(M)→ Z

1



from the simple objects of M to Z such that for any two simple objects, S, S ′,

such that wt(S ′) ≥ wt(S),

Ext1(S, S ′) = 0.

In the case of a triangulated category, we need another definition.

Definition 1.1.2. Let D be a triangulated category and suppose that D has

a bounded t-structure on it whose heart is the abelian category M. A mixed

structure on D is a mixed structure on M such that for any S, S ′ ∈ Irr(M) with

wt(S ′) > wt(S)− i,

Homi
D(S, S ′) = 0.

In the case of abelian categories, an important example to keep in mind is that

of a graded ring. If A = ⊕i≥0Ai is a graded ring and A0 is semisimple, then we can

consider two different categories. First, there is Mod-A, the category of A-modules

where A is considered without its graded structure. Secondly, there is mod-A, the

category of graded modules over the (graded) ring A. In this case, mod-A is a

mixed version of Mod-A.

1.2 “Mixed” Structures in Geometry

In the world of geometry, the term “mixed” has been in frequent use for more than

thirty-five years. In this context, however, it means something different than the

definition given above. It can still be heuristically thought of as a sort of a grading.

The first use of this term comes from Deligne’s proof of the Weil conjectures. In

that context, he developed his category of “mixed” constructible complexes for

varieties defined over a finite field. In this case, the “mixed” structure was that

of the action of the geometric Frobenius on stalks of constructible Q`-sheaves at

geometric points. In this setting, any constructible sheaf will have such an action,

however, Deligne enforces rather stringent conditions on this action for a sheaf to

2



be considered “mixed.” For the reader not familiar with this theory, it is worth

noting that this essentially ends up being an invertible linear operator acting on a

vector space and Deligne essentially restricts the eignevalues of this linear operator.

These eigenvalues are referred to as the “weights” of the sheaf to which they are

attached by Deligne.

Results in [BBD82], in particular the much celebrated decomposition theorem,

suggested that such a theory seemed likely to exist for varieties over C. Finally, in

[Sai88] and [Sai90], Saito accomplished finding this structure via his category of

“mixed” Hodge modules. In this case, the notion of weight has to do with mixed

Hodge structures that exist on the stalks of sheaves of C-vector spaces. In both

this case and in Deligne’s, the authors provide a collection of functors for maps

f : X → Y between varieties that correspond to Grothendieck’s six functors in the

non-“mixed” setting.

Recall from above that for an abelian category to be mixed, it must satisfy the

condition that if S and S ′ are two simple objects with wt(S ′) ≥ wt(S), then

Ext1(S, S ′) = 0.

This immediately implies that any pure object must also be semisimple. This

shows that, despite what we would have hoped, Deligne’s category of “mixed”

perverse sheaves is not a mixed category in the sense of Definition 1.1.1. This is

simply because there are sheaves that are pure, but that are not semisimple; that

is, the geometric Frobenius does not act semisimply on them. Similarly, we see

that Db
m(X0) (or Db

G,m(X0) in the equivariant case) is not mixed as a triangulated

category.

In the case that we have category (abelian or triangulated) that is not mixed,

there is a notion of finding a mixed category that can act as a suitable substitute

3



for the original (non-mixed) category. To do this is essentially the same as adding a

grading to a category of modules. We call these mixed substitutes “mixed versions”

of the original category. See Definitions 2.1.4 and 2.1.5 for the precise meaning of

this.

1.3 Problems and Results

In the present paper, our context is that of toric varieties over finite fields. In

particular, we will only consider the étale topology and the theory of Q`-sheaves.

We will also work in the context of T -equivariant constructible sheaves, where T

is the algebraic torus of a given toric variety.

In particular, suppose that X0 = X0(∆) is a toric variety over a finite field, Fq.

Let X = X0 ×Fq Spec(Fq) be the toric variety obtained by extension of scalars,

then we have the two categories Db
T,m(X0) and Db

T,c(X) along with the functor

χ : Db
T,m(X0)→ Db

T,c(X),

pullback along the canonical map X → X0. For exactly the same reasons as stated

above, Db
T,m(X0) is not a mixed category. However, we would still like to have a

mixed version of Db
T,c(X). We then can formalize our problem as:

Problem 1.3.1. Find a category Dmix(X0) with a realization functor to Db
T,m(X0)

such that the composition

Dmix(X0)
r−→ Db

T,m(X0)
χ−→ Db

T,c(X)

turns Dmix(X0) into a mixed version of Db
T,c(X).

In the paper [AR13], the authors provide an answer to this problem for Db
c(X),

the bounded derived category of constructible complexes, for flag varieties. Note

that in this case, the sheaves under consideration were not equivariant. Unlike the

paper [BGS96], but like our own setting here, their construction deals exclusively
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with varieties over finite fields. This involves a great deal of categorical machinery

outside of standard homological algebra.

The basic strategy is to replace Db
T,m(X0) with a category of sheaves that only

have semisimple Frobenius action. The simplicity and fundamental nature of the

deficiency of these categories not being mixed–that it is as simple as there being

nonsemisimple operators–means that it can be very difficult to provide appropriate

categories to serve as their mixed substitutes. In the paper [AR13], the authors note

that, in the case of the derived category, if one attempts to do the most obvious

thing–that is, simply take out those pure objects that are not semisimple–then

the resulting category is not triangulated, because it does not contain cones for all

morphisms. It is to this end that they are forced to develop a theory of infinitesimal

extensions of triangulated categories as well as a theory of Orlov categories.

We define the additive category Pure(X0) to be the category whose objects are

direct sums of various L̃σ[m](m/2). Then we have the following:

Theorem 1.3.2. Let X0 = X0(∆) be a toric variety over a finite field and let X

be the toric variety obtained by extension of scalars as above. Then the category

Dmix(X0) := KbPure(X0) is a mixed version of Db
T,c(X).

At this point, were we to stop, if we are unsure if there are at least some of

the standard functors between the mixed categories for various toric varieties, it

might be unclear as to how useful such a category is. It was mentioned above that

in the settings of Deligne and Saito, they provide analogues of Grothendieck’s six

functors for their “mixed” settings. We thus arrive at the following problem:

Problem 1.3.3. Let X0, Y0 and X, Y be toric varieties as above. Let f : X0 → Y0

be a toric map. That is, we would like to produce functors

f(∗), f(!) : Dmix(X0)→ Dmix(Y0)

5



and

f (∗), f (!) : Dmix(Y0)→ Dmix(X0)

that adhere to the normal adjunction properties. Furthermore, we would like for

these functors to commute with the realization functor in the sense that the diagram

Dmix(X0) Dmix(Y0)

Db
T,m(X0) Db

T,m(Y0)

F ′

r r

F

commutes (where F ′ is either f(∗) or f(!) and F is, correspondingly, f∗ or f!) and

similarly for f (∗) and f (!).

This ultimately has to do with understanding which of the normal functors

preserve semisimplicty of Frobenius. This is, however, far too lofty of a goal. We

do not arrive at such a general theory, but we do arrive at a solution to this problem

for some of the most important toric morphisms. To this end, and beginning with

the case of open and closed inclusions, we show that, for any locally closed inclusion

of toric varieties

h : Y0 ↪→ X0,

there are functors

h∗, h! : Dmix(Y0)→ Dmix(X0)

and

h∗, h! : Dmix(X0)→ Dmix(Y0)

that satisfy the usual adjoint relationships as hoped. We also show, for some types

of toric maps f : X0 → Y0, that there are some functors between the mixed

categories.

In particular, we arrive at the following:

6



Theorem 1.3.4. Let h : Y0 ↪→ X0 be a locally closed inclusion of toric varieties.

Then the desiderata in Problem 1.3.3 are satisfied.

We also prove that the pushforward of a proper, smooth toric map is genuine.

We believe that more than this should be true. However, at this time, it is not

clear how to prove such a thing.

1.4 Outline of the Paper

We now proceed to give a general outline of the structure of this paper. In chapter

2, we present an introduction to the necessary categorical preliminaries. That is, we

introduce mixed categories, followed by infinitesimal extensions of triangulated cat-

egories, then finally the notion of Orlov categories. In chapter 3, we briefly present

the basics of toric varieties, sheaf theory, and, in particular, perverse sheaves.

We begin in the first section of chapter 4 by defining Pure(X0) ⊆ Db
T,m(X0). If

for all σ ∈ ∆, we denote by L̃σ the simple equivariant perverse sheaf associated

to O(σ) and Tate twisted to have weight 0, then we define Pure(X0) to be the

category whose objects are direct sums of various L̃σ[n](n/2). This still has weight

0. By [dC15, Theorem 1.4.1], it is known that these sheaves, in addition to being

pure, are actually pointwise pure with semisimple Frobenius action.

From this point, we define Dmix(X0) to be KbPure(X0). Next, we prove that it

actually is mixed and that it is a mixed version of Db
T,c(X). For this step, we employ

some general machinery developed in [Rid13]. In her paper, the author develops

some fairly general conditions under which just such a category will be a mixed

version of Db
T,c(X).

To apply this machinery, however, we need to know that for any σ, τ ∈ ∆,

Homi
T (L̃σ, L̃τ ) := Hi(Ra∗RHom(L̃σ, L̃τ )),

7



where a : X0 → Spec(Fq) is the canonical map, has semisimple Frobenius action

pure of weight i. This turns out to be a rather delicate procedure and relies in

great part to results from the paper [Lun95]. With this in hand, the machinery

from [Rid13] can be applied and we are finally able to show that Dmix(X0) is

indeed a mixed version of Db
T,c(X). This also provides a mixed version, Pmix(X0),

of PT (X), the category of equivariant perverse sheaves on X.

The next step, in chapter 5, is to consider the case when there is a functor

F̃ : Dmix(X0) → Dmix(Y0) and another functor F : Db
T,m(X0) → Db

T,m(Y0) from

which F̃ is “induced” as above in Problem 1.3.3. This notion of one functor being

induced from another will be made precise in the course of the paper, but for now,

one should imagine something like the case of pullback or pushforwards along

locally closed inclusions as above. That is, for any locally closed inclusion and,

say, considering the pushforward, there is the functor going between Deligne’s

categories and there is the functor going between the mixed categories. We should

think of the mixed version as being induced from the Deligne’s functor in some

suitable sense.

In these cases, we will say that F is genuine when we have a diagram of the

form

Dmix(X0) Dmix(Y0)

Db
m(X0) Db

m(Y0)

F̃

r r

F

and it commutes. Intuitively, this tells us that F̃ behaves as closely as possible to

a true extension of F to the mixed setting.

In this final section, we prove that the standard functors above coming from

locally closed inclusions of toric varieties are genuine.

8



Chapter 2

Categorical Preliminaries

In this section, we recall some of the relevant definitions and theory of mixed

categories as well as some aspects of homological algebra that are not necessarily

well known in the literature. The framework that we use here is taken from the

beautiful paper [AR13]. Therein, the authors interpret the phenomenon of mixed

categories and Koszul duality in a rather broad context.

We fix a field k. We will now assume, unless explicitly stated to the contrary,

that all additive categories are k-linear. We also assume that all functors between

additive categories are additive and k-linear.

If A is an additive category, then we write Ind(A) for the set of isomorphism

classes of indecomposable objects in A. By abuse of notation, we may even mean

by Ind(A) a collection of chosen representatives of these isomorphisms classes. It

should be clear from context which usage is intended.

Likewise, if M is an abelian category, we denote by Irr(M) the set of isomor-

phism classes of simple objects in M or, by abuse of notation, a set of chosen

representatives of these classes. For any S ∈ Irr(M), End(S) is a division ring over

k.

We would also like to recall what it means for an abelian category to be split.

We say that an abelian category M is split if for all S ∈ Irr(M),

End(S) ' k. (2.1)

Finally, we say that an abelian categoryM is finite-length ifM is both noethe-

rian and artinian.

9



2.1 Mixed Categories

In this section, we introduce the concept of a mixed category. This will be done at

both the abelian and triangulated levels. While much of this theory is well known

by experts, we feel it is worth writing this up not only to fix notation, but also as

background for readers who are new to these notions.

Let M be a finite-length abelian category. As in [AR13], a mixed structure on

M is a function

wt : Irr(M)→ Z (2.2)

such that for any S, S ′ ∈ Irr(M) with wt(S ′) ≥ wt(S),

Ext1(S, S ′) = 0. (2.3)

Such a function is called a weight function. For X ∈M, the weights of X are

simply the set of numbers {wt(Xi)} where {Xi} are the composition factors of X.

An object is said to be pure if all its simple composition factors have the same

weight. In consequence of 2.3, any pure object is semisimple. Each object X ∈M

is endowed with a canonical weight filtration

W•X

such that for each k, WkX is the unique maximal subobject with highest weights

≤ k.

To define the notion of a mixed structure on a triangulated category, we assume

that we have a triangulated category D with a bounded t-structure whose heart is

the finite-length abelian category M.

Definition 2.1.1. A mixed structure on D is a mixed structure on M that

satisfies a stronger version of 2.3. Namely, for any S, S ′ ∈ Irr(M) such that

10



wt(S ′) > wt(S)− i,

Homi
D(S, S ′) = 0. (2.4)

We say that an object X ∈ D has weights ≤ w (resp. ≥ w, pure of weight w) if

for all i, Hi(X) has weights ≤ w + i (resp. ≥ w + i, = w + i).

In the special case that D = Db(M), then 2.3 implies 2.4. In general, however,

2.4 is strictly stronger. We now recall some well known facts.

Lemma 2.1.2. Let M be the heart of a t-structure on the triangulated category D

and suppose that D has a mixed structure on it.

1. If X, Y ∈ D, X has weights ≤ w, and Y has weights > w, then HomD(X, Y ) =

0.

2. Let X ∈ D be an object with weights ≥ a and ≤ b. For any w ∈ Z, there is

a distinguished triangle

X ′ → X → X ′′
+1−→

where X ′ has weights ≥ a and ≤ w and X ′′ has weights ≤ b and > w.

3. Every pure object X ∈ D is semisimple. That is, if X ∈ D is pure, then

X ' ⊕iHi(X)[−i] where each Hi(X)[−i] ∈ M is pure (and so semisimple)

of weight w + i.

It is worth noting that neither the distinguished triangles in (2) nor the direct

sum in (3) above are canonical in general.

Finally, we wish to introduce a few more notions. The first is that of a Tate

twist.

Definition 2.1.3. Suppose thatM is a mixed abelian category. A Tate twist on

M is an autoequivalence

〈1〉 :M→M

11



such that wt(M〈1〉) = wt(M) + 1.

We can now define a key notion:

Definition 2.1.4. Suppose that M and M′ are two finite-length abelian cate-

gories. Further, suppose that M is a mixed category with weight function wt :

Irr(M) → Z and Tate twist 〈1〉 : M → M. Suppose that there exists an exact

functor

ζ :M→M′

and an isomorphism

ε : ζ ◦ 〈1〉 → ζ.

Assume that all simple objects of M′ lie in the essential image of ζ. Then we

say that M is a mixed version of M′ if for every M,N ∈ M, ζ induces an

isomorphism ⊕
n∈Z

HomM(M,N〈n〉) ∼−→ HomM′(ζM, ζN). (2.5)

This is the notion of a mixed version of an abelian category. There are, however,

two ways of generalizing this to the setting of a triangulated category.

Definition 2.1.5. Let D and D′ be two triangulated categories. Let D be equipped

with an autoequivalence 〈1〉 : D → D. Furthermore, suppose that we have a functor

ζ : D → D′ such that the essential image of ζ generates D′ as a triangulated

category as well as an isomorphism ε : ζ ◦ 〈1〉 ∼−→ ζ. Then D is called a graded

version of D′ if (2.5) holds for all M,N ∈ D.

Suppose, in addition, that D and D′ are equipped with t-structures such that

D is a mixed triangulated category and that ζ and 〈1〉 are t-exact with respect to

these t-structures. Then we say that D is a mixed version of D′.
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2.2 Infinitesimal Extensions of Triangulated Categories

In this section we describe a way to “infinitesimally thicken” a triangulated cate-

gory. This theory was originally developed in [AR13]. The main reason we need this

theory is because of its positive interactions with the theory of Orlov categories

that will be recalled in the sequel.

The first thing to be noted about infinitesimal extensions of triangulated cate-

gories is that they are not themselves triangulated. This is, in fact, the reason why

Achar and Riche needed to develop this machinery: To have a method for interact-

ing with categories that were close to being triangulated, but did not have cones

for all morphisms. It turns out that one can still develop a reasonable amount of

homological algebra to interact with these objects. We will need to begin with a

definition.

Definition 2.2.1. Let D be a triangulated category. The infinitesimal extension

of D , I D , is the category with the same objects as D but with

HomI D(X, Y ) = HomD(X, Y )⊕ HomD(X, Y [−1]).

Here composition is given by the rule

(g0, g
′) ◦ (f0, f

′) = (g0 ◦ f0, g0[−1] ◦ f ′ + g′ ◦ f0).

We now need to recall some basic functors between a triangulated category D

and its infinitesimal extension. First, there is the obvious inclusion functor

ι : D ↪→ I D .

This sends objects to themselves and for which

HomD(X, Y )→ HomI D(X, Y )
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is the inclusion map. We also have the map

$ : I D → D .

This also maps objects to themselves, but the map

HomI D(X, Y )→ HomD(ιX, ιY )

is projection. Finally, we have the inclusion map

v : HomD(X, Y [−1])→ HomI D(ιX, ιY ).

The formula for this is, for f ∈ HomD(X, Y [−1]), v(f) = (0, f). This is a natural

transformation.

Definition 2.2.2. We say that a morphism f ∈ HomI D(X, Y ) is infinitesimal

if $(f) = 0. We say that f is genuine if f = ι(f0) for some f0 ∈ HomD(X, Y ).

It is important to note that the property of being genuine is not natural. The

property of being infinitesimal is, however. (Cf. [AR13] Remark 3.2.)

We say that a triangle X → Y → Z
+1−→ is distinguished if there exists a

diagram

X Y Z

ι(X ′) ι(Y ′) ι(Z ′)

such that X ′ → Y ′ → Z ′
+1−→ is a distinguished triangle in D .

Definition 2.2.3. Let C and D be triangulated categories. Suppose that I C and

I D are their infinitesimal extensions. An additive functor F : I C → I D is said

to be pseudotriangulated if and only if

1. It commutes with [1] and takes distinguished triangles to distinguished tri-

angles.
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2. It commutes with v ◦$.

Lemma 2.2.4. [AR13, Lemma 3.8] Let F : I C → I D be a pseudotriangulated

functor. Then there exists a functor, unique up to isomorphism, F̃ : C → D such

that

$ ◦ F = F̃ ◦$.

In the situation of this lemma, we say that F̃ is induced by F .

Definition 2.2.5. Let F : C → D be a pseudotriangulated functor. We say that

F is genuine if and only if

F ◦ ι = ι ◦ F̃ .

There is much more to be said about infinitesimal extensions of triangulated

categories and pseudotriangulated functors between them. For that, we encourage

the reader to see especially [AR13, Section 3]. For now, we mention only one more

result that will be significant for us in the sequel.

Theorem 2.2.6. [AR13, Theorem 3.16] Let F : I C → I D be a genuine pseu-

dotriangulated functor. If F has a right adjoint (respectively left adjoint) pseudo-

triangulated functor G : I D → I C , then G is genuine as well.

2.3 Orlov Categories

In [AR13], the authors introduced the notion of an Orlov category. Their motiva-

tion was to generalize a proof technique of Orlov for showing that two functors are

isomorphic that he used in [Orl97]. In their paper Achar and Riche also link Orlov

categories and Koszul categories. We wish to give a review of their theory here.

For a complete introduction, see [AR13]. In this section, we will only assume that

A is an additive category.

Definition 2.3.1. Let A be an additive category enriched over a field k and let

Ind(A) be the collection of isomorphism classes of indecomposable objects. Suppose
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that Ind(A) is finite and suppose that there is a function

deg : Ind(A)→ Z.

Then we say that A is an Orlov category if the following are satisfied:

1. All Hom-spaces in A are finite-dimensional.

2. For all S ∈ Ind(A), End(S) ' k.

3. For all S, S ′ ∈ Ind(A) such that S 6' S ′ and deg(S) ≤ deg(S ′), Hom(S, S ′) =

0.

We say that an object X ∈ A is homogeneous of degree n if X '
⊕

i∈I Si

such that Si ∈ Ind(A) and deg(Si) = n for all i ∈ I. We say that a functor

F : A → B between two Orlov categories is a homogeneous functor if it takes

homogeneous objects of degree n to homogeneous objects of degree n.

Definition 2.3.2. • We say that an additive category is Karoubian if every

idempotent endomorphism splits.

• We say that an additive category is Krull–Schmidt if every objects is iso-

morphic to a finite direct sum of indecomposable objects whose isomorphism

classes and multiplicities are determined uniquely.

We can now recall from [AR13] the following:

Corollary 2.3.3. Let A be an Orlov category. Then A is both Karoubian and

Krull-Schmidt.

Now, suppose that A is an Orlov category and let Kb(A) denote its bounded

homotopy category.

Definition 2.3.4. For X• ∈ Kb(A), the support of X•, with suppX• ⊂ Z × Z

is defined as follows:
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We say that (i, j) ∈ suppX• if and only if X i contains a non-zero direct sum-

mand of degree j.

It is very important to note that this notion is not homotopy-invariant. That

is, two isomorphic objects in Kb(A) can have different supports. Even in spite of

this significant limitation, this will be an important and useful concept. For any

subset Σ ⊂ Z× Z, we define the full subcategory

Kb(A)Σ := {X ∈ Kb(A) | X ' X ′ such that supp(X ′) ⊆ Σ}.

It is clear that every X ∈ Kb(A) belongs to Kb(A)Σ for some finite Σ ⊂ Z × Z.

We will give Z × Z the lexicographic order. Namely, (i, j) ≤ (i′, j′) if and only if

either i ≤ i′ or i = i′ and j ≤ j′. With respect to the lexicographic order, any finite

subset Σ ∈ Z × Z has a largest element. Now, consider the following two subsets

of Z× Z:

/ := {(i, j) ∈ Z× Z | i ≤ −j}

. := {(i, j) ∈ Z× Z | i ≥ −j}

To these two subsets, we can, of course, associate two full subcategories, Kb(A)/

and Kb(A)., of Kb(A). It is further clear that these two full subcategories “cover”

Kb(A). We now have the following lemmas:

Lemma 2.3.5. [AR13, Lemma 5.1] If X ∈ Kb(A)/ and Y [1] ∈ Kb(A)., then

Hom(X, Y ) = 0.

Lemma 2.3.6. [AR13, Lemma 5.2] Let S ∈ Ind(A).

1. If X ∈ Kb(A)., then the cone of any non-zero morphism S[degS] → X lies

in Kb(A)..

2. If X ∈ Kb(A)/, then the cocone of any non-zero morphism X → S[degS] lies

in Kb(A)/.
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Lemma 2.3.7. [AR13, Lemma 5.3] For any X ∈ Kb(A) there exists a distin-

guished triangle A→ X → B
+1−→ with A ∈ Kb(A)/ and B[1] ∈ Kb(A)..

We can now state the most important of these results (for our purposes at least):

Theorem 2.3.8. [AR13, Proposition 5.4] For any Orlov category A, the pair

(Kb(A)/,K
b(A).) is a bounded t-structure. Moreover, the heart of this t-structure,

Kos(A) := Kb(A)/ ∩Kb(A).,

is a split finite-length abelian category. The simple objects in Kos(A) are those

isomorphic to objects in the set

Irr(Kos(A)) = {S[degS] | S ∈ Ind(A)}.

Furthermore, Kos(A) has the structure of a mixed category. The weight function

wt : Irr(Kos(A))→ Z is given by

wt(S[degS]) = degS.

The proof of this theorem in [AR13] relies on Lemmas 5.1 and 5.3 that we have

restated above. We next have the corollary

Corollary 2.3.9. Consider Kb(A)/∩. = Kos(A). Then, for X = (X•, dX) ∈ Kb(A)

such that supp(X) ⊂ /∩., the associated graded with respect to the weight filtration

on X is given by

grWi X = X−i[i].

We also have the following result that will be relevant for our purposes:

Theorem 2.3.10. Let A be an Orlov category. Then the mixed structure on

Kos(A) gives Kb(A) the structure of a mixed triangulated category. Furthermore,

if X, Y ∈ Kb(A) such that wt(X) ≤ w and wt(Y ) > w, then Hom(X, Y ) =

Hom(Y,X) = 0.
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Orlov categories are also important, because they lead to rather “rigid” condi-

tions on functors between their bounded homotopy categories.

Theorem 2.3.11. [AR13, Theorem 4.7] Suppose that C and D are Orlov cat-

egories. If F, F ′ : Kb(C) → Kb(D) are two triangulated functors between their

bounded homotopy categories. Suppose that F (C) ⊆ D and F ′(C) ⊆ D. Also, sup-

pose that F |C : C → D and F ′|C : C → D are homogeneous functors. Then any

natural transformation of additive functors

θ◦ : F |C → F ′|C

can be extended to a natural transformation

θ : F → F ′

in such a way so that if θ◦ : F |C
∼−→ F ′|C is an isomorphism, then so is θ : F

∼−→ F ′.

We also have the following:

Theorem 2.3.12. [AR13, Theorem 4.9] Suppose that C and D are Orlov cate-

gories. Suppose that F, F ′ : Kb(C)→ I Kb(D) are two pseudotriangulated functors.

Furthermore, suppose that F |C(C) ⊆ D and F ′|C(C) ⊆ D and that these restricted

functors are homogeneous. Then any natural transformation of additive functors

θ◦ : F |C → F ′|C

can be extended to a natural transformation

θ : F → F ′

in such a way so that if θ◦ is an isomorphism, then θ is as well.

We also need the following:
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Theorem 2.3.13. [AR13, Theorem 4.11] Let A and B be two Orlov categories

and let F : I Kb(A)→ I Kb(B) be a pseudotriangulated functor. If F (A) ⊆ B and

the restricted functor F |A : A → B is homogeneous, then F is genuine.

These theorems will be extremely important for us later in proving genuineness

of some of the functors we construct.
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Chapter 3

Preliminaries From Toric Geometry

3.1 Basic Toric Geometry

In this section, we wish to introduce toric varieties associated to fans and give some

general facts about them. This is an area of much interest in algebraic geometry,

because of (a) the nice properties associated with them and (b) the fact that there

are (paradoxically) so many of them makes them a good testing ground for many

theorems. For the reader who might not have come in contact with these beautiful

spaces yet, we would like to make it so that the paper could still be read after

this introduction with much profit. We would also like to introduce some standard

facts about sheaves, their derived categories, and perverse sheaves. We will only

briefly describe some of the most important results without proof. For proofs of the

statements herein as well as many other details about toric varieties, see [Ful93]

or [CLS11] for a full introductory account.

A geometric definition of a toric variety is that it is a variety with an algebraic

torus as an open, dense subvariety such that the natural action of the torus on

itself extends to an action on the entire variety. Some natural examples to keep

in mind are (Gm)n, An, and Pn. (Here Gm stands for the multiplicative algebraic

group.) Given in this form, it is not immediately clear how to construct new and

interesting toric varieties, but thankfully for the theory there is a combinatorial

way to construct toric varieties. This not only makes it easy to find examples of

them, but it also allows the combinatorics to interact with the algebraic geometry

of the varieties.

By ∆ we will always mean a collection of strongly convex rational cones in a

real n-dimensional vector space NR = N⊗ZR where N is an n-dimensional lattice.
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Finally, by M we mean the dual lattice to N . If σ is a cone in N , then we will

denote by σ∨ the dual lattice in M via the non-degenerate pairing between N

and M . From the single cone σ, the associated toric variety X(σ) is defined as

Spec(k[σ∨ ∩M ]). For a fan, ∆, we form the variety X(∆) by forming the varieties

X(σ) for all cones inside ∆ and gluing them together along their shared faces. Not

all toric varieties arise from fans in this way, but we will follow the convention of

essentially ignoring those cases. So, henceforth, by “toric variety” we will mean

“toric variety arising from a fan.” It is well known that toric varieties arising from

fans are always normal varieties.

The next natural step after defining the objects of study is to describe morphisms

between those objects. First of all, toric varieties are, in particular, algebraic vari-

eties, so if we are only thinking of them with that structure, then we can clearly

choose any morphism of varieties. However, if we wish to think of them with re-

spect not only to their variety structure, but also with respect to the action of

the torus, then we need something else. To this end, we require the morphisms to

respect that structure:

Definition 3.1.1. Let T1 ⊆ X(∆1) and T2 ⊆ X(∆2) be two toric varieties with

corresponding tori T1, T2. Given a map Φ : X(∆1) → X(∆2), we say that it is a

toric map if it is equivariant with respect to the two torus actions. That is, if

Φ(t1 · x) = t2 · Φ(x)

for all t1 ∈ T1 and where t2 = Φ(t1) ∈ T2. Here ti· is understood as the action of

Ti for i = 1, 2.

Given our point of view of toric varieties as varieties combinatorially/functorially

made from fans, we should expect a characterization of toric maps in terms of fans.

Indeed, we have such a thing.
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Theorem 3.1.2. Let X1 and X2 be two toric varieties arising from the fans ∆1 ⊂

N1 and ∆2 ⊂ N2 respectively. Then a morphism

f : X1 → X2

is a toric map, that is a map that is equivariant with respect to the torus actions

on X1 and X2, if and only if there exists a map of lattices

fN : N1 → N2

such that for any σ1 ∈ ∆1, there exists a σ2 ∈ ∆2 so that fN(σ1) ⊆ σ2.

Another fundamental result is the cone-orbit correspondence for toric varieties.

Before we state this though, we introduce a relation between two cones σ, τ ∈ ∆.

We say that τ < σ if τ is a face of σ. Now we can state the following:

Theorem 3.1.3. Let X(∆) be a toric variety with torus T = T (∆). There is a one-

to-one correspondence between T -orbits and cones σ ∈ ∆. Furthermore, there are

the following relations between T -orbits O(σ), distinguished affine open sub-toric

varieties Uσ, and orbit closures V (σ):

1. Uσ =
⊔
τ≤σ O(τ).

2. V (σ) =
⊔
τ≥σ O(σ).

3. O(σ) = V (σ) \
⊔
τ>σ O(τ).

This theorem is especially important for the study of perverse sheaves, since

it gives us a combinatorial calculus for the torus stratification. This will always

be the stratification with respect to which we consider the category of perverse

sheaves on a toric variety.
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Another fact that will be incredibly important for us is the “local product struc-

ture” of toric varieties. In order to do this though, we must first introduce the

notion of an (affine) toric variety of contractible type.

We say that an affine toric variety is of contractible type if its fan σ ⊂ N has

full dimension. In symbols, if dim(σ) = dim(N). In this case, it is a theorem that

X(σ) is actually a contractible space with a unique torus fixed point.

We can finally give the local product strucure of a toric variety. Specifically, we

have that

Lemma 3.1.4. Let X(∆) be a toric variety and let σ ∈ ∆ be any cone. Then there

is a non-canonical isomorphism

Uσ ' O(σ)× U ′σ

where U ′σ is a toric variety of contractible type for torus Tσ = stab(O(σ)). Further-

more, O(σ) ∩ U ′σ = wσ where wσ is the unique Tσ-fixed point in U ′σ.

Note that in the above setup, O(σ) is a T ′ ' T/Tσ ' O(σ) toric variety. Note

that each orbit O(σ) is isomorphic to a torus. Given a cone σ ∈ ∆, we will often

use the notation

T ' T ′ × Tσ (3.1)

with the meaning as given above.

Suppose that f : X → Y is a proper toric fibration. For σ ∈ ∆(Y ), there is

a non-canonical, equivariant splitting as in 3.1 and a non-canonical equivariant

isomorphism of toric maps, compatible with 3.1:

(f−1(Uσ)→ Uσ) ' (f−1(U ′σ)×O(σ)
fσ′×Id−−−−→ Uσ′ ×O(σ)). (3.2)

The resulting, natural map fσ′ = f |Uσ′ is a toric fibration onto a base of con-

tractible type. Furthermore, we have a natural identification f−1(yσ) = f−1
σ′ (yσ′).
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This implies that we have a non-canonical, (TX → TY (σ))-equivariant decomposi-

tion:

f−1(O(σ)) ' f−1(yσ)×O(σ).

For the next result, we will still consider f : X → Y , a toric map. Fix ξ ∈ ∆(X).

Consider the natural map of tori induced by f :

φ : (O(ξ), xξ)→ (O((ξ)), yξ).

The image,

i : (O′(ξ), yξ)→ O(ξ), yξ),

is a closed subtorus. There is the canonical factorization into maps of tori:

φ : O(ξ)
a−→ A

b−→ B
c−→ O′(ξ)

i−→ O(ξ). (3.3)

Here, a is a toric fibration, non-canonically a product projection, b is a geometric

quotient map, étale and Galois by the action of a finite subgroup of the torus A, i

is the natural closed inclusion above, and c is a universal homeomorphism.

Next, we let f : X → Y be a proper toric map again. There is a canonical toric

Stein factorization

f : X
g−→ Z

h−→ Y.

In this setup, g is a proper toric fibration and h is a toric finite map. The normal-

ization of f(X) ⊂ Y is a toric variety.

Finally, we wish to make mention of an incredibly important fact concerning

toric varieties of contractible type. If X is a toric variety of contractible type

with fixed point x, then we will often write it as (X, x). Let f : X → Y be a

proper toric fibration onto a toric variety (Y, y) of contractible type. Let F be an

equivariant complex on X. We are assuming here that the ground field is either
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finite or algebraically closed. Then the natural, graded map

H•(X,F) = H•(Y, f∗F)→ (R•f∗F)y (3.4)

is an isomorphism. (Here, as elsewhere, we write f∗ for the right derived functor.) If

the ground field is finite, then it is understood that we have passed to the algebraic

closure. In this case, the isomorphism is compatible with the action of Frobenius

on both sides.

This is a very specific instance of a much more general theorem. For the general

statement, see either [Spr84] or the discussion following [Bra03, Lemma 6]. We will

refer to this as the homotopy trick.

3.2 Sheaf Theory

Let X0 be a variety over a finite field Fq. We simply write X for the variety

X0×SpecFq Spec(Fq). This is the variety we get by extending scalars to an algebraic

closure. It is common to abuse notation and write this as X = X0 ⊗Fq Fq. The

variety X0 comes equipped with a geometric Frobenius map that acts on the stalks

of constructible sheaves at geometric points. We will now give a brief introduction

to this. For more information concerning this morphism, see [FK88], [KW01], and

[Mil80] for a detailed explanation.

We denote by x a geometric point on X0. For any geometric point x, we can

consider the pullback of F0 to x. This has an action of the group Gal(Fq/Fq). In

particular, it carries an action of Fr, the geometric Frobenius element. This

is the inverse of the usual (or arithmetic) Frobenius automorphism of the Galois

group. We only consider constructible complexes F0 such that, after choosing an

isomorphism Q` ' C, the eigenvalues of Fr on the stalks are algebraic numbers

with complex conjugates all having absolute value equal to qn/2 for any integer n.

This must be independent of the isomorphism chosen.
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If only one such n appears for a sheaf F0, then we say that the sheaf is pointwise

pure. (This is also called punctual purity in some places in the literature.) If F0

has a filtration by subsheaves such that the subquotients appearing in the filtration

are pure, then we say that the F0 is mixed. The n’s that appear here are referred

to as the “weights” of the sheaf. If F•0 is a complex of sheaves, then F•0 is pointwise

pure of weight n if Hi(F•0 )|x is pointwise pure of weight n + i for all i and for all

geometric points x.

For a complex F•0 , we say that F•0 has weights ≤ n if for each i, Hi(F•0 ) has

weights ≤ n + i. However, we say that F•0 has weights ≥ n if D(F•0 ) has weights

≤ −n. (Note that the weights of these cohomology sheaves are in the sense of

pointwise purity.)

In particular, the constant sheaf on a smooth variety is pure of weight 0. The

constant sheaf is always pointwise pure of weight 0 on any variety, but for singular

varieties, it is not pure as a complex in the derived category. Another example is

that for any stratum Xα, IC(Xα) is pure of weight nα = dim(Xα). It is worth

noting that it is not, however, pointwise pure in general.

We should also mention the notion of the Tate twist. Recall that Tate twisting

is (non-canonically) isomorphic to tensoring by the constant sheaf. That is to say,

Tate twisting is non-canonically isomorphic to the identity functor. This is why

Tate twist commutes with all sheaf functors. The fact that this is non-canonical

is just the fact that there is no distinguished unit in the `nth roots of unity. This

is also why this procedure changes the action of Fr. If F is pure of weight n (has

weights ≤ n, has weights ≥ n), then F(1) is pure of weight n − 2 (has weights

≤ n− 2, has weights ≥ n− 2). Here and now, we will choose a square root of the

Tate sheaf and consider it fixed for the rest of this paper.
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Definition 3.2.1. A complex F•0 is pure, even, and Tate if for all geometric points

x, we have

H•(F•0 )|x '
⊕
i∈Z

Q⊕n(i)

` [2i](i).

The notion of being pure, odd, and Tate is the same except for having only odd

degrees. That is, a complex F•0 is pure, odd, and Tate if for all geometric points x,

we have

H•(F•0 )|x '
⊕
i∈Z

Q̄⊕n(i)

`
[2i+ 1](

2i+ 1

2
).

This makes sense, since we have chosen a square root of the Tate sheaf.

In this section, we recall some basics concerning Db
c(X) and Db

m(X0), the bounded

derived category of constructible complexes and the bounded derived category of

mixed constructible complexes, respectively. In this paper, we will be working with

varieties over Fq and Fq. In this context, constructible complexes are always with

respect to the étale topology. Cohomology also always refers to étale cohomol-

ogy. Obviously, there are occasions in this setting where different topologies or

cohomologies are used, but they are explicitly mentioned when applicable. For the

reader unfamiliar with this setting, one may (for the most part) treat it like a

black box and pretend that these are varieties over C endowed with the Euclidean

topology. This is at least true enough of the time to allow one to read through

most details on a first approach. For introductions to étale cohomology and the

étale topology as well as the theory of sheaves on étale sites, see [Mil80], [FK88],

or [KW01].

Furthermore, we will mean constructible Q` sheaves. This is yet another con-

struction that is far too long to describe here. The above references for information

on the various Frobenius morphisms cover this topic adequately and in great detail.

For simplicity, the reader is encouraged to imagine that these are sheaves of Q`
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vector spaces or even sheaves of C vector spaces. This is not true, but the intuition

that it provides is the correct way of thinking about these things.

We recall that a locally constant sheaf is a sheaf F such that there exists an

open covering {Ui}i∈I of X such that FUi is a constant sheaf for all i. For suitably

nice topological spaces, the category of locally constant sheaves is equivalent to

the category of representations of π1(X), the fundamental group (or of πEt1 (X),

the étale fundamental group if in the étale topology).

A constructible sheaf is a sheaf F such that there exists a stratification of X

into a disjoint union of locally closed smooth subvarieties

X =
⊔
λ∈Λ

Xλ

with the property that FXλ is a locally constant sheaf for all λ ∈ Λ.

To define Db
c(X), the bounded derived category of constructible complexes, or

any of its variants, we do not require that for such an F•, each F i is a constructible

sheaf. Instead, the correct notion ends up being that a complex F is in Db
c(X) if

for all i Hi(F) is a constructible sheaf.

Similarly to our notation of dropping the subscript “0′′, X0 to X, when moving

from the variety over the finite field to that over the algebraic closure, for a sheaf

(or complex of sheaves) on X0, F0, we will include a subscript 0 and drop the

subscript, F , to indicate that the sheaf/complex of sheaves has been pulled back

to X. This same notation is also used when talking about maps and functors in

these two different settings. We will use χ to denote this pullback, so that we have

χ(F0) = F . If it is clear from the context that a complex of sheaves must be on

one variety or the other, we may drop the 0 in an abuse of notation.

This action on stalks at geometric points is an automorphism of a Q̄` vector

space, so one can think of the extra (“mixed”) structure as that of having an
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automorphism attached to the vector space (not unlike the situation in the setting

of quiver representations) or as a type of grading. We will see soon that making

this notion precise is exactly the notion of a mixed version of a category as defined

above.

By Db
m(X0) or DDel(X0) we indicate Deligne’s category of mixed constructible

complexes from [Del80]. Likewise, we use Pm(X0) to denote the category of mixed

perverse sheaves (cf. [BBD82]). We will say more in the next section about the

specifics of this category. It is very important to note that Pm(X0) is not a mixed

category in the sense described in the section above. This is easily seen by noting

that there are pure non-semisimple objects in Pm(X0) (cf. [BGS96]). For this rea-

son, we will not refer to this as the “mixed category of perverse sheaves.” If we

have to, we will refer to it “the category of mixed perverse sheaves” or “Deligne’s

category of mixed perverse sheaves.” Even this will be avoided where reasonable.

Denote by Q̄ the “constant sheaf” with value of Q̄` over connected étale neighbor-

hoods. Let us assume that we have an algebraic stratification (cf. [CG10]):

X0 = tλ∈ΛXλ

and, for all λ ∈ Λ, let jλ : Xλ ↪→ X denote the locally closed embedding. We

will always assume that the following condition (cf. [BBD82] 2.2.10(c)) is in force

whenever we discuss constructible sheaves: For all λ, κ ∈ Λ, Hi(Rjλ∗Q̄`
)|Xκ is a local

system with irreducible subquotients of the form Q̄
`
(−n/2). We will prove that, in

the equivariant setting, toric varieties satisfy a stronger condition. To indicate the

simple perverse sheaves we write

Lλ := jλ!∗Q̄`
[dim(Xλ)]

in the non-mixed setting and

L̃λ := jλ!∗Q̄`
[dim(Xλ)](dim(Xλ)/2)
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in the mixed setting. Note that this convention means that L̃λ has weight 0. This

is different than the convention in [BGS96]. This has the effect of making it so

that, if D(−) denotes the Verdier duality functor, then

D(L̃λ) ' L̃λ.

We also denote by DWeil(X0) the full triangulated subcategory of Db
m(X0) gen-

erated by the L̃λ and Tate twists thereof. The extension of scalars functor then

restricts to a functor

χ : DWeil(X0)→ Db
c(X)

that we will still denote by χ. We analogously use PWeil(X0) (resp. P(X)) to denote

the the abelian category of perverse sheaves in DWeil(X0) (resp. Db
c(X)). From

[BBD82, 5.1.2] we know that PWeil(X0) is equivalent to a certain category of sheaves

on X with a “Weil structure” or an accompanying sheaf automorphism. It is not

true, however, that the same is true for the relationship between DWeil(X0) and

Db
c(X). By [BBD82, Thérèome 5.3.5], every F0 ∈ PWeil(X0) comes with a canonical

weight filtration W•F0. The subquotients rF0 are pure, but they are not necessarily

semisimple (cf. [BBD82, Proposition 5.3.9]). (This is what was alluded to earlier

in regard to the failure of DDel(X0) to be mixed as a category.) Furthermore, all

the morphisms in PWeil(X0) are strictly compatible with the weight filtration. If

a : X0 → Spec(Fq) is the canonical structure map to Spec(Fq), then we make the

following definition:

RHom(F0,G0) := Ra∗RHom(F0,G0).

This is an `-adic sheaf over Spec(Fq), so it still has a natural action of Fr. Similarly,

we let

Homi(F0,G0) := Hi(Ra∗RHom(F0,G0)).
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Since χ is compatible with all the usual sheaf functors,

Homi
DWeil(X)

(χ(F0), χ(G0)) ' χ(Homi(F0,G0)).

That is, if we forget the Fr action on Homi(F0,G0), then we get the homomorphisms

between χ(F0) = F and χ(G0) = G in Db
c(X). However, within DWeil(X0), the

relationship between the Hom-groups and the Hom’s is more complicated. By

[BBD82, 5.1.2.5], there is a short exact sequence of vector spaces:

0→ Homi−1(F0,G0)Fr → Homi
DWeil(X0)

(F0,G0)→ Homi(F0,G0)Fr → 0, (3.5)

where (·)Fr are the invariants of Fr (i.e. the kernel of Fr− id) and (·)Fr are the coin-

variants of Fr (i.e. the cokernel of Fr− id). Also, note that the natural morphism

HomDWeil(X0)(F0,G0)→ HomDWeil(X)(χ(F0), χ(G0))

factors through the map

HomDWeil(X0)(F0,G0)→ Hom(F0,G0)Fr

of (3.5). We now list (without proof) three results from [AR13]:

Lemma 3.2.2. [AR13, Lemma 6.1] The following two conditions are equivalent:

1. F0 ∈ DWeil(X0).

2. For all λ ∈ Λ, j∗λF0 ∈ DWeil(X0).

Lemma 3.2.3. [AR13, Lemma 6.2] Let X0 be a stratified variety and h : Y0 → X0

the locally closed inclusion of a union of strata. Then h∗, h!, h∗, h! all preserve the

the Weil categories. That is, h∗ : DWeil(X0)→ DWeil(Y0) and similarly for the other

three.

Lemma 3.2.4. [AR13, Lemma 6.3] For any stratified variety, the functors D,⊗L,

and RHom send objects in DWeil(X0) to objects of DWeil(X0).
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We also note that all of the above is transportable to the equivariant setting.

This leads us naturally to the notion of the equivariant derived category. We will

give the briefest of introductions to this. We need to first know what equivariant

sheaves are before doing that. Everything that is said here comes from [BL94] and

that monograph should be referenced for a more detailed account of this material.

Suppose

act : G×X → X

gives X the structure of a G-space. Then we also have the map

pr2 : G×X → X

that is simply projection along the second factor. A sheaf F on X is G-equivariant

if there exists an isomorphism

α : act∗F ∼−→ pr∗2F

and if this isomorphism satisfies a cocycle condition.

First, one should note that a sheaf F being equivariant is not intrinsic to it. In

fact, it is a piece of extra data. So, in general it does not make sense to say that

a sheaf “is equivariant” or “is not equivariant.” One exception to this rule is that

is a perverse sheaf has a structure as an equivariant complex with respect to a

connected group, then such an isomorphism is unique.

If X is free as a G-space, then we have an equivalence of categories

ShG(X)
∼−→ Sh(X)

where X = X/G is the quotient space. It is also worth noting that, in general, if

one is willing to think in stack language, then

ShG(X) ' Sh([X/G])

where [X/G] is the quotient stack.
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Definition 3.2.5. If X is a G-space, then a resolution of X is a map

p : P → X

where P is a free G-space. We write Res(X) for the category of resolutions of X

with morphisms given by the obvious notion.

We now need to associate a diagram to any resolution p : P → X. More specifi-

cally, given such a resolution, we obtain a diagram

Q(p) : X
p←− P

q−→ P = P/G.

Now, given a resolution as above, we can define the category Db
G(X,P ) by saying

that an object F ∈ Db
G(X,P ) is a triple (FX ,F , β) where

• FX ∈ Db(X),

• F ∈ Db(P ), and

• β : p∗FX
∼−→ q∗F is an isomorphism in Db(P ).

A morphism α : F → G is a pair (αX , α) where αX : FX → GX and α : F → G

satisfy the relation

β ◦ p∗(αX) = q∗(α) ◦ β.

Finally, we can specify a subcategory DI(X,P ) ⊂ Db(X,P ) by saying that F ∈

DI(X,P ) if For(F) ∈ DI(X), where For is the forgetful functor.

Next we need the definition of an n-acyclic map.

Definition 3.2.6. A continuous map of topological spaces f : X → Y is n-acyclic

if

1. For any F ∈ Sh(Y ), the adjunction morphism F → R0f∗f
∗F is an isomor-

phism and Rif∗f
∗F = 0 for all i ∈ {1, . . . , n}.
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2. For any base change Z → Y , the base change morphism X×Y Z → Z satisfies

property (1).

We say that a resolution p : P → X is n-acyclic if the continuous map p is. We

say that a map f is ∞-acyclic if it is n-acyclic for all n.

Finally, due to some propositions in [BL94], we can make the following definition:

Definition 3.2.7. For any I ⊂ Z, define DI
G(X) := DI(X,P ) for some n-acyclic

resolution p : P → X where n ≥ |I|. Then we can define

Db
G(X) := lim−→

I

DI
G(X).

This is only the briefest introduction to the formalism of the equivariant derived

category. In particular, we will not go through any of the definitions of the equiv-

ariant versions of the sheaf functors. The important thing to know here is that

these equivariant sheaf functors obey the same formalism as their non-equivariant

counterparts.

3.3 Perverse Sheaves

We like to consider P(X) (also written Perv(X)), the category of perverse sheaves

on an algebraically stratified variety

X =
⊔
λ∈Λ

Xλ.

To speak about perverse sheaves, one must consider either the additional datum of

an appropriate stratification or, else, consider the direct limit of the categories of

sheaves for all such stratifications. For many purposes, the stratification one cares

about comes from the action of an algebraic group. In this case, the stratification

is known to be an algebraic stratification (cf. [CG10]).

In [BBD82], the authors use the notion of a t-structure on a triangulated category

to construct abelian subcategories of triangulated categories. In the case when the

35



t-structure is the “standard” t-structure on a bounded derived category, then this

category is the original abelian category.

We will not recall the generalities of t-structures, but we will just list the con-

ditions on a complex that makes it a perverse sheaf with respect to what is called

the middle perversity. For the reader who has not encountered these before, these

conditions come from the heart of a specific t-structure. Being the heart of a

t-structure, P(X) is an abelian subcategory of Db
c(X). The fact that makes it in-

teresting is that it is not equivalent to the original abelian category of constructible

sheaves.

In particular, F ∈ Db
c(X) is a perverse sheaf on a stratified variety X if and only

if

• For all i, dim supp HiF ≤ −i.

• For all i, dim supp HiDF ≤ −i.

It is an important fact that P(X) is also a finite-length abelian category. Having

said that, it is proved in [BBD82] that the simple objects are parametrized by

pairs (Xλ,L) where Xλ is a stratum of X. These will be denoted by IC(Xλ,L),

also known as an intersection cohomology complex. Any IC(Xλ,L) has support on

Xλ, the closure of Xλ and IC(Xλ,L)|Xλ ' LXλ [dimXλ].

In particular, if Xµ is the open dense stratum, then IC(Xµ, Q̄`,Xµ
), usually writ-

ten as IC(X) is sometimes simply called the intersection cohomology complex of

X, has support on Xµ = X, and its hypercohomology groups, H•(IC(X)), are the

intersection cohomology groups of X, IH•(X).

We now wish to recall a few of the important lemmas that will be key in our

arguments in the following sections. The first couple of these come from the paper
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[Lun95]. This is ultimately where we will get the semisimplicity of the action on

on the Hom•T (L̃σ, L̃τ ).

We need to set the stage for these. Let X be a toric variety (under our assump-

tions from above). Let {L1, . . . ,Lk} be a complete collection of simple, equivariant

perverse sheaves on X with respect to the toric action. Let L = ⊕ki=1Li and let

A◦ = Ext•DT (X)(L,L) be the corresponding graded algebra. Let A be the opposite

algebra. Denote by ei : L → Li the projection and by Qi = Aei the corresponding

projective A-module. We denote by A = (A, d = 0) the DG-algebra with zero

differential. Following [Lun95], we can construct DA, the derived category of DG-

modules over A. We let Df
A ⊂ DA be the full triangulated subcategory generated

by the DG-modules (Qi, d = 0).

Theorem 3.3.1. [Lun95, Theorem 0.1.1] Assume that X is affine or projective.

Then there exists a natural equivalence of triangulated categories

Db
T,c(X) ' Df

A.

Lemma 3.3.2. [Lun95, Lemma 4.0.1] Suppose that in the Theorem 3.3.1, the toric

variety X is affine. Then we may assume that X has a fixed point.

The proof of this lemma is particularly short, so we will repeat it here for use

later:

Proof. LetO(σ) ⊂ X0 be the orbit of minimal dimension and let Tσ be its stabilizer.

Then X0 ' T ×Tσ Xσ where Xσ is an affine toric variety of contractible type with

respect to the torus Tσ. By the induction equivalence of [BL94], the categories

Db
T,m(X0) and Db

Tσ ,m(Xσ) are naturally equivalent. Furthermore, this equivalence

preserves simple perverse sheaves. Therefore, we may replace X by Xσ.
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Lemma 3.3.3. [Lun95, Lemma 4.0.3] The natural map

Ext•(Li,Lj)→ Hom•AT (H•(Li),H•(Lj))

is injective.

The next lemma we wish to present is the primary one from [dC15]. We will

need more notation before we can state this result. Let X0 and Y0 be two toric

varieties over a finite field and let f0 : X0 → Y0 be a proper toric map. Let

f0 = h0 ◦ g0 : X0 → Z0 → Y0 be the toric Stein factorization. For every ζ ∈ ∆(Z0),

define

Evζ := {b ∈ Z|b+ dim(X0)− dim(V (ζ) is even},

βζ :=
b+ dim(X)− dim(V (ζ))

2
,

O′0(ζ) := h0(O0(ζ)),

L0,ζ := h0∗Q̄`,O0(ζ)
.

(3.6)

Theorem 3.3.4. [dC15, Theorem 1.4.1] Let f0 : X0 → Y0 be a proper toric map.

1. There is an isomorphism in Db
m(Y0):

f0∗ IC(X0) '
⊕

ζ∈∆(Z0)

⊕
b∈Evζ

IC(O′0(ζ), L0,ζ)
⊕sζ,b(−βζ)[−b].

The sheaves L0,ζ are locally constant, semisimple, and pure of weight 0. The

sζ,b ∈ Z≥0 are subject to:

(a) For all b ∈ Evζ, sζ,b = sζ,−b.

(b) If f0 is projective, then sζ,b ≥
∑

l≥1 sζ,b+2l for every b ≥ 0 in Evζ.

Here f0∗ is understood to be the right derived functor.

2. In particular, the pure weight 0 f0∗ IC(X0)[−dim(X0)] is pointwise pure, even,

and Tate. That is, for every y ∈ Y0(Fq), the Fr-module (R• f0∗ IC(X0)[−dim(X0)])y =

H•(f−1
0 (y), IC(X0)[−dim(X0)]) is pure, even, and Tate.
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3. Let f0 be a proper toric fibration. For σ ∈ ∆(Y0), let Evσ and βσ be as above.

There is an isomorphism in Db
m(Y0):

f0∗ IC(X0) '
⊕

σ∈∆(Y0)

⊕
b∈Evσ

IC(V0(σ))⊕sσ,b(−βσ)[−b].

Here, the sσ,b ∈ Z≥ are subject to the conditions analogous to those in (a)

and (b) above.
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Chapter 4

KbPure(X0) as a Mixed Category

In this section, we introduce Pure(X0) and show that its bounded homotopy cat-

egory, Kb(Pure(X0)), is a suitable replacement for Db
T,m(X0). To do this we will

construct a realization functor between them.

Let ∆ be a fan in the n-dimensional real vector space NR = N ⊗ R, where N

is an n-dimensional lattice. Let X0(∆) be the associated toric variety over Fq and

X(∆) = X0(∆) ⊗ Fq. We will refer to the torus X0(NR) simply as T. Recall that

there is a one-to-one correspondence between cones σ ∈ ∆ and T-orbits O(σ) that

is order reversing, i.e. τ is a face of σ corresponds to O(σ) ⊆ O(τ). We will denote

by iσ : O0(σ) ↪→ X0(∆) the (locally closed) inclusion of the T-orbit into the larger

toric variety. This stratification by the algebraic group T will be the one that we

will work with for the rest of the paper. Furthermore, let Lσ = iσ!∗Ql,O(σ)[nσ] be

the intersection cohomology sheaf of Xσ. Note that Lσ is a mixed sheaf, pure of

weight nσ and we will use the notation

L̃σ := Lσ(nσ/2).

This now has weight 0.

Now, we introduce the subcategory from which our study departs and about

which it is concerned. This will actually involve several categories. In what follows,

we will denote by DDel
T (X0) or Db

T,m(X0) the category of mixed (T -equivariant)

constructible complexes given in the sense of [Del80] or [BBD82]. We note that, as

is well known by now, this category is not mixed in the sense of [BGS96] (which we

have defined above), because pure objects fail to always be semisimple. This is why

we will attempt to refrain from calling it the “mixed category” from here on. Also,
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following [AR13], we will denote by DWeil
T (X0) the full triangulated subcategory of

mixed T -equivariant constructible complexes generated by the L̃σ and Tate twists

of these complexes. Whenever it is clear which torus is acting, we will feel free to

drop the T from the notation.

Definition 4.0.1. We let Pure(X0) be the category whose objects are isomorphic

to direct sums of various L̃σ[i](i/2) for σ ∈ ∆. Furthermore, we define Dmix(X0) :=

KbPure(X0).

Remark 4.0.2. • Note that since L̃σ is pure of weight 0, the above direct sum-

mands in this category are all pure of weight zero.

• It is important to point out that Pure(X0) has a shift functor of its own,

namely [m](m/2). This is different than the shift functor [n] in Kb(PureT (X0)),

so to distinguish between the two, we denote the shift in Pure(X0) by

{m} := [m](m/2).

Before moving on to provide a recollement structure on this category (in the sense

of [BBD82]), we will first take time to prove some basic lemmas about morphisms

between objects in this category. Strictly speaking, these could be noted as needed

in the proofs below, but the author has personally felt it enlightening to understand

them by themselves. We begin with a theorem of crucial importance.

Theorem 4.0.3. Let X0(∆) be a toric variety defined over a finite field Fq. Let

σ, τ ∈ ∆ denote cones of the associated fan with inclusion maps

hσ : O0(σ) ↪→ X0

hτ : O0(τ) ↪→ X0.
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Then

RHomT (L̃σ, L̃τ ) ∈ Db
m(pt)

is either pure of weight 0, even, and Tate or pure of weight 0, odd, and Tate

depending on whether nτ − nσ is even or odd, respectively. Furthermore, for all i,

Homi
T (L̃σ, L̃τ ) is pure and Tate of weight i.

Proof. This proof will consist of two parts. By Theorem 3.3.4, we see that simple

perverse sheaves on toric varieties are pure, even, and Tate (peT), but only once

they have been shifted to start in degree 0. Therefore, a simple perverse

sheaf will be pure, even, and Tate, respectively pure, odd, and Tate (poT), if and

only if the dimension of its support is even, respectively odd. Therefore, until the

end of this proof, we work with the shifted complexes. In particular, these shifted

simple perverse sheaves are no longer perverse. For σ, τ ∈ ∆, we will write Lσ, Lτ

for the complexes of sheaves L̃σ[−nσ], L̃τ [−nτ ] respectively. In this first part, we

will simply prove that Hom•T (Lσ, Lτ ) is pure and even. In particular, we will not

say anything about the actual form of Fr in this first part.

We induce on the number of strata inX0. Assume that ∆ consists of a single cone,

so that there is only one stratum in X0(∆). In this case, Lσ = Lτ = Q̄
`
[dim(X0)].

Then the statement is true by Theorem 3.3.4, since

Homi
T (Q̄

`
, Q̄

`
) ' Hi

T (X0).

Now, assume that the claim is true when the number of strata is n and let

X0(∆) have n+ 1 strata. We will consider the distinguished triangle associated to

the following map of spaces:

i : Z0 ↪→ X0(∆)←↩ U0 : j
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where Z0 is a closed orbit and U0 = X0(∆) − Z0. Namely, we have the distin-

guished triangle

i∗i
!Lτ → Lτ → j∗j

∗Lτ
+1−→

with all functors understood to be equivariant and derived. Then, applying

Hom(Lσ,−) and using the standard six functor formalism, we arrive at the fol-

lowing long exact sequence:

· · ·Homi−1
T (j∗Lσ, j

∗Lτ )→ Homi
T (i∗Lσ, i

!Lτ )→ Homi
T (Lσ, Lτ )→

Homi
T (j∗Lσ, j

∗Lτ )→ Homi+1
T (i∗Lσ, i

!Lτ )→ · · · .

In particular, j∗ = j! and, for iα : O0(α) ↪→ Y0 an inclusion of an orbit into

Y0 = U0 or Z0,

(? ◦ iα)∗ ' i∗α◦?∗

and

(? ◦ iα)! ' i!α◦?!

where ? = i or j from above. Thus, by induction and by Theorem 3.3.4,

Homi
T (i∗Lσ, i

!Lτ ) = Homi
T (j∗Lσ, j

!Lτ ) = 0

for all odd i, which implies that Homi
T (Lσ, Lτ ) = 0 for all odd i. This also means

that Homi
T (i∗Lσ, i

!Lτ ) and Homi
T (j∗Lσ, j

!Lτ ) are pure of weight i for all even i, so

there are short exact sequences

0→ Homi
T (i∗Lσ, i

!Lτ )→ Homi
T (Lσ, Lτ )→ Homi

T (j∗Lσ, j
!Lτ )→ 0.
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Therefore, Homi
T (Lσ, Lτ ) is pure of weight i for all even i and our claim is proved.

Alternatively, we could have proved the above claim by considering spectral

sequences. Recall that given a filtered chain complex, there is a spectral sequence

attached. Now, let X be a topological space and suppose that X has a finite

decreasing filtration by closed sets:

X = X0 ⊇ X1 ⊇ · · · ⊇ Xn ⊇ Xn+1 = ∅.

This induces an increasing finite filtration on Γ(F) for any complex F on X:

0 = ΓXn+1(F) ⊆ ΓXn(F) ⊆ · · · ⊆ ΓX0(F) = Γ(F)

(Here all functors are understood to be derived and all complexes are elements of

the derived category.) Thus we have a spectral sequence

Ep,q
1 = Hp+q

Xp−Xp+1
(F)⇒ Hp+q(F).

We can simplify the presentation of this further, because in the language of the

six-functor formalism, if h : Z ↪→ X is a locally closed inclusion, then

Hi
Z(F) = Hi(h!F).

So, if we denote by jp : Xp − Xp+1 ↪→ X the open inclusion, then our spectral

sequence becomes

Ep,q
1 = Hp+q(j!

pF)⇒ Hp+q(F).

Now, we consider our particular situation. We can certainly stratify a toric variety

by such a finite filtration by closed toric subvarieties. We begin the filtration by

picking a closed orbit (which always exists) and then at each level add an orbit

that is open in the union. This produces an increasing filtration. so we can simply

flip it to produce a decreasing one. That is,

X = X0 ⊇ X1 ⊇ · · · ⊇ Xn ⊇ Xn+1 = ∅
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such that for any p,Xp−Xp+1 = O(σ) for some σ ∈ ∆. The sheaf whose cohomology

we wish to calculate is RHom(Lσ, Lτ ), so we get the following:

Ep,q
1 = Hp+q

T j!
pRHomT (Lσ, Lτ )⇒ Homp+q

T (Lσ, Lτ ).

We know that j!
pRHom(Lσ, Lτ ) ' RHom(j∗pLσ, j

!
pLτ ), so we arrive at the final

form of our spectral sequence. This is precisely what one could have used instead

of the formalism of the derived category for the above proof if the reader is less

familiar with triangulated categories.

Now, for the second part, we will show that this action of Fr on these Hom•T (Lσ, Lτ )

is that of a semisimple operator. We will prove this in two steps. We remind the

reader that Lσ and Lτ are still the shifted (non-perverse) complexes L̃σ[−nσ] and

L̃τ [−nτ ] respectively.

We proceed by induction on the number of (total) cones in the fan. If there is

one cone in the fan, then X0 is an affine toric variety. In this case, the argument

in the proof of Lemma 3.3.2 applies, so we may assume that X0 has a fixed point,

i.e. is an affine toric variety of contractible type.

Therefore, Lemma 3.3.3 shows that we may calculate the Frobenius action on

Homi
T (Lσ, Lτ ) by considering the action of Frobenius instead on

Homi
H•T (X)(H

•
TLσ,H

•
TLτ ).

On this group, Frobenius acts by conjugation. Since X0 is affine of contractible

type (and so is any closed sub-toric variety of X0), we have by the “homotopy

trick” that H•TLσ = H•(Lσ,w) where w ∈ X0 is the unique torus fixed point.

(Recall that we have reviewed the homotopy trick above in the review of toric

geometry.) Therefore, by Theorem 3.3.4 again, we know that this Frobenius action

is semisimple.
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Now, assume that the number of cones is n > 1. Then we may write X0 = U0∪V0

where U0 and V0 are open sub-toric varieties with less than n cones. The Mayer-

Vietoris sequence then gives us the following long exact sequence:

· · · → 0→ Hom2i
T (Lσ, Lτ )

→ Hom2i
T (Lσ, Lτ )|U0 ⊕ Hom2i

T (Lσ, Lτ )|V0

→ Hom2i
T (Lσ, Lτ )|U0∩V0 → 0→ · · ·

(4.1)

The odd terms are 0 by the first part of this proof. Since U0 and V0 (and conse-

quently U0 ∩ V0) are open, Hom2i
T (Lσ, Lτ )|U0 = Hom2i

T (Lσ|U0 , Lτ |U0) (and similarly

for the other two open sets). The restriction of a simple perverse sheaf to an open

subset is still a simple perverse sheaf, so we see that by induction the middle

term of the short exact sequence in (4.1) has semisimple Frobenius action. Since

Hom2i
T (Lσ, Lτ ) injects into the middle term, we are done.

We must now consider original perverse sheaves L̃σ and L̃τ . We see that

Homi
T (Lσ, Lτ ) = Homi

T (L̃σ[nσ], L̃τ [nτ ]) = Homi
T (L̃σ, L̃τ )[nτ − nσ].

Therefore, it is obvious that Homi
T (L̃σ, L̃τ ) is pure, even, and Tate if nτ − nσ is

even and pure, odd, and Tate if nτ − nσ is odd.

Now, we would like to set up some terminology that will hopefully be suggestive.

Definition 4.0.4. We say that an object F ∈ Pure(X0) is even if it is isomorphic

to a direct sum

F '
n⊕
i=1

L̃⊕s(i)σi
{ni}

with all ni + nσi ∈ 2Z. An object G ∈ Pure(X0) is odd if it is isomorphic to a

direct sum

G '
m⊕
j=1

L̃⊕s(j)σj
{nj}
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with all ni + nσj ∈ 2Z + 1. We denote by Pure(X0)even (respectively Pure(X0)odd)

the full subcategory of Pure(X0) of all even (respectively odd) objects.

Note that for m ∈ 2Z, {m} : Pure(X0)even → Pure(X0)even is an endofunctor.

Likewise, for m ∈ 2Z + 1, {m} : Pure(X0)odd → Pure(X0)odd is an endofunctor.

Now, we would like to describe how morphisms interact with the even and odd

structures of the category.

Lemma 4.0.5. Let F ∈ Pure(X0)even and G ∈ Pure(X0)odd. Then Hom(F ,G) =

Hom(G,F) = 0.

Proof. It clearly suffices to prove this when F = L̃σ with nσ even and G = L̃τ

with nτ odd. Then, because we are working within Pure(X0), HomT (F ,G) =

HomT (F ,G)Fr. However, we know from Theorem 4.0.3 that for F and G as above,

HomT (F ,G) = HomT (G,F) = 0, because for F and G as above, RHomT (F ,G) is

pure, odd, and Tate.

4.1 Dmix(X0) as a Mixed Version of Db
T (X0)

For our proof that Kb(Pure(X0) is a mixed version of Db
m(X0), we will essen-

tially repeat the argument made in [Rid13]. The primary difference will be that in

[Rid13], Rider considers only even shifts of simple objects while noting that the

same construction works for integral shifts. The extra structure that Rider obtains

by restricting to even shifts, however, does not play a role in the arguments that

we make here.

For completeness, we will describe Rider’s construction with modifications.

Lemma 4.1.1. Let L̃σ, L̃τ be two IC sheaves on a toric variety X0(∆) over Fq.

Then HomT (L̃σ, L̃τ [n](n/2))Fr ' HomPure(X)(L̃σ, L̃τ [n](n/2)).
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Proof. Recall the short exact sequence (3.5). In this case, this becomes

0→ Hom−1
T (L̃σ, L̃τ [n](n/2))Fr → Hom(L̃σ, L̃τ [n](n/2))

→ HomT (L̃σ, L̃τ [n](n/2))Fr → 0.

Now, from Theorem 4.0.3, we know that

Hom−1
T (L̃σ, L̃τ [n](n/2)) = Homn−1

T (L̃σ, L̃τ )(n/2)

is pure of weight (n− 1)− 2(n/2) = −1. Since (·)Fr is a quotient of the zero-weight

space, the left hand object is 0. Therefore, Hom(L̃σ, L̃τ [n](n/2)) ' HomT (L̃σ, L̃τ [n](n/2))Fr.

Next, we need the a connection to Orlov categories:

Lemma 4.1.2. Define a function deg : Ind(Pure(X0))→ Z by

deg(L̃σ[n](n/2)) = −n.

Then Pure(X0) is an Orlov category.

Proof. Let L̃σ, L̃τ ∈ Ind(Pure(X0)) and suppose that L̃σ[n](n/2) 6' L̃τ [m](m/2).

Then we have that

HomPure(X0)(L̃σ[n](n/2), L̃τ [m](m/2)) = Homm−n
DbT,m(X0)

(L̃σ(n/2), L̃τ (m/2)).

If −n < −m, then m − n is negative. Therefore, this vanishes since L̃σ(n/2) and

L̃τ (m/2) are objects in the heart of a t-structure on Db
T,m(X0). If −n = −m, then

we must have that L̃σ and L̃τ are two non-isomorphic simple objects. Therefore,

there are no morphisms in this case either.

In [Rid13], some stronger assumptions are satisfied. However, by [Rid13, Remark

3.8], the results of the above lemma are enough for the construction presented there
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to work. We will recall her theorems as they are originally stated while keeping

this in mind. We recall a lemma relevant in this context:

Lemma 4.1.3. [Rid13, Lemma 2.4] For all M,N ∈ Pure(X0), Hom(M,N [n]) = 0

if n 6= 0, 1.

Proof. We begin by noting that M is pure of weight 0 and N [n] is pure of weight

n. For n > 1, Hom(M,N [n]) = 0 by the results on mixed perverse sheaves in

[BBD82, Section 5]. Suppose that M ' L̃σ[i](i/2) and N ' L̃τ [j](j/2) for some

i, j ∈ Z and that n < 0. However,

Hom(L̃σ[i](i/2), L̃τ [j](j/2)) ' Hom(L̃σ[i− j](i− j
2

), L̃τ [n]).

So, it clearly suffices to consider the case when M ' L̃σ[i](i/2) and N ' L̃τ . We

know that

Homj
T (L̃σ[i](i/2), L̃τ [n]) ' Homn+j−i

T (L̃σ, L̃τ )(−i/2)

is pure of weight nj − i + i = n + j by Theorem 4.0.3. In particular, for j =

0,−1, we have that Homj
T (M,N [n]) is pure of non-zero weight. Therefore, by

(3.5), Hom(M,N [n]) = 0. For more general objects in Pure(X), the result follows

since Hom(−,−) commutes with direct sums.

There are a few more corollaries and lemmas that could be cited in the context

of Frobenius invariance, but we will choose to only recall those as needed. What

one needs next is a realization functor. That is, we need a triangulated functor

real : KbPure(X0)→ Db
T,m(X0)

that restricts to the identity on Pure(X0). Again, we follow [Rid13] very closely.

This, in turn, is inspired by Beilinson’s work in [Bei87]. In that work, however,

Beilinson constructed a realization functor when there is another t-structure readily
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lying about. Rider attributes the idea of using one in this context to Achar and

Kitchen. First, we need the notion of a filtered (triangulated) category.

Definition 4.1.4. A filtered triangulated category is the data of a trian-

gulated category, D, along with a collection of pairs of strictly full triangulated

subcategories {(F≤nD, F≥nD)}n∈Z such that the following hold:

1. If X ∈ F≤nD and Y ∈ F≥n+1D, then Hom(X, Y ) = 0.

2. There is containment F≤nD ⊂ F≤n+1D and F≥nD ⊃ F≥n+1D.

3. For all Z ∈ D and n ∈ Z, there exists a distinguished triangle

X → Z → Y
+1−→

such that X ∈ F≤nD and Y ∈ F≥n+1D.

4. The filtration is bounded. This means that ∪n∈ZF≤nD = ∪n∈ZF≥nD = D.

5. There exists a shift of filtration. That is, there is a pair, (s, α), with s : D →

D an autoequivalence that shifts the filtration up by one, i.e. s(F≤nD) =

F≤n+1D and s(F≥nD) = F≥n+1D, and α is a natural transformation s→ idD

such that αX = s(αs−1X).

6. For all X ∈ F≥1D and Y ∈ F≤0D, α induces isomorphisms

Hom(X, Y ) = Hom(X, sY ) = Hom(s−1X, Y ).

The inclusion functors F≤nD ↪→ D and F≥nD ↪→ D admit right and left adjoints,

w≤n : D → F≤nD and w≥n : D → F≥nD, respectively. In [Bei87], Proposition A.3,

Beilinson shows that for all n ∈ Z and all Z ∈ D, the distinguished triangle from

(3) above is canonically isomorphic to

w≤nZ → Z → w≥n+1Z
+1−→ .
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If we denote by Dn = F≤nD ∩ F≥nD, the “nth graded piece,” then w≤nw≥n is

naturally equivalent to w≥nw≤n and we denote it by

grn : D → Dn.

Definition 4.1.5. Let X ∈ D. We say that the filtered support is the minimal

interval [a, b] such that X ∈ F≤bD ∩ F≥aD.

That every object X ∈ D has a filtered support with finite length is a conse-

quence of the fact that we have assumed that the filtration is bounded.

Lemma 4.1.6. [Rid13, Lemma 3.2] Let X ∈ D. The morphism αsX : sX → X

induced by the natural transformation above has the property that grn(αsX) = 0

for all n ∈ Z.

We say that D̃ is a filtered version of D if there is an equivalence D̃0 → D. In

[Bei87], it is shown that there exists a unique functor–up to unique isomorphism–

ω : D̃ → D such that

1. The restriction ω|F≥0D̃ is left adjoint to the inclusion functor D ↪→ F≥0D̃.

2. The restriction ω|F≤0D̃ is right adjoint to the inclusion functor D ↪→ F≤0D̃.

3. The morphism ω(αsX) : ω(sX)→ ω(X) is an isomorphism.

Intuitively, ω is the functor of “forgetting the grading.” It is also known that if

X ∈ F≥0D̃ and Y ∈ F≤0D̃, then ω induces an isomorphism

HomD̃(X, Y ) ' HomD(ω(X), ω(Y )).

Henceforth, we will denote by D̃ = D̃(X0) a filtered version of Db
T,m(X0). We

denote by Ã the full subcategory of D̃ consisting of objects X such that for all

n ∈ Z, grn(X) ∈ snPure(X0)[n]. That is, Ã consists of objects whose graded pieces
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are objects of Pure(X0) lying “on the diagonal.” We can note that this is at least

very suggestive of the same sort of setup that one often gets in the heart of a

t-structure.

It is now important to recall the following important fact:

Lemma 4.1.7. [Rid13, Remark 3.3] If there is some n ∈ Z such that w≤nX and

w≥n+1X are in Ã for an object X ∈ D̃, then X ∈ Ã as well. Furthermore, X ∈ Ã

implies that snX[n] ∈ Ã. This implies that if f : X → Y is a morphism in Ã, then

the cone of the composition sX
αsX−−→ X

f−→ Y is in Ã as well.

Proof. This is due to the fact that Lemma 4.1.6 implies that the graded pieces of

the cone are given by

grn cone(f ◦ αsX) = grn sX[1] + grn Y.

Now, we make the definition of β : Ã → Cb(Pure(X0)) by saying that for M ∈ Ã,

β(M)• ∈ Cb(Pure(X)) is the complex with ith piece β(M)i = ω(gr−iM)[i] =

gr0(siM)[i] and with differential δi : M i → M i+1 given by the third morphism in

the functorial distinguished triangle

ω(gr−i−1M)[i]→ ω(w≥−i−1w≤−iM)[i]→ ω(gr−iM)[i]
δi−→ ω(gr−i−1M)[i+ 1]. (4.2)

It is worth pointing out where this distinguished triangle comes from. For M ∈ Ã,

we know from above that there is a canonical distinguished triangle

w≤−i−1M →M → w≥−iM
+1−→ (4.3)

for all i ∈ Z. Now, applying the functor w≥−i−1w≤−i[i] to (4.3) we obtain the

distinguished triangle

grW
i −i−1M [i]→ w≥−i−1w≤−iM [i]→ grW

i −iM [i]
+1−→ . (4.4)
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Applying ω to (4.4) we obtain (4.2).

Lemma 3.6 of [Rid13] tells us that β takesM ∈ Ã to a complexM• ∈ Cb(Pure(X)).

Moreover, we have the following:

Theorem 4.1.8. [Rid13, Proposition 3.7, Theorem 4.3, and Corollary 4.4] Let Ã

be defined as above. Then the following hold:

1. The functor β : Ã → Cb(Pure(X0)) is an equivalence of additive categories.

2. The composition ω◦β−1 : Cb(Pure(X0))→ Db
T,m(X0) factors through KbPure(X0)

and, therefore, induces a functor r : Kb(Pure(X0))→ Db
T,m(X0) such that the

restriction

r|Pure(X0) : Pure(X0)→ Db
T,m(X0)

is isomorphic to the inclusion functor. That is, r is a realization functor.

3. The category KbPure(X) is a mixed version of the category Db
T,c(X0) through

the maps

KbPure(X0)
r−→ Db

T,m(X0)
χ−→ Db

T,c(X).

Here, as stated earlier in the review of sheaf theory, χ : Db
T,m(X)→ Db

T,c(X)

is extension of scalars, i.e. the functor “forget the Frobenius.”

4. The heart of the t-structure (KbPure(X0)/,K
bPure(X0).), Pmix(X0) := KbPure(X0)/∩.,

is a mixed version of the category of perverse sheaves, P(X).

As stated above, Rider’s original statements are proved when Pure(X0) satisfies

a stronger condition. However, in [Rid13, Remark 3.8], it is commented that her

proofs work in the weaker setting where Homi
T (L̃σ, L̃τ is merely pure (and Tate) of

weight i. Our setting is actually stronger than that, so the proofs in [Rid13] apply

for us as well. Before defining one of the primary full subcategories of interest, we

wish to recall the ∗ operation.
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Definition 4.1.9. Let D be a triangulated category. By [X], we mean the isomor-

phism class of objects isomorphic to X. Let S(D) be the collection of isomorphisms

classes of objects in D with representatives [X]. Then for [A], [B] ∈ S(D),

[A] ∗ [B]

:= {[Z] | ∃X → Z → Y
+1−→ a distinguished triangle with [X] = [A], [Y ] = [B]}.

By [BBD82, Lemma 1.3.10], ∗ is associative. Now, we may proceed:

Definition 4.1.10. We wish to define the full subcategory Dmisc(X0) ⊆ DWeil
T (X0).

Let F ∈ DWeil
T (X0). We say that F ∈ Dmisc(X0) if there exist distinct integers

a, b ∈ Z with a ≤ b such that

F ∈ Pure(X0)[a] ∗ Pure(X0)[a+ 1] ∗ · · · ∗ Pure(X0)[b].

Furthermore, we say that a functor F : DWeil
T (X0) → DWeil

T (Y0) is miscible if it

sends miscible objects to miscible objects.

In the above definition, we do mean to allow for any F ∈ Pure(X0)[a]. However,

we do not allow F ∈ Pure(X0)[a]∗Pure(X0)[a]. The category Dmisc(X0) is actually

the original category of interest, in a sense. That is, if one initially tries to find

a mixed version of DWeil
T (X0), then one is naturally lead to Dmisc(X0). However,

Dmisc(X0) is not a triangulated category. This is precisely because we have defined

Dmisc(X0) to be a full subcategory of DWeil
T (X0). We know, however, that there are

certainly nonsplit extensions of sheaves with semisimple Frobenius action; given

that, there will be morphisms whose cones are not in Dmisc(X0). However, Dmisc(X0)

still has a structure that we can exploit. In particular, we will prove the following:

Theorem 4.1.11. There is a natural equivalence of additive categories

I : I Dmix(X0)
∼−→ Dmisc(X0).
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This theorem means that we have a canonical functor

ι : Dmix(X0)→ Dmisc(X0).

By abuse of notation, we will also write ι for the composition

Dmix(X0)→ Dmisc(X0)→ DWeil
T (X0).

Furthermore, let ζ = χ ◦ ι. Thus, we have a commutative diagram:

Dmix(X0) DWeil
T (X0)

Db
T,c(X)

ι

ζ
χ

The next lemma will follow from Theorem 4.1.11. However, it will follow also

for any situation that is formally the same as that in Theorem 4.1.11. Due to the

structure of the proof of Theorem 4.1.11, it is better to have a proof of this result

first.

Lemma 4.1.12. For F ,G ∈ Dmix(X0), ι induces an isomorphism

HomDmix(X0)(F ,G) ' HomT (ιF , ιG)Fr.

There is a natural isomorphism

HomDWeil
T (X0)(ιF , ιG) ' HomDmix(X0)(F ,G)⊕ HomDmix(X0)(F ,G[−1]).

Proof. We begin the proof by recalling, for any F ,G ∈ DWeil
T (X0), the short exact

sequence

0→ Homi−1
T (F ,G)Fr → Homi

DWeil
T (X0)

(F ,G)→ Homi
T (F ,G)Fr → 0. (4.5)

Here, as in the section on sheaf theory above, HomT (F ,G) = a∗RHomT (F ,G) as

above and (·)Fr and (·)Fr are the invariants and coinvariants of Frobenius, respec-

tively. It is known that the natural map

HomDWeil
T (X0)(F ,G)→ HomDbT,c(X)(χ(F), χ(G))
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factors through the map HomDWeil
T (X0)(F ,G) � HomT (F ,G)Fr from (4.5) (cf. [BBD82]).

Now, if we set ζ = χ ◦ ι, then there is a commutative diagram

HomDmix(X0)(F ,G) HomDbT,c(X)(ζ(F), ζ(G))

HomDWeil
T (X0)(ιF , ιG) HomT (ι(F), ι(G))Fr

(4.6)

Now, since Dmix(X0) is a mixed version of Db
c(X), we can sum up over all n and

also obtain the following commutative diagram:⊕
n∈Z HomDmix(X0)(F ,G〈n〉) HomDbT,c(X)(ζ(F), ζ(G))

⊕
n∈Z HomDWeil

T (X0)(ιF , ιG〈n〉)
⊕

n∈Z HomT (ιF , ιG〈n〉)Fr

∼

∼ (4.7)

We know that the left and right arrows are injections and isomorphisms, respec-

tively, because the composition is an isomorphism and the right map in (4.6) is an

injection, while summing over n gives a surjection on the right in (4.7). We know

that the bottom map in (4.7) is a surjection, because the composition is of all three

maps around the bottom of the diagram is an isomorphism. We also know that

HomDbT,c(X)(χ(F), χ(G)) ' χ(HomT (F ,G)); i.e. it is isomorphic to HomT (ιF , ιG)

with the Frobenius action forgotten. Since Fr acts semisimply on HomT (ιF , ιG),

we know that

HomT (ιF , ιG) ' ⊕n∈Z HomT (ιF , ιG)n

where by HomT (ιF , ιG)n is meant the weight n part of HomT (ιF , ιG). We also

know, by the pure, even, Tate-ness or pure, odd, Tate-ness of the Fr action that

HomT (ιF , ιG(−n/2))Fr = HomT (ιF , ιG)n.

Since we know the domains and codomains of our maps, this shows that HomDmix(X0)(F ,G) '

HomT (ιF , ιG)Fr canonically.

56



Using the isomorphism in Lemma 4.1.12, we see that the composition

HomDmix(X0)(F ,G)→ HomDWeil
T (X0)(ιF , ιG)→ HomT (ιF , ιG)Fr (4.8)

is an isomorphism. Since HomDmix(X0)(F ,G) ' HomT (ιF , ιG)Fr, this provides a

splitting of (4.5). Therefore,

HomDWeil
T (X0)(ιF , ιG) ' HomT (ιF , ιG[−1])Fr ⊕ HomT (ιF , ιG)Fr

canonically. However, the action of Fr on HomT (ιF , ιG) is pure, even, and Tate

or pure, odd, and Tate, so HomT (ιF , ιG[−1])Fr ' HomT (ιF , ιG)Fr canonically.

Therefore, our claim is proven.

Proof. (Of Theorem (4.1.11)) We begin by considering the functor

r : Dmix(X0)→ DWeil
T (X0).

So that the following is more intelligible, we will use the notation PureM(X0)

to mean the category as considered within Dmix(X0) and PureW (X0) to mean

the category as considered within DWeil
T (X0). We have already shown that r is a

functor of triangulated categories that commutes with Tate twists and restricts to

the inclusion functor

r|PureM (X0) : PureM(X0) ↪→ PureW (X0) ⊂ DWeil
T (X0).

In particular, for any σ ∈ ∆, r(L̃σ{n}) ' L̃σ[n](n/2). Since we know that the

composition

Dmix(X0)
r−→ DWeil

T (X0)
χ−→ Db

T,c(X)

realizes Dmix(X0) as a mixed version of Db
T,c(X), the results of Lemma (4.1.12)

apply to the functor r. Therefore this shows that r extends in a canonical way to

a functor

r̃ : I Dmix(X0)→ DWeil
T (X0).
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The results of Lemma 4.1.12 also tell us that r̃ is fully faithful and makes the

following diagram commute:

Dmix(X0) I Dmix(X0)

DWeil
T (X0)

ι

r
r̃ (4.9)

The claim we wish to prove is that the essential image of r̃ is Dmisc(X0). By the

commutativity of (4.9), however, we know that an object is in the essential image

of r̃ if and only if it is in the essential image of r. Thus, we will work with the

latter. Suppose that F ∈ Dmisc(X0). Then for some a, b ∈ Z with a ≤ b,

F ∈ PureW (X0)[a] ∗ PureW (X0)[a+ 1] ∗ · · · ∗ PureW (X0)[b].

We will prove by induction on |b− a| that there exists some

F̃ ∈ PureM(X0)[a] ∗ PureM(X0)[a+ 1] ∗ · · · ∗ PureM(X0)[b] ⊂ KbPure(X0)

such that r(F̃) = F . If F ∈ PureW (X0)[a], then we know from the discussion

above that r(F) = F . Now, assume that |b− a| = n > 1. Then there exists a

distinguished triangle

F ′ → F → F ′′ +1−→

such that F ′ ∈ PureW (X0)[a] and F ′′ ∈ PureW (X0)[a + 1] ∗ · · ·PureW (X0)[b]. By

induction, there exists some F̃ ′ ∈ PureM(X0)[a] such that r(F̃ ′ = F ′ and some

F̃ ′′ ∈ PureM(X0)[a+ 1] ∗ · · · ∗ PureM(X0)[b] such that r(F̃ ′′) = F ′′. We claim that

HomDmix(X0)(F̃ ′′, F̃ ′) = 0. This can be seen by an easy induction on |b− a|. Indeed,

if F [a] ∈ PureW (X0)[a] and G[b] ∈ PureW (X0)[b] with a 6= b, then

HomDmix(X0)(G[b],F [a]) = Homb−a
Dmix(X0)

(G,F) = Homb−a
T (ιG, ιF)Fr = 0.

Alternatively, we could see that this is 0 by noting that these are two complexes in

a homotopy category of chain complexes that are concentrated in different degrees.
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Now, if F ∈ PureW (X0)[a] and G ∈ PureW (X0)[a + 1] ∗ · · · ∗ PureW (X0)[b] with

b > a+ 1, there exists a distinguished triangle

G ′ → G → G ′′ +1−→ (4.10)

such that G ′ ∈ PureW (X0)[a+1] and G ′′ ∈ PureW (X0)[a+2]∗· · ·∗PureW (X0)[b]. Ap-

plying HomDmix(X0)(−,F) to (4.10), we see that HomDmix(X0)(G,F) = 0 as claimed.

Therefore, by Lemma 4.1.12 above, we see that r induces an isomorphism

HomDWeil
T (X0)(F ′′,F ′[1]) ' HomDmix(X0)(F̃ ′′, F̃ ′[1]).

Therefore, a fortiori, to δ : F ′′ → F ′ corresponds a δ̃ : F̃ ′′ → F̃ ′[1]. Denoting by

F̃ the cocone of δ̃, we have that r(F̃) ' F (non-canonically). Therefore, every

F ∈ Dmisc(X0) is in the essential image of r and, thus, also of r̃.

Conversely, let F ∈ KbPure(X0). Then there exists a, b ∈ Z with a ≤ b such

that F ∈ PureM(X0)[a] ∗ PureM(X0)[a + 1] · · · ∗ PureM(X0)[b]. We know that

r(PureM(X0)[n]) ⊆ PureW (X0)[n]. Therefore, the essential image of r is contained

in Dmisc(X0). We now see that the essential image of r̃ is Dmisc(X0) and our theorem

is proved.

4.2 Functors Between Mixed Categories

We will now move on to the next important task. Namely, for any toric variety X0

defined over Fq and extended as X to Fq, we now have categories, Dmix(X0), that we

know can serve the job as “mixed versions” for our original categories of interest,

Db
T,c(X). It is then a generally interesting thing to produce functors between these

categories, lest they seem useless. We will also show that Dmix(X0(∆)) can be

equipped with a recollement structure as in [BBD82], thus providing a second

path to obtaining a perverse t-structure. Once we have our genuineness results, it

will be clear that this construction agrees with the previous one. More precisely,

we begin by showing that
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Theorem 4.2.1. Let j : U0 ↪→ X0 be an open inclusion of a union of strata and let

i : Z0 ↪→ X0 be its closed complement. Then the functor j∗ : Dmix(X0)→ Dmix(U0)

admits a left adjoint j(!) and a right adjoint j(∗). The functor i∗ : Dmix(Z0) →

Dmix(X0) also admits a left adjoint i(∗) and a right adjoint i(!). Together, these

functors produce a recollment structure on Dmix(X0).

Remark 4.2.2. As in [AR16], the parentheses in the notation of these functors helps

to separate them from the normal functors. Once this proposition has been proven,

we will often drop the parentheses from the notation.

We first recall that, since i∗ is fully faithful, we know that i∗ restricts to a functor

i∗ : Pure(Z0)→ Pure(X0).

Therefore, it naturally induces a functor between the mixed derived categories.

Next we note that by Theorem 4.0.3, the same thing is true about j∗ and, in the

case when Z0 is a single stratum, i∗. To prove this proposition, we use the same

strategy as in [AR16] and induce on the number of strata in Z0.

Note that another way to proceed would have been to use the results on genuine-

ness of adjoint functors (as we will use later for other functors). This way, however,

needs none of the machinery of infinitesimal extensions of triangulated categories

and Orlov categories, so the proof seemed worthwhile to show a different path to

some of the results.

Lemma 4.2.3. Let O0(σ) ⊆ X0 be a closed stratum. Then we have the following:

1. Let Z0 = O0(σ) and U0 = X0\Z0. Then j∗ admits a left adjoint j(!) and a right

adjoint j(∗) such that the adjunction morphisms j∗j(∗) → id and id → j∗j(!)

are isomorphisms. Furthermore, we have that

Dmix(X0) = j(!)(Dmix(U0)) ∗ i∗(Dmix(Z0))
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and

Dmix(X0) = i∗(Dmix(Z0)) ∗ j(∗)(Dmix(U0))

where ∗ is the associative operation defined in [BBD82, 1.3.9] and recalled in

Definition 4.1.9 above.

2. Let O0(σ) ⊆ Z0 ⊆ X0 is a chain of a closed stratum (as above) sitting inside a

closed union of strata. Let j : U0 = X0 \O0(σ) ↪→ X0, jZ0 : Z0 \O0(σ) ↪→ Z0,

k : Z0 ↪→ X0, and kZ0 : Z0 \ O0(σ) ↪→ X0 \ O0(σ) be the inclusion maps.

Then the functors j(∗), j(!), jZ0(∗) and jZ0(!) from (1) satisfy the following:

j(!)kZ0∗ ' k∗jZ0(!),

and

j(∗)kZ0∗ ' k∗jZ0(∗).

Proof. We prove the case of j(!) in detail. The case of j(∗) can either be treated in

a parallel manner or can be seen to follow from the first case via Verdier duality.

We have the object L̃σ = i∗Q̄`,O(σ)
[nσ](nσ/2) ∈ PureM(X0), since O(σ) is closed

and smooth of dimension nσ. For σ 6= τ ∈ ∆, we denote by L̃+
τ the complex

L̃τ → i∗i
∗L̃τ

with non-zero entries in the “0” and “1” positions and with the morphism being

that of adjunction. We view this complex as an object in Dmix(X0). We know that

it is in this category by the comments before this lemma. Now, we wish to show

that for any n,m ∈ Z,

HomDmix(X0)(L̃+
τ , L̃σ{m}[n]) = 0. (4.11)

To show this, we begin with the natural distinguished triangle

i∗i
∗L̃τ [−1]→ L̃+

τ → L̃τ
+1−→ .
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This is the “extensions” distinguished triangle, i.e. the triangle that realizes the

middle term as an extension of the two outer terms. Now, after applying Hom(-

−, L̃σ{m}[n]) to this triangle, we arrive at the following long exact sequence:

· · · → Hom(i∗i
∗L̃τ , L̃σ{m}[n])→ Hom(L̃τ , L̃σ{m}[n])→ Hom(L̃+

τ , L̃σ{m}[n])→ · · · .

To complete this computation, we note that the natural morphism

Hom(i∗i
∗L̃τ , L̃σ{m}[n])→ Hom(L̃τ , L̃σ{m}[n])

is an isomorphism. This simply follows from considering the support of L̃σ. There-

fore, (4.11) is 0.

Next, let D+ be the triangulated subcategory of Dmix(X0) generated by the

L̃+
τ {m} for all σ 6= τ ∈ ∆ and m ∈ Z. Let ι : D+ ↪→ Dmix(X0) be the inclusion

functor. We will now show that for all F+ ∈ D+ and G ∈ Dmix(X0), the morphism

induced by j∗

HomDmix(X0)(ιF+,G)→ HomDmix(U0)(j
∗ιF+, j∗G)

is an isomorphism. By a standard application of the five-lemma, it suffices to

consider the cases when F+ = L̃+
τ for τ ∈ ∆ \ σ and when G = L̃µ{m}[n] for

some µ ∈ ∆ and n,m ∈ Z. If µ = σ, then this follows from 4.11. So, let µ 6= σ.

If n /∈ {−1, 0}, then both sides are 0 and we are done. Assume that n = −1. In

this case, the right hand side is 0, since j∗i∗i
∗ = 0. The left hand side consists of

morphisms

ϕ : i∗i
∗L̃τ → L̃µ{m}

such that composition with the adjunction morphism L̃τ → i∗i
∗L̃τ is 0. Then we

have two scenarios: Either {m} causes i∗i
∗L̃τ and L̃µ to have the same parity or it

causes them to have opposite parity. If {m} causes them to have opposite parity,
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then the only morphism is 0 and we are done. Assume that {m} causes the two to

have the same parity. In this case, as a morphism in Db
T,m(X0), ϕ factors through

a map j!j
∗L̃τ{1} → L̃µ{m}. This is a for a combination of two reasons. First, in

Db
T,m(X0), we still have the exact sequence above that gives us

· · ·Hom(j!j
∗L̃τ{1}, L̃µ{m})→ Hom(i∗i

∗L̃τ , L̃µ{m})

→ Hom(L̃τ , L̃µ{m})→ · · · .

Secondly, we know that these particular maps go to 0 once composed with the

adjunction morphism, i.e. they are in the kernel of the last map above and, so,

must factor as claimed. However, we know that

HomDbT,m(X0)(j!j
∗L̃τ{1}, L̃µ{m}) ' HomDbT,m(U0)(j

∗L̃τ , j!L̃µ{m− 1}) = 0.

Therefore, ϕ = 0.

Finally, we assume that n = 0. As before, if {m} causes L̃τ and L̃µ to have

different parities, then both sides are 0 and we are done. Therefore, we assume that

{m} causes L̃τ and L̃µ to have the same parity. Then the left-hand side of (4.11)

is equal to the quotient of Hom(L̃τ , L̃µ{m}) by the image of Hom(i∗i
∗L̃τ , L̃µ{m})

via the map above. (These maps we are quotienting out by are precisely all the

possible homotopies.) However, going back to the long exact sequence from above,

we have

Hom(i∗i
∗L̃τ , L̃µ{m})→ Hom(L̃τ , L̃µ{m})

→ Hom(j!j
∗L̃τ , L̃µ{m})

→ Hom(i∗i
∗L̃τ{−1}, L̃µ{m})→ · · · .

By adjunction, Theorem 4.0.3, and the fact stipulation on {m}, we know that

Hom(i∗i
∗L̃τ{−1}, L̃µ{m}) = Hom(i∗L̃τ , i!L̃µ{m− 1}) = 0.
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Therefore, the right-hand side of (4.11)

Hom(j∗L̃τ , j∗L̃µ{m}) = Hom(j!j
∗L̃τ , L̃µ{m})

is identified with the the left-hand side via this exact sequence.

Now, (4.11) tells us, in particular, that j∗ ◦ ι is fully faithful. The objects j∗ιL̃+
τ

generate the triangulated category Dmix(U0), however, so j∗◦ι is actually an equiv-

alence of categories. Define the functor

j(!) := ι ◦ (j∗ ◦ ι)−1 : Dmix(U0)→ Dmix(X0).

We see that, by definition, the identity j∗j(!) = id holds. Now, using adjunction

and the fact that j∗i∗ = 0, we see that the equality in (1) holds.

Moving on to (2), we begin by considering the diagram:

D+
Z0

D+
X0

Dmix(Z0) Dmix(X0)

ιZ

k+∗

ιX

k∗
(4.12)

We wish to prove that the dotted arrow, k+
∗ , exists so that the resulting diagram

commutes. Furthermore, we claim that it is the unique such functor. Consider the

functor k+
∗ := k∗|D+

Z0

: D+
Z0
→ Dmix(X0). We wish to prove that the essential image

of this functor actually lands in D+
X0

. Since D+
Z0

is generated by a finite collection

of objects and D+
X0

is a full subcategory, it suffices to check what k+
∗ does to these

generating objects. To this end, let us make explicit some of the notation (now

that we have two different D+ categories). In this section, we write i : O0(σ) ↪→ Z0

as the inclusion into Z0 instead of the inclusion into the whole space. We know

that Z0 is a closed union of strata that contains O0(σ), so we will write it as

Z0 = ∪τ∈TO0(τ).
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Here T is a subset of ∆. If τ ∈ T , then L̃τ is a simple perverse sheaf on both

Z0 and X0 with support contained in Z0. Technically, L̃τ considered as a perverse

sheaf on X0 is an extension by zero of L̃τ considered as a perverse sheaf on Z0. In

the following arguments, we will, however, make no distinction between the two

and use the symbol L̃τ to refer to the simple perverse sheaf on either Z0 or X0.

Having said that, we can now explicitly state that

D+
Z0

= 〈(L̃τ → i∗i
∗L̃τ ){m} | τ ∈ T \ {σ},m ∈ Z〉4.

Here we are using the notation 〈−〉4 to mean that it is generated as a triangulated

category by the objects in the angle brackets. Similarly,

D+
X0

= 〈(L̃τ → k∗i∗i
∗k∗L̃τ ){m} | τ ∈ ∆ \ {σ},m ∈ Z〉4.

Since k∗ commutes with {m}, it is enough to check this when m = 1. In that case,

picking some arbitrary τ ∈ T \ {σ}, we see that

k+
∗ (L̃τ → i∗i

∗L̃τ ) = k∗(L̃τ → i∗i
∗L̃τ ).

However, k∗ is a triangulated functor. (Actually, more is true. Since Z0 ⊆ X0 is

closed, k∗ is actually an exact functor.) Therefore,

k∗(L̃τ → i∗i
∗L̃τ ) = k∗L̃τ → k∗i∗i

∗L̃τ .

Now, L̃τ = k∗L̃τ where we are abusing notation as warned above. We also know

that L̃τ considered as a simple perverse sheaf on X0 is just L̃τ as considered on

Z0 extended by zero to the rest of X0. Furthermore, k∗ is the extension by zero

functor, so k∗L̃τ = L̃τ (with the same abuse of notation). So, we see that

k+
∗ L̃+

τ = L̃τ → k∗i∗i
∗k∗L̃τ = L̃+

τ ∈ D+
X0
.

Therefore, k∗|D+
Z0

: D+
Z0
→ D+

X0
. Since our candidate for k+

∗ is just the restriction of

a functor k∗ : Dmix(Z0)→ Dmix(X0), it is clear that it commutes with the inclusion
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ι : D+ ↪→ Dmix(X0). We only have to prove uniqueness. By the remarks above,

we see that the generating objects of D+
Z0

are simply a subset of the generating

objects of D+
X0

, once they are extended by zero, that is. Since the two vertical

functors are both the respective inclusion functors, we see that any other functor

k+
2∗ making diagram (4.12) commute must also map L̃+

τ 7→ L̃+
τ . Since ιZ and ιX

are fully faithful, this is unique. Therefore, k+
∗ exists and is unique.

Now, consider the following diagram of functors:

Z0 \O0(σ) X0 \O0(σ)

Z0 X0

kZ

jZ j

k

This is clearly a Cartesian square and k (hence also kZ) is proper, so by the proper

base change theorem we see that j∗k∗ = kZ∗j
∗
Z . This implies that

j∗ ◦ ιX ◦ k+
∗ = kZ∗ ◦ j∗Z ◦ ιZ .

Now, we compose with j(!) = ιX ◦ (j∗ ◦ ιX)−1 on both sides to obtain

ιX ◦ (j∗ ◦ ιX)−1 ◦ j∗ ◦ ιX ◦ k+
∗ = ιX ◦ (j∗ ◦ ιX)−1 ◦ kZ∗ ◦ j∗Z ◦ ιZ . (4.13)

The left-hand side immediately cancels to

ιX ◦ (j∗ ◦ ιX)−1 ◦ j∗ ◦ ιX ◦ k+
∗ = ιX ◦ k+

∗ = k∗ ◦ ιZ .

Therefore, (4.13) becomes

k∗ ◦ ιZ = j(!) ◦ kZ∗ ◦ j∗Z ◦ ιZ .

Now, we can compose each side with (j∗Z ◦ ιZ)−1 to arrive at the following:

k∗jZ(!) = j(!)kZ∗j
∗
ZjZ(!) = j(!)kZ∗.

This is precisely the first isomorphism in the statement of the lemma.
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Remark 4.2.4. In the above proof, we often use explicit facts about what chain

maps between chain complexes look like. We are able to do this, because we are

actually working in the homotopy category KbPure(X0) and not in a more abstract

“derived category.”

Now we can proceed to the proof of Theorem 4.2.1.

Proof. (Theorem 4.2.1) In this proof, we will show the following items:

1. We will provide the construction for j(!) and i(∗).

2. We will show that the adjunctions morphisms id→ j∗j(!) and i(∗)i∗ → id are

isomorphisms.

3. We will prove that for any F ∈ Dmix(X0), there is a morphism i∗i
(∗)F →

j(!)j
∗F [1] such that the triangle

j(!)j
∗F → F → i∗i

(∗)F +1−→ (4.14)

is a distinguished triangle in Dmix(X0).

Recollement (cf. [BBD82, 1.4.3]) requires these statements along with analogous

statements for j(∗) and i(!) and the statement that j∗i∗ = 0. As in the above lemma,

the statements for j(∗) and i(!) are similar and will therefore be left to the reader.

We begin by showing that j(!) exists via induction on the number of strata in Z0,

that id→ j∗j(!) is an isomorphism, and that

Dmix(X0) = j(!)(D
mix(U0) ∗ i∗(Dmix(Z0)). (4.15)

If Z consists of one stratum, then the claim follows by Lemma 4.2.3. Now, assume

that Z has n > 0 strata. Assume, as before, that O0(σ) ⊂ Z0 is a closed stratum.

We set X ′0 = X0 \O0(σ) and Z ′0 = Z0 \O0(σ). We let kZ : Z ′0 ↪→ X ′0, k : Z0 ↪→ X0,
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i : O0(σ) ↪→ X0, iσ : O0(σ) ↪→ Z0, j′ : X ′0 ↪→ X0, jX′ : U0 ↪→ X ′0, jZ′ : Z ′0 ↪→ X0,

jZ : Z ′0 ↪→ Z0, and j : U0 ↪→ X0 the inclusion maps. Note that i = k ◦ iσ.

By induction, j∗X′ and j′∗ have left adjoints. Therefore, the same is true of the

composition j∗X′ ◦ j′
∗ = j∗. It is precisely the fact that j′ ◦ jX′ = j that again

implies that the adjunction map id → j∗j(!) is an isomorphism by induction. We

also see that (4.15) holds for X0 = X ′0tO0(σ) and X ′0 = U0tZ ′0 by induction. We

can, therefore, write the equality

Dmix(X0) = j′(!)(D
mix(X ′0)) ∗ i∗(Dmix(O0(σ))) (4.16)

= j′(!)(jX′(!)(D
mix(U0)) ∗ kZ∗(Dmix(Z ′0))) ∗ i∗(Dmix(O0(σ)). (4.17)

We now note that, if F : C → D is a fully faithful triangulated functor between

two triangulated categories and A,B ∈ C are two triangulated subcategories, then

F (A ∗ B) = F (A) ∗ F (B). (4.18)

This is because F being a triangulated functor means that it preserves distin-

guished triangles and being fully faithful means that Hom1
C(B,A) ' Hom1

D(F (B), F (A))

for any A,B ∈ C. Now, we can apply this to (4.16) to see that

Dmix(X0) = j(!)(D
mix(U0)) ∗ (j′(!) ◦ kZ∗(Dmix(Z ′0))) ∗ i∗(Dmix(O0(σ))). (4.19)

Since ∗ is associative, we are justified in writing the above unambiguously without

parentheses. Recalling from Lemma 4.2.3 part (2) that j(!)kZ∗ = k∗jZ(!) we see

that j′(!)kZ∗(D
mix(Z ′0) = k∗jZ∗(D

mix(Z ′0)). Also, since i = k ◦ iσ, we find that

i∗(D
mix(O0(σ))) = k∗iσ∗(D

mix(O0(σ))). So, again using (4.18), we have that

Dmix(X0) = j(!)(D
mix(U0)) ∗ k∗(jZ∗(Dmix(Z ′0)) ∗ iσ∗(Dmix(O0(σ)))).

By induction, this says that

Dmix(X0) = j(!)(D
mix(U0)) ∗ k∗(Dmix(Z0)).
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So our induction is finished.

We move on now to the case of i(∗) as well as the existence of (4.14). We see

from (4.15) that for any F ∈ Dmix(X0), there exists F ′ ∈ Dmix(U0), F ′′ ∈ Dmix(Z0)

and a distinguished triangle

j(!)F ′ → F → k∗F ′′
+1−→ . (4.20)

In this situation, F ′ and F ′′ are unique due to the fully faithfulness nature of j(!) and

k∗. However, more is true. By calculating Hom−1(j(!)F ′, k∗F ′′) ' Hom−1(F ′, j∗k∗F ′′) =

0, we can apply [BBD82] Corollary 1.1.10 to see that (4.20) is unique as well. We

obviously have the identity F ′ ' j∗F . Therefore, we set i(∗)F := F ′′. Then, by

definition, the desired functorial properties of i(∗) are satisfied by construction.

We now wish to turn our attention briefly to the Verdier duality functor, D. It

is clear that D : DWeil
T (X0)→ DWeil

T (X0) restricts to an antiequivalence

D : Pure(X0)
∼−→ Pure(X0).

Therefore, it also induces an antiequivalence

D : Dmix(X0)→ Dmix(X0).

Note that, by abuse of notation, we refer to all of these functors by the same

symbol, D. The standard six-functor yoga tells us that

DX0 ◦ {n} ' {−n} ◦ DX0 ,DX0 ◦ [n] ' [−n] ◦ DX0 ,DX0 ◦ 〈n〉 ' 〈−n〉 ◦ DX0 .

Since i∗ : Dmix(Z0) → Dmix(X0) and j∗ : Dmix(X0) → Dmix(U0) are obtained

by restricting the usual functors to Pure(Z0) and Pure(X0) respectively and then

inducing from there to the homotopy category, the usual identities

DU0 ◦ j∗ ' j∗ ◦ DX0 ,DX0 ◦ i∗ ' i∗ ◦ DZ0
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still hold in this context. This allows us to deduce the following canonical isomor-

phisms:

DX0 ◦ j(!) ' j(∗) ◦ DU0 ,DZ0 ◦ i(!) ' i(∗) ◦ DX0 .

4.3 Locally Closed Inclusions

We now wish to extend the results of the previous section so that we pullback and

push-forward functors for locally closed inclusions as well.

Lemma 4.3.1. Let h : W0 ↪→ X0 be a locally closed inclusion of toric varieties.

Consider the commutative diagram

W0 Z0

Y0 X0

i′

j′ j

i

Here W0, Z0, and Y0 are unions of strata. We assume that i and i′ are closed inclu-

sions and that j and j′ are open inclusions. Then there are natural isomorphisms

of functors

j(!)i
′
∗ ' i∗j

′
(!), j(∗)i

′
∗ ' i∗j

′
(∗), i

′(!)j∗ ' j′
∗
i(!), i′

(∗)
j∗ ' j′

∗
i(∗). (4.21)

Proof. As in [AR16], it is enough to show the first isomorphism. The second follows

from the first by Verdier duality, the third follows from the first by adjunction, and

the fourth follows from the second by adjunction. We proceed by induction on the

number of strata. If Y0 = Z0 = X0, then W0 is both open and closed inside of X0, so

it is a union of connected components. In this case, j = i = id, so the left and right-

hand sides of the first formula can be calculated and directly seen to be isomorphic.

Now, assume that Z0 6= X0 and choose a closed stratum O0(σ) ∈ X0 \ Z0. Setting
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X ′0 = X0 \O0(σ) and Y ′0 = Y0 ∩X ′0, we have the following diagram:

W0 Z0

Y ′0 X ′0

Y0 X0

We know, by induction, that the claim is true for the upper square. We proceed

to prove it for the lower square. If O0(σ) ⊆ Y0, then this has already been shown

in Lemma 4.2.3 part (2). Suppose that O0(σ) 6⊆ Y0. Then Y0 = Y ′0 .

This lemma now allows us to unambiguously define, for any locally closed inclu-

sion of strata h : Y0 ↪→ X0, the push-forward functors

h(∗), h(!) : Dmix(Y0)→ Dmix(X0)

as well as the pullback functors

h(∗), h(!) : Dmix(X0)→ Dmix(Y0).

We will explicitly demonstrate this for h(!). Let i : Z0 ↪→ X0 be a closed inclusion

and j : Y0 ↪→ Z0 an open inclusion. Let h = i ◦ j. Then, up to isomorphism,

i∗ ◦ j(!) does not depend on Z0. To see this, we apply Lemma 4.3.1 to the following

diagram:

Y0 Y0

Y0 Z0

jY j

iY

This gives us that j(!) = iY ∗jY (!), so i∗j(!) = i∗iY ∗jY (!). So, this does not depend

on Z0. Similarly, if j : U0 ↪→ X0 is an open inclusion and i : Y0 ↪→ U0 is a closed

inclusion, then we see that, if h = j ◦ i, j(!) ◦ i∗ does not depend on the choice of
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U0. In this case, we consider the diagram

Y0 Y0

U0 \ (U0 ∩ (Y0 \ Y0)) U0

This case then proceeds the same as the previous one. Another application of

Lemma 4.3.1 shows us that all of these functors are canonically isomorphic to each

other. This is the functor we define to be h(!). If h : Y0 ↪→ Z0 and k : Z0 ↪→ X0 are

two locally closed inclusions, then (k ◦ h)(!) = k(!)h(!) by Lemma 4.3.1 again. This

is also true for the other three functors for exactly the same reason. Also, we see

directly by definition that D ◦ h(!) ' h(∗) ◦ D and D ◦ h(∗) ' h(!) ◦ D.

4.4 Proper and Smooth Toric Maps

Suppose that X0(∆) = X0 and Y0(∆′) = Y0 are two toric varieties. We are here

viewing ∆ ⊂ N and ∆′ ⊂ N ′ as living within these two respective lattices. A

map between X0 and Y0 is called toric if it is equivariant with respect to the two

torus actions. Recall that this is the case if and only if the map is one arising from

a map between the respective fans. That is, f : X0 → Y0 is induced by a map

fN : N → N ′ such that fNR : NR → N ′R is linear and for all cones σ ∈ ∆, there is

a cone σ′ ∈ ∆′ so that fNR(σ) ⊆ σ′. If we denote by |∆| the support of ∆ in NR,

then a toric map f : X0(∆) → X ′0(∆′) is proper if and only if f−1
NR

(|∆′|) = |∆|.

This is another amazing example of the combinatorics of fans and the geometry of

toric varieties determining each other.

It is an amazing fact that by Theorem 3.3.4, if f : X0 → Y0 is proper toric, then

f∗ : Db
T,m(X0)→ Db

T,m(Y0) restricts to a functor

f∗ : Pure(X0)→ Pure(Y0).

Therefore, it induces a functor

f∗ : Dmix(X0)→ Dmix(Y0).
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We also see that if f : X0 → Y0 is a smooth toric morphism of relative dimension

d, then f ∗ ' f !{−2d}. We want to show that f ∗[d](d/2) : Db
T,m(Y0) → Db

T,m(X0)

also restricts to a functor f ∗[d](d/2) : Pure(Y0)→ Pure(X0). To see this, we recall

that

f ∗[d](d/2)jσ!∗Q̄`,O0(σ)
[nσ](nσ/2)

= jσ!∗f
∗Q̄

`,O0(σ)
[dim(f−1(O0(σ)))](dim(f−1(O0(σ)))/2)

by [BBD82, Section 4.2.6]. We know that f−1(O0(σ)) is a union of strata and that

the pullback of the constant sheaf is the constant sheaf. Therefore, Theorem 3.3.4

tells us that this is in Pure(X0). When f : X0 → Y0 is a smooth toric morphism

of relative dimension d, we will sometimes denote the functor

f † := f ∗{d} ' f !{−d} : Dmix(Y0)→ Dmix(X0).

Theorem 4.4.1. Let f : X0 → Y0 be a proper toric map. Let h : Z0 ↪→ Y0 be a

locally closed inclusion of a union of strata. Consider the Cartesian square:

f−1(Z0) X0

Z0 Y0

h′

f ′ f

h

Then f ′ is a proper toric map. Furthermore, we have the following natural isomor-

phisms:

f∗ ◦ h′(∗) ' h(∗) ◦ f ′(∗), f∗ ◦ h′(!) ' h(!) ◦ f ′∗, (4.22)

h′
(∗) ◦ f † ' f †∗ ◦ h(∗), h′

(!) ◦ f † ' f ′
† ◦ h(!), (4.23)

f † ◦ h(∗) ' h′(∗)f
′†, f † ◦ h(!) ' h′(!) ◦ f ′†, (4.24)

h(∗) ◦ f∗ ' f ′∗ ◦ h′
(∗)
, h(!) ◦ f∗ ' f ′∗ ◦ h′

(!)
. (4.25)

Proof. We begin by showing that f ′ is proper toric. In this context, f ′ = f |f−1(Z0).

In general, the restriction of a toric map is still toric. The same is true for proper

maps. Therefore, f ′ is proper toric.
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As for the isomorphisms, we can see from Section 2.3 above that it suffices to

consider these functors when h is either an open or a closed inclusion. If h is a

closed inclusion, then h(∗) = h∗, so (4.22) follows from the fact that f∗◦h′∗, h∗◦f ′∗ :

Pure(f−1(Z0))→ Pure(X0) are isomorphic. In fact, the same reasoning also proves

(4.24) in the same case, i.e. when h is a closed inclusion. By entirely analogous

reasoning, (4.23) and (4.25) hold when h is an open inclusion. We can now handle

the remaining cases by adjunction.
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Chapter 5

Genuineness of Some Functors

In this section, we turn to the question of the “genuineness” of some functors.

First, let us explain what is meant by this term. Suppose that we have two toric

varieties X0, Y0 and some functor

F : Db
T,m(X0)→ Db

T,m(Y0).

Now, suppose that there is a functor

F ′ : Dmix(X0)→ Dmix(Y0)

such that F ′ “comes from” F in some suitable sense. One example would be if

F |Pure(X0) restricts to a functor

F |Pure(X0) : Pure(X0)→ Pure(Y0).

Then, by restricting to Pure(X0) and then inducing up, F gives rise to a functor

between the mixed categories. Another example that we will care about is when we

have functors in both the mixed setting and in Deligne’s setting that are adjoints

of a functor arising in the above manner. Then we have a diagram as follows:

Dmix(X0) Db
T,m(X0)

Dmix(Y0) Db
T,m(Y0)

r

F ′ F

r

Here r is, as in the above sections, our realization functor r : Dmix(X0)→ Db
T,m(X0).

A natural question is: When does this diagram commute? More generally one could

ask the question: If there is a functor F : Db
T,m(X0) → Db

T,m(Y0) (respectively

F ′ : Dmix(x0) → Dmix(Y0)), when does there exist a functor F ′ : Dmix(x0) →
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Dmix(Y0) (respectively F : Db
T,m(X0)→ Db

T,m(Y0)) such that the analogous diagram

commutes? In the special case that F and F ′ are related by either F ′ being induced

from F or being an adjoint of such a functor, then we call the functor genuine if

and only if the above diagram commutes. We suggest that the above more general

scenario should be thought of as commuting pairs of functors.

To do this, we will recast the terms defined when talking about infinitesimal

extensions into specific notions concerning toric varieties. Then we will see that

the two notions of genuineness are the same in this scenario. Before going straight

to talking about genuine morphisms, however, we need a few weaker notions.

Definition 5.0.1. Let F : DWeil
T (X0) → DWeil

T (Y0) be a functor. We say that F is

geometric if it is a functor of triangulated categories that comes with a natural

transformation

RHomT (F ,G)→ RHomT (F (F), F (G)), (5.1)

and commutes with χ. That is, there exists a triangulated functor F̃ : Db
T,c(X)→

Db
T,c(Y ) such that

χ ◦ F = F̃ ◦ χ.

For a geometric functor, the natural transformation (5.1) combined with the

short exact sequence (4.5) gives the following commutative diagram:

0 Homi−1
T (F ,G)Fr Homi(F ,G) Homi

T (F ,G)Fr 0

0 Homi−1
T (F (F), F (G))Fr Homi(F (F), F (G)) Homi

T (F (F), F (G))Fr 0
(5.2)

Given a toric variety X0, we have defined the miscible category Dmisc(X0), so we

can say that we know what “miscible objects” are. We can define the notion of a

miscible morphism. Before defining this though, we note that, in the terminology

of infinitesimal extensions, v can be identified with the first map in (3.5), so we

have the following:
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Definition 5.0.2. A morphism f : F → G in DWeil
T (X0) is infinitesimal if χ(f) =

0.

Note that this corresponds in this case to the more general concept defined in

the section on infinitesimal extensions of triangulated categories. We now define

miscible morphisms:

Definition 5.0.3. A morphism f : G → G in Dmisc(X0) is said to be miscible if

there exists a commutative diagram

ιF̃ ιG̃

F G

∼ ∼
Here f̃ : F̃ → G̃ is a morphism in Dmix(X0) and the vertical arrows are isomor-

phisms.

It turns out that there are two different notions of distinguished triangles.

Definition 5.0.4. Let F → H → G +1−→ be a diagram in Dmisc(X0).

• We say that it is a Weil distinguished triangle if it is a distinguished

triangle in the triangulated category DWeil
T (X0).

• We say that it is a miscible distinguished triangle if it is isomorphic to

a diagram obtained by applying ι to a distinguished triangle in Dmix(X0).

We know that ι : Dmix(X0) → DWeil
T (X0) is a triangulated functor, so every

miscible distinguished triangle is also a Weil distinguished triangle. We will define

the notion of a miscible functor as follows:

Definition 5.0.5. Let F : DWeil
T (X0) → DWeil

T (Y0) be a triangulated functor. We

say that F is miscible if F (Dmisc(X0)) ⊆ Dmisc(Y0).
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We now wish to “recall” a lemma that will be useful:

Lemma 5.0.6. [AR13, Lemma 7.19] Let F : DWeil
T (X0)→ DWeil

T (Y0) be a miscible

functor. The following are conditions on F are equivalent:

1. The functor F takes every miscible morphism in Dmisc(X0) to a miscible

morphism in Dmisc(Y0).

2. The functor F takes every miscible distinguished triangle in Dmisc(X0) to a

miscible distinguished triangle in Dmisc(Y0).

3. the functor F restricts to a pseudotriangulated functor F : Dmisc(X0) →

Dmisc(Y0).

Proof. We will follow the proof in [AR13] quite closely. Given that F is a tri-

angulated functor that takes miscible objects to miscible objects, it follows that

F takes Weil distinguished triangles to Weil distinguished triangles. Since a Weil

distinguished triangle is miscible if and only if one of its morphisms is miscible,

(1) and (2) above are seen to be equivalent. We now observe that, due to Lemma

4.1.12, (5.2) implies that any miscible functor commutes with v◦$ (as in Definition

2.2.3). From Definition 2.2.3, we see that (2) and (3) are equivalent.

Definition 5.0.7. Let F : DWeil
T (X0) → DWeil

T (Y0) be a miscible functor. We say

that F is genuine if there exists a triangulated functor F̃ : Dmix(X0)→ Dmix(Y0)

such that the diagram

Dmix(X0) Dmix(Y0)

DWeil
T (X0) DWeil

T (Y0)

F̃

ι ι

F

commutes. We will then say that F̃ is induced by F .
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For the rest of this section, we will prove that certain functors are genuine. We

begin by proving a general result that we will apply many times.

Theorem 5.0.8. Let X0 and Y0 be toric varieties and let F : DWeil
T (X0) →

DWeil
T (Y0) be a geometric functor.

1. If F (Pure(X0)) ⊆ Pure(Y0), then F is a miscible functor. In this case, F

also takes miscible morphisms to miscible morphism.

2. If it is also true that F |Pure(X0) : Pure(X0)→ Pure(Y0) is homogeneous, then

F is genuine.

Proof. By Lemma 5.0.6, condition (1) implies that F |Dmisc(X0) : Dmisc(X0) →

Dmisc(Y0) is a pseudotriangulated functor. Therefore, condition (2) follows from

condition (1) by Theorem 4.1.11 and Theorem 2.3.13. We see, thus, that it is

enough to prove condition (1). For this, we will show that F sends miscible objects

to miscible objects and miscible morphisms to miscible morphisms at the same

time.

Suppose that f : F → G is a miscible morphism between miscible objects. We

will prove this theorem by induction on I where I is the smallest interval in Z so

that F i = Gi = 0 if i 6∈ I. If |I| = 1, then F ,G ∈ Pure(X0)[a] for some a ∈ Z. In

this case, F sends F and G to miscible objects by assumption and the condition

for F (f) to be a miscible morphism is obviously true.

Now, let |I| = n > 1. We will denote by k the largest element in I. We consider

the distinguished triangles

Fk[−k]→ F → F ′ +1−→ (5.3)

and

Gk[−k]→ G → G ′ +1−→ (5.4)
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obtained by injecting Fk[−k] into F and letting F ′ be the complex F except with

Fk = 0. The map F → F ′ is then the natural one. (We, of course, do the same

thing for the second triangle.) It can be checked by hand that these are maps of

triangles and that they are distinguished triangles. Now, we have the diagram

Fk[−k] F F ′

Gk[−k] G G ′
f

We want a morphism between these two triangles, so we consider (5.4) and apply

the functor Hom(Fk[−k],−) to it to obtain

· · · → Hom(Fk[−k],Gk[−k])→ Hom(Fk[−k],G)→ Hom(Fk[−k],G ′)→ · · · .

However, it is easy to see that Hom(Fk[−k],G ′) = 0, so the above long exact

sequence tell us that the map f : F → G factors through some other map fk[−k] :

Fk[−k]→ Gk[−k]. Now, completing this to a morphism of distinguished triangles

we arrive at some map f ′ giving the diagram

Fk[−k] F F ′ Fk[−k + 1]

Gk[−k] G G ′ Gk[−k + 1]

fk[−k] f f ′ fk[−k+1]

All of the objects in the rightmost square have non-zero terms only in degrees

I \ {k}. Since F is a triangulated functor, we arrive at the diagram

F (Fk[−k]) F (F) F (F ′) F (Fk[−k + 1])

F (Gk[−k]) F (G) F (G ′) F (Gk[−k + 1])

F (fk[−k]) F (f) F (f ′) F (fk[−k+1])

By induction, we know that all of the objects and morphisms in the square

F (ιF ′) F (ιFk[−k + 1])

F (ιG ′) F (ιGk[−k + 1])

F (ιf ′) F (ιfk[−k+1])
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are miscible. Since F (ιf) : F (ιF) → F (ιG) comes from completing this to a

morphism of distinguished triangles, then F (ιf), F (ιF), and F (ιG) are miscible

as well.

5.1 Open and Closed Inclusions

We can now proceed to deal with functors arising from open and closed inclusions.

Lemma 5.1.1. Suppose that X0 is a toric variety and that j : U0 ↪→ X0, respec-

tively i : Z0 ↪→ X0, is an open inclusion of toric varieties, respectively a closed

inclusion of toric varieties. Then the functors

j∗ : Dmix(X0)→ Dmix(U0)

and

i∗ : Dmix(Z0)→ Dmix(X0)

are genuine.

Proof. For this we use the language or Orlov categories and infinitesimal ex-

tensions of triangulated categories. Recall that we now know that Dmisc(X0) '

I KbPure(X0) for any toric varietyX and that the realization functor r : Dmix(X0)→

DWeil
T (X0) has essential image Dmisc(X0). Let us re-phrase this somewhat. We know

from above that

HomDWeil
T (X0)(ιF , ιG) ' HomDmix(X0)(F ,G)⊕ HomDmix(X0)(F ,G[−1]).

This tells us that on Pure(X0), there is an isomorphism between r and ι. Since

they are both homogeneous, this tells us by Theorem 2.3.12 from above that they

are isomorphic. So, being genuine is the same as commuting with either r or ι. It

has been proved that

r|Pure(X0) : Pure(X0)→ Pure(X0)
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is isomorphic to the inclusion functor. We also know that

j∗|Pure(X0) : Pure(X0)→ Pure(U0)

is a homogeneous functor. This follows by the fact that, by Deligne’s theory of

weights, j∗ = j! preserves weights and since a shift of j∗ is perverse t-exact. But

clearly for F ∈ Pure(X0), r ◦ j∗F ' j∗ ◦ rF . Therefore, j∗ is genuine.

As for i∗, we also know that it is homogeneous because i∗ = i!, so by Deligne’s

theory, it preserves weights. (Note that we already knew that these functors pre-

served semisimple actions of Fr from earlier considerations.) Thus, i∗ is genuine by

exactly the same considerations.

Next, we must consider the Verdier duality function, D, in order to proceed

further.

Theorem 5.1.2. Let X0 be a toric variety. Then the Verdier duality functor

D : Dmix(X0)op → Dmix(X0)

is genuine.

Proof. We know that D fixed the L̃σ. Therefore, D|Pure(X0)op is homogeneous. There-

fore, the claim follows as above.

With this result in hand, we now wish to prove the following:

Theorem 5.1.3. Let X0 be a toric variety. Suppose that

j : U0 ↪→ X0 ←↩ Z0 : i
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is an open-closed pair. Then the following functors are genuine:

j(!) : Dmix(U0)→ Dmix(X0) (5.5)

j(∗) : Dmix(U0)→ Dmix(X0) (5.6)

i(!) : Dmix(X0)→ Dmix(Z0) (5.7)

i(∗) : Dmix(X0)→ Dmix(Z0) (5.8)

(5.9)

Proof. This follows directly from the fact that these are adjoints of j∗ and i∗, both

of which are genuine functors.

5.2 Locally Closed Inclusions and a Final Result

Theorem 5.2.1. Let h : Y0 ↪→ X0 be a locally closed inclusion of toric varieties.

Then all of the following are genuine:

h∗ : Dmix(Y0)→ Dmix(X0) (5.10)

h! : Dmix(Y0)→ Dmix(X0) (5.11)

h∗ : Dmix(X0)→ Dmix(Y0) (5.12)

h! : Dmix(X0)→ Dmix(Y0) (5.13)

Proof. If h : Y0 ↪→ X0 is a locally closed inclusion, then it can be factored into the

composition of an open inclusion and a closed inclusion. However, pushforward,

pullback, proper pushforward, and extraordinary pullback along both of those maps

are all genuine. Therefore, these functors are genuine as well.

We obtain one more result in this vein. Namely, we obtain genuineness results

for proper toric maps.

Theorem 5.2.2. Let f : X0 → Y0 be a smooth toric map. Then f ∗ and f ! are

genuine. In addition, if f is proper, then f∗ is a genuine functor.
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Proof. In this case, we know that a f ∗ preserves weights and that a shift of it is

perverse t-exact. This tells us that it is homogeneous and, therefore, genuine by

the reasoning above. In this case, f ! is a shift of a genuine functor, so it is also

genuine. Now, assume that f is proper. Then, since f∗ ' f! has a genuine adjoint,

it is also genuine.

It seems that more should be true. In particular, it seems likely that pushforward

along proper toric maps are genuine. However, if that is true, then the above

strategy will not work.
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