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A b stract

We study the conditions under which the power of a  prime ideal 

is equal to the corresponding symbolic prime power.

We begin by extending a result of Villamayor(h). We consider a

smooth k-algebra S (s ')  which iB the localization of a finite k-algebra where k is a
/ $ $ * field of characteristic zero. For a prime ideal P (P ) we show that if 4  * 4* then

q _p11 *(*} * *1
P = P  if and only if P = P  , for n£l* In the proof we use & generalization of the 

notion of a truncated cotangent complex introduced by Illusie.

We then continue on by using the notions developed in the course 

of the proof to construct a new class of cohomological objects >l which play 

an analogous role for the higher order differentials to the role played by the 

cotangent complex of Lichtenbaum and Schlessinger in the case of the ordinary 

Kahler differentials.



C h apter  1 : Q u estion s on Sym bolic  P r im e  Pow ers

The purpose of this work is to expand the results of Villamayor 

[V] related to a question originally posed by Hochster [Ho] on the conditions of 

the equality of powers of prime ideals and symbolic powers of prime ideals.

In this chapter we will begin by discussing HochBter’s question 

and the results obtained for some special classes of rings. Then we will discuss 

the approach of Villamayor and present a short review of Bome homological 

constructions needed to extend these results. Finally, we will present two general 

theorems which we will need in the following chapters.

Section  1.1: T he Basic  Q u estion  and its A n teced en ts

We will begin with the definition of a symbolic power of a prime 

ideal. All of our rings will be commutative with identity. Let P be a prime ideal 

in a ring A. Consider the localization Apand the ideal of A generated by the 

image of F**, Ap. The nth symbolic prime power, F*'’ = P' 1 Piff\ A, is the inverse 

image of P^Ap. If A has a primary decomposition (e.g. if A is noetherian, then
tS*/ 'Iwe notice tha t F  is the P-primary component of P . While it is always true that

* a)Pc-P , it may happen that this containment is strict. Examples where the prime 

power and the symbolic prime are not equal are provided by Northcott [N, page 

29, example 3] and M atsumura [Ml, page 56].

When P is primary then we always have P" = P^*and Hochster 

(Ho, page 63] sought more general criteria for this equality to hold. He found 

that when the prime ideal P is a complete intersection (P is generated by an 

A-sequence) then P ~ P for all n, and when P is the prime ideal generated 

by the k - 1  by k - 1  minors of a k - 1  by k matrix of indeterminates over a field

1
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K, thru  the equality also holds. Hochster then asked if some restriction on the 

quotient ring might be able to guarantee the desired equality. He was able 

to rule out ^  being Cohen-Macauley as a sufficient condition, but conjectured 

Gorenstein as a possibility. In a later paper, Cowsik [Co] was able to produce a 

counterexample to Gorenstein, but extended Hochster’s original results to locally 

complete intersections. (For more on complete intersections, see Looijenga [Lo, 

section I B].) Eliahou was able to use the information on complete intersections 

to examine cases involving monomial curves in [E],

Then Villamayor slightly rephrased the question. Considering
ft

the equality as a condition of the quotient ring Villamayor showed that for 

polynomial rings A and over a field k, if P (resp. Q) was a prime ideal of A 

(resp. A/ ) such that ^>3 ^  then P =■ P if and only if Q = Q ^ JThe equality for 

n = 2 was thus independent of the representation as a quotient ring. One of the 

results we will demonstrate (in chapter 2 ) is that this result may be extended 

to the general case of P -  P

Another question related to all of this was raised by Hartshorne 

in [Ha, section 7]. Given a complete regular local ring A with P a prime ideal of 

A, when is the P-adic topology on an A-module M equivalent to the P-symbolic 

topology on M? This question was answered by Schenzel [Sch] using some results 

of Brodmann [Br] and has been extended to some classes of primary ideals by 

Ratliff [Ra] and to the case of linear equivalence of general ideals by Verma [Vel] 

and [Ve2 ],

Section  1.2: Som e Basic  D efin itions

We begin by recalling some of the basic ideas of derivations. For 

a ring A and an A-module M, a derivation D:A~*M is an additive map satisfying
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D (ab)=aD (b) + bD(a) for all a,b in A. We often consider the case where A is a 

k-algebra and the derivations are required to vanish on k. If we consider B = A 

A and the exact sequence
c I  — * A  — * o

where £ (a # a ')= a a ', then the A-module^ 1 5  called the module of (Kahler)

differentials of A over k. We get the usual derivation d:A and the pair

(o?»^,d) satisfies the universal property tha t if D:A"*M is any derivation into an 

A-module M then there is a unique A-linear map f:J2„-*M such that D = fd. For 

further details, see M atsumura [Ml, section 26].

This approach extends naturally to higher degrees. Again con

sidering a k-algebra A and an A-module M, an n-derivation over k from A to M 

is a k-linear function L from A to M such that

(i) M . . . . . « . )=  r ”, -  v j  u  ■ i - i  - )

(ii) (1) — 0. See [V, section 1.1]

If we recall the maps :B-*A,t(a«a' )=aa ' , I —k ert ,  then using the map a #  ltfa-a 

1 , we have the composition A -+ I —*

and we denote 'Qtfc (or simply -Si^y where k is understood), which may be called 

the module of differentials of order n. At this point the reader is warned that, 

in the usual terminology, [Ml, section 26,D] i* the n th exterior product

of «Tl̂ , and this is often found in books on Algebraic Geometry and Differential 

Geometry. Our meaning is different and throughout the remainder of this paper 

we will have no occasion to refer to the nth exterior product.

JT.** is easily seen to be an A-module and its properties are fully 

discussed in Mount and Villamayor [MV] where it is denoted D^. We will recall
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the properties we need, with references to [MV] where necessary.

J2 is a ring without identity and any product of n + 1  elements in 

it vanishes. The composition in ( 1 .2 .1 ) is denoted T *1 and is a  higher derivation 

in the sense of (i) and (ii) above. We also note that when A is a regular local 

ring, char(k) = 0 and y(>. *r is a system of parameters for A, then for any f f  A 

w t have .. )

9 * * alt' rwhere j = (jM ,}r h Ijl = i*-tjr an<  ̂ *s unique derivation such th a t£5̂  ^ i tj  , 

the Kronecker delta.

In the same way that J 2 .» is a universal object for derivations, 

is a universal object for n-derivations [MV, page 17, 3.3]. If S is a multiplicatively 

closed subset of A then ^  i~'A * * 5  /4 < 8  S I #

[MV, page 20, 3.4]. For computational purposes we have the following extremely 

useful result ^

[MV, page 16, 2.5]. Finally, if A = k[<(, is a finitely generated k-algebra and 

P is a prime ideal in A, then is a finitely generated A -algebra with algebra 

generators TV> iT * , [MV, page 21, 3.5]. In the case where A is a regular local 

ring with a system of parameters **•->*)' then Jt'/t is a free A-module.

These results are all extensions of the case where n —1 to the 

general case. It is worth pointing out that these ideas are related to the notion 

of "principal parts" described by Grothendieck in [EGA, chapter 4].

We will also have occasion to use the cotangent complex and the
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first derived upper cotangent f u n c to r J ^ f^ T h is  was introduced by Lichtenbaum 

and Schlessinger [LS] and itB construction is also described by Hoffman [H] and 

in more generality by Illusie [111], Later this was extended to higher orders 

independently by Andre [A 1 j and [A2j and Quillen [Ql].

Since we only use T  we will refer to it as the cotangent functor 

without any resulting confusion. Here we need only recall that given the exact 

sequence where S and A are k-algebras, andf? is a homomorphism of k-algebras:

o  — > P — > S  — » o

we have an exact sequence of A-modules

P/p» * S2s <s>sA— * J 7 x — (1. 1. 3)

[Ml, page 187, theorem 58] and, for an A-module M ,T* (A,H) is defined in Buch 

a way that, applying Hora^ ( ,M) to (1.2.3) the sequence of A-modules

o -*■ - ►  &>#A (% ',* ) -*  7*14,11 J  o

is exact.

Later we will introduce a modification due to Iversen [I], called 

the truncated cotangent complex, which will play a key role in our extension of 

Villamayor’s result.

S e c t io n  1.3: P r e l im in a r y  R e s u l t s

We will consider, in this section, a  field k of characteristic sero, 

a k-algebra S of finitely generated type. This means tha t S is the localisation of 

a k-algebra of finite type. P will be a prime ideal of S.

L e m m a  1 : Let S be a regular K-algebra of finitely generated type and P a 

prime ideal of S. Then
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m j  p 6 p .  £)t  p e &j 4's * i - J tr t tA k o n

s  — ►  S  , o 5 ^ < n J

(For 1 = 0, the resulting composition is the identity operator.)

Now, letting R= we have an exact sequence

o — > P - ^ S — + Z - ^ o  ( P i - 0

Associated to (1.3.1) there is always an exact sequence [Ml, page 187]

P/p 2  J? 5 Qs £  S2t — * o  C i - S , x )

We want to prove 
A

T h e o r e m  I :  P = P  if and only if*  is injective.

To prove this we start with

L em m a 2: o  - +  — w J 2 t  €>s %  *  ̂ °

is always an exact sequence of R-modules.

Proof of Lemma 2: It is sufficient to show that < is injectiveVis the map induced 

from P —* J l f  K which arises from

?  c— * S  — 1*— * J 2 j  ----- » J 2 S R

namely,<(g) = d g * l . Since R= V  ,& •  ^ ■ So*(g)= i mage of dg in

. Recalling thatiZ^is free on the basis dT( ,...,dTr [Ml, page 184] then dg^g^dT] +
Pi... + grd'I .̂ where ĝ , is the corresponding derivation, i.e. .

fV
First we show that a ' is well-defined. If g«P then the result of 

Seibt implies that gr(- tP  , for all i, hence dg= Z Ŝ .dT,* * RJ%, so^is well-defined. 

Now assume, for g * ^ ,  —0 in^Vjlj, where g is a representative for g. This

implies 2 'f>‘ W*jso jT( -  J*, where b-cP for all i, hence by Seibt, g 6 P ^

This yields Lemma 2 .
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4  it)
Now to prove theorem 1. We know that P c P  i* always true,

f  Pshence 'ft*> Thus the following diagram commutes

^  *  * &

0  V * " '

where the bottom row is exact by Lemma 2. An easy diagram chase shows that
a m>

the top row is exact if and only if p is an isomorphism if and only if P = P  . This 

proves Theorem 1.

Now we extend theorem one to the more general case. With the 

same conditions on S, P and R, we want to construct a map

S :  6 S R

We begin with the m ap ,*“S P K given by T / . This
fl _■-* tis clearly k-linear and we use this to construc ts  . Let where K/e P for

each i. By our observation is section 1.2 we may write

T n (x,  -  (x,+T *,)■■■ f a s ' T * " , )  -■»«♦«

-  C A J  ■+ T *.

where is a sum of terms, each of which contains at least one factor of the 

form xj and at least one of the form T x^. Each such term infd^ is in PJZ£ and 

rcc ailing , we see that each term in C^jvanishes. The final term on the

right in (1.3.4) is a product of n + 1 terms in JZ jand thus is Eero by definition. 

Therefore the induced map
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is well-defined.

We also have the map -*J2j0i ^given by

'  Z  fT V '"  a "y r J i ltj\ i n  3

from ( 1 .2 .2 ). It is easy to check, again using Seibt’s result, that is injective.

As in the n = 2 case, we construct the commutative diagram

P / p - '  -------------------------- > J l l   * o

" i  I I
0  — ► P/po-m ----- ,  J 2 "ff £   » J 2 ^  - — * O

Ml
where T , induced from the inclusion P c P  is surjective. Once again, an easy 

diagram chase shows

î 1 r**0   m
T h e o r e m  2: P —P if and only if it is injective if and only if «< is injective.

S e c t io n  1.4: T h e  R e s t  o f  t h e  P a p e r

In Chapter 2  we will extend the result of Villamayor mentioned 

on section 1.2 to the case P — P , and show that this remains a  condition that 

is independent of the representation of R as a quotient ring, R =  , where S 

is as in section 1.3. We will then construct intrinsic objects 2/#,t(R,M) which 

will serve as higher order analoguesof the cotangent functor T^R^M). This will 

require a generalizationof the notion of truncated cotangent complex described 

by Iversen [I], and the appropriate theory will be developed there.

Then in Chapter 3 we will study the properties of the V (R,M) 

and use them to prove a more comprehensive version of the result we obtain in
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Chapter 2.

Finally, in Chapter 4, we will discuss the restrictions we have 

placed on k, R, S, and P and we will outline some areas of possible future study. 

Iasertexln03 one



C h apter2  : P^w= P* ^An E x ten sion  o f  V illam ayor'sT heorem

In this chapter we will extend the result of Villamayor mentioned
(*»■)

in Chapter 1 to the general case P = P  . This will require us to review first some 

notions on smooth algebras and infinitesimal extensions and to further these 

results to a more general setting. Some of this will be standard  commutative 

algebra and some will depend on work done by Iversen [I] on truncated cotangent 

complexes.

After this introduction and the generalization of the result of 

Villamayor, we will construct a higher order analogue to the cotangent complex, 

our set of homological ti

S ection  2.1: R em arks on  Formal S m o o th n ess

For the remainder of this section we will consider k to be any 

commutative ring with identity. In some later uses of our work we will need more 

restrictive conditions, about which we will warn the reader at the appropriate

time.

We begin with a concept tha t is well known. A k-algebra A

is formally smooth if, given a solid arrow commutative diagram of k-aJgebras, 
*. _

where I *(0)

10



11

then the dotted arrow exists and the relevant triangles commute. The properties 

of formal smoothness are developed in M atsumura [Ml, section 28). (Warning: 

what we call ’’formally smooth” M atsumura calls only "sm ooth” . Thus our 

definition will correspond more precisely to that used by Iversen.) We also 

notice that, in this definition, we may replace ” 1 = ( 0 )” with ”l"  = ( 0 )” for any 

n >2 and the definition remains the same [Ml, page 199].

We now turn to an extension of an idea developed by Iversen 

[I, section II.2]. If A is a k-algebra, then an nth order infinitesimal extension 

of A is a pair E .= (E,f) where E is a k-algebra and f:E —* A is a surjective 

k-algebra morphism, and for I = ker f we have I** ={0). (W ith this terminology, 

the constructions of Iversen are first order extensions.) Further, an nth order 

infinitesimal extension will be considered versal if, for any other nth order ex

tension F. —(F,g) of A, there will exist a k-algebra homomorphism P : E— F so 

tha t the obvious diagram commutes.

P r o p o s i t i o n  1: Let A be a k-algebra, E a formally smooth k-algebra and f:E 

A surjective such that I = ker f. Consider the inclusions i" <=- I CE which produce 

the exact sequence
C

(5 „  ̂ ----> —t—y / - £  y &

Then ( ^ " ft ,p) is a versal nth order infinitesimal extension of A.

Proof: Consider another nth order infinitesimal extension of A represented by 

the exact sequence
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#»+1
where L =(0). Looking at the solid arrow diagram

If

t ' - u
*  ------* F

and recalling the formal smoothness of E, we get a map je which completes the 

diagram. Thus we have

i* i'f I</
o — > L ------> F - *  A  ------ > O

By the universal property of the kernel, jf'existB and C  if =(0) implies

that factors through

*/!-■

1
F

Since for any ring k, the polynomial ring k[X( jX ^-.^X ^ ,...] is 

formally smooth over k, then we have immediately

C o ro l la ry  1 : Any k-algebra A has a versal nth order infinitesimal extension.

Now we turn our attention to the truncated cotangent complex. 

Given an nth order infinitesimal extension f:E -*A of the k-algebra A, we consider 

the following complex of k-modules
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Jo
° — *-----------------------/? ----> o

where d 0  (x) = T fl x 0&1, T *1 the universal n-derivation described in Chap* 

ter 1 and in [MV]. We remind the reader that this T* is often referred to 

as a truncated Taylor series, where a Taylor series T possesses the property 

T (xy)=xT{y)+yT(x) + T(x)T(y). This is the usual statement in the case of a 

derivation since the last term on the right T(x)T(y) € I and hence r_0 in

L e m m a  1 : Consider the following commutative diagram of k-algebras

f /?

A/ c-
where N=ker q. Let T =  . Then (a) im T ^ N ,  and (b) still denoting by T:E 

N the induced map, then T is a Taylor series if we regard N as an E-module 

’’via Note: N is naturally a ring without identity and also an E-algebra via 

e • n = *{ e ) ■ n .

Proof: (We mimic [Ml, page 188].) Im T t N  follows from i.e. the fact

tha t the diagram commutes. Letting T =  , then £ = «  + T and, for any x,y

in E we have

« ( * , )  . f i n )  f a ) *

-  W «X (J | >■ T M  +TY»J T /y )

-  « o } ) 4  *  T 7 ») + * T<*> * r t *> l ' l '

so we find T O ? ) '  ~ ' '" " I 1 '  * T/») + ?  ™  * ™ '  ^

and so T is an N-valued Taylor series.
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P ro p o s it io n  2: (i) Consider a morphism * ( E ,p ) —  ̂(F,q) of nth order infinites

imal extensions of the k-algebra A. Then there is an induced morphism c.(*< ) 

of the complexes (2.1.1) constructed above, (ii) If ^is another such morphism, 

then c.(*) and c.(^) are homotopic as morphismB of complexes.

Proof: (i) This follows from the functorial properties of the module of derivations 

of degree n, S lg  . (ii) Consider as a map fromE to L=ker q which by

the above lemma ia an E-Taylor series and where L is regarded aa an E-module 

as via •< . By the universal property of there exists a unique E-linear map 

such that the following diagram commutes

£  — J2 ;-
t \  /*

L

Then for K = ker p

c  — *- K ------ ? S l f  — > o

11 ' X ' l
o — » L. -----*J2"f — * 0

is the required homotopy.

We now conclude this section by noting tha t if (E,p) is a versal 

nth order infinitesimal extension of A, then given any extension (F,q) there 

exists as *:(E,p) —»(F,q) and hence a map c.(*< ) of the associated complex as 

before. This m ap is unique up to homotopy, so by Proposition 2, any two such 

complexes (2 .1 .1 ) corresponding to a versal nth order infinitesimal extension are
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homotopically equivalent.

D e f in i t io n :  The nth order truncated cotangent complex of A is the homo* 

topically unique truncated cotangent complex arising from any versal nth order 

infinitesimal extension of the k-algebra A.

S e c t io n  2.2: P  — P

In this section we will extend the result of Villamayor to arbi

trary  powers of a prime ideal. To be consistent with the requirements of Seibt's 

theorem, which we use, we will consider k as before and A a k-algebra of finitely- 

generated type. This means that A = C *B where B is a k-algebra of finite type 

and C is any multiplicative subset of A. In particular B is the quotient of a 

polynomial ring over k, and we may include the case C=1 so tha t A is possibly 

just a polynomial ring over k in finitely many indeterminates. We emphasize 

that, unlike earlier results, we are not restricted to localization at a prime or 

maximal ideal.

P r o p o s i t i o n  3: Let S be a k-algebra of finitely generated type and P a prime

ideal of S such that R = S/f> and E — Sypmi T h e n  there is a  canonical isomorphism

of R-aigebras _ n r*'* *  P

x f t j  6s R  *

(Note R is an E-algebra via the surjective homomorphism r ni'1 “* /p  induced

by the inclusions P ’1*' C. F* S

Proof: We begin , as a lw ays, w ith  an exact  sequence
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© .s
which induces the exact sequence

%
where we recognize E =  'p**', R — S/P . From the second sequence we have the 

canonical sequence [MV) or [Ml, page 186 for n = 0]

P / p — S 2 l  %  V 1 - » J i L . ,  - *  °

Now apply {%)* to this to obtain the commutative diagram with exact top
I

row

r > , . „  «  s'r  — V r ' ' V ' S/f ^

/?

where * is defined by T * t  f and x < P implies x=x, x1 x4...^H(with x -^P  

for all i. Then we have

T s  M  ~ 7s  f î- Tti»+1 ) •  (*, + TjV^ ' (x**‘ +Tirx **i Xr -

from our computational formula in section 1.2. The term on the right, when 

expanded, yields

terms of the form "X̂ T  *j •■'T *- ?
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Each term of the first part is in » ■ $  and is thus zero and the final term is 

zero in a* a product of n + 1 terms. Thus, ,so *** and is an

isomorphism.

Hence S l \  ®s % «  &  \  »£ K

Remark: If R is a k-algebra, to obtain an n-truncated cotangent complex we 

may take any formally smooth k-algebra S of which R is a quotient, say R~ //p, 

P an ideal of S, then let E =  Syfi'rf‘, 1= and consider

o - » x  — > » t  R  — *■o ( t . )

a complex with degree one term —I and degree zero term — K - As we saw 

in Proposition 3, this is canonically isomorphic to the complex of k-modules

o —f T —► J2"s R -»  0 ( C . )

/ * 
P r o p o s i t i o n  4: Let S and S be smooth k-algebras, and let P and P be prime

ideals of S and S Respectively, such that * R . Then the k-linear map

p< ■

is injective if and only if the canonical k-linear map

«  ” — -* J l ] ,  ^

is injective.

Proof: The injectivity of W*1 is equivalent to having t|, (€,} ~ O or, equivalently
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, M( ££•)-© because £• an d ? ,  are isomorphic. Similarly, rf/is injective if and only 

if W, , where we construct ?/ in the same manner as C. using S ^and P / in a

strictly analogous construction.

Now in view of the remarks preceding the definition of the 

nth truncated cotangent complex in section 2.1 (concerning "homotopy unique

ness” ), the versality of S and S 7 imply tha t C. and (?. } both representing 

n-cotangent complexes are homotopy equivalent, hence indeed (£/ )  and

one vanishes if and only if the other vanishes.

As an immediate corollary we may generalize Villamayor’s re

sult.

T h eo rem  1: Let S (re sp  S * ) be  sm o o th  k -a lg e b ra s  o f  finitely generated type, 

and le t  P (Tesp P 1 )be a p r im e  ideal of S (resp S / ) such that . Then
n*W " * * 1

= P if and only if P = P

Proof: We have seen that P = P  if and only if * is injective (Chapter 1,
n . . . . >• . . .theorem 2) and*' 1 6  injective if and only if*< is injective if and only if P = P

At this point it may be worthwhile to point out specific instances 

where the theorem holds. Because of a  dependence on Seibt’s results we restrict 

ourselves to the case where k is a field of characteristic zero.

If A is an algebra of finite type over k and P is a prime ideal in A 

then for S = Ap where S is regular and k & K = is a  separable extension, then

using M atsum ura [Ml, Theorem 64 and page 207], it follows tha t S is formally 

smooth over k.
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Section 2.3: V  n'‘ (Rj M)

We begin this section by reminding the reader tha t T fa*) can 

be considered to be the term necessary to complete an exact sequence. T hat is, 

given the sequence, where S is a smooth k-algebra

PV  —* 0 s R —* f l a  — * °

then TYftM) is (non-intrinsically) defined as the term used to complete the exact 

sequence

o  -% Hwy, (Sip, H J llortii ( Wosinf & ) —* T Y f t H }  —» o

By non-intrinsic definition, we mean that it is not immediately clear that T ‘ will 

be well-defined independently of the choice of representation of R as a quotient 

R= V

In this definition we can write

»  c o A s r  C  ( S i s  0 s  M r t )  J

Now that we have extended ourselves to consider for n > l ,
J pwe would like to have an object similar to T . Unfortunately, for n > 1 is 

no longer an R-module so we are no longer dealing simply with R-modules and 

R-module homomorphisms. In order to return to the setting of R-modules, we 

are going to ’’filter” our modules in such a way that every term  of the associated 

graded object is again an R-module.

For the remainder of this section we will work with the case 

where k is a field of characteristic zero and S is the localization of a finitely 

generated k-algebra at a prime ideal, and we will assume that S is regular.

We consider our ring S, a prime ideal P, and R =  S/p , E=

We have an exact sequence
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O — v ^ /p n * i —> -Vp'**'1  > 'V'p  *  o

and using proposition 1 of section 2.1 and the fact [Ml, page 220} that regular

implies formally smooth, then we see 
3 , £  s/p  n ■* I  P /  p

is a versa! nth order infinitesimal extension of R. This gives rise to the complex 

( 2 . 1 . 1 )

O  ----- >  C p  n+ t  P R  > 13

where the degree zero term is and the degree one term is Sp**1 and the

remaining terms are zero.

We introduce the filtrations 

1 ~ 6 "  °  C l  ? ■ ■ ’ ^  (>„, ~ °  ujA*rt £  < -  ^ / p ”* i

and = the submodule of generated by terms of the form * / where

j i i -

Now consider the induced complexes

0 - >  G ; / n -----^ f L \  — ► °

This is clearly a complex of R = ^-modules for each value of i.

We now proceed with the construction of the Z/"'‘ . For i<n we

begin with r  ^
t> c s

and apply Hom^ ( ,M) to obtain

c  ^  H) »> - *  %"' (« ,« >  - »  °

awhere the U are defined to complete the Horn sequence to exactness; i.e. 
W U F f r t )  -  c o h r  [Horn,K ( L\ ^  t f i )  - *  / i )  ]
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With this definition it is easy to see tha t the U*'1 are well- 

defined, tha t is to say intrinsic objects independent of the representation R= 

. In fact, given K — (where S satisfies the same conditions as S) then the
3 S ̂versality of (and also '&'**' ) leads us, by Proposition 2 (ii) to see that the 

corresponding n-cotangent complexes are unique up to homotopy equivalence. 

We note, however, tha t the homotopy equivalence f  in the proof of proposition 

2 induces a homotopy of . We will consider this further in section 2.4. It 

remains to be seen how these objects U * will function in a role analogous to the 

T*we considered before.

S ection  2.4: A n  A ltern a te  C on stru ction  for th e

We recall that T* arose from the consideration of the standard

sequence
^ > l  *  J 2 S R  >  *  °

where T was defined to ensure exactness in

o —» (Si*. h  ) —e (J2i, t f )-*> °

a sequence involving the prime ideal P. To return explicitly to a situation in

volving P and its powers, we present a second definition of the and we will 

show the equivalence with the objects constructed in section 2.3.

Again we will deal with the same conditions on S, R, and k that

we described at the beginning of 2.3. Let us start with the filtration 
Q .  = P'/pM i i  ^

ih  t r it  < _ j
For j<n  + l we have P CfP^ CP'̂  , hence we have an exact sequence

o -* — p %•>>'  ► c

r> © 6 ^ ,   * ( jy ---- p ^  —» O
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Clearly each is a  R-module.

For any local ring S with maximal ideal pj  , we can define Ĥ* as 

the submodule o f j l j  generated by elements of the form - (T%yr , where x

i j, + ...+jr -  '■ When we consider '^(4t we will have an R-module.

Now for S a regular local ring, let be a regular system of

parameters of S. Let H- be the submodule generated by monomials of theJ '

formff*^' flj/such thatj^  ■ If we havetf* =0. This defines a filtration

= .. a O C ,  = °
11*'Now we consider . This gives us monomials of size exactly =j. Once

again, this object^'-* is an R-module.

Finally, we let Fj be the submodule o f g e n e r a t e d  by

monomials of the form I where . This is just the image of H- under
•J

the mapJij-rj^ll^.We see that wiH aJso be an R-module.

The next lemma and the following two propositions (Proposi

tions 5 and 6) are technical results dealing with the filtrations and their maps. 

Although we will include them here, they will not be used in this section and 

will not be specifically needed until chapter 3.

We will need the following technical result:

L e m m a  2: K T 1 ( F j )  -  11' ' '* *'">/?*“
P

Recall tha t a" is the map /̂ *<1-* j i^ £ d e f in e d  in connection with 

theorem 2 of Chapter 1, section 1.3.

Proof of Lemma 2: (a) We want to show that 5C6 IF j )

* *  ' r " "  . x l  u - r ' ( f j ) +  < y > c - F j

and this implies
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and so, for IhJ i /j/each such term is zero in which implies that each

^ —j— ^ 7 - i f  7*r A  € P j l *  

since, as before, fl* is freely generated by the T*x *. This tells us that

A - t s - * '  ( lkl<j><?7, "*
and so, again using the result of Seibt (S],

pfj'J P'S'*?"*'/
x c  i o r  * 6  ' / p * * '

(b) —Here we want to show
ft

J

L

J   J  J   (T?, ) <t\ .  (r<r) * r  ti I

Let x = y + P  , where ytF^J and so by Seibt, y and all the partial derivatives of y 

up to order j-1 are in P. Now ^

* f * ) -  0i ! kr i

-  2 :  r V /  f n rA * /
Ij/f/fcliM

since all terms are in fy?*, hence —0 injf*a£. Thus we see th a t  **'■*>* fj  and

so fPj ) as desired.

Returning to our three sets of filtrations, we have the commuting

diagram £*>(  » //j*,  e -o

i 1 ■ 3
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w here /  a n d / 1 are onto. This induces a sequence of order twoJ I

iX fyfr* ^ L ,  Hjjf" .— » c ( i ,*  i)
J+' r j  + l + '

where is onto since Aj is onto. This final sequence is easily seen to be a 

sequence of R-modules and R-module homomorphisms.

P r o p o s i t i o n  5: For a fixed index n, assume

J j i  I ' j 4<

is injective. Then 

is injective.

Proof: We have the commutative diagram with exact rows

® -> C.% — » 6" _  as/c%, — > o
l a "  i f  I  *1
* J r". i J

-  •  c  ■* ^  j / c A
F j « l  ------- *■ F  j   *  " > *

-+ o

Of course, for j-fl^-n+1 we have C^( =  F^ =0. For the case j = n the two extreme 

columns are injective (the left-hand column trivially bo, the right-hand column 

by assumption) and so we see tha t the middle column yields^ injective. Shifting 

indices down by one, the next diagram gives ^  injective, and hence^. t is

injective. Continuing by descending induction, we finally r e a c h = j / " i s  injective.

P r o p o s i t i o n  0: Assume, for a fixed index n, that all mapB

°<l  ; ' V *   '  € s £

are injective ( l< U n ) .  Then ^  ^  ^  ^  ,
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arc injective. 

Proof: Assume
: fypt+<  R

is injective for all (1* 1 in). As noted in theorem 2, Chapter 1, section 1.3, */is 

injective if and only if P^-P^so we have PJ”PJ for each 1 * j i  n. Now returning to 

Lemma 2 above, we find ..u-rvj). r/r , ,

-
Consider the canonical m ap/y: ^  VyrJ! This is now

injective, so we get a commutative diagram with exact rows

0  -

• 'j
F* P*

o —> V^ 1  -----> '/f *

and injective leads us immediately to injective and this completes

Proposition 6.

Now for the punchline, we return to the sequence (2.4.1)

6 U .  £  ■Ofc. J*.bj*y "* Jr '  j*'

These are R-modules and R-module homomorphisms

'c r  r " > ; „  - X
/■ n  n '

6 ^ ; ,  ^

We apply the contravariant functor Hom^( M) to this sequence and we define

so tha t the following sequence is exact Jof *U A
• —  t 3 S ! , « )  - »  " '(n .H l™

, . f . r c o l u r C t u , !  f % ,  h ) — ( f y , , , , * ) ]

Again these objects are not obviously intrinsically defined so we want to show
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that these w agree with the v  we defined above, in section 2.3. We want to 

check that the difference between the F/ defined fromJ2*tf*^ and the L*' defined 

from th e ^ e C * ^  does not affect the construction of the . But this is an

immediate consequence of Proposition 3 in section 2.2 and hence we have 

P ro p o s it io n  7: f}"'* (R>^)  ^  *24**1 (fit

So we have constructed a collection of R-modules ft** and we 

have done so in two equivalent ways. In Chapter 3 we will make specific use of 

these modules by using the filtrations and sequences defined in this section.

Finally, we notice that for the case n = l we again get the case 

of T* defined by Lichtenbaum and Schlessinger. This can be done directly as an
t a l/f

easy consequence of letting n — 1 in proposition 3. Thus the « are clearly an 

extension of T  to the case involving derivations of higher orders.



C hapter  3; A n  A p p lica tion  o f  th e  ^

At the end of Chapter 2 we constructed a series of filtrations to 

return our setting to one of R-modules, then we delineated the construction of 

a cohomoiogical object, by placing it into position to complete an exact

sequence analogous to that used to define the usual cotangent complex T* .

In this chapter we will begin by demonstrating a canonically

defined map

s " ;  -•

We will then return to our filtered sequence and see how these objects are related 

to our previous ideas and then go on to consider the cases where the sequences 

possess a particularly useful structure.

In the final section we will put this material to work by proving 

another extension of Villamayor’s result.

S ection  3.1: D iagram m atics

Throughout this section we will deal with an algebraically closed 

field k of characteristic zero and a ring S which is the localization of a finitely 

generated k-algebra at a prime ideal, where S is assumed to be regular. As 

before, re write R= ^Jp where P is a prime ideal of S. We want to construct a 

map from E xtpU l^fl)  t°  . The importance of this map will be the

on those occasions when it allows us direct computation of the newfound 1 / in

27
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terms of a familiar construction applied to an only slightly unfamiliar module 

We want to define

C  - »  w U r . h )  h  '  O

We begin by recalling from Chapter 2 that has the form

* U = Cffhr [ & * • * (  Mw* ( Cif a  ( U * - )

If we revisit the construction of Ext as a group of extensions, (see Rotman [R, 

page 202ff], we find a typical element of Ext is an exact sequence of

the form ; 0

c - + M  — ► Q  - U  o

Now by attaching /) we find the Bolid-arrow diagram

-► 0
t

► M — *<5 - J2
A

i > m II
<£■ f ,/f :H I J2

*1, t 
A

N. I
A

( 3. /• 3 )

where the rightmost vertical arrow is the identity isomorphism and the rows are 

exact sequences of R-modules and R-module homomorphisms. By the freeness 

of /£?fi we have a map f: ^  such tha t the right hand square commutes.
j j * .

We want to define a map g: complete the left hand square.

Lete***^^ . Since o , we have f f  »o and by the

exactness of the top rowf.<^(*>« im i or = i(m), where m is an element

of M. Now we define s.* -» M by g(e) = m . By Lemma 2 in section 2.3 and

the exactness of the top row, g is well-defined and we see easily that
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and so the left hand square, and hence all of diagram (3.1.3) commutes.
F*Now the freeness of does not guarantee the uniqueness of

f, but by a standard argument, if f is another such map and g* is the induced 

map y  t y ' , M ’ then we find

and so we have

7  € f t (R,M) - co il*  d" *

Thus we have a map taking an element [Q] from Ext to W*l(R,M).

It is also straightforward, but tedious, to see tha t this map does 

not depend on the representation R= V  ■ Here we use the versality of /p**i as 

an nth order versa] infinitesimal extension to develop a parallel construction 

for the map to Ext and then use the homotopy equivalence (and corresponding 

homology equality to see that the same map is obtained. The details of this 

construction are left to the interested reader as a finger exercise.

Let’s retrace our steps. We began with the (solid arrow) diagram

?:K .  K
w»i

(3.1.3*)
s *  '

where K; = k e r ) '  , so the bottom row is exact. By the usual property of the 

kernel, we have a surjective map —a JC; ■ Applying Hom^f ,M) for an
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arbitrary R-module M, we find 

0 —» W) —* j Wesî  M) -♦ Eif/̂ ' JJ} j ,  f l) —* O

II J  t ' i  i  *

where q* is the m ap induced from q ( t the top row is the beginning of the 

long exact sequence for Ext and the two left hand vertical maps are the usual 

identity isomorphisms. The left hand square and the middle square commute, 

and we would like to complete our construction by showing that the right hand 

square commutes. Begin with an element r tH o m  {K* ,M) and consider the 

solid diagram

o —> k * — ► — * Q l"  — ► o7 t  r i f i  w

\r U  II
0 M  ^  F  rr r r »  J 2 V — > o

% h

By constructing the fibre product F (pushout) with the standard maps f, g, and 

h we obtain an element [E] in Ext^ Now continue on to construct

o  F - i - *  S l’i  — > o
A ^  m;p : * n

 * *Yp' * ^ A  — o

again using the freeness of i4 £,( and following the procedure above to give us 

an element in If*1' .

In the opposite direction, begin with p-:K" —>M  and composing 

we obtain an element in fc**(<‘̂»/̂ depending on a", and when we compare via the 

combined diagram



using , * freely constructed yields the desired result.

S ec tio n  3.2: T h e  M a in  T h e o r e m .

T h e  M a in  T h e o r e m :  Let S be the localization of a finitely generated k-algebra 

at a prime ideal, where k is an algebraically closed field of characteristic zero. 

Let where P is a prime ideal of S. Assume S is regular. Then for a fixed 

integer 0 , the following statements are equivalent:

( 1 ) P* = P 0;for all ii n*4 -l

(2) &*,is onto, for all i; n, n< n .- f t ,  for all R-modules M

(3) S*is an isomorphism for all i sn ,  n< n ,+  l ,  for all R-modules

M.

P r o o f  o f  th e  M a in  T h e o re m ;  ( 1 )4 * (2) From theorem 1, section 1.3, we have
 ̂ ft ̂P = P  for all i«n. + l if and only if is injective for all i i  n. By propositions 5 

and 6  of section 2.4, this is true if and only ifrf* is injective for all n i n , +  l and i 

n and from an easy diagram chase using (3.1.3a) this is true if and only if q c-is 

injective if and only if q; is surjective if and only if $«(r is onto from diagram

(3.1.4).

(2 )^ (3 )  & is  onto (and hence P = P  Vor all i i n e+ l )  implies

/ii r t*i
is injective, hence q,is injective and thus q* is an isomorphism and so we finally 

have is an isomorphism. The reverse implication is immediate.
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This theorem gives us a new, though not particularly simple, 

criterion for determining the equality of prime powers and symbolic prime powers 

in terms of the objects . So the more properties of each tf*' we are able to 

determine, the easier it becomes to answer Hochster's original question. On the 

other hand, when we know that P 1 = P ^ 1for a certain class of rings, we can then 

compute the ^  by using the more explicit This transition from one

set of questions to another should facilitate the study of both types of ideas.



C h a p t e r  4 : W h a t  to  D o  U n ti l  t h e  D o c to r  A rr iv e s

In this final chapter we want to examine various ways we can 

extend our results by relaxing the restrictions we have put on our choice of the 

base ring k. We would also like to discuss certain directions tha t appear most 

conducive to us for future research.

S ection  4.1; C on siderations on th e  B ase  Field k

We have assumed in Chapter 3 that k is an algebraically closed 

field of characteristic zero. In this section we would tike to explore possible 

modifications. The first possibility might be to examine a field of characteristic 

p not equal to 0. One problem that arises in noncharacteristic zero fields is that 

a derivation might vanish on a non-zero subring of the original ring. If a ring 

A is of characteristic p i* 0 and is the subring then for an

A-module M and derivation D:A—» M, we have D(af ) = pa^‘fD (a )= 0 . (See [Ml, 

page 181].) It is also not clear tha t the key result of Seibt [S] would hold in 

a characteristic different from zero. And in any case, any extension to char=p  

would certainly involve some separability assumptions we have not previously 

needed or considered, since they have been, in any case, automatically satisfied.

The situation grows more interesting when we consider the case 

of k not algebraically closed. In Chapter 3 we considered a field k and a finite 

k-algebra S with maximal ideal max(S) (usually considering S as a localization 

at a prime and assuming S to be regular as well). We then dealt with the case

33
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where we have k* which is the case when k is algebraically closed, since

then the freeness of Ji\ , with S regular, can be proved in this case. Although the 

results from Chapter 2 remain quite general, there is apparently the possibility 

of relaxing the conditions invoked in parts of Chapter 3.

S ection  4.2: Lines o f  Future R esearch

We conclude by posing several questions that have been sug

gested by the results we have obtained.

Foremost among these are extensions of the results described 

above. How much more can we modify the restrictions on k, S, and P to produce 

results on the equality of prime powers and symbolic prime powers? Also, how 

much can we relax the relationship between k and the extension K =  t*rtfdiBcussed 

in section 4.1? W hat, exactly, is the optimal relationship, if any? And can we 

develop any such theory along the same lines for a  field of prime characteristic? 

How much will our results change and how much will they tell us about the 

original problem?

We would also like to consider analogue to derivations of higher 

order of a result proved in M atsumura {Ml, page 215, Lemma 1). When B is 

smooth over k, th en -3*% B is a projective B-module. (M atsum ura proves a  more 

general assertion for formally smooth algebras.) The proof given in Matsumura 

does not directly extend to J l  ̂ , but it may be possible to use the systems of 

filtrations described in Chapter 2 to obtain results in the higher order cases.

Another question which we would like to treat is related to the 

Rees algebra of the ”blow-up” of a commutative noetherian ring A. If P is a
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prime ideal of A, then P" is known to be noetherian. The question then

arises, When is S(P )=  P*** noetherian? It is known to be noetherian when P

is a set-theoretic complete intersection (see [Co] and [Hu]) but perhaps a  more 

careful study of would allow us to approach a general solution. For more

work on this line, Bee Eliahou [E] and the results mentioned there.

Returning to the V we have constructed, several lineB of inquiry 

are open here as well. Recalling that they arise from the work of Lichtenbaum 

and Schlessinger in relation to the cotangent functors T* , we notice that several 

interesting things are shown to happen when the T  and are known to vanish. 

It would be instructive to try to extend this study to the case of the general 

vanishing criteria for the tt*' Also, it seems that the are essentially

related to the T* . Perhaps, using more general techniques, it would be possible
f

to define analogous functors related to the higher T developed by Lichtenbaum- 

Schlessinger, Quillen, Andre, etc.

Finally we are led back to the motivating questions for this entire 

subject raised in the Introduction in Chapter 1 . Hartshorne asked us to deter

mine the relationship between the p-adic topology and the p-symbolic toplogy; 

in particular, when are these two topologies equivalent. As we indicated earlier, 

several partial answers are known and the use of the^*  may help us to extend 

these results. And at last, we would like to return to Hochster’s original prob-
A (A)

lem. Exactly when is P —P for every positive integer n? Although a complete 

answer may be currently out of reach, the results we have obtained here may 

help us to continue to make further progress on this question also.
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